WO2011087089A1 - 空気電池、空気電池スタック - Google Patents

空気電池、空気電池スタック Download PDF

Info

Publication number
WO2011087089A1
WO2011087089A1 PCT/JP2011/050553 JP2011050553W WO2011087089A1 WO 2011087089 A1 WO2011087089 A1 WO 2011087089A1 JP 2011050553 W JP2011050553 W JP 2011050553W WO 2011087089 A1 WO2011087089 A1 WO 2011087089A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
air battery
oxygen diffusion
diffusion film
air
Prior art date
Application number
PCT/JP2011/050553
Other languages
English (en)
French (fr)
Inventor
佐藤 敬
山口 滝太郎
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Priority to EP11732959A priority Critical patent/EP2528156A1/en
Priority to US13/522,172 priority patent/US9680192B2/en
Priority to KR1020127021003A priority patent/KR20120127445A/ko
Priority to CN201180006267.6A priority patent/CN102714338B/zh
Publication of WO2011087089A1 publication Critical patent/WO2011087089A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M12/00Hybrid cells; Manufacture thereof
    • H01M12/08Hybrid cells; Manufacture thereof composed of a half-cell of a fuel-cell type and a half-cell of the secondary-cell type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M12/00Hybrid cells; Manufacture thereof
    • H01M12/04Hybrid cells; Manufacture thereof composed of a half-cell of the fuel-cell type and of a half-cell of the primary-cell type
    • H01M12/06Hybrid cells; Manufacture thereof composed of a half-cell of the fuel-cell type and of a half-cell of the primary-cell type with one metallic and one gaseous electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M12/00Hybrid cells; Manufacture thereof
    • H01M12/04Hybrid cells; Manufacture thereof composed of a half-cell of the fuel-cell type and of a half-cell of the primary-cell type
    • H01M12/06Hybrid cells; Manufacture thereof composed of a half-cell of the fuel-cell type and of a half-cell of the primary-cell type with one metallic and one gaseous electrode
    • H01M12/065Hybrid cells; Manufacture thereof composed of a half-cell of the fuel-cell type and of a half-cell of the primary-cell type with one metallic and one gaseous electrode with plate-like electrodes or stacks of plate-like electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9016Oxides, hydroxides or oxygenated metallic salts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to an air battery and an air battery stack.
  • Patent Literature 1 discloses an air secondary battery in which a first cell and a second cell are alternately charged and discharged in an air battery in which a first cell and a second cell are arranged via an oxygen permeable portion. Has been proposed.
  • the cell that contributes to the discharge is always a cell on one side of the device, and is obtained with respect to the size of the device. Capacity is difficult to increase. In addition, the apparatus becomes large and difficult to use in a wide range of applications.
  • the present invention has been made in view of such conventional problems, and an object of the present invention is to provide an air battery, an air battery stack, and a wound type air battery that can be easily increased in capacity.
  • the present invention includes a negative electrode, a separator, a positive electrode having a catalyst layer and a positive electrode current collector, a laminate in which an oxygen diffusion film is laminated in this order, and an electrolyte in contact with the negative electrode, the separator, and the positive electrode.
  • One of the main surfaces of the oxygen diffusion film is disposed to face one of the main surfaces of the positive electrode current collector, and at least a part of the peripheral edge of the oxygen diffusion film is in contact with air in the atmosphere. Provide an air battery.
  • the air battery of the present invention at least a part of the peripheral part of the oxygen diffusion film is in contact with the air, so that at least a part of the peripheral part of the oxygen diffusion film passes through the oxygen diffusion film during discharge. Air reaching the positive electrode contributes to the discharge. Further, during charging as an air secondary battery, air generated at the positive electrode is released to the outside through at least a part of the peripheral edge of the oxygen diffusion film through the oxygen diffusion film. And since the air battery of the present invention has a structure different from the structure of taking in air from the main surface side of the positive electrode and the oxygen diffusion membrane as in the conventional air battery, the main surfaces can be stacked and stacked. It is. Thereby, it is possible to easily realize a large capacity.
  • the power generator has a solution containing an electrolyte and a solvent, and the contact angle of the solvent with respect to the surface of the oxygen diffusion film is 90 ° or more.
  • the vacancies in which oxygen diffuses in the oxygen diffusion film are hardly wetted by the solvent, and the vacancies can be suppressed from being blocked.
  • the power generator has a solution containing an electrolyte and a solvent, and the contact angle of the solvent with respect to the surface of the oxygen diffusion film is 150 ° or more.
  • the pores of the oxygen diffusion film become more difficult to wet with the solvent, and the pores can be further suppressed from being blocked.
  • the power generator has a solution containing an electrolyte, a solvent, and a gelling agent.
  • a liquid solvent contacts the void
  • hole becomes difficult to get wet with a solvent and a void
  • the negative electrode has a negative electrode active material
  • the negative electrode active material is one or more selected from the group consisting of hydrogen, lithium, sodium, magnesium, aluminum, potassium, calcium, iron, and zinc. It is preferable that When the negative electrode active material is the above material, the air battery tends to provide a sufficient discharge capacity.
  • the negative electrode active material is more preferably hydrogen, lithium, aluminum, potassium, iron or zinc.
  • the air battery tends to give a larger discharge capacity.
  • the catalyst layer preferably contains manganese dioxide or platinum.
  • the catalyst layer preferably contains manganese dioxide or platinum.
  • platinum has an ability to occlude and release oxygen, so an air battery can be easily used as an air secondary battery.
  • the catalyst layer contains a perovskite type complex oxide represented by ABO 3
  • the A site contains at least two atoms selected from the group consisting of La, Sr and Ca
  • the B site Includes at least one atom selected from the group consisting of Mn, Fe, Cr and Co.
  • the catalyst layer includes a perovskite complex oxide represented by ABO 3
  • the complex oxide has an oxygen storage / release capability, and thus the air battery can be easily used as an air secondary battery.
  • the air battery of the present invention preferably further includes a positive electrode for charging.
  • a positive electrode for charging preferably further includes a positive electrode for charging.
  • the above-described positive electrode catalyst layer functions exclusively for discharging, and even when a material that is easily oxidized such as carbon is used for the positive electrode catalyst layer, the catalyst layer is oxidized by oxygen generated at the positive electrode during charging.
  • the air battery can be easily used as a secondary battery.
  • the positive electrode for charging is a metal mesh. Therefore, oxygen generated on the surface of the positive electrode for charging during charging easily passes through the mesh of the mesh and is easily discharged to the outside of the battery cell.
  • the air battery of the present invention is preferably an air secondary battery.
  • This air secondary battery is a secondary battery having a large capacity, and can be used not only as a small battery for electric and electronic equipment but also as a power source for driving (running) an electric vehicle.
  • a second positive electrode having a second catalyst layer and a second positive electrode current collector, a second separator, The two negative electrodes are preferably arranged in this order. Thereby, a larger capacity air battery can be obtained.
  • the present invention provides an air battery stack having two or more air batteries, wherein the two or more air batteries are stacked in the stacking direction of the stacked body. According to the present invention, a large capacity air battery can be obtained.
  • the laminate is formed into a sheet shape and wound. Although this air battery is wound, oxygen easily enters and exits, and a large capacity air battery can be easily obtained.
  • FIG. 1A is a schematic diagram showing an example of a preferred embodiment of an air battery according to the present invention
  • FIG. 1B is a schematic cross-sectional view of FIG. 1A taken along line Ib-Ib.
  • FIG. 2A is a schematic view showing another example of a preferred embodiment of the air battery according to the present invention
  • FIG. 2B is a diagram when FIG. 2A is cut along the IIb-IIb line.
  • FIG. 3A is a schematic cross-sectional view showing an example of an air battery provided with a positive electrode for charging
  • FIG. 3B is a schematic cross-sectional view showing another example.
  • FIG. 4 is a schematic cross-sectional view showing a first embodiment of an air battery stack according to the present invention.
  • FIG. 5 is a schematic cross-sectional view showing a second embodiment of the air battery stack according to the present invention.
  • FIG. 6 is a schematic cross-sectional view showing a third embodiment of the air battery stack according to the present invention.
  • FIG. 7 is a schematic cross-sectional view showing a fourth embodiment of the air battery stack according to the present invention.
  • FIG. 8 is a schematic cross-sectional view showing an example of a wound-type air battery according to the present invention.
  • FIG. 9 is a schematic sectional view of an air battery of a comparative example.
  • FIG. 1 is a schematic diagram (a) showing a preferred embodiment of an air battery according to the present invention, and a schematic cross-sectional view (b) when the schematic diagram (a) is cut along the line Ib-Ib.
  • FIG. 2 is a schematic diagram (a) showing a preferred embodiment of the air battery according to the present invention, and a schematic cross-sectional view (b) when the schematic diagram (a) is cut along line IIb-IIb.
  • the air battery 1 As shown in FIGS. 1 and 2, the air battery 1 according to this embodiment includes a laminate 19 in which a negative electrode 17, a separator 6, a positive electrode 13, and an oxygen diffusion film 2 are arranged in this order, and an electrolyte 9. And a power generation body 20 including the same. And this electric power generation body 20 is accommodated in the container 10.
  • the negative electrode 17 includes a negative electrode current collector 8 and a negative electrode active material 7 formed on the negative electrode current collector 8, and an external connection terminal (lead) 11 is connected to an end of the negative electrode current collector 8. ing.
  • the negative electrode current collector 8 may be any conductive material, and examples thereof include one or more metals selected from the group consisting of nickel, chromium, iron, and titanium, and alloys containing the metals, preferably nickel and stainless steel. It is done. Examples of the shape include a plate, a mesh, a perforated plate, and a metal sponge.
  • the negative electrode active material 7 is not particularly limited as long as it is a negative electrode material that can constitute an air battery.
  • the negative electrode active material include hydrogen or metal.
  • the metal lithium, sodium, magnesium, aluminum, potassium, calcium, iron, and zinc are preferable. Among these, any of hydrogen, lithium, aluminum, potassium, iron, and zinc is preferable.
  • hydrogen is preferably occluded in an alloy such as a hydrogen occlusion alloy or a metal.
  • the separator 6 is not particularly limited as long as it is an insulating material that can move the electrolyte.
  • a nonwoven fabric or a porous film made of a resin such as polyolefin or fluororesin can be used.
  • the resin include polyethylene, polypropylene, polytetrafluoroethylene, and polyvinylidene fluoride.
  • electrolytic solution a solution in which the electrolyte is dissolved in the solvent
  • resin hydrophilicity-treated polyethylene, polypropylene
  • examples thereof include polytetrafluoroethylene and polyvinylidene fluoride.
  • the positive electrode 13 includes a positive electrode current collector 3 and a positive electrode catalyst layer 4 formed on the positive electrode current collector 3, and an external connection terminal (lead) 5 is connected to the end of the positive electrode current collector 3. ing.
  • the positive electrode current collector 3 may be any conductive material, and examples thereof include a metal or alloy made of nickel, chromium, iron, and titanium, preferably nickel or stainless steel.
  • the shape is a mesh, a perforated plate or the like.
  • the positive electrode catalyst layer 4 has a positive electrode catalyst, it is usually preferable to include a conductive agent and a binder that adheres them to the positive electrode current collector 3 in addition to the positive electrode catalyst.
  • the positive electrode catalyst may be any material that can reduce oxygen, for example, carbon materials such as activated carbon, manganese oxides such as manganese dioxide, platinum, iridium, iridium oxide, titanium, tantalum, niobium, tungsten, and zirconium. Examples thereof include iridium oxides containing one or more metals selected from the group, perovskite complex oxides represented by ABO 3 , and the like.
  • the perovskite complex oxide includes at least two atoms selected from the group consisting of La, Sr and Ca at the A site, and at least one atom selected from the group consisting of Mn, Fe, Cr and Co at the B site. It is preferable to contain. Among them, a material that can reduce oxygen or oxidize a reductant of oxygen is preferable.
  • Manganese dioxide and platinum are preferable because a large discharge capacity can be obtained. Platinum or a perovskite complex oxide is preferable because it has an oxygen storage / release capability and can be used in an air secondary battery.
  • the conductive agent is not particularly limited, and examples thereof include carbon materials such as acetylene black and ketjen black.
  • the binder may be any material that does not dissolve in the electrolyte solution used.
  • the electrolyte is in contact with the negative electrode 17, the separator 6, and the positive electrode 13.
  • the electrolytic solution in which the electrolyte 9 is dissolved is impregnated in the laminate including the separator 6, the negative electrode 17, the separator 6, and the positive electrode 13.
  • the aqueous solution is preferably an aqueous solution in which NaOH, KOH, and NH 4 Cl are dissolved.
  • the concentration of NaOH, KOH or NH 4 Cl in the aqueous solution is preferably 1 to 99% by weight (wt)%, more preferably 10 to 60% by weight, and even more preferably 20 to 40% by weight.
  • the organic solvent is a group consisting of a cyclic carbonate, a chain carbonate, a cyclic ester, a cyclic ether, and a chain ether.
  • a solvent selected from or a mixed solvent composed of two or more solvents can be used.
  • Examples of the cyclic carbonate include ethylene carbonate, propylene carbonate, butylene carbonate, vinylene carbonate, and fluoroethylene carbonate.
  • Examples of chain carbonates include dimethyl carbonate, diethyl carbonate, and methyl ethyl carbonate.
  • Examples of the cyclic ester include gamma butyrolactone and gamma valerolactone.
  • Examples of the cyclic ether include tetrahydrofuran and 2-methyltetrahydrofuran.
  • Examples of the chain ether include dimethoxyethane and ethylene glycol dimethyl ether.
  • the electrolytic solution can contain a salt containing an element constituting the negative electrode active material 7 as an electrolyte.
  • the gelling agent is dissolved in the solvent, and it is more preferable that the gelling agent is dissolved in the aqueous solvent.
  • the gelling agent is not particularly limited as long as it swells with water, and polymers such as poly (sodium acrylate), carboxymethylcellulose, poly (ethylene glycol), and poly (vinyl alcohol) are preferable.
  • the solvent may permeate into the pores of the oxygen diffusion film 2, which makes it difficult for oxygen to diffuse through the oxygen diffusion film 2.
