WO2013084625A1 - 空気電池 - Google Patents

空気電池 Download PDF

Info

Publication number
WO2013084625A1
WO2013084625A1 PCT/JP2012/077956 JP2012077956W WO2013084625A1 WO 2013084625 A1 WO2013084625 A1 WO 2013084625A1 JP 2012077956 W JP2012077956 W JP 2012077956W WO 2013084625 A1 WO2013084625 A1 WO 2013084625A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
air battery
contact
electrode layer
air
Prior art date
Application number
PCT/JP2012/077956
Other languages
English (en)
French (fr)
Inventor
宮澤 篤史
長山 森
佳子 塚田
千葉 啓貴
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Priority to EP12856176.8A priority Critical patent/EP2790265B1/en
Priority to CN201280059831.5A priority patent/CN103975481B/zh
Priority to US14/358,165 priority patent/US9608302B2/en
Priority to JP2013548149A priority patent/JP5716936B2/ja
Publication of WO2013084625A1 publication Critical patent/WO2013084625A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M12/00Hybrid cells; Manufacture thereof
    • H01M12/04Hybrid cells; Manufacture thereof composed of a half-cell of the fuel-cell type and of a half-cell of the primary-cell type
    • H01M12/06Hybrid cells; Manufacture thereof composed of a half-cell of the fuel-cell type and of a half-cell of the primary-cell type with one metallic and one gaseous electrode
    • H01M12/065Hybrid cells; Manufacture thereof composed of a half-cell of the fuel-cell type and of a half-cell of the primary-cell type with one metallic and one gaseous electrode with plate-like electrodes or stacks of plate-like electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M12/00Hybrid cells; Manufacture thereof
    • H01M12/08Hybrid cells; Manufacture thereof composed of a half-cell of a fuel-cell type and a half-cell of the secondary-cell type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/509Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing characterised by the type of connection, e.g. mixed connections
    • H01M50/51Connection only in series
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to an air battery that uses oxygen as a positive electrode active material, and more particularly to an air battery that is suitable for forming an assembled battery formed by connecting a plurality of oxygen batteries.
  • Patent Document 1 As a conventional air battery, for example, there is one described in Patent Document 1.
  • the air battery described in Patent Document 1 has a structure in which a nonaqueous electrolyte layer is sandwiched between a positive electrode and a negative electrode to form an electrode group, and this battery group is housed in a housing case together with the positive electrode and negative electrode terminals. Both terminals protrude from the housing case in opposite directions.
  • the air battery has a plurality of air holes on the positive wall of the housing case, closes these air holes with a seal tape, and when used, opens the air holes by peeling off the seal tape, Air (oxygen) is supplied to the positive electrode.
  • the present invention has been made in view of the above-described conventional situation, and an object of the present invention is to provide an air battery that can be directly connected in series with each other and is also suitable as an on-vehicle power source.
  • the air battery of the present invention includes a positive electrode layer and a negative electrode layer with an electrolyte layer interposed therebetween, and an outer frame member that has electrical insulation and surrounds at least the outer periphery of the electrolyte layer and the positive electrode layer.
  • the positive electrode layer includes a positive electrode member, a positive electrode current collecting member, and a liquid-tight ventilation member disposed on the positive electrode surface.
  • the negative electrode layer includes a negative electrode member and a negative electrode current collecting member.
  • the air battery includes a contact member between the positive electrode layer and the outer frame member, the inner end portion of which is in contact with the peripheral edge portion of the positive electrode current collecting member and the outer end portion of which is exposed to the positive electrode surface side.
  • the outer end portion of the contact member becomes the positive terminal, and the negative current collecting member on the opposite side becomes the negative terminal.
  • an assembled battery formed by connecting a plurality of batteries can be easily configured, so that it is very suitable as an on-vehicle power source.
  • sectional drawing (C) which expanded one part of sectional drawing (A), top view (B), and an outer frame member explaining one Embodiment of the air battery concerning this invention. It is sectional drawing which shows the air battery shown in FIG. 1 in the decomposition
  • An air battery A1 shown in FIG. 1 has a disc shape, and includes an upper positive electrode layer 2 in the figure and a lower negative electrode layer 3 in the figure with an electrolyte layer 1 therebetween, An outer frame member 4 having an insulating property and surrounding at least the outer periphery of the positive electrode layer 2 and the electrolyte layer 1 is provided.
  • the positive electrode layer 2 includes a positive electrode member 21, a positive electrode current collecting member 22 disposed on one surface of the positive electrode member 21, and a liquid-tight ventilation member 23 disposed on the positive electrode surface in a laminated state.
  • a positive electrode current collecting member 22 is provided on the electrolyte layer 1 side (lower side in the drawing) of the positive electrode member 21.
  • the negative electrode layer 3 includes a negative electrode member 31 and a negative electrode current collecting member 32 disposed on the negative electrode surface in a laminated state.
  • the positive electrode layer 2 has an inner end portion (lower end portion in the figure) in contact with the peripheral edge portion of the positive electrode current collecting member 22 and an outer end portion (in the drawing). Then, the upper end portion is provided with a contact member 5 exposed to the positive electrode surface side.
  • the contact member 5 has a protruding amount such that its outer end protrudes outward from the surface of the liquid-tight ventilation member 23 and reaches at least the same surface position as the end surface of the outer frame member 4. That is, the contact member 5 has an end surface (upper surface) with a protruding amount that is equal to or more than the end surface of the outer frame member 4.
  • the end surface of the outer end portion is the end surface of the outer frame member 4. It is connected to the same plane.
  • the electrolyte layer 1 is obtained by impregnating a separator with an aqueous solution (electrolytic solution) or non-aqueous solution containing potassium hydroxide (KOH) or chloride as a main component, and in order to store the aqueous solution or non-aqueous solution, the separator Have fine holes formed at a predetermined ratio.
  • the electrolyte layer 1 itself may be a solid or gel electrolyte.
  • the positive electrode member 21 is formed of a conductive porous material containing a catalyst.
  • a catalyst such as manganese dioxide is placed inside a conductive porous body formed of a carbon material and a binder resin. It is supported.
  • the positive electrode current collecting member 22 is to ensure good conductivity in the in-plane direction (direction along the surface) in the positive electrode layer 2, and is made of materials such as stainless steel, copper (Cu), nickel (Ni), and carbon. It is the electrically conductive member which has air permeability formed in.
  • the positive electrode current collecting member 22 has an aperture ratio of the ventilation portion selected in accordance with the conductivity of the positive electrode member 21, and when the positive electrode current collecting member 22 is a wire mesh member, for example, selected from specifications corresponding to 50 to 600 mesh. Can be used. In addition to the wire mesh member, carbon paper can be used for the positive electrode current collecting member 22.
  • the liquid-tight ventilation member 23 is a member having liquid-tightness (water-tightness) with respect to the electrolyte solution of the electrolyte layer 1 and air-permeability with respect to oxygen.
  • the liquid-tight ventilation member 23 uses a water-repellent film such as a fluororesin so as to prevent the electrolyte from leaking to the outside.
  • a large number of oxygen-tight ventilation members 23 can supply the positive electrode member 21 with oxygen. Has micropores.
  • the negative electrode member 31 is made of a pure metal such as lithium (Li), aluminum (Al), iron (Fe), zinc (Zn), and magnesium (Mg), or a material such as an alloy. is there.
  • the negative electrode current collecting member 32 is a conductive member made of a material capable of preventing the electrolyte solution of the electrolyte layer 1 from leaking to the outside.
  • a material capable of preventing the electrolyte solution of the electrolyte layer 1 from leaking to the outside for example, stainless steel, copper (alloy), or a metal material has a corrosion resistance on the surface.
  • a plated metal for example, stainless steel, copper (alloy), or a metal material has a corrosion resistance on the surface.
  • the outer frame member 4 has a circular ring shape, and has a stepped portion 4A for accommodating the contact member 5 inside the frame.
  • the contact member 4 is a constituent member of the positive electrode layer 2
  • the step portion 4 ⁇ / b> A is formed in the opening portion of the outer frame member 4 on the positive electrode layer side.
  • the outer frame member 4 of this embodiment surrounds the outer periphery of the negative electrode member 31 of the negative electrode layer 3 in addition to the outer periphery of the electrolyte layer 1 and the positive electrode layer 2.
  • the negative electrode current collecting member 32 of the negative electrode layer 3 has a diameter equivalent to that of the outer frame member 4 and is provided so as to close the opening portion of the outer frame member 4 on the negative electrode side.
  • the outer frame member 4 is preferably made of a resin having an electrolytic solution resistance such as polypropylene (PP) or engineering plastic (so-called engineering plastic), which can also reduce the weight.
  • the outer frame member 4 can also be made of fiber reinforced plastic (FRP) in which a resin is compounded with reinforcing fibers such as carbon fibers and glass fibers in order to give mechanical strength.
  • FRP fiber reinforced plastic
  • the contact member 5 has a circular ring shape and has a cross-sectional area that can be accommodated in the step portion 4A of the outer frame member 4.
