WO2012033218A1 - 2−O−α−D−グルコシル−L−アスコルビン酸含水結晶及び2−O−α−D−グルコシル−L−アスコルビン酸含水結晶含有粉末とそれらの製造方法並びに用途 - Google Patents

2−O−α−D−グルコシル−L−アスコルビン酸含水結晶及び2−O−α−D−グルコシル−L−アスコルビン酸含水結晶含有粉末とそれらの製造方法並びに用途 Download PDF

Info

Publication number
WO2012033218A1
WO2012033218A1 PCT/JP2011/070681 JP2011070681W WO2012033218A1 WO 2012033218 A1 WO2012033218 A1 WO 2012033218A1 JP 2011070681 W JP2011070681 W JP 2011070681W WO 2012033218 A1 WO2012033218 A1 WO 2012033218A1
Authority
WO
WIPO (PCT)
Prior art keywords
crystal
ascorbic acid
glucosyl
powder
hydrous
Prior art date
Application number
PCT/JP2011/070681
Other languages
English (en)
French (fr)
Inventor
渋谷 孝
精祐 伊澤
福田 恵温
Original Assignee
株式会社林原生物化学研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社林原生物化学研究所 filed Critical 株式会社林原生物化学研究所
Priority to EP11823686.8A priority Critical patent/EP2615099B1/en
Priority to US13/821,498 priority patent/US9206215B2/en
Priority to JP2012533051A priority patent/JP5856963B2/ja
Publication of WO2012033218A1 publication Critical patent/WO2012033218A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H19/00Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof
    • C07H19/01Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof sharing oxygen
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/10Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
    • A23L33/15Vitamins
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7042Compounds having saccharide radicals and heterocyclic rings
    • A61K31/7048Compounds having saccharide radicals and heterocyclic rings having oxygen as a ring hetero atom, e.g. leucoglucosan, hesperidin, erythromycin, nystatin, digitoxin or digoxin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/60Sugars; Derivatives thereof
    • A61K8/602Glycosides, e.g. rutin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • A61P17/16Emollients or protectives, e.g. against radiation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q19/00Preparations for care of the skin
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H17/00Compounds containing heterocyclic radicals directly attached to hetero atoms of saccharide radicals
    • C07H17/04Heterocyclic radicals containing only oxygen as ring hetero atoms
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2800/00Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
    • A61K2800/10General cosmetic use
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/141Intimate drug-carrier mixtures characterised by the carrier, e.g. ordered mixtures, adsorbates, solid solutions, eutectica, co-dried, co-solubilised, co-kneaded, co-milled, co-ground products, co-precipitates, co-evaporates, co-extrudates, co-melts; Drug nanoparticles with adsorbed surface modifiers
    • A61K9/145Intimate drug-carrier mixtures characterised by the carrier, e.g. ordered mixtures, adsorbates, solid solutions, eutectica, co-dried, co-solubilised, co-kneaded, co-milled, co-ground products, co-precipitates, co-evaporates, co-extrudates, co-melts; Drug nanoparticles with adsorbed surface modifiers with organic compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q19/00Preparations for care of the skin
    • A61Q19/02Preparations for care of the skin for chemically bleaching or whitening the skin

