WO2012026339A1 - 担子菌由来の氷結晶化阻害剤 - Google Patents

担子菌由来の氷結晶化阻害剤 Download PDF

Info

Publication number
WO2012026339A1
WO2012026339A1 PCT/JP2011/068364 JP2011068364W WO2012026339A1 WO 2012026339 A1 WO2012026339 A1 WO 2012026339A1 JP 2011068364 W JP2011068364 W JP 2011068364W WO 2012026339 A1 WO2012026339 A1 WO 2012026339A1
Authority
WO
WIPO (PCT)
Prior art keywords
ice crystallization
crystallization inhibitor
ice
inhibitor according
species
Prior art date
Application number
PCT/JP2011/068364
Other languages
English (en)
French (fr)
Inventor
秀久 河原
芳栄 小出
荒井 直樹
友野 潤
Original Assignee
株式会社カネカ
学校法人 関西大学
有限会社 一栄
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社カネカ, 学校法人 関西大学, 有限会社 一栄 filed Critical 株式会社カネカ
Priority to CN201180040976.6A priority Critical patent/CN103068256B/zh
Priority to US13/818,637 priority patent/US8734672B2/en
Priority to EP11819803.5A priority patent/EP2609811A4/en
Priority to JP2012530622A priority patent/JP5881118B2/ja
Publication of WO2012026339A1 publication Critical patent/WO2012026339A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/20Antifreeze additives therefor, e.g. for radiator liquids
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N1/00Preservation of bodies of humans or animals, or parts thereof
    • A01N1/02Preservation of living parts
    • A01N1/0205Chemical aspects
    • A01N1/021Preservation or perfusion media, liquids, solids or gases used in the preservation of cells, tissue, organs or bodily fluids
    • A01N1/0221Freeze-process protecting agents, i.e. substances protecting cells from effects of the physical process, e.g. cryoprotectants, osmolarity regulators like oncotic agents
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L15/00Egg products; Preparation or treatment thereof
    • A23L15/20Addition of proteins, e.g. hydrolysates, fats, carbohydrates, natural plant hydrocolloids; Addition of animal or vegetable substances containing proteins, fats, or carbohydrates
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L15/00Egg products; Preparation or treatment thereof
    • A23L15/30Addition of substances other than those covered by A23L15/20 – A23L15/25
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L17/00Food-from-the-sea products; Fish products; Fish meal; Fish-egg substitutes; Preparation or treatment thereof
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L3/00Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs
    • A23L3/34Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs by treatment with chemicals
    • A23L3/3454Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs by treatment with chemicals in the form of liquids or solids
    • A23L3/3463Organic compounds; Microorganisms; Enzymes
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L3/00Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs
    • A23L3/34Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs by treatment with chemicals
    • A23L3/3454Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs by treatment with chemicals in the form of liquids or solids
    • A23L3/3463Organic compounds; Microorganisms; Enzymes
    • A23L3/3472Compounds of undetermined constitution obtained from animals or plants
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L31/00Edible extracts or preparations of fungi; Preparation or treatment thereof
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L5/00Preparation or treatment of foods or foodstuffs, in general; Food or foodstuffs obtained thereby; Materials therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/72Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
    • A61K8/73Polysaccharides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q19/00Preparations for care of the skin
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/415Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from plants
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/44Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material not provided for elsewhere, e.g. haptens, metals, DNA, RNA, amino acids

