WO2012014707A1 - 車両運動制御装置 - Google Patents

車両運動制御装置 Download PDF

Info

Publication number
WO2012014707A1
WO2012014707A1 PCT/JP2011/066298 JP2011066298W WO2012014707A1 WO 2012014707 A1 WO2012014707 A1 WO 2012014707A1 JP 2011066298 W JP2011066298 W JP 2011066298W WO 2012014707 A1 WO2012014707 A1 WO 2012014707A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
longitudinal acceleration
curve
motion control
command value
Prior art date
Application number
PCT/JP2011/066298
Other languages
English (en)
French (fr)
Inventor
絢也 高橋
山門 誠
真二郎 齋藤
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Priority to EP11812299.3A priority Critical patent/EP2599676B1/en
Priority to US13/813,055 priority patent/US9990332B2/en
Publication of WO2012014707A1 publication Critical patent/WO2012014707A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T7/00Brake-action initiating means
    • B60T7/02Brake-action initiating means for personal initiation
    • B60T7/04Brake-action initiating means for personal initiation foot actuated
    • B60T7/042Brake-action initiating means for personal initiation foot actuated by electrical means, e.g. using travel or force sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T7/00Brake-action initiating means
    • B60T7/12Brake-action initiating means for automatic initiation; for initiation not subject to will of driver or passenger
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T7/00Brake-action initiating means
    • B60T7/12Brake-action initiating means for automatic initiation; for initiation not subject to will of driver or passenger
    • B60T7/16Brake-action initiating means for automatic initiation; for initiation not subject to will of driver or passenger operated by remote control, i.e. initiating means not mounted on vehicle
    • B60T7/18Brake-action initiating means for automatic initiation; for initiation not subject to will of driver or passenger operated by remote control, i.e. initiating means not mounted on vehicle operated by wayside apparatus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/02Control of vehicle driving stability
    • B60W30/025Control of vehicle driving stability related to comfort of drivers or passengers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/18009Propelling the vehicle related to particular drive situations
    • B60W30/18145Cornering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T2201/00Particular use of vehicle brake systems; Special systems using also the brakes; Special software modules within the brake system controller
    • B60T2201/16Curve braking control, e.g. turn control within ABS control algorithm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T2210/00Detection or estimation of road or environment conditions; Detection or estimation of road shapes
    • B60T2210/20Road shapes
    • B60T2210/24Curve radius
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T2210/00Detection or estimation of road or environment conditions; Detection or estimation of road shapes
    • B60T2210/30Environment conditions or position therewithin
    • B60T2210/36Global Positioning System [GPS]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2552/00Input parameters relating to infrastructure
    • B60W2552/30Road curve radius
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2556/00Input parameters relating to data
    • B60W2556/45External transmission of data to or from the vehicle
    • B60W2556/50External transmission of data to or from the vehicle of positioning data, e.g. GPS [Global Positioning System] data
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2720/00Output or target parameters relating to overall vehicle dynamics
    • B60W2720/10Longitudinal speed
    • B60W2720/106Longitudinal acceleration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/0097Predicting future conditions

