WO2015151910A1 - スラリー用添加剤、掘削泥水及びセメントスラリー - Google Patents

スラリー用添加剤、掘削泥水及びセメントスラリー Download PDF

Info

Publication number
WO2015151910A1
WO2015151910A1 PCT/JP2015/058799 JP2015058799W WO2015151910A1 WO 2015151910 A1 WO2015151910 A1 WO 2015151910A1 JP 2015058799 W JP2015058799 W JP 2015058799W WO 2015151910 A1 WO2015151910 A1 WO 2015151910A1
Authority
WO
WIPO (PCT)
Prior art keywords
slurry
pva
additive
cement
drilling mud
Prior art date
Application number
PCT/JP2015/058799
Other languages
English (en)
French (fr)
Inventor
熊木 洋介
靖知 齋藤
Original Assignee
株式会社クラレ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社クラレ filed Critical 株式会社クラレ
Priority to US15/300,649 priority Critical patent/US10563109B2/en
Priority to CA2943496A priority patent/CA2943496C/en
Priority to CN201580017636.XA priority patent/CN106459738B/zh
Priority to RU2016142352A priority patent/RU2689010C2/ru
Publication of WO2015151910A1 publication Critical patent/WO2015151910A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B16/00Use of organic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of organic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B16/04Macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B40/00Processes, in general, for influencing or modifying the properties of mortars, concrete or artificial stone compositions, e.g. their setting or hardening ability
    • C04B40/0028Aspects relating to the mixing step of the mortar preparation
    • C04B40/0039Premixtures of ingredients
    • C04B40/0042Powdery mixtures
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F216/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical
    • C08F216/02Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical by an alcohol radical
    • C08F216/04Acyclic compounds
    • C08F216/06Polyvinyl alcohol ; Vinyl alcohol
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/02Well-drilling compositions
    • C09K8/03Specific additives for general use in well-drilling compositions
    • C09K8/035Organic additives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/02Well-drilling compositions
    • C09K8/04Aqueous well-drilling compositions
    • C09K8/14Clay-containing compositions
    • C09K8/18Clay-containing compositions characterised by the organic compounds
    • C09K8/22Synthetic organic compounds
    • C09K8/24Polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/42Compositions for cementing, e.g. for cementing casings into boreholes; Compositions for plugging, e.g. for killing wells
    • C09K8/46Compositions for cementing, e.g. for cementing casings into boreholes; Compositions for plugging, e.g. for killing wells containing inorganic binders, e.g. Portland cement
    • C09K8/467Compositions for cementing, e.g. for cementing casings into boreholes; Compositions for plugging, e.g. for killing wells containing inorganic binders, e.g. Portland cement containing additives for specific purposes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/42Compositions for cementing, e.g. for cementing casings into boreholes; Compositions for plugging, e.g. for killing wells
    • C09K8/46Compositions for cementing, e.g. for cementing casings into boreholes; Compositions for plugging, e.g. for killing wells containing inorganic binders, e.g. Portland cement
    • C09K8/467Compositions for cementing, e.g. for cementing casings into boreholes; Compositions for plugging, e.g. for killing wells containing inorganic binders, e.g. Portland cement containing additives for specific purposes
    • C09K8/487Fluid loss control additives; Additives for reducing or preventing circulation loss
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/50Compositions for plastering borehole walls, i.e. compositions for temporary consolidation of borehole walls
    • C09K8/504Compositions based on water or polar solvents
    • C09K8/506Compositions based on water or polar solvents containing organic compounds
    • C09K8/508Compositions based on water or polar solvents containing organic compounds macromolecular compounds
    • C09K8/5083Compositions based on water or polar solvents containing organic compounds macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2103/00Function or property of ingredients for mortars, concrete or artificial stone
    • C04B2103/0045Polymers chosen for their physico-chemical characteristics
    • C04B2103/0057Polymers chosen for their physico-chemical characteristics added as redispersable powders
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2103/00Function or property of ingredients for mortars, concrete or artificial stone
    • C04B2103/46Water-loss or fluid-loss reducers, hygroscopic or hydrophilic agents, water retention agents
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/70Grouts, e.g. injection mixtures for cables for prestressed concrete
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2201/00Mortars, concrete or artificial stone characterised by specific physical values
    • C04B2201/10Mortars, concrete or artificial stone characterised by specific physical values for the viscosity

