WO2011161906A1 - 炭化珪素半導体素子の製造方法と製造装置 - Google Patents

炭化珪素半導体素子の製造方法と製造装置 Download PDF

Info

Publication number
WO2011161906A1
WO2011161906A1 PCT/JP2011/003410 JP2011003410W WO2011161906A1 WO 2011161906 A1 WO2011161906 A1 WO 2011161906A1 JP 2011003410 W JP2011003410 W JP 2011003410W WO 2011161906 A1 WO2011161906 A1 WO 2011161906A1
Authority
WO
WIPO (PCT)
Prior art keywords
silicon carbide
substrate
grindstone
carbide substrate
support substrate
Prior art date
Application number
PCT/JP2011/003410
Other languages
English (en)
French (fr)
Inventor
淳 綾
直毅 油谷
隆夫 沢田
智明 古庄
善幸 末廣
昭裕 渡辺
健一 大塚
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2012521299A priority Critical patent/JPWO2011161906A1/ja
Publication of WO2011161906A1 publication Critical patent/WO2011161906A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • H01L29/872Schottky diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66053Multistep manufacturing processes of devices having a semiconductor body comprising crystalline silicon carbide
    • H01L29/6606Multistep manufacturing processes of devices having a semiconductor body comprising crystalline silicon carbide the devices being controllable only by variation of the electric current supplied or the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched, e.g. two-terminal devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
    • H01L29/1608Silicon carbide