Definitions

  • the present invention relates to 2-O- ⁇ -D-glucosyl-L-ascorbic acid hydrous crystals, 2-O- ⁇ -D-glucosyl-L-ascorbic acid hydrous crystals-containing powders, methods for producing them, and uses.
  • 2-O- ⁇ -D-glucosyl-L-ascorbic acid (also called ascorbic acid 2-glucoside, hereinafter abbreviated as “AA-2G”) is an L-ascorbic acid (vitamin C) molecule. Is a compound in which one molecule of D-glucose is bonded to the hydroxyl group at the 2-position via an ⁇ -glucoside bond. Unlike L-ascorbic acid, AA-2G is also called “stable vitamin C” because it is non-reducing and excellent in stability. In addition, AA-2G is easily hydrolyzed into L-ascorbic acid and D-glucose by an enzyme in vivo, and exhibits the physiological activity inherent to L-ascorbic acid.
  • AA-2G causes cyclomaltodextrin / glucanotransferase (hereinafter abbreviated as “CGTase” in the present specification) to act on a solution containing starch and L-ascorbic acid, and further causes glucoamylase to act.
  • CCTase cyclomaltodextrin / glucanotransferase
  • Gazette international publication WO010090338 pamphlet, Japanese Patent Application Laid-Open No. 2002-088095, international publication WO02010361 pamphlet, Japanese Patent Application Laid-Open No.
  • AA-2G purity 98% by mass or more anhydrous crystal-containing powder is Hayashibara Corporation Registered trademark “AA2G” from Biochemical Research Institute In cosmetics and quasi-drugs material for, also, to the food material for the trade name "Fiasco fresh” from Hayashibara Shoji, are commercially available, respectively.
  • AA-2G is mainly used as a whitening component in the fields of cosmetics, quasi-drugs, etc.
  • An object of the present invention is to provide a novel AA-2G crystal, a method for producing the same, and an application.
  • the present inventors surprisingly found that crystals having a different appearance from anhydrous crystals precipitate together with the precipitation of anhydrous AA-2G crystals under specific conditions. I found it. When the crystal was collected and subjected to powder X-ray diffraction, it showed a powder X-ray diffraction pattern different from the conventional AA-2G anhydrous crystal. Turned out to be a good crystal. Further, the crystal was found to be a water-containing crystal because it contained a certain amount of crystal water.
  • the present inventors have clarified the physical properties of this novel AA-2G hydrated crystal, as well as AA-2G hydrated crystal and AA-2G hydrated crystal-containing powder, their production method, excipient and oily substance.
  • the present invention was completed by establishing use as a powdered substrate.
  • this invention solves the said subject by providing AA-2G water-containing crystal
  • novel AA-2G hydrous crystals and AA-2G hydrous crystal-containing powders can be produced in large quantities from an AA-2G-containing aqueous solution.
  • the AA-2G hydrous crystals and the AA-2G hydrous crystal-containing powders are excellent in formability, can be advantageously used in the production of molded products such as granules and tablets, and have high lipophilicity. It is useful as a powdered substrate.
  • FIG. ⁇ Diffraction peak a characteristic of novel AA-2G crystal
  • a Diffraction peak 6.1 ° diffraction
  • b Diffraction peak 9.2 ° diffraction
  • c Diffraction angle 10.6 ° diffraction peak
  • d Time Diffraction peak e at bending angle 11.4 °: Diffraction peak at diffraction angle 12.1 °
  • A Endothermic pattern in DSC analysis of AA-2G hydrous crystal of the present invention
  • B Endothermic pattern in DSC analysis of AA-2G anhydrous crystal
  • the present invention relates to a novel AA-2G hydrous crystal.
  • the AA-2G water-containing crystal of the present invention is at least a diffraction angle (2 ⁇ ) in a powder X-ray diffraction diagram obtained by powder X-ray diffraction using CuK ⁇ ray as an X-ray source, as shown in an experiment described later.
  • a powder X-ray diffraction diagram obtained by powder X-ray diffraction using CuK ⁇ ray as an X-ray source, as shown in an experiment described later.
  • characteristic diffraction peaks that are not recognized in the powder X-ray diffraction pattern of conventionally known AA-2G anhydrous crystals are shown. It is characterized by showing.
  • the AA-2G water-containing crystal of the present invention is characterized in that it shows a crystal water content of about 2.7% by mass when thermogravimetric analysis (TG analysis) is performed, as shown in the experiment described later.
  • TG analysis thermogravimetric analysis
  • the value of the water content of crystallization shows that the hydrated crystal of the present invention has 1 ⁇ 2 hydrated crystal having 1 ⁇ 2 molecule of crystallization water with respect to 1 molecule of AA-2G, that is, C 12 H 18 O. This agrees very well with 2.66% by mass, which is the theoretical value of the water content of crystallization when it is assumed to be 11.1 / 2H 2 O.
  • the AA-2G hydrous crystal of the present invention is characterized by showing an endothermic peak near 156 ° C. in the differential scanning calorimetry (DSC analysis) as shown in the experiment described later. This can be clearly distinguished from conventionally known AA-2G anhydrous crystals that exhibit a single endothermic peak.
  • the AA-2G water-containing crystal is included in the present invention as long as it has the above-described characteristics, and is not limited to those manufactured by a specific manufacturing method.
  • the present invention is also an invention that provides a novel method for producing AA-2G hydrous crystals.
  • AA-2G may be obtained by organic synthesis, but in general, conventionally known methods for producing AA-2G for food materials and cosmetic materials That is, it is preferable to use an AA-2G-rich solution obtained by a method in which CGTase is allowed to act on starch and L-ascorbic acid, and further glucoamylase is acted, or an AA-2G anhydrous crystal-containing powder prepared therefrom. is there. Since the present invention does not relate to a method for producing AA-2G itself, only an outline will be described below (details are disclosed in JP-A-3-139288, JP-A-3-135992, and JP-A-3 183,492).
  • a conventional method for producing an AA-2G anhydrous crystal-containing powder basically includes the following steps (1) to (5): (1) CGTase is allowed to act on a solution containing starch and L-ascorbic acid to produce 2-O- ⁇ -maltosyl-L-ascorbic acid and 2-O- ⁇ -maltotriosyl-L-ascorbine together with AA-2G A transglycosylation step for producing 2-O- ⁇ -glycosyl-L-ascorbic acid, such as acid, 2-O- ⁇ -maltotetraosyl-L-ascorbic acid; (2) The resulting 2-O- ⁇ -glycosyl-L-ascorbic acid-containing solution is allowed to act on glucoamylase to convert 2-O- ⁇ -glycosyl-L-ascorbic acid to AA-2G and glucose, and also to be contaminated.
  • a purification step of collecting a fraction containing AA-2G by gel filtration chromatography using a strongly acidic cation exchange resin and decolorizing, filtering, desalting and concentrating (4) A crystallization step of adding an AA-2G anhydrous crystal seed crystal to the obtained AA-2G high content solution and crystallization to obtain an AA-2G anhydrous crystal; (5) A process of collecting the obtained AA-2G anhydrous crystals, step; aging, drying, and pulverizing as necessary.
  • the AA-2G water-containing crystal of the present invention is an AA-2G anhydrous crystal-containing powder produced by the above method (for example, registered trademark “AA2G”, AA-2G purity of 98% by mass or more, sold by Hayashibara Biochemical Laboratories, Inc.). ) As a raw material and can be prepared relatively easily. After the above AA-2G anhydrous crystal-containing powder is put in a container, it is suspended in a relatively small amount of purified water and stirred with heating to prepare a supersaturated AA-2G aqueous solution in which undissolved AA-2G anhydrous crystals remain.
  • AA2G registered trademark “AA2G”
  • AA-2G purity of 98% by mass or more sold by Hayashibara Biochemical Laboratories, Inc.
  • AA-2G hydrous crystal of the present invention crystallizes in a lump.
  • an AA-2G water-containing crystal powder having an AA-2G purity of 98% by mass or more in terms of anhydride can be obtained.
  • this method only a part of AA-2G used as a raw material can be recovered as AA-2G water-containing crystals, and it is difficult to efficiently produce AA-2G water-containing crystals.
  • the AA-2G hydrous crystal of the present invention can be efficiently obtained from an aqueous solution containing 98% by mass or more of AA-2G in terms of anhydride by using the obtained AA-2G hydrous crystal as a seed crystal. it can.
  • AA-2G anhydrous crystals registered trademark “AA2G”, AA-2G purity of 98% by mass or more, sold by Hayashibara Biochemical Laboratories, Inc.
  • the solid concentration is adjusted to 50% (w / v) or more by concentration, put into a container, 1 to 5% by mass of AA-2G hydrous crystals as seed crystals are added per solid, and the temperature is 60 ° C. or lower, preferably If the container is allowed to stand for 0.5 to 7 days in an open system in which the container is not covered in the range of 20 to 50 ° C., a block in which only AA-2G hydrous crystals are crystallized can be obtained. By cutting, pulverizing and drying this block according to a conventional method, an AA-2G hydrous crystal powder containing 98% by mass or more of AA-2G in terms of anhydride can be obtained.
  • the AA-2G water-containing crystal of the present invention is directly produced from amorphous AA-2G powder having a high AA-2G purity by using the AA-2G water-containing crystal as a seed crystal, as shown in an experiment described later. You can also.
  • the amorphous AA-2G powder can be obtained, for example, by freeze-drying an aqueous solution containing AA-2G having a purity of 98% by mass or more, followed by pulverization and drying.
  • the temperature is usually 10 to 40 ° C., desirably Is amorphous AA-2G by standing at 20 to 30 ° C. in an environment in which the relative humidity is usually controlled to 70 to 95%, preferably 80 to 90% for about 0.5 to 7 days.
  • the relative humidity is usually controlled to 70 to 95%, preferably 80 to 90% for about 0.5 to 7 days.
  • the progress of conversion from amorphous AA-2G powder to AA-2G hydrous crystals can be confirmed by a powder X-ray diffraction diagram obtained by collecting a part of the powder and subjecting it to a powder X-ray diffraction method. it can.
  • the AA-2G hydrous crystal powder can be produced by drying the AA-2G hydrous crystal obtained by conversion from the amorphous AA-2G powder as it is or by cutting or grinding.
  • the AA-2G water-containing crystal of the present invention can be obtained from an AA-2G-containing solution having a relatively low AA-2G purity by using the AA-2G water-containing crystal obtained by the above method as a seed crystal. It can.
  • the AA-2G purity obtained by the steps (1) to (3) in the method for producing an AA-2G anhydrous crystal-containing powder described above is 85% by mass or more and the concentration is 65 to 90% (w / v) per solid matter.
  • the AA-2G-containing solution was added to an auxiliary crystal can and 1 to 20% by mass of AA-2G water-containing crystal powder was added as a seed crystal, and the crystal was stirred at a temperature of 60 ° C.
  • a mass kit containing AA-2G hydrous crystals As a method for collecting high-purity AA-2G water-containing crystals from a mass kit, the honey method is usually preferably used. In the case of the honey method, the mass kit is usually applied to a basket-type centrifuge to separate the AA-2G hydrous crystals and the honey (crystallization mother liquor), and if necessary, the crystals are added to, for example, a small amount of cold water. Or a crystal
  • the AA-2G water-containing crystal-containing powder may be produced by a spray-drying method in which the above-mentioned mass kit is spray-dried and the obtained powder is aged and dried. It can be carried out advantageously.
  • the AA-2G purity per solid is 85 mass% or more and the concentration is 65 or more obtained by the steps (1) to (4) in the above-described method for producing an AA-2G anhydrous crystal-containing powder.
  • a mass kit of 75% (w / v) and a crystallization rate (ratio of crystals to solids) of about 10 to 60% by mass is sprayed from a nozzle with a high-pressure pump, for example, or sprayed using a rotating disk, AA is obtained by drying with hot air at a temperature at which the powder does not dissolve, for example, 60 to 100 ° C., and then aging for about 1 to 48 hours with hot air at 20 to 60 ° C. while maintaining the relative humidity at 53 to 90%.
  • AA-2G water-containing crystal-containing powder having a -2G purity of 85% by mass or more can be easily produced.
  • AA-2G hydrous crystal-containing powder by blocking the mass kit and using a block grinding method.
  • a block pulverization method usually, a mass kit having a water content of 5 to 20% (w / v) and a crystallization rate of about 10 to 60% by mass is allowed to stand for about 0.1 to about 7 days to form a block.
  • AA-2G water-containing crystal-containing powder having an AA-2G purity of 85% by mass or more can be easily produced by crystallizing and solidifying the powder, followed by pulverizing and drying the powder by a method such as cutting or grinding.
  • the present invention is an invention that provides use of the AA-2G hydrous crystal powder or the AA-2G hydrous crystal-containing powder.
  • the AA-2G water-containing crystal powder of the present invention has a feature that it is excellent in formability as compared with a conventionally known AA-2G anhydrous crystal-containing powder, though it depends on its particle size distribution.
  • the tablet is cracked or chipped when the load on the powder is released.
  • a tablet with high hardness can be prepared without causing cracks or chipping.
  • the AA-2G water-containing crystal powder of the present invention has a characteristic that it has a stronger affinity with an oily substance than a conventionally known AA-2G anhydrous crystal-containing powder and can be advantageously used as a powdered base material for an oily substance. Have. This characteristic can be advantageously used for producing various powdered oils and fats.
  • the AA-2G water-containing crystal and AA-2G water-containing crystal-containing powder of the present invention are not different from the conventional AA-2G anhydrous crystal-containing powder in that they are AA-2G powder. Therefore, the AA-2G water-containing crystals and AA-2G water-containing crystal-containing powders of the present invention are widely used in food and drinks, favorite foods, feeds, feeds, as well as conventional AA-2G anhydrous crystal-containing powders. Needless to say, it can be used in cosmetics, pharmaceuticals, molded products and the like, and can also be used in various compositions such as daily necessities, agricultural, forestry and fishery products, reagents and chemical industrial products.
  • AA-2G anhydrous crystal-containing powder registered trademark “AA2G”, sold by Hayashibara Biochemical Laboratories, Inc., AA-2G purity of 98.0% by mass or more
  • a suspension in which partially undissolved AA-2G anhydrous crystals remain in the supersaturated aqueous solution of AA-2G was prepared by stirring while heating to 50 to 60 ° C. Next, when the beaker containing this suspension was put in a 40 ° C.
  • ⁇ Experiment 2-1 Photomicrograph of novel AA-2G crystal> An appropriate amount of the crystal powder obtained in Experiment 1 was suspended in glycerol gelatin (manufactured by Sigma), placed on a slide glass and observed with a microscope (OLYMPUS Corporation, "BX50"), and a digital camera for a microscope (OLYMPUS stock) A micrograph was taken with “DP21” manufactured by company. An example of a micrograph of the crystal (magnification: 1,250 times) is shown in FIG. As seen in FIG. 1, columnar crystals were observed.
  • ⁇ Experiment 2-2 AA-2G purity of novel AA-2G crystal>
  • the crystal powder obtained in Experiment 1 was dissolved in deionized water to a final concentration of 0.1 or 1% (w / v), filtered through a membrane filter, and then subjected to HPLC analysis under the following conditions.
  • reagent-grade AA-2G anhydrous crystal-containing powder (trade name “ascorbic acid 2-glucoside 999”, code number: AG124, purity 99.9% by mass or more, Hayashibara Biochemical Co., Ltd. The same was used for HPLC analysis.
  • the crystalline powder obtained in Experiment 1 shows an elution peak at the same retention time (Rt) as that of the AA-2G standard product in both detection methods using a UV detector and a differential refractometer.
  • the maximum absorption wavelength ( ⁇ max) investigated by the wavelength UV detector was 248 nm, which completely coincided with that of the AA-2G standard product.
  • the AA-2G purity of the crystal powder obtained in Experiment 1 was calculated based on the peak area of the HPLC chromatogram obtained using a differential refractometer, and was 99.5% by mass.
  • ⁇ Experiment 2-3 Powder X-ray diffraction of new AA-2G crystal powder> About 50 mg of AA-2G crystal powder obtained in Experiment 1 was placed on a silicon non-reflective plate, and a commercially available reflected X-ray powder diffractometer (trade name “X ′ Pert Pro MPD”, manufactured by Spectris Co., Ltd.) was used. Powder X-rays based on diffraction profiles obtained by irradiation with CuK ⁇ rays (X-ray tube current: 40 mA, X-ray tube voltage: 45 kV, wavelength: 1.5405 angstroms) which are characteristic X-rays emitted from Cu counter cathode A diffraction pattern was obtained.
  • the powder X-ray diffraction pattern of the new AA-2G crystal powder is shown in FIG. 2, and the reagent grade AA-2G anhydrous crystal-containing powder used as a control (trade name “ascorbic acid 2-glucoside 999”, code number: AG124, purity
  • the results of 99.9% by mass or more and sold by Hayashibara Biochemical Laboratories Co., Ltd. are shown in FIG.
