WO2011152129A1 - 電動車両のガタ詰め制御装置 - Google Patents

電動車両のガタ詰め制御装置 Download PDF

Info

Publication number
WO2011152129A1
WO2011152129A1 PCT/JP2011/059252 JP2011059252W WO2011152129A1 WO 2011152129 A1 WO2011152129 A1 WO 2011152129A1 JP 2011059252 W JP2011059252 W JP 2011059252W WO 2011152129 A1 WO2011152129 A1 WO 2011152129A1
Authority
WO
WIPO (PCT)
Prior art keywords
range
creep
electric motor
backlash
torque
Prior art date
Application number
PCT/JP2011/059252
Other languages
English (en)
French (fr)
Inventor
中村 洋平
風間 勇
太志 吉村
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Priority to RU2012158124/11A priority Critical patent/RU2534491C2/ru
Priority to CN201180026801.XA priority patent/CN102917912B/zh
Priority to EP11789539.1A priority patent/EP2578440B1/en
Priority to BR112012030661A priority patent/BR112012030661B1/pt
Priority to KR1020127033946A priority patent/KR101524343B1/ko
Priority to US13/699,978 priority patent/US20130066509A1/en
Priority to MX2012013805A priority patent/MX2012013805A/es
Publication of WO2011152129A1 publication Critical patent/WO2011152129A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • B60L15/2054Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed by controlling transmissions or clutches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • B60L15/2063Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed for creeping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/08Electric propulsion units
    • B60W2710/083Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/18009Propelling the vehicle related to particular drive situations
    • B60W30/18063Creeping
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the present invention relates to a backlash control device for an electric vehicle such as an electric vehicle that uses only an electric motor as a power source, or a hybrid vehicle that travels using energy from an engine and an electric motor, and in particular, the creep torque of the electric motor is reduced to zero.
  • the present invention relates to a technology for filling backlash in a motor transmission system from an electric motor to a drive wheel in advance during a creep cut.
  • An electric vehicle can drive an electric motor in accordance with a range selected by a shift operation performed by a driver to command the traveling mode of the vehicle, and can transmit electric power to wheels to perform electric traveling.
  • Patent Document 1 for example, as described in Patent Document 1, in addition to making an electric vehicle capable of creeping as described above, predetermined creep cut permission conditions are satisfied, such as when the vehicle is not intended to start. In the meantime, since creep driving has not yet been performed, and in order to reduce power consumption, a technique has been proposed in which creep cutting is performed to reduce the creep torque of the electric motor to zero.
  • an object of the present invention is to provide a backlash control device for an electric vehicle that can pack backlash of a motor transmission system before restarting creep running or normal starting acceleration.
  • the backlash control device for an electric vehicle is configured as follows. First, an electric vehicle, which is a basic premise of the gist configuration of the present invention, will be described. This is because the power from the electric motor is changed according to the range selected by the shift operation performed by the driver to command the vehicle travel mode. The vehicle can travel while being transmitted to the wheels, and can creep at a low speed by the creep torque from the electric motor, and the creep torque of the electric motor is reduced to 0 while a predetermined creep cut permission condition is satisfied. It is possible to perform a creep cut.
  • the backlash control device is provided for such an electric vehicle.
  • a creep cut travel range selection detecting means for detecting that the creep cut permission condition is satisfied and the selected range is a travel range; Torque in the same direction as the driving direction in the travel range for a limited time from when it is detected that the travel range is selected while the creep cut permission condition is established by the means, and smaller than the creep torque.
  • the electric motor control means for controlling the electric motor to output the electric motor is characterized.
  • the driving in the travel range is performed during the time limit from the time when the two requirements of the creep cut permission condition being satisfied and the travel range being selected are met.
  • the electric motor is controlled so that the electric motor outputs a torque that is in the same direction as the direction and is smaller than the creep torque.
  • the torque in the direction and the magnitude from the electric motor functions so as to pack the backlash in the creep cut even when there is backlash in the motor transmission system. For this reason, the restart of creep driving after creep cut and normal start acceleration will be started from the state without rattling, which solves the problem of abnormal noise such as gear hitting and shock. Can do.
  • FIG. 1 is a schematic system diagram showing a vehicle drive system including a backlash control device according to an embodiment of the present invention and a control system thereof.
  • 3 is a flowchart showing a backlash control program executed by the motor controller in FIG.
  • the backlash control program in FIG. 2 is executed. It is an operation time chart at the time.
  • the backlash control program in Fig. 2 is executed. It is an operation time chart at the time. During creep cut, the range is switched from the first non-traveling range to the traveling range, the range switching from the traveling range to the non-driving range is performed, and the second switching from the non-driving range to the traveling range is performed.
  • FIG. 3 is an operation time chart when the backlash control program of FIG. 2 is executed when range switching is performed to return from the travel range to the non-travel range after the creep cut ends.
  • FIG. 1 shows a drive system of a vehicle including a backlash control device according to an embodiment of the present invention and a control system thereof.
  • the vehicle in FIG. 1 is an electric vehicle that can drive by driving left and right front wheels (or left and right rear wheels) 1L and 1R.
  • the left and right wheels 1L and 1R are driven by an electric motor (traveling power source) 2 via a reduction gear 3 including a differential gear device.
  • the motor controller 4 converts the power of the battery 5 as a power source into DC-AC conversion by the inverter 6 and supplies this AC power to the electric motor 2 under the control of the inverter 6.
  • the electric motor 2 is controlled so that the torque of the electric motor 2 matches the calculation result (target motor torque) in the motor controller 4.
  • the motor controller 4 supplies a creep torque generating current to the electric motor 2 via the inverter 6. At this time, the electric motor 2 generates a creep torque, which is transmitted to the left and right wheels 1L and 1R via the speed reducer 3, so that the vehicle can creep.
  • the motor controller 4 applies a power generation load to the electric motor 2 via the inverter 6. .
  • the electric power generated by the electric motor 2 due to the regenerative braking action is AC-DC converted by the inverter 6 to charge the battery 5.
  • the currents iu, iv, and iw are three-phase alternating current composed of the U phase, V phase, and W phase)
  • the range selected by the shift operation performed by the driver to command the vehicle travel mode is the forward travel (D) range, the motor speed limit (B) range (corresponding to the engine brake range in a vehicle equipped with an automatic transmission), A signal from the range sensor 11 that detects whether the vehicle is in the reverse travel (R) range, the stop (N) range, or the parking (P) range, Input the signal from the brake switch 12 that is turned on during braking by depressing the brake pedal.
  • the motor controller 4 generates a PWM signal for controlling the electric motor 2 according to the input information, and generates a drive signal for the inverter 6 through the drive circuit according to the PWM signal.
  • the inverter 6 is composed of, for example, two switching elements (for example, power semiconductor elements such as IGBT) for each phase, and the DC current supplied from the battery 5 is turned on / off according to the drive signal. Is converted into alternating current and reversely converted, and the electric motor 2 is supplied with a current corresponding to the target motor torque.
  • the electric motor 2 generates a driving force according to the alternating current supplied from the inverter 6 and transmits the driving force to the left and right wheels 1L and 1R through the speed reducer 3. Also, when the electric motor 2 is driven by the left and right wheels 1L, 1R during vehicle travel, the vehicle motion is achieved by applying a regenerative braking action to the electric motor 2 by applying a power generation load to the electric motor 2. The energy is regenerated and stored in the battery 5.
  • the motor controller 4 executes the control program shown in FIG. 2 and performs backlash control to obtain the target motor torque, and instructs the inverter 6 to contribute to drive control of the electric motor 2.
  • step S11 of FIG. 2 it is checked whether or not the creep cut permission condition is satisfied and the creep cut for setting the creep torque to 0 is executed.
  • the creep cut permission condition has two requirements, that is, a braking state in which the brake switch 12 is ON, and that the vehicle speed VSP indicates a stopped state.
  • the creep cut permission condition is satisfied and the creep cut is to be executed. Note that the creep cut permission condition is not satisfied (creep cut prohibited) when the driver weakens the brake pedal depression force and the brake switch 12 is turned off, that is, when the driver is determined to start, The cutting permission condition is not satisfied (creep cut prohibited).
  • step S11 If it is determined in step S11 that the creep cut is not being executed, the control proceeds to step S12 while performing creep travel control (not shown) or normal travel control, and the shift select flag FLAG is set so that it can be used for backlash control described later.
  • the shift select flag continuation timer T is set to the set time T1, and the control is terminated as it is.
