WO2011161822A1 - 空気電池 - Google Patents

空気電池 Download PDF

Info

Publication number
WO2011161822A1
WO2011161822A1 PCT/JP2010/060869 JP2010060869W WO2011161822A1 WO 2011161822 A1 WO2011161822 A1 WO 2011161822A1 JP 2010060869 W JP2010060869 W JP 2010060869W WO 2011161822 A1 WO2011161822 A1 WO 2011161822A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
negative electrode
electrolyte
layer
nonaqueous electrolyte
Prior art date
Application number
PCT/JP2010/060869
Other languages
English (en)
French (fr)
Inventor
久保木 貴志
高見 則雄
Original Assignee
株式会社 東芝
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 東芝 filed Critical 株式会社 東芝
Priority to CN201080037651.8A priority Critical patent/CN102511107B/zh
Priority to PCT/JP2010/060869 priority patent/WO2011161822A1/ja
Priority to JP2012503157A priority patent/JP5449522B2/ja
Publication of WO2011161822A1 publication Critical patent/WO2011161822A1/ja
Priority to US13/455,202 priority patent/US9954261B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M12/00Hybrid cells; Manufacture thereof
    • H01M12/08Hybrid cells; Manufacture thereof composed of a half-cell of a fuel-cell type and a half-cell of the secondary-cell type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/381Alkaline or alkaline earth metals elements
    • H01M4/382Lithium
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • This disclosure relates to an air battery.
  • Non-Patent Document 1 describes a lithium / oxygen organic electrolyte battery.
  • the lithium / oxygen organic electrolyte battery includes a positive electrode including MnO 2 and carbon black, a negative electrode made of lithium, a separator disposed between the positive electrode and the negative electrode, a nonaqueous electrolyte impregnated in the positive electrode, the negative electrode, and the separator, Is provided.
  • Patent Document 1 proposes the use of a hydrophobic ionic liquid for the nonaqueous electrolyte of a nonaqueous electrolyte air battery.
  • Patent Document 2 proposes to apply a solid electrolyte to the nonaqueous electrolyte of a nonaqueous electrolyte air battery.
  • Non-Patent Document 2 according to a lithium-air battery using an organic electrolyte, since the solid reaction product Li 2 O accumulates on the positive electrode and the positive electrode pores are blocked, the discharge reaction stops. It points out that there is a problem. In order to avoid this problem, the air battery of Non-Patent Document 2 proposes that a solid electrolyte is disposed as a separator between the positive electrode and the negative electrode, an organic electrolyte is used on the negative electrode side, and an aqueous electrolyte is used on the positive electrode side. Yes.
  • an air battery that has excellent durability, can be charged, and has improved high-current charge / discharge characteristics.
  • An air battery of an embodiment includes a container, A positive electrode housed in the container; A negative electrode housed in the container; A first non-aqueous electrolyte held by the positive electrode and containing an ionic liquid; A second non-aqueous electrolyte held by the negative electrode and containing an organic solvent; A solid electrolyte layer disposed between the positive electrode and the negative electrode and having lithium ion conductivity; And a hole for supplying oxygen to the positive electrode.
  • Patent Documents 1 and 2 and Non-Patent Documents 1 and 2 are as follows.
  • an air battery using only a non-aqueous electrolyte containing an organic solvent as a non-aqueous electrolyte is affected by environmental temperature / humidity in use, that is, in a state where an air hole for introducing oxygen into the positive electrode is opened. Receive a lot. Under high temperature conditions, the organic solvent volatilizes from the air holes, so that the electrolytic mass is reduced, resulting in a short battery life. Also, under high humidity conditions, moisture enters from the air holes and the negative electrode deteriorates, resulting in a short battery life.
  • Patent Document 1 when only the ionic liquid is used for the non-aqueous electrolyte, the ionic liquid is required to have excellent reduction resistance because it comes into contact with the negative electrode.
  • An ionic liquid having an ammonium cation is known as an ionic liquid excellent in reduction resistance, but has a higher viscosity than an ionic liquid having an imidazolium cation inferior in reduction resistance. For this reason, when only the ionic liquid which has an ammonium cation is used for a nonaqueous electrolyte, since it is inferior to lithium ion conductivity, a large electric discharge characteristic will fall.
  • the reaction product at the time of discharge at the positive electrode becomes OH 2 ⁇ ions as shown in Chemical formula 1.
  • the discharge reaction is regulated by the negative electrode capacity and water volume, and does not depend on the positive electrode.
  • the water in the electrolyte is consumed in the positive electrode during the discharge reaction, and the electrolyte decreases with the progress of the discharge reaction. Therefore, the electrolyte is easily depleted and a long life cannot be obtained. If the electrolytic mass is increased in order to improve the lifetime, the volume energy density decreases.
  • an aqueous electrolyte is used on the positive electrode side as in Non-Patent Document 2
  • the battery cannot be charged. This is because lithium that has moved to the positive electrode side during discharge is irreversibly deposited in the aqueous electrolyte as lithium hydroxide.
  • the first nonaqueous electrolyte containing the ionic liquid is held on the positive electrode
  • the second nonaqueous electrolyte containing the organic solvent is held on the negative electrode.
  • a solid electrolyte layer that includes a material having lithium ion conductivity and that does not dissolve or swell in the first nonaqueous electrolyte and the second nonaqueous electrolyte is disposed between the positive electrode and the negative electrode. Since the solid electrolyte layer does not dissolve in the ions and the organic solvent, a through-hole through which the ionic liquid in the first nonaqueous electrolyte and the organic solvent in the second nonaqueous electrolyte can pass through the solid electrolyte layer is generated.
  • the second non-aqueous electrolyte on the negative electrode side does not move to the positive electrode side and volatilizes from the hole
  • the first non-aqueous electrolyte on the positive electrode side does not move to the negative electrode side and does not undergo reductive decomposition.
  • the solid electrolyte layer does not swell into the first nonaqueous electrolyte and the second nonaqueous electrolyte, the ionic liquid and the organic solvent enter the solid electrolyte layer and have lithium ion conductivity in the solid electrolyte layer. It can be avoided that the concentration of the material is lowered and further the lithium ion conductivity is lowered, and as a result, the discharge characteristics are lowered.
  • the material having lithium ion conductivity is a material in which lithium ions can move by a voltage difference or a concentration gradient.
  • the fact that the solid electrolyte layer does not dissolve in the first nonaqueous electrolyte and the second nonaqueous electrolyte means that the solid electrolyte layer is not dissolved when the solid electrolyte layer is immersed in the first nonaqueous electrolyte or the second nonaqueous electrolyte. It means that weight does not decrease.
  • the solid electrolyte layer is immersed in the first non-aqueous electrolyte or the second non-aqueous electrolyte in a low-humidity inert gas atmosphere, heated at 45 ° C. for 24 hours, washed with ethyl methyl carbonate, and dried at room temperature. Thereafter, the weight loss of the solid electrolyte layer is confirmed to be 3% or less.
  • the fact that the solid electrolyte layer does not swell in the first nonaqueous electrolyte and the second nonaqueous electrolyte means that the first electrolyte is immersed in the first nonaqueous electrolyte or the second nonaqueous electrolyte. This means that the molecules constituting the nonaqueous electrolyte and the second nonaqueous electrolyte are not taken into the solid electrolyte layer.
  • the solid electrolyte layer is immersed in the first nonaqueous electrolyte or the second nonaqueous electrolyte in a low-humidity inert gas atmosphere, left at 45 ° C. for 24 hours, washed with ethyl methyl carbonate, and at room temperature. After drying, it is confirmed that the weight increase of the solid electrolyte layer is within 3%.
  • the ionic liquid used for the first non-aqueous electrolyte is non-volatile, it can be prevented from volatilizing from the hole for supplying oxygen to the positive electrode. Moreover, since the first nonaqueous electrolyte is blocked by the solid electrolyte layer and does not reach the negative electrode, the ionic liquid is not reduced and decomposed by the negative electrode.
  • the organic solvent used for the second nonaqueous electrolyte can suppress reductive decomposition on the negative electrode by selecting a solvent having excellent reduction resistance. Further, since the second nonaqueous electrolyte is blocked by the solid electrolyte layer and does not reach the positive electrode, the organic solvent does not volatilize from the holes.
  • the solid electrolyte layer is nonporous as described above, it prevents mixing of the first nonaqueous electrolyte and the second nonaqueous electrolyte, and further prevents water from permeating, thereby suppressing deterioration of the negative electrode due to moisture. Can do.
  • the first nonaqueous electrolyte since the first nonaqueous electrolyte is not in contact with the negative electrode, it is possible to use an ionic liquid that is excellent in lithium ion conductivity but inferior in reduction resistance. When only the ionic liquid is used in the nonaqueous electrolyte Compared with, the large current charge / discharge characteristics are improved. In addition, since the second non-aqueous electrolyte does not reach the pores, the organic solvent contained in the second non-aqueous electrolyte does not volatilize from the pores, compared with the case where only the organic solvent is used for the non-aqueous electrolyte. And durability is improved.
  • first nonaqueous electrolyte the second nonaqueous electrolyte, the solid electrolyte layer, the positive electrode, the negative electrode, and the container will be described.
  • the first non-aqueous electrolyte contains an ionic liquid, and can contain a supporting electrolyte dissolved in the ionic liquid as necessary.
  • the ionic liquid has a cation having a positive charge and an anion having a negative charge, and is non-volatile. Therefore, by using the ionic liquid for the first nonaqueous electrolyte, it is possible to reduce the volatilization amount of the nonaqueous electrolyte from the holes.
  • the hydrophobic ionic liquid By selecting a hydrophobic ionic liquid, it is possible to suppress the intrusion of moisture from the pores. Therefore, the lifetime of the air battery can be further improved by using the hydrophobic ionic liquid.
  • An ionic liquid excellent in reduction resistance that can be applied to a negative potential negative electrode often has a high viscosity.
  • ionic liquids with low viscosity tend to be inferior in reduction resistance, when used in in-vehicle power supplies that require a life of 10 years or more such as electric vehicles, hybrid vehicles, plug-in hybrid vehicles, etc. There is a risk of reductive decomposition gradually.
  • the air battery of the embodiment since there is little possibility that the ionic liquid is mixed into the negative electrode, it is possible to use the ionic liquid having a low viscosity.
  • the low viscosity ionic liquid can further improve the high current discharge characteristics of the air battery.
  • Examples of the cation include one or more selected from the group consisting of an ammonium ion, an imidazolium ion, a phosphonium ion, and a cation obtained by introducing a substituent into each of the above ions (ammonium ion, imidazolium ion, phosphonium ion). be able to.
  • the ammonium ion can have a structural formula represented by Chemical Formula 2, for example.
  • R 1 , R 2 , R 3 and R 4 are substituents selected from the group consisting of a hydrocarbon group, an ester group, an ether group and a nitrile group, and may be the same or different.
  • the number of carbon atoms contained in the substituent is preferably 8 or less.
  • the increase in the viscosity due to the increase in the molecular weight of the ionic liquid is suppressed, and the lithium ion conductivity of the first nonaqueous electrolyte can be improved.
  • a hydrocarbon group and an ether group are preferable. Since the hydrocarbon group has a weak intermolecular interaction as compared with other substituents, the viscosity of the ionic liquid can be reduced.
  • Examples of the hydrocarbon group include an alkyl group, a phenyl group, and a benzyl group.
  • an alkyl group is preferable because it has a flexible molecular structure and realizes an ionic liquid having a lower viscosity.
  • a more preferable range of the carbon number is 1 to 4.
  • at least one substituent among R 1 , R 2 , R 3 , and R 4 has 1 carbon atom, that is, a methyl group.
  • an ionic liquid having a lower viscosity can be realized.
  • the substituents R 1 , R 2 , R 3 and R 4 may be bonded to each other.
  • ammonium ions shown in Chemical formula 2 are, for example, N-butyl-N, N, N-trimethylammonium ions, N-ethyl-N, N-dimethyl-N-propylammonium ions, N-butyl-N-ethyl-N, Examples include N-dimethylammonium ion, N-butyl-N, N-dimethyl-N-propylammonium ion, N-propyl-N-methylpyrrolidinium ion, N-butyl-N-methylpyrrolidinium ion, and the like. However, it is not limited to these.
  • the imidazolium ion can be represented by the structural formula shown in Chemical Formula 3, for example.
  • R 5 , R 6 , and R 7 are substituents selected from the group consisting of a hydrocarbon group, an ester group, an ether group, and a nitrile group, and may be the same or different from each other.
  • the number of carbon atoms contained in the substituent is preferably 8 or less. Thereby, the increase in the viscosity due to the increase in the molecular weight of the ionic liquid is suppressed, and the lithium ion conductivity of the first nonaqueous electrolyte can be improved.
  • a hydrocarbon group is preferred. Since the hydrocarbon group has a weak intermolecular interaction as compared with other substituents, the viscosity of the ionic liquid can be reduced.
  • Examples of the hydrocarbon group include an alkyl group, a phenyl group, and a benzyl group.
  • an alkyl group is preferable because it has a flexible molecular structure and realizes an ionic liquid having a lower viscosity.
  • a more preferable range of the carbon number is 1 to 5 for R 5 and R 7 and 0 to 2 for R 6 .
  • the case of 0 having 0 carbon atoms in R 6 represents hydrogen.
  • R 5 and R 7 are preferably different from each other. When the structures of R 5 and R 7 are different, the symmetry of the molecule is lowered and an ionic liquid having a lower viscosity can be realized.
  • it is more preferable that at least one of them has 1 carbon atom, that is, a methyl group.
  • imidazolium ion shown in Chemical Formula 3 examples include 1-ethyl-3-methylimidazolium ion, 1-butyl-3-methylimidazolium ion, 1-ethyl-2,3-dimethylimidazolium ion, 1 -Ethyl-3,4-dimethylimidazolium ion and the like can be mentioned, but are not limited thereto.
  • the phosphonium ion can have a structural formula represented by Chemical Formula 4, for example.
  • R 8 , R 9 , R 10 and R 11 are substituents selected from the group consisting of a hydrocarbon group, an ester group and an ether group, and may be the same or different. In any case, the number of carbon atoms contained in the substituent is preferably 8 or less.
  • a hydrocarbon group and an ether group are preferable.
  • the hydrocarbon group include an alkyl group, a phenyl group, and a benzyl group.
  • the alkyl group is preferable because the molecular structure is flexible and a lower viscosity ionic liquid is realized. In the case of an alkyl group, a more preferable range of the carbon number is 1 to 4.
  • the substituents R 8 , R 9 , R 10 and R 11 may be bonded to each other.
  • phosphonium ion shown in Chemical Formula 4 examples include tributyl (2-methoxyethyl) phosphonium ion and tributylmethylphosphonium ion, but are not limited thereto.