  • the powder X-ray diffraction pattern of the new AA-2G crystal powder obtained in Experiment 1 was completely different from that of the conventional AA-2G anhydrous crystal powder. That is, the powder X-ray diffraction pattern of the new AA-2G crystal powder has at least a diffraction angle (2 ⁇ ) of 6.1 ° (symbol “a” in FIG. 2) and 9.2 ° (symbol “b” in FIG. 2). At 10.6 ° (symbol “c” in FIG. 2), 11.4 ° (symbol “d” in FIG. 2) and 12.1 ° (symbol “e” in FIG. 2), conventional AA-2G anhydrous A characteristic diffraction peak not observed in the crystal powder was observed.
  • ⁇ Experiment 2-4 Crystal water content of novel AA-2G crystal powder> AA-2G crystal powder (3.5 mg) obtained in Experiment 1 is placed in an aluminum container, and nitrogen is measured using a differential heat / thermogravimetric simultaneous measurement device (trade name “TG / DTA6200”, manufactured by SII Nanotechnology Co., Ltd.). After holding the gas at a flow rate of 300 ml / min and holding at 25 ° C. for 3 minutes, thermogravimetric analysis (TG analysis) was performed by raising the temperature to 250 ° C. at a rate of temperature increase of 10 ° C./min. A weight reduction of 2.70% by mass was observed from 145 ° C.
  • TG analysis thermogravimetric analysis
  • the crystal powder contained 2.70% by mass of crystal water. From this result, it was found that the new AA-2G crystal powder obtained in Experiment 1 was a conventionally unknown water-containing crystal.
  • the value of the crystal water content is a theoretical value of the water content when it is assumed that the crystal is AA-2G1 / 2 hydrous crystal, that is, C 12 H 18 O 11 ⁇ 1 / 2H 2 O 2 It agreed very well with .66% by mass.
  • ⁇ Experiment 2-6 Differential Scanning Calorimetry (DSC Analysis) of AA-2G Hydrous Crystal Powder> Place 3.5 mg of AA-2G hydrous crystal powder obtained in Experiment 1 into an aluminum container, and use a differential scanning calorimeter (trade name “DSC Q20”, manufactured by TA Instruments) at a flow rate of 50 ml / min. The sample was held at 25 ° C. for 5 minutes while flowing, and then heated to 250 ° C. at a rate of temperature increase of 10 ° C./min to analyze the endothermic pattern in the DSC analysis.
  • the endothermic pattern of the AA-2G water-containing crystal powder is represented by the symbol A in FIG.
  • the AA-2G anhydrous crystal-containing powder showed a single endothermic peak accompanying melting at around 176 ° C.
  • the AA-2G hydrous crystal powder obtained in Experiment 1 was 110 to A slight endotherm was observed in the range of 145 ° C., and an endothermic peak accompanying melting was observed at around 157 ° C., and the endothermic patterns in the DSC analysis were completely different.
  • Example 3 Preparation of AA-2G water-containing crystal powder from high-purity AA-2G-containing aqueous solution>
  • a novel AA-2G hydrous crystal was obtained from a supersaturated aqueous solution system of high purity AA-2G in which undissolved AA-2G anhydrous crystals coexist.
  • the production conditions of the novel AA-2G water-containing crystal were examined in more detail using a high-purity AA-2G-containing aqueous solution.
  • AA-2G anhydrous crystal-containing powder (trade name “AA2G”, purity 98 mass% or more, sold by Hayashibara Biochemical Laboratories Inc.) 200 g was added to 200 ml of purified water and completely dissolved by heating and stirring. This aqueous solution was transferred to a 20 cm square and 5 cm deep tray, and 2.0 g of AA-2G hydrous crystal powder obtained by the method of Experiment 1 was added, stirred and mixed, and then at room temperature in an open system without a lid at room temperature. After standing for a day, the crystals crystallized and became block-like lumps. After crushing the block in a mortar and vacuum drying at room temperature, about 200 g of crystalline powder was obtained.
  • the AA-2G purity in this crystal powder was measured by HPLC method described in Experiment 2-2 and found to be 99.2% by mass, and the water content was measured by Karl Fischer method to be 2.8% by mass. It was.
  • this crystal powder was subjected to the powder X-ray diffraction method described in Experiment 2-3, the same powder X-ray diffraction diagram of the AA-2G hydrous crystal as in FIG. 2 was obtained, and the diffraction peak derived from the AA-2G anhydrous crystal Was not recognized at all.
  • This result shows that AA-2G water-containing crystal powder can be obtained in high yield from a high-purity AA-2G-containing aqueous solution by using AA-2G water-containing crystals as seed crystals.
  • ⁇ Experiment 4-1 Preparation of amorphous AA-2G powder> After completely dissolving 200 g of commercially available AA-2G anhydrous crystal-containing powder (trade name “AA2G”, purity 98 mass% or more, sold by Hayashibara Biochemical Laboratories Co., Ltd.) in 2,000 ml of purified water, it takes 3 days. About 200 g of AA-2G powder was prepared by freeze-drying and then vacuum drying overnight at 40 ° C. or lower. The AA-2G purity of this powder was measured by the HPLC method described in Experiment 2-2 and found to be 98.7% by mass, and the water content measured by the Karl Fischer method was 1.5% by mass. .
  • ⁇ Experiment 4-2 Preparation of AA-2G Hydrous Crystal Powder from Amorphous AA-2G Powder>
  • the amorphous AA-2G powder obtained in Experiment 4-1 and the AA-2G water-containing crystal powder obtained in Experiment 3 were 9: 1, 8: 2, 7: 3, 6: 4 or 5: 5, respectively.
  • TEMP. & HUMID. CHAMBER PR-4K manufactured by Espec
  • each powder was taken out from the thermo-hygrostat and subjected to the powder X-ray diffraction method described in Experiment 2-3 to obtain each powder X-ray diffraction diagram.
  • the obtained powder X-ray diffractogram was compared with the powder X-ray diffractograms of the AA-2G hydrous crystal and the AA-2G anhydrous crystal (FIGS. 2 and 3) to determine the crystal form of each powder.
  • the results are shown in Table 1.
  • amorphous AA-2G powder and AA-2G water-containing crystal powder were mixed at a mass ratio of 7: 3, 6: 4 and 5: 5, respectively, at 25 ° C. and 90% relative humidity. When kept for 24 hours under these conditions, it was completely converted to a powder showing a powder X-ray diffraction diagram of the AA-2G hydrous crystal.
  • amorphous AA-2G powder and AA-2G water-containing crystal powder are mixed at a mass ratio of 9: 1 and 8: 2, respectively, and coexisting powders are AA-2G anhydrous crystal and AA-2G water-containing crystal.
  • This result was obtained by mixing 30% by mass or more of AA-2G hydrous crystal powder with amorphous AA-2G powder and maintaining it at 25 ° C. and 90% relative humidity for 24 hours or more. It shows that AA-2G hydrous crystal powder can be produced.
  • AA-2G-containing solution 3 parts by mass of L-ascorbic acid was added to 7 parts by mass of the solid product of the potato starch liquefaction solution, and the pH was adjusted to 5.5 and the solids concentration was adjusted to 30% (w / v) to obtain a substrate solution.
  • 100 units of crude enzyme solution derived from Geobacillus stearothermophilus CGTase (manufactured by Hayashibara Co., Ltd.) per 1 g of starch solids was reacted and reacted at 55 ° C. for 40 hours for sugar transfer to L-ascorbic acid To produce AA-2G and 2-O- ⁇ -glycosyl-L-ascorbic acid.
  • This reaction solution is heated to deactivate glucoamylase, and then decolorized and filtered with activated carbon.
  • the filtrate is desalted with a cation exchange resin (H + type), and then an anion exchange resin (OH ⁇ type) with L ⁇ .
  • Ascorbic acid and AA-2G were adsorbed and washed with water to remove most of the glucose.
  • AA-2G and L-ascorbic acid adsorbed on the resin are eluted with a 0.5N hydrochloric acid solution, and gel filtration using a strongly acidic cation exchange resin (trade name “Dawex 50WX4”, Ca 2+ type, manufactured by Dow Chemical Co., Ltd.) By subjecting it to column chromatography, the AA-2G high-content fraction was recovered.
  • the composition of the collected AA-2G-containing solution was AA-2G92.0% by mass, L-ascorbic acid 0.8% by mass, glucose 6.5% by mass and others 0.7% by mass.
  • ⁇ Experiment 5-2 Preparation of AA-2G hydrous crystal-containing powder by honey method>
  • the AA-2G-containing solution obtained by the method of Experiment 5-1 was concentrated under reduced pressure to obtain a concentrated solution having a concentration of about 50% (w / v). This was placed in an auxiliary crystal can and the AA-2G hydrous crystal obtained in Experiment 3 was used.
  • the powder was used as a seed crystal to add 1 mass% per concentrated liquid solid to 40 ° C., and crystallized over 5 days with gentle stirring to obtain a mass kit containing AA-2G hydrous crystals.
  • the obtained mass kit was applied to a basket-type centrifuge by a conventional method, and the precipitated AA-2G hydrous crystals were collected, washed with a small amount of ethanol water, then aged, pulverized and dried to obtain an AA-2G purity of 99. Obtained 3% by mass of AA-2G water-containing crystal-containing powder.
  • AA-2G Hydrous Crystal-Containing Powder by Block Grinding Method The AA-2G-containing solution obtained by the method of Experiment 5-1 was concentrated under reduced pressure to obtain a concentrated solution having a concentration of about 60% (w / v), and transferred to a plastic tray (80 cm in length, 30 cm in width, 30 cm in height). 2% by mass of the AA-2G water-containing crystal powder obtained in 1 was added to the solid concentrate, and after stirring and mixing, the mixture was allowed to stand at 45 ° C. for 4 days without a lid and crystallized. A block of hydrous crystals was prepared.
  • the block was pulverized with a blender (trade name “Oster Blender ST-2”, manufactured by Osaka Chemical Co., Ltd.) and then vacuum-dried at room temperature to obtain an AA-2G hydrous crystal-containing powder.
  • a blender trade name “Oster Blender ST-2”, manufactured by Osaka Chemical Co., Ltd.
  • the AA-2G purity in the obtained AA-2G water-containing crystal-containing powder was 91.8% by mass.
  • AA-2G water-containing crystal powder (AA-2G purity 99.2% by mass) obtained by the method of Experiment 3 was sieved to recover a powder having a particle size of 53 to 106 ⁇ m.
  • 0.4 g of the obtained powder is put into a tableting die (diameter 11 mm, thickness 30 mm), and a 1-ton load is applied for 30 seconds with a desktop press (SSP-10A, manufactured by Shimadzu Corporation). After locking, the load was released and the tablet was taken out. This operation was repeated 10 times to produce a total of 10 tablets.
  • the oil retention of the crystal powder was measured as follows according to the method disclosed in JP-A-59-31650. That is, 5 g of corn oil (reagent, lot number WKL1215, sold by Wako Pure Chemical Industries, Ltd.) was collected in a 50 ml plastic container, and the AA-2G hydrous crystal adjusted to a particle size of 53 to 106 ⁇ m as in Experiment 6 with stirring. Powder or AA-2G anhydrous crystal-containing powder is added. Although this mixture retains fluidity when the amount of the crystal powder added is small, the viscosity increases as the amount increases and eventually becomes one lump. As the amount of addition increases further, the hardness increases, and eventually it becomes untidy and begins to unravel. With this point as the end point, the oil retention capacity was determined by the following equation based on the amount of crystal powder added up to the end point. The results are shown in Table 3.
  • ⁇ AA-2G hydrous crystal-containing powder 10 kg of commercially available powder containing AA-2G anhydrous crystals (trade name “AA2G”, purity of 98% by mass or more, sold by Hayashibara Biochemical Laboratories Co., Ltd.) was added to 10 liters of purified water and completely dissolved by stirring. To this aqueous solution, 100 g of the AA-2G hydrous crystal powder obtained by the method of Experiment 3 was added, stirred and mixed, and then dispensed into three plastic containers 30 cm long, 60 cm wide and 40 cm high, with no lid open. Crystallization was allowed to stand in the system at 50 ° C. for 3 days, followed by aging at room temperature for 1 day.
  • the obtained block-shaped crystal lump was pulverized by a conventional method and then dried at 30 ° C. to produce about 9.7 kg of AA-2G hydrous crystal-containing powder.
  • the AA-2G purity of this powder was measured by the HPLC method described in Experiment 2-2 and found to be 98.4% by mass.
  • the water content was measured by the Karl Fischer method and found to be 3.0% by mass. .
  • This product has good fluidity and is widely used as a sour agent, taste improver, excipient, pulverized base for oily substances, etc. in various compositions such as food and drink, cosmetics, quasi drugs and pharmaceuticals. It can be used advantageously.
  • a crude enzyme solution of CGTase derived from Geobacillus stearothermophilus (manufactured by Hayashibara Co., Ltd.) was added at 100 units per gram of tapioca starch solids and reacted at 55 ° C. for 50 hours to obtain AA-2G and 2-O- ⁇ . -Glycosyl-L-ascorbic acid was produced.
  • a glucoamylase agent sold by Nagase ChemteX Co., Ltd., trade name “Glucoteam # 20000”, 20,000 units / g
  • the AA-2G content in this reaction solution was about 30.5% by mass in terms of anhydride.
  • the reaction solution is heated to inactivate the enzyme, then decolorized and filtered with activated carbon, the filtrate is desalted with a cation exchange resin (H + type), and then L-ascorbine is added to an anion exchange resin (OH ⁇ type).
  • Acid and AA-2G are adsorbed, washed with water to remove most of the glucose, and then eluted with 0.5N hydrochloric acid solution.
  • a strongly acidic cation exchange resin trade name “Dawex 50WX4”, Ca 2+ type, Dow Fractions containing high AA-2G content were collected by gel filtration column chromatography using Chemical Co.).
  • the composition of the collected AA-2G-containing solution was AA-2G89.3% by mass, 1.2% by mass of L-ascorbic acid, 7.8% by mass of glucose, and 1.7% by mass in terms of anhydride.
  • This AA-2G-containing solution is concentrated under reduced pressure to obtain a solid concentration of about 60%. This is taken in an auxiliary crystal can, and the AA-2G water-containing crystal powder obtained by the method of Experiment 3 is used as a seed crystal for the amount of solid substances. 2% was added to 40 ° C, and the mixture was gently stirred and crystallized for 5 days to obtain a mass kit in which AA-2G hydrous crystals were precipitated. The mass kit was applied to a basket-type centrifuge by a conventional method, and the crystals were collected. The crystals were washed by spraying a small amount of purified water, and then pulverized and dried to obtain AA-2G hydrous crystal-containing powder. The AA-2G purity of this product was 98.5% by mass in terms of anhydride.
  • This product has good fluidity, and can be advantageously used in various compositions such as foods, cosmetics, and pharmaceuticals as a sour agent, a taste improver, an excipient, and a powdered base for oily substances.
  • AA-2G hydrous crystal-containing powder Except for changing the tapioca starch to corn starch, the reaction and purification were carried out in the same manner as in Example 2, and the AA-2G-rich fraction was recovered.
  • the composition of the collected AA-2G-containing solution was AA-2G85.4% by mass, 3.8% by mass of L-ascorbic acid, 8.7% by mass of glucose, and 2.1% by mass of other components per solid matter.
  • This AA-2G-containing solution was concentrated under reduced pressure to obtain a solid concentration of about 76%. This was taken in an auxiliary crystal can, and the AA-2G water-containing crystal powder obtained by the method of Example 1 was used as a seed crystal for the amount of solid substance. After adding 2% to 40 ° C and stirring and mixing, dispense into a plastic container 30cm long, 40cm wide and 30cm high and crystallize by leaving it at 50 ° C for 3 days in an open system without a lid. The mixture was further aged at room temperature for 1 day. The obtained block-shaped crystal lump was roughly crushed with a hammer and then pulverized by a conventional method, followed by drying at 30 ° C. to produce AA-2G hydrous crystal-containing powder. This product contained 85.2% by mass of AA-2G in terms of anhydride, 3.9% by mass of L-ascorbic acid, and 8.8% by mass of glucose.
  • This product has good fluidity, and can be advantageously used in various compositions such as foods, cosmetics, and pharmaceuticals as a sour agent, a taste improver, an excipient, and a powdered base for oily substances.
  • ⁇ Vitamin E-containing powder> A universal mixer that adds 5 parts by weight of the AA-2G hydrous crystal-containing powder obtained by the method of Example 1 to 1 part by weight of oily naturally derived tocopherol (trade name “ ⁇ 70”, sold by J-Oil Mills Co., Ltd.) After mixing, the mixture was allowed to stand overnight and pulverized to prepare a vitamin E (tocopherol) -containing powder.
  • This product can be suitably used as a supplement comprising vitamin E and stable vitamin C.
  • the AA-2G hydrous crystal of the present invention is a new crystal form of AA-2G that has not been known so far.
  • the AA-2G water-containing crystal-containing powder of the present invention is excellent in fluidity, and has an advantage that a tablet with high hardness that cannot be produced with a conventional powder containing anhydrous AA-2G can be obtained when used as an excipient. is doing.
  • the AA-2G hydrous crystal-containing powder of the present invention has higher lipophilicity than the conventional AA-2G anhydrous crystal-containing powder, and is useful as a powdered base material for oily substances.
  • the present invention is an invention with great significance that it contributes not only to the academic significance of discovering conventionally unknown AA-2G hydrous crystals, but also to the fields of food, cosmetics, quasi drugs, and pharmaceuticals.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Genetics & Genomics (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • Epidemiology (AREA)
  • Dermatology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Medicinal Chemistry (AREA)
  • Birds (AREA)
  • Food Science & Technology (AREA)
  • Mycology (AREA)
  • Nutrition Science (AREA)
  • Polymers & Plastics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Toxicology (AREA)
  • Cosmetics (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Saccharide Compounds (AREA)
  • Medicinal Preparation (AREA)