Definitions

  • the present invention relates to an additive for slurry, drilling mud and cement slurry, and a method for manufacturing drilling mud and cement slurry.
  • Drilling mud for example, transporting excavated rock fragments and drilling debris, improving lubricity of bits and drill pipes, embedding porous ground holes, offsetting reservoir pressure (pressure from the rock) caused by hydrostatic pressure, etc. It plays a role.
  • This drilling mud usually contains water and bentonite as main components, and the target performance is achieved by adding barite, salt, clay and the like.
  • Such drilling mud is required to have temperature stability and appropriate flow characteristics such as being not significantly affected by changes in the concentration of electrolyte (for example, carboxylate) in the ground.
  • the excavated cement slurry is fixed to the casing pipe in the well, and the inner wall of the well is protected by cementing that is injected into the tubular gap between the formation and the casing pipe installed in the well and hardened. Used for.
  • the drilling cement slurry is injected into the tubular void portion using a pump. Therefore, the excavated cement slurry is required to have a very low viscosity so that it can be easily injected by a pump and not to be separated.
  • dehydration reducing agents such as walnut shells, cotton seeds, clay minerals, and polymer compounds are added to the drilling cement slurry.
  • vinyl alcohol polymers that are polymer compounds are often used. It is a known dehydration reducing agent.
  • Patent Document 1 discloses a method using a vinyl alcohol polymer having a saponification degree of 95 mol% or more
  • Patent Document 2 discloses a method having a saponification degree of 92 mol% or less.
  • a method using a vinyl alcohol polymer and a method using a vinyl alcohol polymer having a saponification degree of 99 mol% or more are disclosed in Patent Document 3, respectively.
  • these methods may be difficult to feed with a pump due to a decrease in the performance of the dehydration control agent at high temperatures and an increase in the viscosity of the drilling cement slurry.
  • Patent Document 4 discloses a method using a vinyl alcohol polymer crosslinked with melamine-formaldehyde. Is a method using a vinyl alcohol polymer produced by crosslinking a hydroxyl group of a vinyl alcohol polymer by acetalization reaction or the like. Patent Document 6 discloses a vinyl alcohol polymer produced by pH sensitive crosslinking such as boron ion. Each method using a polymer is disclosed. However, these methods have a certain effect on improving the performance of the dehydration reducing agent at high temperatures, but the cost increases because it is necessary to react with the crosslinking agent after the water-soluble vinyl alcohol polymer is once produced. Easy to do.
  • the present invention provides an additive for slurry that can suppress viscosity increase and dehydration at high temperature at low cost by using for civil engineering slurry (for example, drilling mud and drilling cement slurry used for well drilling etc.)
  • the purpose is to provide.
  • Another object of the present invention is to provide a drilling mud and drilling cement slurry containing the slurry additive, and a method for producing the drilling mud and drilling cement slurry.
  • the present inventors have found that when immersed in hot water at 60 ° C. for 3 hours, the solubility is 25% or less, the saponification degree is 99.5 mol% or more, and the average polymerization degree. Is in the form of a powder that passes through a sieve having a nominal aperture of 1.00 mm, using a vinyl alcohol polymer having 1,500 to 4,500 and a 1,2-glycol bond content of 1.8 mol% or less.
  • the additive for slurry it was found that a slurry in which the increase in viscosity and dehydration at high temperature are suppressed can be easily obtained, and further studies were made based on the knowledge to complete the present invention.
  • the present invention is a powdery slurry additive containing a vinyl alcohol polymer, and the solubility when the vinyl alcohol polymer is immersed in hot water at 60 ° C. for 3 hours is 25% or less.
  • Sieve having a saponification degree of 99.5 mol% or more, an average polymerization degree of 1,500 to 4,500, a 1,2-glycol bond amount of 1.8 mol% or less, and a nominal opening of 1.00 mm It is an additive for slurry which passes through.
  • the proportion of ethylene units in all structural units of the vinyl alcohol polymer is preferably less than 10 mol%.
  • the additive for slurry can be suitably used as an additive for slurry for civil engineering and construction.
  • This civil engineering and building slurry additive can be used more suitably as an additive for drilling mud (additive for drilling mud slurry) or an additive for cement slurry.
  • the slurry additive is a drilling mud additive
  • one that passes through a sieve having a nominal opening of 500 ⁇ m is preferable.
  • the slurry additive is a cement slurry additive
  • the present invention includes a drilling mud containing the slurry additive as an additive for drilling mud, and a method for producing drilling mud including a step of mixing the drilling mud additive, water, and mud.
  • the present invention includes a cement slurry containing the slurry additive as an additive for cement slurry, and a method for producing a cement slurry comprising a step of mixing the additive for cement slurry, a liquid agent, and a curable powder. .
  • the “nominal opening” means a nominal opening defined in JIS-Z8801: 2000 “Sieving for test—Part 1: Metal mesh sieve”. The same applies to the case of “nominal opening” below.
  • the present invention is used for slurry for civil engineering and construction (for example, drilling mud and drilling cement slurry used for well drilling, etc.), etc., and the addition for slurry can suppress viscosity increase and dehydration at high temperature at low cost.
  • Agents, drilling muds and drilling cement slurries are provided.
  • the present invention includes an additive for slurry, drilling mud and its manufacturing method, and cement slurry and its manufacturing method.
  • an additive for slurry, drilling mud and its manufacturing method and cement slurry and its manufacturing method.
  • the additive for slurry of the present invention is added to slurry for civil engineering and the like, and is preferably added to drilling mud and cement slurry.
  • the additive for slurry can be used for slurries for other purposes that need to suppress viscosity increase and dehydration at high temperature, in addition to drilling mud and cement slurry.
  • the slurry additive contains a vinyl alcohol polymer (hereinafter also referred to as “PVA”) and is in the form of a powder that passes through a sieve having a nominal aperture of 1.00 mm.
  • PVA vinyl alcohol polymer
  • This PVA is in powder form and is contained in the additive for slurry (hereinafter, such powdered PVA is also referred to as “PVA powder”).
  • the slurry additive may contain only PVA powder, or may contain optional components in addition to PVA powder.
  • the lower limit of the content of the PVA powder in the slurry additive is, for example, 50% by mass, and preferably 80% by mass.
  • the upper limit of the content of the PVA powder in the slurry additive is usually 100% by mass.
  • the particle size of the PVA powder is a size that passes through a sieve having a nominal aperture of 1.00 mm (16 mesh). When such PVA powder is contained as an additive in drilling mud, drilling cement slurry, or the like, it becomes easy to suppress dehydration from the slurry at a high temperature.
  • the lower limit of the particle size of the PVA powder is a range in which the solubility does not become extremely large, and is usually a size that does not pass a nominal opening of 45 ⁇ m (325 mesh), and a size that does not pass a nominal opening of 53 ⁇ m (280 mesh). Is preferred.
  • the lower limit of the solubility when the PVA powder is immersed in hot water at 60 ° C. for 3 hours is preferably 5%, more preferably 10%, and even more preferably 15%.
  • the upper limit of the solubility is 25%, preferably 22%, and more preferably 18%. If the solubility of the PVA powder exceeds 25%, dehydration from the slurry at high temperature may not be sufficiently suppressed.
  • the solubility of PVA powder is 4 g of PVA powder in 100 g of water heated to 60 ° C., stirred for 3 hours with a magnetic stirrer, and then separated using a wire mesh with a nominal opening of 75 ⁇ m (200 mesh). It can be calculated from the weight after drying the undissolved PVA powder for 3 hours with a heating dryer at 105 ° C. and the weight of the initially charged PVA powder (4 g).
  • PVA ⁇ Vinyl alcohol polymer
  • PVA is synthesized by saponifying a vinyl ester polymer obtained by polymerizing a vinyl ester monomer. That is, since the PVA contained in the slurry additive can be easily synthesized as having the desired characteristics by a known method without actively performing crosslinking or the like, the production cost of the slurry additive is reduced. Can be reduced.
  • Examples of the polymerization method of the vinyl ester monomer include a bulk polymerization method, a solution polymerization method, a suspension polymerization method, an emulsion polymerization method, and a dispersion polymerization method. From an industrial viewpoint, a solution polymerization method, an emulsion polymerization method, and A dispersion polymerization method is preferred.
  • the polymerization method of the vinyl ester monomer may be any of a batch method, a semi-batch method, and a continuous method.
  • vinyl ester monomer examples include vinyl acetate, vinyl formate, vinyl propionate, vinyl caprylate, vinyl versatate, and among these, vinyl acetate is preferable from an industrial viewpoint.
  • the PVA may be a saponified vinyl ester polymer obtained by copolymerizing ethylene.
  • the solubility of PVA after saponification can be lowered. Thereby, an increase in the viscosity of the slurry and dehydration at a high temperature can be further suppressed.
  • the PVA may be a saponified vinyl ester polymer obtained by copolymerizing a vinyl ester monomer and a monomer other than ethylene within a range not impairing the gist of the present invention.
  • Other monomers include, for example, ⁇ -olefins such as propylene, n-butene and isobutylene; acrylic acid and salts thereof; methyl acrylate, ethyl acrylate, n-propyl acrylate, i-propyl acrylate, n-acrylate -Acrylic esters such as butyl, i-butyl acrylate, t-butyl acrylate, 2-ethylhexyl acrylate, dodecyl acrylate, octadecyl acrylate; methacrylic acid and its salts; methyl methacrylate, ethyl methacrylate, methacrylic acid Methacrylic acid esters such as n-propy
  • a chain transfer agent may be allowed to coexist for the purpose of adjusting the average degree of polymerization of PVA.
  • chain transfer agents include aldehydes such as acetaldehyde, propionaldehyde, butyraldehyde, and benzaldehyde; ketones such as acetone, methyl ethyl ketone, hexanone, and cyclohexanone; mercaptans such as 2-hydroxyethanethiol; thiocarboxylic acids such as thioacetic acid; Examples thereof include halogenated hydrocarbons such as chloroethylene, and among these, aldehydes and ketones are preferable.
  • the addition amount of the chain transfer agent may be determined according to the chain transfer constant of the chain transfer agent, the average degree of polymerization of PVA to be achieved, and the like.
  • Examples of the saponification reaction of vinyl ester polymers include alcoholysis or hydrolysis reactions using known basic catalysts such as sodium hydroxide, potassium hydroxide, sodium methoxide, or acidic catalysts such as p-toluenesulfonic acid. Can be applied.
  • Examples of the solvent used in the saponification reaction include alcohols such as methanol and ethanol; esters such as methyl acetate and ethyl acetate; ketones such as acetone and methyl ethyl ketone; aromatic hydrocarbons such as benzene and toluene. May be used alone, or two or more may be used in combination. Among these, it is convenient and preferable to perform saponification reaction in the presence of sodium hydroxide which is a basic catalyst, using methanol or a mixed solution of methanol and methyl acetate as a solvent.
  • the lower limit of the saponification degree of PVA is 99.5 mol%, preferably 99.7 mol%, more preferably 99.8 mol%, particularly preferably 99.9 mol%.
  • PVA is a crystalline polymer having a crystal part resulting from the hydrogen bonding of the hydroxyl group it contains.
  • the degree of crystallinity of PVA improves as the degree of saponification increases.
  • the improvement of crystallinity reduces the water solubility of PVA.
  • PVA greatly changes its solubility in high-temperature water at a saponification degree of 99.5 mol%.
  • PVA having a saponification degree of 99.5 mol% or higher has high water resistance (low solubility) due to the strength of hydrogen bond, and may have water resistance comparable to PVA having chemical crosslinking. Therefore, when the degree of saponification of PVA is 99.5 mol% or more, it is possible to suppress an increase in the viscosity of the slurry and dehydration at a high temperature even for PVA that has not been chemically crosslinked. Since the step of performing chemical crosslinking can be omitted, cost can be reduced. On the other hand, when the degree of saponification is smaller than the lower limit, dehydration at high temperatures may not be sufficiently suppressed when used as an additive for slurry.
  • the saponification degree of PVA is a value measured according to JIS-K6726: 1994.
  • the lower limit of the average degree of polymerization of PVA is 1,500, preferably 1,700, more preferably 1,800, and still more preferably 2,000.
  • the upper limit of the average degree of polymerization of PVA is 4,500, 4,250 is preferable, 4,000 is more preferable, and 3,800 is more preferable.
  • the average degree of polymerization of PVA is smaller than the above lower limit, there is a possibility that the dehydration at high temperature of the slurry cannot be sufficiently suppressed because of a slight increase in solubility.
  • the average degree of polymerization of PVA exceeds the above upper limit, not only the production of PVA becomes difficult, but the viscosity of the slurry at a high temperature may increase.
  • the lower limit of the 1,2-glycol bond amount of PVA is preferably 0.5 mol%, more preferably 1.0 mol%.
  • the upper limit of the 1,2-glycol bond amount of PVA is 1.8 mol%, preferably 1.7 mol%, more preferably 1.6 mol%.
  • the 1,2-glycol bond amount of PVA can be determined from the peak of the NMR spectrum. After saponification to a saponification degree of 99.9 mol% or more, the sample was thoroughly washed with methanol, then PVA that had been dried at 90 ° C. under reduced pressure for 2 days was dissolved in DMSO-D6, and a sample with a few drops of trifluoroacetic acid was added at 500 MHz. This is a value measured at 80 ° C. using proton NMR (“GX-500” from JEOL).
  • the methine-derived peak of vinyl alcohol units is attributed to 3.2 ppm to 4.0 ppm (integrated value A ′), and the peak derived from one methine of 1,2-glycol bond is attributed to 3.25 ppm (integrated value B ′).
  • the amount of 1,2-glycol bond can be calculated by the formula.
  • “ ⁇ ” represents the ethylene modification amount (mol%).
  • 1,2-glycol bond amount (mol%) B ′ (100 ⁇ ) / A ′
  • the amount of 1,2-glycol bonds in the vinyl alcohol polymer can be controlled by, for example, copolymerization of monomers typified by ethylene carbonate, polymerization temperature, and the like.
  • Percentage of ethylene units As a ratio of the ethylene unit of PVA, less than 10 mol% of all the structural units of PVA is preferable, less than 9 mol% is more preferable, and less than 8 mol% is especially preferable. When the proportion of the ethylene unit is 10 mol% or more, it may be difficult to obtain PVA having an average degree of polymerization of 1,500 or more.
  • the ratio of the ethylene unit of PVA is a value obtained from proton NMR of a vinyl ester polymer which is a precursor of PVA. That is, the vinyl ester polymer as a precursor was sufficiently reprecipitated and purified three times or more with n-hexane / acetone, and then dried under reduced pressure at 80 ° C. for 3 days for analysis. It was created. This vinyl ester polymer was dissolved in DMSO-D6 and measured at 80 ° C. using 500 MHz proton NMR (“GX-500” from JEOL).
  • the drilling mud of the present invention for example, transports excavated rock fragments and drilling debris, improves lubricity of bits and drill pipes, embeds holes in porous ground, and reservoir pressure generated by hydrostatic pressure (pressure from the rock) It plays a role of canceling out.
  • This drilling mud contains water (service water) and mud as main components, and further contains the slurry additive as an additive for drilling mud slurry.
  • the drilling mud may contain an optional component as long as the effects of the present invention are not impaired.
  • the drilling mud is manufactured by mixing the slurry additive, water and mud. Specifically, the drilling mud is produced by adding the slurry additive and, if necessary, an optional component, based on a water-clay suspension in which mud is dispersed and suspended in the water. be able to.
  • the additive for slurry as the additive for drilling mud slurry contains the PVA powder described above.
  • the particle size of the additive for slurry as the additive for drilling mud slurry is preferably a size that passes through a sieve having a nominal mesh size of 500 ⁇ m (32 mesh).
  • the duplication description here is abbreviate
  • the particle size of the PVA powder contained in the drilling mud needs to be a size that passes through a sieve with a nominal opening of 1.00 mm (16 mesh), but a nominal opening of 500 ⁇ m (32 mesh).
  • the size passing through the sieve is preferable.
  • the particle size of the PVA powder contained in the drilling mud is a size that passes through a sieve having a nominal opening of 500 ⁇ m (32 mesh), so that dehydration from the drilling mud at a high temperature can be further suppressed.
  • the lower limit of the particle size of the PVA powder is not particularly limited as long as the solubility does not become extremely large, but is usually a size that does not pass a nominal opening of 45 ⁇ m (325 mesh) and has a nominal opening of 53 ⁇ m (280 A size that does not pass through the mesh) is preferred.
  • the lower limit of the content of the PVA powder in the drilling mud preferably from 0.5 kg / m 3, more preferably 3 kg / m 3.
  • the upper limit of the content of the PVA powder in the drilling mud preferably from 40 kg / m 3, more preferably 30kg / m 3.