Definitions

  • the present application relates to a method and an apparatus for manufacturing a semiconductor element using a silicon carbide substrate, and more particularly to a method and an apparatus for manufacturing a silicon carbide semiconductor element characterized by a technique for thinning the substrate.
  • Rectification elements and switching elements using silicon are often used as power devices.
  • Si silicon
  • technological development has advanced to the physical limit of silicon, and wide band gap semiconductors with excellent electrical characteristics are promising in order to further reduce breakdown voltage and switching loss.
  • silicon carbide is expected to be a material for silicon carbide Schottky barrier diodes because it has excellent electrical characteristics such as about one digit higher breakdown voltage than silicon. Yes.
  • a conventional method for manufacturing a silicon carbide Schottky barrier diode is as follows. First, an n-type epitaxial layer having a thickness of about 10 ⁇ m is grown on an n-type silicon carbide substrate having a thickness of about 400 ⁇ m. Next, an oxide film is formed on the n-type epitaxial layer. Next, a resist pattern mask is formed, and an impurity such as aluminum that becomes p-type is ion-implanted thereon to form a termination structure. Next, the resist mask and the oxide film are removed, and heat treatment is performed at a high temperature of 1500 ° C. or higher. Next, a metal layer such as Ni is formed on the back surface by sputtering or the like as an ohmic contact layer. Thereafter, annealing is performed at about 1000 ° C. using rapid thermal annealing (RTA) or the like. Next, a metal film such as Ti is formed on the surface as a Schottky electrode.
  • RTA rapid thermal annealing
  • the silicon carbide Schottky barrier diode thus obtained has a large substrate resistance of about 400 ⁇ m, and therefore has a large substrate resistance in the on-resistance of the device, and could not fully utilize the characteristics of silicon carbide. .
  • substrate of the silicon carbide Schottky barrier diode is made thin.
  • an arc-shaped end face substrate suitable for a thickness of 400 ⁇ m may have a knife-like end face shape after thinning, for example, 200 ⁇ m or less, and the end face may be missing in a transport process in a film forming apparatus or the like (see FIG. 19). .
  • the chamfering amount of the end surface on the back side of the substrate is made larger than the chamfering amount of the end surface on the front side.
  • a device such as a silicon carbide Schottky barrier diode thinned using this silicon carbide substrate
  • the silicon carbide substrate is fixed to an end face shape processing apparatus with the epitaxial layer forming surface facing up, and end face shape processing is performed.
  • the grinding stone or silicon carbide substrate is removed from the processed portion, and a liquid such as water is sprayed on the processed portion to prevent overheating of the processed portion.
  • the silicon carbide Schottky barrier diode is manufactured.
  • An n-type epitaxial layer having a thickness of about 10 ⁇ m is grown on an n-type silicon carbide substrate having a thickness of about 400 ⁇ m.
  • an oxide film is formed on the n-type epitaxial layer.
  • a resist pattern mask is formed, and an impurity such as aluminum that becomes p-type is ion-implanted thereon to form a termination structure.
  • the resist mask and the oxide film are removed, and heat treatment is performed at a high temperature of 1500 ° C. or higher.
  • backside processing is performed to reduce the substrate thickness by half.
  • a protective film is formed by applying a resist to the epitaxial layer forming surface.
  • the epitaxial layer formation surface is fixed to the support substrate with wax with the support substrate side facing.
  • the silicon carbide substrate is fixed to a polishing apparatus or a grinding apparatus together with the support substrate, and the back surface of the silicon carbide substrate is thinned by polishing or grinding.
  • a metal layer such as Ni is formed on the back surface by sputtering or the like as an ohmic contact layer.
  • annealing is performed at about 1000 ° C. using rapid thermal annealing (RTA) or the like to obtain an ohmic electrode.
  • RTA rapid thermal annealing
  • a metal film such as Ti is formed on the surface of the epitaxial layer as a Schottky electrode to form a Schottky contact electrode.
  • the end surface shape processing and the back surface processing of the silicon carbide substrate are performed independently as described above, it is necessary to form the protective film on the epitaxial layer forming surface twice, which increases the number of processes and decreases the productivity. Further, in the protective film removal step after the end face shape processing, the possibility that the epitaxial layer forming surface is contaminated by the silicon carbide substrate or grinding of the grindstone increases, and the production yield decreases.
  • the present invention has been made to solve the above-described problems, and in manufacturing a silicon carbide Schottky barrier diode with low on-resistance and high performance, a manufacturing method that maintains productivity and does not decrease yield.
  • the purpose is to get.
  • the silicon carbide substrate is thinned from the middle of the process.
  • a method of manufacturing a silicon carbide semiconductor device includes a step of fixing a silicon carbide substrate to a support substrate with a first main surface of the silicon carbide substrate on which an activated region is formed facing the support substrate, and a method of fixing the silicon carbide substrate to the support substrate. Polishing the periphery of the silicon carbide substrate with a grindstone, thinning the peripherally polished silicon carbide substrate from the second main surface opposite the first main surface, and supporting the thinned silicon carbide substrate And a step of removing from the substrate.
  • the silicon carbide substrate is attached to the support substrate, and end face shape processing and back surface polishing are continuously performed. Since the process of protecting the epitaxial layer forming surface with a resist or the like is only required once, the number of steps of manufacturing a thinned silicon carbide Schottky barrier diode can be reduced. Further, the epitaxial layer forming surface is fixed with wax facing the support substrate side during the end surface shape processing, and the epitaxial layer forming surface is not contaminated during the end surface shape processing, thereby improving the yield.
  • FIG. 1 It is sectional drawing showing the whole silicon carbide base
  • FIG. 8 is a cross-sectional view of the entire silicon carbide substrate after the activation annealing shown in FIG. 7. It is sectional drawing after affixing the whole silicon carbide base
  • FIG. 5 is a diagram (a) to (c) comparing cross-sectional shapes of a silicon carbide substrate in backside polishing.
  • FIG. 6 is a configuration diagram of a grindstone for end face processing according to Embodiment 2.
  • FIG. FIG. 6 is a diagram illustrating a configuration of a continuous processing apparatus according to a third embodiment. It is sectional drawing after fixing a silicon carbide base
  • Silicon carbide substrate 10 is an n-type low resistance substrate containing nitrogen (N) or the like. Silicon carbide substrate 10 is a hexagonal (4H) polytype, and the plane direction of the first main surface has an off-angle from the (0001) silicon surface.
  • n-type silicon carbide epitaxial layer 20 such as nitrogen (N) is formed.
  • a base region (activated ion implantation region) 51 containing a p-type impurity such as aluminum (Al) is formed at a part separated by a certain width.
  • a Schottky electrode 70 is formed on the surface side of the silicon carbide epitaxial layer 20 surrounded by the p-type base region 51 so as to protrude from the base region 51.
  • An ohmic electrode 61 is formed on the surface (back surface) opposite to the silicon carbide epitaxial layer 20 of the silicon carbide substrate 10.
  • a combination of silicon carbide substrate 10 and silicon carbide epitaxial layer 20 is referred to as silicon carbide substrate 11.
  • FIGS. 2 to 10 are schematic cross-sectional views in each manufacturing process of silicon carbide Schottky barrier diode 1.
  • 11 to 18 are schematic sectional views of silicon carbide substrate 11 in the thinning step.
  • n-type silicon carbide substrate 10 shown in FIG. 2 is prepared.
  • a silicon carbide epitaxial layer 20 having a doping concentration of 5 ⁇ 10 15 / cm 3 and a film thickness of 10 ⁇ m is grown on this n-type silicon carbide substrate 10 (FIG. 3).
  • An oxide film 30 is formed on silicon carbide epitaxial layer 20 (FIG. 4).
  • An ion implantation mask 40 is formed on the oxide film 30 with a resist or the like (FIG. 5). By implanting aluminum from above the ion implantation mask 40, an ion implantation region 50 is selectively formed (FIG. 6).
  • the ion implantation conditions are, for example, 40 to 700 KeV (maximum implantation depth: about 0.8 ⁇ m) at room temperature when the tilt angle of the silicon carbide substrate 11 is 0 ° and the rotation angle is 0 °.
  • the implantation amount of aluminum ions is, for example, 5 ⁇ 10 17 / cm 3 .
  • heat treatment is performed in an argon atmosphere at 1500 ° C. for 30 minutes in order to activate the implanted aluminum ions.
  • a p-type termination structure is formed by the base region 51 activated in this heat treatment step (FIG. 7).