Definitions

  • the present invention relates to a vehicle motion control device that accelerates or decelerates a vehicle so that the motion state of the vehicle is suitable.
  • Patent Document 1 a system that performs deceleration when the lateral acceleration generated in the vehicle is larger than a set value based on the curve information of the navigation system and the lateral acceleration during turning.
  • the target vehicle at the time of curve driving is determined from the preset lateral acceleration set value and the curve curvature in front of the host vehicle so that the magnitude of the lateral acceleration generated when passing the curve does not exceed the set value.
  • a speed is set, and a necessary deceleration is created from the target vehicle speed and the actual vehicle speed.
  • Such a deceleration creation method is effective in suppressing deviation from the road when the vehicle enters a curve exceeding a limit speed at which the vehicle can turn on the curve.
  • the set lateral acceleration is set not to the limitable lateral acceleration that can be turned, but to the lateral acceleration that the driver will allow during normal turning, and the deceleration control before the curve is executed, it is not always necessary for the driver to feel the deceleration. It will not always be the slowdown that was there.
  • the method of creating a deceleration based on the target vehicle speed described above can define the total deceleration amount (integrated value of deceleration) before entering the curve, but cannot define the time change of the deceleration.
  • deceleration control is performed so that the deceleration before this curve is constant, it may not match the driver's deceleration feeling depending on the curve and vehicle speed. Also, when trying to set the time change of this deceleration for each curve, a huge amount of man-hours and a huge amount of data are required.
  • a method for creating acceleration / deceleration based on lateral jerk generated by a driver operation has been proposed as a method for defining the time change of acceleration / deceleration suitable for the driver's deceleration feeling (for example, Patent Document 2 and Non-Patent Document 1).
  • acceleration / deceleration similar to that of a skill driver can be performed without setting a time change of deceleration for each curve.
  • the method of creating acceleration / deceleration based on lateral jerk is a method of creating acceleration / deceleration linked to the lateral motion when lateral motion occurs in the vehicle, such as deceleration on a straight road before entering a curve. It is not possible to set the deceleration when there is no lateral motion.
  • An object of the present invention is made in view of the above circumstances, and provides a vehicle motion control device that accelerates and decelerates a vehicle with good driver feeling even in a state in which no lateral motion occurs in the vehicle. It is.
  • a vehicle motion control apparatus includes a curve shape acquisition unit that acquires a curve shape in front of the host vehicle, a host vehicle position acquisition unit that acquires a position of the host vehicle, a curve shape and an own vehicle.
  • Vehicle motion control calculation means for calculating a longitudinal acceleration command value to be generated in the vehicle based on the position of the vehicle, and the vehicle motion control calculation means, in the longitudinal acceleration command value in which the own vehicle traveling direction is positive, When the host vehicle enters the curve from before the curve and travels to a point where the curve curvature is constant or maximized, a plurality of different negative longitudinal acceleration command values are calculated.
  • a curve shape acquisition means for acquiring a curve shape in front of the host vehicle
  • a host vehicle position acquisition means for acquiring the position of the host vehicle
  • Vehicle motion control computation means for computing the vehicle motion control computation means, in the longitudinal acceleration command value in which the traveling direction of the host vehicle is positive, the host vehicle enters the curve from before the curve, and the curve curvature is constant.
  • calculate the negative longitudinal acceleration command value and the negative longitudinal acceleration command value is the time before and after the start of the curve, except for the longitudinal jerk, which is the time change of the longitudinal acceleration.
  • the curve curvature is increased or decreased during a period when the curve curvature is constant or maximum.
  • the present invention can provide a vehicle motion control device that accelerates and decelerates a vehicle with good driver feeling even in a state where no lateral motion occurs in the vehicle.
  • FIG. 7 is a relationship diagram of distance, curve curvature, and curve curvature change of the vehicle motion control device of FIG. 6. It is a figure which shows the time change of the curve curvature of the vehicle motion control apparatus of FIG. 6, a curve curvature change, and a longitudinal acceleration. It is a figure which shows 2nd embodiment of the vehicle motion control apparatus which concerns on this invention. It is a figure which shows the flowchart of the vehicle motion control apparatus of FIG. It is a conceptual diagram which shows the relationship between the own vehicle position and node point position of the vehicle motion control apparatus of FIG.
  • FIG. 1 shows a conceptual diagram of the longitudinal acceleration change before the curve according to the present invention.
  • a and a ′ are longitudinal acceleration and longitudinal jerk according to the prior art
  • b and b ′ are longitudinal acceleration and longitudinal jerk according to the present invention, respectively.
  • the vehicle decelerates at a constant speed from time A when the vehicle reaches a certain point before the curve to time B when the vehicle starts to enter the curve.
  • time A when the vehicle reaches a certain point before the curve
  • time B when the vehicle starts to enter the curve.
  • strong deceleration may occur before the driver clearly recognizes how much curve curvature the vehicle speed is high. It feels like it slowed down too much before the curve.
  • the longitudinal acceleration changes from the time A to the time C at which the curve curvature becomes constant, and the vehicle position is near the curve from deceleration based on the curve curvature in the section D when the vehicle position is far from the curve.
  • the vehicle shifts to deceleration due to the time change of the curve curvature.
  • the longitudinal jerk increases or decreases in two sections, the section G immediately after the start of deceleration and the section H in which the shift to deceleration near the curve occurs. It has.
  • the driver recognizes the change in the curvature of the curve near the curve from the deceleration caused by the driver recognizing that “there is a curve because there is a curve” at a distance from the curve. It is possible to shift to deceleration according to the time change of the curve curvature, such as "", and deceleration according to the driver feeling becomes possible.
  • the longitudinal acceleration is a value that is positive on the acceleration side and negative on the deceleration side
  • the deceleration is a value that is positive on the deceleration side.
  • a forward gazing point is set in the traveling direction of the host vehicle, and the curve curvature ⁇ PP and the curve curvature change d ⁇ PP / dx at this position are set.
  • the forward gazing point is a point on the course ahead of the host vehicle and a distance L pp away from the host vehicle, and L pp is obtained by adding the time T pp set in advance to the vehicle speed V. Value.
  • the curve curvature ⁇ PP is set to a value of 0 or more regardless of the direction of the curve, and the curve curvature ⁇ PP is set to 0 if the curve curvature radius is sufficiently large.
  • the lateral acceleration estimated value G yEST and the lateral jerk estimated value dG yEST that are temporal changes of the lateral acceleration, which will occur, are respectively expressed by the following formulas ( 1) It is given by (2).
  • the lateral acceleration estimated value G yEST is always a value of 0 or more, regardless of whether the vehicle is turning right or turning left, as can be seen from Equation (1).
  • the lateral acceleration set value G yLMT0 to G yLMT1 may be created so that the longitudinal acceleration command value G xREQfar decreases (increases as a deceleration) so that it becomes G xREQfar_min at a minimum.
  • the distance from the host vehicle to a distant forward gazing point may be L far
  • the longitudinal acceleration command value G xREQfar may be given by the following equation (7) using a certain set lateral acceleration G ySET .
  • min (A, B) is a function that selects the smaller value of A and B
  • max (A, B) is a function that selects the larger of A and B.
  • L _far if greater than zero, even a value set in advance, or may be a value obtained by integrating the time T pp, which is preset to a vehicle speed V. Further , even if G ySET and G xREQfar_min are values set in advance, if the configuration includes road surface friction coefficient acquisition means and setting means by a driver, G ySET and G xREQfar_min are values that change according to the road surface friction coefficient and the setting value by the driver. There may be.
  • Cx may be a preset value or a value that changes according to an accelerator operation by the driver.
  • G XREQfar are not limited to, the deceleration by G XREQfar creates to be equal to or less than the deceleration due to the longitudinal acceleration G Xreq of a curve near.
  • the longitudinal acceleration command is not created separately when the vehicle position is near the curve and when the vehicle is far away, but the moving speed V PP of the front gazing point in the equation (6) is calculated up to the curve.
  • the vehicle may change from deceleration when the vehicle position is far from the curve to deceleration near the curve.
  • the curve curvature ⁇ PP at the front gazing point is equal to or greater than a certain value ⁇ PPlmt , as shown in FIG. 4
  • L pp ⁇ _lmt and L pp ⁇ _near are values set in advance so that L pp ⁇ _lmt is not less than L pp ⁇ _near and V PPmin is not less than 0 and not more than the vehicle speed V.
  • FIG. 6 is a system block diagram showing the configuration of the vehicle motion control device according to the first embodiment of the present invention.
  • the vehicle motion control device 1 of this embodiment is mounted on a vehicle, and includes a curve shape acquisition unit 2 that acquires a curve shape in front of the host vehicle, a host vehicle position acquisition unit 3 that acquires a host vehicle position, Vehicle motion control calculating means 4 for calculating the longitudinal acceleration generated in the vehicle based on the information obtained by the curve shape acquiring means 2 and the own vehicle position acquiring means 3 is provided.
  • the calculation result of the vehicle motion control calculation means 4 is sent to the longitudinal acceleration generating means 5 to drive an actuator capable of generating longitudinal acceleration in the vehicle.
  • the curve shape acquisition means 2 may be a method of acquiring a curve shape from map information of a course on which the host vehicle travels, a method of acquiring curve information in the traveling direction of the host vehicle through road-to-vehicle communication, It may be a method of acquiring curve information from a vehicle traveling ahead in the traveling direction of the host vehicle by inter-vehicle communication, or a method of acquiring a curve shape in front of the host vehicle by an imaging unit. Moreover, the method of acquiring curve shape information by communication with map information acquisition means, road-to-vehicle communication means, vehicle-to-vehicle communication means, or imaging means may be used.
  • the vehicle position acquisition means 3 is a method of acquiring the vehicle position relative to the curve ahead of the vehicle from the coordinates of the vehicle using a global positioning system (GPS)
  • the vehicle position acquisition means 3 Even the method of acquiring the vehicle position may be a method of acquiring images of the front of the host vehicle and / or surroundings by the imaging means, and acquiring the host vehicle position with respect to the curve ahead of the host vehicle.
  • the method of acquiring the own vehicle position with respect to a curve by communication with GPS, a road-vehicle communication means, or an imaging means may be sufficient.
  • the curve shape acquisition unit 2 may include a unit that acquires map shape information using map information and an imaging unit
  • the vehicle position acquisition unit 3 may include a unit that acquires the vehicle position using a GPS and an imaging unit.
  • the curve shape information and the vehicle position information necessary for the longitudinal acceleration control are obtained by acquiring the curve shape information and the vehicle position information by the imaging means. Can be acquired.
  • the curve shape information necessary for the longitudinal acceleration control is obtained by acquiring the curve shape information and the vehicle position information from the GPS and map information. , And own vehicle position information can be acquired.
  • the longitudinal acceleration generating means 5 is an engine that generates longitudinal acceleration by controlling the throttle opening of the engine, a motor that generates longitudinal acceleration by controlling the driving torque of the motor, or when power is transmitted to each wheel.
  • This is an acceleration / deceleration actuator capable of generating longitudinal acceleration such as a transmission that generates longitudinal acceleration by changing the gear ratio, or a friction brake that generates longitudinal acceleration by pressing a brake disk against a brake pad of each wheel.
  • the vehicle motion control calculation means 4 is a calculation device having a storage area, calculation processing capability, and signal input / output means, and the curve shape obtained by the curve shape acquisition means 2 and the vehicle position acquisition means 3 and
  • the acceleration / deceleration actuator capable of calculating the longitudinal acceleration command value to be generated in the vehicle from the own vehicle position and generating the longitudinal acceleration that becomes the longitudinal acceleration command value is defined as the longitudinal acceleration generating means 5, and the drive controller for the acceleration / deceleration actuator.
  • the longitudinal acceleration command value is sent.
  • the signal to be sent here is not the longitudinal acceleration but may be a signal that realizes the longitudinal acceleration command value by the acceleration / deceleration actuator.
  • the acceleration / deceleration actuator is a hydraulic friction brake that presses the brake pad against the brake disc by hydraulic pressure
  • a hydraulic pressure command value that realizes a longitudinal acceleration command value is sent to the hydraulic friction brake controller.
  • the drive signal of the hydraulic friction brake drive actuator that realizes the longitudinal acceleration command value may be directly sent to the hydraulic friction brake drive actuator without using the hydraulic friction brake controller.
  • the acceleration / deceleration actuator that performs drive control according to the longitudinal acceleration command value may be changed.
  • a command value for changing the transmission gear ratio is sent to the transmission controller, and the longitudinal acceleration command value for deceleration near the curve
  • the hydraulic pressure command value may be sent to the hydraulic friction brake controller.
  • FIG. 7 shows a calculation flowchart in the vehicle motion control apparatus 1.
  • n is an integer that increases the node point position first in the direction opposite to the traveling direction of the host vehicle to 0 and increases 1, 2,..., Nmax toward the traveling direction of the host vehicle. . Nmax is the maximum value of node point position data number n that can be acquired.
  • the vehicle speed is calculated from the time change of the own vehicle position.
  • the previous vehicle speed calculation result is set as the vehicle speed.
  • the data update flag is 1
  • a vehicle speed V which is the moving speed of the own vehicle is calculated from the moving distance ⁇ L v of the own vehicle calculated from P v_Pz1 (X v_Pz1 , Y v_Pz1 ) and the current vehicle position data P v (X v , Y v ). .
  • the forward gaze distance is calculated.
  • three forward gazing points PP0, PP1 and PP2 are set on the course in the traveling direction of the own vehicle from the very vicinity to the far side of the own vehicle, and the forward gazing points PP0 and PP1 from the own vehicle are set.
  • PP2 to the forward gaze distances L PP0 , L PP1 , L PP2 are calculated.
  • the preset forward gaze times T PP0 , T PP1 , T PP2 (however, Using T PP0 ⁇ T PP1 ⁇ T PP2 ) and the vehicle speed V, each may be given as shown in equation (9).
  • the forward gazing point PP0 is the gazing point in the immediate vicinity of the host vehicle
  • L max is the distance from the host vehicle position to the node point position P 1 and the distance between the node points from the node point position P 1 to the node point position P nmax. Is the sum of After the calculation, the process proceeds to S400.
  • a longitudinal acceleration control permission flag is calculated.
  • the longitudinal acceleration control is permitted, and when the value is 0, the longitudinal acceleration control is prohibited.
  • the longitudinal acceleration control permission flag for example, when the time for which the data update flag F GPSref is 0 is equal to or longer than a predetermined time, it is difficult to acquire the vehicle position data by GPS, and the longitudinal acceleration control permission flag is set. 0.
  • the longitudinal acceleration control permission flag is set to 0.
  • the longitudinal acceleration control permission flag may be set to 0 depending on the vehicle speed V. For example, a minimum vehicle speed for starting control is set in advance, and if the vehicle speed V is smaller than the minimum vehicle speed, the longitudinal acceleration control permission flag is set to 0.
  • the longitudinal acceleration control permission flag is set to 0.
  • the longitudinal acceleration control permission flag is set to 0. 1 under other conditions. After the calculation, the process proceeds to S500.
  • the curvature change d ⁇ n / dx is calculated, and the curve curvatures ⁇ PP0 , ⁇ PP1 , ⁇ PP2 and the curve curvature changes d ⁇ PP0 / dx, d ⁇ PP1 / dx, d ⁇ PP2 at the forward gaze distances L PP0 , L PP1 , L PP2 are calculated.
  • / Dx is calculated.
  • a curve curvature radius of an arc passing through three consecutive node points P n ⁇ 1 , P n , P n + 1 is obtained, and the reciprocal thereof is taken to obtain the curve of the node point P n .
  • the curve curvature ⁇ n can be obtained.
  • curve curvature kappa v of the vehicle position as long as the vehicle position matches the node point position P 1, curve curvature kappa v is the curve curvature kappa 1, and the If they do not match, node points P 0, P
  • the curve curvature ⁇ v can be calculated from v and P 1 .
  • the curve curvature ⁇ n and the curve curvature ⁇ v are positive values regardless of the direction of the curve.
  • the curve curvature ⁇ n may be set to zero.
  • the curve curvature change d ⁇ n / dx is calculated from the curve curvature ⁇ n of each node point and the distance between the node points obtained in this way. As shown in FIG. 9, if the line system is complemented between the node points and the distance between the node points P n and P n + 1 is L n , the curve curvature change d ⁇ n between the node points P n and P n + 1. / Dx is given by the following equation (10).
  • the calculation method of the curve curvature ⁇ n and the curve curvature change d ⁇ n / dx of each node point is not limited to the above method, and any method can be used as long as the curve curvature and the curve curvature change at each node point can be calculated. . After the calculation, the process proceeds to S600.
  • the curve curvatures ⁇ PP0 , ⁇ PP1 , ⁇ PP2 and the curve curvature changes d ⁇ PP0 / dx, d ⁇ PP1 / dx, d ⁇ PP2 / dx and the vehicle speed V at the forward gaze distances L PP0 , L PP1 and L PP2 are set. Based on this, a longitudinal acceleration command value initial value is created.
  • the longitudinal acceleration command values G xREQiniPP0 and G xREQiniPP1 based on the curve curvature changes d ⁇ PP0 / dx and d ⁇ PP1 / dx in the vicinity of the vehicle are calculated by the above formula (6), and the longitudinal acceleration command value based on the curve curvature ⁇ PP2 far from the vehicle.
  • G xREQiniPP2 is created by the method shown in FIG.
  • the vehicle longitudinal acceleration G x may be created from the longitudinal acceleration obtained by the configuration provided with means for obtaining the longitudinal acceleration by communication with other controllers or by direct measurement by an acceleration sensor.
  • G xREQiniPP0 and G xREQiniPP1 are calculated according to Expression (19) below. Further , G xREQiniPP2 is calculated from FIG.
  • C xy0 and C xy1 may be preset constants or values that are changed according to other conditions. For example, different values may be used when d ⁇ PPm / dx is positive and when d ⁇ PPm / dx is negative. If other information such as a road surface friction coefficient or a driver's accelerator operation can be used, the value may be changed based on the information. For example, when the road surface friction coefficient is low such as a snowy road, C xy0 and C xy1 are set to a smaller value than the condition where the road surface friction coefficient is high such as an asphalt road.
  • the longitudinal acceleration command value initial values GxREQiniPP0 , GxREQiniPP1 , and GxREQiniPP2 are subjected to processing based on an intervention threshold value for longitudinal acceleration control, filter processing, selection processing, addition processing, and the like to create a final longitudinal acceleration command value GxREQfin .
  • G XREQiniPP0 relative to G xREQiniPP1, G xREQiniPP2, a time constant corresponding to the code or decreasing direction to set the filter, respectively, performs the selection processing and addition processing in accordance with the value.
  • G xBRKs and G xACCs are preset values.
  • G xREQiniPP0 , G xREQiniPP1 , G xREQiniPP2 are values other than 0 at the same time, if both are the same sign, the absolute value is the larger value, It is set as the value which added both. Also, in the area where three of G xREQiniPP0 , G xREQiniPP1 , G xREQiniPP2 are simultaneously non-zero, the two absolute values of the three same signs are compared, and the larger value and the remaining different sign It is set as the value which added the value of.
  • the curve curvatures ⁇ PP0 , ⁇ PP1 , ⁇ PP2 and curve curvature changes d ⁇ PP0 / dx, d ⁇ PP1 / dx, d ⁇ PP2 / dx as shown in FIG. , G XREQiniPP1 indicated by a broken line, if the G XREQiniPP2 indicated by a one-dot chain line is obtained, the longitudinal acceleration command value G XREQfin as shown by the solid line is obtained.
  • G xREQiniPP0, G xREQiniPP1 a method of creating a G XREQfin from G XREQiniPP2 is not intended limited to the above disclosure and as shown in T21 in FIG. 10, when that negative longitudinal acceleration, i.e. deceleration G XREQiniPP2 The deceleration is not reduced excessively during the transition from GxREQiniPP1 to GxREQiniPP1 .
  • the deceleration is excessive in the negative longitudinal acceleration, that is, the section where the transition is made from G xREQiniPP1 to G xREQiniPP0 during deceleration. Do not decrease. After the calculation, the process proceeds to S800.
  • the signal transmitted when the longitudinal acceleration command value G xREQfin can be realized by the longitudinal acceleration generating means 5 by transmitting the longitudinal acceleration command value G xREQfin as described above.
  • the acceleration command value G xREQfin is transmitted as a control command value.
  • a command value for controlling the longitudinal acceleration generating means 5 is created and transmitted based on the longitudinal acceleration command value GxREQfin .
  • the longitudinal acceleration generating means 5 is a hydraulic friction brake and the longitudinal acceleration control is performed by sending the hydraulic pressure command value to the hydraulic friction brake controller
  • the hydraulic pressure command value is created based on the longitudinal acceleration command value GxREQfin. Then, the created hydraulic pressure command value is transmitted as a control command value.
  • a command for realizing the longitudinal acceleration command value may be transmitted to the plurality of longitudinal acceleration generating means 5.
  • the longitudinal acceleration generating means 5 for realizing the longitudinal acceleration created based on the G xREQiniPP2 which is the longitudinal acceleration command value from the far side of the curve is the transmission and / or the engine, and the longitudinal acceleration command value near the curve is used.
  • G XREQiniPP1 is, and further adding the hydraulic friction brake as acceleration generating means 5 before and after realizing the longitudinal acceleration generated based on G xREQiniPP0.
  • the deceleration generated in the vehicle changes excessively before the driver recognizes the curve ahead in detail because the deceleration pattern changes from deceleration far from the curve to deceleration near the curve.
  • Driver feeling can be improved without decelerating.
  • FIG. 11 is a system block diagram showing the configuration of the vehicle motion control device according to the second embodiment of the present invention.
  • the vehicle motion control device 1 ′ of the present embodiment is mounted on a vehicle, and includes a curve shape acquisition unit 2 that acquires a curve shape ahead of the host vehicle, a host vehicle position acquisition unit 3 that acquires a host vehicle position, Vehicle movement information acquisition means 6, driver input information acquisition means 7, lateral motion linkage longitudinal acceleration acquisition means 8, road surface information acquisition means 9, curve shape acquisition means 2, own vehicle position acquisition means 3, and Vehicle for calculating longitudinal acceleration to be generated in the vehicle based on information obtained by vehicle motion information acquisition means 6, driver input information acquisition means 7, lateral motion linkage longitudinal acceleration acquisition means 8, and road surface information acquisition means 9 A motion control calculation means 4 'is provided.
  • the calculation result of the vehicle motion control calculation means 4 ' is sent to the longitudinal acceleration generation means 5 and the information presenter 10, and drives the actuator capable of generating the longitudinal acceleration in the vehicle and presents information to the driver.
  • the curve shape obtaining unit 2 the own vehicle position obtaining unit 3 for obtaining the own vehicle position, and the longitudinal acceleration generating unit 5 are the same as those in the above-described first embodiment, and thus description thereof is omitted.
  • the vehicle motion information acquisition means 6 acquires at least the vehicle speed V or the longitudinal acceleration G x , or both as the vehicle motion information.
  • the vehicle speed V and the longitudinal acceleration G x is also acquire directly detected values by the sensors or the like, other electronic controller may also be acquired by communication the results of calculation.
  • the vehicle speed V and the longitudinal acceleration Gx itself may be values that can be estimated.
  • the wheel speed Vw [wheel] of each wheel FL (left front wheel), FR (right front wheel), RL (left rear wheel), RR (right front wheel) is entered in each wheel)
  • the vehicle speed V may be estimated.
  • the driver input information acquisition means 7 acquires at least a driver request longitudinal acceleration G xDrvREQ as input information from the driver.
  • the driver request longitudinal acceleration G xDrvREQ may be acquired by a value directly input by the driver, or may be acquired by communication with a result calculated by another electronic controller. Even if the driver request acceleration G xDrvREQ itself is not input, it may be a value that can be estimated.
  • the accelerator pedal operation amount, the brake pedal operation amount may be estimated driver-requested longitudinal acceleration G xDrvREQ.
  • the driver-requested longitudinal acceleration G xDrvREQ excluding deceleration due to the brake operation may be estimated from only the accelerator pedal operation amount.
  • the engine torque and shift position may be acquired, and the driver request longitudinal acceleration G xDrvREQ may be estimated.
  • control ON / OFF information and a value when the driver adjusts or selects a control amount may be acquired.
  • the lateral motion linkage longitudinal acceleration acquisition means 8 acquires the longitudinal acceleration G xGVC based on the lateral jerk of the vehicle shown in Patent Document 2 and Non-Patent Document 1, for example.
  • the longitudinal acceleration G xGVC itself may be a value that can be estimated even if it is not inputted.
  • it may be calculated longitudinal acceleration G xGVC.
  • lateral motion information such as steering angle, yaw rate, and lateral acceleration may be acquired, and the longitudinal acceleration G xGVC may be calculated.
  • the road surface information acquisition means 9 acquires at least a road surface friction coefficient ⁇ and a road surface longitudinal gradient Grad as road surface information.
  • the road surface friction coefficient ⁇ and the road surface longitudinal gradient Grad itself may be values that can be estimated.
  • the longitudinal acceleration G x , the wheel speeds Vw [wheel], and the vehicle speed V may be acquired to estimate the road surface friction coefficient ⁇ .