  • the contact member 5 is made of metal, and for example, metal such as copper (Cu), stainless steel, and nickel (Ni) can be used. Also, other metals can be used if they are surface-treated so as to ensure corrosion resistance to the electrolytic solution.
  • the contact member 5 can be plated with gold (Au), silver (Ag), or the like on at least one of the contact surfaces in order to reduce the contact resistance with the positive electrode current collecting member 22.
  • the air battery A ⁇ b> 1 includes a positive electrode member 21, a positive electrode current collector member 22, and a liquid-tight ventilation member 23 that are stacked to form the positive electrode layer 2 and the positive electrode layer 2 inside the contact member 5. Wear.
  • the negative electrode member 31 and the negative electrode current collecting member 32 are laminated to form the negative electrode layer 3.
  • the electrolyte layer 1 shown with a virtual line in the figure is provided, and after that, the negative electrode layer 3 to the inner side of the outer frame member 4 (Or the positive electrode layer 2) is mounted, and the electrolyte layer 1 is confined.
  • the air battery A1 having the above-described configuration forms an energization path by the positive electrode current collecting member 22 and the contact member 5 particularly in the positive electrode layer 2. Further, since the air battery A1 has the outer end portion of the contact member 5 protruding outward from the surface of the liquid-tight ventilation member 23, the liquid-tight ventilation member 23 is disposed inside the outer end portion of the contact member 5. A flat concave space having a depth D corresponding to the step is formed.
  • the outer end portion of the contact member 5 becomes a positive electrode terminal, and the negative electrode current collecting member 32 on the opposite side becomes a negative electrode terminal, thereby realizing direct series connection between the batteries.
  • the air battery A ⁇ b> 1 is directly connected in series to form an assembled battery C, and at this time, the negative electrode collection of the air battery A ⁇ b> 1 adjacent to the outer end of the contact member 5. It contacts the electric member 32.
  • the air flow path 6 is formed by the concave space between the liquid tight ventilation member 23 and the negative electrode current collecting member 32 of the adjacent air battery A1.
  • the assembled battery C can be downsized and the structure thereof can be reduced. It is also very suitable as a power source.
  • the thickness of the air flow path 6 depends on the amount of power generation and the supply form of oxygen, but can be appropriately selected from a range of about 1 to 10 mm, for example. Further, since the contact member 5 forms a ring shape as described above and forms the air flow path 6 inside the outer end portion, a groove or hole for introducing air from the outside to the air flow path 6 is appropriately provided. It is desirable to provide it at the place.
  • the air battery A1 has the battery outer peripheral portion constituted by the outer frame member 4 having electrical insulation, and thus the positive electrode terminal which is the outer end portion of the contact member 5 and the negative electrode current collecting member 32.
  • the negative electrode terminal is in a mutually opposite positional relationship. Thereby, it becomes a structure which is hard to be short-circuited and becomes a high safety thing.
  • one electrode also serves as the battery exterior part, such as a well-known button battery, the distance between the positive electrode and the negative electrode is shortened. is there.
  • air battery A1 since the end surface of the outer end portion of the contact member 5 and the end surface of the outer frame member 4 are connected in the same plane, the contact member 5 and the outer frame are connected when a plurality are connected. Both of the members 4 come into contact with the adjacent air battery A1, and the stability of the contact portion is improved. Moreover, air battery A1 of this invention can also make the outer end part of the contact member 5 the protrusion amount which exceeds the end surface of the outer frame member 4 slightly. In this case, the pressure contact force of the outer end portion of the contact member 5 with respect to the adjacent air battery A1 increases, and the contact resistance can be reduced.
  • a ring-shaped contact member corresponding to the contact member 5 is provided on the outer surface (lower surface) of the negative electrode current collector 32, or a ring-shaped protrusion contact is integrally formed. It is also possible to do.
  • the direct connection between the batteries and the securing of the air flow path 6 can also be realized by such a contact member or a protruding contact on the negative electrode current collector 32 side.
  • FIGS. 4 to 10 are diagrams for explaining other embodiments of the air battery of the present invention.
  • the same components in the previous embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the positive electrode layer 2 includes the positive electrode current collecting member 22 on the electrolyte layer 1 side, and the outer frame member 4 is disposed on the inner side of the frame. Has a step portion 4A.
  • the air battery A1 has a structure in which the peripheral edge portion of the positive electrode current collecting member 22 is sandwiched between the step surface (plane) of the step portion 4A and the contact member 5.
  • the air battery A1 can obtain the same operations and effects as those of the previous embodiment, and can secure a contact area between the positive electrode current collecting member 22 and the contact member 5 as large as possible. Concentration resistance can be kept small.
  • the positive electrode current collecting member 22 and the contact member 5 are positioned by the step portion 4A of the outer frame member 4, there is an advantage that the positive electrode layer 2 can be easily assembled to the outer frame member 4.
  • the air battery A1 shown in FIG. 5 has a basic configuration equivalent to that of the previous embodiment, and the contact member 5 has a recess 5A that receives the peripheral portion of the liquid-tight ventilation member 23.
  • a stepped recess 5 ⁇ / b> A is provided on the inner peripheral side of the contact member 5.
  • the air battery A1 can obtain the same operation and effect as the previous embodiment, and the area of the liquid-tight ventilation member 23 is larger than that of the positive electrode member 21, so that the electrolyte solution 1 leaks. It can be blocked more reliably. Further, the recess 5A described above also has an advantage that the assembling property of the liquid-tight ventilation member 23 to the contact member 5 is improved.
  • the air battery A1 shown in FIG. 6 has a basic configuration equivalent to that of the previous embodiment, and the contact member 5 has a flange portion 5B extending on the surface of the liquid-tight ventilation member 23.
  • the air battery A1 can obtain the same operation and effect as the previous embodiment, and the flange portion 5B increases the end surface area of the outer end portion of the contact member 5. Thereby, when the assembled battery C is comprised, the contact area with respect to the negative electrode current collection member 32 of adjacent air battery A1 becomes large, and it can reduce an electrical resistance.
  • the air battery A1 can hold the positive electrode layer 2 by the flange portion 5B. Thereby, while being able to reduce the contact resistance between each structural member of the positive electrode layer 2, falling-off of the positive electrode layer 2 can also be prevented. Further, the air battery A1 can be assembled in advance because at least the positive electrode member 21 and the positive electrode current collecting member 22 of the positive electrode layer 2 and the contact member 5 having the flange portion 5B can be assembled in advance. It can contribute to the improvement of sex.
  • the air battery A1 shown in FIG. 7 has a basic configuration equivalent to that of the previous embodiment, and the contact member 5 is provided on the surface of the liquid-tight ventilation member 23 with a recess 5A that receives the peripheral portion of the liquid-tight ventilation member 23. And an extended flange portion 5B.
  • the air battery A1 can obtain the same operation and effect as those of the previous embodiment, the effect of the recess 5A, that is, the effect of preventing leakage of the electrolyte, and the effect of the flange portion 5B, that is, the electric resistance. And the effect of reducing the contact resistance.
  • the contact member 5 in which the main body portion and the flange portion 5B are separated can also be used.
  • the air battery A1 shown in FIG. 8 has a basic configuration equivalent to that of the previous embodiment, and the contact member 5 is made of metal, and a surface treatment M is applied to the end face of the outer end portion.
  • the surface treatment M is not particularly limited, but a highly conductive film is preferable.
  • a hard carbon film typified by diamond-like carbon can be applied.
  • the air battery A1 can obtain the same operation and effect as the previous embodiment, and the surface treatment M makes it possible to obtain corrosion resistance, wear resistance, and good conductivity.
  • the contact resistance with the adjacent air battery A1 can be reduced.
  • the air battery A1 shown in FIG. 9 has the same basic configuration as that of the previous embodiment, the contact member 5 is made of metal, the end surface of the outer end portion is subjected to surface treatment M, and the contact member.
  • the inner end portion of 5 and the peripheral edge portion of the positive electrode current collecting member 22 are joined (reference numeral W) at least partially.
  • means such as welding or adhesion can be employed.
  • the air battery A1 can obtain the same operations and effects as those of the previous embodiment, and in addition to the effect of the surface treatment M, the contact member 5 and the positive electrode current collecting member 22 are joined W. The contact resistance between the two can be reduced. In addition, due to the bonding W, each taxable member and the contact member 5 of the positive electrode layer 2 can be assembled in advance, which can contribute to further improvement in assembling property.
  • the air battery A2 shown in FIG. 10 (A) has a rectangular plate shape as opposed to a disk shape in each of the previous embodiments.
  • the air battery A2 has a laminated structure equivalent to that of the previous embodiment, and includes a rectangular frame-shaped contact member 5.