Abstract

本発明は、新規な2−O−α−グルコシル−L−アスコルビン酸結晶とその製造方法並びに用途を提供することを課題とし、2−O−α−グルコシル−L−アスコルビン酸含水結晶及び2−O−α−グルコシル−L−アスコルビン酸含水結晶含有粉末とそれらの製造方法並びに用途を提供することすることにより上記課題を解決する。

Description

2−O−α−D−グルコシル−L−アスコルビン酸含水結晶及び2−O−α−D−グルコシル−L−アスコルビン酸含水結晶含有粉末とそれらの製造方法並びに用途
 本発明は、2−O−α−D−グルコシル−L−アスコルビン酸含水結晶及び2−O−α−D−グルコシル−L−アスコルビン酸含水結晶含有粉末とそれらの製造方法並びに用途に関する。
 2−O−α−D−グルコシル−L−アスコルビン酸(別名:アスコルビン酸2−グルコシド、以下、本明細書では「AA−2G」と略称する。)は、L−アスコルビン酸(ビタミンC)分子の2位水酸基に1分子のD−グルコースがα−グルコシド結合を介して結合した化合物である。AA−2Gは、L−アスコルビン酸とは異なり、非還元性であり、安定性に優れることから「安定型ビタミンC」とも呼ばれている。また、AA−2Gは、生体内では酵素により容易にL−アスコルビン酸とD−グルコースとに加水分解され、L−アスコルビン酸が本来的に有する生理活性を発揮する。
 AA−2Gは、澱粉質とL−アスコルビン酸とを含む溶液にシクロマルトデキストリン・グルカノトランスフェラーゼ(以下、本明細書では「CGTase」と略称する。)を作用させ、さらにグルコアミラーゼを作用させることにより工業的規模で製造されており(例えば、特開平3−139288号公報、特開平3−135992号公報、特開平3−183492号公報、特開平5−117290号公報、特開平5−208991号公報、国際公開WO01090338号パンフレット、特開2002−088095号公報、国際公開WO02010361号パンフレット、特開2004−065098号公報参照)、AA−2G純度98質量%以上の無水結晶含有粉末が、株式会社林原生物化学研究所より登録商標『AA2G』として化粧品・医薬部外品素材向けに、また、株式会社林原商事より商品名『アスコフレッシュ』として食品素材向けに、それぞれ市販されている。AA−2Gは主に美白成分などとして化粧品、医薬部外品などの分野において汎用されている(例えば、国際公開WO05087182号パンフレット、特開平4−046112号公報、特開平4−182412号公報、特開平4−182413号公報、特開平4−182419号公報、特開平4−182415号公報、特開平4−182414号公報、特開平8−333260号公報、特開2005−239653号公報、国際公開WO06033412号パンフレット、特開2002−326924号公報、特開2003−171290号公報、特開2004−217597号公報、国際公開WO05034938号パンフレット、特開2006−225327号公報、国際公開WO06137129号パンフレット、国際公開WO06022174号パンフレット、特開2007−063177号公報、国際公開WO06132310号パンフレット、国際公開WO07086327号パンフレット参照)。
 ところで、AA−2G無水結晶については単結晶のX線構造解析によってその絶対構造が解明されている(マンダイ・タカヒコら、『カーボハイドレート・リサーチ』(Carbohydrate Research)、第232巻、197~205頁(1992年)を参照)ものの、AA−2Gの結晶形態としては無水結晶のみが知られており、それ以外の結晶は知られていない。
 本発明は、新規なAA−2G結晶とその製造方法並びに用途を提供することを課題とする。
 本発明者らは、AA−2Gの結晶化条件を種々検討する過程において、意外にも、特定の条件下においてAA−2G無水結晶の析出とともに無水結晶とは外観の異なる結晶が析出することを見出した。当該結晶を採取し、粉末X線回折法に供したところ、従来のAA−2G無水結晶とは異なる粉末X線回折図を示したことから、当該結晶は従来知られていないAA−2Gの新規な結晶であることが判明した。さらに、当該結晶は、一定量の結晶水を含むことから含水結晶であることも判明した。そして、本発明者らは、この新規なAA−2G含水結晶の物性を明らかにするとともに、AA−2G含水結晶及びAA−2G含水結晶含有粉末とそれらの製造方法、並びに賦形剤及び油性物質の粉末化基材としての用途を確立して本発明を完成した。
 すなわち、本発明は、AA−2G含水結晶及びAA−2G含水結晶含有粉末とそれらの製造方法並びに用途を提供することすることにより上記課題を解決するものである。
 本発明によれば、新規なAA−2G含水結晶及びAA−2G含水結晶含有粉末をAA−2G含有水溶液から大量に製造することができる。また、当該AA−2G含水結晶及びAA−2G含水結晶含有粉末は、賦形性に優れ、顆粒、錠剤などの成形物の製造に有利に用いることができ、さらに親油性が高いことから油性物質の粉末化基材として有用である。
新規なAA−2G結晶の顕微鏡写真(倍率:1,250倍)である。 新規なAA−2G結晶の粉末X線回折図である。 試薬級AA−2G無水結晶含有粉末の粉末X線回折図である。 本発明のAA−2G含水結晶の示差走査熱量分析(DSC分析)における吸熱パターンをAA−2G無水結晶のそれと比較した図である。
図2において、
↓:新規なAA−2G結晶に特徴的な回折ピーク
a:回折角6.1°の回折ピーク
b:回折角9.2°の回折ピーク
c:回折角10.6°の回折ピーク
d:回折角11.4°の回折ピーク
e:回折角12.1°の回折ピーク
図4において、
A:本発明のAA−2G含水結晶のDSC分析における吸熱パターン
B:AA−2G無水結晶のDSC分析における吸熱パターン
 本発明は、新規なAA−2G含水結晶に関するものである。本発明のAA−2G含水結晶は、後述する実験において示すとおり、X線源としてCuKα線を用いた粉末X線回折法に供して得られる粉末X線回折図において、少なくとも、回折角(2θ)6.1°、9.2°、10.6°、11.4°及び12.1°に、従来公知のAA−2G無水結晶の粉末X線回折図に認められない特徴的な回折ピークを示すことを特徴とする。
 また、本発明のAA−2G含水結晶は、後述する実験において示すとおり、熱重量分析(TG分析)したとき、約2.7質量%の結晶水含量を示すことを特徴とする。因みに、この結晶水含量の値は、本発明のAA−2G含水結晶が1分子のAA−2Gに対して1/2分子の結晶水を有する1/2含水結晶、すなわち、C121811・1/2HOであると仮定した場合の結晶水含量の理論値である2.66質量%と極めてよく一致している。
 また、本発明のAA−2G含水結晶は、同じく後述する実験において示すとおり、示差走査熱量分析(DSC分析)において、156℃付近に吸熱ピークを示すことを特徴とし、同分析において176℃付近に単一の吸熱ピークを示す従来公知のAA−2G無水結晶とは明瞭に区別することができる。
 AA−2G含水結晶は、上記の特徴を有する限り本発明に包含され、特定の製造方法によって製造されたものに限定されるものではない。
 また、本発明は、新規なAA−2G含水結晶の製造方法を提供する発明でもある。AA−2G含水結晶の原料となるAA−2Gの由来は問わず、有機合成によって得られるものであってもよいが、一般的には従来公知の食品素材、化粧品素材向けAA−2Gの製造方法、すなわち、澱粉質とL−アスコルビン酸にCGTaseを作用させ、さらにグルコアミラーゼを作用させる方法によって得られるAA−2G高含有溶液又はこれから調製されたAA−2G無水結晶含有粉末を用いるのが好適である。なお、本発明はAA−2G自体の製造方法に係るものではないことから、以下に概略を記載するにとどめる(詳細は特開平3−139288号公報、特開平3−135992号公報、特開平3−183492号公報を参照)。
 例えば、従来のAA−2G無水結晶含有粉末の製造方法は、基本的に、以下の(1)乃至(5)の工程を含んでいる:
(1)澱粉質とL−アスコルビン酸とを含む溶液にCGTaseを作用させてAA−2Gとともに2−O−α−マルトシル−L−アスコルビン酸、2−O−α−マルトトリオシル−L−アスコルビン酸、2−O−α−マルトテトラオシル−L−アスコルビン酸などの2−O−α−グリコシル−L−アスコルビン酸を生成させる糖転移反応工程;
(2)得られる2−O−α−グリコシル−L−アスコルビン酸含有溶液にグルコアミラーゼを作用させて2−O−α−グリコシル−L−アスコルビン酸をAA−2Gとグルコースにまで、また、夾雑するマルトオリゴ糖をグルコースにまで分解し、AA−2G含量を高めるグルコアミラーゼ処理工程;
(3)陰イオン交換樹脂にAA−2Gと未反応のL−アスコルビン酸を吸着させ、樹脂に吸着しないグルコースなどの糖質を流去した後、希塩酸でAA−2GとL−アスコルビン酸を溶出し、さらに強酸性カチオン交換樹脂を用いたゲル濾過クロマトグラフィーによりAA−2G高含有画分を採取し、脱色、濾過、脱塩、濃縮する精製工程;
(4)得られるAA−2G高含有溶液にAA−2G無水結晶の種晶を添加し、晶析してAA−2G無水結晶を得る晶析工程;
(5)得られるAA−2G無水結晶を採取し、工程;熟成、乾燥し、必要に応じて粉砕する工程。
 本発明のAA−2G含水結晶は、上記の方法で製造されたAA−2G無水結晶含有粉末(例えば、登録商標『AA2G』、AA−2G純度98質量%以上、株式会社林原生物化学研究所販売)を原料として、比較的容易に調製することができる。上記AA−2G無水結晶含有粉末を容器に入れた後、比較的少量の精製水に懸濁、加熱攪拌し、未溶解のAA−2G無水結晶が残存する過飽和AA−2G水溶液を調製し、静置した状態で、恒温器又は乾燥機に入れるなどして時間をかけて水を蒸発させれば、再度析出するAA−2G無水結晶の層の表層又は容器の壁面に無水結晶とは外観の異なる本発明のAA−2G含水結晶が塊状に晶出する。この塊状のAA−2G含水結晶を採取し、粉砕、乾燥することにより、無水物換算でAA−2G純度98質量%以上のAA−2G含水結晶粉末を得ることができる。しかしながら、この方法では、原料として用いたAA−2Gの一部しかAA−2G含水結晶として回収できず、AA−2G含水結晶を効率よく製造することは難しい。
 一方、本発明のAA−2G含水結晶は、一旦得られたAA−2G含水結晶を種晶として用いることにより、無水物換算でAA−2Gを98質量%以上含有する水溶液から効率よく得ることができる。例えば、市販のAA−2G無水結晶含有粉末(登録商標『AA2G』、AA−2G純度98質量%以上、株式会社林原生物化学研究所販売)を水に完全に溶解させた後、必要に応じて濃縮することにより固形物濃度を50%(w/v)以上に調整し、容器に入れ、AA−2G含水結晶を種晶として固形物当たり1乃至5質量%加え、温度60℃以下、望ましくは、20乃至50℃の範囲で容器に蓋をしない開放系で0.5乃至7日間放置すれば、AA−2G含水結晶のみが晶出したブロックが得られる。このブロックを常法に従い、切削、粉砕、乾燥することにより、無水物換算でAA−2Gを98質量%以上含有するAA−2G含水結晶粉末を得ることができる。
 さらに、本発明のAA−2G含水結晶は、後述する実験で示すように、AA−2G含水結晶を種晶として用いることにより、AA−2G純度が高い非晶質AA−2G粉末から直接製造することもできる。非晶質AA−2G粉末は、例えば、純度98質量%以上のAA−2G含有水溶液を凍結真空乾燥した後、粉砕、乾燥して得ることができる。非晶質AA−2G粉末に対し、AA−2G含水結晶を種晶として30質量%以上になるように添加し、均一に磨砕、混合した後、温度を、通常、10乃至40℃、望ましくは、20乃至30℃に、相対湿度を、通常、70乃至95%、望ましくは80乃至90%にコントロールした環境下で約0.5乃至7日間、静置することにより非晶質AA−2Gをほぼ完全に本発明のAA−2G含水結晶に変換することができる。なお、非晶質AA−2G粉末からAA−2G含水結晶への変換の進展は、その粉末を一部採取し、粉末X線回折法に供して得られる粉末X線回折図によって確認することができる。非晶質AA−2G粉末からの変換によって得たAA−2G含水結晶を、そのまま、又は、切削又は粉砕などして乾燥することにより、AA−2G含水結晶粉末を製造することができる。
 さらに、本発明のAA−2G含水結晶は、上記の方法で得られたAA−2G含水結晶を種晶として用いることにより、比較的AA−2G純度の低いAA−2G含有溶液からも得ることができる。例えば、前記したAA−2G無水結晶含有粉末の製造方法における工程(1)乃至(3)により得られる、固形物当りのAA−2G純度85質量%以上、濃度65乃至90%(w/v)のAA−2G含有溶液を助晶缶にとり、1乃至20質量%のAA−2G含水結晶粉末を種晶として加え、温度60℃以下、望ましくは、20乃至50℃の範囲で、攪拌しつつ晶析し、AA−2G含水結晶を含有するマスキットとする。マスキットから高純度のAA−2G含水結晶を採取する方法としては、通常、分蜜法が好適に用いられる。分蜜法の場合には、通常、マスキットをバスケット型遠心分離機にかけ、AA−2G含水結晶と蜜(結晶化母液)とを分離し、必要に応じて、当該結晶に、例えば、少量の冷水又は冷エタノールをスプレーすることにより結晶を洗浄して、高純度のAA−2G含水結晶を製造することができる。斯して得られるAA−2G含水結晶におけるAA−2G純度は、通常、98質量%以上である。
 とりわけ高純度のAA−2G含水結晶を要さない場合には、上記マスキットを噴霧乾燥し、得られた粉末を熟成、乾燥させる噴霧乾燥法により、AA−2G含水結晶含有粉末を製造することも有利に実施できる。この噴霧乾燥法の場合には、前記したAA−2G無水結晶含有粉末の製造方法における工程(1)乃至(4)により得られる、固形物当りのAA−2G純度85質量%以上、濃度65乃至75%(w/v)、晶出率(固形物に対する結晶の割合)10乃至60質量%程度のマスキットを、例えば、高圧ポンプでノズルから噴霧するか、又は回転円盤を用いて噴霧し、結晶粉末が溶解しない温度、例えば、60乃至100℃の熱風で乾燥し、次いで、20乃至60℃の温風で、相対湿度を53乃至90%に保ちつつ約1乃至48時間熟成することにより、AA−2G純度85質量%以上のAA−2G含水結晶含有粉末を容易に製造することができる。