Definitions

  • the present invention relates to a basidiomycete-derived ice crystallization inhibitor, an antibody that specifically reacts with the ice crystallization inhibitor, a composition containing the ice crystallization inhibitor, a food, a biological sample protective agent, and a cosmetic. is there.
  • AFP ice crystallization inhibitory proteins
  • AFPs derived from fish, insects, and microorganisms that have been found so far include those derived from sika deer fishes, those derived from insects such as larvae of beetle, and microorganisms such as Flavobacterium genus These have high ice crystallization inhibitory activity (Patent Documents 1 to 3).
  • plant-derived AFP for example, those derived from winter rye and carrot are known (Non-Patent Documents 1 and 2).
  • AFP derived from fungi those derived from basidiomycetes such as Ishikarigamanotake and Antarctic enokitake (Flamulina velutipes KUAF-1) are known (Patent Documents 4 to 5).
  • Patent Documents 6 to 7 Recently, attempts have been made to use the above properties industrially and use AFP to maintain the quality of frozen confectionery products such as ice cream and frozen foods.
  • JP 2004-83546 A Special table 2002-507889 gazette JP 2004-161761 A JP 2004-24237 A JP 2004-275008 A International Publication No. 92/22581 Pamphlet International Publication No. 94/03617 Pamphlet
  • AFP derived from fish it is difficult to completely remove odor from AFP derived from fish.
  • insects and microorganisms are difficult to use as food materials, AFP derived from insects and microorganisms is not suitable for use in foods.
  • the problem to be solved by the present invention is to provide an ice crystallization inhibitor that has an excellent ice crystallization inhibitory activity suitable for practical use and can be efficiently and stably produced in a safe process that can be used for food production. There is to do.
  • Another object of the present invention is to provide an antibody that specifically reacts with the ice crystallization inhibitor, and a composition, food, biological sample protecting agent, and cosmetic containing the ice crystallization inhibitor. It is another object of the present invention to provide a method for inhibiting basidiomycete-derived polysaccharides for inhibiting ice crystallization of liquids containing water and a method for inhibiting ice crystallization of liquids containing water. .
  • the present inventors have intensively studied to solve the above problems. As a result, a non-protein-type ice crystallization inhibitor having a high ice crystallization inhibitory activity, stable supply, and industrially applicable was newly found from basidiomycetes, and the present invention was completed.
  • the antibody according to the present invention is characterized by specifically reacting with the ice crystallization inhibitor.
  • composition, food, cryoprotectant and cosmetic according to the present invention include the ice crystallization inhibitor according to the present invention.
  • the basidiomycete-derived polysaccharide according to the present invention is used to inhibit ice crystallization of a liquid containing water.
  • the method for inhibiting ice crystallization of a liquid containing water according to the present invention includes a step of adding a basidiomycete-derived polysaccharide to the liquid.
  • polysaccharide examples include those containing mannose and xylose, and those comprising galactose, mannose, xylose, glucose, rhamnose, or two or more thereof. More specifically, xylomannan can be mentioned. Specifically, xyllomannan has a composition ratio between mannose and xylose constituting it of 1.5 to 2.5 mol of mannose with respect to 1 mol of xylose, and a molecular weight of 280,000. As mentioned above, there can be mentioned those having 340,000 or less.
  • the basidiomycetes that produce the ice crystallization inhibitor of the present invention include enokitake (Flamulina velutipes species), Hatake shimeji (Lyophyllum decaestis species), eringi (Pleurotus erenigii species), and honshimeji (Lyophyllum species). , And related varieties and improved varieties thereof, particularly preferably enokitake (Flammulina velutipes species) and related varieties and improved varieties thereof.
  • the ice crystallization inhibitor according to the present invention can be easily obtained from basidiomycetes that are also edible and is a polysaccharide, so that it is very safe for the living body. Moreover, since it is a basidiomycete origin, stable supply is possible. Furthermore, the ice crystallization inhibitor according to the present invention has an excellent ice crystallization inhibitory activity suitable for practical use.
  • the ice crystallization inhibitor according to the present invention comprises a basidiomycete-derived polysaccharide.
  • the ice crystallization inhibitor according to the present invention is a polysaccharide having a function of inhibiting the growth of ice crystals by binding to the crystal plane of ice crystals, and measuring thermal hysteresis, observing ice crystal structures, ice crystals It means a polysaccharide having ice crystallization inhibitory activity defined by any known method such as measurement of crystallization inhibition.
  • Thermal hysteresis refers to the temperature range where ice cannot grow even in an aqueous solution containing an ice crystallization inhibitor even at a temperature below the equilibrium melting point. If the temperature at which ice begins to grow in an aqueous solution is defined as the freezing point, Thermal hysteresis is detected as the difference between the equilibrium melting point and the freezing point.
  • the ice crystallization inhibitor according to the present invention is a polysaccharide.
  • a polysaccharide usually refers to a polymer in which 10 or more monosaccharides are polymerized in a linear or branched manner by glycosidic bonds.
  • Polysaccharides are classified into homopolysaccharides that are simple polysaccharides composed of one type of monosaccharide and heteropolysaccharides that are complex polysaccharides composed of two or more types of monosaccharides.
  • Examples of the homopolysaccharide include starch such as amylose and amylopectin; glycogen; cellulose; glucan; xylan; mannan.
  • Examples of the heteropolysaccharide include hyaluronic acid, heparin, xylomannan, xyloglucan, and glucomannan.
  • the polysaccharide derived from basidiomycetes according to the present invention is not particularly limited, but includes, for example, those containing mannose and xylose, and those comprising galactose, mannose, xylose, glucose, rhamnose, or two or more thereof. Can be mentioned.
  • the polysaccharide derived from basidiomycetes according to the present invention is preferably a heteropolysaccharide, more preferably xylomannan.
  • Xylomannan is a generic name for heteropolysaccharides in which one molecule of xylose is bonded as a side chain to a mannan main chain composed of ⁇ -1,3-mannose via a 1,4-linkage.
  • the xylomannan according to the present invention is not limited to one composed only of mannose and xylose, and may have other sugar as a side chain in addition to xylose.
  • the composition ratio of mannose and xylose constituting xylomannan is not particularly limited.
  • mannose is preferably 1.5 mol or more and 2.5 mol or less, preferably 1.7 mol or more, per 1 mol of xylose.
  • 2.3 mol or less is more preferable, 1.9 mol or more and 2.1 mol or less is further more preferable, and about 2 mol is especially preferable.
  • the molecular weight of the ice crystallization inhibitor according to the present invention is not particularly limited, for example, the average molecular weight measured by gel filtration chromatography is preferably 100,000 or more and 1,000,000 or less.
  • the average molecular weight is preferably 150,000 or more, more preferably 200,000 or more, further preferably 240,000 or more, particularly preferably 280,000 or more, more preferably 500,000 or less, 000 or less is more preferable, 370,000 or less is more preferable, and 340,000 or less is particularly preferable.
  • the ice crystallization inhibitor according to the present invention is derived from basidiomycetes, it can be produced from basidiomycetes.
  • the method for producing an ice crystallization inhibitor according to the present invention will be described.
  • the ice crystallization inhibitor according to the present invention may be produced from a commercially available basidiomycete or a collected basidiomycete. However, it is more efficient to culture basidiomycetes, especially when industrially mass-producing them. That is, basidiomycete may be arbitrarily cultured in obtaining the ice crystallization inhibitor according to the present invention.
  • basidiomycetes that produce the ice crystallization inhibitor according to the present invention include those belonging to the order Agaric.
  • basidiomycetes belonging to the order of Agaric include those belonging to the family Numeritidae, Kishimeji, Amanita, Agaricaceae, Cypridaceae, Moegitakeceae, Pleurotusaceae, Iguchii, Benicidae, Sarnococcidae, Pleurotus.
  • basidiomycetes belonging to the family Numerisa include goattake.
  • the basidiomycetes belonging to the xylem family include xyme, murasakiji, oshiroi shimeji, kakumino shimeji, shaka shimeji, harushimeji, hatake shimeji, bunshimeji, hon shimeji, ohoriraitake, sugihiratake, hariganechitake, naruto mushroom, , Shiitake, enokitake, etc .; basidiomycetes belonging to the family Amanita mushrooms, tamagotake, kabairoturutake, etc .; basidiomycetes belonging to the agaricaceae include agaric mushrooms, white mushrooms, etc .; ; Nameko et al.
  • basidiomycetes belonging to Moegitake family Shogenji etc. as basidiomycetes belonging to Pleurotusaceae; Yamadoritake etc. as basidiomycetes belonging to Iguchi family; Ke etc.; the Polyporaceae the basidiomycete belongs such Grifola frondosa; the basidiomycete belonging to pleurotaceae include eringi like.
  • the ice crystallization inhibitor according to the present invention is not particularly limited, and examples thereof include Enokitake (Flamulina velutipes species), Hatake shimeji (Lyophyllum decaestis species), Eringi (Pleurotus eringiiii species), Honshimeji (Lyophyllum species), It can be suitably obtained from nameko (Pholiota nameko species), more preferably it can be obtained from enokitake.
  • the above-mentioned enokitake mushroom is preferably a white and sprout-shaped commercially available enokitake (Flamulina velutipes species) that is artificially cultivated.
  • Such commercially available enokitake is generally edible, is easily available, and is more preferable in that it has an excellent ice crystallization inhibitory activity possessed by an extract obtained from the unit weight of basidiomycetes.
  • related varieties refers to, for example, those that belong to the same genus even if the family related varieties are close to each other in academic classification. This refers to varieties that are close in classification.
  • Improved variety refers to fungi that have been improved by artificial selection, crossing, mutation, genetic recombination, and the like.
  • the method for culturing basidiomycetes used in the present invention is not particularly limited, and can be performed using a known method such as a solid culture method or a liquid culture method.
  • a mycelium or fruit body can be obtained by inoculating a mycelium into a solid medium containing plant fiber raw materials such as bagasse, wheat bran, and rice bran and culturing the same.
  • the liquid culture method involves inoculating a mycelium into a medium containing a carbon source, a nitrogen source, an inorganic substance, and other necessary nutrients necessary for the strain to assimilate, and known shaking culture, aeration agitation culture, or placement. It can be performed by culture or the like.
  • Culture conditions such as culture temperature and culture period may be adjusted as appropriate, but culture is preferably performed at a low temperature.
  • An ice crystallization inhibitor can be induced by culturing basidiomycetes at a relatively low temperature, that is, by acclimating to a low temperature.
  • cultivation temperature 25 degrees C or less is preferable, for example, and 20 degrees C or less is more preferable.
  • the temperature is lower than the freezing point, the liquid medium may freeze.
  • the culture period is not particularly limited, but it is preferably 3 days or more, more preferably 1 week or more, further preferably 2 weeks or more, and particularly preferably 1 month or more.
  • the upper limit of the culture period is not particularly limited, but may be until the basidiomycete becomes confluent or the concentration of the ice crystallization inhibitor in the medium does not increase any more. For example, preferably 6 Months or less, more preferably 5 months or less, even more preferably 4 months or less, and particularly preferably 3 months or less.
  • the ice crystallization inhibitor according to the present invention can be purified from basidiomycetes by extraction or the like.
  • the method of heat-extracting in alkaline aqueous solution from said basidiomycete is mentioned.
  • the site of the basidiomycete used in the present invention is not particularly limited, and for example, either mycelium or fruiting body can be used. In addition, these can also use only one site
  • basidiomycetes to be subjected to the extraction of the ice crystallization inhibitor according to the present invention a raw state, a crushed product thereof, a ground product thereof, a dried product and a dried pulverized product thereof can be used.
  • the basidiomycetes in the state in addition to the mycelium separated from the mycelium culture obtained by the above-described culture method, the mycelium culture itself can be used.
  • the ice crystallization inhibitor according to the present invention can be obtained by adding an alkaline aqueous solution to basidiomycetes that have been optionally treated as described above and subjecting them to heat extraction.
  • alkaline substance used for preparing the alkaline aqueous solution examples include sodium hydroxide, potassium hydroxide, calcium hydroxide, sodium carbonate, sodium polyphosphate, trisodium citrate, sodium bicarbonate, sodium acetate, sodium pyrophosphate, phosphorus Disodium oxyhydrogen, dipotassium hydrogen phosphate, trisodium phosphate, tripotassium phosphate, calcined calcium and the like can be used, and when used, they can be used alone or as a mixture of two or more.
  • the concentration of the alkaline aqueous solution may be appropriately adjusted according to the type of polysaccharide, but is preferably 0.1 w / v% or more, more preferably 1.0 w / v% or more, and still more preferably 2.0 w. / V% or more, more preferably 5.0 w / v% or more, further preferably 10.0 w / v% or more, more preferably 15.0 w / v% or more, particularly preferably 20.0 w / v% or more.
  • 50 w / v% or less is preferable, More preferably, it is 30 w / v% or less, More preferably, it is 25 w / v% or less. If the concentration is lower than 0.1 w / v%, the extraction efficiency of the target ice crystallization inhibitor is insufficient, and if it is higher than 50 w / v%, there are problems in terms of cost and safety, which is not suitable.
  • the temperature of the heat extraction treatment is preferably 70 ° C. or higher, more preferably 80 ° C. or higher, further preferably 90 ° C. or higher, and most preferably about 100 ° C.
  • a method of the heat extraction treatment for example, after adding an alkaline aqueous solution, it may be extracted while being heated to a predetermined temperature, or an alkaline aqueous solution heated in advance to a predetermined temperature is added and kept warm. You may extract by.
  • a 25 w / v% aqueous potassium hydroxide solution is added to a dry pulverized product of basidiomycetes, extracted at 100 ° C. for 2 to 3 hours, filtered or centrifuged to obtain an extract, It can be used as an ice crystallization inhibitor. Furthermore, the same extraction process may be repeated for the extraction residue, and the resulting extracts may be combined and used as an ice crystallization inhibitor.
  • the extract obtained as described above may be used as it is, but the alkaline substance is removed by a well-known method such as neutralization or dialysis, the extract after removing the alkaline substance, and its concentrated liquid.
  • the dried product and dried pulverized product are preferably used as an ice crystallization inhibitor.
  • the ice crystallization inhibitor obtained as described above may be further purified as necessary.
  • contaminant components may be removed by suitably combining decantation, filtration, centrifugation, and the like.
  • salt precipitation, precipitation with an organic solvent, affinity chromatography, ion exchange column chromatography, gel filtration, purification by binding to ice using a low-speed cooling device, and concentration by dialysis or ultrafiltration are suitable. You may carry out in combination.
  • the ice crystallization inhibitor according to the present invention may be solidified into an arbitrary form such as powder or granule.
  • the solidification method is not particularly limited.
  • the above-described extract is pulverized according to a conventional method such as spray drying or freeze-drying, or the extract is adsorbed and supported on an excipient to form a powder or granules. Examples of the method include solidification. These operations are known to those skilled in the art, and can be appropriately selected and used according to the application.