  • a method of acquiring a self-aligning torque generated by steering and estimating a road surface friction coefficient ⁇ may be used.
  • a method may be used in which the braking / driving force F wx [wheel] of each wheel or information (for example, engine torque or brake pressure) instead of the wheel is acquired and the road surface friction coefficient ⁇ is estimated.
  • the braking / driving force F wx [wheel] of each wheel, or information (for example, engine torque or brake pressure) and vehicle longitudinal acceleration G x are obtained and generated at the wheel.
  • the road surface longitudinal gradient Grad may be estimated from the difference between the force and the longitudinal acceleration actually generated. Further, a value obtained by an acceleration sensor attached to measure the vehicle longitudinal acceleration on a flat road may be acquired, and the road surface longitudinal gradient Grad may be estimated from the difference in longitudinal acceleration obtained by differentiating the vehicle speed V. .
  • the vehicle movement control calculation means 4 ' is a calculation device having a storage area, calculation processing capability, and signal input / output means, and the curve shape acquisition means 2, the own vehicle position acquisition means 3, and the vehicle movement information.
  • a command value is sent to the longitudinal acceleration generating means 5 and the information presenting means 10.
  • the command value sent to the longitudinal acceleration generating means 5 is a command value corresponding to the target acceleration / deceleration actuator as in the first embodiment.
  • the information presenting unit 10 is an information presenter that presents information that can be recognized by at least one of the five senses
  • the command value that is sent to the information presenting unit 10 is a command value that can drive the information presenting unit.
  • the display device that gives information to the driver's vision such as a display lamp or a display
  • a command value for turning on the display lamp or displaying on the display is sent based on the longitudinal acceleration generated in the vehicle. .
  • a sound generator that gives information to the driver's hearing such as a beep sound or a voice
  • a command value for guiding with a beep sound or a voice is sent based on the longitudinal acceleration generated in the vehicle.
  • the information generator 10 is a vibration generator that gives information to the tactile sense of the driver, such as the vibration of the handle, pedal, or seat, the vibration generator that vibrates the handle, pedal, or seat based on the longitudinal acceleration generated in the vehicle. Send command value to.
  • the information presentation means 10 may be a combination of the display, sound generator, and vibration generator.
  • the map information of the course on which the host vehicle travels is used as the curve shape acquisition unit 2
  • the GPS is used as the host vehicle position acquisition unit 3
  • vehicle motion information acquisition unit 6 driver input information acquisition unit 7
  • lateral motion linkage longitudinal acceleration As the acquisition means 8 and the road surface information acquisition means 9, the vehicle speed V, the longitudinal acceleration G x , the driver-requested longitudinal acceleration G xDrvREQ , the lateral motion linkage longitudinal acceleration G xGVC , the road surface friction, using communication means with other electronic controllers.
  • the coefficient ⁇ and the road surface longitudinal gradient Grad are acquired, and the longitudinal acceleration control switch ON / OFF information F ctrlsw and the driver setting value G DrvSet are acquired using communication means with other electronic controllers or input means such as a switch.
  • a method of creating a longitudinal acceleration command value in a case is shown.
  • FIG. 12 shows a calculation flowchart in the vehicle motion control apparatus 1 ′.
  • the first embodiment similarly to the vehicle position using GPS data P v (X v, Y v ) makes a determination of whether updated, the 1 data update flag F GPSref if data is updated If not, 0 is set. After the calculation, the process proceeds to S110.
  • the curve shape / vehicle position data obtained in S000 is updated.
  • the data update flag calculated at S100 is 0, that is, when the vehicle position data by GPS acquired at S000 is not updated and only data such as vehicle motion information acquired at S010 is updated.
  • the curve shape / vehicle position data is updated based on the moving distance of the vehicle calculated from the vehicle speed V obtained from the curve shape / vehicle position data obtained in S000 and the vehicle motion information.
  • the curve shape data obtained at this time is represented by P t0_n (X t0_n , Y t0_n ) (n is an integer between 0 and nmax_t0 ) ),
  • the vehicle position data is P t0_V (X t0_V , Y t0_V ).
  • the distance between the node points P t0_n and P t0_n + 1 at this time is D t0_n + 1
  • the distance between the vehicle position P t0_V and the node point P t0_1 is D t0_V1 .
  • the calculation in the t0 of Delta] t v is after t1, the data update flag is 0, that is not performed data updating by GPS, if only updating of such vehicle motion information is performed, the vehicle from the vehicle speed V and Delta] t v Is calculated, and the positional relationship between the vehicle position and each node point is updated.
  • the first node point in the direction opposite to the traveling direction of the host vehicle is set as P 0 . Therefore the magnitude relation of D v and D t0_V1, so that the number n of the node points changes.
  • D t1_V is equal to or less than D t0_V1 , as shown in FIG. 13 (a)
  • the vehicle position is also between node points Pt 0_0 and Pt 0_1 at t1, so that each node point and the distance between node points at t1
  • the maximum node point number nmax_t1 and Dt1_V1 are given by the following equations (20) to (23).
  • D T1_V is greater than D T0_V1 since the vehicle position at t1 is earlier than the node point Pt 0_1, and each node point in the t1, between nodes point distance, and D T1_V1 following formula (24) Is given by (27).
  • k is a minimum integer in which D t1_V1 obtained by Expression (25) is 0 or more and nmax_t1 is positive.
  • the vehicle position to the node point Pt 0_1, if during the Pt 0_2, k is one. If k satisfying the above-mentioned condition does not exist in the curve shape data obtained in S000, nmax_t0 is set to k. If the data update flag is 1, the data at each node point obtained in S000 and the vehicle position data are set as curve shape data and vehicle position data. After the calculation, the process proceeds to S310.
  • the forward gaze distance is calculated. Similar to the first embodiment described above, three forward gazing points PP0, PP1, PP2 are set on the course in the traveling direction of the own vehicle from the very vicinity to the far side of the own vehicle, and the forward gazing point PP0 from the own vehicle is set. , PP1, PP2 forward gaze distances L PP0 , L PP1 , L PP2 are calculated.
  • the forward gaze distances L PP0 , L PP1 , and L PP2 may be changed according to the road surface friction coefficient ⁇ . For example, if the road surface friction coefficient ⁇ is equal to or smaller than a certain value, L PP0 , L PP1 and L PP2 are changed to be longer as the road surface friction coefficient ⁇ is smaller.
  • the forward gazing point PP0 is the gazing point in the immediate vicinity of the host vehicle
  • L max is the distance from the host vehicle position to the node point position P 1 and the distance between the node points from the node point position P 1 to the node point position P nmax. Is the sum of After the calculation, the process proceeds to S410.
  • the longitudinal acceleration control mode GxMode is calculated.
  • the longitudinal acceleration control mode G xMode when the value is 0, longitudinal acceleration control is not performed.
  • the longitudinal acceleration control based on the lateral motion linkage longitudinal acceleration G xGVC is performed, and when 2, the lateral motion linkage longitudinal acceleration is performed.
  • This value is set to perform longitudinal acceleration control based on GxGVC, own vehicle position data, and curve shape data.
  • the creating of the longitudinal acceleration control mode G XMODE for example, in the longitudinal acceleration control switch ON / OFF information F ctrlsw, F ctrlsw when the longitudinal acceleration control switch OFF is 0, the F Ctrlsw when the longitudinal acceleration control switch ON 1 Then, when F ctrlsw is 0, the longitudinal acceleration control mode G xMode is set to 0.
  • the longitudinal acceleration control mode G xMode may be set to 0 depending on the vehicle speed V.
  • the minimum vehicle speed for starting control is set in advance, and if the vehicle speed V is smaller than the minimum vehicle speed, the longitudinal acceleration control mode GxMode is set to zero.
  • the longitudinal acceleration control mode G xMode is set to 0 when the lateral motion linkage longitudinal acceleration G xGVC is difficult to obtain and the vehicle position data and curve shape data are difficult to obtain. If the longitudinal acceleration control mode G xMode is not in the condition of 0, the longitudinal acceleration control mode G xMode is set to 1 or 2 depending on the situation of the curve shape data and the vehicle position data.
  • the longitudinal acceleration control mode G xMode is set to 1.
  • D t1_V1 calculated by the equation (27) of S110 is 0, the longitudinal acceleration control mode G xMode is set to 1.
  • the longitudinal acceleration control mode G xMode is set to 1.
  • the longitudinal acceleration control mode G xMode is set to 1 assuming that the accuracy of the GPS is lowered. In other conditions, it is 2.
  • the longitudinal acceleration control based on the lateral motion linkage longitudinal acceleration G xGVC can be performed even in a situation where it is difficult to acquire data by GPS. After the calculation, the process proceeds to S510.
  • the curve curvatures ⁇ PP0 , ⁇ PP1 , ⁇ PP2 and the curve curvature changes d ⁇ PP0 / dx, d ⁇ PP1 / dx, d ⁇ PP2 / dx and the vehicle speed V at the forward gaze distances L PP0 , L PP1 and L PP2 are set. Based on this, a longitudinal acceleration command value initial value is created.
  • the longitudinal acceleration command values G xREQiniPP0 and G xREQiniPP1 based on the curve curvature changes d ⁇ PP0 / dx, d ⁇ PP1 / dx in the vicinity of the vehicle are calculated by the above-described equation (6), and the longitudinal acceleration command value based on the curve curvature ⁇ PP2 far from the vehicle.
  • G xREQiniPP2 is calculated by the above equation (7).
  • values C xy0_ini , C xy1_ini which are preset constants when d ⁇ PPm / dx is positive, correction coefficient k ⁇ based on C x_ini and road surface friction coefficient ⁇ , and driver requested longitudinal acceleration G xDrvREQ are used.
  • the correction coefficient kG xDrv the following equations (28) to (29) are given.
  • k ⁇ and kG xDrv are values from 0 to 1
  • k ⁇ is set so that the value is smaller in the region where the road surface friction coefficient ⁇ is small than in the large region
  • kG xDrv is the driver requested longitudinal acceleration G xDrvREQ . If the value is greater than or equal to the value, the value is decreased according to the increase and finally set to zero.
  • G ySET and G xREQfar_min in equation (7) are changed according to the road surface friction coefficient ⁇ . For example, when the road surface friction coefficient ⁇ is less than a certain value, G ySET and G xREQfar_min are changed to small values.
  • the longitudinal acceleration command value correction value is given by the following equation (30) using the longitudinal acceleration G xGrad generated in the vehicle by the road surface vertical gradient Grad.
  • G xGrad is a value that is negative for an up slope and positive for a down slope. After the calculation, the process proceeds to S710.
  • G XREQfin performs the same operation G of the operation in S700 shown in the above-described first embodiment xREQiniPP0, G xREQiniPP1, G xREQiniPP2 as G xREQhoseiPP0, G xREQhoseiPP1, G xREQhoseiPP2 respectively.
  • a combination method of G xREQfin and G xGVC for example, as shown in FIG. 14, if both are the same sign , the larger absolute value is G xREQfinGVC.
  • G xREQfinGVC if both are the same sign , the larger absolute value is G xREQfinGVC.
  • weighting may be added.
  • G xREQfinGVC As calculation methods herein G xREQfinGVC, after calculating the G xREQfin, has been how to combine the G xGVC, not limited to this method.
  • G xREQfin may be calculated using G xGVC instead of the longitudinal acceleration command value correction value G xREQhoseiPP0 based on the forward gazing point PP0 in the immediate vicinity of the host vehicle when calculating G xREQfin , and this value may be used as G xREQfinGVC. .
  • the process proceeds to S810.
  • a command value for realizing the longitudinal acceleration command value G xREQfinGVC is set. If the longitudinal acceleration control mode is 0, a command value for not performing the longitudinal acceleration control is set. It transmits to the said longitudinal acceleration generation means 5, and transmits the information presentation command value according to the longitudinal acceleration control state to the information presenter 10 simultaneously.
  • the signal transmitted when the longitudinal acceleration command value G xREQfinGVC can be realized by the longitudinal acceleration generating means 5 by transmitting the longitudinal acceleration command value G xREQfinGVC as described above.
  • the acceleration command value G xREQfinGVC is transmitted as a control command value.
  • a command value for controlling the longitudinal acceleration generating means 5 is created and transmitted based on the longitudinal acceleration command value GxREQfinGVC .
  • the longitudinal acceleration generating means 5 is a hydraulic friction brake and the longitudinal acceleration control is performed by sending the hydraulic pressure command value to the hydraulic friction brake controller
  • the hydraulic pressure command value is created based on the longitudinal acceleration command value G xREQfinGVC
  • the created hydraulic pressure command value is transmitted as a control command value. This causes the vehicle to generate longitudinal acceleration based on the longitudinal acceleration command value G xREQfinGVC .
  • a command for realizing the longitudinal acceleration command value may be transmitted to the plurality of longitudinal acceleration generating means 5.
  • the longitudinal acceleration generating means 5 for realizing the longitudinal acceleration created based on the G x REQhoseiPP2 which is the longitudinal acceleration command value when the vehicle position is far from the curve is the transmission or the engine, or both, and near the curve.
  • the hydraulic friction brake is further applied as the longitudinal acceleration generating means 5 for realizing the longitudinal acceleration created based on the longitudinal acceleration command values GxREQhoseiPP1 , GxREQhoseiPP0, and GxGVC .
  • a drive command value to the display device or the sound generator is transmitted so as to notify the driver that the longitudinal acceleration control is being performed.
  • the longitudinal acceleration control mode is 1, a drive command value to the display or sound generator is transmitted so as to inform the driver that deceleration is not performed before the curve.
  • values set in advance in this embodiment may be changed according to the driver setting value G DrvSet .
  • the driver setting value G DrvSet takes a value from 0 to 10
  • the driver setting value G DrvSet is 0, the longitudinal acceleration control by the lateral motion linkage longitudinal acceleration G xGVC is not performed without performing the longitudinal acceleration control from the front of the curve. Assuming that only control is performed, and the greater the G DrvSet is, the greater the deceleration from the far side of the curve is.
  • T PP0 , T PP1 , and T PP2 are all very small values, and as G DrvSet increases.
  • the T PP2 a large value Te, it is a G yset as small value.
  • FIG. 15 is a system block diagram showing the configuration of the vehicle motion control device according to the third embodiment of the present invention.
  • the vehicle motion control device 1 ′′ of this embodiment communicates with a curve shape acquisition unit 2 that acquires a curve shape ahead of the host vehicle, a host vehicle position acquisition unit 3 that acquires a host vehicle position, and an in-vehicle electronic controller 12.
  • the calculation result of the vehicle motion control calculation means 4 ′′ is sent to the longitudinal acceleration generation means 5 and the information presentation means 10 via the on-vehicle electronic controller 12, and drives the actuator capable of generating the longitudinal acceleration in the vehicle.
  • the vehicle-mounted electronic controller 12 is a vehicle-mounted electronic controller capable of driving and controlling the means for communicating with the vehicle motion control device 1 ′′, the longitudinal acceleration generating means 5, and the information presenting means 10. Even when the on-vehicle electronic controller 12 directly controls driving of the acceleration / deceleration actuator that generates the longitudinal acceleration on the vehicle when driving and controlling the longitudinal acceleration generating means 5, the communication with the electronic controller that controls the acceleration / deceleration actuator is performed.
  • the acceleration / deceleration actuator may be driven and controlled.
  • the vehicle motion control device 1 ′′ of the present embodiment does not necessarily have to be incorporated in the vehicle, and may have a shape that can be easily taken out by the driver.
  • the curve shape acquisition means 2 the own vehicle position acquisition means 3 for acquiring the own vehicle position
  • the longitudinal acceleration generation means 5 the information presentation means 10 are the same as those in the first and second embodiments, and the description thereof is omitted. .
  • the vehicle motion control calculation means 4 ′′ creates a longitudinal acceleration command value to be generated in the vehicle based on the information obtained by the curve shape acquisition means 2, the own vehicle position acquisition means 3 and the vehicle communication means 11, and The longitudinal acceleration control of the vehicle is performed by communicating with the vehicle-mounted electronic controller 12 via the vehicle communication means 11.
  • the method for creating the longitudinal acceleration command value in the present embodiment is the same as in the first embodiment. Since it is the same as 2, the description is omitted.
  • the vehicle communication means 11 is means for communicating with the on-vehicle electronic controller 12 mounted on the vehicle. For example, even if the vehicle motion control device 1 ′′ and the on-vehicle electronic controller 12 are connected by a connector to communicate with the electronic controller mounted on the vehicle, the vehicle motion control device 1 ′′ identification code is used in advance.
  • the method of registering in the vehicle-mounted electronic controller 12 mounted on the vehicle and communicating with the vehicle-mounted electronic controller 12 by wireless communication may be used.
  • the longitudinal acceleration generating means 5 and the information presenting means 10 include means for communicating with the vehicle communication means 11, as shown in FIG. 16, the vehicle motion control device 1 ′′ is directly forward and backward via the vehicle communication means 11.
  • the longitudinal acceleration generating means 5 and the information presenting means 10 may be controlled by communicating with the acceleration generating means 5 and the information presenting means 10.
  • the present invention can be incorporated into a GPS-equipped mobile phone or a small portable navigation device, etc., and the driver can bring his or her own mobile phone or small portable navigation device into the vehicle before and after the present invention. Acceleration control can be realized.
  • FIG. 17 is a system block diagram showing the configuration of the vehicle motion control device according to the fourth embodiment of the present invention.
  • the vehicle motion control device 1 ′ ′′ includes a curve shape acquisition unit 2 that acquires a curve shape in front of the host vehicle, a host vehicle position acquisition unit 3 that acquires a host vehicle position, and an in-vehicle electronic controller 12. Based on information obtained by the vehicle communication means 11 for communication, the setting information acquisition means 13, the curve shape acquisition means 2, the vehicle position acquisition means 3, the setting information acquisition means 13, and the vehicle communication means 11. Vehicle motion control calculating means 4 ′ ′′ for calculating the longitudinal acceleration generated in the vehicle is provided.
  • the calculation result of the vehicle motion control calculation means 4 ′ ′′ is sent to the longitudinal acceleration generation means 5 and the information presentation means 10 via the on-vehicle electronic controller 12 to drive the actuator capable of generating the longitudinal acceleration in the vehicle.
  • the vehicle motion control device 1 ′ ′′ according to the present embodiment does not necessarily have to be incorporated in the vehicle, and may have a shape that can be easily taken out by the driver.
  • the curve shape acquisition means 2 the own vehicle position acquisition means 3 for acquiring the own vehicle position
  • the longitudinal acceleration generation means 5 the information presentation means 10
  • the vehicle communication means 11 the in-vehicle electronic controller 12 are the same as those in the first embodiment. Since it is the same as 2 and 3, description is abbreviate
  • the setting information acquisition means 13 is a constant setting information that can be set by the driver, such as the above-mentioned forward gaze times T PP0 , T PP1 , T PP2 and lateral acceleration setting value G ySET , or a combination of some preset constants.
  • the driver may directly input the forward gaze times T PP0 , T PP1 , T PP2 and the lateral acceleration set value GySET within a certain range, and the input values may be set information.
  • control information may be a combination of several constants such as “sport mode” and “normal mode”, and constants corresponding to the control mode selected by the driver may be set information.
  • the vehicle motion control calculation means 4 ′ ′′ includes means for storing the setting information acquired by the setting information acquisition means 13, and the curve shape acquisition means 2, the own vehicle position acquisition means 3, and the setting information acquisition means 13. , By generating a longitudinal acceleration command value to be generated in the vehicle based on the information obtained by the vehicle communication means 11 and communicating with the vehicle-mounted electronic controller 12 via the vehicle communication means 11, Perform acceleration control.
  • the method of creating the longitudinal acceleration command value in the present embodiment is the same as that in the first and second embodiments, and the description thereof will be omitted.
  • the configuration of the vehicle motion control device according to the fifth embodiment of the present invention is the same as that of the first embodiment, and the number of forward gazing points when calculating the longitudinal acceleration command value is different.
  • FIG. 18 shows a calculation flowchart in the vehicle motion control apparatus 1.
  • the first embodiment similarly to the vehicle position using GPS data P v (X v, Y v ) makes a determination of whether updated, the 1 data update flag F GPSref if data is updated If not, 0 is set. After the calculation, the process proceeds to S200.
  • the vehicle speed is calculated from the time change of the vehicle position as in the first embodiment. After the calculation, the process proceeds to S320.
  • the forward gaze distance is calculated. As shown in FIG. 9, two forward gazing points PP0 and PP3 are set on the course in the traveling direction of the own vehicle from the very vicinity to the far side of the own vehicle, and from the own vehicle to the forward gazing points PP0 and PP3.
  • the forward gaze distances L PP0 and L PP3 are calculated.
  • L PP0 and L PP3 are obtained by using the forward gaze times T PP0 and T PP3 (where T PP0 ⁇ T PP3 ) and the vehicle speed V that are set in advance, and the moving speeds V PP0 and V PP3 of the front gaze point, Is given by equation (31).
  • L PP0_z1 and L PP3_z1 are the previous values of L PP0 and L PP3
  • ⁇ PP0_z1 and ⁇ PP3_z1 are the previous values of ⁇ PP0 and ⁇ PP3
  • ⁇ t is the unit step time of the calculation
  • min (A, B) Is a function that selects the smaller value of A and B.
  • the moving speeds V PP0 and V PP3 of the forward gazing point are expressed by the following equations using the vehicle longitudinal acceleration G x obtained by differentiating the vehicle speed V and the moving speed limit values V PPlmt0 and V PPlmt3 of the forward gazing point. (32).
  • the vehicle longitudinal acceleration G x may be created from the longitudinal acceleration obtained by the configuration provided with means for obtaining the longitudinal acceleration by communication with other controllers or by direct measurement by an acceleration sensor.
  • the moving speed limit values V PPlmt0 and V PPlmt3 of the forward gazing point are values set in advance based on the previous values L PP0_z1 and L PP3_z1 of the forward gazing distance, and as shown in FIG.
  • L PP0_z1 and L PP3_z1 setting but V Ppmin smaller than L PP_near, below L PP_near or L PP_lmt is, L PP0_z1, as values convex curve decreases down according to the increase of L PP3_z1, the V Ppmin larger than L PP_lmt May be.
  • L PP0_z1 and L PP3_z1 setting but V Ppmin smaller than L PP_near, below L PP_near or L PP_lmt is, L PP0_z1, as values convex curve decreases down according to the increase of L PP3_z1, the V Ppmin larger than L PP_lmt May be.
  • the longitudinal acceleration control permission flag is calculated as in the first embodiment. After the calculation, the process proceeds to S500.
  • the curvature changes d ⁇ n / dx are calculated, and the curve curvatures ⁇ PP0 and ⁇ PP3 at the forward gaze distances L PP0 and L PP3 and the curve curvature changes d ⁇ PP0 / dx and d ⁇ PP3 / dx are calculated.
  • a curve curvature radius of an arc passing through three consecutive node points P n ⁇ 1 , P n , P n + 1 is obtained, and the reciprocal thereof is taken to obtain the curve of the node point P n .
  • the curve curvature ⁇ n can be obtained.
  • the curve curvatures ⁇ PP0 and ⁇ PP3 corresponding to the forward gaze distances L PP0 and L PP3 and the curve curvature are calculated.
  • Changes d ⁇ PP0 / dx and d ⁇ PP3 / dx are calculated. For example, as shown in FIG.
  • the calculation method of the curve curvature ⁇ n and the curve curvature change d ⁇ n / dx of each node point is not limited to the above method, and any method can be used as long as the curve curvature and the curve curvature change at each node point can be calculated. . After the calculation, the process proceeds to S620.
  • the longitudinal acceleration command value initial value is created based on the time change of the curve curvature at the forward gaze distances L PP0 and L PP3 and the vehicle speed V, as shown in the above equation (4).
  • the time change of the curve curvature at the front gazing point is expressed by the curve curvature change d ⁇ PP / dx at the front gazing point and the moving speed V PP of the front gazing point.
  • the longitudinal acceleration command value initial values G xREQiniPP0 and G xREQiniPP3 can be calculated by the following equation (38) using the above equations (4) to (6) and (31) to (37).
  • C xy0 and C xy3 may be constants set in advance, or may be values changed according to other conditions. For example, different values may be used when d ⁇ PPm / dx is positive and when d ⁇ PPm / dx is negative. If other information such as a road surface friction coefficient or a driver's accelerator operation can be used, the value may be changed based on the information. For example, when the road surface friction coefficient is low such as a snowy road, C xy0 and C xy3 are set to a smaller value than the condition where the road surface friction coefficient is high such as an asphalt road.
  • the longitudinal acceleration command value initial values GxREQiniPP0 and GxREQiniPP3 are subjected to processing based on an intervention threshold value for longitudinal acceleration control, filter processing, selection processing, addition processing, and the like to create a final longitudinal acceleration command value GxREQfin .
  • a filtering process in which a time constant corresponding to the sign and the increase / decrease direction is set is performed on G xREQiniPP0 and G xREQiniPP3 , and a selection process and an addition process corresponding to the values are performed.
  • G xBRKs and G xACCs are preset values.
  • the longitudinal acceleration command value G xREQfin as shown by the solid line is obtained.
  • the longitudinal jerk at this time is increased or decreased again before the curve curvature reaches the maximum value before entering the curve, in addition to the increase or decrease when the negative longitudinal acceleration command value is first calculated.
  • signal longitudinal acceleration control permission flag is transmitted when the 1, similarly to Embodiment 1, it is possible to realize a longitudinal acceleration command value G XREQfin by the longitudinal acceleration generating means 5 by sending a longitudinal acceleration command value G XREQfin In this case, the longitudinal acceleration command value G xREQfin is transmitted as the control command value.
  • the driver does not excessively decelerate in the far distance of the curve where it is considered that the time change of the curve curvature cannot be recognized in detail.
  • the driver's expected deceleration can be realized and the driver feeling can be improved.
  • the fifth embodiment can be realized in the configurations of the above-described second to fourth embodiments.