 また、上記マスキットをブロック化し、ブロック粉砕法によりAA−2G含水結晶含有粉末を製造することも有利に実施できる。ブロック粉砕法の場合には、通常、水分5乃至20%(w/v)、晶出率10乃至60質量%程度のマスキットを、約0.1乃至約7日間静置して全体をブロック状に晶出固化させ、これを切削又は粉砕などの方法によって粉末化し乾燥することにより、AA−2G純度85質量%以上のAA−2G含水結晶含有粉末を容易に製造することができる。
 さらに、本発明は、AA−2G含水結晶粉末又はAA−2G含水結晶含有粉末の用途を提供する発明でもある。本発明のAA−2G含水結晶粉末は、その粒度分布にもよるものの、従来公知のAA−2G無水結晶含有粉末に比べ、賦形性に優れるという特徴を有する。後述する実験の項に示すとおり、従来のAA−2G無水結晶含有粉末を、打錠機を用いて錠剤に成形しようとすると、粉末への荷重を開放した段階で錠剤には割れ、欠けなどが生じ、錠剤への成形が困難であるのに対し、本発明のAA−2G含水結晶粉末の場合には、割れ、欠けなどを生じることなく、硬度の高い錠剤を調製することができる。
 また、本発明のAA−2G含水結晶粉末は、従来公知のAA−2G無水結晶含有粉末に比べ、油性物質との親和性が強く、油性物質の粉末化基材として有利に利用できるという特性を有している。この特性は、各種粉末油脂などを製造する上で有利に利用できる。
 本発明のAA−2G含水結晶及びAA−2G含水結晶含有粉末は、AA−2Gの粉末であるという点では従来のAA−2G無水結晶含有粉末と何ら変わるところがない。したがって、本発明のAA−2G含水結晶及びAA−2G含水結晶含有粉末は上記の用途のみならず、従来のAA−2G無水結晶含有粉末と同様に、広く飲食物、嗜好物、飼料、餌料、化粧品、医薬品、成形物などに配合することができ、更には、生活用品、農林水産用品、試薬、化学工業用品などの各種組成物に利用することができることは言うまでもない。
 次に実験により本発明を具体的に説明する。
<実験1:新規なAA−2G結晶の取得>
 500ml容ガラスビーカーに、AA−2G無水結晶含有粉末(登録商標『AA2G』、株式会社林原生物化学研究所販売、AA−2G純度98.0質量%以上)20gと脱イオン水7.5gを入れ、50乃至60℃に加熱しつつ攪拌することによりAA−2Gの過飽和水溶液に一部未溶解のAA−2G無水結晶が残存する懸濁液を調製した。次いで、この懸濁液を入れたビーカーを40℃の恒温器内に入れ、3日間保持することにより時間をかけて水分を蒸発させたところ、ビーカー底面に形成されたAA−2G無水結晶の層の表層及びガラスビーカーの壁面に、AA−2G焦水結晶とは外観の異なる塊状の結晶の析出が認められた。この塊状の結晶を薬匙にて採取し、粉砕、乾燥することにより結晶粉末3.8gを得た。
<実験2:新規AA−2G結晶の物性>
 実験1で得た結晶粉末を用いて、以下の物性を調査した。
<実験2−1:新規AA−2G結晶の顕微鏡写真>
 実験1で得た結晶粉末の適量を、グリセロールゼラチン(シグマ社製)に懸濁し、スライドガラスに載せ顕微鏡(オリンパス株式会社製、「BX50」)にて観察するとともに、顕微鏡用デジタルカメラ(オリンパス株式会社製、「DP21」)にて顕微鏡写真を撮影した。結晶の顕微鏡写真の一例(倍率:1,250倍)を図1に示す。図1に見られるとおり、柱状結晶が観察された。
<実験2−2:新規AA−2G結晶のAA−2G純度>
 実験1で得た結晶粉末を、脱イオン水に終濃度0.1又は1%(w/v)になるよう溶解し、メンブランフィルターにて濾過した後、下記の条件によるHPLC分析に供した。なお、AA−2Gの標準品として、試薬級のAA−2G無水結晶含有粉末(商品名『アスコルビン酸2−グルコシド 999』、コード番号:AG124、純度99.9質量%以上、株式会社林原生物化学研究所販売)を用い、同様にHPLC分析に供した。
(HPLC分析条件)
 HPLC装置:『LC−10AD』(株式会社島津製作所製)
 デガッサー:『DGU−12AM』(株式会社島津製作所製)
 カラム:『Wakopak Wakobeads T−330』
     (和光純薬工業株式会社販売、H型)
 サンプル注入量:0.1%溶液5μl(UV検出器)又は
         1%溶液20μl(示差屈折計)
 溶離液:0.01%(v/v)硝酸水溶液
 流 速:0.5ml/分
 温 度:25℃
 検出器:多波長UV検出器『UV200−400』(株式会社島津製作所製)
     示差屈折計『RID−10A』(株式会社島津製作所製)
 データ処理装置:『クロマトパックC−R7A』(株式会社島津製作所製)
 実験1で得た結晶粉末は、上記HPLC分析において、UV検出器及び示差屈折計のいずれの検出方法においてもAA−2G標準品と同一の保持時間(Rt)に溶出ピークを示し、また、多波長UV検出器により調べた最大吸収波長(λmax)は248nmと、AA−2G標準品のそれと完全に一致した。実験1で得た結晶粉末のAA−2G純度を、示差屈折計を用いて得られたHPLCクロマトグラムのピーク面積に基づき算出したところ99.5質量%であった。
<実験2−3:新規AA−2G結晶粉末の粉末X線回折>
 実験1で得たAA−2G結晶粉末約50mgをシリコン製無反射板に乗せ、市販の反射光方式による粉末X線回折装置(商品名『X´ Pert Pro MPD』、スペクトリス株式会社製)を用い、Cu対陰極から放射される特性X線であるCuKα線(X線管電流:40mA、X線管電圧:45kV、波長:1.5405オングストローム)を照射して得られる回折プロファイルに基づく粉末X線回折図を得た。新規AA−2G結晶粉末の粉末X線回折図を図2に、また、対照として用いた試薬級AA−2G無水結晶含有粉末(商品名『アスコルビン酸2−グルコシド 999』、コード番号:AG124、純度99.9質量%以上、株式会社林原生物化学研究所販売)のそれを図3にそれぞれ示す。
 図2と図3との対比から明らかなように、実験1で得た新規AA−2G結晶粉末の粉末X線回折図は、従来のAA−2G無水結晶粉末のそれとは全く異なっていた。すなわち、新規AA−2G結晶粉末の粉末X線回折図は、少なくとも、回折角(2θ)6.1°(図2における符号「a」)、9.2°(図2における符号「b」)、10.6°(図2における符号「c」)、11.4°(図2における符号「d」)及び12.1°(図2における符号「e」)において、従来のAA−2G無水結晶粉末のそれに認められない特徴的な回折ピークを示した。
<実験2−4:新規AA−2G結晶粉末の結晶水含量>
 実験1で得たAA−2G結晶粉末3.5mgをアルミ製容器に入れ、示差熱・熱重量同時測定装置(商品名『TG/DTA6200』、エスアイアイ・ナノテクノロジー株式会社製)を用いて窒素ガスを300ml/分の流量で流しながら25℃で3分間保持した後、10℃/分の昇温速度で250℃まで昇温させることにより熱重量分析(TG分析)したところ、加熱に伴い110乃至145℃にかけて2.70質量%の重量減少が認められ、当該結晶粉末が2.70質量%の結晶水を含有していることが判明した。この結果から、実験1で得た新規AA−2G結晶粉末は従来未知の含水結晶であることが判明した。因みに、この結晶水含量の値は、当該結晶がAA−2G1/2含水結晶、すなわち、C121811・1/2HOであると仮定した場合の水分含量の理論値である2.66質量%と極めてよく一致した。
<実験2−5:新規AA−2G結晶粉末の元素分析>
 実験1で得たAA−2G結晶粉末5乃至10mgを秤取し、酸素循環燃焼・TCD検出方式 NCH定量装置(「スミグラフ NCH−22F型」、住化分析センター製)を用いて、反応温度850℃、還元温度600℃の条件下で炭素(C)及び水素(H)について定量したところ、C:41.53質量%、H:5.58質量%の値が得られた。この元素分析の結果は、当該結晶がAA−2G1/2含水結晶、すなわち、C121811・1/2HOであると仮定した場合の元素分析における理論値であるC:41.50質量%、H:5.51質量%と極めてよく一致した。実験2−4及び2−5の結果から、実験1で得たAA−2G結晶粉末は、1/2含水結晶であると推定された。以下、実験1で得たAA−2G結晶を「AA−2G含水結晶」と呼称する。
<実験2−6:AA−2G含水結晶粉末の示差走査熱量分析(DSC分析)>
 実験1で得たAA−2G含水結晶粉末3.5mgをアルミ製容器に入れ、示差走査熱量計(商品名『DSC Q20』、TAインスツルメンツ社製)を用いて窒素ガスを50ml/分の流量で流しながら25℃で5分間保持した後、10℃/分の昇温速度で250℃まで昇温させることにより、DSC分析における吸熱パターンを分析した。AA−2G含水結晶粉末の吸熱パターンを図4の符号Aに、試薬級のAA−2G無水結晶含有粉末(商品名『アスコルビン酸2−グルコシド 999』、コード番号:AG124、純度99.9質量%以上、株式会社林原生物化学研究所販売)のそれを図4の符号Bに示す。
 図4から明らかなように、AA−2G無水結晶含有粉末は176℃付近で融解にともなう単一の吸熱ピークを示したのに対し、実験1で得たAA−2G含水結晶粉末は、110乃至145℃の範囲に僅かな吸熱を示すとともに、157℃付近で融解にともなう吸熱ピークを示し、両者のDSC分析における吸熱パターンは全く相違していた。
<実験3:高純度AA−2G含有水溶液からのAA−2G含水結晶粉末の調製>
 実験1では未溶解のAA−2G無水結晶が共存する高純度AA−2Gの過飽和水溶液系から新規なAA−2G含水結晶が得られた。本実験では新規なAA−2G含水結晶の製造条件について、高純度のAA−2G含有水溶液を用いてさらに詳細な検討を行った。
 AA−2G無水結晶含有粉末(商品名『AA2G』、純度98質量%以上、株式会社林原生物化学研究所販売)200gを200mlの精製水に加え、加熱攪拌することにより完全に溶解した。この水溶液を20cm角、深さ5cmのトレーに移し、実験1の方法で得たAA−2G含水結晶粉末を2.0g添加し、攪拌・混合した後、蓋をしない開放系にて室温で3日間放置したところ、結晶が晶出しブロック状の塊となった。ブロックを乳鉢で粉砕した後、室温で真空乾燥したところ約200gの結晶粉末が得られた。本結晶粉末におけるAA−2G純度を実験2−2記載のHPLC法にて測定したところ99.2質量%であり、また、カールフィッシャー法により水分含量を測定したところ、2.8質量%であった。本結晶粉末を実験2−3記載の粉末X線回折法に供したところ、図2と同様のAA−2G含水結晶の粉末X線回折図が得られ、AA−2G無水結晶に由来する回折ピークは全く認められなかった。この結果は、AA−2G含水結晶を種晶として用いれば、高純度のAA−2G含有水溶液からAA−2G含水結晶粉末が収率よく得られることを物語っている。
<実験4:非晶質AA−2G粉末からのAA−2G含水結晶粉末の調製>
 実験3で得たAA−2G含水結晶を種晶として用い、非晶質AA−2G粉末のAA−2G含水結晶粉末への変換を試みた。
<実験4−1:非晶質AA−2G粉末の調製>
 市販のAA−2G無水結晶含有粉末(商品名『AA2G』、純度98質量%以上、株式会社林原生物化学研究所販売)200gを2,000mlの精製水に完全に溶解した後、3日間かけて凍結真空乾燥し、次いで、40℃以下で1晩真空乾燥することにより、約200gのAA−2G粉末を調製した。本粉末におけるAA−2G純度を実験2−2記載のHPLC法にて測定したところ98.7質量%であり、また、カールフィッシャー法により水分含量を測定したところ、1.5質量%であった。本粉末を実験2−3記載の粉末X線回折法に供したところ、粉末X線回折図において非晶質粉末に特有なハローがベースラインの膨らみとして認められたものの、AA−2G無水結晶及びAA−2G含水結晶に特有な回折ピークは一切認められなかった。この結果から、本粉末が非晶質AA−2G粉末であることが確認された。
<実験4−2:非晶質AA−2G粉末からのAA−2G含水結晶粉末の調製>
 実験4−1で得た非晶質AA−2G粉末と、実験3で得たAA−2G含水結晶粉末をそれぞれ、9:1、8:2、7:3、6:4又は5:5の質量比で混合し、乳鉢で均一に磨砕、混合し、各粉末を恒温恒湿機(「TEMP.&HUMID. CHAMBER PR−4K」、エスペック社製)に入れ、25℃、相対湿度90%の条件下で24時間放置した。その後、各粉末を恒温恒湿機から取り出し、実験2−3記載の粉末X線回折法に供し、それぞれの粉末X線回折図を得た。得られた粉末X線回折図をAA−2G含水結晶及びAA−2G無水結晶の粉末X線回折図(図2及び図3)とそれぞれ照合することにより、各粉末の結晶形態を判断した。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1に示すとおり、非晶質AA−2G粉末とAA−2G含水結晶粉末をそれぞれ、7:3、6:4及び5:5の質量比で混合した粉末は、25℃、相対湿度90%の条件下で24時間保持したところ、完全にAA−2G含水結晶の粉末X線回折図を示す粉末に変換されていた。一方、非晶質AA−2G粉末とAA−2G含水結晶粉末をそれぞれ、9:1及び8:2の質量比で混合し共存させた粉末は、AA−2G無水結晶とAA−2G含水結晶とが混在する粉末X線回折図を示し、AA−2G無水結晶とAA−2G含水結晶が共存する粉末に変換されていた。この結果は、非晶質AA−2G粉末にAA−2G含水結晶粉末を30質量%以上混合し、25℃、相対湿度90%で24時間以上保持することにより、非晶質AA−2G粉末からAA−2G含水結晶粉末を製造できることを示している。