  • air battery A2 shown to FIG. 10 (B) has the structure which has arrange
  • the aspect ratio on the plane and the number and arrangement of the contact members are selected from the relationship between the air supply amount and the pressure loss.
  • the form of the air battery can be an elliptical shape or a polygonal shape in addition to the disk shape or the rectangular plate shape shown in each embodiment, and in addition to this, a single or a plurality of contact members are arranged. be able to.
  • FIG. 11A is a plan view of an air battery according to still another embodiment of the present invention
  • FIG. 11B is a front view thereof
  • FIG. 12 is a cross-sectional view taken along the line II shown in FIG.
  • FIG. 13 is a cross-sectional view of an assembled battery according to an embodiment of the present invention.
  • the assembled battery C according to this embodiment is obtained by stacking three air batteries A3 in three upper and lower stages.
  • the air battery A3 has a basic structure equivalent to that of the previous embodiment, and its external appearance is constituted by the outer frame member 4, the contact member 5, the power generator B, the protective member 40, and the negative electrode current collecting member 32.
  • the power generation body B is configured by the electrolyte layer 1, the positive electrode layer 2, and the negative electrode layer 3.
  • the outer frame member 4 is formed in a cylindrical shape having openings on both upper and lower surfaces, and a step portion 4A for fitting a contact member 5 described later in detail is provided near one opening 4a of the outer frame member 4. Is formed.
  • the step portion 4A is formed as a step having an inner diameter D1 that matches the outer diameter of the contact member 5 and a height H1 that substantially matches the height of the contact member 5.
  • the power generator B has a positive electrode layer 2 disposed on one surface of an electrolyte layer 1 made of a separator impregnated with an electrolytic solution, and a negative electrode layer 3 disposed on the other surface.
  • a liquid-tight ventilation member 23 is laminated on the outer surface of the layer 2, and a positive electrode current collecting member 22 is disposed near the positive electrode layer 2 of the electrolyte layer 1.
  • the positive electrode current collecting member 22 is formed in a circular shape in a plan view corresponding to the inner diameter of the stepped portion 4A, and is a conductive wire net or the like having a flow hole having a size through which ions can flow.
  • the positive current collecting member 22 is sandwiched and fixed between the outer peripheral edge portion of the positive current collecting member 22 and the bottom wall 5c of the contact member 5 fitted into the stepped portion 4A.
  • the contact member 5 is made of a metal having conductivity, and is electrically connected to the electrolyte layer 1 and the positive electrode layer 2 described above, and is connected to the negative electrode current collecting member 32 of another air battery A3 adjacent on the upper side in the drawing. It is for conducting contact.
  • the contact member 5 shown in this embodiment has a ring shape with a required outer diameter, and the positive electrode current collecting member 22 is sandwiched between the bottom wall 5c when fitted into the stepped portion 4A. In this state, the outer frame member 4 is formed so as to be flush with the opening 4a of the outer frame member 4.
  • the liquid-tight ventilation member 23 is formed in a circular shape in plan view with an outer diameter that matches the inner diameter of the contact member 5. In other words, it is formed so as to cover the outer surface 21 a of the positive electrode member 21.
  • the protection member 40 is for preventing foreign matter from entering the inside from the outside to protect the power generation body B, that is, the positive electrode layer 2 and the like, and has a circular shape in plan view with an outer diameter that matches the inner diameter of the contact member 5.
  • a wire mesh having air permeability, conductivity and elasticity. Specifically, it is disposed so as to cover the outer surface 23a of the liquid-tight ventilation member 23 and is in electrical contact with the contact member 5 at the outer edge.
  • conductive contact for example, in addition to welding, it may be brought into contact.
  • the protective member 40 shown in this embodiment is a super dense material such as # 600 to 700 mesh, and has an opening ratio higher than that of the liquid-tight ventilation member 23.
  • the height H2 protrudes slightly above the upper surface of the contact member 5. That is, the negative electrode current collecting member 32 of another stacked adjacent air battery A3 is elastically contacted to increase the contact area and to apply a compressive load to the constituent members.
  • the total opening area in the surface direction of the protective member 40 is set larger than the total opening area in the thickness direction of the liquid-tight ventilation member 23.
  • the opening area of the protection member 40 in plan view is set to be larger than the total opening area of the liquid-tight ventilation member 23 in the thickness direction.
  • the air flowing through the protection member 40 is diffused toward the outer peripheral edge along the upper surface of the liquid-tight ventilation member 23, and the protection member 40 is also adjacent to the other air battery.
  • Gas supply can be performed in 40 plane directions to improve power generation efficiency.
  • the assembled battery C according to this embodiment is obtained by stacking the above-described air batteries A3 in the illustrated upper and lower multistage.
  • stacked three air batteries is illustrated in FIG. 3, it does not restrict to the number.
  • the air battery A3b sandwiched between the two outermost air batteries A3a and A3c has a protective member 40 that contacts the lower surface 32a of the negative electrode current collecting member 32 of the air battery A3c located on the uppermost side in the figure.
  • a required load can be applied to the liquid-tight ventilation member 23, the positive electrode layer 2, etc., and the contact resistance can be reduced. Since the air battery A3c located on the outermost side covers the liquid-tight ventilation member 23 with the protection member 40, the power generation body 30 can be prevented from being damaged.
  • the configuration in which the protective member 40 is provided in each of the air batteries A3 is illustrated.
  • the air battery A3a arranged at the lowermost side in the drawing and the air battery adjacent on the upper side thereof.
  • the protective member 40 is not necessarily provided. That is, the protective member 40 may be disposed on the air battery A3c at the end of the stack (upper end in FIG. 3) where at least the positive electrode layer 2 is located.
  • FIG. 14 is a cross-sectional view of an air battery.
  • symbol same as them is attached
  • subjected and description is abbreviate
  • the air battery A4 employs a contact member 60 having a configuration different from that of the air battery A3 described above.
  • a contact member 60 shown in FIG. 5A is made of a metal having conductivity, and is electrically connected to the electrolyte layer 1 and the positive electrode layer 2 respectively, and is connected to negative electrodes of other adjacent air batteries A4. This is for bringing the electric member 32 into conductive contact.
  • the contact member 60 has a base 60a having a vertically long cross section formed in a ring shape having a required outer diameter, and a constant for sandwiching the protective member 40 between the base 60a and the liquid tight ventilation member 23.
  • the sandwiching piece 60b having a width is formed inward.
  • the contact member 60 when the contact member 60 is fitted to the stepped portion 4A described above, the contact member 60 is formed so as to be flush with the upper surface 4a of the outer frame member 4 as described above.
  • the protection member 40 can be clamped and fixed more securely.
  • FIG. 15A is a plan view of an air battery according to still another embodiment
  • FIG. 15B is a plan view of an air battery according to another embodiment.
  • symbol same as them is attached
  • subjected and description is abbreviate
  • the air battery A5 according to the embodiment shown in FIG. 6A has an outer frame member 71, contact members 70 and 70, a power generator B, a protective member 40, and a negative electrode collector (not shown) formed in a rectangular shape in plan view. It has an electric member.
  • the contact members 70 are formed upright at both ends of the long side of the outer frame member 71.
  • the air battery A6 according to the fourth embodiment shown in FIG. 4B has an outer frame member 81, a contact member 80, a power generator B, a protective member 40, and a negative electrode (not shown) that are formed in a rectangular shape in plan view. It has a current collecting member.
  • the contact member 80 is a rectangular frame having a rectangular shape in plan view that fits into a space defined by the inner peripheral wall surface of the outer frame member 81. Even with the air battery having the configuration shown in FIGS. 15A and 15B, the same effects as those of the air batteries A1 to A4 described above can be obtained.
  • the protective member 40 is made of metal such as a wire mesh, but may be made of resin. Further, the protective member located at the uppermost stage may be made of resin, and the protective member located at the middle stage may be made of metal.
  • the assembled battery demonstrated as an example what laminated
  • the protective member described above is disposed for each air battery located on the outermost side (upper side in the drawing) of each module.
  • the power generator of the air battery located on the outermost side of each module can be protected.
  • the module including the air battery can be replaced.
  • the protective member is a metal mesh having air permeability, conductivity, and elasticity, and employs a metal mesh of # 600 to 700 mesh, a resin mesh, an expanded metal, or a metal / nonmetal nonwoven fabric. be able to.
  • a solid or gel electrolyte membrane can be adopted as the electrolyte layer 1.
  • the configuration of the air battery and the assembled battery according to the present invention is not limited to the above embodiments, and the details of the configuration can be changed as appropriate without departing from the gist of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Hybrid Cells (AREA)
  • Battery Mounting, Suspending (AREA)