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Databases & Information Systems (AREA)
  • Mathematical Physics (AREA)
  • Software Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Data Mining & Analysis (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Regulating Braking Force (AREA)

Abstract

車両運動制御装置において、自車両前方のカーブ形状を取得するカーブ形状取得手段2と、自車両の位置を取得する自車位置取得手段3と、そのカーブ形状及びその自車両の位置に基づいて、車両に発生させる前後加速度指令値を演算する車両運動制御演算手段4と、を有し、車両運動制御演算手段4は、自車両がカーブ前からカーブ進入し、カーブ曲率が一定、もしくは最大になる地点まで走行する際に、複数の異なる負の前後加速度指令値を演算する。これにより車両に横運動が発生していない状態においても、ドライバフィーリングよく車両を加減速する車両運動制御装置を提供することが可能になる。

Description

車両運動制御装置
 車両の運動状態が好適になるよう車両を加減速する車両運動制御装置に関する。
 従来、ナビゲーションシステムのカーブ情報や旋回時の横加速度から、車両に発生する横加速度が設定値よりも過大となる際に減速を行うシステムが知られている(例えば特許文献1)。
 このような装置では、カーブを通過する際に発生する横加速度の大きさが設定値以上にならないように、予め設定された横加速度設定値と自車前方のカーブ曲率からカーブ走行時の目標車両速度を設定し、前記目標車両速度と実際の車両速度から、必要な減速度を作成している。このような減速度の作成方法は、車両がカーブを旋回走行可能な限界速度を超過してカーブに進入する場合、路外への逸脱を抑制する上で有効である。
 しかし、この設定横加速度を旋回可能な限界横加速度ではなく、ドライバが通常旋回時に許容するであろう横加速度に設定し、カーブ前での減速制御を実行した場合、必ずしもドライバの減速フィーリングにあった減速になるとは限らない。この一因として、上述の目標車両速度による減速度作成方法では、カーブ進入前の総減速量(減速度の積分値)は規定できるが、減速度の時間変化を規定できないことがあげられる。
 仮にこのカーブ前の減速度が一定となるように減速制御をした場合、カーブや車両速度によってはドライバの減速フィーリングに合わない可能性がある。またカーブ毎にこの減速度の時間変化を設定しようとした場合、莫大な適合工数と膨大なデータが必要となる。
 ドライバの減速フィーリングにあった加減速度の時間変化を規定する方法として、ドライバ操作により発生する横加加速度に基づく加減速度の作成方法が提案されている(例えば特許文献2,非特許文献1)。この方法により、カーブ毎に減速度の時間変化を設定することなくスキルドライバと同様の加減速を行うことができる。
特開2009-51487号公報 特開2008-285066号公報
自動車技術会論文集Vol39,No.3,2008
 しかし横加加速度に基づく加減速度の作成方法は、車両に横運動が発生した際に、その横運動と連係した加減速度の作成方法であり、カーブ進入前、直線路での減速のような、車両に横運動が発生していない状態での減速度を設定することはできない。
 本発明の目的は、上記のような事情に鑑みてなされたものであり、車両に横運動が発生していない状態においても、ドライバフィーリングよく車両を加減速する車両運動制御装置を提供することである。
 上記目的を達成するために、本発明の車両運動制御装置は、自車両前方のカーブ形状を取得するカーブ形状取得手段と、自車両の位置を取得する自車位置取得手段と、カーブ形状及び自車両の位置に基づいて、車両に発生させる前後加速度指令値を演算する車両運動制御演算手段と、を有し、車両運動制御演算手段は、自車両進行方向を正とする前後加速度指令値において、自車両がカーブ前からカーブに進入し、カーブ曲率が一定、もしくは最大になる地点まで走行する際に、複数の異なる負の前後加速度指令値を演算する構成とする。
 また、自車両前方のカーブ形状を取得するカーブ形状取得手段と、自車両の位置を取得する自車位置取得手段と、カーブ形状及び自車両の位置に基づいて、車両に発生させる前後加速度指令値を演算する車両運動制御演算手段と、を有し、車両運動制御演算手段は、自車両進行方向を正とする前後加速度指令値において、自車両がカーブ前からカーブに進入し、カーブ曲率が一定、もしくは最大になる地点まで走行する際に、負の前後加速度指令値を演算し、負の前後加速度指令値は、前後加速度の時間変化である前後加加速度が、減速開始直後以外にカーブ進入前からカーブ曲率が一定、もしくは最大になる期間において増減される構成とする。
 本明細書は本願の優先権の基礎である日本国特許出願2010-171304号の明細書および/または図面に記載される内容を包含する。
 本発明は、車両に横運動が発生していない状態においても、ドライバフィーリングよく車両を加減速する車両運動制御装置を提供できる。
本発明に係る車両運動制御装置のカーブ前での前後加速度変化を示した概念図である。 本発明に係る車両運動制御装置の自車両と前方注視点の関係を示した概念図である。 本発明に係る車両運動制御装置の横加速度推定値とカーブ遠方での前後加速度指令値の関係を示す図である。 本発明に係る車両運動制御装置の前方注視点までの距離との前方注視点の移動速度の関係を示す図である。 本発明に係るカーブ曲率,速度,前後加速度の時間変化を示す図である。 本発明に係る車両運動制御装置の第一の実施形態を示す図である。 図6の車両運動制御装置のフローチャートを示す図である。 図6の車両運動制御装置の自車位置とノード点位置を示す概念図である。 図6の車両運動制御装置の距離とカーブ曲率,カーブ曲率変化の関係図である。 図6の車両運動制御装置のカーブ曲率,カーブ曲率変化と、前後加速度の時間変化を示す図である。 本発明に係る車両運動制御装置の第二の実施形態を示す図である。 図11の車両運動制御装置のフローチャートを示す図である。 図11の車両運動制御装置の自車位置とノード点位置の関係を示す概念図である。 図11の車両運動制御装置の前後加速度の時間変化を示す図である。 本発明に係る車両運動制御装置の第三の実施形態の一例を示す図である。 本発明に係る車両運動制御装置の第三の実施形態の他例を示す図である。 本発明に係る車両運動制御装置の第四の実施形態を示す図である。 本発明に係る車両運動制御装置の第五の実施形態のフローチャートを示す図である。 本発明に係る車両運動制御装置の第五の実施形態のカーブ曲率,カーブ曲率変化の関係図である。 本発明に係る車両運動制御装置の第五の前方注視点までの距離との前方注視点の移動速度の関係を示す図である。 本発明に係る車両運動制御装置の第五の前方注視点までの距離との前方注視点位置でのカーブ曲率の時間変化制限値の関係を示す図である。 本発明に係る車両運動制御装置の第五のカーブ曲率,速度,前後加速度,前後加速度の時間変化を示す図である。
 図1に本発明によるカーブ前での前後加速度変化の概念図を示す。
 図1のaおよびa′がそれぞれ従来技術による前後加速度,前後加加速度、bおよびb′がそれぞれ本発明による前後加速度,前後加加速度である。
 図1に示すように、従来技術では車両がカーブ前のある地点に達した時間Aからカーブ進入開始の時間Bまでの間、一定の減速となる。この結果、車両速度が高い条件ではドライバがどの程度のカーブ曲率かを明確に認識する前に強い減速度が発生する可能性があり、結果、旋回時に所定の横加速度となっていたとしても、カーブ手前に過度に減速したという感じを受ける。
 本発明では、前記時間Aからカーブ曲率が一定になる時間Cまで前後加速度が変化し、自車位置がカーブ遠方である時の区間Dにおける、カーブ曲率に基づく減速から、自車位置がカーブ近傍である時の区間Eにおける、カーブ曲率の時間変化による減速へと移行する。この結果、減速開始から減速度が最大となるまでの区間Fにおいて、減速開始直後の区間Gとカーブ近傍での減速へ移行する区間Hの2区間において、前後加加速度の増減が発生するという特徴をもつ。
 これにより、カーブ遠方にてドライバが“カーブがあるから減速が必要”と認識したことによる減速から、カーブ近傍にてドライバがカーブの曲率変化を認識し、“曲率変化が大きいからもう少し減速が必要”といった、カーブ曲率の時間変化に応じた減速へと移行することができ、ドライバフィーリングにあった減速が可能となる。
(カーブ曲率およびカーブ曲率変化に基づく前後加速度指令値の演算方法)
 実施形態の説明に先立ち、本発明の理解が容易になるよう、以下、図2を用いてカーブ曲率、およびカーブ曲率変化に基づく前後加速度指令値の演算方法について説明する。なお本明細において、前後加速度は加速側が正、減速側が負であり、減速度は減速側が正となる値である。図2に示すように、自車両が車両速度Vにて破線で示す走行コースを走行するシーンを考える。この時ドライバは自車前方の走行コースの形状を見て加減速を行うと考えられる。この時ドライバの見ている点を疑似的に表現した点として、自車両進行方向に前方注視点を設定し、この位置のカーブ曲率κPP、カーブ曲率変化dκPP/dxとする。ここで前方注視点は、自車両前方のコース上にあって、自車両からある距離Lpp離れた点であり、Lppは車両速度Vに予め設定される時間Tppを積算して得られる値である。またカーブ曲率κPPはカーブの方向によらず0以上の値とし、カーブ曲率半径が十分大きければ、カーブ曲率κPPを0とする。車両速度Vのままで前方注視点の位置へ進入すると考えた場合、発生するであろう横加速度推定値GyESTおよび横加速度の時間変化である横加加速度推定値dGyESTは、それぞれ以下の式(1)(2)で与えられる。ここで横加速度推定値GyESTは、式(1)からわかるように、右旋回,左旋回によらず、常に0以上の値となる。
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000002
 ここで自車位置がカーブ近傍にあり、車両から前方注視点までの距離が短い条件では、ドライバは上述の横加加速度に基づく加減速度の作成方法(特許文献2,非特許文献1)と同様のアルゴリズムで加減速すると仮定すると、横加加速度推定値dGyESTに基づく前後加速度指令値GxREQは以下の式(3)で与えられる。
Figure JPOXMLDOC01-appb-M000003
 Cxyは比例定数であり、予め設定される値である。ここで式(2)の第二項
Figure JPOXMLDOC01-appb-I000004
の影響が第一項
Figure JPOXMLDOC01-appb-I000005
と比べ十分小さいとし、式(2)を式(3)に代入すると以下の式(4)が得られる。
Figure JPOXMLDOC01-appb-M000006
 このように前方注視点におけるカーブ曲率の時間変化(dκPP/dt)に基づいた前後加速度指令値が得られる。更に(dκPP/dt)は式(5)のように変形することができる。
Figure JPOXMLDOC01-appb-M000007
 ここで(dx/dt)は前方注視点の移動速度VPPであるため、式(4)はVPPを用いて以下の式(6)で与えられる。
Figure JPOXMLDOC01-appb-M000008
 これによりカーブ近傍における前後加速度指令値が作成できる。
 一方、自車位置がカーブ遠方にて、車両から前方注視点までの距離が長い条件では、ドライバはカーブ曲率変化のような詳細な情報を把握できず、漠然としたカーブ曲率に応じて減速を行っていると考えられる。この時の前後加速度指令値GxREQfarは、例えば上述の式(1)により得られた横加速度推定値GyESTを用いて、図3に示すように、横加速度推定値GyESTに応じてある横加速度設定値GyLMT0からGyLMT1まで前後加速度指令値GxREQfarが最小でGxREQfar_minとなるように減少(減速度としては増加)するように作成してもよい。また自車両から遠方の前方注視点までの距離をLfarとし、ある設定横加速度GySETを用いて、前後加速度指令値GxREQfarを以下の式(7)で与えてもよい。ここでmin(A,B)はAとBの内どちらか小さい値を選択する関数であり、max(A,B)はAとBの内どちら大きい方を選択する関数である。
Figure JPOXMLDOC01-appb-M000009
 ここでLfarは、0より大きい値であれば、予め設定される値であっても、車両速度Vに予め設定される時間Tppを積算して得られる値であってもよい。またGySET、およびGxREQfar_minは予め設定される値であっても、路面摩擦係数取得手段やドライバによる設定手段を備える構成であれば、路面摩擦係数やドライバによる設定値に応じて変化する値であってもよい。
 またCxは予め設定される値であっても、ドライバによるアクセル操作等に応じて変化する値であってもよい。GxREQfarの作成方法はこれらに限定するものではないが、GxREQfarによる減速度は、カーブ近傍での前後加速度GxREQによる減速度以下となるように作成する。
 以上のようにして得られたカーブ近傍およびカーブ遠方の前後加速度指令に基づいて、最終的な前後加速度指令値を作成することで、図1bに示したようにカーブ遠方(区間D)のカーブ曲率による減速から、カーブ近傍(区間E)のカーブ曲率変化による減速へと減速度が増加する前後加速度を発生させることができる。
 また上述のように自車位置がカーブ近傍の場合と、カーブ遠方の場合で前後加速度指令を別々に作成するのではなく、前記式(6)における前方注視点の移動速度VPPをカーブまでの距離で変化させることにより、自車位置がカーブ遠方にある時の減速からカーブ近傍での減速へと変化させてもよい。例えば前方注視点でのカーブ曲率κPPがある値κPPlmt以上となった場合、図4に示すように、前方注視距離LppκがLppκ_lmtよりも大きい領域では、前方注視点の移動速度VPPをVPPminとし、自車両がカーブに近づき、前方注視距離Lppκ_nearで車両速度Vとなるように、前方注視距離Lppκが小さくなるに応じて前方注視点の移動速度VPPを増加させる。
 ここでLppκ_lmt,Lppκ_nearは、Lppκ_lmtがLppκ_near以上となるように、またVPPminは0以上、かつ車両速度V以下となるよう予め設定される値である。
 これは、自車位置がカーブ遠方で、ドライバが漠然とカーブを認識しているような状態では、ドライバの視線の移動速度が小さく、カーブに近づき、ドライバがカーブにそって視線を移動させるようになるに応じて視線の移動速度が増加するという行動を、前方注視点の移動速度の形で表現したものである。
 これにより、図5に示すように、自車位置でのカーブ曲率がκvとなるコースを走行した場合、前方注視点でのカーブ曲率κpp、前方注視点の移動速度VPPは図5に示すように変化し、この結果、カーブ遠方での小さな減速度から、カーブが近づくにつれて徐々に減速度を増加させることができる。
(発明を実施するための実施形態1)
 以下、図6~図10を用いて、本発明の第1の実施形態による車両運動制御装置の構成及び動作について説明する。
 最初に、図6を用いて、本発明の第1の実施形態による車両運動制御装置の構成について説明する。
 図6は、本発明の第1の実施形態による車両運動制御装置の構成を示すシステムブロック図である。
 本実施形態の車両運動制御装置1は車両に搭載されるものであり、自車両前方のカーブ形状を取得するカーブ形状取得手段2と、自車位置を取得する自車位置取得手段3と、前記カーブ形状取得手段2と前記自車位置取得手段3により得られた情報に基づいて車両に発生させる前後加速度を演算する車両運動制御演算手段4を備える。また前記車両運動制御演算手段4の演算結果は、前後加速度発生手段5に送られ、車両に前後加速度を発生可能なアクチュエータの駆動を行う。
 カーブ形状取得手段2としては、自車両が走行するコースの地図情報からカーブ形状を取得する方法であっても、路車間通信により自車両進行方向のカーブ情報を取得する方法であっても、車車間通信により自車両進行方向の前方を走行する車両から、カーブ情報を取得する方法であっても、撮像手段により自車両前方のカーブ形状を取得する方法であってもよい。また地図情報取得手段、路車間通信手段、もしくは車車間通信手段、もしくは撮像手段との通信によりカーブ形状情報を取得する方法であってもよい。
 自車位置取得手段3としては、グローバルポジショニングシステム(GPS)により自車両の座標から自車両前方のカーブに対する自車位置を取得する方法であっても、路車間通信により自車両前方のカーブに対する自車位置を取得する方法であっても、撮像手段により自車両前方もしくは周囲、もしくはその両方の画像を取得し、自車両前方のカーブに対する自車位置を取得する方法であってもよい。またGPS、もしくは路車間通信手段、もしくは撮像手段との通信によりカーブに対する自車位置を取得する方法であってもよい。
 ここでカーブ形状取得手段2および自車位置取得手段3として、複数の方法を備えていてもよい。例えばカーブ形状取得手段2として地図情報および撮像手段によりカーブ形状情報を取得する手段を備え、自車位置取得手段3として、GPSおよび撮像手段により自車位置を取得する手段を備えていてもよい。複数の方法を組合せることで、カーブ遠方の情報は地図情報、およびGPSによるカーブ形状情報および自車位置情報を用い、カーブ近傍では前記地図情報、およびGPSによるカーブ形状情報および自車位置情報に加え、撮像手段によるカーブ形状情報および自車位置情報を用いることで、より精度のよいカーブ形状情報および自車位置情報が得られる。
 また、GPSによる自車位置情報を取得困難である際に、撮像手段によりカーブ形状情報、および自車位置情報を取得することで、前後加速度制御に必要なカーブ形状情報、および自車位置情報を取得することができる。逆に撮像手段ではカーブ形状情報、および自車位置情報が取得困難な状況では、GPSおよび地図情報によりカーブ形状情報、および自車位置情報を取得することで、前後加速度制御に必要なカーブ形状情報、および自車位置情報を取得することができる。
 前後加速度発生手段5として、エンジンのスロットル開度を制御することで前後加速度を発生させるエンジン、もしくはモータの駆動トルクを制御することで前後加速度を発生させるモータ、もしくは動力を各車輪に伝達する際の変速比を変えることで前後加速度を発生させる変速機、もしくは各車輪のブレーキパッドにブレーキディスクを押しつけることで前後加速度を発生させる摩擦ブレーキといった前後加速度を発生可能な加減速アクチュエータである。
 車両運動制御演算手段4は、記憶領域、および演算処理能力、および信号の入出力手段をもつ演算装置であり、前記カーブ形状取得手段2および前記自車位置取得手段3により得られたカーブ形状および自車位置から車両に発生させる前後加速度指令値を演算し、前記前後加速度指令値となる前後加速度を発生可能な前記加減速アクチュエータを前後加速度発生手段5とし、前記加減速アクチュエータの駆動制御器へ前記前後加速度指令値を送る。
 ここで送る信号は前後加速度ではなく、前記加減速アクチュエータにより前記前後加速度指令値を実現する信号であればよい。
 例えば前記加減速アクチュエータが油圧によりブレーキパッドをブレーキディスクに押し付ける油圧式摩擦ブレーキである場合、前後加速度指令値を実現する油圧指令値を油圧式摩擦ブレーキ制御器へ送る。また油圧式摩擦ブレーキ制御器を介さず、前後加速度指令値を実現する油圧式摩擦ブレーキ駆動アクチュエータの駆動信号を油圧式摩擦ブレーキ駆動アクチュエータに直接送ってもよい。
 また前後加速度指令値を実現する際に前後加速度指令値に応じて駆動制御を行う前記加減速アクチュエータを変更してもよい。
 例えば自車位置がカーブ遠方での減速における前後加速度指令値を実現するために、前記変速機の変速比を変更する指令値を変速機制御器に送り、カーブ近傍での減速における前後加速度指令値を実現するために、油圧指令値を油圧式摩擦ブレーキ制御器へ送ってもよい。
 以下、前記カーブ形状取得手段2として自車両が走行するコースの地図情報を用い、前記自車位置取得手段3としてGPSを用いる場合における前後加速度指令値の作成方法を示す。
 図7に前記車両運動制御装置1における演算フローチャートを示す。
 S000では、GPSによる自車位置データPv(Xv,Yv)、および自車位置情報と地図情報からカーブ形状データとして自車両自車両進行方向にあるノード点位置データPn(Xn,Yn)を取得し、演算を行う。ここでnは図8に示すように、自車両進行方向と逆方向に最初にあるノード点位置を0とし、自車両進行方向に向かって1,2・・・,nmaxと増加する整数である。またnmaxは取得可能なノード点位置データ番号nの最大値である。演算後S100へ進む。
 S100では、GPSによる自車位置データPv(Xv,Yv)が更新されたか否かの判定を行い、データが更新されていればデータ更新フラグFGPSrefを1に、されていなければ0とする。演算後S200へ進む。更新の判定方法として、自車位置データPv(Xv,Yv)の前回値Pv_z1(Xv_z1,Yv_z1)との比較により更新されたか否かを判定しても、GPSから自車位置データの他に更新フラグを取得することで、更新されたか否かを判定してもよい。
 S200では、自車位置の時間変化から、車両速度の算出を行う。ここでデータ更新フラグが0の時、前回の車両速度算出結果を車両速度とする。データ更新フラグが1の時、前回データ更新フラグが1になってから、今回データ更新フラグが1になるまでに要した時間ΔtPと、前回データ更新フラグが1だった時の自車位置データPv_Pz1(Xv_Pz1,Yv_Pz1)と今回の自車位置データPv(Xv,Yv)から算出した自車両の移動距離ΔLvから、自車両の移動速度である車両速度Vを算出する。
 S300では前方注視距離の演算を行う。図9に示すように、自車両進行方向のコース上に自車両の極近傍から遠方まで前方注視点PP0,PP1,PP2という3つの前方注視点を設定し、自車両から前方注視点PP0,PP1,PP2までの前方注視距離LPP0,LPP1,LPP2を算出する。
 ここでLPP0,LPP1,LPP2は以下の式(8)の関係を満たすように予め設定される値であっても、予め設定される前方注視時間TPP0,TPP1,TPP2(ただしTPP0<TPP1<TPP2)と車両速度Vを用いて、それぞれ式(9)に示すように与えてもよい。ただし前方注視点PP0は自車両の極近傍の注視点とし、Lmaxは自車位置からノード点位置P1までの距離とノード点位置P1からノード点位置Pnmaxまでの各ノード点間距離を合計した値である。演算後S400へと進む。
Figure JPOXMLDOC01-appb-M000010
Figure JPOXMLDOC01-appb-M000011
 S400では、前後加速度制御許可フラグの演算を行う。前後加速度制御許可フラグは、その値が1の時、前後加速度制御を許可し、0の時、前後加速度制御を禁止するものとする。前後加速度制御許可フラグの作成方法としては、例えば前記データ更新フラグFGPSrefが0となっている時間が所定時間以上となった場合、GPSによる自車位置データ取得が困難として前後加速度制御許可フラグを0とする。
 また自車位置データによる走行軌跡と地図データ上で自車が走行していると想定しているコース形状との乖離が大きい場合、地図データ上の自車の走行コースが実際のコースと異なるとして、前後加速度制御許可フラグを0とする。
 また車両速度Vにより前後加速度制御許可フラグを0としてもよい。例えば制御を開始する最低車両速度を予め設定しておき、最低車両速度よりも車両速度Vが小さければ、前後加速度制御許可フラグを0とする。
 また上述のように、複数のカーブ形状データの取得手段、および自車位置データの取得手段を備える場合、その全ての取得手段において、カーブ形状データ、および自車位置データの取得が困難であると判断された場合、前後加速度制御許可フラグを0とする。例えば、GPSの他に撮像手段により、カーブ形状データ、および自車位置データを取得している場合、上述のようにGPSによる自車位置データ取得が困難と判定された上に、更に撮像手段によるカーブ形状データ、および自車位置データの取得が困難と判定された際に、前後加速度制御許可フラグを0とする。これら以外の条件では1とする。演算後S500へ進む。
 S500では、ノード点位置データPn(Xn,Yn)からnが1以上の点における各ノード点位置のカーブ曲率κn、および自車位置のカーブ曲率κvと、ノード点間のカーブ曲率変化dκn/dxを算出し、前方注視距離LPP0,LPP1,LPP2でのカーブ曲率κPP0,κPP1,κPP2、およびカーブ曲率変化dκPP0/dx,dκPP1/dx,dκPP2/dxを算出する。ここでカーブ曲率の算出方法としては、連続する3点のノード点Pn-1,Pn,Pn+1を通る円弧のカーブ曲率半径を求め、その逆数をとることでノード点Pnのカーブ曲率κnを求めることができる。