  • Anions include, for example, PF 6 ⁇ , BF 4 ⁇ , CF 3 SO 3 ⁇ , C 4 F 9 SO 3 ⁇ , [B (OOC—COO) 2 ] ⁇ , [(CN) 2 N] ⁇ , [(CF 3 SO 2 ) 2 N] ⁇ , [(C 2 F 5 SO 2 ) 2 N] ⁇ , BF 3 (CF 3 ) ⁇ and each of the above-mentioned ions (PF 6 ⁇ , BF 4 ⁇ , CF 3 SO 3 ⁇ , C 4 F 9 SO 3 ⁇ , [B (OOC—COO) 2 ] ⁇ , [(CN) 2 N] ⁇ , [(CF 3 SO 2 ) 2 N] ⁇ , [(C 2 F 5 SO 2 ) 2 N] ⁇ , BF 3 (CF 3 ) ⁇ ) may be one or more selected from the group consisting of anions in which substituents are introduced.
  • the ionic liquid is hydrophobic It is more preferable because it becomes sex. Particularly preferred is [(CF 3 SO 2 ) 2 N] ⁇ , which can realize an ionic liquid having a lower viscosity.
  • the supporting electrolyte is not particularly limited as long as it can be used for a lithium ion secondary battery.
  • Li [B (OOC—COO) 2 Li [(CN) 2 N], Li [(CF 3 SO 2 ) 2 N], Li [(C 2 F 5 SO 2 ) 2 N]
  • Li Examples include compounds in which a substituent is introduced into [(CF 3 SO 2 ) 2 N] and Li [(C 2 F 5 SO 2 ) 2 N]).
  • the type of supporting electrolyte used can be one type or two or more types.
  • the anion constituting the ionic liquid and the anion constituting the supporting electrolyte may be the same or different.
  • both the anion of the ionic liquid and the anion of the supporting electrolyte are preferably an anion having a PF 6 ⁇ , BF 4 ⁇ or sulfonylimide group in which a part of the fluorine atom is substituted with a fluoroalkyl group.
  • Particularly preferred is one in which both the ionic liquid and the supporting electrolyte have BF 3 (CF 3 ) ⁇ or [(CF 3 SO 2 ) 2 N] ⁇ as anions.
  • the concentration of the supporting electrolyte is preferably 0.1 to 4 mol / L.
  • concentration of the supporting electrolyte is preferably 0.1 to 4 mol / L.
  • the second non-aqueous electrolyte can include an organic solvent and a supporting electrolyte dissolved in the organic solvent.
  • the second nonaqueous electrolyte is not particularly limited as long as it can be used for a lithium ion secondary battery.
  • the organic solvent is selected from the group consisting of esters, carbonates, ethers, nitriles, and compounds obtained by introducing substituents into the aforementioned compounds (esters, carbonates, ethers, nitriles) 1 It is desirable to contain more than seeds. Preferred is one selected from esters and carbonates. Among the esters, esters having a cyclic structure are preferable, and 5-membered ⁇ -butyrolactone ( ⁇ BL) is particularly preferable.
  • Carbonates can use either cyclic or chain structures.
  • the cyclic carbonates are preferably carbonates having a 5-membered ring structure, and ethylene carbonate (EC), vinylene carbonate (VC), and propylene carbonate (PC) are particularly preferable.
  • the chain carbonic acid ester is preferably a carbonic acid ester having 7 or less carbon atoms, particularly dimethyl carbonate (DMC), diethyl carbonate (DEC), or ethyl methyl carbonate (EMC).
  • Ethers can use either cyclic or chain structures.
  • cyclic ethers ethers having a 5-membered ring structure and a 6-membered ring structure are preferable, and those having no double bond are preferable.
  • chain ethers those containing 5 or more carbon atoms are preferred. Examples thereof include tetrahydropyran, dioxane, tetrahydrofuran, 2-methyltetrahydrofuran, butyl ether, isopentyl ether and the like.
  • nitriles examples include acetonitrile and propionitrile.
  • the organic solvent may be used alone, but it is preferable to use a mixture of plural kinds.
  • the preferred composition of the organic solvent is EC / PC, EC / ⁇ BL, EC / EMC, EC / PC / EMC, EC / EMC / DEC, EC / PC / ⁇ BL.
  • the supporting electrolyte is not particularly limited as long as it can be used for a lithium ion secondary battery.
  • the same type as described for the first nonaqueous electrolyte can be used.
  • Particularly preferred are LiPF 6 , LiBF 4 , Li (CF 3 SO 3 ), Li [(CF 3 SO 2 ) 2 N].
  • the solid electrolyte layer includes a material having lithium ion conductivity that does not dissolve and swell in the first nonaqueous electrolyte and the second nonaqueous electrolyte.
  • the solid electrolyte layer is preferably nonporous and selectively permeates lithium ions.
  • the material having lithium ion conductivity is preferably at least one selected from the group consisting of organic polymers, oxides and sulfides. Since any material exhibits lithium ion conductivity in a solid state, a solid electrolyte layer that is nonporous and selectively transmits lithium ions can be realized.
  • Organic polymer is used with supporting electrolyte.
  • the organic polymer include a polyethylene oxide-containing polymer and a polyvinyl-containing polymer.
  • the polyethylene oxide-containing polymer may contain polyethylene oxide as a main chain and may be partially branched. The terminal of the polyethylene oxide is preferably protected at the hydroxyl group with an ether or ester bond.
  • the polyvinyl-containing polymer preferably contains a polyvinyl chain as a main chain, and a side chain branched from the main chain contains a functional group containing an ester bond or a carbonate bond.
  • a polyethylene oxide-containing polymer is desirable because it is excellent in lithium ion hopping conductivity.
  • the organic polymer may contain a small amount of a softening agent such as dibutyl phthalate.
  • the supporting electrolyte used with the organic polymer is not particularly limited as long as it can be used for a lithium ion secondary battery.
  • the same type as described for the first nonaqueous electrolyte can be used.
  • Particularly preferred are LiPF 6 , LiBF 4 , Li (CF 3 SO 3 ), Li [(CF 3 SO 2 ) 2 N], and lithium salts obtained by introducing a substituent into each of the above compounds.
  • the oxide examples include oxide glass and oxide crystals. Each of them contains lithium as a constituent element and does not require a supporting electrolyte unlike a solid electrolyte layer containing an organic polymer.
  • the oxide glass include an oxide containing Li and one or more elements selected from the group consisting of B, Si, and P. Specifically, the oxide glass includes Li 4 SiO 4 —Li 3 BO 3 oxidation. You can list things.
  • the oxide crystal can be an oxide containing Li and one or more elements selected from the group consisting of Al, Ti, P, La, N, Si, In, and Nb. Specifically, and Na 3 Zr 2 Si 2 PO 12 , LiTi (PO 4) 3, LiAlTi (PO 4) 3, Li 7 like La 3 Zr 2 O 12, La 0.5 Li 0.5 TiO 3 a I can list them.
  • sulfides include sulfide glass and sulfide crystals. Each of them contains lithium as a constituent element and does not require a supporting electrolyte unlike a solid electrolyte layer containing an organic polymer.
  • Li 3 PS 4 , Li 4 SiS 4 , LiGeS 4 -Li 3 PS 4 , LiS-SiS 2 system, SiS-P 2 S 5 system, LiS-B 2 S 3 system, Li 2 S-SiS 2 -Li 4 SiO 4 system and the like can be mentioned.
  • Li 2 S—P 2 S 5 , Li 3.25 Ge 0.25 P 0.75 S 4 and the like are preferable because of high conductivity.
  • the oxide and / or sulfide contained in the solid electrolyte layer is inferior in reduction resistance, it is preferable to dispose a porous film, a nonwoven fabric or a metal oxide layer between the solid electrolyte layer and the negative electrode.
  • a porous membrane, a nonwoven fabric or a metal oxide layer between the solid electrolyte layer and the negative electrode By disposing a porous membrane, a nonwoven fabric or a metal oxide layer between the solid electrolyte layer and the negative electrode, the solid electrolyte layer does not come into contact with the negative electrode, so that the oxide and / or sulfide contained in the solid electrolyte layer is It can be avoided that the solid electrolyte layer deteriorates due to reductive decomposition due to contact with the negative electrode.
  • porous membrane or the nonwoven fabric those that can be used as a separator of a lithium ion secondary battery, such as a polyethylene porous membrane, a polypropylene (PP) porous membrane, and a cellulose nonwoven fabric, can be used.
  • the metal oxide layer is not particularly limited as long as it is a metal oxide insoluble in the non-aqueous electrolyte on the negative electrode side, such as aluminum oxide, silicon oxide, and zinc oxide.
  • the oxide and / or sulfide contained in the solid electrolyte layer is excellent in reduction resistance, the volume energy density can be improved, so the porous film, nonwoven fabric or metal oxide layer is omitted. Is preferred.
  • a preferable combination of the first nonaqueous electrolyte, the second nonaqueous electrolyte, and the solid electrolyte layer is as follows.
  • the supporting electrolytes included in the first nonaqueous electrolyte, the second nonaqueous electrolyte, and the solid electrolyte layer are the same.
  • LiPF 6 LiBF 4 in which a part of the fluorine atom is substituted with a fluoroalkyl group, or a lithium salt having an anion having a sulfonylimide group is preferable, and Li [(CF 3 SO 2 ) 2 N] is particularly preferable.
  • the first non-aqueous electrolyte is preferably hydrophobic, it is preferable to unify PF 6 ⁇ , BF 4 ⁇ in which part of the fluorine element is substituted with a fluoroalkyl group, or an anion having a sulfonylimide group, In particular, [(CF 3 SO 2 ) 2 N] ⁇ having excellent water resistance is preferable.
  • the anion used for the ionic liquid of the first nonaqueous electrolyte is preferably [(CF 3 SO 2 ) 2 N] ⁇ as described above.
  • Cations include N-butyl-N, N, N-trimethylammonium ion, N-ethyl-N, N-dimethyl-N-propylammonium ion, N-butyl-N-ethyl-N, N-dimethylammonium ion, N -Butyl-N, N-dimethyl-N-propylammonium ion, N-propyl-N-methylpyrrolidinium ion, N-butyl-N-methylpyrrolidinium ion, 1-ethyl-3-methylimidazolium ion, 1- Butyl-3-methylimidazolium ion, 1-ethyl-2,3-dimethylimidazolium ion, and 1-ethyl-3,4-dimethylimida
  • N-propyl-N-methylpyrrolidinium ion, N-butyl-N-methylpyrrolidinium ion, and 1-ethyl-3-methylimidazolium ion are preferable.
  • Most preferred is 1-ethyl-3-methylimidazolium ion which can realize a low viscosity ionic liquid.
  • Li [(CF 3 SO 2 ) 2 N] is preferable as the supporting electrolyte used for the second nonaqueous electrolyte.
  • the organic solvent for example, EC / PC, EC / ⁇ BL, EC / PC / ⁇ BL, and PC / ⁇ BL constituted by an organic solvent having a high boiling point are preferable. Since the solid electrolyte layer containing the organic polymer is flexible, it may be deformed when the vapor pressure of the organic solvent increases under high temperature conditions. Therefore, an organic solvent having a high boiling point is preferable. Among these, a mixed solvent system containing EC and PC is preferable because of its excellent stability.
  • the support electrolyte used for the solid electrolyte layer containing the organic polymer is preferably Li [(CF 3 SO 2 ) 2 N] as described above.
  • the organic polymer a polyethylene oxide-containing polymer is preferable. This is because polyethylene oxide exhibits lithium ion conductivity in the main chain ethylene oxide structure.
  • the most preferable combination is that the first non-aqueous electrolyte is [(CF 3 SO 2 ) 2 N] -1-ethyl-3-methylimidazolium [(CF 3 SO 2) a 2 N], the solid electrolyte layer is Li [(CF 3 SO 2) 2 N] - include polyethylene oxide, the second nonaqueous electrolyte Li [(CF 3 SO 2) 2 N] -EC / PC is included.
  • hydrophobic and low-viscosity ionic liquid is used, and the decomposition reaction of the electrolyte when it comes into contact with air or moisture can be suppressed. Can be improved.
  • the supporting electrolytes included in the first nonaqueous electrolyte and the second nonaqueous electrolyte need not be the same. This is because the solid electrolyte layer containing an oxide and / or a sulfide does not contain a supporting electrolyte, so that exchange with the supporting electrolytes contained in the first and second nonaqueous electrolytes does not occur.
  • the ionic liquid used for the first non-aqueous electrolyte has high lithium ion conductivity and is preferably hydrophobic.
  • the anion is preferably an anion having PF 6 ⁇ , BF 4 ⁇ or a sulfonylimide group in which a part of the fluorine element is substituted with a fluoroalkyl group.
  • BF 3 (CF 3 ) ⁇ or [(CF 3 SO 2 ) 2 N] ⁇ particularly [(CF 3 SO 2 ) 2 N] ⁇ is preferable.
  • Examples of the cation include N-butyl-N, N, N-trimethylammonium ion, N-ethyl-N, N-dimethyl-N-propylammonium ion, and N-butyl-N-ethyl-N, N-dimethylammonium ion.
  • N-propyl-N-methylpyrrolidinium ion, N-butyl-N-methylpyrrolidinium ion, and 1-ethyl-3-methylimidazolium ion are preferable.
  • Most preferred is 1-ethyl-3-methylimidazolium ion which can realize a low viscosity ionic liquid.
  • the organic solvent used for the second non-aqueous electrolyte is preferably EC / PC, EC / ⁇ BL, EC / PC / ⁇ BL, or PC / ⁇ BL composed of an organic solvent excellent in solubility of carbon dioxide.
  • the solid electrolyte layer containing an oxide and / or sulfide is rigid because it is an inorganic electrolyte layer.
  • a gas such as carbon dioxide is generated in the negative electrode due to decomposition of the nonaqueous electrolyte or the like, the electrolyte layer is expanded. There is a possibility of breaking. Therefore, an organic solvent having high solubility in carbon dioxide is preferable.
  • EC / ⁇ BL and EC / PC / ⁇ BL are preferable because they are excellent in carbon dioxide solubility and reduction resistance.
  • the supporting electrolyte is preferably excellent in lithium ion conductivity, and specifically, LiPF 6 and LiBF 4 are preferable. In particular, LiBF 4 is preferable because of its excellent stability.
  • a solid electrolyte layer containing a sulfide excellent in lithium ion conductivity is more preferable. More preferred is sulfide glass. Specific examples of the sulfide glass include Li 3 PS 4 , Li 4 SiS 4 , LiGeS 4 —Li 3 PS 4 , LiS—SiS 2 system, SiS—P 2 S 5 system, LiS—B 2 S 3 system, and the like. I can list them. Among them, and Li 2 S-SiS 2 -LiSiO 4 system, Li 2 S-SiS 2 -Li 3 PO 4 system is preferable because the conductivity is excellent in high and reduction resistance.
  • the most preferable combination when the solid electrolyte layer containing oxide and / or sulfide is used is that the first non-aqueous electrolyte is Li [(CF 3 SO 2 ) 2 N] -1-ethyl-3-methyl. Containing imidazolium [(CF 3 SO 2 ) 2 N], the solid electrolyte layer comprising the Li 2 S—SiS 2 —Li 3 PO 4 system, and the second non-aqueous electrolyte being LiBF 4 —EC / PC / It includes ⁇ BL.
  • a hydrophobic, low-viscosity ionic liquid is used, and the decomposition reaction of the first nonaqueous electrolyte when it comes into contact with air or moisture can be suppressed.
  • the current discharge characteristics can be further improved.
  • the positive electrode includes a positive electrode current collector and a positive electrode layer carried on the positive electrode current collector.
  • the positive electrode current collector it is preferable to use a conductive substrate having through-holes such as a mesh, a punched metal, an expanded metal, etc., in order to allow oxygen to diffuse quickly.
  • a conductive substrate having through-holes such as a mesh, a punched metal, an expanded metal, etc.
  • the material of the conductive substrate include stainless steel, nickel, aluminum, iron, and titanium.
  • the surface of the current collector may be coated with an oxidation-resistant metal or alloy in order to suppress oxidation.
  • the positive electrode layer can be formed, for example, by mixing a carbonaceous material and a binder, rolling the mixture into a film, forming a film, and drying.
  • a carbonaceous material and a binder can be mixed in a solvent, applied to a current collector, dried and rolled, and formed.
  • Examples of the carbonaceous material include ketjen black, acetylene black, carbon black, furnace black, activated carbon, activated carbon fiber, and charcoal. It is possible to increase the efficiency of the oxygen reduction reaction by supporting fine particles having a function of reducing oxygen generation overvoltage such as cobalt phthalocyanine on the surface of the carbonaceous material. It is also possible to increase the conductivity of the positive electrode layer by adding a highly conductive carbonaceous material such as acetylene black to the carbonaceous material.
  • the binder may be added to the positive electrode layer for the purpose of maintaining the shape of the layer containing the carbonaceous material and attaching the carbonaceous material to the current collector.
  • the binder for example, polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVdF), ethylene-propylene-butadiene rubber (EPBR), styrene-butadiene rubber (SBR), or the like can be used.