  • dissolving the gelling agent makes it difficult for the solvent to permeate the oxygen diffusion film 2, and as a result, oxygen easily passes through the oxygen diffusion film 2.
  • Electrolyte 9 may not be dissolved in a solvent.
  • the electrolyte include polyethylene glycol derivatives, alkylborane-containing polymers, polysilicone derivatives (manufactured by Momentive), polymers containing sulfonic acid, ⁇ -alumina solid electrolyte, NASICON solid electrolyte, high-purity lithium sulfide And a solid electrolyte obtained by firing phosphorus sulfide and lithium ion conductive glass ceramics (LICGC) (manufactured by OHARA).
  • LICGC lithium ion conductive glass ceramics
  • one of the main surfaces 2m of the oxygen diffusion film 2 that is, one of the surfaces 2m having the largest area among the surfaces of the oxygen diffusion film 2 is the positive electrode current collector.
  • 3 is arranged so as to face one of the three principal surfaces 3m, that is, one of the surfaces 3m having the largest area among the surfaces of the positive electrode current collector 3.
  • the peripheral edge 2c of the oxygen diffusion film 2, that is, the peripheral edge 2b of the main surface 2m of the oxygen diffusion film 2 and at least a part of the side surface 2a other than the main surface 2m are in contact with air in the air.
  • the peripheral edge 2c of the oxygen diffusion film 2 protrudes to the outside through the opening 15 of the container 10, and oxygen in the air is supplied from the peripheral edge 2c.
  • the oxygen can be taken into the power generation body 20 or the oxygen generated inside the power generation body 20 can be released to the outside.
  • the peripheral part 2c of the oxygen diffusion film 2 shows the form protruded to 4 directions, the peripheral part 2c should just protrude to at least 1 direction.
  • the peripheral edge 2c of the oxygen diffusion film 2 may not be completely exposed to the outside from the opening 15 of the container 10, and only the side surface 2a is It may be in contact with air in the air through the opening 15. In the air battery 1 of FIG. 2, at least one of the four side surfaces of the oxygen diffusion film 2 may be exposed from the opening 15.
  • the oxygen diffusion film 2 is a film having continuous pores for diffusing and permeating oxygen, and is usually a film called a porous film. Oxygen can be diffused between the surface of the peripheral edge 2c of the oxygen diffusion film 2 that is in contact with air and the main surface 2m of the oxygen diffusion film 2 that faces the positive electrode 13 by the continuous pores of the oxygen diffusion film 2. It becomes.
  • the diameter of the pores is preferably about 0.01 ⁇ m to 2 mm, and preferably about 1 ⁇ m to 2 mm. More preferred.
  • the thickness is preferably 1 ⁇ m to 50 mm, more preferably 5 ⁇ m to 1 mm, and more preferably 5 ⁇ m to 100 ⁇ m so that oxygen can sufficiently permeate from the peripheral edge 2c of the oxygen diffusion film 2 to the main surface 2m. It is particularly preferred that
  • the porosity of the oxygen diffusion film is preferably 1% to 95%, and preferably 10% to 90%. Is more preferable, and 20% to 65% is particularly preferable.
  • the porosity is increased, when the electrolyte is dissolved in the solvent, the solvent easily penetrates into the oxygen diffusion film 2, so that oxygen supplied from the outside hardly reaches the surface of the positive electrode current collector 3, As a result, the discharge rate tends to decrease.
  • the porosity is low, the air diffusion path is reduced, so that the oxygen permeability is deteriorated, and as a result, the discharge rate tends to decrease.
  • Examples of the material of the oxygen diffusion film 2 include polytetrafluoroethylene (PTFE), tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer, tetrafluoroethylene / hexafluoropropylene copolymer, tetrafluoroethylene / ethylene copolymer. , Polyvinylidene fluoride, polychlorotrifluoroethylene, chlorotrifluoroethylene-ethylene copolymer, and the like.
  • the porous film may be produced by a stretching method, a solvent removal method, a filler removal method, or the like.
  • the contact angle of the solvent with respect to the surface of the oxygen diffusion film 2 is preferably 90 ° or more.
  • the contact angle is within the above range, when the solvent is an aqueous solvent, the oxygen diffusion film 2 has water repellency, and when the solvent is a non-aqueous solvent, it has oil repellency. Can be used.
  • the oxygen diffusion film 2 has the property of repelling the solvent, that is, the property of being difficult to wet with the solvent, so that the continuous pores of the oxygen diffusion film 2 are wetted with the solvent in which the electrolyte is dissolved, It can suppress that a hole is plugged up.
  • the contact angle is the angle between the tangent line on the surface of the solvent droplet, the point where the solvent droplet, the oxygen diffusion film, and the air contact each other and the oxygen diffusion film (the angle inside the liquid is taken). ).
  • the contact angle of the solvent with respect to the surface of the oxygen diffusion film 2 is more preferably 150 ° or more.
  • the oxygen diffusion film 2 has super water repellency when the solvent is an aqueous solvent, and has super oil repellency when the solvent is a non-aqueous solvent. Can do.
  • the oxygen diffusion film 2 has the property of very repelling the solvent, that is, the property of being very difficult to wet by the solvent, so that the electrolyte is dissolved in the pores of the oxygen diffusion film 2. It is possible to further suppress the vacancies from being clogged with the solvent.
  • the oxygen diffusing film 2 having water repellency may have a contact angle with water of 90 ° or more, and examples thereof include polyethylene, polypropylene, polyvinylidene chloride, and polystyrene.
  • the contact angle with water may be 150 ° or more, and examples thereof include a UC fiber (manufactured by Ube Nitto Kasei), a nonwoven fabric coated with a fluororesin, and the like.
  • the oxygen diffusion film preferably has water repellency, and more preferably has super water repellency.
  • the oxygen diffusion film 2 having oil repellency may have a contact angle with an organic solvent of 90 ° or more, such as polytetrafluoroethylene (PTFE), tetrafluoroethylene Fluorine such as perfluoroalkyl vinyl ether copolymer, tetrafluoroethylene / hexafluoropropylene copolymer, tetrafluoroethylene / ethylene copolymer, polyvinylidene fluoride, polychlorotrifluoroethylene, chlorotrifluoroethylene / ethylene copolymer, etc.
  • PTFE polytetrafluoroethylene
  • Fluorine such as perfluoroalkyl vinyl ether copolymer, tetrafluoroethylene / hexafluoropropylene copolymer, tetrafluoroethylene / ethylene copolymer, polyvinylidene fluoride, polychlorotrifluoroethylene, chlorotrifluoroethylene
  • the contact angle with an organic solvent may be 150 ° or more, and examples thereof include a UC fiber manufactured by Ube Nitto Kasei, and a nonwoven fabric coated with a fluororesin.
  • the oxygen diffusion film preferably has oil repellency, and more preferably has super oil repellency.
  • the above-mentioned water repellency and oil repellency can be expressed by surface treatment.
  • a nonwoven fabric coated with a fluororesin can be used.
  • the shape and size of the oxygen diffusion film 2 are not particularly limited, and can be used by appropriately changing the shape and size according to the shape and size of the battery cell, particularly the shape and size of the positive electrode.
  • the area of the main surface 2 m of the oxygen diffusion film 2 is preferably larger than the area of the main surface 3 m of the positive electrode current collector 3. In this case, it is easy to project the peripheral edge portion of the oxygen diffusion film 2 and contact with the atmosphere.
  • the air battery 1 according to the present embodiment is only required that the oxygen diffusion film 2 and the positive electrode current collector 3 are opposed to each other.
  • oxygen passes between the oxygen diffusion film 2 and the positive electrode current collector 3.
  • a membrane having oxygen permeation selectivity which is easy and hardly permeates carbon dioxide, may be interposed.
  • the membrane having oxygen permeation selectivity include an alkyne polymer membrane having one or more aromatic groups.
  • the aromatic group contained in the alkyne polymer film is a group selected from the group consisting of a phenyl group, a naphthyl group, an anthracenyl group, a pyrenyl group, a perylenyl group, a pyridinyl group, a pyroyl group, a thiophenyl group, and a furyl group. Or a substituted aromatic group in which at least a part of hydrogen atoms in the group is substituted. When the aromatic group is any of the above groups, oxygen / carbon dioxide selective permeability is further improved. More preferably, the aromatic group is a phenyl group or a substituted phenyl group.
  • the air battery according to the present embodiment can further include a charging positive electrode used for charging.
  • the above-mentioned positive electrode catalyst layer 4 acts exclusively for discharge.
  • the location of the positive electrode for charging is not particularly limited.
  • the charging electrode 72 is disposed on the surface of the positive electrode catalyst layer 4 on the side opposite to the positive electrode current collector 3 via an insulating separator 71.
  • the charging electrode 72 is disposed on the surface of the negative electrode current collector 8 of the negative electrode 17 opposite to the negative electrode active material 7 with an insulating separator 71 interposed therebetween. It can also be provided.
  • the separator 71 is the same as the separator 6.
  • the material of the positive electrode for charging 72 is not particularly limited, but a metal is preferable, and a metal mesh or a porous plate is particularly preferable. As a result, oxygen generated on the surface of the charging positive electrode 72 during charging is easily discharged to the outside of the battery cell through a mesh such as a mesh. Even when the charging positive electrode 72 is disposed on the surface of the positive electrode catalyst layer 4 opposite to the positive electrode current collector 3 as shown in FIG. 3A, the charging positive electrode 72 is connected to the positive electrode catalyst layer 4. It does not hinder the movement of ions diffusing between the negative electrode active material 7. A lead terminal 73 is connected to the charging electrode 72.
  • the operation of the positive electrode 72 for charging is as follows. Oxygen is generated at the positive electrode during charging. Therefore, when charging is performed using the positive electrode 13 in which a material that is easily oxidized such as a carbon material is used as the positive electrode catalyst layer 4, the positive electrode catalyst layer 4 is easily oxidized by the generated oxygen. On the other hand, by performing charging using the charging electrode 72, oxygen generation can be suppressed in the positive electrode catalyst layer 4 during charging, and thus oxidation of the positive electrode current collector 3 can be suppressed.
  • the air battery preferably further includes a container.
  • the container 10 accommodates the power generation body 20 including the laminate 19 and the electrolyte 9, and is made of, for example, a resin such as polystyrene, polyethylene, polypropylene, polyvinyl chloride, ABS, or the like, a negative electrode, a positive electrode, or a metal that does not react with the electrolytic solution. It is made.
  • a resin such as polystyrene, polyethylene, polypropylene, polyvinyl chloride, ABS, or the like
  • a negative electrode such as polystyrene, polyethylene, polypropylene, polyvinyl chloride, ABS, or the like
  • a negative electrode such as polystyrene, polyethylene, polypropylene, polyvinyl chloride, ABS, or the like
  • a negative electrode such as polystyrene, polyethylene, polypropylene, polyvinyl chloride, ABS, or the like
  • a negative electrode such as polysty
  • the container 10 is composed of a container body 10 a and a lid member 10 b, and the laminated body 19 is disposed on the container body 10 a together with the electrolyte 9, What is necessary is just to arrange
  • Air battery stack Subsequently, an air battery stack in which a plurality of power generation bodies 20 (air batteries 1) are stacked in the stacking direction of the stack 19 will be described.
  • FIG. 4 is a schematic cross-sectional view showing a first embodiment of an air battery stack according to the present invention.
  • a plurality of power generators 20 are arranged so that the negative electrode 17 of one power generator 20 and the oxygen diffusion film 2 of the other power generator 20 of the power generators 20 adjacent to each other face each other. They are stacked on each other.
  • the oxygen diffusion film 2 does not have a sufficient property to repel the solvent in which the electrolyte 9 is dissolved, the electrolyte 9 included in one power generation body 20 is replaced with the oxygen diffusion film 2 included in the other power generation body 20.
  • the electrolyte 9 included in one power generation body 20 and the oxygen diffusion film 2 included in the other power generation body 20 For example, a separator 21 such as a film having a property of repelling the solvent in which the electrolyte 9 is dissolved may be disposed.
  • a separator 21 such as a film having a property of repelling the solvent in which the electrolyte 9 is dissolved, it is included in the electrolyte 9 included in one power generator 20 and the other power generator 20 as shown in FIG.
  • the separator 21 between the oxygen diffusion film 2 can be omitted.
  • the power generators 20 adjacent to each other may be arranged so that the negative electrodes 8 face each other or the oxygen diffusion films 2 face each other. According to these battery stacks 40, a large capacity air battery stack can be easily obtained. It is preferable that the air battery stack 40 further includes a container 10 that houses the stacked body of the power generation bodies 20 and exposes at least a part of the peripheral edge of each oxygen diffusion film 2 to air in the atmosphere.
  • FIG. 5 is a schematic cross-sectional view showing a second embodiment of the air battery stack according to the present invention.
  • the air battery stack 40 according to the present embodiment further includes a charging electrode 72 as shown in FIG. 3A as the power generator 20 (air battery 1) of the air battery stack 40 according to the first embodiment.
  • the power generator 20 ′ air battery 1 is used.
  • the charging electrode 72 is disposed between the positive electrode 13 and the separator 6, but the charging electrode 72 is a power generator 20 ′ shown in FIG. Like this, it may be arrange
  • FIG. 6 is a schematic cross-sectional view showing a third embodiment of the air battery stack according to the present invention.
  • the air battery stack 40 according to this embodiment is obtained by stacking a plurality of air batteries 1 in which the power generators 20 are sealed in containers 10 in the stacking direction of the stacked body 19.
  • a plurality of air batteries 1 are stacked so that the air batteries 1 adjacent to each other face the negative electrode 17 of one air battery and the oxygen diffusion film 2 of the other air battery 1.
  • the air cells 1 adjacent to each other may be disposed so that the negative electrodes 17 face each other or the oxygen diffusion films 2 face each other. According to these battery stacks 40, a large capacity air battery stack can be easily obtained.
  • FIG. 7 is a schematic cross-sectional view showing such an air battery stack.
  • the battery stack 50 according to this embodiment includes two air batteries 1 ′.
  • the air battery 1 ′ includes the above-described laminate 19 and the electrolyte 9, and further, on the opposite side of the oxygen diffusion film 2 from the positive electrode 13, the second catalyst layer 4 ′ and the second positive electrode current collector 3.
  • a second positive electrode 13 'having', a second separator 6 ', and a second negative electrode 17' are arranged in this order.
  • the second positive electrode 13 ′ is disposed so that the second positive electrode current collector 3 ′ faces the oxygen diffusion film 2.