  • step S11 Of the creep travel control (not shown) and normal travel control that are executed when it is determined in step S11 that the creep cut is not being performed, an outline of the creep travel control according to the present invention will be described. While the above creep cut permission condition is not satisfied (creep cut prohibited), the motor controller 4 is required to perform creep travel while the vehicle speed VSP is extremely low and the accelerator opening APO is extremely small. The creep torque is set as the target motor torque, and the creep torque generation current is supplied to the electric motor 2 via the inverter 6. At this time, the electric motor 2 generates a creep torque, which is transmitted to the left and right wheels 1L and 1R via the speed reducer 3, so that the vehicle can creep.
  • step S11 While it is determined in step S11 that the creep cut that sets the creep torque to 0 when the creep cut permission condition is satisfied, the control proceeds to step S13, and the selected range is the travel (D, B, R) range. Or non-running (N, P) range. Therefore, step S11 and step S13 correspond to the creep cut travel range selection detecting means in the present invention.
  • step S13 If it is determined in step S13 that the non-running (N, P) range is selected, since the backlash control is unnecessary, step S12 is executed and the control is terminated as it is.
  • step S13 If it is determined in step S13 that the travel (D, B, R) range is selected, the control proceeds to step S14 and subsequent steps, and the following loosening control is performed.
  • step S14 it is checked whether or not the travel (D, B, R) range is selected in step S13, and whether or not it is the first time is checked. After the shift select flag continuation timer T is reset to 0, the control proceeds to step S16.
  • the travel (D, B, R) range has been selected in step S13, or if it is the first time, the non-travel (N, P) range.
  • step S14 bypasses step S15 and the control proceeds to step S16, the shift select flag continuation timer T is assumed that the creep cut is executed in step S11 due to the establishment of the creep cut permission condition. It is possible to measure the elapsed time from the moment of determination and the determination that the travel (D, B, R) range is selected in step S13.
  • step S16 the shift select flag FLAG is set to 1.
  • step S17 the shift select flag continuation timer T is incremented to measure the elapsed time.
  • step S18 it is checked whether or not the shift select flag continuation timer T is less than the set time T1. In other words, the elapsed time from the moment when it is determined in step S11 that the creep cut permission condition is satisfied and the creep (cutting) range is selected in step S13. Checks whether or not is within the set time T1.
  • step S19 the shift select flag FLAG is 1, and whether or not the selected range is the forward travel (D, B) range.
  • the shift select flag FLAG is 1
  • step S19 and step S20 are “No”
  • the target motor torque is set to “creep cut” at step S11 without executing steps S21 and S22, that is, without outputting the backlash torque. Maintains 0 in response to “Running”.
  • step S18 When it is determined in step S18 that the shift select flag continuation timer T has reached the set time T1 or more, that is, in step S11, it is determined that creep cut is being executed due to the satisfaction of the creep cut permission condition, and step S13.
  • the shift select flag FLAG When the set time T1 has elapsed from the moment when it is determined that the travel (D, B, R) range is selected in step S12, the shift select flag FLAG is reset to 0 and the shift select flag continuation timer T is Set to set time T1.
  • Fig. 3 shows that at the instant t2 during the instant t1 to t4 during creep cut execution, the range is switched from the non-travel range to the travel range, and at the instant t5 after the instant t4 when the creep cut is no longer executed. It is an operation
  • 2 selects a loop including step S11, step S13, step S14, step S15, step S16, step S17, step S18, step S19 (or step S20), step S21 (or step S22) for the first time. And Thereafter, a loop including step S11, step S13, step S16, step S17, step S18, step S19 (or step S20), and step S21 (or step S22) is selected.
  • the shift select flag FLAG is set to 1 (step S16), the shift select flag continuation timer T is reset (step S15), stepped (step S17), and the elapsed time from the instant t2 is measured.
  • the electric motor 2 outputs the backlash torque in the forward rotation direction indicated by the solid line at the bottom of FIG. 3, and the backlash of the motor transmission system can be performed.
  • the electric motor 2 can output the backlashing torque in the backward rotation direction indicated by the broken line at the bottom of FIG. 3 to perform backlashing of the motor transmission system.
  • step S18 selects step S12, and the shift select flag FLAG is reset to 0 in preparation for the next backlash control.
  • step S18 selecting step S12 in this way, step S21 and step S22 are not executed after the instant t3.
  • the electric motor 2 does not output backlash torque.
  • the backlash of the motor transmission system has already been completed due to the backlash torque output from the electric motor 2 during the set time T1 from the instant t2, and abnormal noise or noise is generated when creeping is resumed after the instant t4 or during normal start acceleration. There is no shock.
  • the backlash torque in step S21 and step S22 in FIG. 2 is smaller than the creep torque, and preferably the minimum torque value necessary to eliminate the backlash of the motor transmission system. This is good in terms of saving power consumption of the electric motor 2.
  • the set time T1 is preferably set to the minimum time required for eliminating the backlash of the motor transmission system in terms of saving power consumption of the electric motor 2.
  • control program in FIG. 2 selects the loop including step S11 and step S12, so that the shift select flag FLAG remains 0 and the shift select flag continuation timer T remains at the set time T1. .
  • the control program of FIG. 2 performs the initial steps S11, S13, S14, S15, S16, S17, and S17. Select a loop including S18, step S19 (or step S20), step S21 (or step S22), Thereafter, a loop including step S11, step S13, step S16, step S17, step S18, step S19 (or step S20), and step S21 (or step S22) is selected.
  • the shift select flag FLAG is set to 1 (step S16), the shift select flag continuation timer T is reset (step S15), stepped (step S17), and the elapsed time from the instant t2 is measured.
  • the electric motor 2 can output a backlash torque in the forward rotation direction indicated by a solid line at the bottom of FIG. 4 to perform backlash of the motor transmission system.
  • the electric motor 2 can output backlash rotation torque indicated by a broken line at the bottom of FIG. 4 to perform backlash of the motor transmission system.
  • step S11 selects step S12, and the next rounding is performed.
  • the shift select flag FLAG is reset to 0, and the set time T1 is set to the shift select flag continuation timer T.
  • step S11 selecting step S12 in this way, step S21 and step S22 are not executed after the instant t3.
  • the electric motor 2 does not output backlash torque.
  • the backlash of the motor transmission system is reduced by the backlash torque output from the electric motor 2 between the instant t2 and the creep cut stop instant t3, which is different when restarting creep driving after the instant t3 or during normal acceleration. There is no sound or shock.
  • the electric motor 2 is shifted from the backlash torque control to the creep cut control end (creep drive resumption control or normal start acceleration control). It is possible to prevent the start acceleration of the vehicle from being delayed.
  • Fig. 5 shows the range switching from the non-traveling range to the traveling range at the instant t2 during the creep cut of the instant t1 to t5, and the range switching returning from the traveling range to the non-driving range at the instant t3.
  • 2 selects a loop including step S11, step S13, step S14, step S15, step S16, step S17, step S18, step S19 (or step S20), step S21 (or step S22) for the first time. And Thereafter, a loop including step S11, step S13, step S16, step S17, step S18, step S19 (or step S20), and step S21 (or step S22) is selected.
  • the shift select flag FLAG is set to 1 (step S16), the shift select flag continuation timer T is reset (step S15), stepped (step S17), and the elapsed time from the instant t2 is measured.
  • the electric motor 2 can output the backlash torque in the forward rotation direction indicated by the solid line at the bottom of FIG. 5 to perform backlash of the motor transmission system.
  • the electric motor 2 can output the backlashing torque in the backward rotation direction indicated by the broken line at the bottom of FIG. 5 to perform backlashing of the motor transmission system.
  • step S13 will select step S12, and the next rounding will occur.
  • the shift select flag FLAG is reset to 0, and the set time T1 is set to the shift select flag continuation timer T.
  • step S13 selecting step S12 in this way, step S21 and step S22 are not executed after the instant t3.
  • the electric motor 2 does not output backlash torque.
  • the backlash of the motor transmission system is reduced by the backlash torque output from the electric motor 2 from the instant t2 to the range switching instant t3, and abnormal noise is generated when creeping is resumed after the instant t3 or during normal start acceleration. And no shock.
  • the shift select flag FLAG is set to 1 (step S16), the shift select flag continuation timer T is reset (step S15), stepped (step S17), and the elapsed time from the instant t2 is measured.
  • the electric motor 2 can output the backlash torque in the forward rotation direction indicated by the solid line at the bottom of FIG. 5 to perform backlash of the motor transmission system.
  • the electric motor 2 can output the backlashing torque in the backward rotation direction indicated by the broken line at the bottom of FIG. 5 to perform backlashing of the motor transmission system.
  • step S11 will select step S12, and the next rounding will be reduced.
  • the shift select flag FLAG is reset to 0, and the set time T1 is set to the shift select flag continuation timer T.
  • step S11 selecting step S12 in this way, step S21 and step S22 are not executed after the instant t5.
  • the electric motor 2 does not output backlash torque.
  • the backlash of the motor transmission system is reduced by the backlash torque output from the electric motor 2 from the moment t4 to the moment t5 when the creep cut permission condition is not satisfied. Occasionally no noise or shock is generated.
  • the electric motor 2 is shifted from the backlash torque control to the creep cut control end (creep drive resumption control or normal start acceleration control). Therefore, it is possible to prevent the normal start acceleration from being delayed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Control Of Transmission Device (AREA)
  • Arrangement And Driving Of Transmission Devices (AREA)