  • the mixing ratio of the carbonaceous material and the binder in the positive electrode layer is preferably in the range of 70 to 98% by weight of the carbonaceous material and 2 to 30% by weight of the binder.
  • the negative electrode includes a negative electrode current collector and a negative electrode active material-containing layer carried on the negative electrode current collector.
  • the negative electrode active material for example, a material that absorbs and releases lithium ions can be used.
  • the material that occludes and releases lithium ions is not particularly limited, and a lithium ion battery or a material that can be used for a lithium battery can be used.
  • a lithium ion battery or a material that can be used for a lithium battery can be used.
  • at least one material selected from the group consisting of metal oxides, metal sulfides, metal nitrides, lithium metals, lithium alloys, lithium composite oxides, or carbonaceous materials that occlude and release lithium ions is used. It is preferable to use it as a substance.
  • Carbonaceous materials that occlude and release lithium ions include, for example, graphite materials such as graphite, coke, carbon fibers, and spherical carbon or carbonaceous materials, thermosetting resins, isotropic pitches, mesophase pitches, mesophase pitch carbon fibers, Mention may be made of a graphite material or a carbonaceous material obtained by subjecting mesophase spherules to heat treatment at 500 to 3000 ° C.
  • metal oxide examples include tin oxide, silicon oxide, lithium titanium oxide, niobium oxide, and tungsten oxide.
  • metal sulfide examples include tin sulfide and titanium sulfide.
  • metal nitride examples include lithium cobalt nitride, lithium iron nitride, and lithium manganese nitride.
  • lithium alloy examples include a lithium aluminum alloy, a lithium tin alloy, a lithium lead alloy, and a lithium silicon alloy.
  • a conductive substrate having a through hole or a non-porous conductive substrate can be used as the negative electrode current collector.
  • These conductive substrates can be formed from, for example, copper, stainless steel, or nickel.
  • a mesh, punched metal, expanded metal or the like, or a metal foil carrying a negative electrode active material-containing layer and then having a hole in the metal foil it can be used as a conductive substrate having a porous structure.
  • the negative electrode containing a negative electrode active material such as a carbonaceous material is prepared by, for example, kneading a negative electrode active material and a binder in the presence of a solvent, applying the obtained suspension to a current collector, and drying. It can be produced by pressing once at a desired pressure or by multistage pressing 2-5 times.
  • PTFE polytetrafluoroethylene
  • PVdF polyvinylidene fluoride
  • EPBR ethylene-propylene-butadiene rubber
  • SBR styrene-butadiene rubber
  • CMC carboxymethylcellulose
  • the blending ratio of the carbonaceous material and the binder is preferably in the range of 80 to 98% by weight of the carbonaceous material and 2 to 20% by weight of the binder.
  • the negative electrode active material if a metal material such as lithium metal or lithium alloy is used as the negative electrode active material, these metal materials can be processed into a sheet shape by themselves, so that the negative electrode active material can be used without using a binder. A containing layer can be formed. Moreover, the negative electrode active material content layer formed with these metal materials can also be directly connected to a negative electrode terminal.
  • a metal material such as lithium metal or lithium alloy
  • the container can be formed from, for example, a metal plate, a sheet having a resin layer, or the like.
  • the metal plate can be formed from, for example, iron, stainless steel, or aluminum.
  • the sheet preferably includes a metal layer and a resin layer covering the metal layer.
  • the metal layer is preferably formed from aluminum foil.
  • the resin layer can be formed from a thermoplastic resin such as polyethylene or polypropylene.
  • the resin layer can be a single layer or a multilayer structure.
  • FIG. 1 shows an example of an air battery according to the embodiment.
  • FIG. 1 shows a non-aqueous electrolyte air battery.
  • the nonaqueous electrolyte air battery includes a laminate film container 1 having an inner surface formed of a thermoplastic resin layer.
  • the container 1 is made of, for example, a laminate film in which three sides on which inner surfaces are overlapped are sealed by heat sealing.
  • the solid electrolyte layer 2 is disposed in the container 1, and three sides are sandwiched between laminate films.
  • the space in the container 1 is divided into two spaces with the solid electrolyte layer 2 as a boundary.
  • One space (upper side in FIG. 1) accommodates the positive electrode 3 and is referred to as a first space 4.
  • the other space accommodates the negative electrode 5 and is referred to as a second space 6.
  • the hole (for example, air hole) 7 is opened on the wall surface of the container 1 so as to communicate with the first space 4.
  • the air hole 7 is for supplying oxygen to the positive electrode 3.
  • the positive electrode 3 includes a positive electrode layer 8 in contact with one surface of the solid electrolyte layer 2 and a positive electrode current collector 9 on which the positive electrode layer 8 is supported and made of, for example, a porous conductive substrate.
  • One end of the positive electrode terminal 10 is electrically connected to the positive electrode current collector 9, and the other end is extended to the outside through a heat seal portion (a portion where the laminate films are thermally fused) of the container 1.
  • the air diffusion layer 11 is disposed on the positive electrode current collector 9.
  • the air diffusion layer 11 is not particularly limited as long as the air taken in from the air holes 7 can be supplied to the positive electrode 3, but for example, a porous film containing a fluororesin such as polyethylene, polypropylene, or PTFE And a synthetic resin nonwoven fabric such as polypropylene and PTFE, a glass fiber nonwoven fabric, and the like.
  • the first nonaqueous electrolyte (not shown) is held by the positive electrode 3 and is also accommodated in the first space 4 as necessary.
  • the negative electrode 5 includes a negative electrode active material-containing layer 12 in contact with the opposite surface of the solid electrolyte layer 2, and a negative electrode current collector 13 on which the negative electrode active material-containing layer 12 is supported and made of, for example, a porous conductive substrate.
  • One end of the negative electrode terminal 14 is electrically connected to the negative electrode current collector 13, and the other end is extended to the outside through a heat seal portion (a portion where the laminate films are heat-sealed) of the container 1.
  • the extending direction of the negative electrode terminal 14 is opposite to the extending direction of the positive electrode terminal 10.
  • the second nonaqueous electrolyte (not shown) is held by the negative electrode 5 and is also accommodated in the second space 6 as necessary.
  • a seal tape 15 for closing the air hole 7 is detachably disposed on the outer surface of the container 1. When the battery is used, air can be supplied to the positive electrode layer 8 by removing the seal tape 15.
  • Example 1 90% by weight of ketjen black and 10% by weight of polytetrafluoroethylene were dry mixed and rolled to obtain a film-like positive electrode layer having a length and width of 20 mm and a thickness of 200 ⁇ m.
  • This positive electrode layer was pressure-bonded to a stainless steel mesh as a positive electrode current collector to produce a positive electrode. Furthermore, one end of the positive electrode terminal was connected to a portion of the obtained positive electrode where the positive electrode current collector was exposed.
  • Metal lithium foil was pressure bonded to a nickel mesh to obtain a negative electrode.
  • One end of the negative electrode terminal is connected to the nickel mesh.
  • an air diffusion layer made of a laminate of a polypropylene nonwoven fabric and a PTFE porous membrane and a polypropylene porous membrane were prepared.
  • a solid electrolyte layer was prepared by molding a sulfide glass made of Li 2 S—SiS 2 —Li 3 PO 4 to a thickness of 100 ⁇ m.
  • a supporting electrolyte composed of LiBF 4 was dissolved at a rate of 1.5 mol / L in a solvent in which ethylene carbonate (EC), propylene carbonate (PC) and ⁇ -butyrolactone ( ⁇ BL) were mixed at a volume ratio of 1: 1: 4. By doing so, a liquid second non-aqueous electrolyte was prepared.
  • EC ethylene carbonate
  • PC propylene carbonate
  • ⁇ BL ⁇ -butyrolactone
  • a negative electrode, a polypropylene porous membrane, a solid electrolyte layer, a positive electrode, and an air diffusion layer were sequentially laminated.
  • the air diffusion layer had the polypropylene nonwoven fabric side as the positive electrode side and the PTFE porous membrane side as the outside.
  • a laminate film having an aluminum-PE / PP layer on one side of the aluminum layer and an aluminum-PE / PP-PET layer on the other side was prepared.
  • the PET layer has a softening point lower than that of the PE / PP layer, and exhibits adhesiveness by thermocompression bonding of the PET layers, and the surface having the PET layer is the inner surface of the exterior material.
  • This laminate was covered with the laminate film so that the PET layer (thermoplastic resin layer) surface of the laminate film was located inside.
  • the PET layer thermoplastic resin layer
  • three sides of the solid electrolyte layer were sandwiched between them.
  • the air hole provided in the laminate film was arrange
  • the other end of the positive electrode terminal and the negative electrode terminal was extended from between the laminated films in which inner surfaces were overlapped.
  • the liquid injection port was removed, and heat sealing was performed by heat sealing. At this time, the area where the end portion of the solid electrolyte layer was covered was heat-sealed, and the first space and the second space were separated by the solid electrolyte layer. Next, the first nonaqueous electrolyte was injected from the injection port into the first space, and the second nonaqueous electrolyte was injected into the second space. Finally, the non-aqueous electrolyte air battery having the structure shown in FIG. 1 was produced by sealing the liquid injection port with a heat seal. At this time, the range in which the end portion of the solid electrolyte layer was covered was heat-sealed, and the first space and the second space were each sealed.
  • Example 2 After heating polyethylene oxide having an average molecular weight of 10,000 at 100 ° C., a supporting electrolyte composed of 5% by weight of Li [(CF 3 SO 2 ) 2 N] is dissolved, cast on a Teflon plate, cooled, A solid electrolyte layer containing molecules was prepared.
  • Li [(CF 3 SO 2 ) 2 N] as a supporting electrolyte at a rate of 1.0 mol / L in a solvent in which ethylene carbonate and propylene carbonate are mixed at a volume ratio of 1: 1, a liquid is obtained.
  • a second non-aqueous electrolyte was prepared.
  • a nonaqueous electrolyte air battery was produced in the same manner as in Example 1 except that the solid electrolyte layer and the second nonaqueous electrolyte were produced by the above method.
  • Example 3 Example 1 except that Li 2 O—Al 2 O 3 —TiO 2 —P 2 O 5 glass was used as the solid electrolyte layer and a porous PP film having a thickness of 25 ⁇ m was disposed on the negative electrode side of the solid electrolyte layer.
  • a non-aqueous electrolyte air battery was produced by the same method as described above.
  • Example 4 Except that a La 0.5 Li 0.5 TiO 3 crystal was used as the solid electrolyte and a porous PP film having a thickness of 25 ⁇ m was disposed on the negative electrode side of the solid electrolyte layer, A water electrolyte air battery was prepared.
  • Example 5 A non-aqueous electrolyte air battery was produced in the same manner as in Example 1 except that Li 3 PS 4 crystal was used as the solid electrolyte and a porous PP film having a thickness of 25 ⁇ m was disposed on the negative electrode side of the solid electrolyte layer. did.
  • Example 6 As a first non-aqueous electrolyte, bistetrafluoromethanesulfonylamide at a rate of 0.5 mol / L in a hydrophobic ionic liquid composed of N-ethyl-N, N-dimethyl-N-propylammonium bistrifluoromethanesulfonylamide A nonaqueous electrolyte air battery was produced in the same manner as in Example 1 except that a nonaqueous electrolyte in which a supporting electrolyte made of lithium (Li [(CF 3 SO 2 ) 2 N]) was dissolved was used.
  • a supporting electrolyte made of lithium Li [(CF 3 SO 2 ) 2 N]
  • Example 7 As a first non-aqueous electrolyte, bistetrafluoromethanesulfonylamide lithium (Li [(CF 3 SO 2 )) was added to a hydrophobic ionic liquid composed of triethyl (methoxyethyl) phosphonium bistrifluoromethanesulfonylamide at a rate of 1 mol / L.
  • a nonaqueous electrolyte air battery was produced in the same manner as in Example 1 except that a nonaqueous electrolyte in which a supporting electrolyte consisting of 2 N]) was dissolved was used.
  • Example 8 As a second non-aqueous electrolyte, a supporting electrolyte composed of LiBF 4 was dissolved at a ratio of 1 mol / L in a solvent in which ethylene carbonate, propylene carbonate, propionitrile, and butyl ether were mixed in 1: 1: 1: 1.
  • a nonaqueous electrolyte air battery was produced in the same manner as in Example 1 except that a nonaqueous electrolyte was used.
  • Example 2 A support made of LiBF 4 at a rate of 1.5 mol / L in a solvent in which ethylene carbonate, propylene carbonate and ⁇ -butyrolactone were mixed in a volume ratio of 1: 1: 4 for each of the first and second nonaqueous electrolytes.
  • a nonaqueous electrolyte air battery was produced in the same manner as in Example 1 except that an electrolyte dissolved was used.
  • the discharge characteristics of the produced air battery were measured under the following conditions in a constant temperature and humidity chamber having a temperature of 45 ° C. and a humidity of 65%.
  • Test 1 the discharge capacity (mAh / g) per positive electrode carbon weight when discharging to 2.0 V at a discharge current of 0.04 mA was measured.
  • Test 2 the discharge capacity (mAh / g) per positive electrode carbon weight when discharging to 2.0 V at a discharge current of 0.4 mA was measured.
  • Test 3 after discharging to 2.0 V at a discharge current of 0.4 mA, the number of cycles in which the discharge capacity decreases to 80% of the initial capacity when charging / discharging cycles to charge to 4.0 at a charging current of 0.4 mA is It was measured.
  • Table 1 The results of Tests 1 to 3 are shown in Table 1 below.
  • the air batteries of Examples 1 to 8 have large discharge capacities at 0.04 mA and 0.4 mA as compared with the batteries of Comparative Examples 1 to 3, and are excellent in large current discharge characteristics, and are durable.
  • the cycle characteristics as an index of safety were also excellent.
  • the battery of Comparative Example 1 had a smaller discharge capacity at 0.04 mA and 0.4 mA than those of Examples 1-8.
  • the second nonaqueous electrolyte was colored yellow, and the negative electrode surface was turned yellowish brown. It is considered that the battery characteristics deteriorated due to reductive decomposition of the ionic liquid at the negative electrode potential.
  • the batteries of Comparative Examples 2 and 3 have the same discharge capacity at 0.4 mA as in the examples, the discharge capacity at 0.04 mA and the cycle characteristics are significantly inferior to those of the examples. It cannot be said that it has both discharge characteristics and durability. Further, in the batteries of Comparative Examples 2 and 3, when the batteries after Test 1 and Test 3 were disassembled, the first non-aqueous electrolytic mass was reduced, and in Comparative Example 2, a solid was precipitated. If the battery is used over a long period of time, such as discharging at low current or repeated charging and discharging, the organic solvent contained in the non-aqueous electrolyte is volatilized from the air holes first, and the battery characteristics are considered to have deteriorated.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Hybrid Cells (AREA)