  • the second positive electrode 13 ′ having the second catalyst layer 4 ′ and the second positive electrode current collector 3 ′, the second separator 6 ′, and the second negative electrode 17 ′ are respectively the catalyst layer 4 and the positive electrode current collector 3.
  • one oxygen diffusion film 2 diffuses oxygen between the main surfaces 2m, 2m ′ on both sides thereof, the peripheral edge 2c, and the like. Therefore, the overall thickness can be reduced as compared with the configuration in which the above-described power generation body 20 is stacked and the configuration in which the air battery 1 including the above-described container is stacked. Space can be realized.
  • an air battery further provided with a charging electrode 72 between the positive electrode 13 and the separator 6 or between the negative electrode 17 and the electrolyte 9 can also be used.
  • the air battery stack according to the present invention is not limited to the above first to fourth embodiments.
  • an air battery stack may be formed by combining the air battery 1 and the air battery 1 'described above.
  • FIG. 8 is a schematic cross-sectional view showing an example of a preferred embodiment of a wound-type air battery according to the present invention.
  • the wound-type air battery 60 according to the present embodiment includes a sheet-like negative electrode 17, a sheet-like separator 6, a sheet-like positive electrode 13 having the positive electrode current collector 3 on which the catalyst layer 4 is formed, oxygen
  • the sheet-like laminate 19 in which the diffusion film 2 is arranged in this order is wound in a spiral shape, put into the container body 63 together with the electrolyte 9, and a lid 62 having an air hole 61 for air to enter and exit, and an insulating property It is a structure provided with the packing 64.
  • the container body 63 and the lid 62 are made of a conductive material such as metal and are electrically connected to the external connection terminals 5 and 11.
  • the peripheral edge 2c of the oxygen diffusion film 2 is located in the container, but is not in contact with the electrolytic solution 9, but is in contact with air.
  • oxygen in the air can be taken into the power generation body from the peripheral edge 2c of the oxygen diffusion film 2 during discharge, and charging when used as a secondary battery.
  • oxygen generated inside the battery cell can be released to the outside from the peripheral edge 2c of the oxygen diffusion film 2.
  • the electrolyte 9 when the electrolyte 9 is dissolved in an aqueous solvent and the negative electrode active material 7 is a metal (the negative electrode active material is indicated by M in the following formula), the following formulas (1) and (2) are shown at the time of charging.
  • the negative electrode active material is indicated by M in the following formula
  • the following formulas (1) and (2) are shown at the time of charging.
  • electrons flow from the external connection terminal 11 to the negative electrode current collector 8, and in the negative electrode 17, the oxidant of the negative electrode active material 7 in the electrolytic solution is reduced.
  • OH ⁇ contained in the electrolytic solution generates O 2 and emits electrons, and electrons flow from the positive electrode current collector 3 to the external connection terminal 5.
  • oxygen gas (O 2 ) and H 2 O react in the positive electrode 13 to generate OH ⁇ ions.
  • OH ⁇ ions react with the metal hydride (M′H) of the negative electrode 17 to generate metal (M ′) and H 2 O.
  • Mositive electrode 2H 2 O + O 2 + 4e ⁇ ⁇ 4OH ⁇ (7)
  • Nitive electrode 4M′H + 4OH ⁇ ⁇ 4M ′ + 4H 2 O + 4e ⁇ (8)
  • the air battery of the present invention is not configured to take in air from the main surface side of the positive electrode and the oxygen diffusion membrane as in the conventional air battery, the main surfaces can be stacked and stacked. Thereby, a large capacity air battery can be easily obtained. It is easy to make a wound structure, and even if it is wound several times, it is preferable because oxygen can be easily taken in from the peripheral portion.
  • the negative electrode active material 7 (indicated by M in the formula) is oxidized in the negative electrode 17, and the cation ions (oxidized substances) enter the electrolytic solution. While diffusing, electrons are emitted, and electrons flow out from the negative electrode current collector 8 to the external connection terminal 11.
  • the positive electrode 13 electrons flow from the external connection terminal 5 to the positive electrode current collector 3, and O 2 supplied through the holes from the peripheral edge 2 c of the oxygen diffusion film 2 is reduced to OH ⁇ . Occurs. (Positive electrode) O 2 + 2H 2 O + 4e ⁇ ⁇ 4OH ⁇ (11)
  • a solid electrolyte for the separator, it is possible to simultaneously use an aqueous electrolytic solution in which the electrolyte is dissolved in an aqueous solvent and a non-aqueous electrolytic solution in which the electrolyte is dissolved in a non-aqueous solvent.
  • a non-aqueous electrolyte on the negative electrode side and an aqueous electrolyte on the positive electrode side preventing contact between lithium metal and moisture, and using only the non-aqueous electrolyte solution.
  • Precipitation of Li 2 O produced when used can be prevented, and it can be used as a large capacity battery.
  • a non-aqueous electrolyte is disposed between the negative electrode 17 and the solid electrolyte instead of the electrolyte 9, and an aqueous electrolyte is disposed between the positive electrode 13 and the solid electrolyte.
  • the laminated body 19 can be used as the power generator 20. And this electric power generation body 20 is accommodated in the container 10.
  • the negative electrode current collector 8, the positive electrode current collector 4, the positive electrode catalyst layer 3, and the oxygen diffusion film 2 can be made of the same materials as described above. Omitted.
  • the negative electrode active material 7 is not particularly limited as long as it is a negative electrode material that can constitute an air battery.
  • Examples of the negative electrode active material include hydrogen or metal.
  • As the metal lithium, sodium, magnesium and calcium are preferable. Among these, lithium, sodium, or calcium is preferable.
  • the separator 6 is not particularly limited as long as it is an insulating material that can only move cation ions.
  • ⁇ -alumina solid electrolyte, NASICON solid electrolyte, solid electrolyte obtained by firing high-purity lithium sulfide and phosphorus sulfide, lithium ion conductive glass ceramics (LICGC) (manufactured by OHARA), and the like can be used.
  • the electrolyte solution on the positive electrode side in contact with the separator 6 and the positive electrode 13 is preferably an aqueous solution in which NaOH, KOH, and NH 4 Cl are dissolved.
  • the concentration of NaOH, KOH or NH 4 Cl in the aqueous solution is preferably 1 to 99% by weight (wt)%, more preferably 10 to 60% by weight, and even more preferably 20 to 40% by weight.
  • the electrolyte solution on the negative electrode side in contact with the separator 6 and the negative electrode 17 is one kind of solvent selected from the group consisting of cyclic carbonate, chain carbonate, cyclic ester, cyclic ether, and chain ether, or two or more kinds.
  • a mixed solvent comprising a solvent can be used.
  • the electrolyte solution on the negative electrode side can contain a salt containing an element constituting the negative electrode active material 7 as an electrolyte.
  • the electrolyte solution on the positive electrode side preferably contains a gelling agent, and more preferably contains a gelling agent particularly when the solvent is an aqueous solvent.
  • the gelling agent is not particularly limited as long as it swells with water, and polymers such as poly (sodium acrylate), carboxymethylcellulose, poly (ethylene glycol), and poly (vinyl alcohol) are preferable.
  • the solvent may permeate into the pores of the oxygen diffusion film 2, which makes it difficult for oxygen to diffuse through the oxygen diffusion film 2.
  • the electrolytic solution containing the gelling agent hardly penetrates into the oxygen diffusion film 2, and as a result, oxygen easily passes through the oxygen diffusion film 2.
  • a mode in which a solid electrolyte is used on the negative electrode side is also possible.
  • metal lithium for the negative electrode active material 7 and to press the solid electrolyte that can transmit lithium ions to the negative electrode active material 7.
  • solid electrolytes that are permeable to lithium ions include polyethylene glycol derivatives, polysilicone derivatives (made by Momentive), polymers containing sulfonic acid, ⁇ -alumina solid electrolytes, NASICON solid electrolytes, high-purity lithium sulfide and phosphorus sulfide. Examples thereof include a fired solid electrolyte, lithium ion conductive glass ceramics (LICGC) (manufactured by OHARA), and the like.
  • the solid electrolyte is not limited to these as long as it can permeate lithium ions.
  • the battery using the solid electrolyte for the separator can also be the above-described air battery stack and wound air battery.
  • the air battery according to the present embodiment is particularly preferably an air secondary battery.
  • the air secondary battery is useful not only as a small battery for electric and electronic equipment but also as a power source for driving (running) an electric vehicle that requires a particularly large capacity.
  • the present invention is not limited to the structure described above.
  • the shape of the air battery 1 is not particularly limited to a rectangular parallelepiped shape.
  • a disk shape, a cylindrical shape, etc. may be sufficient.
  • the oxygen diffusion film 2 is not limited as long as a part of the peripheral part 2c is in contact with air and allows oxygen to flow, and which part is arranged to be in contact with external air is arbitrary.
  • the contact portion with the air at the peripheral edge 2c of the oxygen diffusion film 2 can be determined according to the usage such as the installation state of the air battery stack, and the position of the external connection terminal can be changed as appropriate.
  • the outer shape of the oxygen diffusion film 2 is not particularly limited, and may be rectangular, circular, or the like.
  • Example 1 Air secondary battery> A flat air secondary battery shown in FIG. This battery uses a hydrogen storage alloy for the negative electrode.
  • the battery reaction formula of this battery is as shown in the above formulas (5) to (8).
  • the hydrogen storage alloy of the negative electrode active material 7 was adjusted by the following method.
  • Predetermined alloy composition MmNi 0.38 Co 0.8 Al 0.3 Mn 0.3 : Mm is Misch metal, La, Ce, Nd, Misch metal / nickel alloy mainly composed of lanthanum (Pr mixture), heated and melted in an arc melting furnace, and then pulverized into powder passing through a 200-mesh wire mesh (standard JISZ8801-1: 2000) to produce a hydrogen storage alloy.
  • This hydrogen storage alloy was kneaded with an aqueous solution of 1.0 wt% polyvinyl alcohol to make a paste, and then applied to a negative electrode current collector 8 (thickness 0.1 mm) made of nickel mesh, dried, and hydrogen storage alloy It pressed so that the thickness of a part might be set to 0.12 mm. Then, the negative electrode 17 was produced by cutting 40 mm long ⁇ 30 mm wide. Next, an external connection nickel ribbon terminal 11 (length 50 mm ⁇ width 3 mm ⁇ thickness 0.20 mm) was connected to the end of the negative electrode current collector 8.
  • separator 6 a porous membrane (vertical 43 ⁇ horizontal 33 mm, thickness 0.1 mm) made of hydrophilically treated polytetrafluoroethylene was used.
  • the positive electrode catalyst layer was composed of acetylene black as a conductive material, electrolytic MnO 2 as a catalyst for promoting oxygen reduction, and PTFE powder as a binder.
  • a nickel ribbon terminal 5 for external connection (length 50 mm ⁇ width 3 mm ⁇ thickness 0.20 mm) at the end of a positive electrode current collector 3 (length 40 mm ⁇ width 30 mm ⁇ thickness 0.1 mm) made of stainless steel mesh Connected. And the positive electrode catalyst layer 4 was contact
  • Nickel mesh was used as the positive electrode 72 for charging, and a nickel ribbon terminal 73 for external connection (length 50 mm ⁇ width 3 mm ⁇ thickness 0.20 mm) was connected to the end of the positive electrode current collector 72 for charging.
  • the discharge positive electrode 13 and the charge positive electrode 72 having the nickel ribbon terminal 73 were laminated in the order of FIG.
  • oxygen diffusion film 2 a polypropylene porous film (manufactured by Japan Vilene Co., Ltd., length 60 mm ⁇ width 30 mm ⁇ thickness 0.1 mm, contact angle with water 100 °) is used on the discharge positive electrode 3. Laminated.
  • the negative electrode 17, the separator 6, the laminate of the discharge positive electrode 13 / the separator 71 / the positive electrode for charging 72, and the oxygen diffusion film 2 were laminated in this order, and the laminate was formed by pressure bonding with a press. Body 19 was obtained. Portions other than the oxygen diffusion film 2 in the laminate 19 were covered and impregnated with the electrolyte 9 produced as described above to obtain a power generator 20 ′.
  • the power generator 20 ′ was placed in a polypropylene container 10. At this time, the peripheral edge portion 2c of the oxygen diffusion film 2 was disposed so as to protrude from the opening 15 of the container 10 to the outside. There were two protruding portions, and the protruding length in the outer direction of the container was 0.5 cm. Further, the nickel ribbon terminals 5, 11 and 73 for charging / discharging were drawn out of the container 10.
  • Example 2 An air secondary battery was produced in the same manner as in Example 1 except that the negative electrode active material 7 was changed from hydrogen storage alloy to zinc.
  • the battery reaction formula of this battery is as shown in the above formulas (1) to (4).
  • the air secondary battery thus produced was CC charged at 30 mA for 20 hours, CC discharged at 10 mA, and cut off at a final voltage of 0.5V.
  • Example 3 A water repellent spray (manufactured by Daikin Co., Ltd., trade name: Novatec) was sprayed on the same oxygen diffusion film 2 as used in Example 1 to produce an oxygen diffusion film 2 having super water repellency.
  • the contact angle of the oxygen diffusion film 2 with respect to water was 151 °.
  • An air secondary battery was produced in the same manner as in Example 1 except that the oxygen diffusion film 2 having super water repellency was used.
  • the air secondary battery thus produced was CC charged at 30 mA for 5 hours, CC discharged at 10 mA, and cut off at a final voltage of 0.5V. As a result, a discharge capacity of 122 mAh was confirmed.
  • Example 4 An air secondary battery was produced in the same manner as in Example 1 except that the hydrogen storage alloy of the negative electrode active material 7 was changed to (length 40 ⁇ width 30 mm ⁇ thickness 1.2 mm). The air secondary battery thus produced was CC charged at 30 mA for 48 hours, CC discharged at 10 mA, and cut off at a final voltage of 0.5V. As a result, a discharge capacity of 1150 mAh was confirmed.
  • Example 1 As shown in FIG. 9, an air secondary battery was fabricated in the same manner as in Example 1 except that a part of the oxygen diffusion film 2 was not in contact with the atmosphere. As a result, charging was possible, but discharging was only 1 mAh.
  • Example 5 (Production of air battery stack)
  • Four power generators 20 '(air battery 1) of Example 1 were stacked and placed in a polypropylene container 10 to produce an air battery stack as shown in FIG.
  • the peripheral edge portion 2c of the oxygen diffusion film 2 was disposed so as to protrude from the opening 15 of the container 10 to the outside.
  • the protrusion length in the outward direction of the container was 0.5 cm.
  • four of each of the nickel ribbon terminals 5, 11 and 73 for charging / discharging, a total of 12 were pulled out of the container 10.
  • the air secondary battery produced as described above was subjected to CC charging at 120 mA for 5 hours, CC discharge at 40 mA, and cut off at a final voltage of 0.5V. As a result, a discharge capacity of 485 mAh was confirmed. Thus, it was confirmed that the configuration of the present invention facilitates stacking of the air battery.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Hybrid Cells (AREA)
  • Inert Electrodes (AREA)
  • Battery Mounting, Suspending (AREA)