Abstract

 クリープカット中(t1~t4)のt2に非走行レンジから走行レンジへの切り替えが行われると、フラグFLAGが1にされ、タイマTがリセット後、歩進されてt2からの経過時間を計測する。タイマTが設定時間T1未満であるt2~t3の間、前進走行レンジであれば、このことと、FLAG=1とで、電動モータが実線で示す前進回転方向のガタ詰めトルクを出力し、後退走行レンジであれば、このことと、FLAG=1とで、電動モータが破線で示す後退回転方向のガタ詰めトルクを出力する。タイマTが設定時間T1になるt3で、次回のガタ詰め制御に備えFLAG=0にし、T=設定時間T1にする。よってt3以後は、ガタ詰めトルクを出力しないが、t2から設定時間T1中のガタ詰めトルクにより伝動系のガタ詰めが完了しており、t4以後のクリープ走行再開時や、通常の発進加速時に異音を生じない。

Description

電動車両のガタ詰め制御装置
 本発明は、電動モータのみを動力源とする電気自動車や、エンジンおよび電動モータからのエネルギーを用いて走行するハイブリッド車両などの電動車両のガタ詰め制御装置に関し、特に電動モータのクリープトルクを0にするクリープカット中に前もって、電動モータから駆動車輪までのモータ伝動系におけるガタを詰めておく技術に関するものである。
 電動車両は、運転者が車両の走行形態を指令するために行うシフト操作によって選択されたレンジに応じ電動モータを駆動し、これからの動力を車輪に伝達して電気走行を行うことができる。
 そして自動変速機搭載車のように、電動車両を走行レンジが選択された状態でクリープトルクにより微速走行(クリープ走行)させるに際しては、電動モータを、これから微小なクリープトルクが出力されるよう駆動制御し、このクリープトルクを車輪に伝達して電動車両のクリープ走行を可能にする。
 電動車両のクリープ走行制御技術としては従来、例えば特許文献1に記載のように、電動車両を上記のごとくクリープ走行可能にするほか、発進意図のない停車中など、所定のクリープカット許可条件が成立する間は、クリープ走行を未だ行うことがないことから、また電力消費を抑制するためもあって、電動モータのクリープトルクを0にするクリープカットを行うようにした技術が提案されている。
 しかし、特許文献1に記載のようにクリープカットを行う場合、その前に選択していた走行レンジと逆向きの走行レンジへ切り替えてクリープ走行を再開したり、通常の発進加速を行うとき、以下のような問題を生ずる。
 つまり、電動モータから駆動車輪までのモータ伝動系には、歯車のバックラッシュなどに起因して回転方向のガタが存在し、クリープカット直前に選択していた走行レンジと、その後のクリープ走行再開時や通常の発進加速時における走行レンジとが逆向きである場合、電動モータのトルクはクリープ走行再開時や通常の発進加速時に、モータ伝動系のガタを詰めた後にトルク伝達を開始することとなる。
 この場合、モータ伝動系のガタを詰め終えたときに、歯車打音などの異音が発生したり、ショックが発生するという問題を生ずる。
特開2007-236168号公報
 本発明は、上記の実情に鑑み、クリープカット直前の走行レンジと、クリープ走行再開時や通常の発進加速時における走行レンジとが逆向きである場合でも、上記した異音やショックの問題を生ずることのないよう、クリープ走行再開時や通常の発進加速時までにモータ伝動系のガタを詰めておくことができる電動車両のガタ詰め制御装置を提供することを目的とする。
 この目的のため、本発明による電動車両のガタ詰め制御装置は、以下のようにこれを構成する。
 先ず、本発明の要旨構成の基礎前提となる電動車両を説明するに、これは、 運転者が車両の走行形態を指令するために行うシフト操作によって選択されたレンジに応じ電動モータからの動力を車輪に伝達して走行することができ、また上記電動モータからのクリープトルクにより微速でのクリープ走行が可能であると共に、所定のクリープカット許可条件が成立する間は上記電動モータのクリープトルクを0にするクリープカットを実行可能なものである。
 本発明のガタ詰め制御装置は、かかる電動車両に対し、
 上記クリープカット許可条件が成立していて、且つ上記選択レンジが走行レンジにされているのを検知するクリープカット時走行レンジ選択検知手段と、
 該手段によりクリープカット許可条件成立中に走行レンジが選択されているのを検知した時から制限時間中、該走行レンジでの駆動方向と同方向のトルクであって、上記クリープトルクよりも小さなトルクを電動モータが出力するよう該電動モータを制御する電動モータ制御手段とを設けた構成に特徴づけられる。
 かかる本発明による電動車両のガタ詰め制御装置によれば、クリープカット許可条件成立中と、走行レンジが選択されていることとの2要件が揃った時から制限時間中、該走行レンジでの駆動方向と同方向のトルクであって、クリープトルクよりも小さなトルクを電動モータが出力するよう当該電動モータを制御することとなる。
 電動モータからの当該方向及び大きさのトルクは、モータ伝動系にガタがあった場合においても、このガタをクリープカット中に詰めておくよう機能する。
 このため、クリープカット後のクリープ走行再開や通常の発進加速がガタのない状態から開始されることになり、歯車打音などの異音が発生したり、ショックが発生するという問題を解消することができる。
本発明の一実施例になるガタ詰め制御装置を具えた車両の駆動系およびその制御系を示す概略系統図である。 図1におけるモータコントローラが実行するガタ詰め制御プログラムを示すフローチャートである。 クリープカット中に非走行レンジから走行レンジへのレンジ切り替えが行われ、クリープカット終了後に走行レンジから非走行レンジへ戻るレンジ切り替えが行われた場合において、図2のガタ詰め制御プログラムが実行されたときの動作タイムチャートである。 クリープカット開始前に非走行レンジから走行レンジへのレンジ切り替えが行われ、クリープカット終了後に走行レンジから非走行レンジへ戻るレンジ切り替えが行われた場合において、図2のガタ詰め制御プログラムが実行されたときの動作タイムチャートである。 クリープカット中に1回目の非走行レンジから走行レンジへのレンジ切り替え、および走行レンジから非走行レンジへ戻るレンジ切り替えが行われると共に、2回目の非走行レンジから走行レンジへのレンジ切り替えが行われ、クリープカット終了後に走行レンジから非走行レンジへ戻るレンジ切り替えが行われた場合において、図2のガタ詰め制御プログラムが実行されたときの動作タイムチャートである。
 以下、本発明の実施の形態を、図面に示す実施例に基づき詳細に説明する。
<構成>
 図1は、本発明の一実施例になるガタ詰め制御装置を具えた車両の駆動系およびその制御系を示し、
 本実施例において図1における車両は、左右前輪(または左右後輪)1L,1Rを駆動して走行可能な電気自動車とする。
 これら左右輪1L,1Rの駆動に際しては、電動モータ(走行動力源)2により、ディファレンシャルギヤ装置を含む減速機3を介して、当該左右輪1L,1Rの駆動を行うものとする。
 電動モータ2の駆動力制御に際しては、モータコントローラ4が、電源であるバッテリ5の電力をインバータ6により直流-交流変換して、またこの交流電力をインバータ6による制御下で電動モータ2へ供給することで、電動モータ2のトルクをモータコントローラ4での演算結果(目標モータトルク)に一致させるよう、当該電動モータ2の制御を行うものとする。
 なお、モータコントローラ4での演算結果(目標モータトルク)が、車両のクリープ走行要求に呼応したクリープトルクである場合、モータコントローラ4はインバータ6を介し電動モータ2にクリープトルク発生電流を供給する。