  • a silicon carbide substrate 11 composed of the silicon carbide substrate 10 and the silicon carbide epitaxial layer 20 shown in FIG. 11 is attached to the support substrate 100 using wax 105 or the like as shown in FIG. At this time, in order to protect the silicon carbide epitaxial layer 20, it is directed to the support substrate side.
  • the support substrate 100 is fixed to the turntable 110, and the silicon carbide substrate 11 is rotated together with the support substrate 100.
  • the grindstone 120 has a flat open surface (a surface facing the support substrate 100), and the distance from the center of rotation to the polishing surface increases as it goes from the open surface to the fixed side (upward in FIG. 14).
  • the lower side of the grindstone 120 is a plane perpendicular to the rotation axis and is set with a gap from the support substrate 100, so that it does not come into contact with the support base 100.
  • the grindstone 120 is slid laterally toward the center of the silicon carbide substrate 11 indicated by the arrow.
  • a silicon carbide substrate 11 having an end face shape as shown in FIG. 14 is obtained. With such an end face shape, it is possible to prevent cracking or chipping of the end portion of the substrate 11 during back surface polishing or in a process after thinning.
  • the grinding stone and substrate dust are removed from the processing portion, and cooling water is applied to the silicon carbide substrate 11 and the grinding stone 120 in order to remove the generated processing heat.
  • the cooling water that spreads over the substrate and the like contains silicon carbide and grinding stone powder, and adheres to the back surface of the substrate. After cleaning this, the back surface is polished and thinned (FIG. 15).
  • a support substrate 100 to which the silicon carbide substrate 11 is attached is mounted, and a polishing weight 130 for applying a load is also mounted. In this state, the silicon carbide substrate 11 is thinned from the back side of the silicon carbide substrate 11 by rotating the support substrate 100 and the platen 140 while dripping the abrasive 106 onto the surface plate 140 little by little.
  • the polishing process is terminated.
  • the silicon carbide substrate 11 and the support substrate 100 are removed from the polishing apparatus, and the back surface of the shaved silicon carbide substrate 11 is washed with pure water or the like to remove silicon carbide or abrasive powder (FIG. 17).
  • cleaning with an organic solvent is performed, and the wax 105 is melted by heating to peel off the silicon carbide substrate 11 from the support substrate 100.
  • the silicon carbide substrate 11 is cleaned by RCA cleaning or the like, and the thinning process is performed. Completion (FIG. 18).
  • a nickel (Ni) metal film 60 is formed on the back surface of the silicon carbide substrate 11 (FIG. 9), and NiSi is formed by heating using RTA to form an ohmic electrode 61 (FIG. 10).
  • the end surface shape processing step and the thinning step by back surface polishing are performed while the silicon carbide substrate 11 is attached to the support substrate 100 with the surface on which the silicon carbide epitaxial layer 20 is formed facing the support substrate side. Since the treatment can be performed continuously, the steps such as forming a protective film can be reduced. More importantly, the surface of the silicon carbide epitaxial layer 20 is protected by the support substrate 100 and the silicon carbide substrate 11 during the end surface shape processing and during the back surface processing, and dirt is attached during the end surface shape processing and during the back surface processing. Can be prevented.
  • FIG. 19A shows a case where the back surface is polished and thinned without performing end face processing.
  • the end face becomes a very acute angle, and chipping occurs during polishing of the back surface, or the silicon carbide substrate itself breaks due to the chipping.
  • the end surface of the silicon carbide substrate contacts the components in the apparatus. This increases the possibility of chipping and cracking.
  • FIG. 19B shows a case where the end face has a substantially right-angle shape as a result of end face processing.
  • FIG. 19 (c) shows a case where the end face processing has an obtuse end face shape as a result of end face processing.
  • neither end face shape causes chipping or cracking.
  • the authors confirmed that chipping and cracking occur in the back surface polishing step and the back surface film forming step in the substantially right end face shape as shown in FIG. Yes. Therefore, when performing the polishing / grinding process of the back surface of the silicon carbide substrate, it is necessary to polish and grind the back surface after forming the end face shape as shown in FIG. Embodiment 2.
  • FIG. Embodiment 2 shows a case where the end face has a substantially right-angle shape as a result of end face processing.
  • the open surface (surface with the object to be processed) shown in FIG. A grindstone 120 having a distance up to the fixed side from the open surface was used.
  • the grindstone piece 122 is fixed to the grindstone jig 121, and the grindstone 121 for end face processing is configured so that the envelope of the grindstone surface becomes the end face shape of the substrate.
  • the end face processing grindstone 121 it is processed into a desired end face shape.
  • the end surface processing grindstone 121 includes an open surface 121a, a fixed surface 121b, and a polishing surface 121c.
  • the material constituting the grindstone for scraping silicon carbide contains not only diamond having a hardness much higher than that of silicon carbide but also aluminum boride and boron carbide having a hardness higher than that of silicon carbide. Since a material having a small hardness difference from silicon carbide such as aluminum boride and boron carbide is included, the force applied to the silicon carbide substrate during processing can be reduced. The thickness of the work-affected layer is reduced, and the probability of chipping is reduced. This brings about the same effect not only when processing the end face but also when polishing the back face.
  • the end surface processing and back surface polishing of the silicon carbide substrate are continuously performed in the same apparatus.
  • the continuous processing apparatus 300 includes a turntable 110, an end surface processing grindstone (120 or 121), a back surface grinding grindstone 210, a transfer system 230, and a grindstone processing machine 240.
  • Silicon carbide substrate 11 is attached to support substrate 100.
  • the back surface polishing grindstone 210 includes a support substrate 205 and a grindstone material 206.
  • the grindstone processing machine 240 measures the shape of the grindstone and corrects the shape.
  • cooling water (not shown here) is applied to the grindstone and the silicon carbide substrate to cool the processed portion, and silicon carbide or grindstone generated simultaneously Remove shavings.
  • the grindstone processing machine 240 is used to inspect the shape of the grindstone 120 and the grindstone 120 is replaced, or the shape of the grindstone 120 is To correct.
  • the back surface of the silicon carbide substrate 11 placed on the turntable 110 is polished with a grindstone 210 as shown in FIG. Silicon carbide substrate 11 is bonded to support substrate 100 with wax 105.
  • the polishing surface of the back surface grinding stone 210 is flat. By doing this, back surface polishing is continuously performed while the support substrate 100 is placed on the turntable 110 that has been subjected to end face processing without being placed on the grindstone 140 as shown in FIG. 16 described in the first embodiment. can do.
  • the silicon carbide substrate 11 attached to the support substrate 100 is placed on the turntable 110 using the transfer system 230, and the support substrate 100 is fixed to the turntable 110 by vacuum suction or the like. Thereafter, the end face processing grindstone 120 (or 121) is brought close to the silicon carbide substrate 11. Next, the turntable 110 on which the silicon carbide substrate 11 is placed and the grindstone 120 are rotated to process the end surface of the silicon carbide substrate 11.
  • the grindstone 120 is moved away from the silicon carbide substrate 11 by the transport system 230.
  • the back surface grinding wheel 210 approaches the silicon carbide substrate 11 while rotating it. Even if the grindstone 210 starts to come into contact with the silicon carbide substrate 11, the end surface shape of the silicon carbide substrate 11 has a shape as shown in the middle stage (ii) of FIG.
  • the back surface can be polished without any problems.
  • the back surface polishing is desirably performed while moving the grindstone 210 on the silicon carbide substrate 11 in order to improve the uniformity of the polished surface.
  • the grindstone 210 is moved away from the silicon carbide substrate 11 as shown in FIG. Thereafter, fixing of the rotary table 110 such as vacuum suction is removed, and the silicon carbide substrate 11 is taken out of the rotary table 110.
  • the back surface polishing process as described above, the back surface can be polished while maintaining a clean state of the device forming surface of the silicon carbide substrate 11.
  • a silicon carbide Schottky barrier diode can be obtained by performing a subsequent film forming process.
  • silicon carbide Schottky barrier diode 10 silicon carbide substrate, 11 silicon carbide substrate, 20 silicon carbide epitaxial layer, 30 oxide film, 40 ion implantation mask, 50 ion implantation layer, 51 base region, 60 Ni metal film, 61 ohmic electrode, 70 Schottky electrode, 100 support substrate, 110 turntable, 120 grinding wheel, 130 spindle, 140 surface plate