<実験5:AA−2G含有溶液からの晶析>
 従来のAA−2G無水結晶含有粉末の製造方法に準じてAA−2G含有溶液を調製し、AA−2G含水結晶含有粉末の製造方法を検討した。
<実験5−1:AA−2G含有溶液の調製>
 馬鈴薯澱粉液化液の固形物7質量部に対しL−アスコルビン酸3質量部を加え、pHを5.5に、固形物濃度を30%(w/v)に調整し基質溶液とした。これに、ジオバチルス・ステアロサーモフィラス(Geobacillus stearothermophilus)由来CGTase粗酵素液(株式会社林原製)を澱粉固形物1g当り100単位加え、55℃で40時間反応させL−アスコルビン酸への糖転移を行い、AA−2G及び2−O−α−グリコシル−L−アスコルビン酸を生成させた。
 得られた反応液を加熱しCGTaseを失活させた後、pH4.5に調整し、これにグルコアミラーゼ剤(天野エンザイム株式会社販売、商品名『グルクザイムAF6』、6,000単位/g)を澱粉固形物1g当り50単位加え55℃で24時間処理し、2−O−α−グリコシル−L−アスコルビン酸をAA−2Gにまで、また、混在する糖質をグルコースにまで分解した。本反応液のAA−2G含量は固形物当たり30.4質量%であった。
 本反応液を加熱しグルコアミラーゼを失活させた後、活性炭で脱色濾過し、濾液をカチオン交換樹脂(H型)にて脱塩し、次いで、アニオン交換樹脂(OH型)にL−アスコルビン酸及びAA−2Gを吸着させ、水洗してグルコースの大部分を除いた。樹脂に吸着したAA−2G及びL−アスコルビン酸を0.5N塩酸溶液で溶出し、さらに、強酸性カチオン交換樹脂(商品名「ダウェックス50WX4」、Ca2+型、ダウケミカル社製造)を用いるゲル濾過カラムクロマトグラフィーに供することにより、AA−2G高含有画分を回収した。回収したAA−2G含有溶液の組成は、固形物当たりAA−2G92.0質量%、L−アスコルビン酸0.8質量%、グルコース6.5質量%、その他0.7質量%であった。
<実験5−2:分蜜法によるAA−2G含水結晶含有粉末の調製>
 実験5−1の方法で得たAA−2G含有溶液を減圧濃縮し、濃度約50%(w/v)の濃縮液とし、これを助晶缶にとり、実験3で得たAA−2G含水結晶粉末を種晶として濃縮液固形物当たり1質量%加えて40℃とし、穏やかに撹拌しつつ5日間かけて晶析し、AA−2G含水結晶を含むマスキットを得た。
 得られたマスキットを常法によりバスケット型遠心分離機にかけ、析出したAA−2G含水結晶を回収し、少量のエタノール水をスプレーして洗浄した後、熟成、粉砕、乾燥してAA−2G純度99.3質量%のAA−2G含水結晶含有粉末を得た。
<実験5−3:ブロック粉砕法によるAA−2G含水結晶含有粉末の調製>
 実験5−1の方法で得たAA−2G含有溶液を減圧濃縮し、濃度約60%(w/v)の濃縮液とし、プラスチックトレー(縦80cm、横30cm、高さ30cm)に移し、実験1で得たAA−2G含水結晶粉末を濃縮液固形物当たり2質量%添加し、攪拌・混合した後、蓋をしない状態で45℃にて4日間放置することにより結晶化させ、AA−2G含水結晶のブロックを調製した。ブロックをハンマーで粗砕きした後、ブレンダー(商品名「オスターブレンダー ST−2」、大阪ケミカル株式会社製)にて粉砕した後、室温で真空乾燥し、AA−2G含水結晶含有粉末を得た。なお、得られたAA−2G含水結晶含有粉末におけるAA−2G純度は91.8質量%であった。
<実験6:AA−2G含水結晶粉末の打錠性>
 本発明のAA−2G含水結晶粉末の打錠性を以下の方法で調べ、従来のAA−2G無水結晶含有粉末と比較した。
 実験3の方法で得たAA−2G含水結晶粉末(AA−2G純度99.2質量%)を篩にかけ、粒度53乃至106μmの粉末を回収した。得られた粉末を打錠用金型(直径11mm、厚み30mm)に0.4g入れ、卓上型プレス機(島津製作所製、SSP−10A型)にて1トンの荷重を30秒間かけることにより打錠した後、荷重を開放し錠剤を取り出した。この操作を10回繰り返し計10個の錠剤を作製した。対照として、市販のAA−2G無水結晶含有粉末(登録商標『AA2G』、純度98%以上、株式会社林原生物化学研究所販売)を用い、上記と同様に粒度53乃至106μmの粉末を調製し、上記と同じ方法により10個の錠剤を作製した。各10個の錠剤についてその形状(割れ、又は、欠けの有無)を観察し、錠剤10個中1個以上に割れや欠けが認められた場合を「打錠性 不合格」(×)、錠剤10個中割れや欠けが全く認められない場合を「打錠性 合格」(○)と判定した。結果を表2に示した。
Figure JPOXMLDOC01-appb-T000002
 表2に示すように、対照のAA−2G無水結晶含有粉末では錠剤10個のうち9個に割れや欠けが認められ、打錠性が劣っていた。錠剤調製時に荷重を開放した段階でプレス機のシリンダー(杵)への粉末の付着が屡々認められ欠けの原因となり、また、錠剤をプレス機の金型から取り出した段階で割れが生じた。一方、本発明のAA−2G含水結晶粉末では、錠剤10個全てにおいて割れや欠けは認められず、打錠性に優れることが判明した。AA−2G含水結晶粉末で調製した錠剤についてレオメーター(商品名『レオメーター CR−500DX』、サン科学社製)を用いて硬度を測定したところ約90Nであった。この結果は、本発明のAA−2G含水結晶粉末がAA−2G無水結晶含有粉末よりも打錠性、すなわち賦形性に優れ、硬度の高い錠剤を調製するための基材として有用であることを示している。
<実験7:AA−2G含水結晶粉末の保油力>
 実験3−2の方法で得たAA−2G含水結晶粉末を用いて結晶粉末の保油力を測定した。対照として、市販のAA−2G無水結晶含有粉末(商品名『AA2G』、純度98質量%以上、株式会社林原生物化学研究所販売)を用いた。
 結晶粉末の保油力の測定は、特開昭59−31650号公報に開示されている方法に準じて以下のように行った。すなわち、コーン油(試薬、ロット番号 WKL1215、和光純薬工業株式会社販売)5gを50ml容のプラスチック容器に採取し、攪拌しながら実験6と同様に粒度53乃至106μmに調整したAA−2G含水結晶粉末又はAA−2G無水結晶含有粉末を添加してゆく。この混合物は結晶粉末の添加量の少ない内は流動性を保持しているものの、その量が増すにつれて粘稠度が増し、やがて一つの塊となる。さらにその添加量を増すと、固さが増し、やがて一つにまとまらなくなりほぐれはじめる。この点を終点として、終点までに添加した結晶粉末の量に基づき次式により保油力を求めた。結果を表3に示した。
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-T000004
 表3の結果から明らかなように、対照のAA−2G無水結晶含有粉末の保油力が25.2であったのに対し、AA−2G含水結晶粉末の保油力は38.3であり、約1.5倍高かった。この結果は、AA−2G含水結晶粉末はAA−2G無水結晶含有粉末よりも親油性が高く、本発明のAA−2G含水結晶粉末の方が油性物質の粉末化基材として、より有用であることを示している。
 以下、実施例により本発明をより詳細に説明する。しかしながら、本発明はこれら実施例によって何ら限定されるものではない。
<AA−2G含水結晶含有粉末>
 市販のAA−2G無水結晶含有粉末(商品名『AA2G』、純度98質量%以上、株式会社林原生物化学研究所販売)10kgを10リットルの精製水に加え、攪拌することにより完全に溶解した。この水溶液に実験3の方法で得たAA−2G含水結晶粉末を100g添加し、攪拌・混合した後、縦30cm、横60cm、高さ40cmのプラスチック容器3個に分注し、蓋をしない開放系にて50℃で3日間放置することにより晶析し、さらに室温で1日間熟成させた。得られたブロック状の結晶塊を、常法により粉砕した後、30℃で乾燥し、約9.7kgのAA−2G含水結晶含有粉末を製造した。本粉末におけるAA−2G純度を実験2−2記載のHPLC法にて測定したところ98.4質量%であり、また、カールフィッシャー法により水分含量を測定したところ、3.0質量%であった。
 本品は、流動性が良好であり、酸味剤、呈味改良剤、賦形剤、油性物質の粉末化基材などとして、広く飲食物、化粧品、医薬部外品、医薬品など各種組成物に有利に利用できる。
<AA−2G含水結晶含有粉末>
 タピオカ澱粉7質量部を水25質量部に加え、市販の液化酵素を加え加熱溶解した後、L−アスコルビン酸3質量部を加え、pHを5.5に調整し基質溶液とした。これに、ジオバチルス・ステアロサーモフィルス由来CGTaseの粗酵素液(株式会社林原製)を、タピオカ澱粉固形物1g当り100単位加えて55℃で50時間反応させ、AA−2G及び2−O−α−グリコシル−L−アスコルビン酸を生成させた。
 この反応液を加熱し酵素を失活させた後、pHを4.5に調整し、これにグルコアミラーゼ剤(ナガセケムテックス株式会社販売、商品名『グルコチーム#20000』、20,000単位/g)を澱粉固形物1g当り50単位加え、55℃で24時間反応させ、2−O−α−グリコシル−L−アスコルビン酸をAA−2Gにまで、また、混在する糖質をグルコースにまで分解した。本反応液におけるAA−2G含量は無水物換算で約30.5質量%であった。
 本反応液を加熱し酵素を失活させた後、活性炭で脱色濾過し、濾液をカチオン交換樹脂(H型)にて脱塩し、次いで、アニオン交換樹脂(OH型)にL−アスコルビン酸及びAA−2Gを吸着させ、水洗して大部分のグルコースを除いた後、0.5N塩酸溶液で溶出し、さらに、強酸性カチオン交換樹脂(商品名「ダウェックス50WX4」、Ca2+型、ダウケミカル社製造)を用いるゲル濾過カラムクロマトグラフィーに供し、AA−2G高含有画分を回収した。回収したAA−2G含有溶液の組成は、無水物換算でAA−2G89.3質量%、L−アスコルビン酸1.2質量%、グルコース7.8質量%、その他1.7質量%であった。
 このAA−2G含有溶液を減圧濃縮することにより固形物濃度約60%とし、これを助晶缶にとり、固形物質量に対して実験3の方法で得たAA−2G含水結晶粉末を種晶として2%加えて40℃とし、穏やかに撹拌して5日間晶析し、AA−2G含水結晶が析出したマスキットを得た。このマスキットを常法によりバスケット型遠心分離機にかけて結晶を回収し、少量の精製水をスプレーすることにより結晶を洗浄した後、粉砕、乾燥し、AA−2G含水結晶含有粉末を得た。本品のAA−2G純度は無水物換算で98.5質量%であった。
 本品は、流動性が良好であり、酸味剤、呈味改良剤、賦形剤、油性物質の粉末化基材などとして、広く飲食物、化粧品、医薬品など各種組成物に有利に利用できる。
<AA−2G含水結晶含有粉末>
 タピオカ澱粉をトウモロコシ澱粉に換えた以外は実施例2と同じ方法で反応、精製を行い、AA−2G高含有画分を回収した。回収したAA−2G含有溶液の組成は、固形物当たりAA−2G85.4質量%、L−アスコルビン酸3.8質量%、グルコース8.7質量%、その他2.1質量%であった。
 このAA−2G含有溶液を減圧濃縮することにより固形物濃度約76%とし、これを助晶缶にとり、固形物質量に対して実施例1の方法で得たAA−2G含水結晶粉末を種晶として2%加えて40℃とし、攪拌・混合した後、縦30cm、横40cm、高さ30cmのプラスチック容器に分注し、蓋をしない開放系にて50℃で3日間放置することにより晶析し、さらに室温で1日間熟成させた。得られたブロック状の結晶塊を、ハンマーで粗砕きした後、常法により粉砕した後、30℃で乾燥し、AA−2G含水結晶含有粉末を製造した。本品は、無水物換算でAA−2Gを85.2質量%、L−アスコルビン酸を3.9質量%、グルコースを8.8質量%含有していた。
 本品は、流動性が良好であり、酸味剤、呈味改良剤、賦形剤、油性物質の粉末化基材などとして、広く飲食物、化粧品、医薬品など各種組成物に有利に利用できる。
<錠剤>
 実施例1の方法で得たAA−2G含水結晶含有粉末100質量部、パントテン酸カルシウム1.3質量部、及び、リボフラビン0.2質量部を均一に混合した粉末を常法により打錠機にかけて1錠0.5gの錠剤を製造した。本品は、市販のビタミンC錠と同様に、肉体疲労時、体力低下時などのビタミンC補給用錠剤として有利に利用できる。
<ビタミンE含有粉末>
 油状の天然由来トコフェロール(商品名『γ70』、株式会社J−オイルミルズ販売)1質量部に対し、実施例1の方法で得たAA−2G含水結晶含有粉末5質量部を加え、万能混合機で混合した後、一晩放置し、粉砕してビタミンE(トコフェロール)含有粉末を調製した。本品は、ビタミンEと安定型ビタミンCからなるサプリメントとして好適に利用できる。
<乳液>
 アボガド油1質量部、テトラオレイン酸ポリオキシエチレンソルビトール1質量部、親油性モノステアリン酸グリセリン1質量部、実施例1の方法で得たAA−2G含水結晶含有粉末1質量部、ポリオキシエチレンベヘニルエーテル0.5質量部、ピルビン酸0.5質量部、ベヘニルアルコール0.5質量部、ビタミンE及び防腐剤の適量を、常法に従って加熱溶解し、これに1,3−ブチレングリコール5質量部、L−乳酸ナトリウム1質量部、カルボキシビニルポリマー0.1質量部、及び、精製水85.3質量部を加えホモジナイザーにて均一に攪拌、乳化した。さらに香料を適量加えて再度攪拌混合し乳液を製造した。本品は、美肌剤、美白剤、日焼け止めなどとして有利に利用できる。
 本発明のAA−2G含水結晶は、これまで知られていなかったAA−2Gの新たな結晶形態である。本発明のAA−2G含水結晶含有粉末は、流動性に優れ、賦形剤として使用すれば、従来のAA−2G無水結晶含有粉末では製造できなかった硬度の高い錠剤が得られるという利点を有している。また、本発明のAA−2G含水結晶含有粉末は、従来のAA−2G無水結晶含有粉末と比べて親油性が高く、油状物質の粉末化基材として有用である。本発明は、従来未知のAA−2G含水結晶の発見という学術的意義のみならず、食品、化粧品、医薬部外品、医薬品の各分野に貢献すること誠に多大な意義ある発明である。