 このとき電動モータ2はクリープトルクを発生し、これが減速機3を介して左右輪1L,1Rへ伝達され、車両をクリープ走行させることができる。
 また、モータコントローラ4での演算結果(目標モータトルク)が、電動モータ2に回生制動作用を要求する負極性のものである場合、モータコントローラ4はインバータ6を介し電動モータ2に発電負荷を与える。
 このとき電動モータ2が回生制動作用により発電した電力は、インバータ6により交流-直流変換してバッテリ5に充電するものとする。
 モータコントローラ4には、上記の目標モータトルクを演算するための情報として、
 電気自動車の対地速度である車速VSPを検出する車速センサ7からの信号と、
 運転者によるアクセルペダル踏み込み量であるアクセル開度APO(電動モータ要求負荷)を検出するアクセル開度センサ8からの信号と、
 電動モータ2の電流(図1ではU相、V相、W相よりなる三相交流であるから電流iu,iv,iw)を検出する電流センサ9からの信号と、
 運転者が車両の走行形態を指令するために行うシフト操作によって選択されたレンジが前進走行(D)レンジ、モータ速度制限(B)レンジ(自動変速機搭載車におけるエンジンブレーキレンジに相当する)、後退走行(R)レンジ、停車(N)レンジ、駐車(P)レンジの何れであるかを検出するレンジセンサ11からの信号と、
 ブレーキペダルを踏み込み制動時にONするブレーキスイッチ12からの信号とを入力する。
 モータコントローラ4は、これら入力情報に応じて電動モータ2を制御するPWM信号を生成し、このPWM信号に応じドライブ回路を通じてインバータ6の駆動信号を生成する。
 インバータ6は、例えば各相ごとに2個のスイッチング素子(例えばIGBT等のパワー半導体素子)からなり、駆動信号に応じてスイッチング素子をON/OFFすることにより、バッテリ5から供給される直流の電流を交流に変換・逆変換し、電動モータ2に目標モータトルク対応の電流を供給する。
 電動モータ2は、インバータ6より供給される交流電流により、これに応じた駆動力を発生し、減速機3を通して左右輪1L,1Rに駆動力を伝達する。
 また車両走行中、電動モータ2が左右輪1L,1Rに連れ回される所謂逆駆動時は、電動モータ2に発電負荷を与えて電動モータ2に回生制動作用を行わせることで、車両の運動エネルギーを回生してバッテリ5に蓄電する。
<ガタ詰め制御>
 モータコントローラ4は、図2の制御プログラムを実行してガタ詰め制御を遂行することにより上記の目標モータトルクを求め、これをインバータ6へ指令して電動モータ2の駆動制御に資する。
 図2のステップS11においては、クリープカット許可条件が成立し、前記のクリープトルクを0にするクリープカットが実行されているか否かをチェックする。
 クリープカット許可条件は、ブレーキスイッチ12がONになっている制動状態であることと、且つ、車速VSPが停車状態を示していることとの2要件で、これら要件が揃っているとき、つまり発進意図のない停車状態であるとき、クリープカット許可条件が成立していてクリープカットを実行すべきとするものである。
 なおクリープカット許可条件の不成立(クリープカット禁止)は、運転者がブレーキペダル踏力を弱めてブレーキスイッチ12がOFFになったとき、つまり運転者の発進意志が認められた発進意志判定時をもって、クリープカット許可条件が不成立(クリープカット禁止)とする。
 ステップS11においてクリープカット実行中でないと判定する場合、図示せざるクリープ走行制御や、通常走行制御を行いつつ、制御をステップS12に進めて、後述のガタ詰め制御で用いる得るようシフトセレクトフラグFLAGを0にリセットすると共に、シフトセレクトフラグ継続タイマTを設定時間T1にセットして、制御をそのまま終了する。
 ステップS11でクリープカット実行中でないと判定したときに実行される図示せざるクリープ走行制御および通常走行制御のうち、本発明に係わるクリープ走行制御の概略を説明する。
 上記のクリープカット許可条件の不成立(クリープカット禁止)中、車速VSPが極低くて、且つ、アクセル開度APOが極小さいクリープ走行領域である間、モータコントローラ4はクリープ走行が要求されていると判定し、目標モータトルクにクリープトルクを設定して、インバータ6を介し電動モータ2にクリープトルク発生電流を供給する。
 このとき電動モータ2はクリープトルクを発生し、これが減速機3を介して左右輪1L,1Rへ伝達され、車両をクリープ走行させることができる。
 ステップS11で、クリープカット許可条件の成立によりクリープトルクを0にするクリープカットが実行されていると判定する間、制御をステップS13へ進め、選択中のレンジが走行(D,B,R)レンジか、非走行(N,P)レンジの何れであるかをチェックする。
 従ってステップS11およびステップS13は、本発明におけるクリープカット時走行レンジ選択検知手段に相当する。
 ステップS13で非走行(N,P)レンジが選択されていると判定する場合、ガタ詰め制御が不要であることから、ステップS12を実行して制御をそのまま終了する。
 ステップS13で走行(D,B,R)レンジが選択されていると判定する場合は、制御をステップS14以降に進めて以下のごとくにガタ詰め制御を遂行する。
 ステップS14においては、ステップS13で走行(D,B,R)レンジが選択されていると判定してから1回目か否かをチェックし、初回に1回だけ実行されるステップS15において、前記のシフトセレクトフラグ継続タイマTを0にリセットした後、制御をステップS16に進める。
 ここで、ステップS13で走行(D,B,R)レンジが選択されていると判定してから1回目か否かのチェックについて、1回目と判定する場合は、非走行(N,P)レンジから走行(D,B,R)レンジが選択されたときのみならず、当然ながらD→R,R→Dのように現在のレンジと異なる走行レンジへの選択があったときも含まれる。
 しかし以後は、ステップS14がステップS15をバイパスして制御をステップS16へ進めることから、上記のシフトセレクトフラグ継続タイマTは、ステップS11でクリープカット許可条件の成立によりクリープカットが実行されていると判定し、且つ、ステップS13で走行(D,B,R)レンジが選択されていると判定した瞬時からの経過時間を計測可能となる。
 ステップS16においては、前記のシフトセレクトフラグFLAGを1にセットし、次のステップS17においては、シフトセレクトフラグ継続タイマTを歩進(インクリメント)させて、上記経過時間の計測を行う。
 ステップS18においては、シフトセレクトフラグ継続タイマTが前記の設定時間T1未満であるか否かをチェックする。
 つまり、ステップS11でクリープカット許可条件の成立によりクリープカットが実行されていると判定し、且つ、ステップS13で走行(D,B,R)レンジが選択されていると判定した瞬時からの経過時間が設定時間T1内か否かをチェックする。
 当初はT<T1であるため、ステップS19において、シフトセレクトフラグFLAGが1で、且つ、選択レンジが前進走行(D,B)レンジか否かを、またステップS20において、シフトセレクトフラグFLAGが1で、且つ、選択レンジが後退走行(R)レンジか否かをチェックする。
 ステップS19でシフトセレクトフラグFLAG=1、且つ、選択レンジ=前進走行(D,B)レンジと判定するときは、ステップS21において、当該前進走行レンジでの駆動方向と同方向の前進方向のガタ詰めトルクを、インバータ6への目標モータトルクとして出力する。
 ステップS20でシフトセレクトフラグFLAG=1、且つ、選択レンジ=後退走行(R)レンジと判定するときは、ステップS22において、当該後退走行レンジでの駆動方向と同方向の後退方向のガタ詰めトルクを、インバータ6への目標モータトルクとして出力する。