Abstract

 負極と、セパレータと、触媒層及び正極集電体を有する正極と、酸素拡散膜とがこの順に積層された積層体と、負極、セパレータ、及び正極に接触する電解質と、を含む発電体を備え、酸素拡散膜の主面の一つは正極集電体の主面の一つに対向して配置され、酸素拡散膜の周縁部の少なくとも一部が大気中の空気と接している空気電池。

Description

空気電池、空気電池スタック
 本発明は、空気電池及び空気電池スタックに関する。
 空気中の酸素を活物質として使用する空気電池は高エネルギー密度化が可能であることから、電気自動車用等の種々の用途への応用が期待されている。そして、さらなる応用を実現するためには容量をより大きくすることが求められている。例えば、特許文献1には、第1セルと第2セルとが酸素透過部を介して配置された空気電池において、第1セルと第2セルが交互に充電と放電とを行う空気二次電池が提案されている。
特開2008-91248号公報
 上記空気二次電池では、一方のセルが充電を行う際、他方のセルが放電を行うため、放電に寄与するセルはいつも装置の片方側のセルであり、装置の大きさに対して得られる容量が大きくなり難い。また、装置が大型になり、幅広い用途で用いることが困難である。
 本発明は、かかる従来の問題点に鑑みてなされたものであり、大容量化が容易な空気電池、空気電池スタックおよび捲回型の空気電池を提供することを目的とする。
 本発明は、負極と、セパレータと、触媒層及び正極集電体を有する正極と、酸素拡散膜とがこの順に積層された積層体と、負極、セパレータ、及び正極に接触する電解質と、を含む発電体を備え、酸素拡散膜の主面の一つは正極集電体の主面の一つに対向して配置され、酸素拡散膜の周縁部の少なくとも一部が大気中の空気と接している空気電池を提供する。
 本発明の空気電池では、酸素拡散膜の周縁部の少なくとも一部が空気と接するように配置されることにより、放電時には、この酸素拡散膜の周縁部の少なくとも一部から酸素拡散膜を介して正極に到達した空気が放電に寄与する。また、空気二次電池としての充電時には、正極で発生した空気が酸素拡散膜を介して酸素拡散膜の周縁部の少なくとも一部から酸素拡散膜を介して外部へ放出される。そして、本発明の空気電池は、従来の空気電池のような正極及び酸素拡散膜の主面側から空気を取り込む構造とは異なる構造を持つため、主面同士を重ね合わせてスタックすることが可能である。これにより、大容量化を容易に実現することができる。
 本発明の空気電池では、発電体が電解質と溶媒とを含む溶液を有し、酸素拡散膜の表面に対する溶媒の接触角が90°以上であることが好ましい。これにより、酸素拡散膜中の酸素が拡散する空孔が、溶媒で濡れにくくなり、空孔が塞がれることを抑制できる。
 本発明の空気電池では、発電体が電解質と溶媒とを含む溶液を有し、酸素拡散膜の表面に対する溶媒の接触角が150°以上であることが好ましい。これにより、酸素拡散膜の空孔が、溶媒でより濡れにくくなり、空孔が塞がれることを一層抑制できる。
 発電体が電解質と溶媒とゲル化剤とを含む溶液を有することがより好ましい。これにより、酸素拡散膜の空孔に液体の溶媒が接触することを抑制することができる。そして、空孔が、溶媒で濡れにくくなり、空孔が塞がれることをより一層抑制できる。
 本発明の空気電池においては、負極が負極活物質を有し、負極活物質が、水素、リチウム、ナトリウム、マグネシウム、アルミニウム、カリウム、カルシウム、鉄、及び亜鉛からなる群から選択される1つ以上であることが好ましい。負極活物質が上記材料であると、空気電池は十分な放電容量を出しやすい。
 本発明の空気電池においては、負極活物質が、水素、リチウム、アルミニウム、カリウム、鉄又は亜鉛であることがより好ましい。負極活物質が上記材料であると、空気電池は、より大きな放電容量を出しやすい。
 本発明の空気電池においては、触媒層が二酸化マンガン、又は白金を含むことが好ましい。これにより、空気電池から大きな放電容量が得られる。特に、白金は酸素の吸蔵放出能を有するため、空気電池を空気二次電池として容易に用いることができる。
 本発明の空気電池においては、触媒層が、ABOで表されるペロブスカイト型複合酸化物を含み、AサイトにLa、Sr及びCaからなる群から選ばれる少なくとも2種の原子を含み、BサイトにMn、Fe、Cr及びCoからなる群から選ばれる少なくとも1種の原子を含む。触媒層が、ABOで表されるペロブスカイト型複合酸化物を含む場合、当該複合酸化物は酸素の吸蔵放出能を有するため、空気電池を空気二次電池として容易に用いることができる。
 本発明の空気電池は、充電用正極をさらに備えることが好ましい。これにより、上述の正極の触媒層は放電専用として作用し、正極の触媒層に炭素のような酸化され易い材料を用いた場合にも、充電時に正極で発生する酸素により、この触媒層が酸化されることを防ぐことができ、空気電池を二次電池として容易に利用できる。
 本発明の空気電池においては、充電用正極が金属製のメッシュであることが好ましい。これにより、充電時に充電用正極表面で発生する酸素が、メッシュの網目を通過して、電池セルの外部へ排出され易くなる。
 本発明の空気電池は、空気二次電池であることが好ましい。この空気二次電池は大きな容量を持つ二次電池であり、電気、電子機器用の小型電池としての用途のみならず、電気自動車駆動(走行)用の電源としての用途にも用いることができる。
 本発明の空気電池において、上記酸素拡散膜における上記正極と対向する側とは反対側に、さらに、第二触媒層及び第二正極集電体を有する第二正極と、第二セパレータと、第二負極とがこの順に配置されていることが好ましい。これにより、より大容量の空気電池を得ることができる。
 本発明は、上記空気電池を二以上有し、二以上の空気電池は、上記積層体の積層方向に互いに積層された空気電池スタックを提供する。本発明によれば、大容量の空気電池を得ることができる。
 本発明の空気電池において、上記積層体がシート状をなし、捲回されていることが好ましい。この空気電池は、捲回されたにもかかわらず、酸素の出入りが容易であり大容量の空気電池を容易に得ることができる。
 本発明によれば、大容量の空気電池が得られる。
図1(a)は、本発明に係る空気電池の好適な実施形態の一例を示す概略図及び、図1(b)は図1(a)をIb-Ib線で切断した時の概略断面図である。 図2(a)は、本発明に係る空気電池の好適な実施形態の他の一例を示す概略図、及び、図2(b)は図2(a)をIIb-IIb線で切断した時の概略断面図である。 図3(a)は、充電用正極を備えた空気電池の一例を示す模式断面図、及び、図3(b)は、その他の一例を示す模式断面図である。 図4は、本発明に係る空気電池スタックの第一実施形態を示す概略断面図である。 図5は、本発明に係る空気電池スタックの第二実施形態示す概略断面図である。 図6は、本発明に係る空気電池スタックの第三実施形態を示す概略断面図である。 図7は、本発明に係る空気電池スタックの第四実施形態を示す概略断面図である。 図8は、本発明に係る捲回型の空気電池の一例を示す概略断面図である。 図9は、比較例の空気電池の概略断面図である。
 以下、本発明に係る空気電池の好適な実施形態について、図面を参照しながら具体的に説明する。なお、実際の寸法比率は、図面の寸法比率と異なっていてもよい。
[空気電池]
 図1は、本発明に係る空気電池の好適な実施形態を示す概略図(a)及び、概略図(a)をIb-Ib線で切断した時の概略断面図(b)である。また、図2は、本発明に係る空気電池の好適な実施形態を示す概略図(a)及び、概略図(a)をIIb-IIb線で切断した時の概略断面図(b)である。
 本実施形態に係る空気電池1は、図1、2に示すように、負極17と、セパレータ6と、正極13と、酸素拡散膜2と、がこの順に配置された積層体19と、電解質9と、を含む発電体20を備える。そして、この発電体20が、容器10内に収容されている。
 (負極)
 負極17は、負極集電体8、及びこの負極集電体8上に形成された負極活物質7を有し、負極集電体8の端部には外部接続端子(リード)11が接続されている。
 負極集電体8は導電材料であれば良く、例えば、ニッケル、クロム、鉄、チタンからなる群から選ばれる一種以上の金属または該金属を含む合金が挙げられ、好ましくは、ニッケル、ステンレスが挙げられる。形状としては、板、メッシュ、多孔板、金属スポンジ等が挙げられる。
 負極活物質7としては、空気電池を構成可能な負極材料であれば特に限定されない。負極活物質としては、水素又は金属が挙げられる。金属としては、リチウム、ナトリウム、マグネシウム、アルミニウム、カリウム、カルシウム、鉄、亜鉛が好ましい。中でも、水素、リチウム、アルミニウム、カリウム、鉄、亜鉛のいずれかであることが好ましい。負極活物質が水素の場合、水素は水素吸蔵合金などの合金や金属中に吸蔵されることが好ましい。
 (セパレータ)
 セパレータ6としては、電解質の移動が可能な絶縁材料であれば特に限定されず、例えば、ポリオレフィンやフッ素樹脂等の樹脂からなる不織布や多孔質膜を用いることができる。具体的には、樹脂としては、ポリエチレン、ポリプロピレン、ポリテトラフルオロエチレン、ポリフッ化ビニリデンが挙げられる。また電解質が水系溶媒に溶解している場合(以下、電解質が溶媒に溶解している溶液を、「電解液」ということがある。)は、樹脂として、親水性化処理されたポリエチレン、ポリプロピレン、ポリテトラフルオロエチレン、ポリフッ化ビニリデン等が挙げられる。
 (正極)
 正極13は、正極集電体3、及び、正極集電体3上に形成された正極触媒層4を有し、正極集電体3の端部には外部接続端子(リード)5が接続されている。
 正極集電体3は導電材料であれば良く、例えば、ニッケル、クロム、鉄、チタンからなる金属または合金製が挙げられ、好ましくは、ニッケル、ステンレスである。形状としては、メッシュ、多孔板等である。正極集電体3がメッシュや多孔板であると、放電時には酸素拡散膜2から供給される酸素が正極触媒層に到達しやすく、また、充電時に充電用電極表面で発生する酸素が酸素拡散膜2を通って外部へ排出され易いため好ましい。
 正極触媒層4は、正極触媒を有するが、通常、正極触媒に加え、導電剤及びこれらを正極集電体3に接着する結着剤を含むことが好ましい。
 正極触媒としては、酸素を還元可能な材料であればよく、例えば、活性炭等の炭素材料、二酸化マンガン等のマンガン酸化物、白金、イリジウム、イリジウム酸化物、チタン、タンタル、ニオブ、タングステン及びジルコニウムからなる群から選ばれた1種以上の金属を含むイリジウム酸化物、ABOで表されるペロブスカイト型複合酸化物等が挙げられる。ペロブスカイト型複合酸化物は、AサイトにLa、Sr及びCaからなる群から選ばれる少なくとも2種の原子を含み、BサイトにMn、Fe、Cr及びCoからなる群から選ばれる少なくとも1種の原子を含むことが好ましい。中でも、酸素を還元可能もしくは酸素の還元体を酸化可能な材料が好ましい。
 二酸化マンガンや白金は、大きな放電容量が得られるため好ましい。白金やペロブスカイト型複合酸化物は、酸素の吸蔵放出能を有し、空気二次電池に用いることもできるため好ましい。
 導電剤としては特に限定されないがアセチレンブラック、ケッチェンブラック等の炭素材料が挙げられる。
 結着剤としては、使用する電解液に溶解しないものであればよく、ポリテトラフルオロエチレン(PTFE)、テトラフルオロエチレン・パーフルオロアルキルビニルエーテル共重合体、テトラフルオロエチレン・ヘキサフルオロプロピレン共重合体、テトラフルオロエチレン・エチレン共重合体、ポリビニリデンフルオライド、ポリクロロトリフルオロエチレン、クロロトリフルオロエチレン・エチレン共重合体等のフッ素樹脂が好ましい。
 (電解質)
 電解質は、負極17、セパレータ6、及び、正極13と接触している。電解質9が溶媒に溶解している場合、電解質9が溶解した電解液が、セパレータ6、並びに、負極17、セパレータ6、及び、正極13を含む積層体に含浸されている。電解質9が水系溶媒に溶解している場合、例えば、電解質9が水溶液中に含まれる場合、水溶液は、NaOH、KOH、NHClが溶解した水溶液であることが好ましい。水溶液中のNaOH、KOH又はNHClの濃度は、1~99重量(wt)%であることが好ましく、10~60wt%であることがより好ましく、20~40wt%であることがさらに好ましい。
 電解質9が非水系溶媒に溶解している場合、例えば、電解質9が有機溶媒に溶解している場合、有機溶媒として、環状カーボネート、鎖状カーボネート、環状エステル、環状エーテル、鎖状エーテルからなる群から選ばれる1種の溶媒又は2種以上の溶媒からなる混合溶媒を用いることができる。
 環状カーボネートとしては、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、ビニレンカーボネート、フルオロエチレンカーボネート等が挙げられる。鎖状カーボネートとしては、ジメチルカーボネート、ジエチルカーボネート、メチルエチルカーボネート等が挙げられる。環状エステルとしては、ガンマブチロラクトン、ガンマバレロラクトン等が挙げられる。環状エーテルとしては、テトラヒドロフラン、2-メチルテトラヒドロフラン等が挙げられる。鎖状エーテルとしては、ジメトキシエタン、エチレングリコールジメチルエーテル等が挙げられる。
 電解質9が非水系溶媒に溶解している場合、電解液は電解質として負極活物質7を構成する元素を含む塩を含有することができる。
 電解質9が溶媒に溶解している場合、さらに、ゲル化剤が溶媒に溶解していることが好ましく、ゲル化剤が水系溶媒に溶解していることがより好ましい。ゲル化剤としては、水で膨潤するものであればよく、ポリ(アクリル酸ナトリウム)、カルボキシメチルセルロース、ポリ(エチレングリコール)、ポリ(ビニルアルコール)等のポリマーが好ましい。溶媒と酸素拡散膜2との組み合わせに依存して、溶媒が酸素拡散膜2の空孔中に浸透する場合があり、これにより酸素拡散膜2中を酸素が拡散し難くなる。しかしながら、ゲル化剤を溶解させることで溶媒は酸素拡散膜2に浸透し難くなり、結果的に酸素拡散膜2を酸素が透過し易くなる。
 電解質9は溶媒に溶解していなくてもよい。この場合、電解質の例としては、ポリエチレングリコール誘導体、アルキルボラン含有高分子、ポリシリコーン誘導体(モメンティブ社製)、スルホン酸を含む高分子、β-アルミナ固体電解質、ナシコン型固体電解質、高純度硫化リチウムと硫化りんを焼成した固体電解質、リチウムイオン伝導性ガラスセラミックス(LICGC)(オハラ社製)等が挙げられる。
(酸素拡散膜)
 図1(a)、(b)に示すように、酸素拡散膜2の主面2mの一方、すなわち、酸素拡散膜2が有する面のうち最も面積が広い面2mの一方が、正極集電体3の主面3mの一方、すなわち、正極集電体3が有する面のうち最も面積が広い面3mの一方に対向するように配置されている。そして、酸素拡散膜2の周縁部2c、すなわち、酸素拡散膜2の主面2mの周縁部2b及び主面2m以外の面である側面2aの少なくとも一部が空気中の空気と接している。
 図1(a),(b)に示す空気電池1では、酸素拡散膜2の周縁部2cが、容器10の開口15を介して外部に突出しており、当該周縁部2cから空気中の酸素を発電体20の内部に取り込んだり、発電体20の内部で発生する酸素を外部に放出したりすることができる。図1に示す空気電池1においては、酸素拡散膜2の周縁部2cが4方向へ突出する形態を示すが、周縁部2cは少なくとも1方向へ突出していればよい。
 図2(a)、(b)に示す空気電池1のように、酸素拡散膜2の周縁部2cが容器10の開口15から完全に外部に露出していなくてもよく、側面2aのみが、開口部15を介して空気中の空気と接触していてもよい。図2の空気電池1において、酸素拡散膜2の4つの側面のうち少なくとも1面の側面2aが、開口部15から露出していればよい。