  • the ice crystallization inhibitor according to the present invention binds to the crystal plane of the ice crystal and suppresses the ice crystal growth.
  • the bond also inhibits ice recrystallization by preventing further binding of free water to the ice crystal.
  • an appropriate method is used according to the type and the type of basidiomycete used. For example, it can be performed by a known method such as measurement of thermal hysteresis, observation of ice crystal structure, measurement of ice crystallization inhibition, etc., and if any method shows improvement in ice crystallization inhibition activity, It is included in the scope of the invention.
  • the ice crystallization inhibitory activity is measured by cooling an ice crystallization inhibitor aqueous solution containing 30 w / v sucrose to ⁇ 40 ° C., raising the temperature to ⁇ 6 ° C., and measuring the average area of ice crystals observed by a microscope. Can be measured. The stronger the ice crystallization inhibitory activity is, the smaller the average area of this ice crystal is. Therefore, the average value is the average area of ice crystals obtained by measuring a 30 w / v% aqueous solution of sucrose as a control in the same manner.
  • the ice crystallization inhibitory activity of the ice crystallization inhibitor can be quantitatively evaluated using the numerical value obtained by dividing the value as an index. Such a value is called an RI value. For example, if the ice crystal growth is inhibited even when an ice crystallization inhibitor is added, the ice crystallization inhibitory activity is judged as compared with the control.
  • the ice crystallization inhibitor according to the present invention can be used for the purpose of suppressing this failure in various fields in which failure occurs due to ice crystallization of water.
  • it can be used in the food field, machine field, civil engineering field, cosmetics field, medical field using biomaterials, and the like.
  • the taste of the food can be prevented from deteriorating. For example, it prevents starch aging, or suppresses deterioration of taste and quality caused by changing the structure of water in foods by crystallizing ice and physically pressing proteins and oil components. This makes it possible to improve the quality of frozen foods and the like.
  • the cosmetics field it can be used as an additive to prevent deterioration of cosmetic quality.
  • a cosmetic containing an oil / fat component when frozen, water contained in the cosmetic may crystallize in ice, and the oil / fat component may be physically pressed to break the structure, thereby deteriorating quality and feeling of use.
  • the ice crystallization inhibitor according to the present invention is used, the structure of the oil and fat component is maintained by preventing ice crystallization of water, so that deterioration of quality and the like can be suppressed.
  • the medical field it can be used as a protective agent when cryopreserving a biological sample.
  • a biological sample such as cells, blood, or organs
  • the water in the preservation solution freezes to produce ice crystals, which can damage the biological sample.
  • the ice crystallization inhibitor according to the present invention is added, the generation and growth of ice crystals can be suppressed, so that the biological sample can be protected from damage due to ice crystals.
  • the form of the ice crystallization inhibitor of the present invention varies depending on its use, and may be a solution, a concentrated solution, a suspension, a lyophilized product, a powder, a granule, a tablet, or the like as it is. Moreover, it can also be set as the composition mixed with the excipient
  • the antibody according to the present invention specifically reacts with and binds to the ice crystallization inhibitor, and tests for the presence or absence of the ice crystallization inhibitor in a basidiomycete or a culture solution thereof. It can be used to specify a polysaccharide having ice crystallization inhibitory activity from the culture solution of.
  • the antibody according to the present invention may be prepared according to a conventional method. For example, mice and rats are immunized with the ice crystallization inhibitor, and hybridomas are obtained by fusing antibody-producing cells, spleen cells and myeloma cells. The hybridoma is cloned, and a clone producing an antibody that specifically reacts with the ice crystallization inhibitor is screened. This clone may be cultured and the secreted monoclonal antibody may be purified.
  • the basidiomycete-derived polysaccharide according to the present invention can be used to inhibit ice crystallization of a liquid containing water.
  • the method for inhibiting ice crystallization of a liquid containing water according to the present invention includes a step of adding a basidiomycete-derived polysaccharide to the liquid.
  • the liquid that should inhibit ice crystallization is not particularly limited as long as it contains water as a solvent.
  • water for example, water itself, an aqueous solution in which a solute is dissolved, and a suspension in which insoluble components are dispersed.
  • a turbid liquid can be mentioned.
  • the liquid which should inhibit ice crystallization may contain a water-miscible organic solvent as long as ice crystallization is a problem.
  • the water-miscible organic solvent include alcohols such as ethanol and glycols such as ethylene glycol.
  • the addition amount of the polysaccharide may be appropriately adjusted according to the concentration of the solute contained in the liquid, the freezing point, etc.
  • the sugar concentration can be about 0.05 ⁇ g / ml or more and 10 mg / ml or less. If the said density
  • the concentration is preferably 0.1 ⁇ g / ml or more, more preferably 0.5 ⁇ g / ml or more, more preferably 1 mg / ml or less, further preferably 400 ⁇ g / ml or less, particularly preferably 200 ⁇ g / ml or less. .
  • the polysaccharide of the present invention in addition to the case where the polysaccharide of the present invention is intentionally added to the liquid to be inhibited from ice crystallization, the polysaccharide of the present invention is eventually mixed into the liquid to be inhibited from ice crystallization.
  • the polysaccharide of the present invention is sprayed on a road or the like and the polysaccharide is dissolved by contact with night dew and the freezing of the road or the like is suppressed is also included in the scope of the present invention.
  • Example 1 A 500 ml Erlenmeyer flask was charged with 100 ml of YG medium (containing 0.25% yeast extract and 1% glucose, pH 6.0), and a mycelia of commercially available enokitake (Flamulina velutipes) was inoculated. Rotational culture was performed at 120 rpm and 18 ° C. for 1 week, and further low-temperature conditioned culture was performed at 4 ° C. for 1 week.
  • YG medium containing 0.25% yeast extract and 1% glucose, pH 6.0
  • the obtained solution was concentrated with an evaporator, and 3-fold volume of ethanol was added to the concentrated solution.
  • the precipitate produced by the addition of ethanol was suspended in water, neutralized with an aqueous acetic acid solution, and dialyzed against water for 48 hours. After freezing it, it was slowly thawed at 4 ° C., and the resulting precipitate was separated and collected by centrifugation.
  • xylomannan fraction (0.164 g).
  • xylomannan fraction was dissolved in water (46 ml), and the sugar concentration and the protein concentration were measured by the phenol sulfate method and the bicinchoninic acid method (BCA method), respectively, and found to be 6.3 ⁇ g / ml and 4.4 ⁇ g, respectively. / Ml.
  • Example 2 The aqueous solution of the xylomannan fraction obtained in Example 1 was diluted so that the sugar concentration became 1.0 ⁇ g / ml (protein concentration 0.7 ⁇ g / ml), and the ice crystallization inhibitory activity was measured. Specifically, first, sucrose was added to the diluted solution at a rate of 30 w / v%. This was observed when the solution was cooled to ⁇ 40 ° C. under a microscope having a cooling control function, and then the temperature was raised to ⁇ 6 ° C. to melt ice crystals and observed at 30 ° C. for 30 minutes. This was done by measuring the area of the ice crystals produced.
  • this average area is divided by the average area of ice crystals obtained by measuring a 30 w / v% aqueous solution of sucrose as a control.
  • the RI value was 0.25.
  • Example 3 A xylomannan fraction of 1.5 mg was purified in the same manner as in Example 1 except that 0.46 g of dried enokitake mycelia was used. The obtained xylomannan fraction was dissolved in 50 mM phosphate buffer (pH 7.0) containing 0.3 M sodium chloride, and the resulting aqueous solution (200 ⁇ l, sugar concentration 3.9 mg / ml, protein concentration 17 ⁇ g / ml).
  • Example 4 The purified sample obtained in Example 3 was dissolved in 0.2 M potassium borate buffer (pH 8.9) containing 7 v / v% of acetonitrile.
  • the obtained aqueous solution 50 ⁇ l, purified sample 1.0 ⁇ g was charged as a sample into a sugar composition analysis column (Seikagaku Corporation, Honenpak C18, 21.5 mm ID ⁇ 30 cm), and the temperature condition at 30 ° C.
  • the potassium borate buffer was used as an eluent and eluted at a flow rate of 1.0 ml / min, and detection was performed at an excitation wavelength of 305 nm and a fluorescence wavelength of 360 nm.
  • Example 5 Commercially available Hatake-Shimeji (Lyophyllum decades species) fruit bodies were lyophilized. A 15 w / v% aqueous potassium hydroxide solution (10 ml) was added to the dried dried bamboo shoot fruiting body (0.2 g), and the mixture was heated at 100 ° C. for 2.5 hours. Subsequently, the crude extract was obtained by centrifuging at 10,000 ⁇ g for 20 minutes.
  • the crude extract obtained by the same method as in Example 1 was treated with ethanol, and the resulting precipitate was collected.
  • the obtained precipitate was dissolved in 20 mM Tris-HCl buffer (pH 8.0) to obtain an ethanol recovery fraction.
  • Example 6 In the same manner as in Example 5, an ethanol recovery fraction was obtained from a commercially available eringi (Pleurotus eryngii species) fruiting body.
  • Example 7 In the same manner as in Example 5, an ethanol recovery fraction was obtained from a fruit body of a commercially available hon-shimeji (Lyophyllum shimji species).
  • Example 8 In the same manner as in Example 5, an ethanol recovery fraction was obtained from a commercially available nameko (Pholiota nameko species) fruiting body.
  • Example 9 The ethanol recovery fractions of basidiomycetes obtained in Examples 5 to 8 were each diluted with water so that the sugar concentration was 1.0 ⁇ g / ml, and the ice crystallization inhibitory activity was measured in the same manner as in Example 2. did. The results are shown in Table 1.
  • Example 10 The ethanol recovery fraction of Hatake shimeji mushroom obtained in Example 5 was fractionated by gel filtration chromatography in the same manner as in Example 3, and a fraction showing a peak having a molecular weight of about 467,000 was fractionated.
  • the sugar concentration of the obtained fraction was adjusted to 5.0 mg / ml and the ice crystallization inhibitory activity was measured by the same method as in Example 2, the RI value was 0.29.
  • Example 11 For the purified sample obtained in Example 10, the sugar composition was analyzed in the same manner as in Example 4. As a result, it was confirmed from the retention time of the obtained peak that the purified sample was a polysaccharide composed of galactose, mannose, xylose, glucose, and rhamnose.
  • Example 12 By the same method as in Example 1, the enokitake mushroom mycelium was lyophilized. The obtained dried enokitake mycelium (20.0 g) was subjected to hot water treatment three times, then 2.0 w / v% potassium hydroxide aqueous solution (200 ml) was added, and the mixture was heated at 100 ° C. for 2.5 hours. Subsequently, the crude extract was obtained by centrifuging at 10,000 ⁇ g for 20 minutes. The obtained crude extract was freeze-dried to obtain a crude xylomannan fraction (2.05 g).
  • Example 13 Frozen Octopus Grilled According to the formulation shown in Table 2, the aqueous solution of the crude xylomannan fraction obtained in Example 12 was mixed with commercial octopus grilled powder, and takoyaki was obtained using a household octopus grill. The obtained octopus grill was frozen at ⁇ 20 ° C. using a commercial quick freezer. For comparison, an octopus grill was prepared and frozen in the same manner except that the crude xylomannan fraction was not used. In addition, the density
  • the obtained frozen octopus grill was stored for 1 week, then thawed at room temperature, cut in half, and the cut surface was observed.
  • deterioration occurred due to freezing and thawing and a gap was formed between the surface and the inside.
  • the octopus grilled with the crude xylomannan fraction added there was no separation between the surface and the interior, and the state before freezing was maintained.
  • the quality can be maintained even when food is frozen by using the ice crystallization inhibitor according to the present invention.
  • Example 14 Frozen Steamed Egg Yolk
  • the crude xylomannan fraction obtained in Example 12 was mixed with egg yolk. At that time, the amount of the crude xylomannan fraction was adjusted so that the protein concentration was 50 ⁇ g / ml.
  • the obtained egg yolk was steamed for 15 minutes using a water oven (manufactured by SHARP, Hersio AX-MX1-R) to make a steamed egg yolk. The resulting steamed egg yolk was then frozen at ⁇ 20 ° C. using a commercial quick freezer. For comparison, a steamed egg yolk was prepared and frozen in the same manner except that the crude xylomannan fraction was not used.
  • Each of the obtained steamed egg yolks was stored for 1 week and then thawed at room temperature to compare the appearance and texture.
  • the surface of the steamed egg yolk without the crude xylomannan fraction was rough due to freezing and thawing, and the texture was very harsh.
  • the surface of the steamed egg yolk to which the crude xylomannan fraction was added remained fine, and the texture was also felt elastic and fresh, and the state before freezing was maintained.
  • the quality of the food can be maintained even when the food is frozen by using the ice crystallization inhibitor according to the present invention.
  • Example 15 Protection of frozen cells Chinese hamster ovary cells (CHO cells) were subcultured according to a standard method (Theodore T. PUCK et al., The Journal lf Experimental Medicine, vol. 108, pp. 945- (1958)), and then trypsin. It peeled by the process and collect
  • the concentration of the purified xylomannan fraction in the suspension was 20 ⁇ g / ml, 50 ⁇ g / ml and 200 ⁇ g / ml as the protein concentration, respectively.
  • 1 ml of the obtained cell solution was dispensed into a serum tube and frozen in a deep freezer at ⁇ 80 ° C.
  • CHO cells collected in the same manner as described above are suspended in a 10 v / v% DMSO solution, mixed well using a pipette, and 1 ml of the resulting cell solution is dispensed into a serum tube. And frozen in a deep freezer at -80 ° C.
  • CHO cells collected in the same manner as described above were suspended in a cell cryopreservation solution containing no xylomannan (manufactured by Nippon Zenyaku Kogyo Co., Ltd., Cell Banker) and mixed thoroughly using a pipette. Thereafter, 1 ml of the obtained cell solution was dispensed into a serum tube and frozen in a deep freezer at ⁇ 80 ° C.
  • the cell cryopreservation solution obtained above was cryopreserved for 2 days in a freezer.
  • the serum tube was taken out of the freezer, and immediately thawed in a 37 ° C. water bath for thawing.
  • the cells were rapidly suspended in a medium (10 ml) and centrifuged. The collected cells were resuspended in the medium (1 ml). Dead cells contained in the obtained cell suspension were selectively stained with trypan blue. Viable cells and dead cells were counted using an erythrocyte counting plate, and cell viability was calculated. The results are shown in Table 3.
  • the addition of the ice crystallization inhibitor according to the present invention to foods can be used for maintaining the quality of foods. It can also be effectively used for a protective agent for cryopreservation of biological samples such as organs, cells, blood (platelets), and cosmetics having characteristics such as protecting the skin from low temperatures and excellent stability at low temperatures.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Polymers & Plastics (AREA)
  • Food Science & Technology (AREA)
  • Nutrition Science (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Botany (AREA)
  • Biophysics (AREA)
  • Biochemistry (AREA)
  • Veterinary Medicine (AREA)
  • Medicinal Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • General Chemical & Material Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Zoology (AREA)
  • Public Health (AREA)
  • Materials Engineering (AREA)
  • Thermal Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Dentistry (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Immunology (AREA)
  • Wood Science & Technology (AREA)
  • Epidemiology (AREA)
  • Environmental Sciences (AREA)
  • Mycology (AREA)
  • Marine Sciences & Fisheries (AREA)
  • Dermatology (AREA)
  • Birds (AREA)
  • Cosmetics (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Peptides Or Proteins (AREA)