Abstract

 実施態様の空気電池は、容器と、前記容器内に収納される正極と、前記容器内に収納される負極と、前記正極に保持され、イオン液体を含む第1の非水電解質と、前記負極に保持され、有機溶媒を含む第2の非水電解質と、前記正極と前記負極の間に配置され、リチウムイオン伝導性を有する固体電解質層と、前記容器に設けられ、前記正極に酸素を供給するための孔とを含む。

Description

空気電池
 本開示は、空気電池に関する。
 近年、携帯電話や電子メール端末などの携帯型情報機器の市場は急速に拡大しつつある。これらの機器の小型軽量化が進むにつれて、電源にも小型かつ軽量であることが求められている。現在、これらの携帯機器には高エネルギー密度であるリチウムイオン二次電池が多用されているが、さらに高容量が得られる電池が求められている。
 空気中の酸素を正極活物質に用いる空気電池は、正極活物質を電池に内蔵する必要がないため、高容量化が期待できる。非特許文献1には、リチウム/酸素有機電解質電池が記載されている。このリチウム/酸素有機電解質電池は、MnO及びカーボンブラックを含む正極と、リチウムからなる負極と、正極と負極の間に配置されるセパレータと、正極と負極とセパレータに含浸される非水電解質とを備える。
 特許文献1は、非水電解質空気電池の非水電解質に疎水性のイオン液体を使用することを提案している。特許文献2は、非水電解質空気電池の非水電解質に、固体電解質を適用することを提案している。
 一方、非特許文献2は、有機電解質を用いたリチウム-空気電池によると、正極に固体の反応生成物であるLiOが蓄積して正極の細孔が閉塞するため、放電反応が停止してしまう問題点があること指摘している。この問題点を回避するため、非特許文献2の空気電池は、正極と負極の間にセパレータとして固体電解質を配置し、負極側に有機電解質を、正極側に水系電解質を用いることを提案している。
特許第4015916号明細書 米国特許出願公開第2009/317724号明細書
Journal of The Electrochemical Society, 149(9) A1190-A1195(July 29, 2002) 産業技術総合研究所、「ポストリチウムイオン電池-新型リチウム・空気電池の開発」、2009年7月15日、AT International 2009 フォーラム(主催:日経Automotive Technology及び日経エレクトロニクス、会場:パシフィコ横浜アネックスホール)
 耐久性に優れ、充電が可能であり、かつ大電流充放電特性が向上された空気電池を提供する。
 実施態様の空気電池は、容器と、
 前記容器内に収納される正極と、
 前記容器内に収納される負極と、
 前記正極に保持され、イオン液体を含む第1の非水電解質と、
 前記負極に保持され、有機溶媒を含む第2の非水電解質と、
 前記正極と前記負極の間に配置され、リチウムイオン伝導性を有する固体電解質層と、
 前記容器に設けられ、前記正極に酸素を供給するための孔と
を含む。
 耐久性に優れ、充電が可能であり、かつ大電流充放電特性が向上された空気電池を提供することができる。
実施形態の空気電池を厚さ方向に沿って裁断した断面図である。
 特許文献1,2及び非特許文献1,2の問題点は以下の通りである。
 非特許文献1のように、有機溶媒を含む非水電解質のみを非水電解質として用いた空気電池は、使用状態、すなわち正極へ酸素を取り入れる空気孔を開放した状態では環境温度・湿度の影響を大きく受ける。高温条件においては、空気孔から有機溶媒が揮発するために電解質量が減少し、結果として電池寿命が短くなってしまう。また、高湿度条件においては、空気孔から水分が浸入し、負極が劣化し、結果として電池寿命が短くなってしまう。
 特許文献1のように、非水電解質にイオン液体のみを用いた場合、イオン液体は負極と接触するため耐還元性に優れていることが求められる。耐還元性に優れたイオン液体としてはアンモニウムカチオンを有するイオン液体が知られているが、耐還元性に劣るイミダゾリウムカチオンを有するイオン液体と比較して粘度が高い。このため、非水電解質にアンモニウムカチオンを有するイオン液体のみを用いた場合、リチウムイオン伝導性に劣るため、大電放電特性が低下してしまう。
 特許文献2に記載の固体電解質のみを非水電解質に用いた場合、電流値が小さくなる。非水電解質空気電池において、放電時の正極近傍では、酸素の電解質への溶解と、電極表面でのリチウムイオンとの反応が連続して起こる必要がある。非水電解質として固体電解質のみを用いた場合、電解質への酸素の溶解が遅いため、十分な電流値を得ることができない。
 非特許文献2の空気電池の放電時の反応式を化1に示す。
Figure JPOXMLDOC01-appb-C000001
 正極側に水系電解質を用いることにより、化1に示す通りに正極での放電時反応生成物はOHイオンとなる。放電反応は負極容量および水体積により規制されることになり、正極に依存しなくなる。しかしながら、放電反応の際に正極において電解質中の水が消費され、放電反応の進行に伴い電解質が減少するために、電解質が枯渇しやすく、長寿命を得られない。寿命を向上させるため、電解質量を多くすると、体積エネルギー密度が低下する。また、非特許文献2のように正極側に水系電解質を用いると、電池の充電ができない。これは、放電時に正極側へ移動してきたリチウムが水酸化リチウムとして水系電解質中に非可逆的に析出してしまうためである。
 実施形態の空気電池では、正極にイオン液体を含む第1の非水電解質を保持させると共に、負極に有機溶媒を含む第2の非水電解質を保持させる。正極と負極の間に、リチウムイオン伝導性を有する材料を含み、かつ第1の非水電解質および第2の非水電解質に溶解あるいは膨潤しない固体電解質層を配置する。固体電解質層がイオン及び有機溶媒に溶解しないことにより、固体電解質層に第1の非水電解質中のイオン液体や第2の非水電解質中の有機溶媒が通過可能な貫通孔が生成するのを回避することができる。そのため、負極側の第2の非水電解質が正極側に移動して孔から揮発することがなく、また、正極側の第1の非水電解質が負極側に移動して還元分解することがない。また、固体電解質層が第1の非水電解質および第2の非水電解質に膨潤しないことにより、固体電解質層中にイオン液体及び有機溶媒が侵入して固体電解質層中のリチウムイオン伝導性を有する材料の濃度が低下、さらにそれに伴いリチウムイオン伝導性が低下して、結果として放電特性が低下するのを回避することができる。
 ここで、リチウムイオン伝導性を有する材料とは、電圧差あるいは濃度勾配によってリチウムイオンが移動することができる材料である。固体電解質層が第1の非水電解質および第2の非水電解質に溶解しないとは、固体電解質層を第1の非水電解質あるいは第2の非水電解質に浸漬した際に、固体電解質層の重量が減少しないことを意味する。具体的には、固体電解質層を低湿度不活性ガス雰囲気下で第1の非水電解質あるいは第2の非水電解質に浸漬し、45℃24時間加熱後に、エチルメチルカーボネートで洗浄、室温で乾燥後、前記固体電解質層の重量減少が3%以下であることにより確認される。
 また、固体電解質層が第1の非水電解質および第2の非水電解質に膨潤しないとは、固体電解質層を第1の非水電解質あるいは第2の非水電解質に浸漬した際に、第1の非水電解質および第2の非水電解質を構成する分子が固体電解質層に取り込まれないことを意味する。具体的には、固体電解質層を低湿度不活性ガス雰囲気下で第1の非水電解質あるいは第2の非水電解質に浸漬し、45℃で24時間放置後に、エチルメチルカーボネートで洗浄、室温で乾燥後、前記固体電解質層の重量増加が3%以内であることにより確認される。
 第1の非水電解質に用いられるイオン液体は、不揮発性であるため、正極に酸素を供給するための孔から揮発するのを防ぐことができる。また、第1の非水電解質は固体電解質層に遮られて負極に到達することがないので、負極によりイオン液体が還元分解されることがない。
 第2の非水電解質に用いられる有機溶媒は、耐還元性に優れた溶媒を選択することにより、負極上での還元分解を抑制することができる。また、第2の非水電解質は固体電解質層に遮られて正極に到達することがないので、孔から有機溶媒が揮発することがない。
 また、固体電解質層は、前述のように無孔性であるため第1の非水電解質と第2の非水電解質の混合を防ぎ、さらに水を透過しないので水分による負極の劣化を抑制することができる。
 従って、第1の非水電解質は負極との接触がないためリチウムイオン電導性に優れているが耐還元性に劣るイオン液体を用いることが可能となり、イオン液体のみを非水電解質に用いた場合と比較して大電流充放電特性が向上する。また第2の非水電解質は孔に到達することがないため第2の非水電解質に含まれる有機溶媒が孔から揮発することがなく、有機溶媒のみを非水電解質に用いた場合と比較して耐久性が向上する。その結果、正負極両電極の性能が向上されるため、正極に生成するLiOの可逆性が改善され、耐久性と大電流充放電特性を向上することができる。よって、耐久性に優れ、充電が可能であり、かつ大電流充放電特性が向上された空気電池を提供することができる。
 以下、第1の非水電解質、第2の非水電解質、固体電解質層、正極、負極及び容器について説明する。
 第1の非水電解質は、イオン液体を含むもので、イオン液体に溶解される支持電解質を必要に応じて含むことができる。イオン液体は、正の電荷を有するカチオンと、負の電荷を有するアニオンとを有し、不揮発性である。そのため、イオン液体を第1の非水電解質に用いることにより、孔からの非水電解質の揮発量を低減することができる。
 また、疎水性のイオン液体を選択することで、孔からの水分の侵入を抑制することができる。そのため、疎水性のイオン液体を用いることにより、空気電池の寿命をさらに向上することができる。
 卑な電位の負極に適応可能な耐還元性に優れたイオン液体は、高粘度である場合が多い。一方、粘度の低いイオン液体は耐還元性に劣る傾向があるため、電気自動車、ハイブリッド自動車、プラグインハイブリッド自動車などの10年以上の寿命が求められる車載用電源に用いた場合に負極に混入すると、徐々に還元分解される恐れがある。実施形態の空気電池によると、イオン液体が負極に混入する恐れが少ないため、粘度の低いイオン液体の使用が可能になる。粘度の低いイオン液体は、空気電池の大電流放電特性をさらに改善することができる。
 カチオンは、例えば、アンモニウムイオン、イミダゾリウムイオン、ホスホニウムイオン、および、前記の各イオン(アンモニウムイオン、イミダゾリウムイオン、ホスホニウムイオン)に置換基を導入したカチオンよりなる群から選ばれる1種以上を挙げることができる。
 アンモニウムイオンは、例えば、化2に表される構造式を有することができる。
Figure JPOXMLDOC01-appb-C000002
 R,R,R,Rは、炭化水素基、エステル基、エーテル基及びニトリル基よりなる群から選択される置換基で、互いに同じ置換基でも異なる置換基でもあって良い。置換基に含まれる炭素数は8以下であることが好ましい。これにより、イオン液体の分子量の増加による粘度上昇が抑えられ、第1の非水電解質のリチウムイオン伝導性を向上することができる。置換基の中では、炭化水素基、およびエーテル基が好ましい。炭化水素基は他の置換基と比較して分子間相互作用が弱いために、イオン液体の粘度を低下させることができる。炭化水素基としては、アルキル基、フェニル基、ベンジル基などを挙げることができる。中でもアルキル基は、分子構造が柔軟であり、より低粘度のイオン液体が実現するために好ましい。アルキル基、エーテル基の場合、炭素数のより好ましい範囲は1~4である。また、R,R,R,Rのうち少なくとも一つの置換基は、炭素数1、すなわちメチル基であることが好ましい。少なくとも一つの置換基をメチル基とすることで、より粘度の低いイオン液体が実現できる。また、置換基R,R,R,Rは、置換基同士が結合していても良い。