  • mud examples include bentonite, attapulgite, selenite, hydrous magnesium silicate, and the like. Among these, bentonite is preferable.
  • the lower limit of the mixing ratio of the mud in the drilling mud is preferably 5 g with respect to 1 kg of water used for the drilling mud, and more preferably 10 g.
  • the upper limit of the mixing ratio of the mud in the drilling mud is preferably 300 g, more preferably 200 g, with respect to 1 kg of water used for the drilling mud.
  • ⁇ Optional component As the optional component, known additives can be used. For example, a copolymer of an ⁇ -olefin having 2 to 12 carbon atoms and maleic anhydride or a derivative thereof (for example, maleic acid amide, maleic acid imide, etc.) Or an aqueous solution of an alkali neutralized product thereof; a dispersant, a pH adjuster, an antifoaming agent, a thickener, and the like.
  • a copolymer of an ⁇ -olefin having 2 to 12 carbon atoms and maleic anhydride or a derivative thereof for example, maleic acid amide, maleic acid imide, etc.
  • an aqueous solution of an alkali neutralized product thereof a dispersant, a pH adjuster, an antifoaming agent, a thickener, and the like.
  • Examples of the copolymer or derivative of an ⁇ -olefin having 2 to 12 carbon atoms and maleic anhydride include a copolymer of an ⁇ -olefin such as ethylene, propylene, 1-butene, isobutene, diisobutylene and maleic anhydride. And a derivative thereof (for example, “Isoban” manufactured by Kuraray Co., Ltd.),
  • Examples of the dispersant include humic acid-based dispersants and lignin-based dispersants. Among these, lignin-based dispersants containing a sulfonate are preferable.
  • the cement slurry of the present invention is fixed by, for example, fixing the casing pipe in the well, protecting the inner wall in the well by injecting into the tubular void portion between the formation and the casing pipe installed in the well and hardening it. Used for.
  • the cement slurry contains the additive for slurry as an additive for cement slurry, a curable powder, and a liquid agent.
  • the cement slurry may contain an optional component as long as the effects of the present invention are not impaired.
  • the cement slurry is produced by adding the slurry additive, liquid agent and curable powder, and optional components as necessary, and mixing them using a stirrer or the like.
  • the additive for slurry as the additive for cement slurry contains the above-described PVA powder.
  • the particle size of the additive for slurry as an additive for cement slurry is preferably a size that passes through a sieve having a nominal aperture of 250 ⁇ m (60 mesh).
  • the duplication description here is abbreviate
  • the particle size of the PVA powder contained in the cement slurry needs to be a size that passes through a sieve having a nominal opening of 1.00 mm (16 mesh), but a nominal opening of 250 ⁇ m (60 mesh).
  • the size passing through the sieve is preferable.
  • the particle size of the PVA powder contained in the cement slurry is a size that passes through a sieve having a nominal opening of 250 ⁇ m (60 mesh), so that dehydration from the cement slurry at a high temperature can be further suppressed.
  • the lower limit of the particle size of the PVA powder is not particularly limited as long as the solubility does not become extremely large, but is usually a size that does not pass a nominal opening of 45 ⁇ m (325 mesh) and has a nominal opening of 53 ⁇ m (280 A size that does not pass through the mesh) is preferred.
  • the lower limit of the PVA powder content in the cement slurry is preferably 0.1% (BWOC), more preferably 0.2% (BWOC).
  • the upper limit of the content of the PVA powder in the cement slurry is preferably 2.0% (BWOC), and more preferably 1.0% (BWOC).
  • BWOC “By Weight Of Element) means a cement mass standard.
  • curable powder examples include Portland cement, mixed cement, eco cement, and special cement.
  • the hydraulic cement which reacts with water and solidifies is preferable.
  • a geothermal well cement and an oil well cement are preferable.
  • Portland cement those specified in JIS-R5210: 2009, specifically, ordinary Portland cement, early strength Portland cement, super early strength Portland cement, moderately hot Portland cement, low heat Portland cement, sulfate resistant Portland cement, Examples include low alkaline Portland cement.
  • Examples of the mixed cement include those specified in JIS-R5211-15213: 2009, specifically, blast furnace cement, fly ash cement, silica cement and the like.
  • Special cements include those based on Portland cement, those in which the composition and particle size composition of Portland cement are changed, and those that are different from Portland cement.
  • Examples of special cements based on Portland cement include expansive cements, two-component low heat-generating cements, and three-component low heat-generating cements.
  • Examples of special cements that change the composition and particle size composition of Portland cement include white Portland cement, cement-based solidified material (geo-cement), ultrafine cement, and high belite cement.
  • Examples of special cements having components different from Portland cement include ultrafast cement, alumina cement, phosphate cement, and air cement.
  • the liquid agent is selected according to the type of the curable powder, and examples thereof include water, a solvent, and a mixture thereof. Generally, water (water for use) is used.
  • the ratio of the curable powder and the liquid agent in the cement slurry may be appropriately determined according to the specific gravity of the target slurry, the strength of the cured body, and the like.
  • the water / cement ratio (W / C) is preferably 25% by weight from the viewpoint of the specific gravity of the slurry, the strength of the cured body, and the like. 30% by mass is more preferable.
  • the upper limit of the W / C is preferably 100% by weight and more preferably 80% by weight from the viewpoint of the specific gravity of the slurry, the strength of the cured product, and the like.
  • the cement slurry can contain a dispersant, a retarder and / or an antifoaming agent as optional components, and may contain other additives.
  • Dispersant examples include anionic polymers such as naphthalene sulfonic acid formalin condensate, melamine sulfonic acid formalin condensate, and polycarboxylic acid polymer, and among these, naphthalene sulfonic acid formalin condensate is preferable.
  • the lower limit of the content of the dispersant in the cement slurry is usually 0.05% (BWOC), and preferably 0.2% (BWOC).
  • the upper limit of the content of the dispersant in the cement slurry is 2% (BWOC), preferably 1% (BWOC).
  • retarder examples include oxycarboxylic acid and salts thereof, saccharides such as monosaccharides and polysaccharides, and among these, saccharides are preferable.
  • the lower limit of the content of the retarder in the cement slurry is usually 0.005% (BWOC), and preferably 0.02% (BWOC).
  • the upper limit of the content of the retarder in the cement slurry is 1% (BWOC), preferably 0.3% (BWOC).
  • Examples of the antifoaming agent include alcohol alkylene oxide adducts, fatty acid alkylene oxide adducts, polypropylene glycol, fatty acid soaps, silicon compounds, and the like. Among these, silicon compounds are preferable.
  • the lower limit of the content of the antifoaming agent in the cement slurry is usually 0.0001% (BWOC), and preferably 0.001% (BWOC).
  • the upper limit of the content of the antifoaming agent in the cement slurry is 0.1% (BWOC), and preferably 0.05% (BWOC).
  • cement cement hardener low specific gravity additive, high specific gravity additive, foaming agent, crack reducing agent, foaming agent, AE agent, cement expansion material, cement strength stability
  • additives such as fine aggregates, such as a material, silica stone powder, silica fume, fly ash, limestone powder, crushed sand, coarse aggregates, such as crushed stone, and a hollow balloon.
  • these additives may be used individually by 1 type, and may use 2 or more types together.
  • Nitrogen gas was bubbled to replace the nitrogen, and this solution was used as an initiator solution.
  • Polymerization was initiated by injecting 45 mL of this initiator solution into a reaction vessel adjusted to 60 ° C.
  • ethylene is introduced to maintain the pressure in the reaction vessel at 4.9 Kg / cm 2 and the polymerization temperature is maintained at 60 ° C., and the initiator solution is continuously added to the reaction vessel at 143 mL / hr for polymerization. did.
  • the reaction vessel was cooled to stop the polymerization. Further, after the reaction vessel was opened to remove ethylene, nitrogen gas was bubbled to completely remove ethylene.
  • the gelled material is pulverized with a pulverizer, allowed to stand at 40 ° C. for 1 hour to proceed with saponification, and then added with 1,000 g of methyl acetate and left at room temperature for 30 minutes. did.
  • the PVA obtained by centrifugal drainage was left in a dryer at 100 ° C. for 3 hours. Dried PVA (PVA-1).
  • Example 1 ⁇ Preparation of drilling mud> 300 g of ion-exchanged water was taken into a Hamilton beach mixer cup, 6 g of bentonite (“Tergel E” from Ternite) was added and stirred sufficiently, and then left for 24 hours to sufficiently swell bentonite.
  • dry PVA (PVA-1) was passed through a sieve having a nominal opening of 1.00 mm (16 mesh), 1.5 g of dry PVA (PVA-1) powder passing through this sieve was collected, and this powder was removed from drilling mud.
  • Drilling mud (D-1) was obtained by adding to the bentonite dispersion as an additive.
  • Example 2 to 9 and Comparative Examples 1 to 8 As shown in Table 2, drilling muds (D-2) to (D-9) and (D-9) were obtained in the same manner as in Example 1 except that dry PVA (PVA-2) to (PVA-17) powders were used. (D-1) to (d-8) were prepared.
  • Example 10 Excavated mud (by drilling mud) in the same manner as in Example 6 except that dry PVA (PVA-6) was passed through a sieve having a nominal opening of 500 ⁇ m (32 mesh) and the powder of dry PVA (PVA-6) that passed through this sieve was used. D-10) was prepared.
  • Example 11 Excavated mud (by drilling mud) in the same manner as in Example 7 except that dry PVA (PVA-7) was passed through a sieve having a nominal opening of 500 ⁇ m (32 mesh) and the powder of dry PVA (PVA-7) that passed through this sieve was used. D-11) was prepared.
  • Example 10 The same procedure as in Example 1 except that dry PVA (PVA-1) was passed through a sieve with a nominal opening of 1.00 mm (16 mesh) and the dry PVA (PVA-1) powder that did not pass through this sieve was used. Drilling mud (d-10) was prepared by
  • ⁇ Viscosity> The viscosity of the drilling mud was measured at 25 ° C. and 30 rpm using a B-type viscometer, and the value after 10 seconds was adopted. The viscosity of the drilling mud is better as the value is smaller. It can be evaluated as good when it is 18 mPa ⁇ s or less, and as poor when it exceeds 18 mPa ⁇ s.
  • the dewatering amount of the drilling mud is “HHT Filter Press Series 387” by Fan Instrument, and after the drilling mud is put into the cell adjusted to a temperature of 150 ° C. and left for 3 hours, the differential pressure becomes 500 psi from the upper and lower parts of the cell. Was performed under pressure.
  • the dewatering amount of the drilling mud is better as the value is smaller, and it can be evaluated as good when it is 30 ml or less, and poor when it exceeds 30 ml.
  • the drilling muds (D-1) to (D-11) of Examples 1 to 11 have a low viscosity and a dehydration amount at 150 ° C. of 25 mL or less, Dehydration was limited to a very small amount.
  • the drilling muds (d-1) to (d-5) of Comparative Examples 1 to 5 use dry PVA having a saponification degree of less than 99.5 mol%. ) To (d-5) also had a solubility exceeding 25%, and as a result, the amount of drilling mud dewatered at 150 ° C. exceeded 30 mL, and dewatering at a high temperature could not be sufficiently suppressed.
  • the drilling mud (d-6) of Comparative Example 6 has a solubility exceeding 25% because of the use of dry PVA having a 1,2-glycol bond amount exceeding 1.8 mol%.
  • the amount of dewatered drilling mud was 32 mL, and dewatering at a high temperature could not be sufficiently suppressed.
  • the drilling muds (d-7) and (d-8) of Comparative Examples 7 and 8 have a solubility of more than 25% because of the use of dry PVA having an average degree of polymerization of less than 1,500.
  • the amount of dewatering of the drilling mud was 35 mL or more, and dewatering at high temperature could not be sufficiently suppressed.
  • the drilling mud (d-9) of Comparative Example 9 uses the same dry PVA (PVA-1) as in Example 1. Is this dry PVA (PVA-1) previously dissolved in water and added? The viscosity of drilling mud (d-9) was very high, and the amount of drilling mud dewatered at 150 ° C. exceeded 100 mL, and the suppression of dewatering at high temperatures was extremely insufficient.
  • the drilling mud (d-10) of Comparative Example 10 uses the same dry PVA (PVA-1) as in Example 1, but the particle size when added to the drilling mud (d-10) is nominal. Although it is a large one that does not pass 100 mm (16 mesh), although the solubility at 60 ° C. is slightly low, the amount of drilling mud dewatered at 150 ° C. is 90 mL, and the suppression of dewatering at high temperatures is extremely insufficient. It was.
  • the solubility when immersed in hot water at 60 ° C. for 3 hours is 25% or less
  • the saponification degree is 99.5 mol% or more
  • the average polymerization degree is 1,500 or more and 4,500 or less
  • 1,2 glycol bond amount Is a powdery vinyl alcohol polymer that passes through a sieve having a nominal opening of 100 mm (16 mesh) and having a nominal opening of 100 mm or less, when used for the preparation of drilling mud, the viscosity of the drilling mud is lowered, and Since dehydration at high temperatures can be suppressed, it can be said that it is very useful as an additive for drilling mud.
  • Example 12 ⁇ Preparation of cement slurry> Dry PVA (PVA-6) was passed through a sieve with a nominal opening of 250 ⁇ m (60 mesh), and 4 g of dry PVA (PVA-6) powder that passed through the sieve was used as an additive for cement slurry.
  • a juice mixer with 800 g of Class H cement, 4 g of naphthalene sulfonic acid formalin condensate sodium salt (“Daxad-19” from Dipersity Technologies), and 0.16 g of lignin sulfonic acid sodium salt (“Keling 32L” from Lignotech USA) Then, the mixture was stirred and mixed to prepare cement slurry (S-1). The amount of dry PVA (PVA-6) powder added was 0.5% on the basis of cement mass (BWOC).
  • Example 13 A cement slurry (S-2) was prepared in the same manner as in Example 12 except that dry PVA (PVA-9) was used.
  • Example 11 A cement slurry (s-1) was prepared in the same manner as in Example 12 except that dry PVA (PVA-10) was used.
  • Cement slurry (PVA-13) was prepared in the same manner as in Example 12 except that dry PVA (PVA-13) was passed through a sieve having a nominal aperture of 180 ⁇ m (80 mesh) and the powder of dry PVA (PVA-13) that passed through this sieve was used. s-3) was prepared.
  • Plastic viscosity (PV) is a flow resistance value caused by mechanical friction of solids contained in cement slurry.
  • the yield value (YV) is a shearing force necessary to continue the flow when the fluid is in a flowing state, and is a flow resistance caused by a traction force between solid particles contained in the cement slurry.
  • Plastic viscosity (PV) and yield value (YV) were measured according to the method described in “Appendix H” of “API 10” (American Institute Specification 10) after adjusting the temperature of the cement slurry to 25 ° C. or 90 ° C.
  • the plastic viscosity (PV) of the cement slurry indicates that the smaller the value, the better, and it can be judged that the case of 60 cp or less at 20 ° C. is good and the case of exceeding 60 cp is bad.
  • the yield value (YV) of the cement slurry can be determined to be good when it is 7 lb / 100 ft 2 or less at 20 ° C., and poor when it exceeds 7 lb / 100 ft 2 .
  • the amount of dewatering of the cement slurry is the amount dehydrated for 30 minutes under the condition of a differential pressure of 1000 psi from the cement slurry adjusted to 90 ° C. according to the method described in “Appendix H” of “API10” (American Institute Specification 10). As measured. The smaller the value, the better the dewatering amount of the cement slurry. It can be evaluated as good when it is 35 ml or less, and as poor when it exceeds 35 ml.
  • the cement slurries (S-1) and (S-2) of Examples 12 and 13 have low viscosity, and the dehydration amounts at 90 ° C. are 25 mL and 32 mL, respectively. The dehydration of was suppressed.
  • the cement slurry (s-1) of Comparative Example 11 uses dry PVA (PVA-10) partially saponified to a saponification degree of 88.2 mol%, it is the same as the cement slurry of Examples 12 and 13 With the addition amount, the solubility exceeded 25%, and as a result, the dewatering amount of the cement slurry at 90 ° C. was 313 mL, and the dehydration at high temperature could not be sufficiently suppressed.
  • the cement slurry (s-2) of Comparative Example 12 uses the same partially saponified dry PVA (PVA-10) as the cement slurry of Comparative Example 11, but the amount added was increased to 0.8% (BWC). In addition, the dewatering amount of the cement slurry at 90 ° C. is greatly improved to 36 mL. However, due to the large amount of dry PVA (PVA-10) added, PV at 20 ° C. was very high at 132 cp, which was not suitable for practical use.
  • the cement slurry (s-3) of Comparative Example 13 is a dry PVA (PVA-13) having a saponification degree of 99.3 mol%. Of dehydration could not be sufficiently suppressed.
  • the solubility when immersed in hot water at 60 ° C. for 3 hours is 25% or less
  • the saponification degree is 99.5 mol% or more
  • the average polymerization degree is 1,500 or more and 4,500 or less
  • 1,2 glycol bond amount Is less than 1.8 mol%
  • the powdered vinyl alcohol polymer passing through a 250 ⁇ m (60 mesh) sieve is dehydrated at high temperature even when used in small quantities when used in the preparation of drilling mud and cement slurry.
  • the increase in viscosity is suppressed, it can be said that it is very useful as an additive for drilling mud and cement slurry.
  • the present invention is used for slurry for civil engineering and construction (for example, drilling mud and drilling cement slurry used for well drilling, etc.), etc., and the addition for slurry can suppress viscosity increase and dehydration at high temperature at low cost.
  • Agents, drilling muds and drilling cement slurries are provided.