Abstract

 従来の空気電池は、互いに直接的に接続できない構造であり、車載用の電源に適用することができないという問題点があった。 電解質層1を間にして正極層2及び負極層3を備えると共に、電気絶縁性を有し且つ電解質層1及び正極層2の外周を包囲する外枠部材4を備え、正極層2が、正極部材21と、正極集電部材22と、液密通気部材23を備えると共に、負極層3が、負極部材31と、負極集電部材32を備え、正極層2が、外枠部材4との間に、内端部が正極集電部材22の周縁部に接触し且つ外端部が正極表面側に露出する接点部材5を備え、接点部材5の外端部が、液密通気部材23の表面よりも突出し且つ少なくとも外枠部材4の端面と同一面位置に達する突出量である空気電池A1としたことにより、電池同士の直接的な直列接続を可能にし、車載用の電源に好適なものとした。

Description

空気電池
 本発明は、酸素を正極活物質として利用する空気電池に関し、とくに、複数個を接続して成る組電池を構成するのに好適な空気電池に関するものである。
 従来における空気電池としては、例えば、特許文献1に記載されたものがあった。特許文献1に記載の空気電池は、非水電解質層を正極及び負極で挟んで電極群を構成し、この電池群を正極及び負極の各端子とともに収容ケースに収容した構造である。両端子は、収容ケースから互いに相反する方向に突出している。また、空気電池は、収容ケースの正極側の壁部に複数の空気孔を有すると共に、これらの空気孔をシールテープで閉塞し、使用時には、シールテープを剥がすことで空気孔を開放して、正極に空気(酸素)を供給するようになっている。
特許第3735518号公報
 ところで、近年では、自動車等の車両の電源又は補助電源として使用する空気電池の研究開発が進められている。この車載用の空気電池は、車両に要する出力と容量が求められるので、複数個を直列に接続して組電池を構成する必要があり、しかも、搭載スペースが狭く限られているので、小型にすることが重要である。ところが、上記したような従来の空気電池は、互いに直接的に接続できない構造であるから、車載用の電源に適用することが実質的に不可能であるという問題点があった。このため、新たな空気電池の実現が要望されていた。
 本発明は、上記従来の状況に鑑みて成されたもので、電池同士の直接的な直列接続が可能であって、車載用の電源としても好適な空気電池を提供することを目的としている。
 本発明の空気電池は、電解質層を間にして正極層及び負極層を備えると共に、電気絶縁性を有し且つ少なくとも電解質層及び正極層の外周を包囲する外枠部材を備えている。また、正極層は、正極部材と、正極集電部材と、正極表面に配置した液密通気部材を備えている。これに対して、負極層は、負極部材と、負極集電部材を備えている。
 そして、空気電池は、前記正極層が、外枠部材との間に、内端部が正極集電部材の周縁部に接触し且つ外端部が正極表面側に露出する接点部材を備えており、前記接点部材の外端部が、液密通気部材の表面よりも外側に突出し且つ少なくとも外枠部材の端面と同一面位置に達する突出量、すなわち外枠部材の端面と同じ又はそれ以上の突出量であることを特徴としている。
 本発明の空気電池によれば、上記構成を採用したことから、接点部材の外端部が正極端子になると共に、その反対側の負極集電部材が負極端子になって、電池同士の直接的な直列接続を実現することができ、これにより、複数個を接続して成る組電池を容易に構成し得るので、車載用の電源としても非常に好適なものとなる。
本発明に係わる空気電池の一実施形態を説明する断面図(A)、平面図(B)及び外枠部材の部分を拡大した断面図(C)である。 図1に示す空気電池を分解状態で示す断面図である。 図1に示す空気電池を直列接続して成る組電池を示す断面図である。 本発明に係わる空気電池の他の実施形態を説明する要部の断面図である。 本発明に係わる空気電池のさらに他の実施形態を説明する要部の断面図である。 本発明に係わる空気電池のさらに他の実施形態を説明する要部の断面図である。 本発明に係わる空気電池のさらに他の実施形態を説明する要部の断面図である。 本発明に係わる空気電池のさらに他の実施形態を説明する要部の断面図である。 本発明に係わる空気電池のさらに他の実施形態を説明する要部の断面図である。 本発明に係わる空気電池のさらに他の実施形態を説明する各々平面図(A)(B)である。 本発明に係わる空気電池のさらに他の実施形態を説明する平面図(A)、及び正面図(B)である。 図11に示すI‐I線に沿う断面図である。 図11に示す空気電池を積層してなる組電池の断面図である。 本発明に係わる空気電池のさらに他の実施形態を示す断面図である。 本発明に係わる空気電池のさらに他の実施形態を示す各々平面図(A)(B)である。
 以下、図面に基づいて、本発明の空気電池の実施形態を詳細に説明する。
 図1に示す空気電池A1は、円盤状を成すものであって、電解質層1を間にして、図中で上側の正極層2と、図中で下側の負極層3を備えると共に、電気絶縁性を有し且つ少なくとも正極層2及び電解質層1の外周を包囲する外枠部材4を備えている。
 正極層2は、正極部材21と、正極部材21の片面に配置した正極集電部材22と、正極表面に配置した液密通気部材23を積層状態に備えている。図示例では、正極部材21の電解質層1側(図中で下側)に正極集電部材22が設けてある。また、負極層3は、負極部材31と、負極表面に配置した負極集電部材32を積層状態に備えている。
 また、前記正極層2は、断面上において、外枠部材4との間に、内端部(図中では下端部)が正極集電部材22の周縁部に接触し且つ外端部(図中では上端部)が正極表面側に露出する接点部材5を備えている。前記接点部材5は、その外端部が、液密通気部材23の表面よりも外側に突出し且つ少なくとも外枠部材4の端面と同一面位置に達する突出量である。つまり、接点部材5は、その端面(上面)が、外枠部材4の端面と同じ又はそれ以上となる突出量であり、図示例の場合は、外端部の端面が外枠部材4の端面と同一面状に連なっている。
 電解質層1は、水酸化カリウム(KOH)や塩化物を主成分とした水溶液(電解液)もしくは非水溶液をセパレータ内に含浸させたものであり、その水溶液や非水溶液を貯留させるために、セパレータには微細な孔が所定の割合で形成されている。なお、電解質層1そのものを、固体あるいはゲル状の電解質としても良い。
 前記正極層2において、正極部材21は、触媒を含む導電性多孔質材料で形成してあり、例えば、カーボン材料とバインダー樹脂とで形成した導電性多孔体の内部に、二酸化マンガンなどの触媒を担持させたものである。
 正極集電部材22は、正極層2における面内方向(面に沿う方向)の導電性を良好に確保するものであって、ステンレス、銅(Cu)、ニッケル(Ni)、及びカーボンなどの材料で形成した通気性を有する導電部材である。この正極集電部材22は、正極部材21の導電性に応じて通気部分の開口率を選択し、金網状の部材である場合には、例えば50~600メッシュ相当の仕様の中から選択して使用することができる。正極集電部材22には、金網状部材のほか、カーボンペーパーも使用可能である。
 液密通気部材23は、電解質層1の電解液に対して液密性(水密性)を有し、且つ酸素に対して通気性を有する部材である。この液密通気部材23は、電解液が外部へ漏出するのを阻止し得るように、フッ素樹脂などの撥水膜を用いており、一方、正極部材21に酸素を供給し得るように多数の微細孔を有している。
 前記負極層3において、負極部材31は、リチウム(Li)、アルミニウム(Al)、鉄(Fe)、亜鉛(Zn)、及びマグネシウム(Mg)等の純金属、もしくは合金などの材料から成るものである。
 負極集電部材32は、電解質層1の電解液が外部に漏出するのを阻止し得る材質から成る導電部材であって、例えば、ステンレス、及び銅(合金)や、金属材料お表面に耐食性を有する金属をメッキしたものなどである。
 外枠部材4は、この実施形態では、円形のリング状を成しており、枠内側に、接点部材5を収容する段差部4Aを有している。このとき、接点部材4が正極層2の構成部材であるから、段差部4Aは、外枠部材4の正極層側の開口部分に形成してある。また、この実施形態の外枠部材4は、電解質層1及び正極層2の外周に加えて、負極層3の負極部材31の外周をも包囲している。このため、負極層3の負極集電部材32は、外枠部材4と同等の直径を有し、外枠部材4の負極側の開口部分を閉塞するように設けてある。
 上記の外枠部材4は、ポリプロピレン(PP)やエンジニアリングプラスチック(いわゆるエンプラ)などの耐電解液性を有する樹脂製であることが好ましく、これにより軽量化も図ることができる。また、外枠部材4は、機械的強度を持たせるために、樹脂をカーボン繊維やガラス繊維などの強化繊維によって複合化した繊維強化プラスチック(FRP)を使用することもできる。
 接点部材5は、この実施形態では、円形のリング状であって、前記外枠部材4の段差部4Aに収まる断面積を有している。この接点部材5は、金属製であって、例えば、銅(Cu)、ステンレス、及びニッケル(Ni)などの金属を使用することができる。また、その他の金属でも電解液に対する耐食性が確保されるように表面処理を行えば、それを使用することができる。さらに、接点部材5は、正極集電部材22との接触抵抗を低減するために、互いの接触面の少なくとも一方に、金(Au)や銀(Ag)などのメッキを施すことができる。