 化2に示すアンモニウムイオンは、例えば、N-ブチル-N,N,N-トリメチルアンモニウムイオン、N-エチル-N,N-ジメチル-N-プロピルアンモニウムイオン、N-ブチル-N-エチル-N,N-ジメチルアンモニウムイオン、N-ブチル-N,N-ジメチル-N-プロピルアンモニウムイオン、N-プロピル-N-メチルピロリジニウムイオン、N-ブチル-N-メチルピロリジニウムイオンなどを挙げることができるが、これらに限定されるものではない。
 イミダゾリウムイオンは、例えば、化3に示す構造式で表されるものにすることができる。
Figure JPOXMLDOC01-appb-C000003
 R,R,Rは、炭化水素基、エステル基、エーテル基及びニトリル基よりなる群から選択される置換基で、互いに同じ置換基でも異なる置換基でもあって良い。置換基に含まれる炭素数は8以下であることが好ましい。これにより、イオン液体の分子量の増加による粘度上昇が抑えられ、第1の非水電解質のリチウムイオン伝導性を向上することができる。置換基の中では、炭化水素基が好ましい。炭化水素基は他の置換基と比較して分子間相互作用が弱いために、イオン液体の粘度を低下させることができる。炭化水素基は、例えば、アルキル基、フェニル基、ベンジル基などを挙げることができる。中でもアルキル基は、分子構造が柔軟であり、より低粘度のイオン液体が実現するために好ましい。アルキル基の場合、炭素数のより好ましい範囲はR,Rにおいては1~5であり、Rにおいては0~2である。なお、Rにおいて炭素数0の場合とは、水素を表すものである。また、R,Rにおいては、互いに異なる置換基であることが好ましい。R,Rの構造が異なると、分子の対称性が低くなり、より低粘度のイオン液体が実現できる。R,Rにおいては、少なくとも一方が炭素数1、すなわちメチル基であることがより好ましい。
 化3に示すイミダゾリウムイオンは、具体的には、1-エチル-3-メチルイミダゾリウムイオン、1-ブチル-3-メチルイミダゾリウムイオン、1-エチル-2,3-ジメチルイミダゾリウムイオン、1-エチル-3,4-ジメチルイミダゾリウムイオン、などを挙げることができるが、これらに限定されるものではない。
 ホスホニウムイオンは、例えば、化4に表される構造式を有することができる。
Figure JPOXMLDOC01-appb-C000004
 R,R,R10,R11は、炭化水素基、エステル基及びエーテル基よりなる群から選択される置換基で、互いに同じ置換基でも異なる置換基でもあって良い。いずれの場合も、置換基に含まれる炭素数は8以下であることが好ましい。置換基の中では、炭化水素基、エーテル基が好ましい。炭化水素基としては、アルキル基、フェニル基、ベンジル基などを挙げることができるが、中でもアルキル基は、分子構造が柔軟であり、より低粘度のイオン液体が実現するために好ましい。アルキル基の場合、炭素数のより好ましい範囲は1~4である。また、置換基R,R,R10,R11は、置換基同士が結合していても良い。
 化4に示すホスホニウムイオンは、具体的には、トリブチル(2-メトキシエチル)ホスホニウムイオン、トリブチルメチルホスホニウムイオンなどを挙げることができるが、これらに限定されるものではない。
 アニオンは、例えば、PF 、BF 、CFSO 、CSO 、[B(OOC-COO)、[(CN)N]、[(CFSON]、[(CSON]、BF(CFおよび前記の各イオン(PF 、BF 、CFSO 、CSO 、[B(OOC-COO)、[(CN)N]、[(CFSON]、[(CSON]、BF(CF)に置換基を導入したアニオンよりなる群から選ばれる1種以上を挙げる事ができる。アニオンとして、BF(CF、スルホニルイミド構造を有する[(CFSON]あるいは[(CSON]を用いた場合、イオン液体が疎水性となるために、より好ましい。特に好ましいのは[(CFSON]であり、より低粘度のイオン液体を実現することができる。
 支持電解質は、リチウムイオン二次電池に用いることが可能であれば特に限定されるものではないが、例えば、LiPF、LiBF、Li(CFSO)、Li(CSO)、Li[B(OOC-COO)]、Li[(CN)N]、Li[(CFSON]、Li[(CSON]、および、前記の各化合物(LiPF、LiBF、Li(CFSO)、Li(CSO)、Li[B(OOC-COO)]、Li[(CN)N]、Li[(CFSON]、Li[(CSON])に置換基を導入した化合物などを挙げることができる。使用する支持電解質の種類は1種類または2種類以上にすることができる。
 イオン液体を構成するアニオンと、支持電解質を構成するアニオンは、同一であっても異なっていてもよい。中でも、イオン液体のアニオン、支持電解質のアニオンが、共に、フッ素原子の一部をフルオロアルキル基で置換したPF 、BF 、あるいはスルホニルイミド基を有するアニオンであることが好ましい。特に好ましいのは、イオン液体と支持電解質がともにアニオンとしてBF(CFあるいは[(CFSON]を有するものである。
 支持電解質の濃度は、0.1~4モル/Lとすることが望ましい。支持電解質の濃度を0.1モル/L以上にすることによって、第1の非水電解質のイオン伝導度を向上することができるため、高い放電特性が得られる。また、4モル/L以下にすることによって、第1の非水電解質の粘度上昇を抑えることができるため、第1の非水電解質のイオン伝導度を向上することができる。さらに好ましい濃度は、0.3~2モル/Lである。
 第2の非水電解質は、有機溶媒と、有機溶媒に溶解される支持電解質とを含むことができる。第2の非水電解質は、リチウムイオン二次電池に用いることが可能であれば、特に限定されるものではない。
 有機溶媒は、エステル類、炭酸エステル類、エーテル類、ニトリル類、および前記の各化合物(エステル類、炭酸エステル類、エーテル類、ニトリル類)に置換基を導入した化合物よりなる群から選ばれる1種以上を含有することが望ましい。好ましいのは、エステル類、炭酸エステル類より選ばれるものである。エステル類の中では、環状構造のエステル類が好ましく、特に5員環のγブチロラクトン(γBL)が好ましい。
 炭酸エステル類は環状、鎖状構造いずれも用いることができる。環状炭酸エステル類は、5員環構造の炭酸エステル類が好ましく、特にエチレンカーボネート(EC)、ビニレンカーボネート(VC)、プロピレンカーボネート(PC)が好ましい。鎖状炭酸エステル類は、炭素数7以下の炭酸エステル類が好ましく、特にジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)が好ましい。
 エーテル類は環状、鎖状構造いずれも用いることができる。環状エーテル類としては、5員環、および6員環構造のエーテル類が好ましく、中でも二重結合を含まないものが好ましい。鎖状エーテル類としては、炭素原子を5つ以上含むものが好ましい。例えば、テトラヒドロピラン、ジオキサン、テトラヒドロフラン、2-メチルテトラヒドロフラン、ブチルエーテル、イソペンチルエーテル等を挙げることができる。
 ニトリル類は、例えば、アセトニトリル、プロピオニトリル等を挙げることができる。
 有機溶媒は単独で用いてもよいが、複数種を混合して用いた方が好ましい。特に炭酸エステル類を含むことが好ましく、中でも5員環構造の炭酸エステル類を含むことが好ましく、特にECあるいはPCを含むことが好ましい。
 有機溶媒の好ましい組成は、EC/PC、EC/γBL、EC/EMC、EC/PC/EMC、EC/EMC/DEC、EC/PC/γBLである。
 支持電解質は、リチウムイオン二次電池に用いることが可能であれば、特に限定されない。例えば、第1の非水電解質で説明したのと同様な種類のものを使用することができる。特に好ましいのは、LiPF、LiBF、Li(CFSO)、Li[(CFSON]である。
 固体電解質層は、第1の非水電解質および第2の非水電解質に溶解及び膨潤しないリチウムイオン伝導性を有する材料を含む。固体電解質層は、無孔性で、リチウムイオンを選択的に透過するものであることが望ましい。
 リチウムイオン伝導性を有する材料は、有機高分子、酸化物及び硫化物よりなる群から選ばれる1種以上であることが好ましい。いずれの材料も固体状態でリチウムイオン伝導性を示すため、無孔性でリチウムイオンを選択的に透過する固体電解質層を実現することができる。
 有機高分子は、支持電解質と共に使用する。有機高分子は、具体的には、ポリエチレンオキサイド含有高分子や、ポリビニル含有高分子を挙げることができる。ポリエチレンオキサイド含有高分子は、ポリエチレンオキサイドを主鎖として含み、一部が分岐していてもよい。ポリエチレンオキサイドの末端は、水酸基がエーテルやエステル結合で保護されていることが好ましい。ポリビニル含有高分子は、ポリビニル鎖を主鎖として含み、主鎖から分岐した側鎖にはエステル結合や炭酸エステル結合を含む官能基を含有することが好ましい。特に、ポリエチレンオキサイド含有高分子が、リチウムイオンのホッピング伝導性に優れるため、望ましい。有機高分子には、ジブチルフタレートなど少量の柔軟剤を含んでいてもよい。
 有機高分子と共に使用する支持電解質は、リチウムイオン二次電池に用いることが可能であれば、特に限定されない。例えば、第1の非水電解質で説明したのと同様な種類のものを使用することができる。特に好ましいのは、LiPF、LiBF、Li(CFSO)、Li[(CFSON]、及び前記の各化合物に置換基を導入したリチウム塩である。
 酸化物は、例えば、酸化物ガラス、酸化物結晶をあげることができる。いずれも構成元素にリチウムを含むものであり、有機高分子を含む固体電解質層と異なり支持電解質を必要としない。酸化物ガラスは、B,Si及びPよりなる群から選択される1種以上の元素とLiとを含む酸化物を挙げることができ、具体的にはLiSiO-LiBO系酸化物を挙げる事ができる。また、酸化物結晶は、Al,Ti,P,La,N,Si,In及びNbよりなる群から選択される1種以上の元素とLiとを含む酸化物をあげる事ができる。具体的には、NaZrSiPO12や、LiTi(PO、LiAlTi(PO、LiLaZr12、La0.5Li0.5TiOなどを挙げる事ができる。
 硫化物は、例えば、硫化物ガラス、硫化物結晶をあげることができる。いずれも構成元素にリチウムを含むものであり、有機高分子を含む固体電解質層と異なり支持電解質を必要としない。具体的にはLiPS,LiSiS,LiGeS-LiPS、LiS-SiS系、SiS-P系、LiS-B系、LiS-SiS-LiSiO系などを挙げる事ができる。なかでも、LiS-P,Li3.25Ge0.250.75などが、導電率が高く、好ましい。
 固体電解質層に含まれる酸化物及び/または硫化物が耐還元性に劣る場合、固体電解質層と負極との間に多孔質膜、不織布あるいは金属酸化物層を配置することが好ましい。固体電解質層と負極との間に多孔質膜、不織布あるいは金属酸化物層を配置することにより、固体電解質層が負極と接触しなくなるため、固体電解質層に含まれる酸化物及び/または硫化物が負極との接触により還元分解されて固体電解質層が劣化するのを回避することができる。多孔質膜あるいは不織布としては、ポリエチレン製多孔質膜、ポリプロピレン(PP)製多孔質膜、セルロース製不織布など、リチウムイオン二次電池のセパレータとして用いることが可能なものを使用することができる。前記金属酸化物層としては、酸化アルミニウム、酸化ケイ素、酸化亜鉛など負極側の非水電解質に不溶の金属酸化物であれば特に限定されるものではない。また、固体電解質層に含まれる酸化物及び/または硫化物が耐還元性に優れている場合は、体積エネルギー密度を向上することができるので多孔質膜、不織布あるいは金属酸化物層を省略することが好ましい。
 第1の非水電解質、第2の非水電解質、固体電解質層の好ましい組み合わせは、以下のものである。