Abstract

 本発明は、土木建築用スラリー(例えば坑井掘削等に使用される掘削泥水や掘削セメントスラリー)等に用いることにより、低コストで粘度上昇と高温での脱水とを抑制できるスラリー用添加剤を提供する。本発明は、ビニルアルコール系重合体を含有する粉末状のスラリー用添加剤であって、上記ビニルアルコール系重合体が、60℃の熱水に3時間浸漬したときの溶解度が25%以下、けん化度が99.5モル%以上、平均重合度が1,500以上4,500以下、かつ1,2-グリコール結合量が1.8モル%以下であり、公称目開き1.00mmの篩を通過する。

Description

スラリー用添加剤、掘削泥水及びセメントスラリー
 本発明は、スラリー用添加剤、掘削泥水及びセメントスラリー、並びに掘削泥水及びセメントスラリーの製造方法に関する。
 石油、天然ガス等の埋蔵物を採収するための坑井等では、従来から掘削泥水及び掘削セメントスラリーに代表される土木建築用のスラリーが使用されている。
 掘削泥水は、例えば掘削された岩片や掘削屑等の運搬、ビットやドリルパイプの潤滑性向上、多孔質の地盤の穴の埋設、静水圧により生ずる貯留層圧力(岩盤からの圧力)の相殺等の役割を果たすものである。この掘削泥水は、通常水及びベントナイトを主成分とし、さらにバライト、塩、クレー等を添加することによって目的の性能が達成される。このような掘削泥水には、温度安定性を有すること及び地盤中の電解質(例えばカルボン酸塩)の濃度変化に大きな影響を受けない等の適切な流動特性を有することが要求される。このような要求を満たすためには、掘削泥水の粘度の調整、及び掘削泥水に含まれる水分の散逸(以下「脱水」と称することもある)の抑制が必要である。掘削泥水の粘度調製及び脱水抑制には、例えばデンプン、デンプンエーテル(カルボキシメチルデンプン等)、カルボキシメチルセルロース、カルボキシメチルヒドロキシエチルセルロースなどのポリマー類を添加する方法が通常採用される。
 しかし、これらのポリマー類の添加は、掘削泥水の粘度を極端に上昇させ、ポンプによる掘削泥水の注入を困難にする場合がある。また、デンプン及びその誘導体は約120℃を超える温度域での脱水の抑制が十分でなく、カルボキシメチルセルロース及びカルボキシメチルヒドロキシエチルセルロースは140℃~150℃の温度域で脱水の抑制が十分でないという不都合がある。
 一方、掘削セメントスラリーは、地層と抗井内に設置されたケーシングパイプとの間の管状空隙部分に注入して硬化させるセメンチングにより、ケーシングパイプの坑井内への固定、坑井内の内壁の保護等のために使用される。一般に、管状空隙部分への掘削セメントスラリーの注入は、ポンプを用いて行われる。そのため、掘削セメントスラリーは、ポンプによる注入が容易に行えるように極めて低い粘度を有し、かつ分離しないことが求められる。
 ところが、坑井のセメンチングにおいては、材料分離や坑井内の亀裂への水分散逸などに起因し、セメンチング部分に欠陥を生じることがある。そのため、掘削セメントスラリーには、クルミ殻、綿実、粘土鉱物、高分子化合物等の脱水減少剤を添加することが行われており、これらの中でも高分子化合物であるビニルアルコール系重合体はよく知られた脱水減少剤である。
 このビニルアルコール系重合体の脱水減少剤については、例えば特許文献1にはけん化度が95モル%以上のビニルアルコール系重合体を使用する方法が、特許文献2にはけん化度92モル%以下のビニルアルコール系重合体を使用する方法が、特許文献3にはけん化度99モル%以上のビニルアルコール系重合体を使用する方法がそれぞれ開示されている。しかし、これらの方法は、特に高温での上記脱水制御剤の性能の低下や、掘削セメントスラリーの粘度上昇によりポンプによる送入が困難となるおそれがある。
 高温での脱水減少剤の性能低下、及び掘削セメントスラリーの粘度上昇を改良するために、特許文献4にはメラミン-ホルムアルデヒドにより架橋されたビニルアルコール系重合体を使用する方法が、特許文献5にはアセタール化反応等でビニルアルコール系重合体の水酸基を架橋して生成するビニルアルコール系重合体を使用する方法が、特許文献6にはホウ素イオン等、pHに敏感な架橋により生成するビニルアルコール系重合体を使用する方法がそれぞれ開示されている。しかし、これらの方法は、高温での脱水減少剤の性能改良には一定の効果を奏するが、水溶性のビニルアルコール系重合体をいったん製造した後に架橋剤と反応させる必要があるためコストを上昇させ易い。
米国特許第4569395号明細書 米国特許第4967839号明細書 米国特許第7731793号明細書 米国特許第5061387号明細書 米国特許第6656266号明細書 米国特許第6739806号明細書
Society of Petroleum Engineers Conference Paper ID 121542
 本発明は、土木建築用スラリー(例えば坑井掘削等に使用される掘削泥水や掘削セメントスラリー)等に用いることにより、低コストで粘度上昇と高温での脱水とを抑制できるスラリー用添加剤を提供することを目的とする。本発明はさらに、当該スラリー用添加剤を含有する掘削泥水及び掘削セメントスラリー、並びにこれら掘削泥水及び掘削セメントスラリーの製造方法を提供することを目的とする。
 本発明者らは上記の目的を達成すべく鋭意検討を重ねた結果、60℃の熱水に3時間浸漬したときの溶解度が25%以下、けん化度が99.5モル%以上、平均重合度が1,500以上4,500以下、かつ1,2-グリコール結合量が1.8モル%以下であるビニルアルコール系重合体を用い、公称目開き1.00mmの篩を通過する粉末状であるスラリー用添加剤を用いることにより、粘度上昇や高温での脱水が抑制されるスラリーが容易に得られることを見出し、当該知見に基づいてさらに検討を重ねて本発明を完成させた。
 すなわち、本発明は、ビニルアルコール系重合体を含有する粉末状のスラリー用添加剤であって、上記ビニルアルコール系重合体が、60℃の熱水に3時間浸漬したときの溶解度が25%以下、けん化度が99.5モル%以上、平均重合度が1,500以上4,500以下、かつ1,2-グリコール結合量が1.8モル%以下であり、公称目開き1.00mmの篩を通過するスラリー用添加剤である。
 上記ビニルアルコール系重合体の全構造単位のうちのエチレン単位の割合としては、10モル%未満が好ましい。
 当該スラリー用添加剤は、土木建築スラリー用添加剤として好適に用いることができる。この土木建築スラリー用添加剤は、掘削泥水用添加剤(掘削泥水スラリー用添加剤)又はセメントスラリー用添加剤としてより好適に用いることができる。
 当該スラリー用添加剤が掘削泥水用添加剤である場合、公称目開き500μmの篩を通過するものが好ましい。
 当該スラリー用添加剤がセメントスラリー用添加剤である場合、公称目開き250μmの篩を通過するものが好ましい。
 本発明は、当該スラリー用添加剤を掘削泥水用添加剤として含有する掘削泥水、及び上記掘削泥水用添加剤と、用水と、泥質とを混合する工程を備える掘削泥水の製造方法を含む。
 本発明は、当該スラリー用添加剤をセメントスラリー用添加剤として含有するセメントスラリー、及び上記セメントスラリー用添加剤と、液剤と、硬化性粉末とを混合する工程を備えるセメントスラリーの製造方法を含む。
 ここで、「公称目開き」とは、JIS-Z8801:2000「試験用ふるい-第1部:金属製網ふるい」に規定された公称目開きをいう。以下において、「公称目開き」という場合も同様である。
 本発明によれば、土木建築用スラリー(例えば坑井掘削等に使用される掘削泥水や掘削セメントスラリー)等に用いることにより、低コストで粘度上昇と高温での脱水とを抑制できるスラリー用添加剤、掘削泥水及び掘削セメントスラリーが提供される。
 本発明は、スラリー用添加剤、掘削泥水及びその製造方法、並びにセメントスラリー及びその製造方法を含む。以下、これらの発明を詳細に説明する。
[スラリー用添加剤]
 本発明のスラリー用添加剤は、土木建築用スラリー等に添加されるものであり、好適には掘削泥水及びセメントスラリーに添加される。もちろん、当該スラリー用添加剤は、掘削泥水やセメントスラリー以外にも、粘度上昇と高温での脱水との抑制が必要とされる他の用途のスラリーに使用することができる。
 当該スラリー用添加剤は、ビニルアルコール系重合体(以下、「PVA」ともいう)を含有し、さらに公称目開き1.00mmの篩を通過する粉末状である。このPVAは、粉末状で当該スラリー用添加剤に含有される(以下、このような粉末状のPVAを「PVA粉末」ともいう)。当該スラリー用添加剤は、PVA粉末のみを含有していてもよく、PVA粉末に加えて任意成分を含有していてもよい。当該スラリー用添加剤におけるPVA粉末の含有率の下限としては、例えば50質量%であり、80質量%が好ましい。一方、当該スラリー用添加剤におけるPVA粉末の含有率の上限としては、通常100質量%である。
(粒子サイズ)
 PVA粉末の粒子サイズは、公称目開き1.00mm(16メッシュ)の篩を通過する大きさである。このようなPVA粉末を掘削泥水や掘削セメントスラリー等に添加剤として含有させた場合、高温でのスラリーからの脱水を抑制することが容易となる。一方、PVA粉末の粒子サイズの下限値は、溶解度が極端に大きくならない範囲であり、通常公称目開き45μm(325メッシュ)を通過しないサイズであり、公称目開き53μm(280メッシュ)を通過しないサイズが好ましい。
(溶解度)
 PVA粉末の60℃の熱水に3時間浸漬したときの溶解度の下限としては、5%が好ましく、10%がより好ましく、15%がさらに好ましい。一方、上記溶解度の上限としては、25%であり、22%が好ましく、18%がより好ましい。PVA粉末の溶解度が25%を超えると、高温でのスラリーからの脱水を十分抑制できないおそれがある。
 ここで、PVA粉末の溶解度は、60℃に加温した100gの水中にPVA粉末を4g投入してマグネティック・スターラーで3時間攪拌した後、公称目開き75μm(200メッシュ)の金網を用いて分離される未溶解PVA粉末を105℃の加熱乾燥機で3時間乾燥させた後の重量と、初期投入したPVA粉末の重量(4g)とから算出できる。
<ビニルアルコール系重合体(PVA)>
 PVAは、ビニルエステル単量体を重合させて得られるビニルエステル系重合体をけん化することにより合成されるものである。すなわち、当該スラリー用添加剤に含有されるPVAは、架橋等を積極的に行うことなく公知の方法により目的とする特性を有するものとして容易に合成できるため、当該スラリー用添加剤の製造コストを低下できる。
 ビニルエステル単量体の重合方法としては、例えば塊状重合法、溶液重合法、懸濁重合法、乳化重合法、分散重合法等が挙げられ、工業的観点から、溶液重合法、乳化重合法及び分散重合法が好ましい。ビニルエステル単量体の重合方式は、回分法、半回分法及び連続法のいずれの重合方式であってもよい。
 ビニルエステル単量体としては、例えば酢酸ビニル、ギ酸ビニル、プロピオン酸ビニル、カプリル酸ビニル、バーサチック酸ビニル等が挙げられ、これらの中でも、工業的観点から酢酸ビニルが好ましい。
 PVAは、エチレンを共重合させたビニルエステル重合体をけん化したものであってもよい。ビニルエステルにエチレンを共重合させることで、けん化後のPVAの溶解性を低くすることができる。これにより、スラリーの粘度上昇と高温での脱水とをより抑制できる。
 PVAは、本発明の趣旨を損なわない範囲で、ビニルエステル単量体及びエチレン以外の他の単量体を共重合させたビニルエステル系重合体をけん化したものであってもよい。他の単量体として、例えばプロピレン、n-ブテン、イソブチレン等のα-オレフィン;アクリル酸及びその塩;アクリル酸メチル、アクリル酸エチル、アクリル酸n-プロピル、アクリル酸i-プロピル、アクリル酸n-ブチル、アクリル酸i-ブチル、アクリル酸t-ブチル、アクリル酸2-エチルヘキシル、アクリル酸ドデシル、アクリル酸オクタデシル等のアクリル酸エステル;メタクリル酸及びその塩;メタクリル酸メチル、メタクリル酸エチル、メタクリル酸n-プロピル、メタクリル酸i-プロピル、メタクリル酸n-ブチル、メタクリル酸i-ブチル、メタクリル酸t-ブチル、メタクリル酸2-エチルヘキシル、メタクリル酸ドデシル、メタクリル酸オクタデシル等のメタクリル酸エステル;アクリルアミド;N-メチルアクリルアミド、N-エチルアクリルアミド、N,N-ジメチルアクリルアミド、ジアセトンアクリルアミド、アクリルアミドプロパンスルホン酸及びその塩、アクリルアミドプロピルジメチルアミン及びその塩又はその4級塩、N-メチロールアクリルアミド及びその誘導体等のアクリルアミド誘導体;メタクリルアミド;N-メチルメタクリルアミド、N-エチルメタクリルアミド、メタクリルアミドプロパンスルホン酸及びその塩、メタクリルアミドプロピルジメチルアミン及びその塩又はその4級塩、N-メチロールメタクリルアミド及びその誘導体等のメタクリルアミド誘導体;メチルビニルエーテル、エチルビニルエーテル、n-プロピルビニルエーテル、i-プロピルビニルエーテル、n-ブチルビニルエーテル、i-ブチルビニルエーテル、t-ブチルビニルエーテル、ドデシルビニルエーテル、ステアリルビニルエーテル等のビニルエーテル;アクリロニトリル、メタクリロニトリル等のニトリル;塩化ビニル、フッ化ビニル等のハロゲン化ビニル;塩化ビニリデン、フッ化ビニリデン等のハロゲン化ビニリデン;酢酸アリル、塩化アリル等のアリル化合物;マレイン酸、イタコン酸、フマル酸等の不飽和ジカルボン酸及びその塩又はそのエステル;ビニルトリメトキシシラン等のビニルシリル化合物;酢酸イソプロペニルなどが挙げられる。
 ビニルエステル単量体の重合に際しては、PVAの平均重合度を調節すること等を目的として、連鎖移動剤を共存させてもよい。連鎖移動剤としては、例えばアセトアルデヒド、プロピオンアルデヒド、ブチルアルデヒド、ベンズアルデヒド等のアルデヒド;アセトン、メチルエチルケトン、ヘキサノン、シクロヘキサノン等のケトン;2-ヒドロキシエタンチオール等のメルカプタン;チオ酢酸等のチオカルボン酸;トリクロロエチレン、パークロロエチレン等のハロゲン化炭化水素などが挙げられ、これらの中でもアルデヒド及びケトンが好ましい。連鎖移動剤の添加量は、この連鎖移動剤の連鎖移動定数、達成すべきPVAの平均重合度等に応じて決定すればよい。
 ビニルエステル系重合体のけん化反応としては、公知の水酸化ナトリウム、水酸化カリウム、ナトリウムメトキシド等の塩基性触媒、又はp-トルエンスルホン酸等の酸性触媒を用いた加アルコール分解若しくは加水分解反応を適用できる。
 けん化反応に用いられる溶媒としては、メタノール、エタノール等のアルコール;酢酸メチル、酢酸エチル等のエステル;アセトン、メチルエチルケトン等のケトン;ベンゼン、トルエン等の芳香族炭化水素などが挙げられ、これらは1種を単独で使用してもよく、2種以上を併用してもよい。これらの中でも、メタノール又はメタノールと酢酸メチルとの混合溶液を溶媒として用い、塩基性触媒である水酸化ナトリウムの存在下にけん化反応を行うのが簡便であり好ましい。
(けん化度)
 PVAのけん化度の下限としては、99.5モル%であり、99.7モル%が好ましく、99.8モル%がより好ましく、99.9モル%が特に好ましい。PVAは、含有する水酸基の水素結合に起因する結晶部分を有する結晶性の重合体である。PVAの結晶化度は、けん化度の増加に伴い向上する。また、結晶化度の向上はPVAの水溶性を低下させる。特に、PVAは、けん化度99.5モル%を境に、高温水への溶解性が大きく変化する。そのため、けん化度99.5モル%以上のPVAは、その水素結合の強さにより耐水性が高く(溶解性が低く)、化学架橋を有するPVAに匹敵する耐水性を有する場合がある。そのため、PVAのけん化度が99.5モル%以上であることで、化学架橋を行っていないPVAであってもスラリーの粘度上昇及び高温での脱水を抑制することが可能であり、その結果、化学架橋を行う工程を省略できるためコストを低下できる。一方、けん化度が上記下限より小さい場合、スラリー用添加剤として用いたときに高温での脱水を十分抑制できないおそれがある。なお、PVAのけん化度はJIS-K6726:1994に準じて測定した値である。
(平均重合度)
 PVAの平均重合度の下限は、1,500であり、1,700が好ましく、1,800がより好ましく、2,000がさらに好ましい。一方、PVAの平均重合度の上限は、4,500であり、4,250が好ましく、4,000がより好ましく、3,800がさらに好ましい。PVAの平均重合度が上記下限より小さい場合、溶解性が若干高まるためか、スラリーの高温での脱水を十分抑制できないおそれがある。一方、PVAの平均重合度が上記上限を超える場合、PVAの製造が困難となるだけでなく、スラリーの高温での粘度が高くなるおそれがある。
 ここで、PVAの平均重合度は、JIS-K6726:1994に準じて測定した値である。すなわち、PVAの平均重合度は、30℃の水中で測定した極限粘度[η](dL/g)から次式により求めることができる。
   平均重合度=([η]×1,000/8.29)(1/0.62)
(1,2-グリコール結合量)
 PVAの1,2-グリコール結合量の下限としては、0.5モル%が好ましく、1.0モル%がより好ましい。一方、PVAの1,2-グリコール結合量の上限としては、1.8モル%であり、1.7モル%が好ましく、1.6モル%がより好ましい。このように、PVAの1,2-グリコール結合量が1.8モル%以下であることで、PVAの結晶化が1,2-グリコール結合により阻害され難いため、PVAの結晶化度が上昇し易く、その結果、PVAの溶解性が低下する。このような1,2-グリコール結合量の比較的少ないPVAとしては、ビニルエステル単量体を通常よりも低い温度条件で重合して得られるものが好ましい。
 ここで、PVAの1,2-グリコール結合量は、NMRスペクトルのピークから求めることができる。けん化度99.9モル%以上にけん化した後、十分にメタノール洗浄を行い、次いで90℃減圧乾燥を2日間したPVAをDMSO-D6に溶解し、トリフルオロ酢酸を数滴加えた試料を500MHzのプロトンNMR(JEOL社の「GX-500」)を用いて80℃で測定した値である。ビニルアルコール単位のメチン由来ピークは3.2ppm~4.0ppm(積分値A’)、1,2-グリコール結合の1つのメチン由来のピークは3.25ppm(積分値B’)に帰属され、次式で1,2-グリコール結合量を算出できる。ここで、「△」は、エチレン変性量(モル%)を表す。
 