 また自車位置のカーブ曲率κvは、自車位置がノード点位置P1と一致していれば、カーブ曲率κvはカーブ曲率κ1となり、一致していなければ、ノード点P0,Pv,P1からカーブ曲率κvを算出することができる。ここでカーブ曲率κnおよびカーブ曲率κvはカーブの方向によらず正の値とする。
 またカーブ曲率半径が十分大きければ、カーブ曲率κnを0としてもよい。これにより得られた各ノード点のカーブ曲率κnと各ノード点間距離からカーブ曲率変化dκn/dxを算出する。図9に示すように、ノード点間を線系補完し、ノード点Pn,Pn+1間の距離をLnとすると、ノード点Pn,Pn+1間のカーブ曲率変化dκn/dxは以下の式(10)で与えられる。
Figure JPOXMLDOC01-appb-M000012
 同様に自車位置Pvとノード点P1間のカーブ曲率変化dκv/dxは、自車位置Pvとノード点P1間の距離をLv1とすると、以下の式(11)で与えられる。
Figure JPOXMLDOC01-appb-M000013
 各ノード点のカーブ曲率κn、およびカーブ曲率変化dκn/dx算出後、前方注視距離LPP0,LPP1,LPP2に対応したカーブ曲率κPP0,κPP1,κPP2、およびカーブ曲率変化dκPP0/dx、dκPP1/dx、dκPP2/dxを算出する。例えば図9に示すように、
PP0がPvとP1の間、PP1がP2とP3の間、PP2がPnとPn+1の間にある場合、カーブ曲率κPP0,κPP1,κPP2、およびカーブ曲率変化dκPP0/dx,dκPP1/dx,dκPP2/dxは、以下の式(12)~(17)で与えられる。
Figure JPOXMLDOC01-appb-M000014
Figure JPOXMLDOC01-appb-M000015
Figure JPOXMLDOC01-appb-M000016
Figure JPOXMLDOC01-appb-M000017
Figure JPOXMLDOC01-appb-M000018
Figure JPOXMLDOC01-appb-M000019
 ここで各ノード点のカーブ曲率κn、およびカーブ曲率変化dκn/dxの算出方法は上記方法に限らず、各ノード点でのカーブ曲率、およびカーブ曲率変化を算出可能な方法であればよい。演算後S600へと進む。
 S600では前方注視距離LPP0,LPP1,LPP2でのカーブ曲率κPP0,κPP1,κPP2、およびカーブ曲率変化dκPP0/dx,dκPP1/dx,dκPP2/dx、および車両速度Vに基づいて前後加速度指令値初期値を作成する。ここで車両近傍のカーブ曲率変化dκPP0/dx、dκPP1/dxによる前後加速度指令値GxREQiniPP0,GxREQiniPP1は上述の式(6)により算出し、車両遠方のカーブ曲率κPP2による前後加速度指令値GxREQiniPP2は、上述の図3に示した方法で作成する。
 ここで前方注視距離LPP0,LPP1,LPP2を上述の式(9)で示した前方注視時間TPP0,TPP1,TPP2で作成するとした場合、前方注視点PP0,PP1,PP2の移動速度V
PP0,VPP1,VPP2は、車両速度Vを微分して得られる車両前後加速度Gxを用いて、以下の式(18)で与えられる。
 ここで他の制御器との通信や、加速度センサによる直接測定により前後加速度を取得する手段を備える構成であれば、それにより得られた前後加速度から車両前後加速度Gxを作成してもよい。
Figure JPOXMLDOC01-appb-M000020
 式(6),(18)から、GxREQiniPP0,GxREQiniPP1を以下の式(19)により演算する。また図3からGxREQiniPP2を演算する。
Figure JPOXMLDOC01-appb-M000021
 ここでCxy0,Cxy1は予め設定される定数であっても、他の条件に応じて変更する値であってもよい。例えばdκPPm/dxが正の場合とdκPPm/dxが負の場合で異なる値としてもよい。また路面摩擦係数やドライバのアクセル操作といった他の情報を利用可能であれば、その情報に基づいて値を変更してもよい。例えば圧雪路のように路面摩擦係数が低い場合、アスファルト路のような路面摩擦係数が高い条件よりも、Cxy0,Cxy1を小さな値に設定する。
 またドライバがアクセル操作をしている場合、そのアクセル操作量に応じてdκPPm/dxが正となる時の値を小さくする。これらカーブ形状や自車位置以外の情報を利用する構成については、実施形態2にて説明する。演算後、S700へと進む。
 S700では前後加速度指令値初期値GxREQiniPP0,GxREQiniPP1,GxREQiniPP2に前後加速度制御の介入閾値による処理や、フィルタ処理,セレクト処理,加算処理等を行い最終的な前後加速度指令値GxREQfinを作成する。例えば、GxREQiniPP0,GxREQiniPP1,GxREQiniPP2に対して、その符号や増減方向に応じた時定数をそれぞれ設定したフィルタ処理を行い、その値に応じたセレクト処理や加算処理を行う。
 更に減速側の前後加速度制御介入閾値GxBRKs、および加速側の前後加速度制御介入閾値GxACCsとし、これらの値による前後加速度制御の介入閾値による処理を行う。ここでGxBRKs,GxACCsは予め設定される値である。
 またGxREQiniPP0,GxREQiniPP1,GxREQiniPP2の内、2つが同時に0以外の値となっている領域では、両者が同符号であれば、その絶対値が大きい方の値とし、異符合であれば、両者を加算した値とする。またGxREQiniPP0,GxREQiniPP1,GxREQiniPP2の内、3つが同時に0以外の値となっている領域では、3つの内同符号の2つの絶対値を比較し、その大きい方の値と、残る異符合の値を加算した値とする。これにより、GxREQiniPP0が正でGxREQiniPP2が負、すなわち自車両極近傍の位置ではカーブ曲率変化が負で、自車両前方にカーブ曲率変化が正となるカーブが存在する場合での減速度を小さくすることができ、連続カーブを走行している際の減速フィーリングを向上することができる。
 またここで加算をする際に、その符号に応じて重み付けをしてもよい。例えば減速を優先したければ、正となっている値が小さくなるような係数を積算して加算し、逆に加速を優先するのであれば、負となっている値が小さくなるような係数を積算して加算してもよい。
 これにより、図10に示すようなカーブ曲率κPP0,κPP1,κPP2、およびカーブ曲率変化dκPP0/dx,dκPP1/dx,dκPP2/dxとなるカーブを走行し、点線で示すGxREQiniPP0,破線で示すGxREQiniPP1,一点鎖線で示すGxREQiniPP2が得られた場合、実線で示したような前後加速度指令値GxREQfinが得られる。ここでGxREQiniPP0,GxREQiniPP1,GxREQiniPP2からGxREQfinを作成する方法は上記内容に限ったものではないが、図10のT21で示した、負の前後加速度、すなわち減速している際のGxREQiniPP2からGxREQiniPP1へと遷移する区間において、減速度が過度に減少しないようにする。
 同様に図10のT10で示したGxREQiniPP1からGxREQiniPP0へと遷移する区間においても、負の前後加速度、すなわち減速している際のGxREQiniPP1からGxREQiniPP0へと遷移する区間において、減速度が過度に減少しないようにする。演算後S800へと進む。
 S800では、前後加速度制御許可フラグが1であれば、前後加速度指令値GxREQfinを実現する指令値を、前後加速度制御許可フラグが0であれば、前後加速度制御を行わな
いようにする指令値を前記前後加速度発生手段5へ送信する。
 ここで前後加速度制御許可フラグが1の時に送信する信号は、上述の通り、前後加速度指令値GxREQfinを送信することで前記前後加速度発生手段5により前後加速度指令値GxREQfinを実現できる場合、前後加速度指令値GxREQfinを制御指令値として送信する。
 また前記前後加速度発生手段5に応じた指令値にする必要があれば、前後加速度指令値GxREQfinに基づいて前記前後加速度発生手段5を制御する指令値を作成し、送信する。例えば前記前後加速度発生手段5が油圧式摩擦ブレーキであり、油圧指令値を油圧式摩擦ブレーキ制御器に送ることで前後加速度制御を行う場合、前後加速度指令値GxREQfinに基づいて油圧指令値を作成し、作成した油圧指令値を制御指令値として送信する。
 これにより車両に前後加速度指令値GxREQfinに基づく前後加速度を発生させる。
 また上述のように、前後加速度指令値を実現する指令を複数の前後加速度発生手段5に送信してもよい。例えば、カーブ遠方からの前後加速度指令値であるGxREQiniPP2に基づいて作成された前後加速度を実現する前後加速度発生手段5を前記変速機もしくはエンジン、もしくはその両方とし、カーブ近傍での前後加速度指令値であるGxREQiniPP1、およびGxREQiniPP0に基づいて作成された前後加速度を実現する前後加速度発生手段5として更に前記油圧摩擦ブレーキを加える。
 これによりカーブ遠方の比較的一定な減速をエンジンのスロットル開度や、変速機のギア比を変更することによりエンジンブレーキでの減速を行い、カーブ近傍の変化が大きい減速を油圧摩擦ブレーキにより実現する。これによりドライバがカーブ遠方で進行方向にある程度カーブ曲率の大きいカーブを視認した際に、アクセルをオフにしてエンジンブレーキによる減速を行い、カーブ近傍にてカーブ曲率変化を明確に認識してからブレーキを操作して減速を行うことと同様の減速を実現できる。
 以上のように、本発明では、車両に発生する減速が、カーブ遠方の減速からカーブ近傍への減速へと減速パターンが変化することで、ドライバが前方のカーブを詳細に認識する前から過度の減速を行うことなく、ドライバフィーリングを向上できる。
(発明を実施するための実施形態2)
 以下、図11~図14を用いて、本発明の第2の実施形態による車両運動制御装置の構成及び動作について説明する。
 最初に、図11を用いて、本発明の第2の実施形態による車両運動制御装置の構成について説明する。
 図11は、本発明の第2の実施形態による車両運動制御装置の構成を示すシステムブロック図である。
 本実施形態の車両運動制御装置1′は車両に搭載されるものであり、自車両前方のカーブ形状を取得するカーブ形状取得手段2と、自車位置を取得する自車位置取得手段3と、車両運動情報取得手段6と、ドライバ入力情報取得手段7と、横運動連係前後加速度取得手段8と、路面情報取得手段9と、前記カーブ形状取得手段2と前記自車位置取得手段3、および前記車両運動情報取得手段6、前記ドライバ入力情報取得手段7、前記横運動連係前後加速度取得手段8と、前記路面情報取得手段9により得られた情報に基づいて車両に発生させる前後加速度を演算する車両運動制御演算手段4′を備える。
 また前記車両運動制御演算手段4′の演算結果は、前後加速度発生手段5、および情報提示器10に送られ、車両に前後加速度を発生可能なアクチュエータの駆動、およびドライバへの情報提示を行う。
 ここでカーブ形状取得手段2、自車位置を取得する自車位置取得手段3、および前後加速度発生手段5は上述の実施形態1と同様であるため、説明は省略する。
 前記車両運動情報取得手段6では、車両の運動情報として、少なくとも車両速度Vもしくは前後加速度Gx、もしくはその両方を取得する。ここで車両速度Vおよび前後加速度Gxはセンサ等により直接検出された値を取得しても、他の電子制御器が演算した結果を通信により取得してもよい。
 また車両速度Vおよび前後加速度Gxそのものが入力されなくとも、これらを推定可能な値であればよい。例えば車両速度Vの代わりに各車輪の車輪速度Vw[wheel](wheelにはFL(左前輪),FR(右前輪),RL(左後輪),RR(右前輪)がそれぞれ入る)を取得し、車両速度Vを推定してもよい。
 ドライバ入力情報取得手段7では、ドライバからの入力情報として、少なくともドライバ要求前後加速度GxDrvREQを取得する。ここでドライバ要求前後加速度GxDrvREQは、ドライバが直接入力した値を取得しても、他の電子制御器が演算した結果を通信により取得してもよい。またドライバ要求加速度GxDrvREQそのものが入力されなくとも、これを推定可能な値であればよい。例えばドライバ要求前後加速度GxDrvREQの代わりに、アクセルペダル操作量,ブレーキペダル操作量から、ドライバ要求前後加速度GxDrvREQを推定してもよい。またアクセルペダル操作量のみから、ブレーキ操作による減速を除いたドライバ要求前後加速度GxDrvREQを推定してもよい。
 またエンジンを駆動源とした車両であれば、エンジントルク、およびシフトポジションを取得し、ドライバ要求前後加速度GxDrvREQを推定してもよい。またドライバ要求前後加速度GxDrvREQの他に制御のON/OFF情報や、ドライバが制御量を調整、もしくは選択した際の値を取得してもよい。
 横運動連係前後加速度取得手段8では、例えば特許文献2,非特許文献1に示されている車両の横加加速度に基づく前後加速度GxGVCを取得する。ここで前後加速度GxGVCそのものが入力されなくとも、これを推定可能な値であればよい。例えば前後加速度GxGVCの代わりに横加加速度を取得し、前後加速度GxGVCを演算してもよい。また操舵角やヨーレイト,横加速度といった横運動情報を取得し、前後加速度GxGVCを演算してもよい。
 路面情報取得手段9では、路面情報として、少なくとも路面摩擦係数μおよび路面縦断勾配Gradを取得する。ここで路面摩擦係数μおよび路面縦断勾配Gradそのものが入力されなくとも、これを推定可能な値であればよい。例えば路面摩擦係数μの代わりに前後加速度Gx、前記各車輪速Vw[wheel]、前記車両速度Vを取得し、路面摩擦係数μを推定する方法であってもよい。また操舵により発生するセルフアライニングトルクを取得し、路面摩擦係数μを推定する方法であってもよい。
 また各車輪の制駆動力Fwx[wheel]、もしくはそれに代わる情報(例えばエンジントルクやブレーキ圧)を取得し、路面摩擦係数μを推定する方法であってもよい。また路面縦断勾配Gradの代わりに、各車輪の制駆動力Fwx[wheel]、もしくはそれに代わる情報(例えばエンジントルクやブレーキ圧)と車両の前後加速度Gxを取得し、車輪で発生している力と実際に発生した前後加速度の差分から路面縦断勾配Gradを推定してもよい。また平坦路での車両前後方向の加速度を測定するよう取り付けられた加速度センサによる値を取得し、車両速度Vを微分して得られた前後加速度の差分から路面縦断勾配Gradを推定してもよい。
 車両運動制御演算手段4′は、記憶領域、および演算処理能力、および信号の入出力手段をもつ演算装置であり、前記カーブ形状取得手段2と前記自車位置取得手段3、および前記車両運動情報取得手段6,前記ドライバ入力情報取得手段7,前記横運動連係前後加速度取得手段8と、前記路面情報取得手段9により得られた情報に基づいて車両に発生させる前後加速度、およびドライバへの情報提示を演算し、前後加速度発生手段5、および情報提示手段10に指令値を送る。ここで前後加速度発生手段5に送る指令値としては、上述の実施形態1と同様に対象とする加減速アクチュエータに応じた指令値とする。
 また情報提示手段10として、ドライバが五感の少なくとも一つにより認識可能な情報を提示する情報提示器とし、情報提示手段10に送る指令値として、前記情報提示器を駆動可能な指令値とする。例えば表示ランプやディスプレイのようにドライバの視覚に情報を与える表示器を情報提示手段10とする場合、車両に発生させる前後加速度に基づいて表示ランプの点灯やディスプレイへの表示を行う指令値を送る。
 またビープ音や音声のようにドライバの聴覚に情報を与える音発生器を情報提示手段10とする場合、車両に発生させる前後加速度に基づいてビープ音や音声による案内をする指令値を送る。
 またハンドルやペダル,シートの振動のようにドライバの触覚に情報を与える振動発生器を情報提示手段10とする場合、車両に発生させる前後加速度に基づいてハンドルやペダル,シートを振動する振動発生器に指令値を送る。また情報提示手段10として、前記表示器,音発生器,振動発生器を組合せて用いてもよい。
 以下、前記カーブ形状取得手段2として自車両が走行するコースの地図情報、前記自車位置取得手段3としてGPSを用い、車両運動情報取得手段6,ドライバ入力情報取得手段7,横運動連係前後加速度取得手段8,路面情報取得手段9として、他の電子制御器との通信手段を用いて、車両速度V,前後加速度Gx,ドライバ要求前後加速度GxDrvREQ,横運動連係前後加速度GxGVC,路面摩擦係数μ,路面縦断勾配Gradを取得し、他の電子制御器との通信手段、もしくはスイッチ等の入力手段を用いて、前後加速度制御スイッチON/OFF情報Fctrlsw,ドライバ設定値GDrvSetを取得する場合での前後加速度指令値の作成方法を示す。
 図12に前記車両運動制御装置1′における演算フローチャートを示す。
 S000では、実施形態1と同様にカーブ形状、および自車位置データを取得し、演算を行う。演算後S010へと進む。
 S010では、車両速度V,前後加速度Gx,ドライバ要求前後加速度GxDrvREQ,横運動連係前後加速度GxGVC,路面摩擦係数μ,路面縦断勾配Grad,前後加速度制御スイッチON/OFF情報Fctrlsw,ドライバ設定値GDrvSetを取得する。また上述のように、これらの値を直接取得せず、推定を行う場合、推定に必要なデータを取得し、演算を行う。演算後S100へと進む。
 S100では、実施形態1と同様にGPSによる自車位置データPv(Xv,Yv)が更新されたか否かの判定を行い、データが更新されていればデータ更新フラグFGPSrefを1に、されていなければ0とする。演算後S110へ進む。
 S110では、S000で得られたカーブ形状・自車位置データの更新を行う。S100にて演算されたデータ更新フラグが0である場合、すなわちS000にて取得するGPSによる自車位置データが更新されず、S010にて取得する車両運動情報等のデータのみが更新されている場合、S000で得られたカーブ形状・自車位置データと車両運動情報により得られた車両速度Vから演算される自車両の移動距離に基づいて、カーブ形状・自車位置データを更新する。
 例えば、ある時間t0においてデータ更新フラグが1、すなわちGPSによるデータ更新が行われたとし、この時得られたカーブ形状データをPt0_n(Xt0_n,Yt0_n)(nは0以上nmax_t0以下の整数)、自車位置データをPt0_V(Xt0_V,Yt0_V)とする。
 また図13に示すように、この時のノード点Pt0_n,Pt0_n+1の距離をDt0_n+1、自車位置Pt0_Vとノード点Pt0_1の距離をDt0_V1とする。t0のΔtv後であるt1での演算では、データ更新フラグが0、すなわちGPSによるデータ更新が行われず、車両運動情報等の更新のみが行われた場合、車両速度VとΔtvから自車両の移動距離Dt1_Vを算出し、自車位置と各ノード点の位置関係を更新する。
 本発明では、上述の通り、自車両の進行方向と逆方向にある最初のノード点をP0と設定している。そのためDvとDt0_V1の大小関係により、各ノード点の番号nが変わることになる。Dt1_VがDt0_V1以下の場合、図13(a)に示すように、t1においても自車位置はノード点Pt0_0、Pt0_1の間にあるため、t1における各ノード点および、ノード点間距離、ノード点番号の最大値nmax_t1、およびDt1_V1は以下の式(20)~(23)で与えられる。
Figure JPOXMLDOC01-appb-M000022
Figure JPOXMLDOC01-appb-M000023
Figure JPOXMLDOC01-appb-M000024
Figure JPOXMLDOC01-appb-M000025
 またDt1_VがDt0_V1よりも大きい場合、t1において自車位置がノード点Pt0_1よりも先にあるため、t1における各ノード点および、ノード点間距離、およびDt1_V1は以下の式(24)~(27)で与えられる。
Figure JPOXMLDOC01-appb-M000026
Figure JPOXMLDOC01-appb-M000027
Figure JPOXMLDOC01-appb-M000028
Figure JPOXMLDOC01-appb-M000029
 ここでkは式(25)で得られるDt1_V1が0以上、かつnmax_t1が正となる最小の整数である。
 例えば、図13(b)に示すように、自車位置がノード点Pt0_1,Pt0_2の間にあれば、kは1となる。S000で得られたカーブ形状データの内、上述の条件を満たすkが存在しない場合、nmax_t0をkとする。またデータ更新フラグが1であれば、S000で得られた各ノード点でのデータ、および自車位置データを、カーブ形状データ、および自車位置データとする。演算後S310へと進む。
 S310では、前方注視距離の演算を行う。上述の実施形態1と同様に、自車両進行方向のコース上に自車両の極近傍から遠方まで前方注視点PP0,PP1,PP2という3つの前方注視点を設定し、自車両から前方注視点PP0,PP1,PP2までの前方注視距離LPP0,LPP1,LPP2を算出する。
 ここでLPP0,LPP1,LPP2は以下の式(8)の関係を満たすように予め設定される値であっても、予め設定される前方注視時間TPP0,TPP1,TPP2(ただしTPP0<TPP1<TPP2)と車両速度Vを用いて、それぞれ式上述の式(9)に示すように与えてもよい。
 また路面摩擦係数μに応じて前方注視距離LPP0,LPP1,LPP2を変更してもよい。例えば路面摩擦係数μがある値以下であれば、路面摩擦係数μが小さいほどLPP0,LPP1,LPP2が長くなるように変更する。ただし前方注視点PP0は自車両の極近傍の注視点とし、Lmaxは自車位置からノード点位置P1までの距離とノード点位置P1からノード点位置Pnmaxまでの各ノード点間距離を合計した値である。演算後S410へと進む。
 S410では、前後加速度制御モードGxModeの演算を行う。前後加速度制御モードGxModeは、その値が0の時、前後加速度制御を行わず、1の時、横運動連係前後加速度GxGVCに基づく前後加速度制御を行い、2の時、横運動連係前後加速度GxGVCおよび自車位置
データ、およびカーブ形状データに基づく前後加速度制御を行うように設定される値であ
る。
 前後加速度制御モードGxModeの作成方法としては、例えば前後加速度制御スイッチON/OFF情報Fctrlswにおいて、前後加速度制御スイッチOFFの時のFctrlswが0、前後加速度制御スイッチONの時のFctrlswが1とすると、Fctrlswが0の時、前後加速度制御モードGxModeを0とする。
 また車両速度Vにより前後加速度制御モードGxModeを0としてもよい。
 例えば制御を開始する最低車両速度を予め設定しておき、最低車両速度よりも車両速度Vが小さければ、前後加速度制御モードGxModeを0とする。
 また横運動連係前後加速度GxGVCが取得困難、かつ自車位置データ、およびカーブ形状データが取得困難な際に前後加速度制御モードGxModeを0とする。前後加速度制御モードGxModeが0となる条件にない場合、カーブ形状データ、および自車位置データの状況に応じて、前後加速度制御モードGxModeを1、もしくは2とする。
 例えば前記データ更新フラグFGPSrefが0となっている時間が所定時間以上となった場合、GPSによる自車位置データ取得が困難として前後加速度制御モードGxModeを1とする。またS110の式(27)で演算されたDt1_V1が0の場合、前後加速度制御モードGxModeを1とする。また自車位置データによる走行軌跡と地図データ上で自車が走行していると想定しているコース形状との乖離が大きい場合、地図データ上の自車の走行コースが実際のコースと異なるとして、前後加速度制御モードGxModeを1とする。
 また車両運動として車両速度Vに加え、操舵角やヨーレイト,横加速度といった横運動情報が取得可能である場合、これらから推定される走行軌跡とGPSにより得られた自車位置軌跡を演算し、これらの乖離が大きければ、GPSの精度が低下しているとして、前後加速度制御モードGxModeを1とする。またこれら以外の条件では2とする。
 これにより、GPSによるデータ取得が困難な状況においても、横運動連係前後加速度GxGVCに基づく前後加速度制御を実施することができる。演算後S510へ進む。
 S510では、前記前後加速度制御モードGxModeが2であれば、上述の実施形態1のS500と同様にカーブ曲率,カーブ曲率変化を演算し、それ以外であれば、カーブ曲率,カーブ曲率変化共に0とする。演算後、S610へと進む。