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)

Abstract

 低オン抵抗で高性能な炭化珪素ショットキーバリアダイオードを製作するにあたり、生産性を維持し、歩留まりを低下させない製造方法を得ることを目的としている。本発明では、炭化珪素基板は工程途中から薄板化される。活性化領域が形成された炭化珪素基板の第1主面を支持基板に向けて炭化珪素基板を支持基板に固定する工程と、支持基板に固定された炭化珪素基板の周囲を砥石で研磨する工程と、周囲を研磨された炭化珪素基板を第1主面と対向する第2主面から薄板化する工程と、薄板化された炭化珪素基板を支持基板から取り外す工程とを、備えている製造方法によって炭化珪素半導体素子を作製する。

Description

炭化珪素半導体素子の製造方法と製造装置
 本願は、炭化珪素基板を用いた半導体素子の製造方法および製造装置に関し、特に基板を薄板化する技術に特徴のある炭化珪素半導体素子の製造方法および製造装置に関する。
 シリコン(Si)を用いた整流素子やスイッチング素子がパワーデバイスとして多く用いられている。しかしながら、技術開発がシリコンの物理的限界まで進み、耐圧やスイッチング損失をさらに低減するため電気的特性に優れたワイドバンドギャップ半導体が有望視されている。ワイドバンドギャップ半導体の中で、炭化珪素は、シリコンに比べて絶縁破壊耐圧が約一桁高いなど優れた電気的特性を有しているため、炭化珪素ショットキーバリアダイオードなどの材料として期待されている。
 従来の炭化珪素ショットキーバリアダイオードの製造方法は以下のようになる。まず、厚さ400μm程度のn型炭化珪素基板に厚さ10μm程度のn型エピタキシャル層を成長させる。次にn型エピタキシャル層上に酸化膜を成膜する。次に、レジストパターンによるマスクを形成し、その上からp型となるアルミニウムなどの不純物をイオン注入して終端構造を形成する。次にレジストマスクおよび酸化膜を除去し、1500℃以上の高温で熱処理を行う。次に裏面にオーミックコンタクト層としてNiなどのメタル層をスパッタなどにより成膜する。その後にラピッドサーマルアニーリング(RTA)などを用いて1000℃程度でアニールを行う。次に表面にショットキー電極としてTiなどのメタル膜を成膜する。
 このようにして得られる炭化珪素ショットキーバリアダイオードは、基板の厚さが400μm前後と厚いために、素子のオン抵抗に占める基板抵抗が大きく、炭化珪素の特性を十分に生かすことができなかった。特許文献1では、基板抵抗が大きいという課題を解決するために、炭化珪素ショットキーバリアダイオードの基板を薄くしている。
 基板を薄くするためには、少なくとも裏面のオーミックコンタクト層を形成する前に研磨や研削などの方法で炭化珪素基板の裏面を削る必要がある。炭化珪素の硬くてもろいという特性により、裏面加工時に基板外周部に割れや欠けが生じることが多い。さらに、厚さ400μmに適した円弧形状端面の基板は、例えば200μm以下の薄板化後に端面形状がナイフ状になり、成膜装置などでの搬送処理において端面が欠けることがある(図19参照)。
 このような端面形状による割れや欠けを防ぐために、特許文献2では、基板裏面側の端面の面取り量を表側の端面の面取り量より大きくするようにしている。この炭化珪素基板を用いて薄板化した炭化珪素ショットキーバリアダイオードなどのデバイスを製作するには、まず、裏面の研磨加工時や、薄板化後のプロセスでの基板の割れや欠けを防止するために、薄板化前に適切な端面形状加工を行う必要がある。このために、エピタキシャル層形成面を上にして炭化珪素基板を端面形状加工装置に固定して端面形状加工を行う。砥石を用いた端面形状加工時には、砥石や炭化珪素基板の削粉を加工部から除去することと、加工部の過熱防止のために加工部分に水などの液体を吹き付ける。
この時、水流とともに砥石や炭化珪素の削粉が基板上に飛散し、エピタキシャル層表面が汚れる。このため、エピタキシャル層表面にレジストを塗布したりすることで形成される膜により表面を保護しなければならない。基板は端面形状加工終了後に取り出される。エピタキシャル層形成面には削粉などの汚れが付着しているため、まず純水洗浄を行って保護膜表面に付着した汚れをできる限り洗い落とす。その後にレジスト保護膜を除去する。保護膜の除去方法によっては汚れが炭化珪素基板に付着するので注意する必要がある。炭化珪素の削粉は炭化珪素基板と同一物質であり、一旦基板に付着すると除去が困難になる場合があり、基板の歩留まりを低下させる。
このように炭化珪素基板のエピタキシャル層形成面や裏面に汚れや加工に伴いない発生するキズがないことを確認してから、炭化珪素ショットキーバリアダイオード製作を行う。厚さ400μm程度のn型炭化珪素基板に厚さ10μm程度のn型エピタキシャル層を成長させる。次にn型エピタキシャル層上に酸化膜を成膜する。次に、レジストパターンによるマスクを形成し、その上からp型となるアルミニウムなどの不純物をイオン注入して終端構造を形成する。次にレジストマスクおよび酸化膜を除去し、1500℃以上の高温で熱処理を行う。次に裏面加工を行い、基板厚みを半減させる。
裏面加工を行うためには、まず、エピタキシャル層形成面にレジストを塗布することで保護膜を形成する。次に、支持基板にエピタキシャル層形成面を支持基板側に向けてワックスで固定する。炭化珪素基板を支持基板とともに研磨装置や研削装置に固定し、炭化珪素基板の裏面を研磨や研削などを行って薄板化する。次に、オーミックコンタクト層としてNiなどのメタル層をスパッタなどにより裏面に成膜する。その後にラピッドサーマルアニーリング(RTA)などを用いて1000℃程度でアニールを行い、オーミック性電極を得る。次にエピタキシャル層表面にショットキー電極としてTiなどのメタル膜を成膜し、ショットキー性コンタクト性電極とする。
 このように炭化珪素基板の端面形状加工と裏面加工を独立に行うと、エピタキシャル層形成面の保護膜の形成を2回行う必要があり、工程数が増えて生産性が低下する。また端面形状加工後の保護膜除去工程において、エピタキシャル層形成面が炭化珪素基板や砥石の削粉により汚染される可能性が高まり、生産の歩留まりが下がる。
特開2004-22878公報(1頁、図1) 特開2005-251961公報(1頁、図1)
本発明は、上記のような課題を解決するためになされたもので、低オン抵抗で高性能な炭化珪素ショットキーバリアダイオードを製作するにあたり、生産性を維持し、歩留まりを低下させない製造方法を得ることを目的としている。本発明では、炭化珪素基板は工程途中から薄板化される。
本願に係わる炭化珪素半導体素子の製造方法は、活性化領域が形成された炭化珪素基板の第1主面を支持基板に向けて炭化珪素基板を支持基板に固定する工程と、支持基板に固定された炭化珪素基板の周囲を砥石で研磨する工程と、周囲を研磨された炭化珪素基板を第1主面と対向する第2主面から薄板化する工程と、薄板化された炭化珪素基板を支持基板から取り外す工程とを、備えているものである。