 酸素拡散膜2は、酸素を拡散して透過させるための連続した空孔を有する膜であり、通常、多孔膜といわれる膜である。酸素拡散膜2の連続した空孔により、酸素拡散膜2の周縁部2cの空気と接触する面と、酸素拡散膜2の正極13と対向する主面2mとの間で、酸素の拡散が可能となる。
 酸素拡散膜2の周縁部2cから主面2mにかけて、酸素が十分に透過するためには、空孔の径が、0.01μm~2mm程度であることが好ましく、1μm~2mm程度であることがより好ましい。
 酸素拡散膜2の周縁部2cから主面2mにかけて、酸素が十分に透過するためには、その厚みは、1μm~50mmであることが好ましく、5μm~1mmであることがより好ましく、5μm~100μmであることが特に好ましい。
 酸素拡散膜2の周縁部2cから主面2mにかけて、酸素が十分に透過するためには、酸素拡散膜の空隙率が1%~95%であることが好ましく、10%~90%であることがより好ましく、20%~65%であることが特に好ましい。空隙率が高くなると、電解質が溶媒に溶解している場合に、溶媒が酸素拡散膜2に浸透し易くなるため、外部から供給される酸素が正極集電体3の表面まで到達し難くなり、結果的に放電速度が減少する傾向がある。空隙率が低くなると、空気の拡散経路が少なくなることから、酸素の透過性も悪くなり、結果的に放電速度が減少する傾向がある。
 酸素拡散膜2の材質の例としては、ポリテトラフルオロエチレン(PTFE)、テトラフルオロエチレン・パーフルオロアルキルビニルエーテル共重合体、テトラフルオロエチレン・ヘキサフルオロプロピレン共重合体、テトラフルオロエチレン・エチレン共重合体、ポリビニリデンフルオライド、ポリクロロトリフルオロエチレン、クロロトリフルオエチレン・エチレン共重合体等が挙げられる。多孔膜は、延伸法、溶媒除去法、フィラー除去法等により製造されればよい。
 電解質9が溶媒に溶解している場合、酸素拡散膜2の表面に対する溶媒の接触角は90°以上が好ましい。接触角が上記範囲内であると、溶媒が水系溶媒である場合には、酸素拡散膜2には撥水性があるものを用い、溶媒が非水系溶媒である場合には、撥油性があるものを用いることができる。このように酸素拡散膜2が溶媒をはじく性質を有する、すなわち、溶媒により濡れにくい性質を有することにより、酸素拡散膜2の連続した空孔内が、電解質が溶解している溶媒で濡れ、空孔が塞がれてしまうことを抑制できる。接触角とは、溶媒の液滴表面の、当該溶媒の液滴、酸素拡散膜、及び空気との三相が接する点における接線と酸素拡散膜とのなす角(液の内部にある角をとる)を意味する。
 酸素拡散膜2の表面に対する溶媒の接触角は150°以上であることがより好ましい。接触角が上記範囲内であると、溶媒が水系溶媒である場合には、酸素拡散膜2には超撥水性があり、溶媒が非水系溶媒である場合には、超撥油性があるということができる。このように酸素拡散膜2が溶媒を非常に極めてよくはじく性質を有する、すなわち、溶媒により、非常に濡れにくい性質を有することにより、酸素拡散膜2の空孔内が、電解質が溶解している溶媒で濡れ、空孔が塞がれてしまうことをより一層抑制できる。
 電解質が水系溶媒に溶解している場合、撥水性を有する酸素拡散膜2としては、水との接触角が90°以上であればよく、ポリエチレン、ポリプロピレン、ポリ塩化ビニリデン、ポリスチレンが挙げられる。超撥水性を有する酸素拡散膜2としては、水との接触角が150°以上であればよく、UCファイバー(宇部日東化成製)、フッ素樹脂などでコート処理した不織布などが挙げられる。
 空気電池の容量維持率を高める観点からは、酸素拡散膜が撥水性を有することが好ましく、超撥水性を有することがより好ましい。
 電解質が非水系溶媒に溶解している場合、撥油性を有する酸素拡散膜2としては、有機溶媒との接触角が90°以上であればよく、ポリテトラフルオロエチレン(PTFE)、テトラフルオロエチレン・パーフルオロアルキルビニルエーテル共重合体、テトラフルオロエチレン・ヘキサフルオロプロピレン共重合体、テトラフルオロエチレン・エチレン共重合体、ポリビニリデンフルオライド、ポリクロロトリフルオロエチレン、クロロトリフルオエチレン・エチレン共重合体等のフッ素樹脂で作られた不織布等が挙げられる。超撥油性を有する酸素拡散膜2としては、有機溶媒との接触角が150°以上であればよく、宇部日東化成製のUCファイバー、フッ素樹脂などでコート処理した不織布などが挙げられる。空気電池の容量維持率を高める観点からは、酸素拡散膜が撥油性を有することが好ましく、超撥油性を有することがより好ましい。
 表面処理によって上述の撥水、撥油性を発現させることもできる。例えば、フッ素樹脂などでコート処理した不織布などを用いることができる。
 酸素拡散膜2の形状や大きさは特に限定はされず、電池セルの形状や大きさ、特に正極の形状や大きさに応じて、適宜形状や大きさを変えて使用することができる。放電速度の観点からは、例えば、酸素拡散膜2の主面2mの面積は、正極集電体3の主面3mの面積より大きいことが好ましい。この場合、酸素拡散膜2の周縁部を突出させて大気に接触させることが容易である。
 本実施形態に係る空気電池1は、酸素拡散膜2と正極集電体3とが対向していればよく、例えば、酸素拡散膜2と正極集電体3との間に、酸素を透過し易くかつ二酸化炭素が透過し難い、酸素の透過選択性を有する膜を介在させてもよい。酸素の透過選択性を有する膜としては、例えば、芳香族基を1つ以上有するアルキンの重合体膜が挙げられる。空気から二酸化炭素が選択的に除去されると、例えば、電解質9を含む水溶液中にOHが含まれる場合には、二酸化炭素とOHとの中和反応により、水溶液中のOHが減少し、充放電効率が低下することを抑制できる。上記アルキンの重合体膜に含まれる芳香族基は、フェニル基、ナフチル基、アントラセニル基、ピレニル基、ペリレニル基、ピリジニル基、ピロイル基、チオフェンイル基及びフリル基からなる群より選ばれる基であるか、又は該基における水素原子の少なくとも一部が置換されている置換芳香族基であることが好ましい。芳香族基が上記の基のいずれかであると、酸素/二酸化炭素選択透過性が一層向上する。芳香族基が、フェニル基又は置換フェニル基であることがより好ましい。
 (充電用正極)
 本実施形態に係る空気電池は、充電用に用いる充電用正極をさらに備えることができる。これにより、上述の正極触媒層4は放電専用として作用する。充電用正極の場所は特に限定されない。例えば、図3(a)に示す空気電池1のように、充電用電極72を正極13の正極触媒層4の正極集電体3とは反対側の表面に、絶縁性のセパレータ71を介して設けることができる。また、例えば、図3(b)の空気電池1のように、充電用電極72を負極17の負極集電体8の負極活物質7とは反対側の表面に、絶縁性のセパレータ71を介して設けることもできる。セパレータ71はセパレータ6と同様のものである。
 充電用正極72の材料は特に限定されないが、金属が好ましく、特に、金属製のメッシュや多孔板であることが好ましい。これにより、充電時に充電用正極72の表面で発生する酸素が、メッシュ等の網目を通り電池セルの外部へ排出され易くなる。図3(a)のように充電用正極72が、正極触媒層4の正極集電体3とは反対側の表面に配置された場合であっても、充電用正極72が正極触媒層4と負極活物質7との間を拡散するイオンの移動の妨げにならない。充電用電極72には、リード端子73が接続されている。
 充電用正極72の作用は以下のとおりである。充電時には正極で酸素が生成するため、炭素材料のような酸化され易い材料を正極触媒層4とする正極13を用いて充電を行なうと、生成する酸素により正極触媒層4が酸化されやすい。これに対して、充電用電極72を用いて充電を行なうことにより、充電時に正極触媒層4で酸素生成を抑制でき、これにより正極集電体3の酸化を抑制できる。
 (容器)
 空気電池は、さらに容器を備えることが好ましい。容器10は、積層体19及び電解質9を含む発電体20を収容するものであり、例えば、ポリスチレン、ポリエチレン、ポリプロピレン、ポリ塩化ビニルやABS等の樹脂製、負極、正極、電解液と反応しない金属製である。容器10に形成された開口15を介して、上述の酸素拡散膜2の周縁部2cが空気と接触している。充電用正極を含む電池構造の場合は、充電時に充電用正極で発生する酸素を排出する酸素排出口(図示せず)を有する。この酸素排出口には、気体は通すが、電解質は通さない膜または弁が設置されていることが好ましい。
 例えば、図1(b)に示すように、容器10を容器本体10a及び蓋部材10bの2つから構成し、電解質9と共に積層体19を容器本体10aに配置した後、容器10の開口15から酸素拡散膜2の周縁部2cが空気に露出するように酸素拡散膜2を配置し、容器本体10aと容器の蓋10bとを接着剤等で接着すればよい。
[空気電池スタック]
 続いて、複数の発電体20(空気電池1)を積層体19の積層方向に互いに積層した空気電池スタックについて説明する。
 (第一実施形態)
 図4は、本発明に係る空気電池スタックの第一実施形態を示す概略断面図である。この空気電池スタック40では、互いに隣接する発電体20における、一方の発電体20の有する負極17と、他方の発電体20の有する酸素拡散膜2とが対向するように、複数の発電体20が互いに積層されている。酸素拡散膜2が、電解質9の溶解している溶媒をはじく性質を十分に有さない場合、一方の発電体20に含まれる電解質9が、他方の発電体20に含まれる酸素拡散膜2の主面2mに接触することによって、酸素拡散膜2の酸素透過性が低下することを抑制するために、一方の発電体20に含まれる電解質9と他方の発電体20に含まれる酸素拡散膜2との間に、例えば電解質9が溶解している溶媒をはじく性質を有する膜等のセパレータ21を配置してもよい。酸素拡散膜2が、電解質9の溶解している溶媒をはじく性質を十分に有する場合には、図5に示すように一方の発電体20に含まれる電解質9と他方の発電体20に含まれる酸素拡散膜2との間のセパレータ21を省くことができる。互いに隣接する発電体20を、負極8同士が対向するように配置したり、酸素拡散膜2同士が対向するように配置してもよい。これらの電池スタック40によれば、容易に大容量の空気電池スタックを得ることができる。空気電池スタック40は、さらに、発電体20の積層体を収容し、各酸素拡散膜2の周縁部の少なくとも一部を大気中の空気に露出させる容器10を備えることが好ましい。
 (第二実施形態)
 図5は、本発明に係る空気電池スタックの第二実施形態を示す概略断面図である。本実施形態に係る空気電池スタック40は、第一実施形態に係る空気電池スタック40の発電体20(空気電池1)として、図3(a)に示すような、充電用電極72をさらに備えた発電体20’(空気電池1)を用いた形態である。本実施形態に係る空気電池スタック40においては、充電用電極72が、正極13とセパレータ6との間に配置されているが、充電用電極72が、図3(b)に示す発電体20’のように、負極17と電解質9との間に配置されていてもよく、場所は限定されない。
 (第三実施形態)
 図6は、本発明に係る空気電池スタックの第三実施形態を示す概略断面図である。本実施形態に係る空気電池スタック40は、各発電体20が容器10にそれぞれ封入された空気電池1を、積層体19の積層方向に複数積層したものである。この空気電池スタック40では、互いに隣接する空気電池1は、一方の空気電池の有する負極17と、他方の空気電池1の有する酸素拡散膜2とが対向するように複数の空気電池1が積層配置されている。なお、互いに隣接する空気電池1を、負極17同士が対向するように配置したり、酸素拡散膜2同士が対向するように配置してもよい。これらの電池スタック40によれば、容易に大容量の空気電池スタックを得ることができる。
 (第四実施形態)
 互いに隣接する空気電池1を酸素拡散膜2同士が対向するように配置する際には、隣接する2つのセルにおいて酸素拡散膜2を共通化することも可能である。図7は、このような空気電池スタックを示す概略断面図である。本実施形態に係る電池スタック50は、2つの空気電池1’から構成される。当該空気電池1’は、上述の積層体19及び電解質9を有し、さらに、酸素拡散膜2における正極13とは反対側に、さらに、第二触媒層4’及び第二正極集電体3’を有する第二正極13’と、第二セパレータ6’と、第二負極17’とがこの順に配置される。なお、第二正極13’は、第二第正極集電体3’が酸素拡散膜2と対向するように配置される。第二触媒層4’及び第二正極集電体3’を有する第二正極13’と、第二セパレータ6’と、第二負極17’とは、それぞれ、触媒層4及び正極集電体3を有する正極13と、セパレータ6と、負極17と同様のものであり、電解質9と同様の電解質9’と接触している。
 本実施形態に係る空気電池スタック50は、各空気電池1’において、一枚の酸素拡散膜2が、その両側の主面2m、2m’と、周縁部2c等との間での酸素の拡散を可能とするので、上述の発電体20を積層する形態や、上述の容器を備えた空気電池1を積層する形態に比べて全体厚みの低減が可能であり、電池を配置する上での省スペース化が実現できる。
 第四実施形態に係る空気電池スタックについても、正極13とセパレータ6との間や負極17と電解質9との間等に充電用電極72をさらに備えた空気電池を用いることもできる。
 本発明に係る空気電池スタックは、上記の第一から第四の実施形態に限定されない。例えば、上述の空気電池1と空気電池1’とを組み合わせて空気電池スタックを形成してもよい。
[捲回型の空気電池]
 図8は、本発明に係る捲回型の空気電池の好適な実施形態の一例を示す概略断面図である。本実施形態に係る捲回型の空気電池60は、シート状の負極17と、シート状のセパレータ6と、触媒層4が形成された正極集電体3を有するシート状の正極13と、酸素拡散膜2と、がこの順に配置されたシート状の積層体19が渦状に捲回され、電解質9と共に容器本体63に入れられ、空気が出入りするための空気孔61を有する蓋62及び絶縁性のパッキン64を備えた構造体である。容器本体63及び蓋62は金属等の導電性材料であり、外部接続端子5,11と電気的に接続されている。
 本実施形態では、酸素拡散膜2の周縁部2cは容器内に位置するものの、電解液9とは接触しておらず、空気と接触している。
 つづいて、これらの本発明に係る空気電池及び空気電池スタックの作用について説明する。本実施形態では(例えば、図1(b)参照)、放電時に酸素拡散膜2の周縁部2cから空気中の酸素を発電体の内部に取り込むことができ、二次電池として使用する場合の充電時には、電池セルの内部で発生する酸素をこの酸素拡散膜2の周縁部2cから外部に放出することができる。
 例えば、電解質9が水系溶媒に溶解し、負極活物質7が金属である場合(負極活物質は、下記式中、Mで示す。)、充電時には、下記式(1)、(2)に示すように、外部接続端子11から負極集電体8へ電子が流れ込み、負極17において、電解液中の負極活物質7の酸化体が還元される。そして、正極13において、電解液に含まれるOHがOを発生させるとともに電子を放出し、正極集電体3から外部接続端子5へ電子が流れ出す。この反応において、正極13上で発生したOは、電池内の内圧増加により、酸素拡散膜2の主面から空孔を通り、酸素拡散膜2の周縁部2cから空気電池1の外部へ排出される。正極13に代わりに充電用正極72を用いる場合、充電用正極72で発生した酸素は、上述したように、酸素排出口(図示せず)から酸素が排出される。
 (正極) 2OH → 1/2O + HO + 2e (1)
 (負極) MO + HO + 2e → M + 2OH (2)
 一方、放電時には、下記式(3)、(4)に示すように、負極17において、負極活物質7が酸化され、その酸化体が電解液中へ拡散するとともに電子が放出され、負極集電体8から外部接続端子11へ電子が流れ出す。そして、正極13においては、外部接続端子5から正極集電体3へ電子が流れ込み、酸素拡散膜2の周縁部2cから空孔を通って供給されるOが、OHに還元される反応が生じる。