Abstract

 本発明の解決課題は、実用にかなう優れた氷結晶化阻害活性を有し、食品製造に利用できる安全な工程で効率良く安定的に製造することが可能な氷結晶化阻害剤を提供することにある。また、本発明は、当該氷結晶化阻害剤へ特異的に反応する抗体、並びに当該氷結晶化阻害剤を含む組成物、食品、生体試料保護剤および化粧品を提供することも目的とする。さらに本発明は、水を含む液体の氷結晶化を阻害するための担子菌由来の多糖類の使用と、水を含む液体の氷結晶化を阻害するための方法を提供することも目的とする。本発明に係る氷結晶化阻害剤は、担子菌由来の多糖類であることを特徴とする。

Description

担子菌由来の氷結晶化阻害剤
 本発明は、担子菌由来の氷結晶化阻害剤、当該氷結晶化阻害剤へ特異的に反応する抗体、並びに氷結晶化阻害剤を含む組成物、食品、生体試料保護剤および化粧品に関するものである。
 低温下で棲息する生物は、氷結晶化阻害タンパク質(antifreeze protein,以下、「AFP」と略記する)などの氷結晶化阻害物質を生産し、細胞の凍結から身を守る手段として利用していることが知られている。AFPは、熱ヒステリシス、水溶液の凍結の抑制、氷結晶形状制御といった作用を有するタンパク質であり、例えば、魚類、昆虫、植物、菌類、微生物などから見出されている。
 これまで見出されている魚類、昆虫類、微生物由来のAFPとしては、カジカ科の魚類に由来するもの、ゴミムシダマシの幼虫などの昆虫類に由来するもの、フラボバクテリウム属などの微生物に由来するもの等があり、これらは高い氷結晶化阻害活性を有する(特許文献1~3)。また、植物由来のAFPとしては、例えば、冬ライ麦やニンジン由来のものが知られている(非特許文献1~2)。
 その他に、菌類由来のAFPとして、例えばイシカリガマノホタケや南極エノキタケ(Flammulina velutipes KUAF-1)などの担子菌類に由来するものが知られている(特許文献4~5)。
 近年は、上記の性質を工業的に利用し、AFPをアイスクリームなどの冷凍菓子製品や冷凍食品の品質維持のために用いる試みがなされている(特許文献6~7)。
特開2004-83546号公報 特表2002-507889号公報 特開2004-161761号公報 特開2004-24237号公報 特開2004-275008号公報 国際公開第92/22581号パンフレット 国際公開第94/03617号パンフレット
Plant Physiology(プラント・フィジオロジー),第119巻,第1361~1369頁(1999年) Biochem.J.(バイオケミカル・ジャーナル),第340巻,第385~391頁(1999年)
 しかしながら、魚類由来のAFPは臭気を完全に取り除くことが難しい。また、昆虫や微生物は食品原料とし難いことから、昆虫や微生物由来のAFPは食品への使用には適していない。
 一方、植物は食品原料として利用されていることから、植物由来のAFPは食品での使用が期待されている。しかし、その氷への結合能力が他のAFPと比較して弱いことや熱に対する安定性が十分でないといった理由から、工業化はほとんど実現していない。
 そこで、本発明の解決課題は、実用にかなう優れた氷結晶化阻害活性を有し、食品製造に利用できる安全な工程で効率良く安定的に製造することが可能な氷結晶化阻害剤を提供することにある。また、本発明は、当該氷結晶化阻害剤へ特異的に反応する抗体、並びに当該氷結晶化阻害剤を含む組成物、食品、生体試料保護剤および化粧品を提供することも目的とする。さらに本発明は、水を含む液体の氷結晶化を阻害するための担子菌由来の多糖類の使用と、水を含む液体の氷結晶化を阻害するための方法を提供することも目的とする。
 本発明者らは、上記課題を解決するために鋭意検討を行なった。その結果、高い氷結晶化阻害活性を有し、かつ安定供給可能で工業的に応用可能な非タンパク質型の氷結晶化阻害物質を担子菌から新たに見出し、本願発明を完成させるに至った。
 本発明に係る抗体は、上記氷結晶化阻害剤と特異的に反応することを特徴とする。
 本発明に係る組成物、食品、低温保護剤および化粧品は、上記本発明に係る氷結晶化阻害剤を含むことを特徴とする。
 本発明に係る担子菌由来の多糖類は、水を含む液体の氷結晶化を阻害するために用いる。また、本発明に係る水を含む液体の氷結晶化を阻害するための方法は、当該液体に担子菌由来の多糖類を添加する工程を含むことを特徴とする。
 上記多糖類としては、マンノースとキシロースを含むもの、また、ガラクトース、マンノース、キシロース、グルコース、ラムノース、またはこれら2以上からなるものを挙げることができる。より具体的には、キシロマンナンを挙げることができる。キシロマンナンとしては、具体的には、それを構成するマンノースとキシロースの構成比が、キシロース1モルに対してマンノース1.5モル以上、2.5モル以下であるものや、分子量が280,000以上、340,000以下であるものを挙げることができる。
 本発明の氷結晶化阻害剤を産生する担子菌としては、エノキタケ(Flammulina velutipes種)、ハタケシメジ(Lyophyllum decastes種)、エリンギ(Pleurotus eryngii種)、ホンシメジ(Lyophyllum shimeji種)、ナメコ(Pholiota nameko種)、並びにその類縁品種および改良品種を挙げることができ、特に好ましくはエノキタケ(Flammulina velutipes種)並びにその類縁品種および改良品種を挙げることができる。
 本発明に係る氷結晶化阻害剤は、食用にもされている担子菌から容易に得ることができ、且つ多糖類であることから、生体にとって非常に安全である。また、担子菌由来のものであることから安定供給が可能である。さらに、本発明に係る氷結晶化阻害剤は、実用にかなう優れた氷結晶化阻害活性を有する。
 本発明に係る氷結晶化阻害剤は、担子菌由来の多糖類からなる。
 本発明に係る氷結晶化阻害剤は、氷結晶の結晶面に結合するなどして氷結晶の成長を阻害する機能を有する多糖類であり、熱ヒステリシスの測定、氷結晶構造の観察、氷結晶化阻害の測定など、公知の何れかの方法により定義される氷結晶化阻害活性を有する多糖類を意味する。
 熱ヒステリシスとは、氷結晶化阻害剤を含む水溶液中で平衡融点以下の温度であっても氷が成長できない温度域をいい、氷が水溶液中で成長を開始する温度を凝固点と定義すれば、熱ヒステリシスは平衡融点と凝固点の差として検出される。
 本発明に係る氷結晶化阻害剤は、多糖類である。多糖類とは、通常、10個以上の単糖がグリコシド結合により直鎖状または分枝鎖状に重合したものをいう。
 多糖類は、1種の単糖から構成される単純多糖であるホモ多糖類と、2種以上の単糖から構成される複合多糖であるヘテロ多糖類に分類される。ホモ多糖類としては、例えば、アミロースやアミロペクチンなどのデンプン;グリコーゲン;セルロース;グルカン;キシラン;マンナンなどが挙げられる。ヘテロ多糖類としては、例えば、ヒアルロン酸、ヘパリン、キシロマンナン、キシログルカン、グルコマンナンなどを挙げることができる。
 本発明に係る担子菌由来の多糖類は、特に限定されるものではないが、例えば、マンノースとキシロースを含むもの、また、ガラクトース、マンノース、キシロース、グルコース、ラムノース、またはこれら2以上からなるものを挙げることができる。本発明に係る担子菌由来の多糖類は、好ましくはヘテロ多糖類であり、より好ましくはキシロマンナンである。キシロマンナンは、α-1,3-マンノースで構成されるマンナン主鎖に、側鎖として1分子ずつのキシロースが1,4-結合を介して結合したヘテロ多糖類の総称である。但し、本発明に係るキシロマンナンは、マンノースとキシロースのみから構成されるものに限られず、キシロース以外に他の糖を側鎖として有してもよい。
 本発明において、キシロマンナンを構成するマンノースとキシロースの構成比は特に制限されないが、例えば、キシロース1モルに対してマンノース1.5モル以上、2.5モル以下が好ましく、1.7モル以上、2.3モル以下がより好ましく、1.9モル以上、2.1モル以下がさらに好ましく、約2モルが特に好ましい。
 本発明に係る氷結晶化阻害物質の分子量は、特に限定されるものではないが、例えば、ゲル濾過クロマトグラフィーにて測定した平均分子量で100,000以上、1,000,000以下が好ましい。当該平均分子量としては、150,000以上がより好ましく、200,000以上がさらに好ましく、240,000以上がさらに好ましく、280,000以上が特に好ましく、また、500,000以下がより好ましく、400,000以下がさらに好ましく、370,000以下がさらに好ましく、340,000以下が特に好ましい。
 本発明に係る氷結晶化阻害剤は担子菌由来のものであるので、担子菌から製造することができる。以下、本発明に係る氷結晶化阻害剤の製造方法につき説明する。
 (1) 培養工程
 本発明に係る氷結晶化阻害剤は、市販の担子菌や採取された担子菌から製造してもよい。しかし、特に工業的に大量生産する場合には、担子菌を培養する方が効率的である。即ち、本発明に係る氷結晶化阻害剤を得るに当たっては、任意に担子菌を培養してもよい。
 本発明に係る氷結晶化阻害剤を産生する担子菌としては、ハラタケ目に属するものを挙げることができる。ハラタケ目に属する担子菌としては、例えば、ヌメリガサ科、キシメジ科、テングタケ科、ハラタケ科、ヒトヨタケ科、モエギタケ科、フウセンタケ科、イグチ科、ベニタケ科、サルノコシカケ科、ヒラタケ科に属するものが挙げられる。
 ヌメリガサ科に属する担子菌としては、ヤギタケ等が挙げられる。キシメジ科に属する担子菌としては、キシメジ、ムラサキシメジ、オシロイシメジ、カクミノシメジ、シャカシメジ、ハルシメジ、ハタケシメジ、ブナシメジ、ホンシメジ、オオホウライタケ、スギヒラタケ、ハリガネオチバタケ、キツネタケ、ナラタケ、ムキタケ、マツタケ、シロマツタケモドキ、シイタケ、エノキタケ等が;テングタケ科に属する担子菌としては、タマゴタケ、カバイロツルタケ等が;ハラタケ科に属する担子菌としては、ハラタケ、シロオオハラタケ等が;ヒトヨタケ科に属する担子菌としてはヒトヨタケ等が;モエギタケ科に属する担子菌としてはナメコ等が;フウセンタケ科に属する担子菌としてはショウゲンジ等が;イグチ科に属する担子菌としてはヤマドリタケ等が;ベニタケ科に属する担子菌としてはアイタケ等が;サルノコシカケ科に属する担子菌としてはマイタケ等が;ヒラタケ科に属する担子菌としてはエリンギ等が挙げられる。
 本発明に係る氷結晶化阻害剤は、特に限定されるものではないが、例えば、エノキタケ(Flammulina velutipes種)、ハタケシメジ(Lyophyllum decastes種)、エリンギ(Pleurotus eryngii種)、ホンシメジ(Lyophyllum shimeji種)、ナメコ(Pholiota nameko種)から好適に得ることができ、より好ましくはエノキタケから得ることができる。
 上記エノキタケでも、人工的に栽培した白色かつもやし状の市販エノキタケ(Flammulina velutipes種)が好ましい。かかる市販エノキタケは、一般に食用とされており、容易に入手可能であり、担子菌類の単位重量当たりから得られる抽出物が有する氷結晶化阻害活性が優れている点で、より好ましい。
 なお、上記担子菌の類縁品種および改良品種も、適宜使用することができる。
 本発明において「類縁品種」とは、例えば、科の類縁品種は同じ属に属する菌類でも学術上の分類において近い品種をいい、具体的な菌株の類縁品種は同じ科に属する菌株でも学術上の分類において近い品種をいう。また、「改良品種」とは、人為的な選択、交雑、突然変異、遺伝子組み換えなどにより改良した菌類をいうものとする。