 本発明によれば、炭化珪素基板を支持基板に貼り付けて、端面形状加工と裏面研磨を連続して行なう。エピタキシャル層形成面をレジストなどで保護する工程が一度だけですむことになり、薄板化した炭化珪素ショットキーバリアダイオード製造工程の工程数を削減できる。また、エピタキシャル層形成面は端面形状加工時において支持基板側を向いてワックスで固定されており、エピタキシャル層形成面は端面形状加工時に汚染されることがなくなり、歩留まりが向上する。
本発明に関わる炭化珪素ショットキーバリアダイオードの炭化珪素基体全体を表す断面図である。 炭化珪素ショットキーバリアダイオードを製造する前の炭化珪素基板の断面図である。 炭化珪素基板に炭化珪素エピタキシャル層を形成した後の炭化珪素基板の断面図である。 炭化珪素基板に酸化膜を形成した後の炭化珪素基板の断面図である。 炭化珪素基板にイオン注入用マスクを形成した後の炭化珪素基板の断面図である。 炭化珪素基板にイオンを注入した後の炭化珪素基板の断面図である。 炭化珪素基板に活性化アニールをした後の炭化珪素基板の断面図である。 炭化珪素基板を薄板化した後の炭化珪素基板の断面図である。 炭化珪素基板の裏面にオーミック電極用メタルを形成した後の炭化珪素基板の断面図である。 炭化珪素基板のオーミック電極用メタルをアニールした後の炭化珪素基板の断面図である。 図7に示した活性化アニールをした後の炭化珪素基板全体の断面図である。 炭化珪素基体全体を支持基板に貼り付けた後の断面図である。 炭化珪素基体全体を端面形状加工装置に固定した後の断面図である。 炭化珪素基体全体を端面形状加工装置で端面形状加工した後の断面図である。 炭化珪素基体全体を研磨装置に固定した後の断面図である。 炭化珪素基体全体を研磨装置で裏面研磨した後の断面図である。 炭化珪素基体全体の裏面を洗浄した後の断面図である。 炭化珪素基体全体を支持基板からはがした後の断面図である。 裏面研磨における炭化珪素基体の断面形状を比較した図(a)~(c)である。 実施の形態2に係る端面加工用砥石の構成図である。 実施の形態3に係る連続加工装置の構成を示した図である。 炭化珪素基体を連続加工装置に固定した後の断面図である。 連続加工装置において、炭化珪素基体を端面加工用砥石で加工する様子を示した図である。 連続加工装置において、端面加工用砥石と裏面研磨用砥石の移動を示した図である。 連続加工装置において、炭化珪素基体を裏面研磨する様子を示した図である。 連続加工装置において、裏面研磨用砥石と炭化珪素基体の移動を示した図である。
実施の形態1.
本発明に関わる炭化珪素ショットキーバリアダイオード1の構造を図1に示した断面図に基づいて説明する。炭化珪素基板10は、窒素(N)などを含むn型の低抵抗基板である。炭化珪素基板10は、六方晶(4H)のポリタイプで、第一の主面の面方位が(0001)シリコン面からオフ角を有している。炭化珪素基板10の第一の主面には、窒素(N)などのn型の炭化珪素エピタキシャル層20が形成されている。炭化珪素エピタキシャル層20の表面側には、ある幅だけ離間した部位に、アルミニウム(Al)などのp型不純物を含有するベース領域(活性化イオン注入領域)51が形成されている。
 周辺をp型のベース領域51で囲まれた炭化珪素エピタキシャル層20の表面側には、ベース領域51に周辺をはみ出すようにショットキー電極70が形成されている。炭化珪素基板10の炭化珪素エピタキシャル層20が有るのと反対側の面(裏面)にはオーミック電極61が形成されている。なお、炭化珪素基板10と炭化珪素エピタキシャル層20とを合わせたものを炭化珪素基体11と呼ぶことにする。
 つづいて、炭化珪素ショットキーバリアダイオード1の製造方法について、図2から図18を用いて順に説明する。図2~図10は、炭化珪素ショットキーバリアダイオード1の各製造工程における断面模式図である。図11~図18は、薄板化工程における炭化珪素基体11の断面模式図である。
 はじめに、炭化珪素基体11を形成する工程を説明する。まず図2に示すn型の炭化珪素基板10を準備する。このn型の炭化珪素基板10上にドーピング濃度5×1015/cm3、膜厚10μmの炭化珪素エピタキシャル層20を成長させる(図3)。炭化珪素エピタキシャル層20には、酸化膜30を形成する(図4)。
 次に、p型終端構造を形成する工程を行う。酸化膜30上にイオン注入マスク40をレジストなどで形成する(図5)。イオン注入マスク40の上からアルミニウムを注入することで、選択的にイオン注入領域50が形成される(図6)。イオン注入条件は、例えば、室温で炭化珪素基体11の傾斜角度0°、回転角度0°において、40~700KeV(最大注入深さ:約0.8μm)とする。アルミニウムイオンの注入量は、例えば、5×1017/cm3である。次に、イオン注入マスク40および酸化膜30を除去した後、注入したアルミニウムイオンを活性化させるためにアルゴン雰囲気中で1500℃以上、30分間熱処理を行う。この熱処理工程で活性化されたベース領域51によりp型終端構造が形成される(図7)。
 次に、裏面から薄板化を行うために研磨や研削を行う(図8)。この工程の詳細を図11から図18を用いて説明する。まず、図11に示す炭化珪素基板10と炭化珪素エピタキシャル層20からなる炭化珪素基体11を図12に示すように支持基板100にワックス105などを用いて貼り付ける。このとき、炭化珪素エピタキシャル層20を保護するために支持基板側に向けておく。次に支持基板100を回転台110に固定し、炭化珪素基体11を支持基板100と供に回転させる。支持基板に固定された炭化珪素基板を、端面の丸みの中心が薄板化後の基板厚の中にあり、丸みの直径が厚みの3倍から1/3倍の間となるように薄板化後の炭化珪素基体11に適した端面形状にするために、図13に示すような端面形状をした砥石120を用いる。
砥石120は開放面(支持基板100と対向する面)が平坦で、回転中心から研磨面までの距離が開放面から固定側(図14の上方)に行くほど長くなっている。砥石120の下側は回転軸に垂直な平面で、支持基板100から隙間を開けて設定するので、支持基体100と接触しない。砥石120は矢印で示す炭化珪素基体11の中心に向かって横方向にスライドさせる。砥石120で端面を加工すると、図14に示すような端面形状の炭化珪素基体11となる。このような端面形状にすれば、裏面研磨時や薄板化後のプロセスにおいて基体11の端部の割れや欠けを防止することができる。
端面形状加工中は砥石や基板の削粉を加工部から取り除き、発生する加工熱を除去するために炭化珪素基体11や砥石120に冷却水をかける。基板などに広がった冷却水中には、炭化珪素や砥石の削粉が含まれており、基板裏面に付着する。これを洗浄した後に裏面の研磨を行い、薄板化する(図15)。研磨装置の定盤140には、炭化珪素基体11を貼り付けた支持基板100を載せ、さらに荷重をかけるための研磨用錘130を載せる。この状態で研磨材106を定盤140上に少しずつ滴下しながら、支持基板100と定盤140を回転させることにより、炭化珪素基体11を炭化珪素基体11の裏側から薄板化していく。
図16に示すような所望の厚み(望ましくは数十μmから百数十μm)まで薄くすることができたら研磨工程を終了する。次に、研磨装置より炭化珪素基体11と支持基板100を取り外し、削った炭化珪素基体11の裏面を純水などで洗浄し、炭化珪素や研磨材の削粉を取り除く(図17)。次に有機溶剤を用いた洗浄を行い、加熱することでワックス105を溶かして支持基板100から炭化珪素基体11をはがした後に、炭化珪素基体11をRCA洗浄などにより洗浄し、薄板化工程が完了する(図18)。