 固体電解質層が有機高分子を含む場合、第1の非水電解質、第2の非水電解質および固体電解質層に含まれる支持電解質は、同一であることが好ましい。中でも、フッ素原子の一部をフルオロアルキル基で置換したLiPF、LiBF、あるいはスルホニルイミド基を有するアニオンを有するリチウム塩が好ましく、特にLi[(CFSON]が好ましい。有機高分子を含む固体電解質層中に含まれる支持電解質の一部が、第1の非水電解質あるいは第2の非水電解質中の支持電解質と交換する可能性がある。そのため、第1の非水電解質、第2の非水電解質、および固体電解質層に含まれる支持電解質を同一とすることで、電池特性の変化を抑制することができる。第1の非水電解質は疎水性であることが好ましいため、フッ素元素の一部をフルオロアルキル基で置換したPF 、BF 、あるいはスルホニルイミド基を有するアニオンで統一するのが好ましく、特に耐水性に優れた[(CFSON]が好ましい。
 第1の非水電解質のイオン液体に用いるアニオンは、前述したように[(CFSON]が好ましい。カチオンは、N-ブチル-N,N,N-トリメチルアンモニウムイオン、N-エチル-N,N-ジメチル-N-プロピルアンモニウムイオン、N-ブチル-N-エチル-N,N-ジメチルアンモニウムイオン、N-ブチル-N,N-ジメチル-N-プロピルアンモニウムイオン、N-プロピル-N-メチルピロリジニウムイオン、N-ブチル-N-メチルピロリジニウムイオン、1-エチル-3-メチルイミダゾリウムイオン、1-ブチル-3-メチルイミダゾリウムイオン、1-エチル-2,3-ジメチルイミダゾリウムイオン、1-エチル-3,4-ジメチルイミダゾリウムイオンが好ましい。特に、N-プロピル-N-メチルピロリジニウムイオン、N-ブチル-N-メチルピロリジニウムイオン、1-エチル-3-メチルイミダゾリウムイオンが好ましい。最も好ましいのは、低粘度のイオン液体を実現できる1-エチル-3-メチルイミダゾリウムイオンである。
 第2の非水電解質に用いる支持電解質は、前述したようにLi[(CFSON]が好ましい。有機溶媒は、例えば、沸点の高い有機溶媒により構成された、EC/PC、EC/γBL、EC/PC/γBL、PC/γBLが好ましい。有機高分子を含む固体電解質層は柔軟であるため、高温条件下で有機溶媒の蒸気圧が上昇すると、変形する可能性がある。そのため、有機溶媒としては沸点の高いものが好ましい。中でも、ECとPCを含む混合溶媒系が、安定性に優れているため好ましい。
 有機高分子を含む固体電解質層に用いる支持電解質は、前述したようにLi[(CFSON]が好ましい。有機高分子としては、ポリエチレンオキサイド含有高分子が好ましい。ポリエチレンオキサイドは、主鎖のエチレンオキサイド構造がリチウムイオン伝導性を発現するためである。
 有機高分子を含む固体電解質層を用いた場合の最も好ましい組み合わせは、第1の非水電解質が[(CFSON]-1-エチル-3-メチルイミダゾリウム[(CFSON]を含み、固体電解質層がLi[(CFSON]-ポリエチレンオキサイドを含み、第2の非水電解質がLi[(CFSON]-EC/PCを含むものである。この組合わせによると、疎水性で低粘度のイオン液体が使用され、かつ空気や水分と接触した際の電解質の分解反応を抑えることができるため、空気電池の耐久性と大電流放電特性をさらに改善することができる。
 酸化物及び/または硫化物を含む固体電解質層を用いた場合、第1の非水電解質および第2の非水電解質に含まれる支持電解質は、同一にする必要がない。酸化物及び/または硫化物を含む固体電解質層は支持電解質を含まないため、第1,第2の非水電解質に含まれる支持電解質との交換が起きないためである。
 第1の非水電解質に用いるイオン液体は、リチウムイオン伝導性が高く、疎水性のものが好ましい。アニオンは、フッ素元素の一部をフルオロアルキル基で置換したPF 、BF 、あるいはスルホニルイミド基を有するアニオンが好ましい。中でも、BF(CFあるいは[(CFSON]、特に[(CFSON]が好ましい。
 カチオンは、例えば、N-ブチル-N,N,N-トリメチルアンモニウムイオン、N-エチル-N,N-ジメチル-N-プロピルアンモニウムイオン、N-ブチル-N-エチル-N,N-ジメチルアンモニウムイオン、N-ブチル-N,N-ジメチル-N-プロピルアンモニウムイオン、N-プロピル-N-メチルピロリジニウムイオン、N-ブチル-N-メチルピロリジニウムイオン、1-エチル-3-メチルイミダゾリウムイオン、1-ブチル-3-メチルイミダゾリウムイオン、1-エチル-2,3-ジメチルイミダゾリウムイオン、1-エチル-3,4-ジメチルイミダゾリウムイオンが好ましい。特に、N-プロピル-N-メチルピロリジニウムイオン、N-ブチル-N-メチルピロリジニウムイオン、1-エチル-3-メチルイミダゾリウムイオンが好ましい。最も好ましいのは、低粘度のイオン液体を実現できる1-エチル-3-メチルイミダゾリウムイオンである。
 第2の非水電解質に用いる有機溶媒は、二酸化炭素の溶解性に優れた有機溶媒により構成された、EC/PC、EC/γBL、EC/PC/γBL、PC/γBLが好ましい。酸化物及び/または硫化物を含む固体電解質層は、無機電解質層であるために剛直であり、負極で非水電解質の分解などにより二酸化炭素などのガスが発生して体積膨張すると、電解質層が破断する可能性がある。そのため、有機溶媒は二酸化炭素に対する溶解性が高いものが好ましい。中でもEC/γBL、EC/PC/γBLは二酸化炭素溶解性と耐還元性に優れているために好ましい。支持電解質は、リチウムイオン伝導性に優れたものが好ましく、具体的にはLiPF、LiBFが好ましい。特にLiBFは安定性に優れているために好ましい。
 酸化物および硫化物のうち、より好ましいのはリチウムイオン伝導性に優れた硫化物を含む固体電解質層である。より好ましいのは硫化物ガラスである。硫化物ガラスは、具体的にはLiPS,LiSiS,LiGeS-LiPS、LiS-SiS系、SiS-P系、LiS-B系などを挙げる事ができる。なかでも、LiS-SiS-LiSiO系や、LiS-SiS-LiPO系が、導電率が高くかつ耐還元性に優れているため好ましい。
 よって、酸化物及び/または硫化物を含む固体電解質層を用いた場合の最も好ましい組み合わせは、第1の非水電解質がLi[(CFSON]-1-エチル-3-メチルイミダゾリウム[(CFSON]を含有し、固体電解質層がLiS-SiS-LiPO系を含み、かつ第2の非水電解質がLiBF-EC/PC/γBLを含むものである。この組合わせによると、疎水性で低粘度のイオン液体が使用され、かつ空気や水分と接触した際の第1の非水電解質の分解反応を抑えることができるため、空気電池の耐久性と大電流放電特性をさらに改善することができる。
 次に、正極、負極、容器について説明する。
 正極は、正極集電体と、この正極集電体に担持された正極層とを含む。
 正極集電体は、酸素の拡散を速やかに行わせるため、例えばメッシュ、パンチドメタル、エクスパンディドメタル等の貫通孔を有する導電性基板を用いることが好ましい。導電性基板の材質は、例えば、ステンレス、ニッケル、アルミニウム、鉄、チタンなどを挙げることができる。なお、集電体の表面は、酸化を抑制するために耐酸化性の金属または合金で被覆しても良い。
 正極層は、例えば、炭素質物と結着剤とを混合し、この混合物をフィルム状に圧延して製膜し、乾燥することで形成することができる。あるいは、例えば炭素質物と結着剤とを溶媒中で混合し、これを集電体に塗布し、乾燥・圧延して形成することができる。
 炭素質物は、例えば、ケッチェンブラック、アセチレンブラック、カーボンブラック、ファーネスブラック、活性炭、活性炭素繊維、木炭類等を挙げることができる。この炭素質物の表面にコバルトフタロシアニンなどの酸素発生過電圧を低下させる機能を有する微粒子を担持させ、酸素の還元反応の効率を高めることも可能である。また、炭素質物にアセチレンブラックなどの高導電性炭素質物を添加し、正極層の導電性を高めることも可能である。
 結着剤は、炭素質物を含む層の層形状を維持するとともに、炭素質物を集電体に付着させる目的で正極層に添加されても良い。結着剤は、例えば、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVdF)、エチレン-プロピレン-ブタジエンゴム(EPBR)、スチレン-ブタジエンゴム(SBR)などを用いることができる。
 正極層における炭素質物および結着剤の配合割合は、炭素質物70~98重量%、結着剤2~30重量%の範囲であることが好ましい。
 負極は、負極集電体と、負極集電体に担持される負極活物質含有層とを含む。
 負極活物質は、例えば、リチウムイオンを吸蔵放出する材料を用いることができる。
 リチウムイオンを吸蔵放出する材料は、特に限定されるものではなく、リチウムイオン電池またはリチウム電池に使用可能な材料を使用することができる。中でも、金属酸化物、金属硫化物、金属窒化物、リチウム金属、リチウム合金、リチウム複合酸化物、またはリチウムイオンを吸蔵放出する炭素質物よりなる群から選択される少なくとも1種類の材料を、負極活物質として使用することが好ましい。
 リチウムイオンを吸蔵放出する炭素質物は、例えば、黒鉛、コークス、炭素繊維、球状炭素などの黒鉛質材料もしくは炭素質材料、熱硬化性樹脂、等方性ピッチ、メソフェーズピッチ、メソフェーズピッチ系炭素繊維、メソフェーズ小球体などに500~3000℃で熱処理を施すことにより得られる黒鉛質材料または炭素質材料を挙げることができる。
 金属酸化物は、例えば、スズ酸化物、ケイ素酸化物、リチウムチタン酸化物、ニオブ酸化物、タングステン酸化物などを挙げることができる。
 金属硫化物は、例えば、スズ硫化物、チタン硫化物などを挙げることができる。
 金属窒化物は、例えば、リチウムコバルト窒化物、リチウム鉄窒化物、リチウムマンガン窒化物などを挙げることができる。
 リチウム合金は、例えば、リチウムアルミニウム合金、リチウムスズ合金、リチウム鉛合金、リチウムケイ素合金などを挙げることができる。
 負極集電体は、例えば、貫通孔を有する導電性基板、あるいは無孔の導電性基板を用いることができる。これら導電性基板は、例えば、銅、ステンレス、またはニッケルから形成することができる。多孔質構造の導電性基板には、メッシュ、パンチドメタル、エクスパンディドメタル等を用いたり、あるいは金属箔に負極活物質含有層を担持させた後、前記金属箔に孔を開けたものを多孔質構造の導電性基板として用いることができる。
 炭素質物のような負極活物質を含む負極は、例えば、負極活物質と結着剤とを溶媒の存在下で混練し、得られた懸濁物を集電体に塗布し、乾燥した後、所望の圧力で1回プレスもしくは2~5回多段階プレスすることにより作製することができる。
 結着剤は、例えば、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVdF)、エチレン-プロピレン-ブタジエンゴム(EPBR)、スチレン-ブタジエンゴム(SBR)、カルボキシメチルセルロース(CMC)などを用いることができる。
 炭素質物および結着剤の配合割合は、炭素質物80~98重量%、結着剤2~20重量%の範囲であることが好ましい。
 また、負極活物質として、リチウム金属やリチウム合金などの金属材料を使用すれば、これらの金属材料は単独でもシート形状に加工することが可能なため、結着剤を使用せずに負極活物質含有層を形成することができる。また、これらの金属材料で形成された負極活物質含有層は直接負極端子に接続することもできる。
 容器は、例えば、金属板、樹脂層を有するシート等から形成することができる。
 金属板は、例えば、鉄、ステンレス、アルミニウムから形成することができる。