   1,2-グリコール結合量(モル%)=B’(100-△)/A’
 
 ビニルアルコール系重合体の1,2-グリコール結合量は、例えばエチレンカーボネートを代表とするモノマーの共重合、重合温度等によってコントロールすることができる。
(エチレン単位の割合)
 PVAのエチレン単位の割合としては、PVAの全構造単位のうちの10モル%未満が好ましく、9モル%未満がより好ましく、8モル%未満が特に好ましい。エチレン単位の割合が10モル%以上であると、平均重合度1,500以上のPVAを得ることが困難となるおそれがある。
 ここで、PVAのエチレン単位の割合は、PVAの前駆体であるビニルエステル系重合体のプロトンNMRから求めた値である。すなわち、前駆体であるビニルエステル系重合体をn-ヘキサン/アセトンで再沈精製を3回以上十分に行った後、80℃での減圧乾燥を3日間して分析用のビニルエステル系重合体を作成した。このビニルエステル系重合体をDMSO-D6に溶解し、500MHzのプロトンNMR(JEOL社の「GX-500」)を用いて80℃で測定した。その後、ビニルエステルの主鎖メチンに由来するピーク(4.7ppm~5.2ppm)とエチレン、ビニルエステル及び第3成分の主鎖メチレンに由来するピーク(0.8ppm~1.6ppm)を用いてエチレン単位の含有量を算出した。
[掘削泥水及びその製造方法]
 本発明の掘削泥水は、例えば掘削された岩片や掘削屑等の運搬、ビットやドリルパイプの潤滑性向上、多孔質の地盤の穴の埋設、静水圧により生ずる貯留層圧力(岩盤からの圧力)の相殺等の役割を果たすものである。この掘削泥水は、水(用水)及び泥質を主成分とし、さらに掘削泥水スラリー用添加剤としての当該スラリー用添加剤を含有する。当該掘削泥水は、本発明の効果を損なわない範囲で任意成分を含んでいてもよい。
 当該掘削泥水は、当該スラリー用添加剤と用水と泥質とを混合することで製造される。具体的には、当該掘削泥水は、用水に泥質を分散して懸濁させた水-粘土懸濁液をベースに、当該スラリー用添加剤及び必要に応じて任意成分を加えることにより製造することができる。
<掘削泥水スラリー用添加剤>
 掘削泥水スラリー用添加剤としての当該スラリー用添加剤は、上述したPVA粉末を含有するものである。掘削泥水スラリー用添加剤としての当該スラリー用添加剤の粒子サイズとしては、公称目開き500μm(32メッシュ)の篩を通過する大きさが好ましい。PVA及びPVA粉末については、上述した通りであるため、ここでの重複説明は省略する。
 但し、当該掘削泥水の含有するPVA粉末の粒子サイズとしては、公称目開き1.00mm(16メッシュ)の篩を通過する大きさであることが必要であるが、公称目開き500μm(32メッシュ)の篩を通過する大きさが好ましい。このように、当該掘削泥水の含有するPVA粉末の粒子サイズが公称目開き500μm(32メッシュ)の篩を通過する大きさであることで、高温における掘削泥水からの脱水をより抑制できる。なお、PVA粉末の粒子サイズの下限としては、溶解度が極端に大きくならない範囲であれば特に制限は無いが、通常公称目開き45μm(325メッシュ)を通過しないサイズであり、公称目開き53μm(280メッシュ)を通過しないサイズが好ましい。
 当該掘削泥水におけるPVA粉末の含有量の下限としては、0.5kg/mが好ましく、3kg/mがより好ましい。一方、当該掘削泥水におけるPVA粉末の含有量の上限としては、40kg/mが好ましく、30kg/mがより好ましい。
<泥質>
 泥質としては、例えばベントナイト、アタパルジャイト、セリナイト、含水マグネシウムケイ酸塩などが挙げられ、これらの中でもベントナイトが好ましい。
 当該掘削泥水における泥質の配合割合の下限としては、当該掘削泥水に用いる用水1kgに対して、5gが好ましく、10gがより好ましい。一方、当該掘削泥水における泥質の配合割合の上限としては、当該掘削泥水に用いる用水1kgに対して、300gが好ましく、200gがより好ましい。
<任意成分>
 任意成分としては、公知の添加剤を使用することができ、例えば炭素数2~12のα-オレフィンと無水マレイン酸との共重合体若しくはその誘導体(例えばマレイン酸アミド、マレイン酸イミド等)、又はそのアルカリ中和物等の水溶液;分散剤、pH調整剤、消泡剤、増粘剤などが挙げられる。炭素数2~12のα-オレフィンと無水マレイン酸との共重合体又はその誘導体としては、例えばエチレン、プロピレン、1-ブテン、イソブテン、ジイソブチレン等のα-オレフィンと無水マレイン酸との共重合体又はその誘導体(例えばクラレ社の「イソバン」等)などが挙げられる。また、分散剤としては、例えばフミン酸系分散剤、リグニン系分散剤等が挙げられ、これらの中でもスルホン酸塩を含有するリグニン系分散剤が好ましい。
[セメントスラリー及びその製造方法]
 本発明のセメントスラリーは、例えば地層と抗井内に設置されたケーシングパイプとの間の管状空隙部分に注入して硬化させることにより、ケーシングパイプの坑井内への固定、坑井内の内壁の保護等のために使用される。当該セメントスラリーは、セメントスラリー用添加剤としての当該スラリー用添加剤、硬化性粉末及び液剤を含有する。当該セメントスラリーは、本発明の効果を阻害しない範囲で、任意成分を含有してもよい。
 当該セメントスラリーは、当該スラリー用添加剤、液剤及び硬化性粉末と、必要に応じて任意成分とを加えて攪拌機等を用いて混合することで製造される。
<セメントスラリー用添加剤>
 セメントスラリー用添加剤としての当該スラリー用添加剤は、上述したPVA粉末を含有するものである。セメントスラリー用添加剤としての当該スラリー用添加剤の粒子サイズとしては、公称目開き250μm(60メッシュ)の篩を通過する大きさが好ましい。PVA及びPVA粉末については、上述した通りであるため、ここでの重複説明は省略する。
 但し、当該セメントスラリーの含有するPVA粉末の粒子サイズとしては、公称目開き1.00mm(16メッシュ)の篩を通過する大きさであることが必要であるが、公称目開き250μm(60メッシュ)の篩を通過する大きさが好ましい。このように、当該セメントスラリーの含有するPVA粉末の粒子サイズが公称目開き250μm(60メッシュ)の篩を通過する大きさであることで、高温におけるセメントスラリーからの脱水をより抑制できる。なお、PVA粉末の粒子サイズの下限としては、溶解度が極端に大きくならない範囲であれば特に制限は無いが、通常公称目開き45μm(325メッシュ)を通過しないサイズであり、公称目開き53μm(280メッシュ)を通過しないサイズが好ましい。
 当該セメントスラリーにおけるPVA粉末の含有量の下限としては、0.1%(BWOC)が好ましく、0.2%(BWOC)がより好ましい。一方、当該セメントスラリーにおけるPVA粉末の含有量の上限としては、2.0%(BWOC)が好ましく、1.0%(BWOC)がより好ましい。なお、BWOC(By Weight Of Cement)は、セメント質量基準であることを意味する。
<硬化性粉末>
 硬化性粉末としては、例えばポルトランドセメント、混合セメント、エコセメント、特殊セメント等が挙げられる。また、硬化性粉末としては、水と反応して固形化する水硬性セメントが好ましい。なお、当該セメントスラリーを掘削用に使用する場合、地熱井セメント及び油井セメントが好ましい。
 ポルトランドセメントとしては、JIS-R5210:2009に規定のもの、具体的には、普通ポルトランドセメント、早強ポルトランドセメント、超早強ポルトランドセメント、中庸熱ポルトランドセメント、低熱ポルトランドセメント、耐硫酸塩ポルトランドセメント、低アルカリ形ポルトランドセメント等が挙げられる。
 混合セメントとしては、JIS-R5211~5213:2009に規定のもの、具体的には、高炉セメント、フライアッシュセメント、シリカセメント等が挙げられる。
 特殊セメントとしては、ポルトランドセメントをベースにしたもの、ポルトランドセメントの成分や粒度構成を変えたもの、及びポルトランドセメントとは異なる成分のものが含まれる。
 ポルトランドセメントをベースにした特殊セメントとしては、例えば膨張性のセメント、2成分系の低発熱セメント、3成分系の低発熱セメント等が挙げられる。
 ポルトランドセメントの成分や粒度構成を変えた特殊セメントとしては、例えば白色ポルトランドセメント、セメント系固化材(ジオセメント)、超微粒子セメント、高ビーライト系セメント等が挙げられる。
 ポルトランドセメントとは異なる成分の特殊セメントとしては、例えば超速硬セメント、アルミナセメント、リン酸セメント、気硬性セメント等が挙げられる。
<液剤>
 液剤としては、硬化性粉末の種類等に応じて選択され、例えば水、溶剤、これらの混合物等が挙げられるが、一般に水(用水)が使用される。
 当該セメントスラリーにおける硬化性粉末と液剤との比率は、目的とするスラリーの比重や硬化体の強度等に応じて適宜決定すればよい。例えば当該セメントスラリーを水硬性セメントにより掘削用セメントスラリーとして構成する場合、水とセメントとの比(W/C)としては、スラリーの比重、硬化体の強度等の観点から、25重量%が好ましく、30質量%がより好ましい。一方、上記W/Cの上限としては、スラリーの比重、硬化体の強度等の観点から、100重量%が好ましく、80重量%がより好ましい。
<任意成分>
 当該セメントスラリーは、任意成分として分散剤、遅延剤及び/又は消泡剤を含有することができ、またこれら以外の添加剤を含有してもよい。
(分散剤)
 分散剤としては、例えばナフタレンスルホン酸ホルマリン縮合物、メラミンスルホン酸ホルマリン縮合物、ポリカルボン酸系ポリマー等のアニオン性高分子などが挙げられ、これらの中でもナフタレンスルホン酸ホルマリン縮合物が好ましい。当該セメントスラリーにおける分散剤の含有量の下限としては、通常0.05%(BWOC)であり、0.2%(BWOC)が好ましい。一方、当該セメントスラリーにおける分散剤の含有量の上限としては、2%(BWOC)であり、1%(BWOC)が好ましい。
(遅延剤)
 遅延剤としては、例えばオキシカルボン酸やその塩、単糖や多糖等の糖類などが挙げられ、これらの中でも糖類が好ましい。当該セメントスラリーにおける遅延剤の含有量の下限としては、通常0.005%(BWOC)であり、0.02%(BWOC)が好ましい。一方、当該セメントスラリーにおける遅延剤の含有量の上限としては、1%(BWOC)であり、0.3%(BWOC)が好ましい。
(消泡剤)
 消泡剤としては、例えばアルコールアルキレンオキシド付加物、脂肪酸アルキレンオキシド付加物、ポリプロピレングリコール、脂肪酸石鹸、シリコン系化合物等が挙げられ、これらの中でもシリコン系化合物が好ましい。当該セメントスラリーにおける消泡剤の含有量の下限としては、通常0.0001%(BWOC)であり、0.001%(BWOC)が好ましい。一方、当該セメントスラリーにおける消泡剤の含有量の上限としては、0.1%(BWOC)であり、0.05%(BWOC)が好ましい。
(添加剤)
 当該セメントスラリーは、用途、組成等を考慮して、例えばセメント速硬剤、低比重添加材、高比重添加材、発泡剤、ひび割れ低減剤、気泡剤、AE剤、セメント膨張材、セメント強度安定材、珪石粉、シリカフューム、フライアッシュ、石灰石粉、砕砂等の細骨材、砕石等の粗骨材、中空バルーン等の添加剤などを含有してもよい。また、これらの添加剤は、1種を単独で使用してもよく、2種以上を併用してもよい。
 以下、実施例及び比較例により本発明を説明するが、本発明は以下の実施例により何ら限定されるものではない。
[調製例1](乾燥PVA(PVA-1)の調製)