 本発明で用いられる担子菌を培養する方法としては、特に限定されるものではなく、固体培養法や液体培養法など公知の方法を用いて行うことができる。例えば固体培養法においては、バガス、小麦ふすま、米糠などの植物繊維質原料を含有する固体培地に菌糸体を接種して、これを培養することにより菌糸体や子実体を得ることができる。また、液体培養法は、菌株が資化し得るのに必要な炭素源、窒素源、無機物、その他必要な栄養素を含んだ培地に菌糸体を接種し、公知の振とう培養、通気攪拌培養または置地培養などにより行うことができる。
 培養温度や培養期間などの培養条件は適宜調整すればよいが、培養は低温下で行うことが好ましい。比較的低温で担子菌を培養する、即ち低温馴化することにより、氷結晶化阻害剤を誘導することができる。培養温度としては、例えば、25℃以下が好ましく、20℃以下がより好ましい。一方、氷点未満では液体培地が凍結するおそれがあるため、0℃以上とすることが好ましい。
 培養期間は特に制限されないが、3日以上行うことが好ましく、より好ましくは1週間以上、さらに好ましくは2週間以上、特に好ましくは1ヶ月以上である。また、培養期間の上限も特に制限されないが、担子菌がコンフルエントな状態となるまでや、培地中の氷結晶化阻害剤の濃度がそれ以上向上しなくなるまでとすればよく、例えば、好ましくは6ヶ月以下、より好ましくは5ヶ月以下、さらに好ましくは4ヶ月以下、特に好ましくは3ヶ月以下である。
 (2) 抽出工程
 本発明に係る氷結晶化阻害剤は、抽出などにより担子菌から精製することができる。例えば、上記の担子菌よりアルカリ水溶液中で加熱抽出処理する方法が挙げられる。
 本発明で用いられる担子菌の部位は特に限定されず、例えば菌糸体、子実体のいずれも用いることができる。なお、これらはひとつの部位のみを用いることもできるし、複数の部位を併用することも可能である。
 本発明に係る氷結晶化阻害剤の抽出に処する担子菌の形態としては、生の状態のもの、その破砕物、その磨砕物、その乾燥物および乾燥粉砕物を用いることができ、また生の状態の担子菌としては、上記の培養方法などにより得られる菌糸体培養物から分離した菌糸体の他に、菌糸体培養物そのものを用いることもできる。
 任意に上記のような処理を行った担子菌にアルカリ水溶液を加えて加熱抽出処理することにより、本発明に係る氷結晶化阻害剤を得ることができる。
 アルカリ水溶液の調製に供されるアルカリ物質としては、例えば水酸化ナトリウム、水酸化カリウム、水酸化カルシウム、炭酸ナトリウム、ポリリン酸ナトリウム、クエン酸三ナトリウム、重炭酸ナトリウム、酢酸ナトリウム、ピロリン酸ナトリウム、リン酸水素二ナトリウム、リン酸水素二カリウム、リン酸三ナトリウム、リン酸三カリウム、焼成カルシウムなどを用いることができ、その使用に際しては単独もしくは2種以上の混合物として用いることができる。
 アルカリ水溶液の濃度は、多糖類の種類などに応じて適宜調整すればよいが、例えば、0.1w/v%以上が好ましく、より好ましくは1.0w/v%以上、さらに好ましくは2.0w/v%以上、さらに好ましくは5.0w/v%以上、さらに好ましくは10.0w/v%以上、さらに好ましくは15.0w/v%以上、特に好ましくは20.0w/v%以上であり、また、50w/v%以下が好ましく、より好ましくは30w/v%以下、さらに好ましくは25w/v%以下である。0.1w/v%より低濃度では目的とする氷結晶化阻害剤の抽出効率が不十分であり、また50w/v%より高濃度ではコスト面や安全面に問題があり不適である。
 加熱抽出処理の温度としては、70℃以上が好ましく、より好ましくは80℃以上、さらに好ましくは90℃以上、最も好ましくは略100℃である。加熱抽出処理の方法としては、例えば、アルカリ水溶液を加えた後にこれを所定の温度まで加熱しながら抽出してもよいし、予め所定の温度に加温したアルカリ水溶液を加えてこれを保温した状態で抽出してもよい。
 より具体的には、担子菌の乾燥粉砕物に25w/v%水酸化カリウム水溶液を加え、100℃にて2~3時間抽出し、濾過または遠心分離することにより抽出液を得て、これを氷結晶化阻害剤として用いることができる。さらに抽出残渣に対して同様の抽出処理を繰り返し行い、得られた抽出液をまとめて、これを氷結晶化阻害剤として用いてもよい。
 (3) 精製工程
 上記により得られた抽出液は、そのまま用いてもよいが、中和や透析などの周知の方法によりアルカリ物質を除去し、アルカリ物質を除去した後の抽出液、その濃縮液、その乾燥物および乾燥粉砕物を氷結晶化阻害剤として用いるのが好ましい。
 上記のようにして得られた氷結晶化阻害剤は、必要に応じてさらに精製を行ってもよい。例えば、デカンテーション、濾過、遠心分離などを好適に組み合わせて夾雑成分を除去してもよい。また例えば、塩析や有機溶媒による沈殿や、アフィニティークロマトグラフィー、イオン交換カラムクロマトグラフィー、ゲル濾過、低速冷却装置を用いた氷への結合などによる精製、透析や限外濾過などによる濃縮を好適に組み合わせて行ってもよい。
 (4) 製剤化
 さらに必要に応じて、本発明に係る氷結晶化阻害剤は、粉末状または顆粒状など任意の形態に固形化してもよい。固形化の方法はとくに限定されないが、例えば、上記の抽出物を噴霧乾燥や凍結乾燥などの常法に従って粉末化する方法や、抽出物を賦形剤に吸着、担持させて粉末または顆粒状に固形化する方法などを挙げることができる。これらの操作は当業者に公知のものであり、用途に応じて適宜選択して用いることができる。
 本発明に係る氷結晶化阻害剤は、氷結晶の結晶面に結合して氷結晶の成長を抑制する。また、その結合は、氷結晶への自由水の更なる結合を阻止することによって、氷の再結晶化を阻害する。
 本発明の氷結晶化阻害剤の氷結晶化阻害活性の測定方法は、その種類や用いた担子菌の種類などに応じて適宜適したものを用いる。例えば、熱ヒステリシスの測定、氷結晶構造の観察、氷結晶化阻害の測定などの公知の方法にて行うことができ、何れかの方法で氷結晶化阻害活性の向上が認められる場合は、本発明範囲に含まれるものとする。
 例えば、氷結晶化阻害活性の測定は、ショ糖を30w/v%含む氷結晶化阻害剤水溶液を-40℃に冷却した後に-6℃まで温度を上げ、顕微鏡により観察した氷結晶の平均面積を測定することにより行うことができる。氷結晶化阻害活性が強いほどこの氷結晶の平均面積は小さくなることから、その平均値を、対照であるショ糖の30w/v%水溶液を同様に測定して得られる氷結晶の平均面積で除して得られる数値を指標として、氷結晶化阻害剤の氷結晶化阻害活性を定量的に評価することができる。なお、かかる値はRI値と呼ばれる。例えば、対照に比べ、氷結晶化阻害剤を添加したときに氷結晶の成長が少しでも阻害されれば、氷結晶化阻害活性を有すると判断する。
 本発明に係る氷結晶化阻害剤は、水が氷結晶化することで障害が生じる様々な分野において、この障害を抑制する目的で利用可能である。例えば、食品分野、機械分野、土木分野、化粧品分野、生体材料を用いる医療分野などで利用可能である。
 食品分野では、食品に含まれる水の氷結晶化を抑制することで、当該食品の味の劣化などを防ぐことができる。例えば、澱粉老化を防止したり、食品中の水が氷結晶化して、タンパク質や油脂成分などを物理的に圧迫し、その構造を変化させることによる味や品質などの劣化を、抑制したりすることにより、冷凍食品などの品質の改善が可能になる。
 機械分野、土木分野では、機械の可動部、道路、地盤などの凍結防止剤として利用できる。
 化粧品分野では、化粧品の品質の劣化などを防ぐための添加剤として利用できる。例えば、油脂成分を含む化粧品を凍結させると、当該化粧品に含まれる水が氷結晶化し、当該油脂成分を物理的に圧迫してその構造を壊すことがあり、品質と使用感が劣化する。本発明に係る氷結晶化阻害剤を用いれば、水の氷結晶化を防ぐことで油脂成分の構造が保持されるため、品質の劣化などを抑制することができる。
 医療分野では、生体試料を凍結保存する際の保護剤として用いることができる。例えば、細胞、血液、臓器などの生体試料を従来公知の保存液に入れて凍結保存すると、保存液中の水分が凍結して氷結晶を生じ、かかる氷結晶により生体試料が損傷することがある。しかし、本発明に係る氷結晶化阻害剤を添加すれば、氷結晶の発生や成長を抑制することができるので、生体試料を氷結晶による損傷から保護することができる。
 本発明の氷結晶化阻害剤の形態は、その用途に応じて様々であり、そのまま、溶液、濃縮液、懸濁液、凍結乾燥物、粉末、顆粒、錠剤などであってもよい。また、賦形剤などと混合した組成物とすることもできる。
 また、本発明に係る抗体は、上記氷結晶化阻害剤と特異的に反応し、結合するものであり、担子菌またはその培養液における当該氷結晶化阻害剤の有無を試験したり、担子菌の培養液などから氷結晶化阻害活性を有する多糖類を特定したりするために用いることができる。
 本発明に係る抗体の調製は常法に従えばよい。例えば、上記氷結晶化阻害剤を用いてマウスやラット等を免疫し、その抗体産生細胞や脾細胞と骨髄腫細胞とを融合させてハイブリドーマを得る。このハイブリドーマをクローニングし、上記氷結晶化阻害剤へ特異的に反応する抗体を産生しているクローンをスクリーニングする。このクローンを培養し、分泌されるモノクローナル抗体を精製すればよい。
 上記のとおり、本発明に係る担子菌由来の多糖類は、水を含む液体の氷結晶化を阻害するために用いることができる。また、本発明に係る水を含む液体の氷結晶化阻害方法は、当該液体に担子菌由来の多糖類を添加する工程を含むことを特徴とする。
 本発明において、その氷結晶化を阻害すべき液体は、溶媒として水を含むものであれば特に制限されず、例えば、水自体、溶質が溶解している水溶液、不溶成分が分散している懸濁液を挙げることができる。また、氷結晶化を阻害すべき液体は、氷結晶化が問題となるものであれば、水混和性の有機溶媒を含んでいてもよい。かかる水混和性有機溶媒としては、例えば、エタノールなどのアルコール類やエチレングリコールなどのグリコール類などを挙げることができる。
 本発明に係る担子菌由来の多糖類により液体の氷結晶化を阻害する場合、多糖類の添加量は、液体に含まれる溶質の濃度や凝固点などに応じて適宜調整すればよいが、例えば、糖濃度で0.05μg/ml以上、10mg/ml以下程度とすることができる。当該濃度が0.05μg/ml以上であれば、液体の氷結晶化をより確実に抑制することができる。一方、当該濃度が高過ぎると効果が飽和する場合があるので、当該濃度としては10mg/ml以下が好適である。当該濃度としては、0.1μg/ml以上がより好ましく、0.5μg/ml以上がさらに好ましく、また、1mg/ml以下がより好ましく、400μg/ml以下がさらに好ましく、200μg/ml以下が特に好ましい。
 本発明方法には、氷結晶化を阻害すべき液体へ本発明多糖類を意識的に添加する場合の他、本発明多糖類が氷結晶化を阻害すべき液体へ結果的に混合される場合が含まれるものとする。例えば、道路などへ本発明多糖類を散布し、当該多糖類が夜露と接触して溶解し、道路などの凍結が抑制される場合も、本発明範囲に含まれる。
 以下に実施例を示し、本発明をより具体的に説明するが、本発明はこれらの実施例に何ら限定されるものではない。
  実施例1
 500ml容三角フラスコに100mlのYG培地(0.25%酵母エキスと1%グルコースを含む,pH6.0)を入れ、市販のエノキタケ(Flammulina velutipes種)の菌糸を植菌した。120rpm、18℃で1週間回転培養を行い、さらに4℃で1週間低温馴化培養を行った。