Claims (11)

  1.  2−O−α−D−グルコシル−L−アスコルビン酸含水結晶。
  2.  X線源としてCuKα線を用いて得られる粉末X線回折図において、少なくとも、回折角(2θ)6.1°、9.2°、10.6°、11.4°及び12.1°に回折ピークを示す請求の範囲第1項記載の2−O−α−D−グルコシル−L−アスコルビン酸含水結晶。
  3.  約2.7質量%の結晶水を含む請求の範囲第1項又は第2項記載の2−O−α−D−グルコシル−L−アスコルビン酸含水結晶。
  4.  示差走査熱量分析において、156℃付近に吸熱ピークを示す請求の範囲第1項乃至第3項のいずれかに記載の2−O−α−D−グルコシル−L−アスコルビン酸含水結晶。
  5.  請求の範囲第1項乃至第4項のいずれかに記載の2−O−α−D−グルコシル−L−アスコルビン酸含水結晶を含んでなり、2−O−α−D−グルコシル−L−アスコルビン酸純度が無水物換算で85質量%以上である2−O−α−D−グルコシル−L−アスコルビン酸含水結晶含有粉末。
  6.  2−O−α−D−グルコシル−L−アスコルビン酸無水結晶が共存する過飽和の2−O−α−D−グルコシル−L−アスコルビン酸含有水溶液から水を蒸発させることにより請求の範囲第1項乃至第4項のいずれかに記載の2−O−α−D−グルコシル−L−アスコルビン酸含水結晶を晶出させ、これを採取することを特徴とする2−O−α−D−グルコシル−L−アスコルビン酸含水結晶の製造方法。
  7.  2−O−α−D−グルコシル−L−アスコルビン酸含有水溶液に、請求の範囲第1項乃至第4項のいずれかに記載の2−O−α−D−グルコシル−L−アスコルビン酸含水結晶を種晶として添加することにより、2−O−α−D−グルコシル−L−アスコルビン酸含水結晶を晶出させ、これを採取することを特徴とする2−O−α−D−グルコシル−L−アスコルビン酸含水結晶の製造方法。
  8.  非晶質の2−O−α−D−グルコシル−L−アスコルビン酸粉末に対し、種晶として請求の範囲第1項乃至第4項のいずれかに記載の2−O−α−D−グルコシル−L−アスコルビン酸含水結晶を共存させ、温度25℃、相対湿度90%に保持することにより2−O−α−D−グルコシル−L−アスコルビン酸含水結晶を晶出させ、これを採取することを特徴とする2−O−α−D−グルコシル−L−アスコルビン酸含水結晶の製造方法。
  9.  請求の範囲第1項乃至第4項のいずれかに記載の2−O−α−D−グルコシル−L−アスコルビン酸含水結晶又は請求の範囲第5項記載の2−O−α−D−グルコシル−L−アスコルビン酸含水結晶含有粉末からなる賦形剤。
  10.  請求の範囲第1項乃至第4項のいずれかに記載の2−O−α−D−グルコシル−L−アスコルビン酸含水結晶又は請求の範囲第5項記載の2−O−α−D−グルコシル−L−アスコルビン酸含水結晶含有粉末からなる油性物質の粉末化基材。
  11.  請求の範囲第1項乃至第4項のいずれかに記載の2−O−α−D−グルコシル−L−アスコルビン酸含水結晶又は請求の範囲第5項記載の2−O−α−D−グルコシル−L−アスコルビン酸含水結晶含有粉末を配合することを特徴とする食品、化粧品、医薬部外品又は医薬品の製造方法。
PCT/JP2011/070681 2010-09-07 2011-09-06 2−O−α−D−グルコシル−L−アスコルビン酸含水結晶及び2−O−α−D−グルコシル−L−アスコルビン酸含水結晶含有粉末とそれらの製造方法並びに用途 WO2012033218A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP11823686.8A EP2615099B1 (en) 2010-09-07 2011-09-06 Hydrous crystals of 2-o-d-glucosyl-l-ascorbic acid, particulate composition comprising the same, their preparation and uses
US13/821,498 US9206215B2 (en) 2010-09-07 2011-09-06 Hydrous crystalline 2-O-α-D-glucosyl-L-ascorbic acid, particulate composition comprising the same, their preparation and uses
JP2012533051A JP5856963B2 (ja) 2010-09-07 2011-09-06 2−O−α−D−グルコシル−L−アスコルビン酸含水結晶及び2−O−α−D−グルコシル−L−アスコルビン酸含水結晶含有粉末とそれらの製造方法並びに用途

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010199898 2010-09-07
JP2010-199898 2010-09-07

Publications (1)

Publication Number Publication Date
WO2012033218A1 true WO2012033218A1 (ja) 2012-03-15

Family

ID=45810806

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/070681 WO2012033218A1 (ja) 2010-09-07 2011-09-06 2−O−α−D−グルコシル−L−アスコルビン酸含水結晶及び2−O−α−D−グルコシル−L−アスコルビン酸含水結晶含有粉末とそれらの製造方法並びに用途

Country Status (4)

Country Link
US (1) US9206215B2 (ja)
EP (1) EP2615099B1 (ja)
JP (1) JP5856963B2 (ja)
WO (1) WO2012033218A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013151556A (ja) * 2011-03-07 2013-08-08 Hayashibara Co Ltd 2−O−α−D−グルコシル−L−アスコルビン酸無水結晶含有粉末の製造方法
KR20150103138A (ko) * 2012-12-27 2015-09-09 가부시기가이샤하야시바라 안티에이징용 피부 외용 조성물 및 그 제조방법
WO2015152145A1 (ja) * 2014-03-31 2015-10-08 東洋精糖株式会社 2-O-α-D-グルコシル-L-アスコルビン酸結晶粉末の製造方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110172180A1 (en) 2010-01-13 2011-07-14 Allergan Industrie. Sas Heat stable hyaluronic acid compositions for dermatological use
CN111534498B (zh) * 2020-05-28 2022-03-25 江南大学 歧化比活和aa-2g产量提高的环糊精葡萄糖基转移酶突变体
CN117106838A (zh) * 2023-08-24 2023-11-24 安徽天寅生物技术有限公司 一种l-抗坏血酸葡萄糖苷的制备工艺

Citations (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5931650A (ja) 1982-08-13 1984-02-20 Fuji Oil Co Ltd 低甘味チヨコレ−トの製造法
JPH03135992A (ja) 1989-10-21 1991-06-10 Hayashibara Biochem Lab Inc 結晶2―O―α―D―グルコピラノシル―L―アスコルビン酸とその製造方法並びに用途
JPH03139288A (ja) 1989-05-19 1991-06-13 Hayashibara Biochem Lab Inc α―グリコシル―L―アスコルビン酸とその製造方法並びに用途
JPH0446112A (ja) 1990-06-11 1992-02-17 Hayashibara Biochem Lab Inc 養毛剤
JPH04182413A (ja) 1990-11-19 1992-06-30 Hayashibara Biochem Lab Inc 皮膚外用剤
JPH04182415A (ja) 1990-11-19 1992-06-30 Kaminomoto Honpo:Kk 発毛・養毛促進剤
JPH04182419A (ja) 1990-11-19 1992-06-30 Hayashibara Biochem Lab Inc 口腔用組成物
JPH04182412A (ja) 1990-11-19 1992-06-30 Hayashibara Biochem Lab Inc 皮膚外用剤
JPH04182414A (ja) 1990-11-19 1992-06-30 Hayashibara Biochem Lab Inc 頭髪化粧料
JPH05117290A (ja) 1991-10-23 1993-05-14 Hayashibara Biochem Lab Inc 2−O−α−D−グルコピラノシル−L−アスコルビン酸高含有物の製造方法
JPH05208991A (ja) 1992-01-30 1993-08-20 Hayashibara Biochem Lab Inc α−グリコシル−L−アスコルビン酸高含有物の製造方法とその製造のための分離システム
JPH08333260A (ja) 1995-06-06 1996-12-17 Kaminomoto Honpo:Kk 皮膚外用剤
WO2001090338A1 (en) 2000-05-22 2001-11-29 Kabushiki Kaisha Hayashibara Seibutsu Kagaku Kenkyujo α-ISOMALTOSYLTRANSFERASE, PROCESS FOR PRODUCING THE SAME AND USE THEREOF
WO2002010361A1 (fr) 2000-08-01 2002-02-07 Kabushiki Kaisha Hayashibara Seibutsu Kagaku Kenkyujo Synthase d'$g(a)-isomaltosylglucosaccharide, procede de preparation et utilisation associes
JP2002088095A (ja) 2000-06-08 2002-03-27 Hayashibara Biochem Lab Inc 2−O−α−D−グルコピラノシル−L−アスコルビン酸高含有物の製造方法
JP2002326924A (ja) 2001-05-07 2002-11-15 Hayashibara Biochem Lab Inc 洗顔料
JP2003171290A (ja) 2001-09-27 2003-06-17 Hayashibara Biochem Lab Inc コラーゲン産生増強剤の製造方法とその用途
JP2004065098A (ja) 2002-08-06 2004-03-04 Hayashibara Biochem Lab Inc 2−O−α−D−グルコピラノシル−L−アスコルビン酸の製造方法
JP2004217597A (ja) 2003-01-17 2004-08-05 Hayashibara Biochem Lab Inc コラーゲン生成促進剤
WO2005034938A1 (ja) 2003-10-07 2005-04-21 Kabushiki Kaisha Hayashibara Seibutsu Kagaku Kenkyujo コラーゲン産生増強剤とその製造方法並びに用途
JP2005239653A (ja) 2004-02-27 2005-09-08 Nippon Zettoc Co Ltd 口腔用組成物
WO2005087182A1 (ja) 2004-03-17 2005-09-22 Kabushiki Kaisha Hayashibara Seibutsu Kagaku Kenkyujo 機能性粉体
WO2006022174A1 (ja) 2004-08-24 2006-03-02 Kabushiki Kaisha Hayashibara Seibutsu Kagaku Kenkyujo アスコルビン酸2-グルコシドを有効成分とする褐変抑制剤とこれを利用する褐変抑制方法
WO2006033412A1 (ja) 2004-09-24 2006-03-30 Kabushiki Kaisha Hayashibara Seibutsu Kagaku Kenkyujo 放射線障害軽減剤
JP2006225327A (ja) 2005-02-18 2006-08-31 Nof Corp L−アスコルビン酸グルコシド含有リポソーム液
WO2006132310A1 (ja) 2005-06-08 2006-12-14 Cellex K.K. 組織癒着防止液及び組織癒着防止方法
WO2006137129A1 (ja) 2005-06-21 2006-12-28 Kabushiki Kaisha Hayashibara Seibutsu Kagaku Kenkyujo 皮膚外用剤
JP2007063177A (ja) 2005-08-31 2007-03-15 Hayashibara Biochem Lab Inc 美肌用の経口摂取用組成物
WO2007086327A1 (ja) 2006-01-24 2007-08-02 Kabushiki Kaisha Hayashibara Seibutsu Kagaku Kenkyujo 毛乳頭細胞増殖促進剤