 撹拌機、窒素導入口、エチレン導入口、開始剤添加口及びディレー溶液添加口を備えた250Lの反応槽に、酢酸ビニル127.5kg及びメタノール22.5kgを仕込んで60℃に昇温した後、30分間の窒素バブリングにより窒素置換した。次いで、反応槽の圧力が4.9Kg/cmとなるようにエチレンを導入した。開始剤としての2,2’-アゾビス(4-メトキシ-2,4-ジメチルバレロニトリル)(AMV)をメタノールに溶解した濃度2.8g/Lの反応開始溶液を調整し、この反応開始溶液に窒素ガスによるバブリングを行って窒素置換し、この溶液を開始剤溶液とした。この開始剤溶液45mLを60℃に調整した反応槽内に注入し重合を開始した。重合中はエチレンを導入して反応槽の圧力を4.9Kg/cmに維持すると共に重合温度を60℃に維持し、反応槽に開始剤溶液を143mL/hrで連続添加して重合を実施した。4時間後に重合率が40%となったところで反応槽を冷却して重合を停止した。さらに、反応槽を開放して脱エチレンした後、窒素ガスをバブリングして脱エチレンを完全に行った。次いで、減圧下で未反応の酢酸ビニルモノマーを除去しポリ酢酸ビニルのメタノール溶液とした。このポリ酢酸ビニル溶液にメタノールを加えてポリ酢酸ビニルの濃度が25質量%となるように調整した。さらに、このポリ酢酸ビニルのメタノール溶液400g(溶液中のポリ酢酸ビニル100g)に、23.3g(ポリ酢酸ビニル中の酢酸ビニルユニットに対してモル比で0.1)のアルカリ溶液(NaOHの10質量%メタノール溶液)を添加してけん化を行った。アルカリ溶液添加から約1分後、ゲル化したものを粉砕器にて粉砕し、40℃で1時間放置してけん化を進行させた後、酢酸メチル1,000gを加えて、室温で30分間放置した。濾別して得られた白色固体(PVA)にメタノール1,000gを加えて室温での3時間の放置により洗浄した後、遠心脱液して得られたPVAを乾燥機中で100℃、3時間放置し乾燥PVA(PVA-1)を得た。
<PVAの特性分析>
 乾燥PVA(PVA-1)について、下記手法に従い、けん化度、平均重合度、1,2-グリコール結合量及びエチレン単位の割合を分析した。
(けん化度)
 乾燥PVA(PVA-1)のけん化度は、JIS-K6726:1994に準じて測定したところ、99.5モル%であった。
(平均重合度)
 調製例1における重合後、未反応酢酸ビニルモノマーを除去して得られたポリ酢酸ビニルのメタノール溶液を用い、アルカリモル比0.5でけん化した後、粉砕したものを60℃で5時間放置してけん化を進行させた。その後、メタノールソックスレーを3日間実施し、次いで80℃で3日間減圧乾燥を行って精製PVAを得た。この精製PVAの平均重合度をJIS-K6726:1994に準じて測定したところ、1,720であった。
(1,2-グリコール結合量)
 平均重合度を測定するために調製した精製PVAをDMSO-D6に溶解し、500MHzのプロトンNMR(JEOL社の「GX-500」)を用いて80℃で1,2-グリコール結合量を測定したところ、1.6モル%であった。
(エチレン単位の割合)
 調製例1における重合後、未反応酢酸ビニルモノマーを除去して得られたポリ酢酸ビニルのメタノール溶液を用い、n-ヘキサンに沈殿させアセトンで溶解させる再沈精製を3回行った後、80℃で3日間減圧乾燥を行って精製ポリ酢酸ビニルを得た。この精製ポリ酢酸ビニルをDMSO-D6に溶解し、500MHzのプロトンNMR(JEOL社の「GX-500」)を用いてエチレン単位の割合(エチレン含有量)を80℃で測定したところ、5モル%であった。
[調製例2~17](乾燥PVA(PVA-2)~(PVA-17)の調製)
 調製例1と同様な手法により、表1に示す特性を有する乾燥PVA(PVA-2)~(PVA-17)を調製した。
Figure JPOXMLDOC01-appb-T000001
[実施例1]
<掘削泥水の調製>
 ハミルトンビーチミキサーのカップにイオン交換水300gを取り、ベントナイト(テルナイト社の「テルゲルE」)6gを加えて充分攪拌した後、ベントナイトを充分に膨潤させるために24時間放置した。一方、乾燥PVA(PVA-1)を公称目開き1.00mm(16メッシュ)の篩にかけ、この篩を通過した乾燥PVA(PVA-1)の粉末を1.5g採取し、この粉末を掘削泥水用添加剤としてベントナイトの分散液に添加し掘削泥水(D-1)を得た。
[実施例2~9、及び比較例1~8]
 表2に示すように、乾燥PVA(PVA-2)~(PVA-17)の粉末を用いた以外は実施例1と同様な手法により、掘削泥水(D-2)~(D-9)及び(d-1)~(d-8)を調製した。
[実施例10]
 乾燥PVA(PVA-6)を公称目開き500μm(32メッシュ)の篩にかけ、この篩を通過した乾燥PVA(PVA-6)の粉末を使用した以外は実施例6と同様な手法により掘削泥水(D-10)を調製した。
[実施例11]
 乾燥PVA(PVA-7)を公称目開き500μm(32メッシュ)の篩にかけ、この篩を通過した乾燥PVA(PVA-7)の粉末を使用した以外は実施例7と同様な手法により掘削泥水(D-11)を調製した。
[比較例9]
 乾燥PVA(PVA-1)を水に混合し十分に攪拌した後、未溶解のPVA粉末を公称目開き75μm(200メッシュ)の金網を用いて除去し、PVA濃度が4重量%であるPVA水溶液を得た。イオン交換水264g、及びベントナイト6gを用いて実施例1と同様の方法で調製したベントナイトの分散液に上記PVA溶液37.5gを添加し、掘削泥水(d-9)を調製した。
[比較例10]
 乾燥PVA(PVA-1)を公称目開き1.00mm(16メッシュ)の篩にかけ、この篩を通過しなかった乾燥PVA(PVA-1)の粉末を使用した以外は実施例1と同様な手法により掘削泥水(d-10)を調製した。
[評価]
 実施例1~11及び比較例1~10の掘削泥水(D-1)~(D-11)及び(d-1)~(d-10)について、下記手法に従い粘度及び脱水量を評価した。併せて、これらの掘削泥水(D-1)~(D-11)及び(d-1)~(d-10)の調製に使用した乾燥PVA(PVA-1)~(PVA-17)の篩にかけた後の粉末について、下記手法に従い溶解度を測定した。評価結果は、表2に示した。
<溶解度>
 予め60℃の水100gを入れておいた300mL容のビーカーに乾燥PVA粉末4gを投入し、水が蒸発しないようにしながら3cm長のバーを備えたマグネティック・スターラーを用いて、60℃の条件下で回転数280rpmで3時間攪拌した。次いで、公称目開き75μm(200メッシュ)の金網を用いて未溶解の粉末を分離した。未溶解のPVA粉末を105℃の加熱乾燥機で3時間乾燥後、その重量を測定した。未溶解のPVA粉末の重量と、ビーカーに投入した乾燥PVA粉末の重量(4g)から、乾燥PVA粉末の溶解度を算出した。但し、比較例9については、PVA-1を水溶液で添加しているため、溶解度の測定は行わなかった。
<粘度>
 掘削泥水の粘度は、B型粘度計を使用して25℃、30rpmで計測し、10秒後の値を採用した。掘削泥水の粘度は、その値が小さいほど良好であることを示し、18mPa・s以下の場合は良好、18mPa・sを超える場合は不良と評価できる。
<脱水量>
 掘削泥水の脱水量はFann Instrument社の「HPHT Filter Press Series387」を用い、温度150℃に調整したセル内部に掘削泥水を投入し3時間放置した後、セル上部及び下部から差圧が500psiとなるように加圧して行った。掘削泥水の脱水量は、その値が小さいほど良好であることを示し、30ml以下の場合は良好、30mlを超える場合は不良と評価できる。
Figure JPOXMLDOC01-appb-T000002
 表2の結果から明らかなように、実施例1~11の掘削泥水(D-1)~(D-11)は、粘度が低く、また150℃での脱水量が25mL以下であり高温での脱水が非常に少ない量に抑えられていた。
 一方、比較例1~5の掘削泥水(d-1)~(d-5)は、けん化度が99.5モル%未満の乾燥PVAを用いているためか、いずれの掘削泥水(d-1)~(d-5)も溶解度が25%を超え、その結果、150℃での掘削泥水の脱水量が30mL超であり高温での脱水を十分に抑制できなかった。
 比較例6の掘削泥水(d-6)は、1,2-グリコール結合量が1.8モル%を超える乾燥PVAを用いているためか、溶解度が25%を超え、その結果、150℃での掘削泥水の脱水量が32mLであり高温での脱水を十分に抑制できなかった。
 比較例7及び8の掘削泥水(d-7)及び(d-8)は、平均重合度が1,500未満の乾燥PVAを用いているためか、溶解度が25%を超え、また150℃での掘削泥水の脱水量が35mL以上であり高温での脱水を十分に抑制できなかった。
 比較例9の掘削泥水(d-9)は、実施例1と同様の乾燥PVA(PVA-1)を用いているが、この乾燥PVA(PVA-1)を予め水に溶解して添加したためか、掘削泥水(d-9)の粘度が非常に高く、また150℃での掘削泥水の脱水量が100mLを超えており高温での脱水の抑制が著しく不十分であった。
 比較例10の掘削泥水(d-10)は、実施例1と同様の乾燥PVA(PVA-1)を用いているが、掘削泥水(d-10)に添加したときの粒子サイズが公称目開き100mm(16メッシュ)を通過しない大きなものであるためか、60℃での溶解度が若干低いものの、150℃での掘削泥水の脱水量が90mLであり高温での脱水の抑制が著しく不十分であった。
 以上の結果から、60℃の熱水に3時間浸漬したときの溶解度が25%以下、けん化度99.5モル%以上、平均重合度1,500以上4,500以下、1,2グリコール結合量が1.8モル%以下、かつ公称目開き100mm(16メッシュ)の篩を通過する粉末状のビニルアルコール系重合体は、掘削泥水の調製に用いた場合、掘削泥水の粘度を低くし、かつ高温での脱水を抑制できるため、掘削泥水用添加剤として非常に有用であるといえる。
[実施例12]
<セメントスラリーの調製>
 乾燥PVA(PVA-6)を公称目開き250μm(60メッシュ)の篩にかけ、この篩を通過した乾燥PVA(PVA-6)の粉末4gをセメントスラリー用添加剤とし、イオン交換水320g、坑井用クラスHセメント800g、ナフタレンスルホン酸ホルマリン縮合物ナトリウム塩(Dipersity Technologies社の「Daxad-19」)4g、及びリグニンスルホン酸ナトリウム塩(Lignotech USA社の「Keling 32L」)0.16gと共にジュースミキサーに投入し、攪拌混合してセメントスラリー(S-1)を調製した。なお、乾燥PVA(PVA-6)の粉末の添加量は、セメントの質量基準(BWOC)で0.5%とした。
[実施例13]
 乾燥PVA(PVA-9)を使用した以外は実施例12と同様な手法によりセメントスラリー(S-2)を調製した。
[比較例11]
 乾燥PVA(PVA-10)を使用した以外は実施例12と同様な手法によりセメントスラリー(s-1)を調製した。
[比較例12]
 乾燥PVA(PVA-10)の添加量を0.8%(BWOC)に変更した以外は比較例11と同様な手法によりセメントスラリー(s-2)を調製した。
[比較例13]
 乾燥PVA(PVA-13)を公称目開き180μm(80メッシュ)の篩にかけ、この篩を通過した乾燥PVA(PVA-13)の粉末を用いた以外は実施例12と同様な手法によりセメントスラリー(s-3)を調製した。
[評価]
 実施例12,13及び比較例11~13のセメントスラリー(S-1),(S-2)及び(s-1)~(s-3)について、下記手法に従い粘性及び脱水量を評価した。評価結果は、表3に示した。併せて、これらのセメントスラリー(S-1),(S-2)及び(s-1)~(s-3)の調製に使用した乾燥PVA(PVA-6),(PVA-9),(PVA-10)及び(PVA-13)の篩にかけた後の粉末の溶解度を表3に示した。
<粘度>
 セメントスラリーの粘度は、プラスチック粘性(PV)及びイールドバリュー(YV)として評価した。プラスチック粘性(PV)は、セメントスラリー中に含まれている固形分の機械的摩擦によって生じる流動抵抗値である。イールドバリュー(YV)は、流体が流動状態にあるとき、流動を続けるのに必要なせん断力であって、セメントスラリー中に含まれている固体粒子間のけん引力によって生じる流動抵抗である。
 プラスチック粘性(PV)及びイールドバリュー(YV)は、セメントスラリーを25℃又は90℃に調温し、「API10」(American Institute Specification 10)の「Appendix H」に記載の方法に従い測定した。セメントスラリーのプラスチック粘性(PV)は、その値が小さいほど良好であることを示し、20℃の条件で60cp以下の場合を良好、60cpを超える場合を不良と判断できる。また、セメントスラリーのイールドバリュー(YV)は、20℃の条件で7lb/100ft以下の場合を良好、7lb/100ftを超える場合を不良と判断できる。なお、プラスチック粘性(PV)及びイールドバリュー(YV)は、次式によって算出した。
 