 次に炭化珪素基体11の裏面に例えばニッケル(Ni)金属膜60を形成し(図9)、RTAを用いた加熱によりNiSi化させてオーミック電極61を形成する(図10)。次に炭化珪素基体11の表面に例えばチタンによるショットキー電極70を形成する(図1)。これらの一連の製造工程を経る事で炭化珪素ショットキーバリアダイオード1を得ることができる。
 この構成によれば、炭化珪素基体11を炭化珪素エピタキシャル層20が形成された面を支持基板側に向けて支持基板100に貼り付けたまま、端面形状加工工程と、裏面研磨による薄板化工程を、連続して処理できるため、保護膜形成などの工程が削減できる。さらに重要なことは、炭化珪素エピタキシャル層20の表面は、端面形状加工時、および裏面加工時に支持基板100と炭化珪素基体11により保護されており、端面形状加工時、および裏面加工時に汚れが付着することを防止できる。
 なお、ここでは、支持基板にワックスで貼り付ける方法を述べたが、その代わりにテープ膜に貼り付けて、同様な処理を行うことも可能である。また、ここでは、炭化珪素ショットキーバリアダイオードの製造方法について述べたが、本方法は炭化珪素MOSFETなどの炭化珪素半導体素子の製造方法として広く適用可能である。
 裏面研磨の効果について図19を用いて補足説明する。図19(a)は端面加工を行わずに裏面を研磨して薄板化した場合を示している。基板に端面加工を行わずに裏面を研磨して薄板化すると、端面が非常に鋭角になり、裏面の研磨中に欠けたり、欠けをきっかけに炭化珪素基体そのものが割れたりする。また、裏面研磨工程が終了しても、その後の裏面成膜工程などで、炭化珪素基体を装置内に搬送して基板固定ステージへ装着する際に、炭化珪素基体の端面が装置内部品と接触して欠けや割れが発生する可能性が高まる。
図19(b)は端面加工を行なった結果、端面がほぼ直角形状を有している場合を示している。図19(c)は端面加工を行なった結果、鈍角の端面形状を有している場合を示している。シリコン基板の製造工程においては、どちらの端面形状でも欠けや割れを生じさせることはない。しかしながら、炭化珪素基体の製造工程においては、図19(b)に示すようなほぼ直角の端面形状では、裏面研磨工程や裏面成膜工程において、欠けや割れが生じることを筆者らは確認している。したがって、炭化珪素基体の裏面の研磨・研削工程を行う際には、図19(c)に示すような端面形状にした後に裏面の研磨・研削を行なう必要がある。
実施の形態2.
 実施の形態1では、図19(c)に示す炭化珪素基体の端面形状を加工するために、図13や図14に示す開放面(加工対象がある面)が平坦で、回転中心から研磨面までの距離が開放面から固定側に行くほど長くなっている砥石120を用いた。実施の形態2では、図20に示すように、砥石片122を砥石冶具121に固定し、その砥石表面の包絡線が基板の端面形状になるように端面加工用砥石121を構成する。端面加工用砥石121を用いて、所望の端面形状に加工する。端面加工用砥石121は開放面121a、固定面121b、研磨面121cを備えている。
 炭化珪素を削る砥石を構成する材料には、炭化珪素より非常に高硬度のダイヤモンドだけでなく、炭化珪素より高硬度のアルミボライドやボロンカーバイドが含まれているほうが望ましい。アルミボライドやボロンカーバイドといった炭化珪素と硬度差の少ない材料が含まれている分、加工時に炭化珪素基板に与える力を低減させることができる。加工変質層の厚みが薄くなり、欠けの発生確率も低くなる。このことは端面加工時だけでなく、裏面研磨時にも同様な効果をもたらす。
 実施の形態3.
 実施の形態3では、炭化珪素基体の端面加工と裏面研磨を同一装置内で連続して行う。図21で示すように連続加工装置300は、回転台110と、端面加工用砥石(120もしくは121)と、裏面研磨用砥石210と、搬送システム230と、砥石加工機240を備えている。炭化珪素基体11は支持基板100に貼り付けられている。裏面研磨用砥石210は支持基板205と砥石材206から構成されている。砥石加工機240は砥石の形状を測定し、形状を修正する。実施の形態1で説明したのと同様に端面加工時や裏面研磨時には冷却水(ここでは図示せず)を砥石と炭化珪素基板にかけて加工部を冷却し、また、同時に発生する炭化珪素や砥石の削り粉を除去する。
砥石120を用いて研磨する場合、図13に示す炭化珪素基体11と接触している部分が消耗する。砥石120の形状が変化するので、徐々に端面の形状が変化する。これを防止するために、ある程度の枚数の炭化珪素基体11の処理を行うたびに、砥石加工機240を用いて、砥石120の形状を検査して、砥石120を交換するか、砥石120の形状を修正する。
端面加工後、図22に示すように回転台110にのせた炭化珪素基体11の裏面を砥石210により研磨する。炭化珪素基体11は支持基板100にワックス105で貼り付けられている。裏面研磨用砥石210の研磨面は平坦である。このようにすることで、実施の形態1で説明した図16のよう支持基板100を砥石140の上に載せ替えることなく、端面加工を行った回転台110に置いたまま、連続して裏面研磨することができる。
まず、図23で示すように支持基板100に貼り付けられた炭化珪素基体11を回転台110の上に搬送システム230を用いて置き、真空吸着などにより支持基板100を回転台110に固定する。その後に、端面加工用砥石120(または121)を炭化珪素基体11に近づける。次に、炭化珪素基体11を載せた回転台110と砥石120とを回転させて、炭化珪素基体11の端面を加工する。
次に図24に示すように、端面加工終了後に、搬送システム230により砥石120を炭化珪素基体11から遠ざける。裏面研磨砥石210は炭化珪素基体11を回転させながら近づける。砥石210が炭化珪素基体11に接触して削り始めても、炭化珪素基体11の端面形状が図19(c)の中段(ii)のような形状となっているために、端面での欠けを生じることなく、裏面が研磨できる。
裏面研磨は図25に示すように研磨面の均一性を向上させるために、砥石210を炭化珪素基体11上を移動させながら行うことが望ましい。裏面研磨が終了したら、図26に示すように、砥石210を炭化珪素基体11から遠ざける。その後に回転台110の真空吸着などの固定を外し、炭化珪素基体11を回転台110から取り出す。以上のような裏面研磨工程を経ることで、炭化珪素基体11のデバイス形成面を清浄な状態を維持しながら、裏面を研磨することができる。その後の成膜工程などを行い、炭化珪素ショットキーバリアダイオードを得ることができる。
 1 炭化珪素ショットキーバリアダイオード、10 炭化珪素基板、11 炭化珪素基体、 20 炭化珪素エピタキシャル層、30 酸化膜、40 イオン注入用マスク、50 イオン注入層、51 ベース領域、60 Ni金属膜、61 オーミック電極、
70 ショットキー電極、100 支持基板、110 回転台、120 砥石、130 錘、140 定盤