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011027790A1 (ja) * 2009-09-03 2011-03-10 株式会社林原生物化学研究所 2-O-α-D-グルコシル-L-アスコルビン酸無水結晶含有粉末とその製造方法並びに用途

Patent Citations (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5931650A (ja) 1982-08-13 1984-02-20 Fuji Oil Co Ltd 低甘味チヨコレ−トの製造法
JPH03139288A (ja) 1989-05-19 1991-06-13 Hayashibara Biochem Lab Inc α―グリコシル―L―アスコルビン酸とその製造方法並びに用途
JPH03135992A (ja) 1989-10-21 1991-06-10 Hayashibara Biochem Lab Inc 結晶2―O―α―D―グルコピラノシル―L―アスコルビン酸とその製造方法並びに用途
JPH03183492A (ja) 1989-10-21 1991-08-09 Hayashibara Biochem Lab Inc 2―O―α―D―グルコピラノシル―L―アスコルビン酸高含有物の製造方法
JPH0446112A (ja) 1990-06-11 1992-02-17 Hayashibara Biochem Lab Inc 養毛剤
JPH04182415A (ja) 1990-11-19 1992-06-30 Kaminomoto Honpo:Kk 発毛・養毛促進剤
JPH04182419A (ja) 1990-11-19 1992-06-30 Hayashibara Biochem Lab Inc 口腔用組成物
JPH04182412A (ja) 1990-11-19 1992-06-30 Hayashibara Biochem Lab Inc 皮膚外用剤
JPH04182414A (ja) 1990-11-19 1992-06-30 Hayashibara Biochem Lab Inc 頭髪化粧料
JPH04182413A (ja) 1990-11-19 1992-06-30 Hayashibara Biochem Lab Inc 皮膚外用剤
JPH05117290A (ja) 1991-10-23 1993-05-14 Hayashibara Biochem Lab Inc 2−O−α−D−グルコピラノシル−L−アスコルビン酸高含有物の製造方法
JPH05208991A (ja) 1992-01-30 1993-08-20 Hayashibara Biochem Lab Inc α−グリコシル−L−アスコルビン酸高含有物の製造方法とその製造のための分離システム
JPH08333260A (ja) 1995-06-06 1996-12-17 Kaminomoto Honpo:Kk 皮膚外用剤
WO2001090338A1 (en) 2000-05-22 2001-11-29 Kabushiki Kaisha Hayashibara Seibutsu Kagaku Kenkyujo α-ISOMALTOSYLTRANSFERASE, PROCESS FOR PRODUCING THE SAME AND USE THEREOF
JP2002088095A (ja) 2000-06-08 2002-03-27 Hayashibara Biochem Lab Inc 2−O−α−D−グルコピラノシル−L−アスコルビン酸高含有物の製造方法
WO2002010361A1 (fr) 2000-08-01 2002-02-07 Kabushiki Kaisha Hayashibara Seibutsu Kagaku Kenkyujo Synthase d'$g(a)-isomaltosylglucosaccharide, procede de preparation et utilisation associes
JP2002326924A (ja) 2001-05-07 2002-11-15 Hayashibara Biochem Lab Inc 洗顔料
JP2003171290A (ja) 2001-09-27 2003-06-17 Hayashibara Biochem Lab Inc コラーゲン産生増強剤の製造方法とその用途
JP2004065098A (ja) 2002-08-06 2004-03-04 Hayashibara Biochem Lab Inc 2−O−α−D−グルコピラノシル−L−アスコルビン酸の製造方法
JP2004217597A (ja) 2003-01-17 2004-08-05 Hayashibara Biochem Lab Inc コラーゲン生成促進剤
WO2005034938A1 (ja) 2003-10-07 2005-04-21 Kabushiki Kaisha Hayashibara Seibutsu Kagaku Kenkyujo コラーゲン産生増強剤とその製造方法並びに用途
JP2005239653A (ja) 2004-02-27 2005-09-08 Nippon Zettoc Co Ltd 口腔用組成物
WO2005087182A1 (ja) 2004-03-17 2005-09-22 Kabushiki Kaisha Hayashibara Seibutsu Kagaku Kenkyujo 機能性粉体
WO2006022174A1 (ja) 2004-08-24 2006-03-02 Kabushiki Kaisha Hayashibara Seibutsu Kagaku Kenkyujo アスコルビン酸2-グルコシドを有効成分とする褐変抑制剤とこれを利用する褐変抑制方法
WO2006033412A1 (ja) 2004-09-24 2006-03-30 Kabushiki Kaisha Hayashibara Seibutsu Kagaku Kenkyujo 放射線障害軽減剤
JP2006225327A (ja) 2005-02-18 2006-08-31 Nof Corp L−アスコルビン酸グルコシド含有リポソーム液
WO2006132310A1 (ja) 2005-06-08 2006-12-14 Cellex K.K. 組織癒着防止液及び組織癒着防止方法
WO2006137129A1 (ja) 2005-06-21 2006-12-28 Kabushiki Kaisha Hayashibara Seibutsu Kagaku Kenkyujo 皮膚外用剤
JP2007063177A (ja) 2005-08-31 2007-03-15 Hayashibara Biochem Lab Inc 美肌用の経口摂取用組成物
WO2007086327A1 (ja) 2006-01-24 2007-08-02 Kabushiki Kaisha Hayashibara Seibutsu Kagaku Kenkyujo 毛乳頭細胞増殖促進剤

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
"AA2G", HAYASHIBARA BIOCHEMICAL LABORATORIES, INC.
"ASCOFRESH", HAYASHIBARA SHOJI, CO.
See also references of EP2615099A4
TAKAHIKO MANDAI ET AL., CARBOHYDRATE RESEARCH, vol. 232, 1992, pages 197 - 205

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013151556A (ja) * 2011-03-07 2013-08-08 Hayashibara Co Ltd 2−O−α−D−グルコシル−L−アスコルビン酸無水結晶含有粉末の製造方法
JP2013151555A (ja) * 2011-03-07 2013-08-08 Hayashibara Co Ltd 2−O−α−D−グルコシル−L−アスコルビン酸無水結晶含有粉末の製造方法
JP2014139236A (ja) * 2011-03-07 2014-07-31 Hayashibara Co Ltd 2−O−α−D−グルコシル−L−アスコルビン酸無水結晶含有粉末の製造方法
KR20150103138A (ko) * 2012-12-27 2015-09-09 가부시기가이샤하야시바라 안티에이징용 피부 외용 조성물 및 그 제조방법
EP2939657A4 (en) * 2012-12-27 2016-08-03 Hayashibara Co AGING-INHIBITORY COMPOSITION FOR APPLYING TO THE SKIN AND MANUFACTURING METHOD THEREFOR
US10111822B2 (en) 2012-12-27 2018-10-30 Hayashibara Co., Ltd. External dermal composition for anti-ageing and method for producing the same
EP3398585A1 (en) 2012-12-27 2018-11-07 Hayashibara Co., Ltd. External dermal composition for anti-ageing and method for producing the same
KR102193902B1 (ko) 2012-12-27 2020-12-22 가부시기가이샤하야시바라 안티에이징용 피부 외용 조성물 및 그 제조방법
WO2015152145A1 (ja) * 2014-03-31 2015-10-08 東洋精糖株式会社 2-O-α-D-グルコシル-L-アスコルビン酸結晶粉末の製造方法

Also Published As

Publication number Publication date
US9206215B2 (en) 2015-12-08
JPWO2012033218A1 (ja) 2014-01-20
EP2615099A4 (en) 2014-02-26
EP2615099A1 (en) 2013-07-17
EP2615099B1 (en) 2015-04-29
JP5856963B2 (ja) 2016-02-10
US20130172542A1 (en) 2013-07-04

Similar Documents

Publication Publication Date Title
JP5856963B2 (ja) 2−O−α−D−グルコシル−L−アスコルビン酸含水結晶及び2−O−α−D−グルコシル−L−アスコルビン酸含水結晶含有粉末とそれらの製造方法並びに用途
JP5240362B2 (ja) ピロロキノリンキノンのナトリウム塩結晶
JP6283429B2 (ja) α−グルコシルヘスペリジンの結晶とその用途
TW201119649A (en) Particulate composition containing anhydrous crystalline 2-O-α-D-glucosyl-L-ascorbic acid, process for producing the same, and uses thereof
TW212183B (ja)
KR20240028405A (ko) 2,3-부탄디올을 유효성분으로 포함하는 조성물
JP2012017322A (ja) ヘスペリジン組成物の製造方法
KR20180101497A (ko) α,α-트레할로오스 이수화물 결정 함유 분말과 그 제조방법 및 용도
AU2003296185B2 (en) Composition containing high concentration of isoflavone and having high solubility and process for producing the same
WO2020170840A1 (ja) 2-O-α-D-グルコシル-L-アスコルビン酸のカリウム塩結晶とその製造方法
KR20100054379A (ko) 루틴 포접체, 제조방법 및 이를 포함하는 노화방지용 화장료 조성물
JPH07179489A (ja) 新規ポリフェノール配糖体
JP2011219388A (ja) 吸湿性の低いピロロキノリンキノン固体
JP7272882B2 (ja) フロレチン-4-α-グルコシドの結晶
JP2016117656A (ja) 抗ウイルス作用を呈するエラグ酸誘導体及びその製造方法
JP5399467B2 (ja) 皮膚上皮細胞増殖促進作用を呈する組成物
JP2009215231A (ja) 結晶1,5−d−アンヒドログルシトールの製造法
JP6612081B2 (ja) α−グルコシルルチン含有プテリジン誘導体ナノ粒子の製造方法およびα−グルコシルルチン含有プテリジン誘導体ナノ粒子
JP6141266B2 (ja) 5´−O−α−D−グルコピラノシルアデノシン塩酸塩の結晶とその用途
TW201808980A (zh) 2-O-α-D-糖基-L-抗壞血酸金屬鹽、其作為抗氧化劑之用途及該金屬鹽之粉末之製造方法
JP6945288B2 (ja) シノリン含水結晶並びにその組成物、製法及び用途
Sarri Study of dynamic and structural properties of complex fluids for green applications: effects of ambient conditions and nature of solutes Studio delle proprietà dinamiche e strutturali di fluidi complessi per applicazioni ecologiche: effetto delle condizioni ambientali e della natura dei soluti
JP2020050598A (ja) 水性組成物
KR20230064363A (ko) 에피갈로카테킨갈레이트 다이글루코시드 및 그 제조 방법
JP2005281203A (ja) 皮膚外用剤、ならびにグラブリジン配糖体及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11823686

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012533051

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13821498

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2011823686

Country of ref document: EP