  プラスチック粘性(PV)=(300rpmの読み-100rpmの読み)×1.5
  イールドバリュー(YV)=(300rpmの読み-プラスチック粘性)
 
<脱水量>
 セメントスラリーの脱水量は、「API10」(American Institute Specification 10)の「Appendix H」に記載の方法に従い、90℃に調温したセメントスラリーから差圧1000psiの条件下で30分間に脱水される量として測定した。セメントスラリーの脱水量は、その値が小さいほど良好であることを示し、35ml以下の場合は良好、35mlを超える場合は不良と評価できる。
Figure JPOXMLDOC01-appb-T000003
 表3の結果から明らかなように、実施例12及び13のセメントスラリー(S-1)及び(S-2)は、粘度が低く、90℃での脱水量がそれぞれ25mL及び32mLであり高温での脱水が抑制されていた。
 一方、比較例11のセメントスラリー(s-1)は、けん化度88.2モル%に部分けん化した乾燥PVA(PVA-10)を用いているためか、実施例12及び13のセメントスラリーと同じ添加量では、溶解度が25%を超え、その結果、90℃でのセメントスラリーの脱水量が313mLであり高温での脱水を十分に抑制できなかった。
 比較例12のセメントスラリー(s-2)は、比較例11のセメントスラリーと同じ部分けん化した乾燥PVA(PVA-10)を用いているが、添加量を0.8%(BWOC)と多くしたためか、90℃でのセメントスラリーの脱水量が36mLと大きく改善されている。ところが、乾燥PVA(PVA-10)の添加量が多いためか、20℃のPVが132cpと非常に高く実用には適さない結果となった。
 比較例13のセメントスラリー(s-3)は、けん化度99.3モル%の乾燥PVA(PVA-13)を用いているためか、90℃でのセメントスラリーの脱水量が340mLであり高温での脱水を十分に抑制できなかった。
 以上の結果から、60℃の熱水に3時間浸漬したときの溶解度が25%以下、けん化度99.5モル%以上、平均重合度1,500以上4,500以下、1,2グリコール結合量が1.8モル%以下、250μm(60メッシュ)の篩を通過する粉末状のビニルアルコール系重合体は、掘削泥水及びセメントスラリーの調製に用いた場合、使用量が少なくても高温での脱水及び粘度上昇が抑制されるため、掘削泥水及びセメントスラリーの添加剤として非常に有用であるといえる。
 本発明によれば、土木建築用スラリー(例えば坑井掘削等に使用される掘削泥水や掘削セメントスラリー)等に用いることにより、低コストで粘度上昇と高温での脱水とを抑制できるスラリー用添加剤、掘削泥水及び掘削セメントスラリーが提供される。