 従ってステップS21およびステップS22はそれぞれ、本発明における電動モータ制御手段に相当する。
 ステップS19およびステップS20の何れも「No」の判定である場合は、ステップS21およびステップS22を実行することなく、つまりガタ詰めトルクを出力することなく目標モータトルクを、ステップS11での「クリープカット実行中」に呼応した0に維持する。
 ステップS18でシフトセレクトフラグ継続タイマTが前記の設定時間T1以上になったと判定するとき、つまり、ステップS11でクリープカット許可条件の成立によりクリープカットが実行されていると判定し、且つ、ステップS13で走行(D,B,R)レンジが選択されていると判定した瞬時から設定時間T1が経過したとき、ステップS12において、シフトセレクトフラグFLAGを0にリセットすると共に、シフトセレクトフラグ継続タイマTを設定時間T1にセットする。
<作用効果>
 本実施例の図2によるガタ詰め制御によれば、図3~5のタイムチャートに示すようなクリープカットおよびレンジ切り替えが行われた場合につき代表的に説明すると、以下のような作用効果を奏し得る。
 (1)図3は、瞬時t1~t4のクリープカット実行中の瞬時t2に非走行レンジから走行レンジへのレンジ切り替えが行われ、クリープカットを実行しなくなった瞬時t4よりも後の瞬時t5に走行レンジから非走行レンジへのレンジ切り替えが行われた場合の動作タイムチャートである。
 瞬時t1にクリープカットが実行されるようになっても、未だ非走行レンジであるため、図2の制御プログラムはステップS11、ステップS13、ステップS12を含むループを選択する。
 このため、シフトセレクトフラグFLAGが0、シフトセレクトフラグ継続タイマTが設定時間T1のままである。
 従って、ステップS21およびステップS22が実行されることがなく、電動モータ2はガタ詰めトルクを出力しないが、未だ非走行レンジであるためモータ伝動系のガタ詰めは不要である。
 瞬時t1~t4のクリープカット実行中の瞬時t2に非走行レンジから走行レンジへのレンジ切り替えが行われると、
 図2の制御プログラムは、初回はステップS11、ステップS13、ステップS14、ステップS15、ステップS16、ステップS17、ステップS18、ステップS19(またはステップS20)、ステップS21(またはステップS22)を含むループを選択し、
 以後は、ステップS11、ステップS13、ステップS16、ステップS17、ステップS18、ステップS19(またはステップS20)、ステップS21(またはステップS22)を含むループを選択する。
 このため、シフトセレクトフラグFLAGが1にされ(ステップS16)、シフトセレクトフラグ継続タイマTがリセット後(ステップS15)、歩進されて(ステップS17)、当該瞬時t2からの経過時間を計測する。
 このシフトセレクトフラグ継続タイマTが設定時間T1未満であるt2~t3の間、選択レンジが前進走行レンジであれば、このことと、シフトセレクトフラグFLAG=1とで、ステップS21が実行される結果、電動モータ2が図3の最下段に実線で示す前進回転方向のガタ詰めトルクを出力し、モータ伝動系のガタ詰めを行うことができる。
 またシフトセレクトフラグ継続タイマTが設定時間T1未満であるt2~t3の間、選択レンジが後退走行レンジであれば、このことと、シフトセレクトフラグFLAG=1とで、ステップS22が実行される結果、電動モータ2が図3の最下段に破線で示す後退回転方向のガタ詰めトルクを出力し、モータ伝動系のガタ詰めを行うことができる。
 シフトセレクトフラグ継続タイマTが設定時間T1になる瞬時t3では、ステップS18がステップS12を選択するようになり、次回のガタ詰め制御に備えてシフトセレクトフラグFLAGを0にリセットすると共に、シフトセレクトフラグ継続タイマTに設定時間T1をセットする。
 そして、かようにステップS18がステップS12を選択するようになることで瞬時t3以後は、ステップS21およびステップS22が実行されなくなる結果、電動モータ2はガタ詰めトルクを出力しなくなるが、
 瞬時t2から設定時間T1中に電動モータ2から出力されたガタ詰めトルクにより既にモータ伝動系のガタ詰めが完了しており、瞬時t4以後におけるクリープ走行再開時や、通常の発進加速時に異音やショックを生ずることがない。
 以上の作用効果に照らして、図2のステップS21およびステップS22におけるガタ詰めトルクは、クリープトルクよりも小さく、好ましくはモータ伝動系のガタを無くすのに必要な最小限のトルク値とするのが、電動モータ2の消費電力を節約する意味合いにおいてよい。
 また設定時間T1も、上記のガタ詰めトルクがモータ伝動系のガタを無くすのに必要な最小限の時間とするのが、電動モータ2の消費電力を節約する意味合いにおいて好ましい。
 (2) 図4は、瞬時t1に非走行レンジから走行レンジへのレンジ切り替えが行われ、瞬時t4に走行レンジから非走行レンジへのレンジ切り替えが行われ、この間における瞬時t2~t3中にクリープカットが実行された場合の動作タイムチャートである。
 瞬時t2のクリープカット開始時までは、図2の制御プログラムがステップS11、ステップS12を含むループを選択するため、シフトセレクトフラグFLAGが0、シフトセレクトフラグ継続タイマTが設定時間T1のままである。
 クリープカットが開始される瞬時t2に至ると、既に走行レンジが選択されているため、図2の制御プログラムは、初回はステップS11、ステップS13、ステップS14、ステップS15、ステップS16、ステップS17、ステップS18、ステップS19(またはステップS20)、ステップS21(またはステップS22)を含むループを選択し、
 以後は、ステップS11、ステップS13、ステップS16、ステップS17、ステップS18、ステップS19(またはステップS20)、ステップS21(またはステップS22)を含むループを選択する。
 このため、シフトセレクトフラグFLAGが1にされ(ステップS16)、シフトセレクトフラグ継続タイマTがリセット後(ステップS15)、歩進されて(ステップS17)、当該瞬時t2からの経過時間を計測する。
 このシフトセレクトフラグ継続タイマTが設定時間T1未満であるt2~t3の間、選択レンジが前進走行レンジであれば、このことと、シフトセレクトフラグFLAG=1とで、ステップS21が実行される結果、電動モータ2が図4の最下段に実線で示す前進回転方向のガタ詰めトルクを出力し、モータ伝動系のガタ詰めを行うことができる。
 またシフトセレクトフラグ継続タイマTが設定時間T1未満であるt2~t3の間、選択レンジが後退走行レンジであれば、このことと、シフトセレクトフラグFLAG=1とで、ステップS22が実行される結果、電動モータ2が図4の最下段に破線で示す後退回転方向のガタ詰めトルクを出力し、モータ伝動系のガタ詰めを行うことができる。
 シフトセレクトフラグ継続タイマTが設定時間T1になる前の瞬時t3にクリープカット許可条件が成立しなくなってクリープカットが実行されなくなると、ステップS11がステップS12を選択するようになり、次回のガタ詰め制御に備えてシフトセレクトフラグFLAGを0にリセットすると共に、シフトセレクトフラグ継続タイマTに設定時間T1をセットする。
 そして、かようにステップS11がステップS12を選択するようになることで瞬時t3以後は、ステップS21およびステップS22が実行されなくなる結果、電動モータ2はガタ詰めトルクを出力しなくなるが、
 瞬時t2からクリープカット中止瞬時t3までの間に電動モータ2から出力されたガタ詰めトルクによりモータ伝動系のガタが小さくされており、瞬時t3以後におけるクリープ走行再開時や、通常の発進加速時に異音やショックを生ずることがない。