 上記の空気電池A1は、図2に示すように、正極部材21、正極集電部材22及び液密通気部材23を積層して正極層2を形成すると共に、接点部材5の内側に正極層2を装着する。その一方で、負極部材31と負極集電部材32を積層して負極層3を形成する。そして、外枠部材4の内側に、正極層2(又は負極層3)を装着すると共に、図中に仮想線で示す電解質層1を設け、その後、外枠部材4の内側に、負極層3(又は正極層2)を装着して、電解質層1を閉じ込めた状態にする。
 上記構成を備えた空気電池A1は、とくに正極層2において、正極集電部材22及び接点部材5により通電経路を形成している。また、空気電池A1は、接点部材5の外端部を、液密通気部材23の表面よりも外側に突出させているので、接点部材5の外端部の内側には、液密通気部材23との段差に相当する深さDの扁平な凹空間を形成している。
 これにより、空気電池A1は、接点部材5の外端部が正極端子になると共に、その反対側の負極集電部材32が負極端子になって、電池同士の直接的な直列接続を実現することができる。すなわち、空気電池A1は、図3に示すように、複数個を直接的に直列接続して組電池Cを構成し、この際、接点部材5の外端部が隣接する空気電池A1の負極集電部材32に接触する。また、液密通気部材23と隣接する空気電池A1の負極集電部材32との間に、前記凹空間による空気流路6を形成する。
 このように、空気電池A1は、複数個を直接的に直列接続して組電池Cを容易に構成し得るので、組電池Cの小型化や構造の簡略化を実現することができ、車載用の電源としても非常に好適なものとなる。
 なお、前記空気流路6の厚さは、発電量と酸素の供給形態に依存するが、例えば、1~10mm程度の範囲から適宜選択することができる。また、接点部材5は、上記の如くリング状を成して外端部の内側に空気流路6を形成するので、外部から空気流路6に空気を導入するための溝や孔を適当な箇所に設けておくことが望ましい。
 さらに、上記の空気電池A1は、電池外周部が、電気絶縁性を有する外枠部材4で構成してあるので、接点部材5の外端部である正極端子と、負極集電部材32である負極端子とが互いに相反する位置関係になる。これにより、短絡し難い構造になり、安全性の高いものとなる。なお、周知のボタン電池のように、一方の極が電池外装部を兼用している構造では、正極と負極の距離が短くなることから、安全性の観点から車載用の電源には不適当である。
 さらに、上記の空気電池A1は、接点部材5の外端部の端面と外枠部材4の端面とを同一面状に連ねてあるので、複数個を接続した際に、接点部材5及び外枠部材4の両方が隣接する空気電池A1に接触することとなり、接触部分の安定性が良好になる。また、本発明の空気電池A1は、接点部材5の外端部を、外枠部材4の端面を僅かに超える突出量にすることもできる。この場合には、隣接する空気電池A1に対する接点部材5の外端部の圧接力が増大し、接触抵抗の低減を図ることができる。
 なお、上記の空気電池A1は、負極集電体32の外側面(下面)に、接点部材5に対応するリング状の接点部材を設けたり、リング状の突条接点を一体的に形成したりすることも可能である。このような負極集電体32側の接点部材や突条接点によっても、電池同士の直接的な直列接続と、空気流路6の確保の両立を実現することができる。
 図4~図10は、本発明の空気電池の他の実施形態を説明する図である。なお、以下の各実施形態において、先の実施形態の同一の構成部位は、同一符号を付して詳細な説明を省略する。
 図4に示す空気電池A1は、先の実施形態と同様に、正極層2が、電解質層1側に正極集電部材22を備えると共に、外枠部材4が、その枠内側に、接点部材5を収容する段差部4Aを有している。そして、この空気電池A1は、前記段差部4Aの段差面(平面)と接点部材5との間で正極集電部材22の周縁部を挟持した構造になっている。
 上記の空気電池A1は、先の実施形態と同様の作用及び効果を得ることができるうえに、正極集電部材22と接点部材5との接触面積をできるだけ大きく確保することができ、接触抵抗や集中抵抗を小さく抑えることができる。また、外枠部材4の段差部4Aにより、正極集電部材22や接点部材5の位置決めが成されるので、外枠部材4に対する正極層2組付け性が良好になる利点もある。
 図5に示す空気電池A1は、先の実施形態と同等の基本構成を備えると共に、接点部材5が、液密通気部材23の周縁部を受ける凹部5Aを有している。この実施形態では、接点部材5の内周側に、段差状の凹部5Aが設けてある。
 上記の空気電池A1は、先の実施形態と同様の作用及び効果を得ることができるうえに、正極部材21よりも液密通気部材23の面積が大きくなり、電解質層1の電解液の漏出をより確実に阻止することができる。また、上記の凹部5Aにより、接点部材5に対する液密通気部材23の組付け性が良好になる利点もある。
 図6に示す空気電池A1は、先の実施形態と同等の基本構成を備えると共に、接点部材5が、液密通気部材23の表面上に延出したフランジ部5Bを有している。
 上記の空気電池A1は、先の実施形態と同様の作用及び効果を得ることができるうえに、前記フランジ部5Bにより、接点部材5の外端部の端面面積が大きくなる。これにより、組電池Cを構成した際に、隣接する空気電池A1の負極集電部材32に対する接触面積が大きくなり、電気抵抗を低減することができる。
 また、上記の空気電池A1は、前記フランジ部5Bにより、正極層2を押え付けることができる。これにより、正極層2の各構成部材間の接触抵抗を低減することができると共に、正極層2の脱落を防止することもできる。さらに、上記の空気電池A1は、正極層2のうちの少なくとも正極部材21及び正極集電部材22と、前記フランジ部5Bを有する接点部材5とを予めアッセンブリ化しておくことができるので、組付け性の向上に貢献することができる。
 図7に示す空気電池A1は、先の実施形態と同等の基本構成を備えると共に、接点部材5が、液密通気部材23の周縁部を受ける凹部5Aと、液密通気部材23の表面上に延出したフランジ部5Bとを有している。
 上記の空気電池A1は、先の実施形態と同様の作用及び効果を得ることができるうえに、前記凹部5Aによる効果すなわち電解液の漏出阻止等の効果と、前記フランジ部5Bによる効果すなわち電気抵抗や接触抵抗の低減等の効果を併せ持つものとなる。また、この実施形態の場合には、本体部分とフランジ部5Bとを別体にした接点部材5を用いることもできる。
 図8に示す空気電池A1は、先の実施形態と同等の基本構成を備えると共に、接点部材5が、金属製であって、外端部の端面に表面処理Mが施してある。この表面処理Mには、とくに限定されないが、高導電性の被膜が好ましく、例えば、ダイヤモンドライクカーボンに代表される硬質炭素被膜などを適用することもできる。
 上記の空気電池A1は、先の実施形態と同様の作用及び効果を得ることができるうえに、表面処理Mにより、耐食性、耐摩耗性及び良好な導電性を得ることが可能となり、組電池Cを構成した際には、隣接する空気電池A1との接触抵抗を低減することができる。
 図9に示す空気電池A1は、先の実施形態と同等の基本構成を備えると共に、接点部材5が、金属製であって、外端部の端面に表面処理Mが施してあると共に、接点部材5の内端部と正極集電部材22の周縁部とが、少なくとも一部で接合(符号W)してある。lpも接合には、溶接や接着等の手段を採用することができる。
 上記の空気電池A1は、先の実施形態と同様の作用及び効果を得ることができるうえに、表面処理Mによる効果に加えて、接点部材5と正極集電部材22とを接合Wしたことにより、双方間の接触抵抗を低減することができる。また、上記接合Wにより、正極層2の各項税部材と接点部材5を予めアッセンブリ化しておくことができ、組付け性のさらなる向上などに貢献することができる。
 図10(A)に示す空気電池A2は、先の各実施形態では円板状であったのに対して、矩形板状を成している。この空気電池A2は、先の実施形態と同等の積層構造を有すると共に、矩形枠状の接点部材5を備えている。また、図10(B)に示す空気電池A2は、一対の短辺部分に接点部材5,5を配置した構成になっている。このように、矩形板状を成す空気電池A2の場合には、空気供給量と圧力損失との関係から、平面上の縦横比や接点部材の数及び配置を選択する。
 これらの空気電池A2にあっても、先の各実施形態と同様の作用及び効果を得ることができる。なお、空気電池の形態は、各実施形態で示した円盤状や矩形板状のほか、楕円形状や多角形状にすることも可能であり、これに加えて、単数又は複数の接点部材を配置することができる。
 図11(A)は、本発明のさらに他の実施形態に係る空気電池の平面図、図11(B)は、その正面図、図12は、図1に示すI‐I線に沿う断面図、図13は、本発明の一実施形態に係る組電池の断面図である。
 この実施形態に係る組電池Cは、三つの空気電池A3を上下三段に積み重ねたものである。空気電池A3は、先の実施形態と同等の基本構造を有すると共に、その外観が、外枠部材4、接点部材5、発電体B、防護部材40及び負極集電部材32で構成してある。また、この実施形態では、電解質層1、正極層2及び負極層3からなる構成を発電体Bとしている。