Claims (11)

  1.  ビニルアルコール系重合体を含有する粉末状のスラリー用添加剤であって、
     上記ビニルアルコール系重合体が、
     60℃の熱水に3時間浸漬したときの溶解度が25%以下、
     けん化度が99.5モル%以上、
     平均重合度が1,500以上4,500以下、かつ
     1,2-グリコール結合量が1.8モル%以下であり、
     公称目開き1.00mmの篩を通過するスラリー用添加剤。
  2.  上記ビニルアルコール系重合体の全構造単位のうちのエチレン単位の割合が10モル%未満である請求項1に記載のスラリー用添加剤。
  3.  土木建築用スラリーの添加剤である請求項1又は請求項2に記載のスラリー用添加剤。
  4.  掘削泥水用添加剤である請求項3に記載のスラリー用添加剤。
  5.  公称目開き500μmの篩を通過する請求項4に記載のスラリー用添加剤。
  6.  セメントスラリー用添加剤である請求項3に記載のスラリー用添加剤。
  7.  公称目開き250μmの篩を通過する請求項6に記載のスラリー用添加剤。
  8.  請求項4又は請求項5に記載のスラリー用添加剤を含有する掘削泥水。
  9.  請求項4又は請求項5に記載のスラリー用添加剤と、用水と、泥質とを混合する工程を備える掘削泥水の製造方法。
  10.  請求項6又は請求項7に記載のスラリー用添加剤を含有するセメントスラリー。
  11.  請求項6又は請求項7に記載のスラリー用添加剤と、液剤と、硬化性粉末とを混合する工程を備えるセメントスラリーの製造方法。
PCT/JP2015/058799 2014-03-31 2015-03-23 スラリー用添加剤、掘削泥水及びセメントスラリー WO2015151910A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US15/300,649 US10563109B2 (en) 2014-03-31 2015-03-23 Additive for slurry, drilling mud, and cement slurry
CA2943496A CA2943496C (en) 2014-03-31 2015-03-23 A vinyl alcohol polymer-comprising powdery slurry additive for a drilling fluid mud or cement slurry
CN201580017636.XA CN106459738B (zh) 2014-03-31 2015-03-23 浆料用添加剂、钻探泥浆和水泥浆
RU2016142352A RU2689010C2 (ru) 2014-03-31 2015-03-23 Добавка для раствора, буровой раствор и цементный раствор

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-074291 2014-03-31
JP2014074291A JP6216675B2 (ja) 2014-03-31 2014-03-31 スラリー用添加剤、掘削泥水及びセメントスラリー

Publications (1)

Publication Number Publication Date
WO2015151910A1 true WO2015151910A1 (ja) 2015-10-08

Family

ID=54240237

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/058799 WO2015151910A1 (ja) 2014-03-31 2015-03-23 スラリー用添加剤、掘削泥水及びセメントスラリー

Country Status (6)

Country Link
US (1) US10563109B2 (ja)
JP (1) JP6216675B2 (ja)
CN (1) CN106459738B (ja)
CA (1) CA2943496C (ja)
RU (1) RU2689010C2 (ja)
WO (1) WO2015151910A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10550038B2 (en) 2015-12-09 2020-02-04 The Nippon Synthetic Chemical Industry Co., Ltd. Cement admixture
WO2020204120A1 (ja) * 2019-04-05 2020-10-08 株式会社クラレ 水性エマルジョン及びそれを用いた接着剤

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6938481B2 (ja) * 2016-05-13 2021-09-22 デンカ株式会社 油井セメント用添加剤並びに該油井セメント用添加剤を用いたセメント組成物及びセメントスラリー
JP6687820B2 (ja) 2018-02-22 2020-04-28 デンカ株式会社 油井セメント用添加剤及び該油井セメント用添加剤を用いたセメントスラリー
JP2020105321A (ja) * 2018-12-27 2020-07-09 太平洋セメント株式会社 固化材スラリー
EP3904402A4 (en) * 2018-12-27 2022-02-23 Mitsubishi Chemical Corporation DEVIATION AGENT, AND WELL CRACK PLUGGING METHOD IMPLEMENTING THE SAME
JP2020105318A (ja) * 2018-12-27 2020-07-09 太平洋セメント株式会社 固化材スラリー
WO2022024791A1 (ja) 2020-07-31 2022-02-03 デンカ株式会社 ポリビニルアルコール系重合体
JPWO2022024792A1 (ja) 2020-07-31 2022-02-03
WO2023038113A1 (ja) * 2021-09-13 2023-03-16 株式会社クラレ セメント組成物、脱水防止剤及びセメント脱水防止方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004344751A (ja) * 2003-05-21 2004-12-09 Shimizu Corp 汚染土壌粉塵の抑制方法、汚染土壌の掘削方法および汚染土壌粉塵抑制剤
US20080227667A1 (en) * 2005-02-22 2008-09-18 Halliburton Energy Services, Inc. Fluid Loss Control Additive and Cement Compositions Comprising Same
JP2009221461A (ja) * 2008-02-19 2009-10-01 Kuraray Co Ltd ビニルアルコール系重合体およびその製造方法
WO2012043280A1 (ja) * 2010-09-27 2012-04-05 積水化学工業株式会社 変性ポリビニルアルコール、変性ポリビニルアセタール及びセラミックスラリー組成物

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU717070A1 (ru) * 1978-08-17 1980-02-25 Предприятие П/Я В-2913 Способ получени поливинилового спирта
US4569395A (en) 1984-04-20 1986-02-11 Hughes Tool Company Matrix control cementing slurry
US4967839A (en) 1989-10-23 1990-11-06 Atlantic Richfield Company Method and composition for cementing in a wellbore
US5061387A (en) 1991-01-16 1991-10-29 Conoco Inc. Aqueous gel system of partially methylated melamine-formaldehyde resin and polyvinyl alcohol
FR2787105B1 (fr) 1998-12-10 2001-12-21 Dowell Schlumberger Services Compositions de cimentation et application de ces compositions pour la cimentation des puits petroliers ou analogues
US6703351B2 (en) * 2000-06-13 2004-03-09 Baker Hughes Incorporated Water-based drilling fluids using latex additives
RU2204012C2 (ru) * 2001-08-07 2003-05-10 Кубанский государственный аграрный университет Тампонажный раствор
EP1384731B1 (en) * 2002-07-23 2005-12-14 Kuraray Co., Ltd. Polyvinyl acetal and its use
US7981958B1 (en) * 2002-09-17 2011-07-19 Kuraray Co., Ltd. Synthetic resin emulsion powder
US6739806B1 (en) 2003-06-13 2004-05-25 Halliburton Energy Services, Inc. Cement compositions with improved fluid loss characteristics and methods of cementing in subterranean formations
RU2266312C1 (ru) * 2004-12-03 2005-12-20 Открытое Акционерное Общество "Ойл Технолоджи Оверсиз" Полимерный буровой раствор для вскрытия продуктивных пластов
FR2887256B1 (fr) * 2005-06-15 2010-04-30 Rhodia Chimie Sa Fluide de forage comprenant un polymere et utilisation du polymere dans un fluide de forage
US7731793B2 (en) * 2006-06-13 2010-06-08 Sekisui Specialty Chemicals America, Llc Fluid loss additive with improved rheological properties
US7815731B2 (en) * 2006-06-13 2010-10-19 Sekisui Specialty Chemicals America, Llc Polyvinyl alcohol fluid loss additive with improved rheological properties
EP2532708A4 (en) * 2010-02-01 2015-07-01 Kuraray Co HEAT STABILIZER FOR POLVINYL CHLORIDE, POLVINYL CHLORIDE RESIN COMPOSITION AND METHOD FOR THE PRODUCTION THEREOF
US20130019715A1 (en) * 2011-07-18 2013-01-24 Nupro Corporation Composition for reducing the oxygen potential of slag
US9938373B2 (en) * 2012-12-21 2018-04-10 University of Pittsburgh—of the Commonwealth System of Higher Education Methods of electrospinning and compositions made therefrom
JP2015174339A (ja) * 2014-03-14 2015-10-05 セイコーエプソン株式会社 三次元造形物製造装置、三次元造形物の製造方法および三次元造形物
SG11201809970UA (en) * 2016-05-13 2018-12-28 Merck Patent Gmbh Use of amino sugar as plasticizer
US10570327B2 (en) * 2017-11-15 2020-02-25 The Nippon Synthetic Chemical Industry Co., Ltd. Organic-inorganic composite particles

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004344751A (ja) * 2003-05-21 2004-12-09 Shimizu Corp 汚染土壌粉塵の抑制方法、汚染土壌の掘削方法および汚染土壌粉塵抑制剤
US20080227667A1 (en) * 2005-02-22 2008-09-18 Halliburton Energy Services, Inc. Fluid Loss Control Additive and Cement Compositions Comprising Same
JP2009221461A (ja) * 2008-02-19 2009-10-01 Kuraray Co Ltd ビニルアルコール系重合体およびその製造方法
WO2012043280A1 (ja) * 2010-09-27 2012-04-05 積水化学工業株式会社 変性ポリビニルアルコール、変性ポリビニルアセタール及びセラミックスラリー組成物

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10550038B2 (en) 2015-12-09 2020-02-04 The Nippon Synthetic Chemical Industry Co., Ltd. Cement admixture
WO2020204120A1 (ja) * 2019-04-05 2020-10-08 株式会社クラレ 水性エマルジョン及びそれを用いた接着剤

Also Published As

Publication number Publication date
US10563109B2 (en) 2020-02-18
US20170174971A1 (en) 2017-06-22
JP2015196733A (ja) 2015-11-09
JP6216675B2 (ja) 2017-10-18
CA2943496A1 (en) 2015-10-08
RU2016142352A (ru) 2018-05-03
CA2943496C (en) 2022-10-04
RU2689010C2 (ru) 2019-05-23
CN106459738A (zh) 2017-02-22
CN106459738B (zh) 2020-05-01
RU2016142352A3 (ja) 2018-11-19

Similar Documents

Publication Publication Date Title
JP6216675B2 (ja) スラリー用添加剤、掘削泥水及びセメントスラリー
US8393391B2 (en) Dry cement formulation for cementing holes in the earth
CN104854056B (zh) 包含非离子型疏水改性纤维素醚的胶结组合物和其用途
EP2164918B1 (en) Oil-well cement fluid loss additive composition
EP2760801B1 (en) Cementing composition comprising anionically - and hydrophobically-modified (hydroxy)alkyl cellulose ethers and its use
CN112654678B (zh) 组合物及其制备方法、以及分散剂
WO2015037672A1 (ja) ビニルアルコール系重合体及びその製造方法、掘削泥水用添加剤、掘削泥水、掘削セメントスラリー用添加剤、並びに掘削セメントスラリー
CN111032593B (zh) 甲基乙基羟烷基纤维素及其在建筑组合物中的用途
CN104768895B (zh) 水性胶接组合物及其制造方法
JPWO2017195855A1 (ja) 油井セメント用添加剤並びに該油井セメント用添加剤を用いたセメント組成物及びセメントスラリー
TW202204437A (zh) 乙烯醇系共聚物、其製造方法、水泥漿用脫水防止劑、及水泥漿之脫水防止方法
WO2023038113A1 (ja) セメント組成物、脱水防止剤及びセメント脱水防止方法
EP4313904A1 (en) Water-dispersible polymer powder compositions for cementing in subterranean formation, their manufacture and use

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15772220

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2943496

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 15300649

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2016142352

Country of ref document: RU

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 15772220

Country of ref document: EP

Kind code of ref document: A1