 またクリープカット中止瞬時t3に直ちに、電動モータ2をガタ詰めトルク制御から、クリープカット制御終了(クリープ走行再開制御や、通常の発進加速制御)へと移行させるため、これらクリープ走行の再開や、通常の発進加速が遅れるのを防止することができる。
 (3) 図5は、瞬時t1~t5のクリープカット実行中の瞬時t2に非走行レンジから走行レンジへのレンジ切り替えが行われ、瞬時t3に走行レンジから非走行レンジへ戻すレンジ切り替えが行われ、瞬時t4に再び非走行レンジから走行レンジへのレンジ切り替えが行われ、クリープカットを実行しなくなった瞬時t5よりも後の瞬時t6に走行レンジから非走行レンジへ戻すレンジ切り替えが行われた場合の動作タイムチャートである。
 瞬時t1にクリープカットが実行されるようになっても、未だ非走行レンジであるため、図2の制御プログラムはステップS11、ステップS13、ステップS12を含むループを選択する。
 このため、シフトセレクトフラグFLAGが0、シフトセレクトフラグ継続タイマTが設定時間T1のままである。
 従って、ステップS21およびステップS22が実行されることがなく、電動モータ2はガタ詰めトルクを出力しないが、未だ非走行レンジであるためモータ伝動系のガタ詰めは不要である。
 瞬時t1~t5のクリープカット実行中の瞬時t2に非走行レンジから走行レンジへのレンジ切り替えが行われると、
 図2の制御プログラムは、初回はステップS11、ステップS13、ステップS14、ステップS15、ステップS16、ステップS17、ステップS18、ステップS19(またはステップS20)、ステップS21(またはステップS22)を含むループを選択し、
 以後は、ステップS11、ステップS13、ステップS16、ステップS17、ステップS18、ステップS19(またはステップS20)、ステップS21(またはステップS22)を含むループを選択する。
 このため、シフトセレクトフラグFLAGが1にされ(ステップS16)、シフトセレクトフラグ継続タイマTがリセット後(ステップS15)、歩進されて(ステップS17)、当該瞬時t2からの経過時間を計測する。
 このシフトセレクトフラグ継続タイマTが設定時間T1未満であるt2~t3の間、選択レンジが前進走行レンジであれば、このことと、シフトセレクトフラグFLAG=1とで、ステップS21が実行される結果、電動モータ2が図5の最下段に実線で示す前進回転方向のガタ詰めトルクを出力し、モータ伝動系のガタ詰めを行うことができる。
 またシフトセレクトフラグ継続タイマTが設定時間T1未満であるt2~t3の間、選択レンジが後退走行レンジであれば、このことと、シフトセレクトフラグFLAG=1とで、ステップS22が実行される結果、電動モータ2が図5の最下段に破線で示す後退回転方向のガタ詰めトルクを出力し、モータ伝動系のガタ詰めを行うことができる。
 シフトセレクトフラグ継続タイマTが設定時間T1未満であっても、瞬時t3に走行レンジから非走行レンジへ戻すレンジ切り替えが行われると、ステップS13がステップS12を選択するようになり、次回のガタ詰め制御に備えてシフトセレクトフラグFLAGを0にリセットすると共に、シフトセレクトフラグ継続タイマTに設定時間T1をセットする。
 そして、かようにステップS13がステップS12を選択するようになることで瞬時t3以後は、ステップS21およびステップS22が実行されなくなる結果、電動モータ2はガタ詰めトルクを出力しなくなるが、
 瞬時t2からレンジ切り替え瞬時t3までの間に電動モータ2から出力されたガタ詰めトルクによりモータ伝動系のガタが小さくされており、瞬時t3以後におけるクリープ走行再開時や、通常の発進加速時に異音やショックを生ずることがない。
 またレンジ切り替え瞬時t3に直ちに、電動モータ2をガタ詰めトルク制御から、クリープカット制御に復帰させるため、電動モータ2が無駄にガタ詰めトルクを出力して電力を消費するのを回避することができる。
 その後、クリープカット中の瞬時t4に再び非走行レンジから走行レンジへのレンジ切り替えが行われると、
 図2の制御プログラムは、初回はステップS11、ステップS13、ステップS14、ステップS15、ステップS16、ステップS17、ステップS18、ステップS19(またはステップS20)、ステップS21(またはステップS22)を含むループを選択し、
 以後は、ステップS11、ステップS13、ステップS16、ステップS17、ステップS18、ステップS19(またはステップS20)、ステップS21(またはステップS22)を含むループを選択する。
 このため、シフトセレクトフラグFLAGが1にされ(ステップS16)、シフトセレクトフラグ継続タイマTがリセット後(ステップS15)、歩進されて(ステップS17)、当該瞬時t2からの経過時間を計測する。
 このシフトセレクトフラグ継続タイマTが設定時間T1未満であるt4~t5の間、選択レンジが前進走行レンジであれば、このことと、シフトセレクトフラグFLAG=1とで、ステップS21が実行される結果、電動モータ2が図5の最下段に実線で示す前進回転方向のガタ詰めトルクを出力し、モータ伝動系のガタ詰めを行うことができる。
 またシフトセレクトフラグ継続タイマTが設定時間T1未満であるt4~t5の間、選択レンジが後退走行レンジであれば、このことと、シフトセレクトフラグFLAG=1とで、ステップS22が実行される結果、電動モータ2が図5の最下段に破線で示す後退回転方向のガタ詰めトルクを出力し、モータ伝動系のガタ詰めを行うことができる。
 シフトセレクトフラグ継続タイマTが設定時間T1未満であっても、瞬時t5にクリープカット許可条件の不成立によりクリープカットが実行されなくなると、ステップS11がステップS12を選択するようになり、次回のガタ詰め制御に備えてシフトセレクトフラグFLAGを0にリセットすると共に、シフトセレクトフラグ継続タイマTに設定時間T1をセットする。
 そして、かようにステップS11がステップS12を選択するようになることで瞬時t5以後は、ステップS21およびステップS22が実行されなくなる結果、電動モータ2はガタ詰めトルクを出力しなくなるが、
 瞬時t4からクリープカット許可条件不成立瞬時t5までの間に電動モータ2から出力されたガタ詰めトルクによりモータ伝動系のガタが小さくされており、瞬時t5以後におけるクリープ走行再開時や、通常の発進加速時に異音やショックを生ずることがない。
 またクリープカット許可条件不成立瞬時t5に直ちに、電動モータ2をガタ詰めトルク制御から、クリープカット制御終了(クリープ走行再開制御や、通常の発進加速制御)へと移行させるため、これらクリープ走行の再開や、通常の発進加速が遅れるのを防止することができる。
<その他の実施例>
 なお上記した実施例では、クリープカット許可条件の成立でクリープカットが行われていることと、走行レンジが選択されている条件が揃ったら、モータ伝動系にガタが存在しているか否かにかかわらず、無条件に現在の走行レンジでの駆動方向と同方向のガタ詰めトルクを発生させることとしたが、
 前回におけるレンジ切り替えの種類を記憶しておき、今回におけるレンジ切り替えの種類との対比により、現在の走行レンジでの駆動方向と同方向のガタがモータ伝動系に存在しているか否かを判定し、存在している場合のみ現在の走行レンジでの駆動方向と同方向のガタ詰めトルクを発生させるようにしてもよい。
 この場合、現在の走行レンジでの駆動方向と同方向のガタがモータ伝動系に存在していないとき無駄にガタ詰めトルクを発生させることがなく、その分だけ更に消費電力を節約することができて有利である。