 低温馴化後のエノキタケ菌糸を洗浄し、凍結乾燥することにより得られた乾燥エノキタケ菌糸(50g)に水(500ml)を加え、100℃で6時間加熱した。次いで、固形分を濾別した。得られた残渣に対して同様の熱水処理を3回繰り返し、残渣(34.4g)を回収した。
 次に、熱水処理後の上記残渣(34.4g)に2w/v%水酸化カリウム水溶液(500ml)を加え、100℃で2.5時間加熱した(以下、「2%KOH処理」とする)。固形分を濾別し、得られた残渣に対して同様の2%KOH処理を3回繰り返した。得られた残渣に25w/v%水酸化カリウム水溶液(500ml)を加え、100℃で2.5時間加熱した(以下、「25%KOH処理」とする)。処理後の残渣に対して同様の25%KOH処理を3回繰り返し、各抽出液を回収し、混合した。
 得られた溶液をエバポレーターで濃縮し、濃縮後の溶液に対して3倍体積量のエタノールを添加した。エタノール添加により生じた沈殿物を水に懸濁し、酢酸水溶液で中和した後、水で48時間透析した。これを凍結した後、4℃の条件下にてゆっくりと融解し、生じた沈殿物を遠心分離により分離、回収した。
 得られた沈殿物をジメチルスルホキシド(DMSO)に溶解し、40℃にて48時間処理した後の上清を回収し、凍結乾燥によりDMSOを除去することにより、キシロマンナン画分(0.164g)を得た。得られたキシロマンナン画分を水(46ml)に溶解し、糖濃度とタンパク質濃度をそれぞれフェノール硫酸法とビシンコニン酸法(BCA法)にて測定したところ、それぞれ6.3μg/ml、4.4μg/mlであった。
  実施例2
 実施例1で得られたキシロマンナン画分の水溶液を、その糖濃度が1.0μg/mlとなるように希釈し(タンパク質濃度0.7μg/ml)、氷結晶化阻害活性を測定した。具体的には、先ず、当該希釈溶液にショ糖を30w/v%の割合で添加した。冷却調節機能が付いたステージを有する顕微鏡下、当該溶液を-40℃に冷却した後に-6℃まで温度を上げて氷結晶を溶かし、-6℃を保った状態で30分間観察したときに認められる氷結晶の面積を測定することにより行った。氷結晶化阻害活性が強いほどこの氷結晶の平均面積は小さくなることから、この平均面積を、対照としてショ糖の30w/v%水溶液を同様に測定して得られる氷結晶の平均面積で除して得られる数値(RI値)を指標として氷結晶化阻害活性を定量的に評価したところ、RI値は0.25であった。なお、RI値が1.0より小さいほど、氷結晶化阻害活性が強いことを意味する。
  実施例3
 乾燥エノキタケ菌糸を0.46g用いた以外は実施例1と同様の方法にて、キシロマンナン画分1.5mgを精製した。得られたキシロマンナン画分を、0.3M塩化ナトリウムを含む50mMリン酸緩衝液(pH7.0)に溶解し、得られた水溶液(200μl,糖濃度3.9mg/ml,タンパク質濃度17μg/ml)を試料としてゲル濾過カラム(東ソー社製,TSK-gel G3000SWXL,21.5mmI.D.×30cm)にチャージし、4℃の温度条件下で上記リン酸緩衝液を流速2.0ml/minの条件で流して非吸着画分を溶出させ、吸収波長215nm、280nmにて検出した。
 ゲル濾過による非吸着画分において、分子量約310,000に単一のピークが確認された。この画分を回収し、上記実施例2と同様にして、氷結晶化阻害活性を確認した。
 実施例4
 実施例3で得られた精製サンプルを、アセトニトリルを7v/v%含有する0.2Mホウ酸カリウム緩衝液(pH8.9)に溶解した。得られた水溶液(50μl,精製サンプル1.0μg)を試料として、糖組成分析用カラム(生化学工業社製,Honenpak C18,21.5mmI.D.×30cm)にチャージし、30℃の温度条件下、上記ホウ酸カリウム緩衝液を溶離液として流速1.0ml/minの条件で溶出させ、励起波長305nm、蛍光波長360nmにて検出した。また標準物質として、マンノース、グルコース、キシロース(各1.5nmol)を同条件にて溶出させた。得られたピークの保持時間と蛍光強度より、精製サンプルの糖組成(モル比)はマンノース:キシロース=2:1であることが確認された。
  実施例5
 市販のハタケシメジ(Lyophyllum decastes種)子実体を凍結乾燥した。得られた乾燥ハタケシメジ子実体(0.2g)に15w/v%水酸化カリウム水溶液(10ml)を添加し、100℃で2.5時間加熱処理した。次いで、10,000×gで20分間遠心分離することにより粗抽出液を得た。
 実施例1と同様の方法で得られた粗抽出液をエタノールで処理し、生じた沈殿物を回収した。得られた沈殿物を20mM Tris-HCl緩衝液(pH8.0)に溶解して、エタノール回収画分とした。
  実施例6
 実施例5と同様の方法で、市販のエリンギ(Pleurotus eryngii種)子実体よりエタノール回収画分を得た。
  実施例7
 実施例5と同様の方法で、市販のホンシメジ(Lyophyllum shimeji種)子実体よりエタノール回収画分を得た。
  実施例8
 実施例5と同様の方法で、市販のナメコ(Pholiota nameko種)子実体よりエタノール回収画分を得た。
  実施例9
 実施例5~8で得られた担子菌のエタノール回収画分を、それぞれ糖濃度が1.0μg/mlとなるよう水で希釈し、実施例2と同様の方法により氷結晶化阻害活性を測定した。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 実施例10
 実施例5で得られたハタケシメジのエタノール回収画分を、実施例3と同様の方法によりゲル濾過クロマトグラフィーにより分画し、分子量約467,000のピークを示すフラクションを画分した。得られた画分の糖濃度を5.0mg/mlに調整し、実施例2と同様の方法により氷結晶化阻害活性を測定したところ、RI値は0.29であった。
 実施例11
 実施例10で得られた精製サンプルについて、実施例4と同様の方法により糖組成を分析した。その結果、得られたピークの保持時間より、精製サンプルは、ガラクトース、マンノース、キシロース、グルコース、ラムノースからなる多糖であることが確認された。
  実施例12
 実施例1と同様の方法により、エノキタケ菌糸を凍結乾燥した。得られた乾燥エノキタケ菌糸(20.0g)に熱水処理を3回繰り返した後、2.0w/v%水酸化カリウム水溶液(200ml)を添加し、100℃で2.5時間加熱処理した。次いで、10,000×gで20分間遠心分離することにより粗抽出液を得た。得られた粗抽出液を凍結乾燥することにより、粗キシロマンナン画分(2.05g)を得た。
  実施例13 冷凍タコ焼き
 表2の配合に従って、実施例12で得られた粗キシロマンナン画分の水溶液を市販のタコ焼き粉と混合し、家庭用タコ焼き器を用いてたこ焼きを得た。得られたタコ焼きを、業務用急速冷凍機を用いて-20℃で凍結した。また、比較のために、粗キシロマンナン画分を用いない以外は同様にタコ焼きを作り、冷凍した。なお、上記各粗キシロマンナン画分の濃度は、そのタンパク質濃度としてそれぞれ10μg/mlと50μg/mlである。
Figure JPOXMLDOC01-appb-T000002
 得られた冷凍タコ焼きを1週間保存した後に常温で解凍し、半分に切断し、切断面を観察した。その結果、粗キシロマンナン画分を含まないタコ焼きでは凍結と解凍により劣化が起こり、表面と内部との間に隙間が生じていた。一方、粗キシロマンナン画分を添加したタコ焼きでは表面と内部との分離が無く、凍結前の状態が維持されていた。このように本発明に係る氷結晶化阻害剤を用いれば、食品を冷凍してもその品質を維持できることが証明された。
 実施例14 冷凍蒸し卵黄
 実施例12で得られた粗キシロマンナン画分を卵黄に混合した。その際、粗キシロマンナン画分の量は、そのタンパク質濃度が50μg/mlとなるよう調整した。得られた卵黄をウォーターオーブン(SHARP社製,ヘルシオ AX-MX1-R)を用いて15分間蒸し、蒸し卵黄を作った。次いで、得られた蒸し卵黄を、業務用急速冷凍機を用いて-20℃で凍結した。また、比較のために、粗キシロマンナン画分を用いない以外は同様に蒸し卵黄を作り、冷凍した。
 得られた各蒸し卵黄を1週間保存した後に常温で解凍し、外観と食感を比較した。その結果、粗キシロマンナン画分を含まない蒸し卵黄では凍結と解凍により表面が荒れており、食感も非常にパサパサしたものとなってしまっていた。一方、粗キシロマンナン画分を添加した蒸し卵黄は表面がきめ細かいままであり、食感にも弾力とみずみずしさが感じられ、凍結前の状態が維持されていた。このように本発明に係る氷結晶化阻害剤を用いれば、食品を冷凍してもその品質を維持できることが実証された。
 実施例15 凍結細胞の保護
 チャイニーズハムスター卵巣細胞(CHO細胞)を定法(Theodore T. PUCKら,The Journal lf Experimental Medicine, vol.108, pp.945- (1958))に従って継代培養した後、トリプシン処理により剥離し、遠心分離により回収した。回収した細胞に培地を加え、再度遠心分離してトリプシンを除去した。得られた細胞を細胞凍結保存液(日本全薬工業社製,セルバンカー)に懸濁した。この懸濁液に、実施例1と同様の方法で得られた精製キシロマンナン画分を添加し、ピペットを用いて十分に混合した。当該懸濁液における精製キシロマンナン画分の濃度は、そのタンパク質濃度としてそれぞれ20μg/ml、50μg/mlおよび200μg/mlとした。得られた細胞液をセラムチューブに1mlずつ分注し、-80℃のディープフリーザーで凍結した。
 また、比較のために、上記と同様にして回収したCHO細胞を10v/v%DMSO溶液に懸濁し、ピペットを用いて十分に混合した後、得られた細胞液をセラムチューブに1mlずつ分注し、-80℃のディープフリーザーで凍結した。
 さらに、比較のために、上記と同様にして回収したCHO細胞を、キシロマンナンを含まない細胞凍結保存液(日本全薬工業社製,セルバンカー)に懸濁し、ピペットを用いて十分に混合した後、得られた細胞液をセラムチューブに1mlずつ分注し、-80℃のディープフリーザーで凍結した。
 上記で得られた細胞凍結保存液を冷凍庫中で2日間凍結保存した。次いで、冷凍庫からセラムチューブを取り出し、速やかに37℃のウォーターバスに浸漬して解凍した。解凍後、培地(10ml)へ細胞を速やかに懸濁し、遠心分離した。回収された細胞を培地(1ml)へ再度懸濁した。得られた細胞懸濁液に含まれる死細胞を、トリパンブルーで選択的に染色した。赤血球計算板を用いて生細胞と死細胞を計数し、細胞の生存率を算出した。結果を表3に示す。
Figure JPOXMLDOC01-appb-T000003
 表3に示す結果のとおり、DMSO溶液に懸濁した細胞は、凍結によりおよそ85%が死滅した。細胞を長期にわたり凍結保存できるとうたわれている細胞凍結保存液を用いた場合、細胞の生存率は向上したものの、83.2%にとどまった。一方、本発明に係る氷結晶化阻害剤であるキシロマンナン画分を細胞凍結保存液に添加した場合には、細胞生存率が顕著に向上し、ほぼ100%となった。以上の結果から、本発明に係る氷結晶化阻害剤が生体試料の保護剤として非常に有用であることが明らかとなった。
 本発明に係る氷結晶化阻害剤を食品に添加することにより、食品の品質維持などに役立てることができる。また、臓器、細胞、血液(血小板)などの生体試料の凍結保存における保護剤や、皮膚を低温から保護したり、低温安定性に優れるといった特性を有する化粧品にも有効に用いることができる。