 S610では前方注視距離LPP0,LPP1,LPP2でのカーブ曲率κPP0,κPP1,κPP2、およびカーブ曲率変化dκPP0/dx,dκPP1/dx,dκPP2/dx、および車両速度Vに基づいて前後加速度指令値初期値を作成する。ここで車両近傍のカーブ曲率変化dκPP0/dx,dκPP1/dxによる前後加速度指令値GxREQiniPP0,GxREQiniPP1は上述の式(6)により算出し、車両遠方のカーブ曲率κPP2による前後加速度指令値GxREQiniPP2は、上述の式(7)により算出する。
 ここで前方注視距離LPP0,LPP1,LPP2を上述の式(9)で示した前方注視時間TPP0,TPP1,TPP2で作成するとした場合、前方注視点PP0,PP1,PP2の移動速度VPP0,VPP1,VPP2は、前後加速度Gxを用いて、上述の式(18)で与えられる。またこれにより得られた値から、GxREQiniPP0,GxREQiniPP1を上述の式(19)により演算する。また上述の式(7)からGxREQiniPP2を演算する。ここでCxy0,Cxy1、およびCxは、路面摩擦係数μやドライバ要求前後加速度GxDrvREQにより変化する値である。
 その設定方法としては、例えばdκPPm/dxが正の場合の定数として予め設定された値Cxy0_ini,Cxy1_ini、およびCx_iniと路面摩擦係数μよる補正係数kμ、およびドライバ要求前後加速度GxDrvREQによる補正係数kGxDrvを用いて以下の式(28)~(29)で与える。
Figure JPOXMLDOC01-appb-M000030
Figure JPOXMLDOC01-appb-M000031
 ここでkμおよびkGxDrvは0から1の値であり、kμは路面摩擦係数μが小さい領域では大きい領域よりもその値が小さくなるように設定し、kGxDrvはドライバ要求前後加速度GxDrvREQがある値以上では、その増加に応じて減少し、最終的に0となるように設定する。またGxREQiniPP2を演算する際、式(7)におけるGySET、およびGxREQfar_minは路面摩擦係数μに応じて値を変更する。例えば路面摩擦係数μがある値以下では、GySET、およびGxREQfar_minを小さな値に変更する。
 また実施形態1で述べたように、dκPPm/dxが負の場合では、上述のdκPPm/dx
が正の場合と異なる値に設定してもよい。演算後、S620へと進む。
 S620では前後加速度指令値初期値を路面縦断勾配Gradにより補正した前後加速度指令値補正値GxREQhoseiPPm(m=0,1,2)を作成する。ここで路面縦断勾配Gradにより車両に発生する前後加速度GxGradを用いて、前後加速度指令値補正値を以下の式(30)で与える。
Figure JPOXMLDOC01-appb-M000032
 ここでGxGradは上り勾配で負、下り勾配で正となる値である。演算後S710へと進む。
 S710では、前後加速度指令値補正値GxREQhoseiPP0,GxREQhoseiPP1,GxREQhoseiPP2に前後加速度制御の介入閾値による処理や、フィルタ処理,セレクト処理,加算処理等を行って得られた値GxREQfinに、更に横運動連係前後加速度GxGVCを組合せることで、最終的な前後加速度指令値GxREQfinGVCを作成する。ここでGxREQfinの演算は上述の実施形態1に示したS700での演算のGxREQiniPP0,GxREQiniPP1,GxREQiniPP2をそれぞれGxREQhoseiPP0,GxREQhoseiPP1,GxREQhoseiPP2として同様の演算を行う。GxREQfinとGxGVCの組合せ方法としては、例えば図14に示すように、両者が同符合であれば、その絶対値の大きい方をGxREQfinGVCとし、異符合であれば、両者を加算した値をGxREQfinGVCとする。
 また両者を加算する際、重み付けをして加算してもよい。
 ここでGxREQfinGVCの演算方法として、GxREQfinを演算してから、GxGVCと組合せる方法について説明したが、この方法に限ったものではない。例えばGxREQfinを演算する際の自車両の極近傍の前方注視点PP0による前後加速度指令値補正値GxREQhoseiPP0の代わりに、GxGVCを用いてGxREQfinを演算し、この値をGxREQfinGVCとしてもよい。演算後S810へと進む。
 S810では、前後加速度制御モードが1もしくは2であれば、前後加速度指令値GxREQfinGVCを実現する指令値を、前後加速度制御モードが0であれば、前後加速度制御を行わないようにする指令値を前記前後加速度発生手段5へ送信し、同時に前後加速度制御状態に応じた情報提示指令値を情報提示器10へと送信する。
 ここで前後加速度制御モードが0以外の時に送信する信号は、上述の通り、前後加速度指令値GxREQfinGVCを送信することで前記前後加速度発生手段5により前後加速度指令値GxREQfinGVCを実現できる場合、前後加速度指令値GxREQfinGVCを制御指令値として送信する。
 また前記前後加速度発生手段5に応じた指令値にする必要があれば、前後加速度指令値GxREQfinGVCに基づいて前記前後加速度発生手段5を制御する指令値を作成し、送信する。例えば前記前後加速度発生手段5が油圧式摩擦ブレーキであり、油圧指令値を油圧式摩擦ブレーキ制御器に送ることで前後加速度制御を行う場合、前後加速度指令値GxREQfinGVCに基づいて油圧指令値を作成し、作成した油圧指令値を制御指令値として送信する。これにより車両に前後加速度指令値GxREQfinGVCに基づく前後加速度を発生させる。
 また上述のように、前後加速度指令値を実現する指令を複数の前後加速度発生手段5に送信してもよい。例えば、自車位置がカーブ遠方での前後加速度指令値であるGxREQhoseiPP2に基づいて作成された前後加速度を実現する前後加速度発生手段5を、前記変速機もしくはエンジン、もしくはその両方とし、カーブ近傍での前後加速度指令値であるGxREQhoseiPP1,GxREQhoseiPP0およびGxGVCに基づいて作成された前後加速度を実現する前後加速度発生手段5として更に前記油圧摩擦ブレーキを加える。
 これによりカーブ遠方の比較的一定な減速をエンジンのスロットル開度や、変速機のギア比を変更することでエンジンブレーキによる減速を行い、カーブ近傍の変化が大きい減速を油圧摩擦ブレーキにより実現する。これによりドライバがカーブ遠方で進行方向にある程度カーブ曲率の大きいカーブを視認した際に、アクセルをオフにしてエンジンブレーキによる減速を行い、カーブ近傍にてカーブ曲率変化を明確に認識してからブレーキを操作して減速を行うことと同様の減速を実現できる。
 情報提示器10への指令値としては、例えば前後加速度制御中であることをドライバへ伝えるよう表示器、または音発生器への駆動指令値を送信する。また前後加速度制御モードが1の時、カーブ前での減速が行われないことと、その理由をドライバへ伝えるよう表示器、または音発生器への駆動指令値を送信する。
 また本実施形態で用いた予め設定する値(例えば前方注視時間TPP0,TPP1,TPP2や横加速度設定値GySET)はドライバ設定値GDrvSetに応じて変更してもよい。例えばドライバ設定値GDrvSetが0~10の値を取るとし、ドライバ設定値GDrvSetが0では、前方注視点によるカーブ前からの前後加速度制御を行わず、横運動連係前後加速度GxGVCによる前後加速度制御のみを行うものとし、GDrvSetが大きいほどカーブ遠方からの減速が大きくなるとした場合、GDrvSetが0ではTPP0、TPP1、TPP2を全て非常に小さな値とし、GDrvSetの増加に応じてTPP2を大きな値としySETを小さな値としてもよい。これによりカーブ遠方からの減速度が変化するため、ドライバの嗜好に応じてカーブ前の減速開始タイミングやその減速量を変更することができる。
 以上のように、本実施形態では、自車位置がカーブ遠方にある時の減速からカーブ近傍に近づいた時の減速へと減速パターンを変化させるにあたり、車両運動情報や路面情報を用いることで、よりドライバフィーリングにあった前後加速度制御が実現できる。
(発明を実施するための実施形態3)
 以下、図15,図16を用いて、本発明の第3の実施形態による車両運動制御装置の構成及び動作について説明する。
 最初に、図15を用いて、本発明の第3の実施形態による車両運動制御装置の構成について説明する。
 図15は、本発明の第3の実施形態による車両運動制御装置の構成を示すシステムブロック図である。
 本実施形態の車両運動制御装置1″は、自車両前方のカーブ形状を取得するカーブ形状取得手段2と、自車位置を取得する自車位置取得手段3と、車載電子制御器12と通信する車両通信手段11と、前記カーブ形状取得手段2と前記自車位置取得手段3、および前記車両通信手段11により得られた情報に基づいて車両に発生させる前後加速度を演算する車両運動制御演算手段4″を備える。
 また前記車両運動制御演算手段4″の演算結果は、車載電子制御器12を介し前後加速度発生手段5、および情報提示手段10に送られ、車両に前後加速度を発生可能なアクチュエータの駆動を行う。ここで車載電子制御器12は、車両運動制御装置1″と通信する手段、および前後加速度発生手段5、および情報提示手段10を駆動制御可能な車載の電子制御器である。また前後加速度発生手段5を駆動制御する際に、車両に前後加速度を発生させる加減速アクチュエータを車載電子制御器12が直接駆動制御しても、加減速アクチュエータを制御する電子制御器との通信により、加減速アクチュエータを駆動制御してもよい。同様に、情報提示手段10を駆動制御する際に、情報提示器を車載電子制御器12が直接駆動制御しても、情報提示器を制御する電子制御器との通信により、情報提示器を駆動制御してもよい。また本実施形態の車両運動制御装置1″は、必ずしも車両に組込まれている必要はなく、ドライバが容易に持ち出し可能な形状であってもよい。
 ここでカーブ形状取得手段2,自車位置を取得する自車位置取得手段3、および前後加速度発生手段5,情報提示手段10は上述の実施形態1,2と同様であるため、説明は省略する。
 車両運動制御演算手段4″は、前記カーブ形状取得手段2と前記自車位置取得手段3,前記車両通信手段11により得られた情報に基づいて車両に発生させる前後加速度指令値を作成し、前記車両通信手段11を介して、車載電子制御器12と通信をすることで、車両の前後加速度制御を行う。ここで本実施例での前後加速度指令値の作成方法は、上述の実施形態1,2と同様であるため、説明は省略する。
 車両通信手段11は、車両に搭載された車載電子制御器12と通信する手段である。例えば車両運動制御装置1″と車載電子制御器12をコネクタにより結線することで、車両に搭載された電子制御器と通信する方法であっても、予め車両運動制御装置1″の識別符号を車両に搭載された車載電子制御器12に登録し、無線通信により車載電子制御器12と通信する方法であってもよい。
 ここで前後加速度発生手段5、および情報提示手段10が車両通信手段11と通信する手段を備える場合、図16に示すように、車両運動制御装置1″が車両通信手段11を介して、直接前後加速度発生手段5、および情報提示手段10と通信して前後加速度発生手段5、および情報提示手段10の駆動制御をしてもよい。
 これにより、GPS搭載の携帯電話、もしくは小型の携帯ナビゲーション機器等に本発明を組込むことが可能となり、ドライバは自分の携帯電話、もしくは小型の携帯ナビゲーション機器を車両に持ち込むことで、本発明の前後加速度制御を実現できる。
(発明を実施するための実施形態4)
 以下、図17を用いて、本発明の第4の実施形態による車両運動制御装置の構成及び動作について説明する。
 最初に、図17を用いて、本発明の第4の実施形態による車両運動制御装置の構成について説明する。
 図17は、本発明の第4の実施形態による車両運動制御装置の構成を示すシステムブロック図である。
 本実施形態の車両運動制御装置1′′′は、自車両前方のカーブ形状を取得するカーブ形状取得手段2と、自車位置を取得する自車位置取得手段3と、車載電子制御器12と通信する車両通信手段11と、設定情報取得手段13と、前記カーブ形状取得手段2と前記自車位置取得手段3,前記設定情報取得手段13,前記車両通信手段11により得られた情報に基づいて車両に発生させる前後加速度を演算する車両運動制御演算手段4′′′を備える。
 また前記車両運動制御演算手段4′′′の演算結果は、車載電子制御器12を介し前後加速度発生手段5、および情報提示手段10に送られ、車両に前後加速度を発生可能なアクチュエータの駆動を行う。また本実施形態の車両運動制御装置1′′′は、必ずしも車両に組込まれている必要はなく、ドライバが容易に持ち出し可能な形状であってもよい。
 ここでカーブ形状取得手段2,自車位置を取得する自車位置取得手段3、および前後加速度発生手段5,情報提示手段10,車両通信手段11,車載電子制御器12は上述の実施形態1,2,3と同様であるため、説明は省略する。
 設定情報取得手段13は、上述の前方注視時間TPP0,TPP1,TPP2や横加速度設定値GySET等、ドライバが設定可能な定数の設定情報、もしくは予めいくつかの設定された定数の組合せにより、複数の制御モードを備える場合は、その制御モードの選択した設定情報を取得する。例えば上記前方注視時間TPP0,TPP1,TPP2や横加速度設定値GySETをある範囲内でドライバが直接入力し、その入力された値を設定情報としてもよい。
 また“スポーツモード”や“ノーマルモード”といったいくつかの定数の組合せによる制御モードを持ち、ドライバが選択した制御モードに対応する定数を設定情報としてもよい。
 車両運動制御演算手段4′′′は、前記設定情報取得手段13により取得した設定情報を記憶する手段を備え、前記カーブ形状取得手段2と前記自車位置取得手段3,前記設定情報取得手段13,前記車両通信手段11により得られた情報に基づいて車両に発生させる前後加速度指令値を作成し、前記車両通信手段11を介して、車載電子制御器12と通信をすることで、車両の前後加速度制御を行う。ここで本実施例での前後加速度指令値の作成方法は、上述の実施形態1,2と同様であるため、説明は省略する。
 これにより、GPS搭載の携帯電話、もしくは小型の携帯ナビゲーション機器等に本発明を組込むことが可能となり、更にドライバ毎にその設定を変更することが可能となる。これにより一台の車両を複数人でシェアする状況にあっても、ドライバは自分で定数を設定した携帯電話、もしくは小型の携帯ナビゲーション機器を車両に持ち込むことで、自分で設定した本発明の前後加速度制御を実現できる。
(発明を実施するための実施形態5)
 以下、図18,図19を用いて、本発明の第5の実施形態による車両運動制御装置の構成及び動作について説明する。
 本発明の第5の実施形態による車両運動制御装置の構成は、実施形態1と同様であり、前後加速度指令値を演算する際の前方注視点の数が異なる。
 図18に前記車両運動制御装置1における演算フローチャートを示す。
 S000では、実施形態1と同様にカーブ形状、および自車位置データを取得し、演算を行う。演算後S010へと進む。
 S100では、実施形態1と同様にGPSによる自車位置データPv(Xv,Yv)が更新されたか否かの判定を行い、データが更新されていればデータ更新フラグFGPSrefを1に、されていなければ0とする。演算後S200へ進む。
 S200では、実施形態1と同様に自車位置の時間変化から、車両速度の算出を行う。演算後S320へと進む。
 S320では前方注視距離の演算を行う。図9に示すように、自車両進行方向のコース上に自車両の極近傍から遠方まで前方注視点PP0,PP3という2つの前方注視点を設定し、自車両から前方注視点PP0、PP3までの前方注視距離LPP0,LPP3を算出する。
 ここでLPP0,LPP3は、予め設定される前方注視時間TPP0,TPP3(ただしTPP0<TPP3)と車両速度V、および前方注視点の移動速度VPP0,VPP3を用いて、式(31)により与えられる。
Figure JPOXMLDOC01-appb-M000033
 ここでLPP0_z1,LPP3_z1はLPP0,LPP3それぞれの前回値、κPP0_z1,κPP3_z1はκPP0,κPP3それぞれの前回値、Δtは演算の単位ステップ時間であり、min(A,B)はAとBの内小さい方の値を選択する関数である。また前方注視点の移動速度VPP0、VPP3は、車両速度Vを微分して得られる車両前後加速度Gx、および前方注視点の移動速度制限値VPPlmt0,VPPlmt3を用いて、以下の式(32)で与えられる。ここで他の制御器との通信や、加速度センサによる直接測定により前後加速度を取得する手段を備える構成であれば、それにより得られた前後加速度から車両前後加速度Gxを作成してもよい。また前方注視点の移動速度制限値VPPlmt0,VPPlmt3は、前方注視距離の前回値LPP0_z1,LPP3_z1に基づいて予め設定される値であり、図20に示すように、LPP0_z1,LPP3_z1がLPP_nearより小さければVppmin,LPP_near以上LPP_lmt以下では、LPP0_z1,LPP3_z1の増加に応じて下に凸の曲線で値が減少し、LPP_lmtより大きければVPPminとなるように設定してもよい。また図21に示すように、前方注視点位置でのカーブ曲率の時間変化制限値dκPPlmt0/dt,dκPPlmt3/dtを、LPP0_z1,LPP3_z1がLPP_nearより小さければdκPPmax/dt、LPP_near以上LPP_lmt以下では、LPP0_z1,LPP3_z1の増加に応じて下に凸の曲線で値が減少し、LPP_lmtより大きければ0となるよう設定し、前方注視点の移動速度制限値VPPlmt0,VPPlmt3を、それぞれdκPPlmt0/dt,dκPPlmt3/dtおよび前方注視点位置でのカーブ曲率変化の前回値dκPP0_z1/dx,dκPP3_z1/dxを用いて式(33)で与えてもよい。
Figure JPOXMLDOC01-appb-M000034
Figure JPOXMLDOC01-appb-M000035
 演算後S400へと進む。
 S400では、実施形態1と同様に前後加速度制御許可フラグの演算を行う。演算後S500へ進む。
 S520では、ノード点位置データPn(Xn,Yn)からnが1以上の点における各ノード点位置のカーブ曲率κn、および自車位置のカーブ曲率κvと、ノード点間のカーブ曲率変化dκn/dxを算出し、前方注視距離LPP0,LPP3でのカーブ曲率κPP0,κPP3、およびカーブ曲率変化dκPP0/dx,dκPP3/dxを算出する。ここでカーブ曲率の算出方法としては、連続する3点のノード点Pn-1,Pn,Pn+1を通る円弧のカーブ曲率半径を求め、その逆数をとることでノード点Pnのカーブ曲率κnを求めることができる。
 上述の実施形態1と同様に各ノード点のカーブ曲率κn、およびカーブ曲率変化dκn/dx算出後、前方注視距離LPP0,LPP3に対応したカーブ曲率κPP0,κPP3、およびカーブ曲率変化dκPP0/dx,dκPP3/dxを算出する。例えば図19に示すように、PP0がPvとP1の間、PP3がPnとPn+1の間にある場合、カーブ曲率κPP0,κPP3、およびカーブ曲率変化dκPP0/dx,dκPP3/dxは、以下の式(34)~(37)で与えられる。
Figure JPOXMLDOC01-appb-M000036
Figure JPOXMLDOC01-appb-M000037
Figure JPOXMLDOC01-appb-M000038
Figure JPOXMLDOC01-appb-M000039
 ここで各ノード点のカーブ曲率κn、およびカーブ曲率変化dκn/dxの算出方法は上記方法に限らず、各ノード点でのカーブ曲率、およびカーブ曲率変化を算出可能な方法であればよい。演算後S620へと進む。
 S620では上述の式(4)に示したように、前方注視距離LPP0,LPP3でのカーブ曲率の時間変化および車両速度Vに基づいて前後加速度指令値初期値を作成する。ここで上述の式(5)で示したように、前方注視点でのカーブ曲率の時間変化は、前方注視点でのカーブ曲率変化dκPP/dx、および前方注視点の移動速度VPPにより表わすことができ、前後加速度指令値初期値GxREQiniPP0,GxREQiniPP3は、上述の式(4)~(6),(31)~(37)を用いて以下の式(38)により演算できる。
Figure JPOXMLDOC01-appb-M000040
 ここでCxy0,Cxy3は予め設定される定数であっても、他の条件に応じて変更する値であってもよい。例えばdκPPm/dxが正の場合とdκPPm/dxが負の場合で異なる値としてもよい。また路面摩擦係数やドライバのアクセル操作といった他の情報を利用可能であれば、その情報に基づいて値を変更してもよい。例えば圧雪路のように路面摩擦係数が低い場合、アスファルト路のような路面摩擦係数が高い条件よりも、Cxy0,Cxy3を小さな値に設定する。
 またドライバがアクセル操作をしている場合、そのアクセル操作量に応じてdκPPm/dxが正となる時の値を小さくする。これらカーブ形状や自車位置以外の情報を利用する構成については、実施形態2にて説明する。演算後、S720へと進む。
 S720では前後加速度指令値初期値GxREQiniPP0,GxREQiniPP3に前後加速度制御の
介入閾値による処理や、フィルタ処理,セレクト処理,加算処理等を行い最終的な前後加速度指令値GxREQfinを作成する。例えば、GxREQiniPP0,GxREQiniPP3に対して、その
符号や増減方向に応じた時定数をそれぞれ設定したフィルタ処理を行い、その値に応じたセレクト処理や加算処理を行う。
 更に減速側の前後加速度制御介入閾値GxBRKs、および加速側の前後加速度制御介入閾値GxACCsとし、これらの値による前後加速度制御の介入閾値による処理を行う。ここでGxBRKs,GxACCsは予め設定される値である。
 またGxREQiniPP0,GxREQiniPP3が同時に0以外の値となっている領域では、両者が同符号であれば、その絶対値が大きい方の値とし、異符合であれば、両者を加算した値とする。これにより、GxREQiniPP0が正でGxREQiniPP3が負、すなわち自車両極近傍の位置ではカーブ曲率変化が負で、自車両前方にカーブ曲率変化が正となるカーブが存在する場合での減速度を小さくすることができ、連続カーブを走行している際の減速フィーリングを向上することができる。
 またここで加算をする際に、その符号に応じて重み付けをしてもよい。例えば減速を優先したければ、正となっている値が小さくなるような係数を積算して加算し、逆に加速を優先するのであれば、負となっている値が小さくなるような係数を積算して加算してもよい。
 これにより、図22に示すようなカーブ曲率κPP0,κPP3、およびカーブ曲率変化dκPP0/dx,dκPP3/dxとなるカーブを走行し、点線で示すGxREQiniPP0、一点鎖線で示すGxREQiniPP3が得られた場合、実線で示したような前後加速度指令値GxREQfinが得られる。またこの時の前後加加速度は、負の前後加速度指令値が最初に演算された際の増減に加え、カーブ進入前からカーブ曲率最大値となる前に再度増減が発生している。ここでGxREQiniPP0,GxREQiniPP3からGxREQfinを作成する方法は上記内容に限ったものではないが、図22のT30示した、負の前後加速度、すなわち減速している際のGxREQiniPP3からGxREQiniPP0へと遷移する区間において、減速度が過度に減少しないようにする。演算後S800へと進む。
 S800では、実施形態1と同様に前後加速度制御許可フラグが1であれば、前後加速度指令値GxREQfinを実現する指令値を、前後加速度制御許可フラグが0であれば、前後加速度制御を行わないようにする指令値を前記前後加速度発生手段5へ送信する。
 ここで前後加速度制御許可フラグが1の時に送信する信号は、実施形態1と同様に、前後加速度指令値GxREQfinを送信することで前記前後加速度発生手段5により前後加速度指令値GxREQfinを実現できる場合、前後加速度指令値GxREQfinを制御指令値として送信する。
 以上のように、前方注視点の移動速度をカーブまでの距離に応じて変化させることで、ドライバがカーブ曲率の時間変化を詳細に認識できないと考えられるカーブ遠方において過度の減速を行うことなく、ドライバがカーブ曲率の時間変化を詳細に認識し始めるカーブ近傍において減速度を増加させることで、ドライバの期待した減速を実現でき、ドライバフィーリングを向上できる。また本実施形態5を上述の実施形態2~4の構成において実現することも可能である。
1 車両運動制御装置
2 カーブ形状取得手段
3 自車位置取得手段
4 車両運動制御演算手段
5 前後加速度発生手段
6 車両運動情報取得手段
7 ドライバ入力情報取得手段
8 横運動連係前後加速度取得手段
9 路面情報取得手段
10 情報提示器
11 車両通信手段
12 車載電子制御器
13 設定情報取得手段
 本明細書で引用した全ての刊行物、特許および特許出願をそのまま参考として本明細書にとり入れるものとする。