 外枠部材4は、上下両面を開口した円筒形に形成されており、この外枠部材4の一方の開口4a寄りには、詳細を後述する接点部材5を嵌合するための段差部4Aが形成されている。段差部4Aは、接点部材5の外径に一致する内径D1にし、かつ、その接点部材5の高さにほぼ一致する高さH1にした段差として形成されている。
 発電体Bは、図2に示すように、電解液を含浸したセパレータから成る電解質層1の一方の面に正極層2を配設し、他方の面に負極層3を配設すると共に、正極層2の外面に液密通気部材23を積層したものであり、その電解質層1の正極層2寄りには、正極集電部材22が配設されている。
 正極集電部材22は、上記した段差部4Aの内径に一致した平面視円形に形成されており、イオンを流通させられる大きさの流通孔を有する導電性の金網等である。この正極集電部材22は、これの外周縁部が、段差部4Aに嵌入した接点部材5の底壁5cとの間に挟入固定されるようになっている。
 接点部材5は、導電性を有する金属製のものであり、上記した電解質層1及び正極層2とそれぞれ導通接続され、かつ、図示上側において隣接する他の空気電池A3の負極集電部材32に導通接触させるためのものである。
 この実施形態において示す接点部材5は、所要の外径にしたリング形にしたものであり、その段差部4Aに嵌合したときに、正極集電部材22を底壁5cとの間に挟入した状態において、外枠部材4の開口4aと面一となる高さに形成されている。
 液密通気部材23は、接点部材5の内径に一致する外径にした平面視円形に形成されている。換言すると、正極部材21の外面21aを被覆するように形成されている。
 防護部材40は、外部から異物が内部に突入することを阻止して、発電体Bすなわち正極層2等を防護するためのものであり、接点部材5の内径に一致する外径の平面視円形にした通気性、導電性及び弾性を有する金網である。具体的には、液密通気部材23の外面23aを被覆するよう配設されているとともに、外縁部において接点部材5と導通接触させている。「導通接触」の態様としては、例えば溶着の他、当接させることによってもよい。
 この実施形態において示す防護部材40は、#600~700メッシュのような超緻密なものであり、上記液密通気部材23よりも開口率を高くしている。
 また、この防護部材40を液密通気部材23に載置したとき、接点部材5の上面よりもやや上方に突出する高さH2にしている。すなわち、積み重ねた隣り合う他の空気電池A3の負極集電部材32に弾接するようにし、接触面積を増加させているとともに、構成部材に圧縮荷重を与えることができるようにしている。
 また、上記防護部材40の面方向の総開口面積が、液密通気部材23の厚さ方向の総開口面積よりも大きく設定している。換言すると、防護部材40の図示平面視における開口面積が、液密通気部材23の厚さ方向の総開口面積よりも大きく設定されている。
 これにより、防護部材40を通じて流通する空気が、液密通気部材23の上面に沿って外周縁部に向けて拡散するようにし、防護部材40が他の空気電池と隣接するときにも、防護部材40の面方向においてガス供給を行なえるようし、発電効率の向上を図っている。
 この実施形態に係る組電池Cは、図3に示すように、上記した空気電池A3を互いに図示上下多段に積み重ねたものである。なお、図3には、三つの空気電池を積層させた組電池を例示しているが、その個数に限るものでない。
 図3において、最も下側の空気電池A3aに空気電池A3bを積み重ねると、空気電池A3aの接点部材5の当接端面5aに、空気電池A3bの負極集電部材32の下面32aが当接して導通する。また、その負極集電部材32の下面32aに当接した防護部材40が押圧されて弾性変形し、空気電池A3aの液密通気部材23や正極層2等に所要の荷重を与えることができ、これらの接触抵抗を低減することができる。
 また、最も外側に位置する二つの空気電池A3a,A3cに挟まれた空気電池A3bは、これの防護部材40が、図示最も上側に位置する空気電池A3cの負極集電部材32の下面32aに当接して弾性的に押圧され、上記した空気電池A3aと同様に、液密通気部材23や正極層2等に所要の荷重を与えることができ、これらの接触抵抗を低減することができる。そして、最も外側に位置する空気電池A3cは、防護部材40によって液密通気部材23を被覆しているので、発電体30の損傷を防止できる。
 ところで、この実施形態における組電池Cでは、全ての空気電池A3にそれぞれ防護部材40を設けた構成について例示したが、図示最も下側に配置した空気電池A3aと、これの上側において隣接する空気電池A3bについては、必ずしも防護部材40を配設する必要はない。すなわち、少なくとも正極層2が外側となる積層端部(図3中で上端部)の空気電池A3cに防護部材40を配設すればよい。
 次に、図14を参照してさらに他の実施形態に係る空気電池について説明する。図14は、空気電池の断面図である。なお、上述した実施形態において説明したものと同等のものについては、それらと同一の符号を付して説明を省略する。
 この実施形態に係る空気電池A4は、上述した空気電池A3とは異なる構成の接点部材60を採用している。同図(A)に示す接点部材60は、導電性を有する金属製のものであり、電解質層1及び正極層2とそれぞれ電気的に接続され、かつ、隣接する他の空気電池A4の負極集電部材32に導通接触させるためのものである。
 この接点部材60は、所要の外径にしたリング形に形成された断面縦長の基部60aと、この基部60aの上部に、防護部材40を液密通気部材23との間に挟持するための一定幅にした挟持片60bを内方に向けて形成したものである。
 なお、この接点部材60を上記した段差部4Aに嵌合したときに、外枠部材4の上面4aと面一となる高さに形成されていることは、上記したものと同様である。上記の構成からなる接点部材60を採用することにより、よりしっかりと防護部材40を挟持固定することができる。
 なお、本発明は上述した実施形態に限るものではなく、次のような変形実施が可能である。
 上述した実施形態においては、空気電池として平面視円形のものを例として説明したが、図15に示すような形状にしてもよい。図15(A)は、さらに他の実施形態に係る空気電池の平面図、(B)は、別の実施形態に係る空気電池の平面図である。なお、上述した実施形態において説明したものと同等のものについては、それらと同一の符号を付して説明を省略する。
 同図(A)に示す実施形態に係る空気電池A5は、その外観が、平面視長方形に形成された外枠部材71、接点部材70,70、発電体B、防護部材40及び図示しない負極集電部材を有して構成されている。接点部材70,70は、外枠部材71の長辺両端部に起立して形成されているものである。
 同図(B)に示す第四の実施形態に係る空気電池A6は、その外観が、平面視長方形に形成された外枠部材81、接点部材80、発電体B、防護部材40及び図示しない負極集電部材を有して構成されている。
 接点部材80は、外枠部材81の内周壁面によって区画される空間に嵌合する平面視長方形にした四角枠形のものである。上記図15(A),(B)に示す構成からなる空気電池であっても、上述した空気電池A1~A4と同様の効果を得ることができる。
・上述した実施形態においては、防護部材40として金網等の金属製のものを例示したが、樹脂製のものであってもよい。また、最上段に位置する防護部材を樹脂製のものにし、中段に位置する防護部材を金属製製のものにしてもよい。
・上述した実施形態においては、組電池を三つの空気電池を積層したものを例として説明したが、それら三つの空気電池を一体にしたモジュールとし、これらのモジュールを二つ以上積層した構造としてもよい。
 この場合、上記した防護部材を、各モジュールの最も外側(図示上側)に位置する空気電池毎に配設する。これにより、各モジュールの最も外側に位置する空気電池の発電体を防護することができる。また、モジュール化することにより、一部の空気電池に故障が生じたとしても、その空気電池を含むモジュールを交換することができる。
 上述した実施形態においては、防護部材として、通気性,導電性及び弾性を有する金網であって、#600~700メッシュの金属メッシュ、樹脂メッシュ、エキスパンドメタル又は金属・非金属製の不織布を採用することができる。
 上述した実施形態においては、電解質層1として、固体状或いはゲル状の電解質膜を採用することができる。
 本発明に係る空気電池及び組電池は、その構成が上記の各実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲で構成の細部を適宜変更することができる。
 A1~A6 空気電池
 C     組電池
 1     電解質層
 2     正極層
 3     負極層
 4     外枠部材
 4A    段差部
 5     接点部材
 5A    凹部
 5B    フランジ部
 6     空気流路
 21    正極部材
 22    正極集電部材
 23    液密通気部材
 31    負極部材
 32    負極集電部材
 40    防護部材
 60    接点部材
 60b   挟持片
 70    接点部材
 71    外枠部材 
 80    接点部材
 81    外枠部材