Claims (4)

  1.  運転者が車両の走行形態を指令するために行うシフト操作によって選択されたレンジに応じ電動モータからの動力を車輪に伝達して走行することができ、前記電動モータからのクリープトルクにより微速でのクリープ走行が可能であると共に、所定のクリープカット許可条件が成立する間は前記電動モータのクリープトルクを0にするクリープカットを実行可能な電動車両において、
     前記クリープカット許可条件が成立していて、且つ前記選択レンジが走行レンジにされているのを検知するクリープカット時走行レンジ選択検知手段と、
     該手段によりクリープカット許可条件成立中に走行レンジが選択されているのを検知した時から制限時間中、該走行レンジでの駆動方向と同方向のトルクであって、前記クリープトルクよりも小さなトルクを電動モータが出力するよう該電動モータを制御する電動モータ制御手段とを具備してなる電動車両のガタ詰め制御装置。
  2.  請求項1に記載された電動車両のガタ詰め制御装置において、
     前記走行レンジでの駆動方向と同方向のトルクは、前記電動モータから車輪までのモータ伝動系におけるガタを無くすのに必要な最小限のガタ詰めトルクである電動車両のガタ詰め制御装置。
  3.  請求項1または2に記載された電動車両のガタ詰め制御装置において、
     前記制限時間は、前記クリープカット許可条件成立中に走行レンジが選択されている時間と、設定時間との短い方をもって制限時間と定めたものである電動車両のガタ詰め制御装置。
  4.  請求項3に記載された電動車両のガタ詰め制御装置において、
     前記設定時間は、前記走行レンジでの駆動方向と同方向のトルクが前記電動モータから車輪までのモータ伝動系におけるガタを無くすのに必要な最小限の時間である電動車両のガタ詰め制御装置。
PCT/JP2011/059252 2010-05-31 2011-04-14 電動車両のガタ詰め制御装置 WO2011152129A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
RU2012158124/11A RU2534491C2 (ru) 2010-05-31 2011-04-14 Устройство управления уменьшением зазора для транспортного средства с электроприводом
CN201180026801.XA CN102917912B (zh) 2010-05-31 2011-04-14 电动车辆的振动降低控制装置
EP11789539.1A EP2578440B1 (en) 2010-05-31 2011-04-14 Play-reducing control apparatus for electrically driven vehicle
BR112012030661A BR112012030661B1 (pt) 2010-05-31 2011-04-14 aparelho de controle de redução de folga para veículo eletricamente acionado
KR1020127033946A KR101524343B1 (ko) 2010-05-31 2011-04-14 전동 차량의 백래시 조정 제어 장치
US13/699,978 US20130066509A1 (en) 2010-05-31 2011-04-14 Play-reducing control apparatus for electrically driven vehicle
MX2012013805A MX2012013805A (es) 2010-05-31 2011-04-14 Aparato de control de reduccion de aflojamiento para un vehiculo impulsado electricamente.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010123780A JP5700955B2 (ja) 2010-05-31 2010-05-31 電動車両のガタ詰め制御装置
JP2010-123780 2010-05-31