Claims (15)

  1.  担子菌由来の多糖類であることを特徴とする氷結晶化阻害剤。
  2.  多糖類が、マンノースとキシロースを含むものである請求項1に記載の氷結晶化阻害剤。
  3.  多糖類が、ガラクトース、マンノース、キシロース、グルコース、ラムノース、またはこれら2以上からなるものである請求項1に記載の氷結晶化阻害剤。
  4.  多糖類がキシロマンナンである請求項1に記載の氷結晶化阻害剤。
  5.  キシロマンナンを構成するマンノースとキシロースの構成比が、キシロース1モルに対してマンノース1.5モル以上、2.5モル以下である請求項4に記載の氷結晶化阻害剤。
  6.  キシロマンナンの分子量が280,000以上、340,000以下である請求項4または5に記載の氷結晶化阻害剤。
  7.  担子菌が、エノキタケ(Flammulina velutipes種)、ハタケシメジ(Lyophyllum decastes種)、エリンギ(Pleurotus eryngii種)、ホンシメジ(Lyophyllum shimeji種)、ナメコ(Pholiota nameko種)、またはその類縁品種もしくは改良品種である請求項1~6のいずれかに記載の氷結晶化阻害剤。
  8.  担子菌が、エノキタケ(Flammulina velutipes種)またはその類縁品種もしくは改良品種である請求項1~6のいずれかに記載の氷結晶化阻害剤。
  9.  請求項1~8のいずれかに記載の氷結晶化阻害剤と特異的に反応することを特徴とする抗体。
  10.  請求項1~8のいずれかに記載の氷結晶化阻害剤を含むことを特徴とする組成物。
  11.  請求項1~8のいずれかに記載の氷結晶化阻害剤を含むことを特徴とする食品。
  12.  請求項1~8のいずれかに記載の氷結晶化阻害剤を含むことを特徴とする生体試料保護剤。
  13.  請求項1~8のいずれかに記載の氷結晶化阻害剤を含むことを特徴とする化粧品。
  14.  水を含む液体の氷結晶化を阻害するための、担子菌由来の多糖類の使用。
  15.  水を含む液体の氷結晶化を阻害するための方法であって、当該液体に担子菌由来の多糖類を添加する工程を含むことを特徴とする方法。
PCT/JP2011/068364 2010-08-25 2011-08-11 担子菌由来の氷結晶化阻害剤 WO2012026339A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201180040976.6A CN103068256B (zh) 2010-08-25 2011-08-11 担子菌来源的冰结晶化抑制剂
US13/818,637 US8734672B2 (en) 2010-08-25 2011-08-11 Ice crystallization inhibitor derived from basidiomycete
EP11819803.5A EP2609811A4 (en) 2010-08-25 2011-08-11 ICE CRYSTALLIZATION INHIBITOR DERIVED FROM BASIDIOMYCETES
JP2012530622A JP5881118B2 (ja) 2010-08-25 2011-08-11 担子菌由来の氷結晶化阻害剤

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010188436 2010-08-25
JP2010-188436 2010-08-25

Publications (1)

Publication Number Publication Date
WO2012026339A1 true WO2012026339A1 (ja) 2012-03-01

Family

ID=45723343

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/068364 WO2012026339A1 (ja) 2010-08-25 2011-08-11 担子菌由来の氷結晶化阻害剤

Country Status (5)

Country Link
US (1) US8734672B2 (ja)
EP (1) EP2609811A4 (ja)
JP (1) JP5881118B2 (ja)
CN (1) CN103068256B (ja)
WO (1) WO2012026339A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016199614A (ja) * 2015-04-07 2016-12-01 学校法人 関西大学 コーティング用組成物
WO2017221294A1 (ja) * 2016-06-20 2017-12-28 学校法人 関西大学 コーティング用組成物
JP2019126294A (ja) * 2018-01-24 2019-08-01 日本製粉株式会社 たこ焼き及びその製造方法
JP2019156700A (ja) * 2018-03-16 2019-09-19 学校法人 関西大学 セメント硬化体の凍害抑制剤
WO2020138314A1 (ja) * 2018-12-27 2020-07-02 株式会社カネカ ウニの冷凍保管時劣化抑制剤
JP2020103122A (ja) * 2018-12-27 2020-07-09 株式会社カネカ カニの冷解凍後の食感及び身離れの悪化抑制剤
JP2020103125A (ja) * 2018-12-27 2020-07-09 株式会社カネカ 冷凍生ウニ用ブランチング前処理剤
JP2020103124A (ja) * 2018-12-27 2020-07-09 株式会社カネカ ウニの冷凍保管時劣化抑制剤
JP2020103123A (ja) * 2018-12-27 2020-07-09 株式会社カネカ カニミソの冷解凍後の風味低下抑制剤
JP7486981B2 (ja) 2020-03-02 2024-05-20 株式会社カネカ 果汁の凍結時物性変質抑制剤