Claims (8)

  1. 活性化領域が形成された炭化珪素基板の第1主面を支持基板に向けて前記炭化珪素基板を前記支持基板に固定する工程と、
    前記支持基板に固定された前記炭化珪素基板の周囲を砥石で研磨する工程と、
    前記周囲を研磨された前記炭化珪素基板を前記第1主面と対向する第2主面から薄板化する工程と、
    前記薄板化された前記炭化珪素基板を前記支持基板から取り外す工程と、
    備えている炭化珪素半導体素子の製造方法。
  2. 炭化珪素基板の周囲を研磨する工程で使う砥石は、開放面が平坦で、回転中心から研磨面までの距離が開放面から固定側に行くほど長くなっていることを特徴とする請求項1に記載の炭化珪素半導体素子の製造方法。
  3. 炭化珪素基板の周囲を研磨する工程で使う砥石は、複数の研磨砥石片が砥石冶具に固着されてなることを特徴とする請求項2に記載の炭化珪素半導体素子の製造方法。
  4. 炭化珪素基板を支持基板に固定する工程の前に、炭化珪素基板の第1主面にエピタキシャル層を形成する工程と、エピタキシャル層に活性化領域を形成する工程と、を備えていることを特徴とする請求項1に記載の炭化珪素半導体素子の製造方法。
  5. 炭化珪素基板を支持基板から取り外す工程の後、支持基板から取り外された炭化珪素基板の第2主面にオーミック電極層を形成する工程を備えていることを特徴とする請求項1に記載の炭化珪素半導体素子の製造方法。
  6. 支持基板から取り外す工程を経た炭化珪素基板は、端面に丸みを有し、該丸みの直径が厚みの3倍から1/3倍の間にあることを特徴とする請求項1または5に記載の炭化珪素半導体素子の製造方法。
  7. 炭化珪素基板が固定される回転台と、
    研磨面が平坦である第1の砥石と、
    開放面が平坦で、回転中心から研磨面までの距離が開放面から固定側に行くほど長くなっている第2の砥石と、
    前記回転台に前記第1の砥石または前記第2の砥石を搭載する搬送システムとを備えている炭化珪素半導体素子の製造装置。
  8. 砥石の形状を測定し、該形状を修正する加工機を備えていることを特徴とする請求項7に記載の炭化珪素半導体素子の製造装置。
PCT/JP2011/003410 2010-06-21 2011-06-15 炭化珪素半導体素子の製造方法と製造装置 WO2011161906A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012521299A JPWO2011161906A1 (ja) 2010-06-21 2011-06-15 炭化珪素半導体素子の製造方法と製造装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-140613 2010-06-21
JP2010140613 2010-06-21

Publications (1)

Publication Number Publication Date
WO2011161906A1 true WO2011161906A1 (ja) 2011-12-29

Family

ID=45371113

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/003410 WO2011161906A1 (ja) 2010-06-21 2011-06-15 炭化珪素半導体素子の製造方法と製造装置

Country Status (2)