 シートは、金属層と、金属層を被覆する樹脂層とを含むことが好ましい。金属層は、アルミニウム箔から形成することが好ましい。一方、樹脂層は、ポリエチレン、ポリプロピレンなどの熱可塑性樹脂から形成することができる。樹脂層は、単層もしくは多層構造にすることができる。
 実施形態に係る空気電池の一例を図1に示す。図1に示すのは、非水電解質空気電池である。非水電解質空気電池は、内面が熱可塑性樹脂層から形成されたラミネートフィルム製の容器1を備える。容器1は、例えば、内面同士が重ね合わされた三辺をヒートシールにより封止したラミネートフィルムからなる。固体電解質層2は、容器1内に配置され、三辺がラミネートフィルムの間に挟まれている。容器1内の空間は、固体電解質層2を境にして二つの空間に分けられている。一方の空間(図1の上側)は、正極3が収納され、第1の空間4と称される。他方の空間は、負極5が収納され、第2の空間6と称される。孔(例えば空気孔)7は、容器1の壁面に第1の空間4と連通するように開口されている。空気孔7は、正極3に酸素を供給するためのものである。
 正極3は、固体電解質層2の一方の面と接する正極層8と、正極層8が担持され、例えば多孔性導電性基板からなる正極集電体9とを含む。正極端子10は、一端が正極集電体9と電気的に接続され、かつ他端が容器1のヒートシール部(ラミネートフィルム間が熱融着された部分)を通して外部に延出されている。空気拡散層11は、正極集電体9上に配置されている。空気拡散層11は、空気孔7から取り入れられた空気を正極3に供給できるものであれば特に限定されるものではないが、例えば、ポリエチレン、ポリプロピレン、あるいはPTFEなどのフッ素樹脂を含む多孔質フィルムや、ポリプロピレンやPTFEなどの合成樹脂製不織布、ガラス繊維不織布等を挙げることができる。第1の非水電解質(図示しない)は、正極3に保持され、必要に応じて第1の空間4内にも収容される。
 負極5は、固体電解質層2の反対側の面と接する負極活物質含有層12と、負極活物質含有層12が担持され、例えば多孔性導電性基板からなる負極集電体13とを含む。負極端子14は、一端が負極集電体13と電気的に接続され、かつ他端が容器1のヒートシール部(ラミネートフィルム間が熱融着された部分)を通して外部に延出されている。負極端子14の延出方向は、正極端子10の延出方向と反対向きになっている。第2の非水電解質(図示しない)は、負極5に保持され、必要に応じて第2の空間6内にも収容されている。
 容器1の外表面には、空気孔7を閉塞するシールテープ15が着脱可能に配置されている。電池使用時に、このシールテープ15を外すことで正極層8に空気を供給することができる。
 図1に例示されるように、容器1内の第1の空間4と第2の空間6とを固体電解質層2で隔離することにより、第1の非水電解質の負極への拡散並びに第2の非水電解質の正極への拡散を阻止する効果が高められるため、空気電池の耐久性と大電流充放電特性の更なる改善を期待できる。
 以下、実施例を図面を参照して詳細に説明する。
 (実施例1)
 ケッチェンブラック90重量%と、ポリテトラフルオロエチレン10重量%を乾式混合し、圧延することにより縦横20mm、厚さ200μmのフィルム状の正極層を得た。この正極層を正極集電体であるステンレス製メッシュに圧着し、正極を作製した。さらに得られた正極の正極集電体が露出した部分に正極端子の一端を接続した。
 金属リチウム箔をニッケル製メッシュに圧着し、負極を得た。なお、ニッケル製メッシュには、負極端子の一端が接続されている。また、ポリプロピレン製不織布およびPTFE製多孔質膜を積層したものからなる空気拡散層と、ポリプロピレン製多孔質膜とを準備した。
 LiS-SiS-LiPOからなる硫化物ガラスを100μm厚に成型することにより、固体電解質層を調整した。
 1-エチル-3-メチルイミダゾリウムビストリフルオロメタンスルホニルアミドからなる疎水性のイオン液体に0.8モル/Lの割合でビストリフルオロメタンスルホニルアミドリチウム(Li[(CFSON])からなる支持電解質を溶解させることにより、液体状の第1の非水電解質を調製した。
 エチレンカーボネート(EC)、プロピレンカーボネート(PC)およびγ-ブチロラクトン(γBL)を体積割合で1:1:4に混合した溶媒に、1.5モル/Lの割合でLiBFからなる支持電解質を溶解させることにより、液体状の第2の非水電解質を調製した。
 負極、ポリプロピレン製多孔質膜、固体電解質層、正極および空気拡散層を順次積層した。空気拡散層は、ポリプロピレン製不織布側を正極側、PTFE製多孔質膜側を外側とした。アルミニウム層の一方の面にアルミニウム-PE/PP層を有し、もう一方の面にアルミニウム-PE/PP-PET層を有するラミネートフィルムを用意した。PET層はPE/PP層よりも軟化点が低く、PET層同士を加熱圧着することにより接着性を発現するものであり、PET層を有する面が外装材の内面である。この積層物をラミネートフィルムのPET層(熱可塑性樹脂層)面が内側に位置するようにラミネートフィルムで被覆した。ラミネートフィルムの内面同士を重ね合わせる際、その間に固体電解質層の三辺を挟んだ。また、ラミネートフィルムに設けられた空気孔を空気拡散層上に配置した。さらに、この空気孔にシールテープを貼付して閉塞した。また、正極端子および負極端子の他端は、内面同士が重ね合わされたラミネートフィルム間から延出させた。
 内面同士が重ね合わされたラミネートフィルム間を、注液口を除き、ヒートシールで熱融着した。この際、固体電解質層の端部が覆われる範囲をヒートシールし、第1の空間と第2の空間を固体電解質層で隔離した。ついで、注液口から第1の空間に第1の非水電解質を注液すると共に、第2の空間に第2の非水電解質を注液した。最後に注液口をヒートシールで封口することにより、図1に示す構造の非水電解質空気電池を作製した。この際、固体電解質層の端部が覆われる範囲をヒートシールし、第1の空間と第2の空間を各々密閉した。
(実施例2)
 平均分子量10,000のポリエチレンオキサイドを100℃で加熱後、5重量%のLi[(CFSON]からなる支持電解質を溶解させてからテフロン板上にキャスト、冷却し、有機高分子を含む固体電解質層を作製した。
 また、エチレンカーボネートとプロピレンカーボネートを体積割合で1:1に混合した溶媒に、1.0モル/Lの割合で支持電解質としてLi[(CFSON]を溶解させることにより、液体状の第2の非水電解質を調製した。
 固体電解質層及び第2の非水電解質を上記方法で作製すること以外は、実施例1と同様の手法により、非水電解質空気電池を作製した。
(実施例3)
 固体電解質層としてLiO-Al-TiO-Pガラスを用い、かつ固体電解質層の負極側に厚さ25μmの多孔質PPフィルムを配置したこと以外は、実施例1と同様の手法により、非水電解質空気電池を作製した。
(実施例4)
 固体電解質としてLa0.5Li0.5TiO結晶を用い、かつ固体電解質層の負極側に厚さ25μmの多孔質PPフィルムを配置したこと以外は、実施例1と同様の手法により、非水電解質空気電池を作製した。
(実施例5)
 固体電解質としてLiPS結晶を用い、かつ固体電解質層の負極側に厚さ25μmの多孔質PPフィルムを配置したこと以外は、実施例1と同様の手法により、非水電解質空気電池を作製した。
(実施例6)
 第1の非水電解質として、N-エチル-N,N-ジメチル-N-プロピルアンモニウムビストリフルオロメタンスルホニルアミドからなる疎水性のイオン液体に0.5モル/Lの割合でビステトラフルオロメタンスルホニルアミドリチウム(Li[(CFSON])からなる支持電解質を溶解させた非水電解質を用いたこと以外は、実施例1と同様の手法により非水電解質空気電池を作製した。
(実施例7)
 第1の非水電解質として、トリエチル(メトキシエチル)ホスホニウムビストリフルオロメタンスルホニルアミドからなる疎水性のイオン液体に1モル/Lの割合でビステトラフルオロメタンスルホニルアミドリチウム(Li[(CFSON])からなる支持電解質を溶解させた非水電解質を用いたこと以外は、実施例1と同様の手法により非水電解質空気電池を作製した。
(実施例8)
 第2の非水電解質として、エチレンカーボネート、プロピレンカーボネート、プロピオニトリル、ブチルエーテルを1:1:1:1に混合した溶媒に、1モル/Lの割合でLiBFからなる支持電解質を溶解させた非水電解質を用いたこと以外は、実施例1と同様の手法により非水電解質空気電池を作製した。
(比較例1)
 第1,第2の非水電解質それぞれに、1-エチル-3-メチルイミダゾリウム ビストリフルオロメタンスルホニルアミドに0.8モル/Lの割合でビストリフルオロメタンスルホニルアミドリチウム(Li[(CFSON])からなる支持電解質を溶解させたものを用いたこと以外は、実施例1と同様の手法により、非水電解質空気電池を作製した。
(比較例2)
 第1,第2の非水電解質それぞれに、エチレンカーボネート、プロピレンカーボネートおよびγ-ブチロラクトンを体積割合で1:1:4に混合した溶媒に、1.5モル/Lの割合でLiBFからなる支持電解質を溶解させたものを用いたこと以外は、実施例1と同様の手法により、非水電解質空気電池を作製した。
(比較例3)
 1-エチル-3-メチルイミダゾリウム ビストリフルオロメタンスルホニルアミドに0.8モル/Lの割合でビストリフルオロメタンスルホニルアミドリチウム(Li[(CFSON])からなる電解質を溶解させた第1の溶液を調製した。エチレンカーボネート、プロピレンカーボネートおよびγブチロラクトンを体積割合で1:1:4に混合した溶媒に、1.5モル/Lの割合でLiBFからなる電解質を溶解させた第2の溶液を調製した。第1の溶液と、第2の溶液とを体積割合として1:1で混合したものを、第1,第2の非水電解質それぞれに用いたこと以外は、実施例1と同様の手法により、非水電解質空気電池を作製した。
 作製した空気電池の放電特性を、温度45℃、湿度65%の恒温恒湿槽内で、以下の条件で測定した。試験1では、放電電流0.04mAで2.0Vまで放電した際の正極炭素重量当たりの放電容量(mAh/g)を測定した。試験2では、放電電流0.4mAで2.0Vまで放電した際の正極炭素重量当たりの放電容量(mAh/g)を測定した。試験3では、放電電流0.4mAで2.0Vまで放電後、充電電流0.4mAで4.0まで充電する充放電サイクルした際の、放電容量が初期容量の80%まで低下するサイクル数を測定した。試験1~3の結果を下記表1に示す。
Figure JPOXMLDOC01-appb-T000005
 表1から実施例1~8の空気電池は、比較例1~3の電池と比較して0.04mA、0.4mAでの放電容量がいずれも大きく大電流放電特性に優れており、また耐久性の指標となるサイクル特性も優れていた。
 比較例1の電池は、0.04mA、0.4mAでの放電容量がいずれも実施例1~8に比して小さかった。試験1~3の後に電池を分解すると、第2の非水電解質が黄色に着色しており、また負極表面が黄褐色に変色していた。イオン液体が負極電位で還元分解したことにより電池特性が低下したものと考えられる。
 比較例2,3の電池は、0.4mAでの放電容量が実施例と同等であるものの、0.04mAでの放電容量とサイクル特性が実施例に比して著しく劣っているため、大電流放電特性と耐久性を兼ね備えているとは言えない。また、比較例2,3の電池は、試験1、試験3後の電池を解体すると、いずれも第1の非水電解質量が減っており、特に比較例2では固体が析出していた。低電流で放電、あるいは充放電を繰り返すなど、長期間に渡り電池を使用すると、第1に非水電解質に含まれる有機溶媒が空気孔から揮発し、電池特性が低下したものと考えられる。
 1…容器、2…固体電解質層、3…正極、4…第1の空間、5…負極、6…第2の空間、7…空気孔、8…正極層、9…正極集電体、10…正極端子、11…空気拡散層、12…負極活物質含有層、13…負極集電体、14…負極端子、15…シールテープ。