 (正極) 1/2O + HO + 2e→ 2OH (3)
 (負極) M + 2OH → MO + HO + 2e (4)
 また、例えば、電解質9が水系溶媒に溶解し、負極活物質7が水素である場合、充電時には、下記式(5)、(6)に示すように、負極17において、水素吸蔵合金(M’)とHOが反応し、金属水素化物(M’H)とOHイオンを生成する。同時に正極13においてOHイオンが反応し、HOと酸素ガス(O)が生成する。
 (正極) 2OH → HO + 1/2O +2e (5)
 (負極) 2M’ + 2HO + 2e → 2M’H + 2OH (6)
 一方、放電時には、下記式(7)、(8)に示すように、正極13において酸素ガス(O)とHOが反応し、OHイオンを生成する。同時にOHイオンが負極17の金属水素化物(M’H)と反応して金属(M’)とHOを生成する。
 (正極) 2HO + O + 4e → 4OH (7)
 (負極) 4M’H +4OH → 4M’ + 4HO + 4e (8)
 本発明の空気電池は、従来の空気電池のような正極及び酸素拡散膜の主面側から空気を取り込む形態ではないため、主面同士を重ね合わせてスタックすることが可能となる。これにより、大容量の空気電池を容易に得ることができる。捲回構造にすることも容易であり、何重に捲回しても、周縁部からの酸素の取り込み等が容易であり好ましい。
 [セパレータに固体電解質を用いた空気電池]
 セパレータに固体電解質を用いた場合は、上述した空気電池、空気電池スタックおよび捲回型の空気電池の実施形態の酸化還元反応に限定されず、以下のような酸化還元反応による充放電も可能である。
 充電時には、下記式(9)、(10)に示すように、外部接続端子11から負極集電体8へ電子が流れ込み、負極17において、電解液中の負極活物質7(式中、Mで示す。)のカチオンイオン(酸化体)が還元される。そして、正極13において、電解液に含まれるOHがOを発生させるとともに電子を放出し、正極集電体3から外部接続端子5へ電子が流れ出す。この反応において、正極13上で発生したOは、酸素拡散膜2の主面から空孔を通り、酸素拡散膜2の周縁部2cから空気電池1の外部へ排出される。
 (正極) 4OH → O + 2HO + 4e (9)
 (負極) 4M +4e → 4M (10)
 放電時には、下記式(11)、(12)に示すように、負極17において、負極活物質7(式中、Mで示す。)が酸化され、そのカチオンイオン(酸化体)が電解液中へ拡散するとともに電子が放出され、負極集電体8から外部接続端子11へ電子が流れ出す。そして、正極13においては、外部接続端子5から正極集電体3へ電子が流れ込み、酸素拡散膜2の周縁部2cから空孔を通って供給されるOが、OHに還元される反応が生じる。
 (正極) O + 2HO + 4e → 4OH (11)
 (負極) 4M → 4M +4e (12)
 なお、上記式(9)~(12)は、カチオンイオンの価数が1価である場合を想定した式である。
 セパレータに固体電解質を用いることで、電解質が水系溶媒に溶解した水系電解液と電解質が非水系溶媒に溶解した非水系電解液の同時使用が可能になる。例えばリチウム金属を負極に用いた場合、負極側は非水系電解液を用い、正極側は水系電解液を用いることが可能であり、リチウム金属と水分との接触を防ぎ、非水電解液のみを用いた場合に生成するLiOの析出を防ぐことができ、大容量電池として使用できる。
 固体電解質をセパレータ6として用いた空気電池1は、電解質9の代わりに負極17と固体電解質との間に非水系電解液が配置され、正極13と固体電解質との間に水系電解液が配置された積層体19を発電体20として用いることができる。そして、この発電体20が、容器10内に収容されている。以下、発電体20、20’の構成要素について説明する。ただし、セパレータに固体電解質を用いた空気電池において、負極集電体8、正極集電体4、正極触媒層3、及び酸素拡散膜2は上述したものと同じ材料を用いることができるため説明を省略する。
 負極活物質7としては、空気電池を構成可能な負極材料であれば特に限定されない。負極活物質としては、水素又は金属が挙げられる。金属としては、リチウム、ナトリウム、マグネシウム、カルシウムが好ましい。中でも、リチウム、ナトリウム、カルシウムのいずれかであることが好ましい。
 (セパレータ)
 セパレータ6としては、カチオンイオンの移動のみが可能な絶縁材料であれば特に限定されず、例えば、ポリエチレングリコール誘導体、アルキルボラン含有高分子、ポリシリコーン誘導体(モメンティブ社製)、スルホン酸を含む高分子、β-アルミナ固体電解質、ナシコン型固体電解質、高純度硫化リチウムと硫化りんを焼成した固体電解質、リチウムイオン伝導性ガラスセラミックス(LICGC)(オハラ社製)等を用いることができる。
 (電解質)
 セパレータ6、及び、正極13と接触している正極側の電解液は、NaOH、KOH、NHClが溶解した水溶液であることが好ましい。水溶液中のNaOH、KOH又はNHClの濃度は、1~99重量(wt)%であることが好ましく、10~60wt%であることがより好ましく、20~40wt%であることがさらに好ましい。
 セパレータ6、及び、負極17と接触している負極側の電解液は、環状カーボネート、鎖状カーボネート、環状エステル、環状エーテル、鎖状エーテルからなる群から選ばれる1種の溶媒又は2種以上の溶媒からなる混合溶媒を用いることができる。
 負極側の電解液は、電解質として負極活物質7を構成する元素を含む塩を含有することができる。
 正極側の電解液はゲル化剤を含むことが好ましく、特に溶媒が水系溶媒である場合にゲル化剤を含むことがより好ましい。ゲル化剤としては、水で膨潤するものであればよく、ポリ(アクリル酸ナトリウム)、カルボキシメチルセルロース、ポリ(エチレングリコール)、ポリ(ビニルアルコール)等のポリマーが好ましい。溶媒と酸素拡散膜2との組み合わせに依存して、溶媒が酸素拡散膜2の空孔中に浸透する場合があり、これにより酸素拡散膜2中を酸素が拡散し難くなる。しかしながら、ゲル化剤を含む電解液は酸素拡散膜2に浸透し難くなり、結果的に酸素拡散膜2を酸素が透過し易くなる。
 負極側に固体電解質を用いた態様も可能であり、この場合、例えば、負極活物質7に金属リチウムを用い、リチウムイオンが透過可能な固体電解質を負極活物質7に圧着させることが好ましい。リチウムイオンが透過可能な固体電解質としては、ポリエチレングリコール誘導体、ポリシリコーン誘導体(モメンティブ社製)、スルホン酸を含む高分子、β-アルミナ固体電解質、ナシコン型固体電解質、高純度硫化リチウムと硫化りんを焼成した固体電解質、リチウムイオン伝導性ガラスセラミックス(LICGC)(オハラ社製)等が挙げられる。固体電解質は、リチウムイオンを透過可能であればこれらに限られない。
 セパレータに固体電解質を用いた電池も、上述した空気電池スタック及び捲回型の空気電池の態様が可能である。
 本実施形態に係る空気電池は特に、空気二次電池であることが好ましい。空気二次電池は、電気、電子機器用の小型電池としての用途のみならず、特に大容量が要求される電気自動車駆動(走行)用の電源として有用である。
 以上、本実施形態に係る空気電池、及び空気電池スタックについて、好適な実施形態を説明したが、本発明は上述した構造に限定されるものではない。例えば、本実施形態において、空気電池1の形状は直方体形状に特に限定されない。例えば、円盤状、円柱状等であってもよい。
 酸素拡散膜2は、周縁部2cの一部が空気と接していて酸素の流通が可能であればよく、どの部分を外部の空気と接するように配置するかは任意である。例えば、空気電池スタックの設置状況等の用途に応じて、酸素拡散膜2の周縁部2cの空気との接触部分を決めることができ、外部接続端子の位置も適宜変えることができる。酸素拡散膜2の外形形状も特に限定されず、矩形、円形等であってもよい。
 以下、実施例及び比較例を示し、本願発明について具体的に説明する。本発明は、これらの実施例に限定されるものではない。
[実施例1]
<空気二次電池>
 図3(a)に示す平板状の空気二次電池を作製した。この電池は、負極に水素吸蔵合金を用いたものである。この電池の電池反応式は上記式(5)~(8)に示す通りである。
 (負極17の作製)
 負極活物質7の水素吸蔵合金は以下の方法で調整した。ランタンを主体としたミッシュメタル・ニッケル合金にコバルト、アルミニウム、マンガンを所定の合金組成(MmNi0.38Co0.8Al0.3Mn0.3:MmはミッシュメタルでLa、Ce、Nd、Prの混合物)になるように混合し、アーク溶解炉にて加熱溶解した後、粉砕して200メッシュの金網(規格JISZ8801-1:2000)を通過する粉末とし、水素吸蔵合金を製造した。この水素吸蔵合金を1.0wt%のポリビニルアルコールの水溶液と共に混練し、ペースト状にした後、ニッケルメッシュ製の負極集電体8(厚み0.1mm)に塗布し、乾燥して、水素吸蔵合金部分の厚みが0.12mmとなるようにプレスした。その後、縦40mm×横30mmにカットすることで、負極17を作製した。
 次に、負極集電体8の端部に、外部接続用のニッケルリボン端子11(縦50mm×横3mm×厚み0.20mm)を接続した。
 (セパレータ6の作製)
 セパレータ6としては、親水性処理されたポリテトラフルオロエチレンからなる多孔質膜(縦43×横33mm、厚み0.1mm)を用いた。
 続いて、電解質9を、以下の方法で調製した。水酸化カリウムと純水とを、重量比にて、水酸化カリウム:純水=3:7となるように混合し、これらの合計重量100mgに対して、ゲル化剤として1mgのポリ(アクリル酸ナトリウム)を加え、電解質9としてのゲル化された水溶液を得た。この水溶液をセパレータ6に含浸させた。
 (放電用正極13及び充電用正極72の作製)
 正極触媒層は、導電材としてアセチレンブラックと、酸素の還元を促進する触媒としての電解MnOと、結着剤としてのPTFE粉末とにより構成した。重量比として、アセチレンブラック:電解MnO:PTFE=10:10:1とし、縦40mm×横30mm、厚み0.3mmの正極触媒層4を成形した。また、ステンレスメッシュ製の放電用の正極集電体3(縦40mm×横30mm×厚み0.1mm)の端部に外部接続用のニッケルリボン端子5(縦50mm×横3mm×厚み0.20mm)を接続した。そして、放電用の正極集電体3に正極触媒層4を当接し、これらを圧着し、放電用正極13を得た。
 充電用正極72としては、ニッケルメッシュを用い、充電用正極集電体72の端部に、外部接続用のニッケルリボン端子73(縦50mm×横3mm×厚み0.20mm)を接続した。
 上記放電用正極13と、ニッケルリボン端子73を有する上記充電用正極72とを、セパレータ71を介して図3の(a)の順序で積層した。
 (酸素拡散膜2の作製)
 酸素拡散膜2としては、連続する空孔を有するポリプロピレン多孔膜(日本バイリーン社製、縦60mm×横30mm×厚み0.1mm、水との接触角100°)を用い、放電用正極3上に積層した。
 上記のように作製した負極17、セパレータ6、放電用正極13/セパレータ71/充電用正極72との積層体、及び酸素拡散膜2をこの順に積層し、プレス機にて圧着することにより、積層体19を得た。積層体19における酸素拡散膜2以外の部分を、上述のように作製した電解質9で覆い含浸して、発電体20’とした。発電体20’を、ポリプロピレン製の容器10に入れた。この時、酸素拡散膜2の周縁部2cが、容器10の開口15から外部に突出するように配置した。突出部は2箇所あり、容器外方向の突出長さを0.5cmとした。
 また、充放電用のニッケルリボン端子5、11および73を容器10の外部に引き出した。
<空気二次電池性能評価>
(充放電試験)
 上述のようにして作製した空気二次電池を、充放電試験機(東洋システム社製、製品名TOSCAT-3000U)にニッケルリボン端子11、73で接続し、30mAでCC(コンスタントカレント:定電流)充電を5時間行った。次にニッケルリボン端子5、11に接続を変えて、10mAでCC放電を行い、終止電圧0.5Vでカットオフした。その結果、120mAhの放電容量を確認した。
[実施例2]
 負極活物質7を水素吸蔵合金から亜鉛に変更した以外は、実施例1と同様に空気二次電池を作製した。この電池の電池反応式は上記式(1)~(4)に示す通りである。
 このようにして作製した空気二次電池を、30mAでCC充電を20時間行い、10mAでCC放電を行い、終止電圧0.5Vでカットオフした。
 充放電試験機に接続する端子については、実施例2以降の充放電においても、実施例1と同様に充電と放電とで接続する端子を変えた。
 その結果、485mAhの放電容量を確認した。
[実施例3]
 実施例1で用いたものと同じ酸素拡散膜2に、撥水スプレー(ダイキン株式会社製、商品名:ノヴァテック)を吹き付け、超撥水性を有する酸素拡散膜2を作製した。当該酸素拡散膜2の水に対する接触角は151°であった。超撥水性を有する酸素拡散膜2を用いた以外は実施例1と同様にして、空気二次電池を作製した。
 このようにして作製した空気二次電池を、30mAでCC充電を5時間行い、10mAでCC放電を行い、終止電圧0.5Vでカットオフした。
 その結果、122mAhの放電容量を確認した。
[実施例4]
 負極活物質7の水素吸蔵合金を(縦40×横30mm×厚み1.2mm)に変更した以外は、実施例1と同様に空気二次電池を作製した。
 このようにして作製した空気二次電池を、30mAでCC充電を48時間行い、10mAでCC放電を行い、終止電圧0.5Vでカットオフした。
 その結果、1150mAhの放電容量を確認した。
[比較例1]
 図9に示すように、酸素拡散膜2の一部が、大気と接していない以外は、実施例1と同様に空気二次電池を作製した。その結果、充電は可能であったが、放電は1mAhだけであった。
 (サイクル試験)
 実施例1、3の電池について、サイクル試験を行った。
 サイクル試験の設定電流は以下のようにした。30mAでCC充電を5時間行い、10mAでCC放電を行い、終止電圧0.5Vでカットオフした。この条件を100回繰り返した。
 その結果、100サイクル後の容量維持率は、1サイクル目を100%とした時、実施例1の電池が60%、実施例3の電池が75%であった。
[実施例5]
(空気電池スタックの作製)
 実施例1の発電体20’(空気電池1)を4つ積層し、ポリプロピレン製の容器10に入れ、図5に示すような空気電池スタックを作製した。この時、酸素拡散膜2の周縁部2cが、容器10の開口15から外部に突出するように配置した。突出部は2箇所あり、容器外方向への突出長さを0.5cmとした。
 また、充放電用のニッケルリボン端子5、11および73の各4本、合計12本を容器10の外部に引き出した。
 上述のようにして作製した空気二次電池を、120mAでCC充電を5時間行い、40mAでCC放電を行い、終止電圧0.5Vでカットオフした。その結果、485mAhの放電容量を確認した。
 このように本発明の構成にすることで、空気電池のスタック化が容易にできることが確認できた。
1、1’…空気電池、2…酸素拡散膜、2c…周縁部、3…(放電用)正極集電体、3’…第二正極集電体、4…正極触媒層、4’…第二触媒層、5,11,73…外部接続用端子、6,71…セパレータ、6’…第二セパレータ、7…負極活物質、8…負極集電体、9、9’…電解質、10…容器、13…(放電用)正極、13’…第二正極、17…負極、17’…第二負極、19,19’…積層体、20,20’…発電体、72…充電用正極、40,50…空気電池スタック、60…捲回型の空気電池、61…空気孔、62…蓋、63…容器本体。