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6826730B2 (ja) * 2015-04-16 2021-02-10 学校法人 関西大学 抗氷核活性剤
CN104927789B (zh) * 2015-06-26 2016-04-20 中南大学 一种用于动态冰浆蓄冰储能的载冷剂
WO2018017843A1 (en) * 2016-07-22 2018-01-25 Tissue Testing Technologies Llc Enhancement of cell cryopreservation with glycolipids
JP6279784B1 (ja) * 2017-03-13 2018-02-14 東邦瓦斯株式会社 潜熱蓄熱材組成物、及び潜熱蓄熱槽
JP6904566B2 (ja) * 2017-09-12 2021-07-21 青葉化成株式会社 澱粉含有冷凍食品、その品質改良剤および澱粉含有冷凍食品の製造方法
CN109929072B (zh) * 2019-03-22 2021-03-26 华东师范大学 一种抗冻多糖复合淀粉水凝胶及制备方法和应用
CN111972600A (zh) * 2020-07-15 2020-11-24 上海统益生物科技有限公司 一种抗冻的口感弹韧速冻米线及其制备方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992022581A1 (en) 1991-06-13 1992-12-23 University Of Waterloo Cold tolerances in plants
WO1994003617A1 (en) 1992-07-29 1994-02-17 Unilever N.V. Process for producing anti-freeze peptides
JP2002507889A (ja) 1997-06-26 2002-03-12 クイーンズ ユニバーシティ アット キングストン Tenebrio不凍タンパク質
JP2004024237A (ja) 2002-03-15 2004-01-29 National Institute Of Advanced Industrial & Technology 担子菌類の産生する不凍タンパク質
JP2004083546A (ja) 2001-11-21 2004-03-18 National Institute Of Advanced Industrial & Technology 魚類由来の不凍タンパク質
JP2004161761A (ja) 2002-10-25 2004-06-10 Ikeda Shokken Kk 微生物由来の不凍タンパク質
JP2004275008A (ja) 2003-03-12 2004-10-07 Univ Kansai 抗凍結活性を有する担子菌の培養液
JP2005278638A (ja) * 2004-03-03 2005-10-13 Meiji Milk Prod Co Ltd フローズンヨーグルトの製造方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63208507A (ja) * 1987-02-24 1988-08-30 Ichimaru Pharcos Co Ltd 霊芝の水溶性抽出物含有化粧料
US5852172A (en) 1991-06-13 1998-12-22 University Of Waterloo Cold tolerances in plants
JPH06153879A (ja) * 1992-11-20 1994-06-03 Yutaka Kono 白きくらげドリンクの製造方法
JPH0859489A (ja) * 1994-08-22 1996-03-05 Nippon Telegr & Teleph Corp <Ntt> 凍結血液用凍害防止剤
JP3643394B2 (ja) * 1994-11-11 2005-04-27 直揮 北川 野菜の冷凍保存方法
JPH11113531A (ja) * 1997-10-17 1999-04-27 Hudson Shoji Kk 健康食品
JP2004215663A (ja) * 2002-12-27 2004-08-05 Takara Bio Inc きのこ子実体熱水抽出物
JP2008266173A (ja) * 2007-04-18 2008-11-06 Idemitsu Kosan Co Ltd 育毛促進組成物
JP2009107957A (ja) * 2007-10-29 2009-05-21 Oriza Yuka Kk 保水用組成物
EP2397483A1 (en) * 2009-02-13 2011-12-21 Kaneka Corporation Plant extract containing antifreeze substance and method for producing same
US8604002B1 (en) * 2010-06-23 2013-12-10 University Of Notre Dame Du Lac Saccharide antifreeze compositions

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992022581A1 (en) 1991-06-13 1992-12-23 University Of Waterloo Cold tolerances in plants
WO1994003617A1 (en) 1992-07-29 1994-02-17 Unilever N.V. Process for producing anti-freeze peptides
JP2002507889A (ja) 1997-06-26 2002-03-12 クイーンズ ユニバーシティ アット キングストン Tenebrio不凍タンパク質
JP2004083546A (ja) 2001-11-21 2004-03-18 National Institute Of Advanced Industrial & Technology 魚類由来の不凍タンパク質
JP2004024237A (ja) 2002-03-15 2004-01-29 National Institute Of Advanced Industrial & Technology 担子菌類の産生する不凍タンパク質
JP2004161761A (ja) 2002-10-25 2004-06-10 Ikeda Shokken Kk 微生物由来の不凍タンパク質
JP2004275008A (ja) 2003-03-12 2004-10-07 Univ Kansai 抗凍結活性を有する担子菌の培養液
JP2005278638A (ja) * 2004-03-03 2005-10-13 Meiji Milk Prod Co Ltd フローズンヨーグルトの製造方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
BIOCHEM. J., vol. 340, 1999, pages 385 - 391
HIDEHISA KAWAHARA: "Application in Food Industry and Function of Ice Crystal- controlling Materials Originated from Organisms", THE JOURNAL OF JAPANESE SOCIETY FOR CRYOBIOLOGY AND CRYOTECHNOLOGY, vol. 55, no. 1/2, 2009, pages 49 - 53, XP008162298 *
PLANT PHYSIOLOGY, vol. 119, 1999, pages 1361 - 1369
See also references of EP2609811A4
THEODORE T. PUCK ET AL., JOURNAL OF EXPERIMENTAL MEDICINE, vol. 108, 1958, pages 945

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016199614A (ja) * 2015-04-07 2016-12-01 学校法人 関西大学 コーティング用組成物
WO2017221294A1 (ja) * 2016-06-20 2017-12-28 学校法人 関西大学 コーティング用組成物
JP2019126294A (ja) * 2018-01-24 2019-08-01 日本製粉株式会社 たこ焼き及びその製造方法
JP7053284B2 (ja) 2018-01-24 2022-04-12 株式会社ニップン たこ焼き及びその製造方法
JP2019156700A (ja) * 2018-03-16 2019-09-19 学校法人 関西大学 セメント硬化体の凍害抑制剤
JP7016529B2 (ja) 2018-03-16 2022-02-07 学校法人 関西大学 セメント硬化体の凍害抑制剤
JP2020103123A (ja) * 2018-12-27 2020-07-09 株式会社カネカ カニミソの冷解凍後の風味低下抑制剤
JP2020103124A (ja) * 2018-12-27 2020-07-09 株式会社カネカ ウニの冷凍保管時劣化抑制剤
JP2020103125A (ja) * 2018-12-27 2020-07-09 株式会社カネカ 冷凍生ウニ用ブランチング前処理剤
JP2020103122A (ja) * 2018-12-27 2020-07-09 株式会社カネカ カニの冷解凍後の食感及び身離れの悪化抑制剤
WO2020138314A1 (ja) * 2018-12-27 2020-07-02 株式会社カネカ ウニの冷凍保管時劣化抑制剤
JP7194014B2 (ja) 2018-12-27 2022-12-21 株式会社カネカ カニミソの冷解凍後の風味低下抑制剤
JP7194013B2 (ja) 2018-12-27 2022-12-21 株式会社カネカ カニの冷解凍後の食感及び身離れの悪化抑制剤
JP7232039B2 (ja) 2018-12-27 2023-03-02 株式会社カネカ ウニの冷凍保管時劣化抑制剤
JP7232040B2 (ja) 2018-12-27 2023-03-02 株式会社カネカ 冷凍生ウニ用ブランチング前処理剤
JP7486981B2 (ja) 2020-03-02 2024-05-20 株式会社カネカ 果汁の凍結時物性変質抑制剤

Also Published As

Publication number Publication date
US20130146803A1 (en) 2013-06-13
US8734672B2 (en) 2014-05-27
EP2609811A4 (en) 2015-11-18
CN103068256A (zh) 2013-04-24
JPWO2012026339A1 (ja) 2013-10-28
CN103068256B (zh) 2014-08-27
EP2609811A1 (en) 2013-07-03
JP5881118B2 (ja) 2016-03-09

Similar Documents

Publication Publication Date Title
JP5881118B2 (ja) 担子菌由来の氷結晶化阻害剤
EP2565200B1 (en) Antifreeze protein
Jegadeesh et al. Cultivation of pink oyster mushroom Pleurotus djamor var. roseus on various agro-residues by low cost technique
Kushnarenko et al. Cold acclimation improves regrowth of cryopreserved apple shoot tips
Kawahara et al. Antifreeze activity of xylomannan from the mycelium and fruit body of Flammulina velutipes
JP5009594B2 (ja) 抗菌性のある不凍タンパク質含有植物抽出物
JP2007153834A (ja) カイワレ大根由来の不凍活性を有する抽出物、その製造方法、ならびにその用途
DE60102147T2 (de) Anti-gefrier proteine, deren herstellung und verwendung
US20140213663A1 (en) Ice crystallization inhibitor derived from plant seed
CN102986648A (zh) 松材线虫的玻璃化冷冻保存及解冻复苏方法
KR20120027232A (ko) 빙결정화 저해 물질
JP2000159808A (ja) 担子菌類菌糸体抽出物の分離、精製方法
WO2012023486A1 (ja) 氷結晶化阻害タンパク質
JP3993521B2 (ja) 氷結晶成長阻害活性を有する担子菌の培養液
Rao et al. Performance of ber (Zizyphus mauritiana) and pomegranate (Punica granatum L.) on sandy loam saline and saline black soils
WO2012121172A1 (ja) 植物種子由来の氷結晶化阻害物質
Mata et al. Viability in spawn stocks of the white button mushroom, Agaricus bisporus, after freezing in liquid nitrogen without a cryoprotectant
Davitashvili et al. Isolation and characterization of lectins formed by Cerrena unicolor (higher Basidiomycetes) in solid-state fermentation of sorghum and wheat straw
JP2017043551A (ja) 生体材料保護用ペプチド
KR20110002828A (ko) 항동결능을 가지는 신규 세포외다당체
ZONOURİ et al. Characterization of Ice nucleation Bacteria and their Applications
Kim et al. A novel exopolysaccharide (p-CY01) from the Antarctic bacterium Pseudoalteromonas sp. strain CY01 cryopreserves human red blood cells
JP5747374B2 (ja) 氷結晶化抑制タンパク質
KR101126314B1 (ko) 항동결능을 가지는 신규 세포외다당체
Raman Jegadeesh et al. Cultivation of pink oyster mushroom Pleurotus djamor var. roseus on various agro-residues by low cost technique.

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180040976.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11819803

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012530622

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13818637

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2011819803

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011819803

Country of ref document: EP