Claims (14)

  1.  電解質層を間にして正極層及び負極層を備えると共に、電気絶縁性を有し且つ少なくとも電解質層及び正極層の外周を包囲する外枠部材を備え、
     正極層が、正極部材と、正極集電部材と、正極表面に配置した液密通気部材を備えると共に、
     負極層が、負極部材と、負極集電部材を備えており、
     前記正極層が、外枠部材との間に、内端部が正極集電部材の周縁部に接触し且つ外端部が正極表面側に露出する接点部材を備え、
     前記接点部材は、その外端部が、液密通気部材の表面よりも突出し且つ少なくとも外枠部材の端面と同一面位置に達する突出量であることを特徴とする空気電池。
  2.  正極層が、電解質層側に正極集電部材を備えると共に、外枠部材が、その枠内側に、接点部材を収容する段差部を有し、
     前記段差部の段差面と接点部材との間で正極集電部材の周縁部を挟持したことを特徴とする請求項1に記載の空気電池。
  3.  接点部材が、液密通気部材の周縁部を受ける凹部を有していることを特徴とする請求項1又は2に記載の空気電池。
  4.  接点部材が、液密通気部材の表面上に延出したフランジ部を有していることを特徴とする請求項1~3のいずれか1項に記載の空気電池。
  5.  接点部材が、金属製であって、外端部の端面に表面処理が施してあることを特徴とする請求項1~4のいずれか1項に記載の空気電池。
  6.  接点部材が、金属製であって、接点部材の内端部と正極集電部材の周縁部とが、少なくとも一部で接合してあることを特徴とする請求項1~5のいずれか1項に記載の空気電池。
  7.  液密通気部材の外面に、通気性を有し且つ正極層を防護するための防護部材を配設したことを特徴とする請求項1~6のいずれか1項に記載の空気電池。
  8.  防護部材が、導電性のものであり、且つ電解質層及び正極層と導通接続されていることを特徴とする請求項7に記載の空気電池。
  9.  接点部材に、防護部材を挟持するための挟持片が形成されており、
     その挟持片によって液密通気部材との間に挟持固定されていることを特徴とする請求項7又は8に記載の空気電池。
  10.  防護部材の面方向の総開口面積が、液密通気部材の厚さ方向の総開口面積よりも大きく設定されていることを特徴とする請求項7~9のいずれか1項に記載の空気電池。
  11.  防護部材は、金属メッシュ、樹脂メッシュ、エキスパンドメタル又は金属・非金属製の不織布であることを特徴とする請求項7~10のいずれか1項に記載の空気電池。
  12.  請求項1~6のいずれか1項に記載の空気電池を複数積層し、
     接点部材の外端部を隣接する空気電池の負極集電部材に接触させると共に、
     液密通気部材と隣接する空気電池の負極集電部材との間に、空気流路を形成したことを特徴とする組電池。
  13.  少なくとも正極層が外側となる積層端部の空気電池が、液密通気部材の外面に、通気性を有し且つ正極層を防護するための防護部材を備えていることを特徴とする請求項12に記載の組電池。
  14.  請求項7~11のいずれか1項に記載の空気電池を複数積層し、
     接点部材の外端部を隣接する空気電池の負極集電部材に接触させると共に、
     液密通気部材と隣接する空気電池の負極集電部材との間に、空気流路を形成し
     防護部材が、隣接する空気電池の負極集電部材に弾接していることを特徴とする組電池。
PCT/JP2012/077956 2011-12-05 2012-10-30 空気電池 WO2013084625A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP12856176.8A EP2790265B1 (en) 2011-12-05 2012-10-30 Air battery
CN201280059831.5A CN103975481B (zh) 2011-12-05 2012-10-30 空气电池
US14/358,165 US9608302B2 (en) 2011-12-05 2012-10-30 Air battery
JP2013548149A JP5716936B2 (ja) 2011-12-05 2012-10-30 空気電池