Claims (15)

  1.  自車両前方のカーブ形状を取得するカーブ形状取得手段と、
     自車両の位置を取得する自車位置取得手段と、
     前記カーブ形状及び前記自車両の位置に基づいて、車両に発生させる前後加速度指令値を演算する車両運動制御演算手段と、を有し、
     前記車両運動制御演算手段は、自車両進行方向を正とする前後加速度指令値において、自車両がカーブ前からカーブに進入し、カーブ曲率が一定、もしくは最大になる地点まで走行する際に、複数の異なる負の前後加速度指令値を演算する車両運動制御装置。
  2.  自車両前方のカーブ形状を取得するカーブ形状取得手段と、
     自車両の位置を取得する自車位置取得手段と、
     前記カーブ形状及び前記自車両の位置に基づいて、車両に発生させる前後加速度指令値を演算する車両運動制御演算手段と、を有し、
     前記車両運動制御演算手段は、自車両進行方向を正とする前後加速度指令値において、自車両がカーブ前からカーブに進入し、カーブ曲率が一定、もしくは最大になる地点まで走行する際に、負の前後加速度指令値を演算し、
     前記負の前後加速度指令値は、前後加速度の時間変化である前後加加速度が、減速開始直後以外にカーブ進入前からカーブ曲率が一定、もしくは最大になる期間において増減される車両運動制御装置。
  3.  請求項1記載の車両運動制御装置において、
     前記複数の異なる前後加速度指令値は、前記カーブ前に自車両に最初の減速度を発生させ、その後略一定となる第1の前後加速度指令値と、前記カーブ進入開始前に自車両に発生する減速度が増加するよう変化する第2の前後加速度指令値と、を有し、
     前記第1の前後加速度指令値の絶対値最大値は、前記第2の前後加速度指令値の絶対値最大値以下となる車両運動制御装置。
  4.  請求項2記載の車両運動制御装置において、
     前記負の前後加速度指令値は、カーブ進入前からカーブ曲率が一定、もしくは最大になる期間において、前後加速度の時間変化である前後加加速度の増減前よりも、前後加加速度の増減後の前記負の前後加速度指令値の絶対値が増加することを特徴とする車両運動制御装置。
  5.  請求項1記載の車両運動制御装置において、
     前記カーブ前での前後加速度指令値は、自車両の位置のカーブ曲率の時間変化によって異なり、
     前記自車両の位置のカーブ曲率の時間変化が負の場合では、自車両の位置のカーブ曲率の時間変化が0以上の場合に比べ、前記カーブ前の前後加速度指令値の絶対値を小さくする車両運動制御装置。
  6.  請求項2記載の車両運動制御装置において、
     前記カーブ前での前後加速度指令値は、自車両の位置のカーブ曲率の時間変化によって異なり、
     前記自車両の位置のカーブ曲率の時間変化が負の場合では、自車両の位置のカーブ曲率の時間変化が0以上の場合に比べ、前記カーブ前の前後加速度指令値の絶対値を小さくする車両運動制御装置。
  7.  請求項1記載の車両運動制御装置において、
     前記車両運動制御演算手段は、自車両の位置を原点として、前記自車両の位置から予め定めた距離、もしくは車両速度と予め定めた時間の積により得られる距離の位置におけるカーブ曲率の時間変化に基づいて、前後加速度の時間変化である前後加加速度の増減を発生させる前後加速度指令値の減少を生成する車両運動制御装置。
  8.  請求項2記載の車両運動制御装置において、
     前記車両運動制御演算手段は、自車両の位置を原点として、前記自車両の位置から予め定めた距離、もしくは車両速度と予め定めた時間の積により得られる距離の位置におけるカーブ曲率の時間変化に基づいて、前記前後加加速度の増減を発生させる前後加速度指令値の減少を生成する車両運動制御装置。
  9.  請求項1記載の車両運動制御装置において、
     前記車両運動制御演算手段は、前記自車両の前方のカーブ曲率又はカーブ曲率の時間変化割合と車両速度に基づいて、前後加速度の時間変化である前後加加速度の増減を発生させる前後加速度指令値の減少を生成する車両運動制御装置。
  10.  請求項2記載の車両運動制御装置において、
     前記車両運動制御演算手段は、前記自車両の前方のカーブ曲率又はカーブ曲率の時間変化割合と車両速度に基づいて、前記前後加加速度の増減を発生させる前後加速度指令値の減少を生成する車両運動制御装置。
  11.  請求項1記載の車両運動制御装置において、
     前記車両運動制御演算手段は、
     自車両の速度を算出する自車速度算出手段と、
     自車両進行方向のコース上に複数の予め定めた前方注視点を設定し、前記自車両の位置から前記前方注視点までの前方注視距離を算出する前方注視距離算出手段と、
     前記前方注視距離におけるカーブ曲率及びカーブ曲率の時間変化を算出するカーブ曲率算出手段と、
     前記前方注視距離におけるカーブ曲率及びカーブ曲率の時間変化と、前記車両速度と、に基づいて前後加速度指令値を演算する前後加速度指令値演算手段と、を有する車両運動制御装置。
  12.  請求項1記載の車両運動制御装置において、
     自車両の速度と前後加速度の少なくとも1つの車両運動情報を取得する車両運動情報取得手段と、
     ドライバから要求するドライバ要求前後加速度を取得するドライバ入力情報取得手段と、
     車両の横加加速度に基づく横運動連係前後加速度を取得する横運動連係前後加速度取得手段と、
     自車両が走行する路面の路面摩擦係数及び路面縦断勾配の路面情報を取得する路面情報取得手段と、を有し、
     前記車両運動制御演算手段は、前記カーブ形状と、前記自車両の位置と、前記車両運動情報と、前記ドライバ要求前後加速度と、前記横運動連係前後加速度と、前記路面情報と、に基づいて、車両に発生させる前後加速度指令値を演算する車両運動制御装置。
  13.  請求項12記載の車両運動制御装置において、
     前記ドライバ入力情報取得手段は、前後加速度制御スイッチのON又はOFFを検知し、前後加速度制御スイッチON/OFF情報を出力し、
     前記車両運動制御演算手段は、
     自車両進行方向のコース上に複数の予め定めた前方注視点を設定し、前記自車両の位置から前記前方注視点までの前方注視距離を算出する前方注視距離算出手段と、
     前記前後加速度制御スイッチON/OFF情報と、前記自車両の速度と、前記カーブ形状と、前記自車両の位置と、前記横運動連係前後加速度と、に基づいて前後加速度制御モードを演算する前後加速度制御モード演算手段と、
     演算された前記前後加速度制御モードに基づいて、前記前方注視距離におけるカーブ曲率及びカーブ曲率の時間変化を算出するカーブ曲率算出手段と、
     前記前方注視距離におけるカーブ曲率及びカーブ曲率の時間変化と、前記車両速度と、に基づいて前後加速度指令値を演算する前後加速度指令値演算手段と、
     演算された前記前後加速度制御モードに基づいて、演算された前記前後加速度指令値を実現する制御指令値を出力する制御指令値出力手段と、を有する車両運動制御装置。
  14.  請求項1記載の車両運動制御装置において、
     前記車両運動制御演算手段と、前記車両運動制御装置外の車載電子制御器と、情報の通信をする車両通信手段を有する車両運動制御装置。
  15.  請求項1,2,13の少なくとも1項に記載の車両運動制御装置において、
     前方注視点は、車両速度と予め設定される前方注視時間の積により得られる距離、もしくは、車両の前後加速度と前記前方注視時間の積に車両速度を加算して得られた第1の前方注視点速度と、前方注視点位置におけるカーブ曲率、および前方注視距離に基づいて作成される第2の前方注視点速度と、のどちらか小さい方の値を前方注視点速度とし、前記前方注視点速度の積分により得られる距離に基づいて設定される車両運動制御装置。
PCT/JP2011/066298 2010-07-30 2011-07-19 車両運動制御装置 WO2012014707A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP11812299.3A EP2599676B1 (en) 2010-07-30 2011-07-19 Vehicle motion control device
US13/813,055 US9990332B2 (en) 2010-07-30 2011-07-19 Vehicle motion control device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-171304 2010-07-30
JP2010171304A JP5378318B2 (ja) 2010-07-30 2010-07-30 車両運動制御装置