Country Link
JP (1) JPWO2011161906A1 (ja)
WO (1) WO2011161906A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015005635A (ja) * 2013-06-21 2015-01-08 三菱電機株式会社 炭化珪素半導体装置の製造方法
JP2015149374A (ja) * 2014-02-06 2015-08-20 住友電気工業株式会社 ダイオード
JP2015149373A (ja) * 2014-02-06 2015-08-20 住友電気工業株式会社 ダイオード
JP2016502763A (ja) * 2012-11-27 2016-01-28 クリー インコーポレイテッドCree Inc. ショットキーダイオード及びショットキーダイオードの製造方法
JP2017005255A (ja) * 2016-08-01 2017-01-05 住友電気工業株式会社 炭化珪素単結晶基板
CN112701165A (zh) * 2019-10-22 2021-04-23 珠海格力电器股份有限公司 碳化硅二极管及其制备方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0732252A (ja) * 1993-07-22 1995-02-03 Hitachi Ltd ワーク自転型研削加工方法、ワーク自転型研削盤及びシリコンウェハ並びにセラミック基板
JPH0837169A (ja) * 1994-07-26 1996-02-06 Hitachi Ltd 半導体基板の研削方法及び研削装置及び半導体装置の製造方法
JPH11207583A (ja) * 1998-01-20 1999-08-03 Oki Electric Ind Co Ltd 半導体基板の製造方法及びその製造装置
JP2001156030A (ja) * 1999-11-30 2001-06-08 Mitsubishi Materials Silicon Corp 半導体ウェーハ用研磨ローラおよびこれを用いた半導体ウェーハの研磨方法
JP2003273053A (ja) * 2002-03-14 2003-09-26 Disco Abrasive Syst Ltd 平面研削方法
JP2005251961A (ja) * 2004-03-04 2005-09-15 Matsushita Electric Ind Co Ltd Iii族窒化物単結晶ウエハおよびそれを用いた半導体装置の製造方法
JP2007123362A (ja) * 2005-10-25 2007-05-17 Disco Abrasive Syst Ltd デバイスの製造方法
JP2008108837A (ja) * 2006-10-24 2008-05-08 Mitsubishi Electric Corp 半導体ウエハの研削装置および半導体装置の製造方法
JP2009130266A (ja) * 2007-11-27 2009-06-11 Toshiba Corp 半導体基板および半導体装置、半導体装置の製造方法
JP2010010705A (ja) * 2008-02-27 2010-01-14 Sumitomo Electric Ind Ltd 窒化物半導体ウエハー及び窒化物半導体デバイスの製造方法並びに窒化物半導体デバイス

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09148283A (ja) * 1995-11-28 1997-06-06 Mitsubishi Electric Corp ウエハ薄板化方法及び装置

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0732252A (ja) * 1993-07-22 1995-02-03 Hitachi Ltd ワーク自転型研削加工方法、ワーク自転型研削盤及びシリコンウェハ並びにセラミック基板
JPH0837169A (ja) * 1994-07-26 1996-02-06 Hitachi Ltd 半導体基板の研削方法及び研削装置及び半導体装置の製造方法
JPH11207583A (ja) * 1998-01-20 1999-08-03 Oki Electric Ind Co Ltd 半導体基板の製造方法及びその製造装置
JP2001156030A (ja) * 1999-11-30 2001-06-08 Mitsubishi Materials Silicon Corp 半導体ウェーハ用研磨ローラおよびこれを用いた半導体ウェーハの研磨方法
JP2003273053A (ja) * 2002-03-14 2003-09-26 Disco Abrasive Syst Ltd 平面研削方法
JP2005251961A (ja) * 2004-03-04 2005-09-15 Matsushita Electric Ind Co Ltd Iii族窒化物単結晶ウエハおよびそれを用いた半導体装置の製造方法
JP2007123362A (ja) * 2005-10-25 2007-05-17 Disco Abrasive Syst Ltd デバイスの製造方法
JP2008108837A (ja) * 2006-10-24 2008-05-08 Mitsubishi Electric Corp 半導体ウエハの研削装置および半導体装置の製造方法
JP2009130266A (ja) * 2007-11-27 2009-06-11 Toshiba Corp 半導体基板および半導体装置、半導体装置の製造方法
JP2010010705A (ja) * 2008-02-27 2010-01-14 Sumitomo Electric Ind Ltd 窒化物半導体ウエハー及び窒化物半導体デバイスの製造方法並びに窒化物半導体デバイス

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016502763A (ja) * 2012-11-27 2016-01-28 クリー インコーポレイテッドCree Inc. ショットキーダイオード及びショットキーダイオードの製造方法
JP2015005635A (ja) * 2013-06-21 2015-01-08 三菱電機株式会社 炭化珪素半導体装置の製造方法
JP2015149374A (ja) * 2014-02-06 2015-08-20 住友電気工業株式会社 ダイオード
JP2015149373A (ja) * 2014-02-06 2015-08-20 住友電気工業株式会社 ダイオード
JP2017005255A (ja) * 2016-08-01 2017-01-05 住友電気工業株式会社 炭化珪素単結晶基板
CN112701165A (zh) * 2019-10-22 2021-04-23 珠海格力电器股份有限公司 碳化硅二极管及其制备方法

Also Published As

Publication number Publication date
JPWO2011161906A1 (ja) 2013-08-19

Similar Documents

Publication Publication Date Title
WO2011161906A1 (ja) 炭化珪素半導体素子の製造方法と製造装置
JP5550738B2 (ja) 炭化珪素半導体素子の製造方法
CN102214555B (zh) 一种对蓝宝石晶片进行减薄的方法
JP2008135611A (ja) 半導体装置の製造方法
JP2014027006A (ja) ウエーハの加工方法
JP2006041248A (ja) 半導体装置および半導体装置の製造方法
CN110112055B (zh) 一种用于晶圆表面保护碳膜的去除方法
CN109427563B (zh) 碳化硅器件和用于制造碳化硅器件的方法
US20130017671A1 (en) Method for manufacturing semiconductor device
JP2014229843A (ja) 炭化珪素半導体装置の製造方法および炭化珪素半導体装置
KR102408679B1 (ko) 접합soi웨이퍼의 제조방법
CN115631994B (zh) 碳化硅肖特基二极管的衬底减薄方法和制作方法
JP2019125731A (ja) 貼り合わせウェーハの製造方法
JP5499826B2 (ja) 半導体素子の製造方法
JP2017168675A (ja) 半導体装置およびその製造方法
JP2022140396A (ja) 炭化シリコン基板、炭化シリコンデバイス、及びその基板薄化方法
CN115084271A (zh) 一种碳化硅功率器件及其加工制造方法
CN113517183A (zh) 一种基于薄片碳化硅晶圆的器件制备方法
JP7135352B2 (ja) 半導体装置の製造方法
JP5910352B2 (ja) 貼り合わせウェーハの製造方法
JP5726061B2 (ja) ウェハの製造方法および半導体装置の製造方法
JP6737987B2 (ja) 半導体装置の製造方法
JP6598438B2 (ja) 半導体装置の製造方法
CN106711018B (zh) 半导体晶圆表面加工方法
WO2017158747A1 (ja) エピタキシャル基板の製造方法および半導体装置の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11797795

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012521299

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11797795

Country of ref document: EP

Kind code of ref document: A1