Claims (12)

  1.  負極と、セパレータと、触媒層及び正極集電体を有する正極と、酸素拡散膜とがこの順に積層された積層体と、
     前記負極、前記セパレータ、及び前記正極に接触する電解質と、
    を含む発電体を備え、
     前記酸素拡散膜の主面の一つは前記正極集電体の主面の一つに対向して配置され、
     前記酸素拡散膜の周縁部の少なくとも一部が大気中の空気と接している空気電池。
  2.  前記発電体が前記電解質と溶媒とを含む溶液を有し、前記酸素拡散膜の表面に対する前記溶媒の接触角が90°以上である請求項1に記載の空気電池。
  3.  前記発電体が前記電解質と溶媒とを含む溶液を有し、前記酸素拡散膜の表面に対する前記溶媒の接触角が150°以上である請求項1に記載の空気電池。
  4.  前記発電体が前記電解質と溶媒とゲル化剤とを含む溶液を有する請求項1に記載の空気電池。
  5.  前記負極が負極活物質を有し、前記負極活物質が、水素、リチウム、ナトリウム、マグネシウム、アルミニウム、カリウム、カルシウム、鉄及び亜鉛からなる群から選択される少なくとも1つである請求項1~4のいずれか一項に記載の空気電池。
  6.  前記触媒層が二酸化マンガン、又は白金を含む請求項1~5のいずれか一項に記載の空気電池。
  7.  前記触媒層が、ABOで表されるペロブスカイト型複合酸化物を含み、AサイトにLa、Sr及びCaからなる群から選ばれる少なくとも2種の原子を含み、BサイトにMn、Fe、Cr及びCoからなる群から選ばれる少なくとも1種の原子を含む請求項1~6のいずれか一項に記載の空気電池。
  8.  充電用正極をさらに備える請求項1~7のいずれか一項に記載の空気電池。
  9.  空気二次電池である請求項1~8のいずれか一項に記載の空気電池。
  10.  前記酸素拡散膜における前記正極と対向する側とは反対側に、さらに、第二触媒層及び第二正極集電体を有する第二正極と、第二セパレータと、第二負極とがこの順に配置された請求項1~9のいずれか一項に記載の空気電池。
  11.  請求項1~10のいずれか一項に記載の空気電池を二以上有し、
     前記二以上の空気電池は、前記積層体の積層方向に互いに積層された空気電池スタック。
  12.  前記積層体はシート状であり、捲回されている、請求項1~10のいずれか一項に記載の空気電池。
PCT/JP2011/050553 2010-01-18 2011-01-14 空気電池、空気電池スタック WO2011087089A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP11732959A EP2528156A1 (en) 2010-01-18 2011-01-14 Air battery and air battery stack
US13/522,172 US9680192B2 (en) 2010-01-18 2011-01-14 Air battery and air battery stack
KR1020127021003A KR20120127445A (ko) 2010-01-18 2011-01-14 공기 전지, 공기 전지 스택
CN201180006267.6A CN102714338B (zh) 2010-01-18 2011-01-14 空气电池、空气电池组堆

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010008118A JP5721329B2 (ja) 2010-01-18 2010-01-18 空気電池、空気電池スタック
JP2010-008118 2010-01-18

Publications (1)

Publication Number Publication Date
WO2011087089A1 true WO2011087089A1 (ja) 2011-07-21

Family

ID=44304358

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/050553 WO2011087089A1 (ja) 2010-01-18 2011-01-14 空気電池、空気電池スタック

Country Status (6)

Country Link
US (1) US9680192B2 (ja)
EP (1) EP2528156A1 (ja)
JP (1) JP5721329B2 (ja)
KR (1) KR20120127445A (ja)
CN (1) CN102714338B (ja)
WO (1) WO2011087089A1 (ja)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102509806A (zh) * 2011-10-28 2012-06-20 四川大学 一种新型可充金属空气电池氧电极及其制备方法
JP2012238591A (ja) * 2011-04-27 2012-12-06 Sumitomo Chemical Co Ltd 空気二次電池用正極触媒及び空気二次電池
JP2013058407A (ja) * 2011-09-08 2013-03-28 Toyota Motor Corp 金属空気電池及び金属空気電池の製造方法
JP2013077550A (ja) * 2011-09-13 2013-04-25 Honda Motor Co Ltd 金属酸素電池
JP2013077553A (ja) * 2011-09-13 2013-04-25 Honda Motor Co Ltd 金属酸素電池
WO2013084625A1 (ja) * 2011-12-05 2013-06-13 日産自動車株式会社 空気電池
WO2013118771A1 (ja) * 2012-02-07 2013-08-15 日産自動車株式会社 空気電池とこれを用いた組電池
US20130260224A1 (en) * 2012-04-03 2013-10-03 The University Of Tokyo Oxygen shuttle battery
US20140072884A1 (en) * 2012-09-07 2014-03-13 Zhengcheng Zhang Lithium air battery having a cross-linked polysiloxane separator
CN104094467A (zh) * 2012-01-27 2014-10-08 日产自动车株式会社 电池组
TWI478419B (zh) * 2012-03-09 2015-03-21 Nissan Motor Air battery
TWI504044B (zh) * 2012-01-25 2015-10-11 Nissan Motor Air batteries and batteries using the air battery
US20160104883A1 (en) * 2011-12-19 2016-04-14 Arizona Board Of Regents Acting For And On Behalf Of Arizona State University Aluminum-based metal-air batteries
JPWO2021111515A1 (ja) * 2019-12-03 2021-06-10