Publications (1)

Publication Number Publication Date
WO2012014707A1 true WO2012014707A1 (ja) 2012-02-02

Family

ID=45529923

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/066298 WO2012014707A1 (ja) 2010-07-30 2011-07-19 車両運動制御装置

Country Status (4)

Country Link
US (1) US9990332B2 (ja)
EP (1) EP2599676B1 (ja)
JP (1) JP5378318B2 (ja)
WO (1) WO2012014707A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013203231A (ja) * 2012-03-28 2013-10-07 Hitachi Automotive Systems Ltd 車両の走行制御装置
WO2014097542A1 (ja) * 2012-12-19 2014-06-26 日産自動車株式会社 ステアリング制御装置、ステアリング制御方法
WO2014097541A1 (ja) * 2012-12-19 2014-06-26 日産自動車株式会社 ステアリング制御装置、ステアリング制御方法
JP2018203252A (ja) * 2013-09-11 2018-12-27 ローベルト ボッシュ ゲゼルシャフト ミット ベシュレンクテル ハフツング 後方衝突を軽減するアダプティブ・クルーズ・コントロールの修正
CN111016882A (zh) * 2019-12-13 2020-04-17 苏州智加科技有限公司 一种车辆控制信号计算方法、装置、设备及存储介质

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5414454B2 (ja) * 2009-10-23 2014-02-12 日立オートモティブシステムズ株式会社 車両運動制御装置
JP5764656B2 (ja) * 2011-05-11 2015-08-19 日立オートモティブシステムズ株式会社 車両運動制御装置
JP5417386B2 (ja) * 2011-07-01 2014-02-12 日立オートモティブシステムズ株式会社 車両運動制御装置
JP5927054B2 (ja) 2012-06-11 2016-05-25 日立オートモティブシステムズ株式会社 車両の走行制御装置
EP2853457B1 (en) 2013-09-30 2019-11-27 Hitachi, Ltd. Method and apparatus for performing driving assistance
EP2853458B1 (en) 2013-09-30 2019-12-18 Hitachi, Ltd. Method and apparatus for performing driving assistance
US9090260B2 (en) * 2013-12-04 2015-07-28 Mobileye Vision Technologies Ltd. Image-based velocity control for a turning vehicle
DE102015013143A1 (de) * 2015-10-13 2017-04-13 Knorr-Bremse Systeme für Nutzfahrzeuge GmbH Verfahren zur vorausschauenden Umkippverhinderung eines Fahrzeugs
JP6731234B2 (ja) * 2015-10-30 2020-07-29 日立オートモティブシステムズ株式会社 車両運動制御装置及びその方法
CN106740868B (zh) * 2016-12-30 2019-03-29 东软集团股份有限公司 一种车速规划的方法、装置和设备
KR102262132B1 (ko) * 2017-03-27 2021-06-10 현대자동차주식회사 차량용 조향 제어방법
DE102017215592A1 (de) 2017-09-05 2019-03-07 Volkswagen Aktiengesellschaft Fahrassistenzvorrichtung eingerichtet zur teilautonomen und vollautonomen Führung eines Kraftfahrzeugs, Verfahren und Kraftfahrzeug
JP2019043428A (ja) * 2017-09-05 2019-03-22 三菱電機株式会社 車両制御装置および車両制御方法
JP7013998B2 (ja) * 2018-03-27 2022-02-01 トヨタ自動車株式会社 車両制御装置
KR102532338B1 (ko) 2018-06-21 2023-05-16 현대자동차주식회사 차량용 조향 제어방법
JP7190345B2 (ja) 2018-12-19 2022-12-15 株式会社日立製作所 車両運動制御装置及びその方法
US11167759B2 (en) * 2019-04-10 2021-11-09 GM Global Technology Operations LLC Method and apparatus for controlling a vehicle including an adaptive cruise control system
JP7399774B2 (ja) 2020-03-31 2023-12-18 株式会社日立製作所 移動体制御システム
US11597384B2 (en) * 2020-09-14 2023-03-07 Valeo North America, Inc. Method, apparatus, and computer-readable storage medium for performing a braking operation of a vehicle
JP2022139190A (ja) * 2021-03-11 2022-09-26 本田技研工業株式会社 運転支援装置および車両
US11772641B2 (en) * 2021-05-26 2023-10-03 GM Global Technology Operations LLC Vehicle lateral motion management with preview road surface information
JP2023106034A (ja) * 2022-01-20 2023-08-01 日立Astemo株式会社 車両運動制御装置、および、車両運動制御方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008012975A (ja) * 2006-07-04 2008-01-24 Xanavi Informatics Corp 車両走行制御システム
JP2008285066A (ja) 2007-05-18 2008-11-27 Hitachi Ltd 加加速度情報を用いた車両のヨーモーメント制御装置
JP2009051487A (ja) 2007-07-31 2009-03-12 Nissan Motor Co Ltd 車両用走行制御装置および車両用走行制御方法
JP2010030544A (ja) * 2008-07-31 2010-02-12 Nissan Motor Co Ltd 車両の制駆動制御装置及び自動運転制御方法
JP2010105453A (ja) * 2008-10-28 2010-05-13 Advics Co Ltd 車両安定化制御装置
JP2010171304A (ja) 2009-01-26 2010-08-05 Panasonic Corp 部品内蔵基板の製造方法

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5521822A (en) * 1994-12-08 1996-05-28 General Motors Corporation Method for controlling actuation of a vehicle safety device using filtered vehicle deceleration data
EP0768587B1 (de) * 1995-10-10 1997-12-29 Siemens Aktiengesellschaft Taktsynchrone Bewegungsführung in zeitdiskreten Abtastsystemen
US5899948A (en) * 1997-02-06 1999-05-04 Raphael; Eric Lewis System and method for the detection and discrimination of vehicle crash events
JP4037506B2 (ja) * 1998-03-12 2008-01-23 富士重工業株式会社 車両運動制御装置
JP3167987B2 (ja) * 1999-08-06 2001-05-21 富士重工業株式会社 カーブ進入制御装置
JP3758586B2 (ja) * 2002-02-27 2006-03-22 日産自動車株式会社 車両用走行制御装置
JP4742818B2 (ja) * 2005-11-07 2011-08-10 日産自動車株式会社 車両用減速制御装置
JP5028851B2 (ja) * 2006-04-24 2012-09-19 株式会社デンソー 道路情報検出装置及びプログラム
JP4446978B2 (ja) * 2006-04-28 2010-04-07 トヨタ自動車株式会社 車両用駆動力制御装置
JP4810468B2 (ja) * 2007-03-01 2011-11-09 トヨタ自動車株式会社 変速制御装置
US8744689B2 (en) * 2007-07-26 2014-06-03 Hitachi, Ltd. Drive controlling apparatus for a vehicle
JP5041946B2 (ja) * 2007-09-26 2012-10-03 アイシン・エィ・ダブリュ株式会社 スタビライザ制御装置、スタビライザ制御方法およびスタビライザ制御プログラム
JP4466716B2 (ja) * 2007-11-01 2010-05-26 トヨタ自動車株式会社 走行軌跡生成方法及び走行軌跡生成装置
EP2082936B1 (en) * 2008-01-23 2012-06-20 Aisin AW Co., Ltd. Speed control device for vehicle on curves
JP5257923B2 (ja) * 2008-01-31 2013-08-07 株式会社アドヴィックス 車両の運動制御装置
JP5196252B2 (ja) * 2008-06-26 2013-05-15 株式会社アドヴィックス 車両制御装置
JP4683085B2 (ja) * 2008-07-28 2011-05-11 株式会社デンソー 車両用速度制御装置
CN102414635B (zh) * 2009-04-28 2013-10-30 三菱电机株式会社 指令生成装置
JP5080602B2 (ja) * 2010-03-19 2012-11-21 日立オートモティブシステムズ株式会社 車両制御装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008012975A (ja) * 2006-07-04 2008-01-24 Xanavi Informatics Corp 車両走行制御システム
JP2008285066A (ja) 2007-05-18 2008-11-27 Hitachi Ltd 加加速度情報を用いた車両のヨーモーメント制御装置
JP2009051487A (ja) 2007-07-31 2009-03-12 Nissan Motor Co Ltd 車両用走行制御装置および車両用走行制御方法
JP2010030544A (ja) * 2008-07-31 2010-02-12 Nissan Motor Co Ltd 車両の制駆動制御装置及び自動運転制御方法
JP2010105453A (ja) * 2008-10-28 2010-05-13 Advics Co Ltd 車両安定化制御装置
JP2010171304A (ja) 2009-01-26 2010-08-05 Panasonic Corp 部品内蔵基板の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
INTERNATIONAL JOURNAL OF AUTOMOTIVE ENGINEERING (IJAE, vol. 39, no. 3, 2008

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013203231A (ja) * 2012-03-28 2013-10-07 Hitachi Automotive Systems Ltd 車両の走行制御装置
WO2014097542A1 (ja) * 2012-12-19 2014-06-26 日産自動車株式会社 ステアリング制御装置、ステアリング制御方法
WO2014097541A1 (ja) * 2012-12-19 2014-06-26 日産自動車株式会社 ステアリング制御装置、ステアリング制御方法
JP2018203252A (ja) * 2013-09-11 2018-12-27 ローベルト ボッシュ ゲゼルシャフト ミット ベシュレンクテル ハフツング 後方衝突を軽減するアダプティブ・クルーズ・コントロールの修正
CN111016882A (zh) * 2019-12-13 2020-04-17 苏州智加科技有限公司 一种车辆控制信号计算方法、装置、设备及存储介质

Also Published As

Publication number Publication date
US20130131947A1 (en) 2013-05-23
JP2012030674A (ja) 2012-02-16
US9990332B2 (en) 2018-06-05
EP2599676A4 (en) 2015-05-20
EP2599676A1 (en) 2013-06-05
JP5378318B2 (ja) 2013-12-25
EP2599676B1 (en) 2018-05-02

Similar Documents

Publication Publication Date Title
JP5378318B2 (ja) 車両運動制御装置
JP5417386B2 (ja) 車両運動制御装置
JP5414454B2 (ja) 車両運動制御装置
JP6376059B2 (ja) 自動運転車両の制御装置
JP4602444B2 (ja) ドライバ運転技能支援装置及びドライバ運転技能支援方法
JP4497231B2 (ja) 車両用速度制御装置
JP5272448B2 (ja) 車両用運転支援装置及び車両用運転支援方法
JP5026381B2 (ja) 加減速制御装置
JP5195672B2 (ja) 車両制御装置、車両および車両制御方法
JP7198829B2 (ja) 車両制御装置
US11383698B2 (en) Device and method for controlling vehicle movement, and device and method for generating target course
US20150307100A1 (en) Vehicle Controller
WO2018047874A1 (ja) 加減速制御システム、加減速制御方法
JP2009120116A (ja) 車両衝突回避支援装置
JP2015219830A (ja) 運転支援装置
JP2013126854A (ja) 車両用挙動制御装置
WO2018047873A1 (ja) 加減速制御システム、加減速制御方法
JP6375034B2 (ja) 車両の運動制御システム
JP2006331000A (ja) 推奨車速設定装置及び車両制御装置
JP2017036044A (ja) 車両制御装置
JP2021049867A (ja) 走行支援方法及び走行支援装置
JP7363435B2 (ja) 走行支援方法及び走行支援装置
JP7384013B2 (ja) 走行支援方法及び走行支援装置
JP7363434B2 (ja) 走行支援方法及び走行支援装置
JP5321250B2 (ja) 車両制御装置および車両制御方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11812299

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13813055

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011812299

Country of ref document: EP