Claims (6)

  1.  容器と、
     前記容器内に収納される正極と、
     前記容器内に収納される負極と、
     前記正極に保持され、イオン液体を含む第1の非水電解質と、
     前記負極に保持され、有機溶媒を含む第2の非水電解質と、
     前記正極と前記負極の間に配置され、リチウムイオン伝導性を有する固体電解質層と、
     前記容器に設けられ、前記正極に酸素を供給するための孔と
    を含むことを特徴とする空気電池。
  2.  前記リチウムイオン伝導性を有する固体電解質層は、前記第1の非水電解質および前記第2の非水電解質に溶解及び膨潤しない酸化物、硫化物または有機高分子を含むことを特徴とする請求項1記載の空気電池。
  3.  前記リチウムイオン伝導性を有する固体電解質層は、酸化物ガラス、酸化物結晶、硫化物ガラス、硫化物結晶及びポリエチレンオキサイド含有高分子よりなる群から選択される1以上を含むことを特徴とする請求項1記載の空気電池。
  4.  前記イオン液体が、アンモニウムイオン、イミダゾリイウムイオン、および、ホスホニウムイオンよりなる群から選ばれる1種以上のカチオンと、
     PF 、BF 、CFSO 、CSO 、[B(OOC-COO)、[(CN)N]、[(CFSON]、[(CSON]、および、BF(CFよりなる群から選ばれる1種以上のアニオンとを含有することを特徴とする請求項3に記載の空気電池。
  5.  前記イオン液体が、疎水性を有することを特徴とする請求項4に記載の空気電池。
  6.  前記有機溶媒が、エステル類、炭酸エステル類、エーテル類、および、ニトリル類よりなる群から選ばれる1種以上を含有することを特徴とする請求項5に記載の空気電池。
PCT/JP2010/060869 2010-06-25 2010-06-25 空気電池 WO2011161822A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201080037651.8A CN102511107B (zh) 2010-06-25 2010-06-25 空气电池
PCT/JP2010/060869 WO2011161822A1 (ja) 2010-06-25 2010-06-25 空気電池
JP2012503157A JP5449522B2 (ja) 2010-06-25 2010-06-25 空気電池
US13/455,202 US9954261B2 (en) 2010-06-25 2012-04-25 Air battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/060869 WO2011161822A1 (ja) 2010-06-25 2010-06-25 空気電池

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/455,202 Continuation US9954261B2 (en) 2010-06-25 2012-04-25 Air battery

Publications (1)

Publication Number Publication Date
WO2011161822A1 true WO2011161822A1 (ja) 2011-12-29

Family

ID=45371034

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/060869 WO2011161822A1 (ja) 2010-06-25 2010-06-25 空気電池

Country Status (4)

Country Link
US (1) US9954261B2 (ja)
JP (1) JP5449522B2 (ja)
CN (1) CN102511107B (ja)
WO (1) WO2011161822A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012054039A (ja) * 2010-08-31 2012-03-15 Toyota Motor Corp 金属空気電池用発電要素及びその製造方法、並びに金属空気電池
JP2014011098A (ja) * 2012-07-02 2014-01-20 Toyota Motor Corp 空気電池用イオン性液体、当該イオン性液体を含有するリチウム空気電池用電解液及び空気電池
JP2014044820A (ja) * 2012-08-24 2014-03-13 Toyota Central R&D Labs Inc リチウム空気電池
JP2014082091A (ja) * 2012-10-16 2014-05-08 Nippon Telegr & Teleph Corp <Ntt> リチウム空気電池
JP2014197454A (ja) * 2013-03-29 2014-10-16 トヨタ自動車株式会社 リチウム空気電池用の電解液
JP2014238985A (ja) * 2013-06-07 2014-12-18 スズキ株式会社 リチウム空気電池の正極構造及び正極製造方法
KR20160025287A (ko) * 2014-08-27 2016-03-08 삼성전자주식회사 리튬공기전지 및 이의 제조방법
JP2016512649A (ja) * 2013-02-21 2016-04-28 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツングRobert Bosch Gmbh 複合固体電解質を有するリチウム電池
JP2016096141A (ja) * 2014-11-11 2016-05-26 トヨタ モーター エンジニアリング アンド マニュファクチャリング ノース アメリカ,インコーポレイティド 金属空気電池、リチウム空気電池、および車両
WO2019065029A1 (ja) * 2017-09-29 2019-04-04 マクセルホールディングス株式会社 防水デバイス

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013084625A1 (ja) * 2011-12-05 2013-06-13 日産自動車株式会社 空気電池
WO2016063176A1 (en) * 2014-10-24 2016-04-28 Semiconductor Energy Laboratory Co., Ltd. Lithium-ion storage battery and fabricating method thereof
US10916762B2 (en) 2016-11-01 2021-02-09 Samsung Electronics Co., Ltd. Cathode for metal-air battery including spaces for accommodating metal oxides formed during discharge of metal-air battery and metal-air battery including the same
CN106816561A (zh) * 2017-03-24 2017-06-09 深圳市合动力科技有限公司 锌空气电池及电池组
EP3404757B1 (en) 2017-05-15 2019-12-04 Samsung Electronics Co., Ltd. Metal-air battery including a gas diffusion layer and method of manufacturing the same
CN107394316B (zh) * 2017-06-21 2020-01-10 昆明理工大学 一种基于离子液体凝胶正极的钠空气电池及其制备方法
US10686234B1 (en) * 2017-08-01 2020-06-16 National Technology & Engineering Solutions Of Sandia, Llc Fluorinated ionic liquids for battery electrolytes
US11777177B2 (en) * 2018-02-15 2023-10-03 Nippon Telegraph And Telephone Corporation Assembled battery
US11121408B2 (en) 2019-03-14 2021-09-14 Medtronic, Inc. Lithium-ion battery
US20220149479A1 (en) * 2019-03-26 2022-05-12 Maxell Holdings, Ltd. Sheet-type cell and method for manufacturing same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010129495A (ja) * 2008-11-29 2010-06-10 Equos Research Co Ltd 空気電池
JP2010176941A (ja) * 2009-01-28 2010-08-12 National Institute Of Advanced Industrial Science & Technology リチウム−空気電池

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5848369A (ja) 1981-09-17 1983-03-22 Toshiba Corp リチウム−酸素電池
US5827602A (en) * 1995-06-30 1998-10-27 Covalent Associates Incorporated Hydrophobic ionic liquids
JP3699786B2 (ja) 1996-09-10 2005-09-28 株式会社東芝 空気リチウム二次電池
JP3515492B2 (ja) 2000-06-30 2004-04-05 株式会社東芝 非水電解質電池
JP3735518B2 (ja) 2000-06-30 2006-01-18 株式会社東芝 非水電解質電池
JP2002298934A (ja) 2001-03-30 2002-10-11 Toshiba Corp 非水電解質電池
JP4015826B2 (ja) 2001-06-19 2007-11-28 株式会社東芝 非水電解質空気電池
JP4015827B2 (ja) 2001-06-29 2007-11-28 株式会社東芝 非水電解質電池
JP4057796B2 (ja) 2001-07-03 2008-03-05 株式会社東芝 非水電解質空気電池
JP4223705B2 (ja) * 2001-09-25 2009-02-12 株式会社東芝 非水電解質電池およびその製造方法
JP4015899B2 (ja) 2002-07-29 2007-11-28 株式会社東芝 非水電解質空気電池
JP4015916B2 (ja) 2002-09-27 2007-11-28 株式会社東芝 非水電解質空気電池
US20040241537A1 (en) * 2003-03-28 2004-12-02 Tetsuo Okuyama Air battery
US20080070087A1 (en) * 2004-02-20 2008-03-20 Excellatron Solid State, Llc Non-volatile cathodes for lithium oxygen batteries and method of producing same
US20060078790A1 (en) * 2004-10-05 2006-04-13 Polyplus Battery Company Solid electrolytes based on lithium hafnium phosphate for active metal anode protection
US8652692B2 (en) * 2005-11-23 2014-02-18 Polyplus Battery Company Li/Air non-aqueous batteries
US7145038B1 (en) 2005-12-14 2006-12-05 Chemtura Corporation Alkylation of a diphenylamine compound in ionic liquid
JP4967890B2 (ja) * 2007-05-01 2012-07-04 トヨタ自動車株式会社 空気電池システム
JP2009230981A (ja) 2008-03-21 2009-10-08 Toyota Central R&D Labs Inc 非水系金属空気電池
US9178255B2 (en) 2008-06-20 2015-11-03 University Of Dayton Lithium-air cells incorporating solid electrolytes having enhanced ionic transport and catalytic activity
WO2010050028A1 (ja) * 2008-10-30 2010-05-06 トヨタ自動車株式会社 金属空気電池、及び金属空気電池の製造方法
KR20100114003A (ko) * 2009-03-06 2010-10-22 도요타 지도샤(주) 공기극 및 비수 공기전지

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010129495A (ja) * 2008-11-29 2010-06-10 Equos Research Co Ltd 空気電池
JP2010176941A (ja) * 2009-01-28 2010-08-12 National Institute Of Advanced Industrial Science & Technology リチウム−空気電池

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012054039A (ja) * 2010-08-31 2012-03-15 Toyota Motor Corp 金属空気電池用発電要素及びその製造方法、並びに金属空気電池
JP2014011098A (ja) * 2012-07-02 2014-01-20 Toyota Motor Corp 空気電池用イオン性液体、当該イオン性液体を含有するリチウム空気電池用電解液及び空気電池
JP2014044820A (ja) * 2012-08-24 2014-03-13 Toyota Central R&D Labs Inc リチウム空気電池
JP2014082091A (ja) * 2012-10-16 2014-05-08 Nippon Telegr & Teleph Corp <Ntt> リチウム空気電池
JP2016512649A (ja) * 2013-02-21 2016-04-28 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツングRobert Bosch Gmbh 複合固体電解質を有するリチウム電池
JP2014197454A (ja) * 2013-03-29 2014-10-16 トヨタ自動車株式会社 リチウム空気電池用の電解液
JP2014238985A (ja) * 2013-06-07 2014-12-18 スズキ株式会社 リチウム空気電池の正極構造及び正極製造方法
KR20160025287A (ko) * 2014-08-27 2016-03-08 삼성전자주식회사 리튬공기전지 및 이의 제조방법
KR102280684B1 (ko) * 2014-08-27 2021-07-22 삼성전자주식회사 리튬공기전지 및 이의 제조방법
US11444348B2 (en) 2014-08-27 2022-09-13 Samsung Electronics Co., Ltd. Lithium air battery and method of preparing the same
JP2016096141A (ja) * 2014-11-11 2016-05-26 トヨタ モーター エンジニアリング アンド マニュファクチャリング ノース アメリカ,インコーポレイティド 金属空気電池、リチウム空気電池、および車両
WO2019065029A1 (ja) * 2017-09-29 2019-04-04 マクセルホールディングス株式会社 防水デバイス
JPWO2019065029A1 (ja) * 2017-09-29 2020-09-10 マクセルホールディングス株式会社 防水デバイス
US11515594B2 (en) 2017-09-29 2022-11-29 Maxell, Ltd. Waterproof device with air cell power source

Also Published As

Publication number Publication date
US9954261B2 (en) 2018-04-24
JP5449522B2 (ja) 2014-03-19
JPWO2011161822A1 (ja) 2013-08-19
US20120208096A1 (en) 2012-08-16
CN102511107B (zh) 2015-06-17
CN102511107A (zh) 2012-06-20

Similar Documents

Publication Publication Date Title
JP5449522B2 (ja) 空気電池
KR100714135B1 (ko) 전해액용 재료 및 이의 용도
JP6548984B2 (ja) リチウム空気電池、およびリチウム空気電池を備える車両
JP5454692B2 (ja) 空気極、金属空気電池及び金属空気電池用空気極の製造方法
US20140050947A1 (en) Hybrid Electrochemical Energy Storage Devices
WO2020071377A1 (ja) リチウムイオン電池の製造方法及びリチウムイオン電池
JP5096851B2 (ja) 蓄電デバイスの製造方法
US20140295262A1 (en) Electrolyte solution for lithium metal battery, and lithium metal battery
JP2009259755A (ja) 電気化学素子用セパレータ、及びこれを用いたリチウムイオン電池
US20150318590A1 (en) Non-aqueous electrolyte solutions and lithium/oxygen batteries using the same
JP2014209454A (ja) 非水電解質空気電池
JP6730284B2 (ja) 電極の製造方法及び蓄電デバイスの製造方法
JP5763161B2 (ja) 空気電池
JP2014072079A (ja) 金属空気電池用の空気極
JP5630487B2 (ja) 金属空気電池用電解質
JP2014209453A (ja) 非水電解質空気電池
KR102253022B1 (ko) 비수전해질 이차전지용 미립자 혼합물, 비수전해질 이차전지용 전극, 및 비수전해질 이차전지
JP2023511359A (ja) 固体有機触媒を備える充電可能な非水性リチウム空気電池セル
EP2835859B1 (en) Electrolyte solution for lithium-air batteries, and lithium-air battery comprising the same
JP2014093227A (ja) 空気電池用空気極、及び当該空気極を備える空気電池
JP5987792B2 (ja) 空気電池及びその製造方法
JP4858107B2 (ja) 電解液
JP2012174349A (ja) 空気一次電池
KR20170035639A (ko) 리튬 공기전지용 전해액 및 이를 포함하는 리튬 공기전지
JP2020202158A (ja) 絶縁層、電池セル用シート及び電池セル

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080037651.8

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2012503157

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10853682

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10853682

Country of ref document: EP

Kind code of ref document: A1