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011265876 2011-12-05
JP2011265973 2011-12-05
JP2011-265973 2011-12-05
JP2011-265876 2011-12-05

Publications (1)

Publication Number Publication Date
WO2013084625A1 true WO2013084625A1 (ja) 2013-06-13

Family

ID=48574007

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/077956 WO2013084625A1 (ja) 2011-12-05 2012-10-30 空気電池

Country Status (5)

Country Link
US (1) US9608302B2 (ja)
EP (1) EP2790265B1 (ja)
JP (1) JP5716936B2 (ja)
CN (1) CN103975481B (ja)
WO (1) WO2013084625A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015093355A1 (ja) * 2013-12-19 2015-06-25 日産自動車株式会社 電極構造体、空気電池及び空気電池スタック
EP2808938A4 (en) * 2012-01-27 2015-08-05 Nissan Motor BATTERY PACK

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9780423B2 (en) 2012-03-09 2017-10-03 Nissan Motor Co., Ltd. Air battery
US20150118585A1 (en) * 2013-10-24 2015-04-30 ZAF Energy Systems, Incorporated Electronic device with uncontained air breathing battery
KR102429170B1 (ko) * 2017-09-04 2022-08-03 현대자동차주식회사 리튬 공기 배터리 장치

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3462307A (en) * 1966-04-28 1969-08-19 American Cyanamid Co Metal-air battery including fibrillated cathode
JPS5723479A (en) * 1980-07-17 1982-02-06 Yuasa Battery Co Ltd Dry type air cell
JP3735518B2 (ja) 2000-06-30 2006-01-18 株式会社東芝 非水電解質電池
WO2010050028A1 (ja) * 2008-10-30 2010-05-06 トヨタ自動車株式会社 金属空気電池、及び金属空気電池の製造方法
JP2010238663A (ja) * 2009-03-09 2010-10-21 Sumitomo Chemical Co Ltd 空気電池
US20110059364A1 (en) * 2009-09-10 2011-03-10 Battelle Memorial Institute Air electrodes for high-energy metal air batteries and methods of making the same
WO2011087089A1 (ja) * 2010-01-18 2011-07-21 住友化学株式会社 空気電池、空気電池スタック

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009093983A (ja) * 2007-10-11 2009-04-30 Toyota Central R&D Labs Inc 二次電池
WO2011161822A1 (ja) * 2010-06-25 2011-12-29 株式会社 東芝 空気電池

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3462307A (en) * 1966-04-28 1969-08-19 American Cyanamid Co Metal-air battery including fibrillated cathode
JPS5723479A (en) * 1980-07-17 1982-02-06 Yuasa Battery Co Ltd Dry type air cell
JP3735518B2 (ja) 2000-06-30 2006-01-18 株式会社東芝 非水電解質電池
WO2010050028A1 (ja) * 2008-10-30 2010-05-06 トヨタ自動車株式会社 金属空気電池、及び金属空気電池の製造方法
JP2010238663A (ja) * 2009-03-09 2010-10-21 Sumitomo Chemical Co Ltd 空気電池
US20110059364A1 (en) * 2009-09-10 2011-03-10 Battelle Memorial Institute Air electrodes for high-energy metal air batteries and methods of making the same
WO2011087089A1 (ja) * 2010-01-18 2011-07-21 住友化学株式会社 空気電池、空気電池スタック

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2790265A4

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2808938A4 (en) * 2012-01-27 2015-08-05 Nissan Motor BATTERY PACK
US9728827B2 (en) 2012-01-27 2017-08-08 Nissan Motor Co., Ltd. Battery pack
WO2015093355A1 (ja) * 2013-12-19 2015-06-25 日産自動車株式会社 電極構造体、空気電池及び空気電池スタック
CN105830276A (zh) * 2013-12-19 2016-08-03 日产自动车株式会社 电极构造体、空气电池及空气电池组
US20160322683A1 (en) * 2013-12-19 2016-11-03 Nissan Motor Co., Ltd. Electrode structure, air cell, and air cell stack
US10418676B2 (en) 2013-12-19 2019-09-17 Nissan Motor Co., Ltd. Electrode structure, air cell, and air cell stack
US11302974B2 (en) 2013-12-19 2022-04-12 Nissan Motor Co., Ltd. Electrode structure, air cell, and air cell stack

Also Published As

Publication number Publication date
JP5716936B2 (ja) 2015-05-13
CN103975481A (zh) 2014-08-06
US9608302B2 (en) 2017-03-28
JPWO2013084625A1 (ja) 2015-04-27
US20140315106A1 (en) 2014-10-23
EP2790265B1 (en) 2018-12-12
EP2790265A4 (en) 2015-05-27
EP2790265A1 (en) 2014-10-15
CN103975481B (zh) 2017-03-22

Similar Documents

Publication Publication Date Title
JP6011799B2 (ja) 組電池
JP7029924B2 (ja) 蓄電素子及び蓄電モジュール
JP6070239B2 (ja) 空気電池
JP5716936B2 (ja) 空気電池
CN118213682A (zh) 二次电池的顶盖组件和二次电池
KR101215377B1 (ko) 비수 전해액 원통형 전지
CN102148394A (zh) 二次电池
JP2023134644A (ja) 電池
JP5850403B2 (ja) 空気電池
JP5673374B2 (ja) 非水電解質二次電池
JP2015534705A (ja) 中央領域が隆起したハウジングカバープレートを有するバッテリセル
EP3297055B1 (en) Stacked battery
CN115699416A (zh) 盖组件、电池单体、电池、用电装置、方法及设备
KR102054413B1 (ko) 배터리 팩
CN214378637U (zh) 圆柱电池及其盖帽结构
JP2021132022A (ja) 蓄電装置
KR102248230B1 (ko) 이차전지 모듈
CN215377461U (zh) 弧形钢壳电池封装结构及弧形电池
JP5884567B2 (ja) 空気電池
US20180083234A1 (en) Stacked battery
CN104871338B (zh) 储能电芯和用于制造储能电芯的方法
WO2013018552A1 (ja) 電池
JP2020155283A (ja) 蓄電素子及び蓄電装置
CN218101611U (zh) 电池和电子设备
CN217589160U (zh) 电池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12856176

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013548149

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14358165

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2012856176

Country of ref document: EP