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5589980B2 (ja) * 2011-07-07 2014-09-17 トヨタ自動車株式会社 金属空気電池
JP5652877B2 (ja) * 2011-09-27 2015-01-14 日本電信電話株式会社 リチウム空気電池
US20140205917A1 (en) * 2011-09-29 2014-07-24 Toyota Jidosha Kabushiki Kaisha Metal-air battery
ES2652087T3 (es) * 2011-12-14 2018-01-31 Eos Energy Storage, Llc Celda anódica metálica, recargable eléctricamente, sistemas de batería y métodos
JP5220211B1 (ja) * 2012-02-29 2013-06-26 本田技研工業株式会社 金属酸素電池
JP5884567B2 (ja) * 2012-03-09 2016-03-15 日産自動車株式会社 空気電池
JP5850403B2 (ja) * 2012-03-09 2016-02-03 日産自動車株式会社 空気電池
FR2991103B1 (fr) * 2012-05-25 2015-08-14 Commissariat Energie Atomique Cathode pour batterie lithium-air, comportant une structure bi-couches de catalyseurs differents et batterie lithium-air comprenant cette cathode
US8535851B1 (en) * 2012-06-19 2013-09-17 ZAF Energy Systems, Incorporated Metal-air battery and gas impermeable anodic conductive matrix
JP2014209454A (ja) * 2013-03-26 2014-11-06 株式会社東芝 非水電解質空気電池
JP2015018679A (ja) * 2013-07-10 2015-01-29 日本電信電話株式会社 リチウム空気二次電池
KR101487465B1 (ko) * 2013-08-12 2015-01-29 한국과학기술연구원 마그네슘 공기전지용 공기양극 및 이의 제조방법
KR101632793B1 (ko) * 2013-09-13 2016-06-22 주식회사 엘지화학 리튬 공기 전지용 양극 및 그의 제조방법
JP2015076379A (ja) * 2013-10-11 2015-04-20 シャープ株式会社 金属空気二次電池
JP2015106486A (ja) * 2013-11-29 2015-06-08 スズキ株式会社 リチウム空気電池及びリチウム電池の正極構造体
JP6305192B2 (ja) * 2014-04-25 2018-04-04 日本協能電子株式会社 空気マグネシウム電池
JP6241946B2 (ja) * 2014-09-19 2017-12-06 日本電信電話株式会社 リチウム空気電池用空気極の製造方法
JP6410136B2 (ja) * 2014-10-03 2018-10-24 日産自動車株式会社 金属空気電池用電解液及び該電解液を用いた金属空気電池
JP5951055B2 (ja) * 2015-02-11 2016-07-13 株式会社半導体エネルギー研究所 蓄電装置
CN104900943B (zh) * 2015-04-26 2017-03-22 渤海大学 一种插控式凝胶电解质锂空电堆及其制备方法
TWI553948B (zh) * 2015-08-31 2016-10-11 吳佳典 電池
WO2017187888A1 (ja) * 2016-04-25 2017-11-02 スズキ株式会社 リチウム空気電池の負極複合体構造
WO2018052376A1 (en) 2016-09-16 2018-03-22 Agency For Science, Technology And Research A rechargeable metal-air battery cell, a battery stack and method of manufacturing the same
JP6962070B2 (ja) 2017-08-29 2021-11-05 スズキ株式会社 空気電池およびそれに用いる負極複合体
EP3531501A4 (en) 2017-09-28 2019-12-04 Maxell Holdings, Ltd. BLADE AIRBATTERY, MANUFACTURING METHOD AND PAVEMENT
JP6454824B1 (ja) * 2017-09-28 2019-01-16 マクセルホールディングス株式会社 シート状空気電池およびパッチ
CN108598627B (zh) * 2018-05-16 2020-11-13 东北大学秦皇岛分校 一种高容量钾-氧气电池
CN111326832B (zh) * 2018-12-14 2021-03-12 中国科学院大连化学物理研究所 一种金属/空气电池组
US20200259206A1 (en) * 2019-02-13 2020-08-13 Seeo, Inc. Reduced llto particles with electronically insulating coatings
EP4238155A1 (en) 2020-10-30 2023-09-06 Fundación Cidetec High autonomy zinc batteries
WO2022089830A1 (en) * 2020-10-30 2022-05-05 Fundación Cidetec Aqueous batteries with high reversibility
TWI820501B (zh) * 2021-10-27 2023-11-01 台灣奈米碳素股份有限公司 電極的製造方法及其催化層
JP7535274B2 (ja) 2022-01-24 2024-08-16 国立研究開発法人物質・材料研究機構 リチウム空気電池及びこれに用いる酸素流路

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5843773U (ja) * 1981-09-18 1983-03-24 三洋電機株式会社 多層型空気極
JPH09298066A (ja) * 1996-03-05 1997-11-18 Canon Inc 二次電池
JP2002177747A (ja) * 2000-12-11 2002-06-25 Hitachi Maxell Ltd 選択透過膜及びこれを用いた空気電池
JP2002343452A (ja) * 2001-05-14 2002-11-29 Hitachi Maxell Ltd 空気電池
JP2008091248A (ja) 2006-10-03 2008-04-17 Toyota Central R&D Labs Inc 大容量二次電池
JP2009093983A (ja) * 2007-10-11 2009-04-30 Toyota Central R&D Labs Inc 二次電池

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5115380Y2 (ja) 1971-05-12 1976-04-23
US4894295A (en) * 1988-09-14 1990-01-16 Cheiky Michael C Metal-alloy air battery
KR940704069A (ko) 1991-12-16 1994-12-12 글렌 워드러프 아연-공기 배터리용 붕괴성 포옴 애노드 지지체(collapsing foam anode backing for zinc-air battery)
JP3291803B2 (ja) * 1992-11-06 2002-06-17 ダイキン工業株式会社 フッ化カーボン粒子およびその製法ならびに用途
US5712062A (en) 1992-11-06 1998-01-27 Daikin Industries, Ltd. Carbon fluoride particles, preparation process and uses of the same
JPH0785899A (ja) 1993-09-20 1995-03-31 Aisin Seiki Co Ltd 積層型電池
US5707499A (en) 1995-10-06 1998-01-13 Ceramatec, Inc. Storage-stable, fluid dispensing device using a hydrogen gas generator
US6060196A (en) * 1995-10-06 2000-05-09 Ceramtec, Inc. Storage-stable zinc anode based electrochemical cell
US5888666A (en) 1996-03-05 1999-03-30 Canon Kabushiki Kaisha Secondary battery
JP2000003713A (ja) * 1998-06-15 2000-01-07 Sanyo Chem Ind Ltd 一次電池用電解液およびそれを用いた一次電池
US6232007B1 (en) * 1999-08-13 2001-05-15 The Gillette Company Metal-air battery container
SE0100927D0 (sv) * 2001-03-16 2001-03-16 Kth Holding Ab Oxygen reduction electrode
CN100562353C (zh) 2004-10-21 2009-11-25 松下电器产业株式会社 氧透过膜、氧透过片和包括它们的电池
JP5006522B2 (ja) * 2004-10-21 2012-08-22 パナソニック株式会社 酸素透過膜、酸素透過シート、およびこれらを含む電池
US8652692B2 (en) * 2005-11-23 2014-02-18 Polyplus Battery Company Li/Air non-aqueous batteries
CN101393993A (zh) 2007-09-19 2009-03-25 上海清能燃料电池技术有限公司 一种燃料电池的装配结构及方法
JP5207407B2 (ja) 2008-02-18 2013-06-12 独立行政法人産業技術総合研究所 空気極
CN101567477B (zh) 2009-03-27 2011-08-31 山西银光华盛镁业股份有限公司 叠层镁-空气电池组

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5843773U (ja) * 1981-09-18 1983-03-24 三洋電機株式会社 多層型空気極
JPH09298066A (ja) * 1996-03-05 1997-11-18 Canon Inc 二次電池
JP2002177747A (ja) * 2000-12-11 2002-06-25 Hitachi Maxell Ltd 選択透過膜及びこれを用いた空気電池
JP2002343452A (ja) * 2001-05-14 2002-11-29 Hitachi Maxell Ltd 空気電池
JP2008091248A (ja) 2006-10-03 2008-04-17 Toyota Central R&D Labs Inc 大容量二次電池
JP2009093983A (ja) * 2007-10-11 2009-04-30 Toyota Central R&D Labs Inc 二次電池

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012238591A (ja) * 2011-04-27 2012-12-06 Sumitomo Chemical Co Ltd 空気二次電池用正極触媒及び空気二次電池
JP2013058407A (ja) * 2011-09-08 2013-03-28 Toyota Motor Corp 金属空気電池及び金属空気電池の製造方法
US8993180B2 (en) 2011-09-13 2015-03-31 Honda Motor Co., Ltd. Metal oxygen battery
JP2013077550A (ja) * 2011-09-13 2013-04-25 Honda Motor Co Ltd 金属酸素電池
JP2013077553A (ja) * 2011-09-13 2013-04-25 Honda Motor Co Ltd 金属酸素電池
CN102509806A (zh) * 2011-10-28 2012-06-20 四川大学 一种新型可充金属空气电池氧电极及其制备方法
US9608302B2 (en) 2011-12-05 2017-03-28 Nissan Motor Co., Ltd. Air battery
CN103975481A (zh) * 2011-12-05 2014-08-06 日产自动车株式会社 空气电池
WO2013084625A1 (ja) * 2011-12-05 2013-06-13 日産自動車株式会社 空気電池
JPWO2013084625A1 (ja) * 2011-12-05 2015-04-27 日産自動車株式会社 空気電池
EP2790265A4 (en) * 2011-12-05 2015-05-27 Nissan Motor AIR BATTERY
US10720640B2 (en) 2011-12-19 2020-07-21 Arizona Board Of Regents Acting For And On Behalf Of Arizona State University Aluminum-based metal-air batteries
US10090520B2 (en) * 2011-12-19 2018-10-02 Arizona Board Of Regents Acting For And On Behalf Of Arizona State University Aluminum-based metal-air batteries
US20160104883A1 (en) * 2011-12-19 2016-04-14 Arizona Board Of Regents Acting For And On Behalf Of Arizona State University Aluminum-based metal-air batteries
TWI504044B (zh) * 2012-01-25 2015-10-11 Nissan Motor Air batteries and batteries using the air battery
US9502741B2 (en) 2012-01-25 2016-11-22 Nissan Motor Co., Ltd. Air battery and battery pack using same
CN104094467A (zh) * 2012-01-27 2014-10-08 日产自动车株式会社 电池组
TWI466360B (zh) * 2012-02-07 2014-12-21 Nissan Motor Air battery and battery pack using it
WO2013118771A1 (ja) * 2012-02-07 2013-08-15 日産自動車株式会社 空気電池とこれを用いた組電池
JP2013179043A (ja) * 2012-02-07 2013-09-09 Nissan Motor Co Ltd 空気電池とこれを用いた組電池
US9666917B2 (en) 2012-02-07 2017-05-30 Nissan Motor Co., Ltd. Air cell and assembled battery employing same
TWI478419B (zh) * 2012-03-09 2015-03-21 Nissan Motor Air battery
US20130260224A1 (en) * 2012-04-03 2013-10-03 The University Of Tokyo Oxygen shuttle battery
US9478782B2 (en) * 2012-09-07 2016-10-25 Uchicago Argonne, Llc Lithium air battery having a cross-linked polysiloxane separator
US20140072884A1 (en) * 2012-09-07 2014-03-13 Zhengcheng Zhang Lithium air battery having a cross-linked polysiloxane separator
JPWO2021111515A1 (ja) * 2019-12-03 2021-06-10
US11855271B2 (en) 2019-12-03 2023-12-26 Nippon Telegraph And Telephone Corporation Metal air battery, cathode manufacturing method of metal air battery and manufacturing method of metal air battery
JP7464857B2 (ja) 2019-12-03 2024-04-10 日本電信電話株式会社 金属空気電池、および金属空気電池の製造方法

Also Published As

Publication number Publication date
KR20120127445A (ko) 2012-11-21
JP5721329B2 (ja) 2015-05-20
EP2528156A1 (en) 2012-11-28
JP2011146339A (ja) 2011-07-28
US20120321968A1 (en) 2012-12-20
US9680192B2 (en) 2017-06-13
CN102714338B (zh) 2015-06-03
CN102714338A (zh) 2012-10-03

Similar Documents

Publication Publication Date Title
JP5721329B2 (ja) 空気電池、空気電池スタック
JP5755624B2 (ja) 空気電池用空気極及び空気電池
US8012633B2 (en) Advanced metal-air battery having a ceramic membrane electrolyte
US9379397B2 (en) Air battery
JP5644873B2 (ja) 空気二次電池
JP4788560B2 (ja) 蓄電デバイス
EP2709204B1 (en) Oxygen cell
JP5782170B2 (ja) 空気電池用空気極及び空気電池
EP3018737B1 (en) Metal air fuel cell
US20150318590A1 (en) Non-aqueous electrolyte solutions and lithium/oxygen batteries using the same
WO2015025157A2 (en) Batteries
JP6716298B2 (ja) 金属空気電池
US20150372358A1 (en) Metal-air battery
JP2008091248A (ja) 大容量二次電池
JP2019139986A (ja) 亜鉛電池用負極及び亜鉛電池
JP2009146756A (ja) 水系リチウムイオン二次電池
JP6523658B2 (ja) キャパシタ空気電池用の中間層原料組成物、該原料組成物を含有する中間層を有する電極、および該電極を備えたキャパシタ空気電池
US10651445B2 (en) Electrode with cellulose acetate separator system
JP2017050294A (ja) 組成物、該組成物を含有する多孔性層を有する電極、および該電極を有する金属空気二次電池
JP6619481B2 (ja) 組成物、該組成物を含有する多孔性層を有する電極、および該電極を有する金属空気二次電池
JP2024519726A (ja) プロトンおよび水酸化物イオン伝導性ポリマーベースのセパレータを備えるバイポーラ電池
JP2023055467A (ja) 蓄電池用正極及びビスマス亜鉛蓄電池
JP5285134B2 (ja) リチウムイオン酸素電池

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180006267.6

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011732959

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20127021003

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 7050/CHENP/2012

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 13522172

Country of ref document: US