Publications (1)

Publication Number Publication Date
WO2011152129A1 true WO2011152129A1 (ja) 2011-12-08

Family

ID=45066514

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/059252 WO2011152129A1 (ja) 2010-05-31 2011-04-14 電動車両のガタ詰め制御装置

Country Status (9)

Country Link
US (1) US20130066509A1 (ja)
EP (1) EP2578440B1 (ja)
JP (1) JP5700955B2 (ja)
KR (1) KR101524343B1 (ja)
CN (1) CN102917912B (ja)
BR (1) BR112012030661B1 (ja)
MX (1) MX2012013805A (ja)
RU (1) RU2534491C2 (ja)
WO (1) WO2011152129A1 (ja)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9052006B1 (en) 2013-12-13 2015-06-09 Hyundai Motor Company Controlling method and system for reducing tip-in shock
CN104071031B (zh) * 2013-12-30 2019-04-23 上海大郡动力控制技术有限公司 一种纯电动汽车起步抖动的抑制方法
JP6365295B2 (ja) * 2014-12-24 2018-08-01 トヨタ自動車株式会社 ハイブリッド車両の制御装置
FR3033758B1 (fr) * 2015-03-16 2017-03-31 Peugeot Citroen Automobiles Sa Ensemble de traction pour vehicule automobile
MX361920B (es) * 2015-06-15 2018-12-19 Nissan Motor Método de control de vehículo y dispositivo de control de vehículo.
CN105857112A (zh) * 2016-03-31 2016-08-17 北京长城华冠汽车科技股份有限公司 一种电动汽车的扭矩输出方法、装置和电动汽车
JP2018085878A (ja) * 2016-11-25 2018-05-31 スズキ株式会社 電動車両の駆動制御装置
CN106585612B (zh) * 2016-12-22 2019-07-05 潍柴动力股份有限公司 一种纯电动汽车防抖控制方法及装置
CN107512197A (zh) * 2017-08-21 2017-12-26 合肥翔望智能科技有限公司 一种电动车起步异响控制方法
SE542083C2 (en) * 2017-10-02 2020-02-18 Scania Cv Ab Method and system for controlling at least one electrical machine to eliminate drivetrain backlash
US11808318B2 (en) * 2018-03-20 2023-11-07 Lord Corporation Active vibration control using circular force generators
JP6923498B2 (ja) 2018-09-27 2021-08-18 株式会社Subaru 車両駆動装置
JP7207004B2 (ja) 2019-02-25 2023-01-18 トヨタ自動車株式会社 電動車両の制御装置
JP7207031B2 (ja) 2019-03-11 2023-01-18 トヨタ自動車株式会社 電動車両の制御装置
CN112172541B (zh) * 2020-09-28 2022-08-05 武汉格罗夫氢能汽车有限公司 一种燃料电池氢能汽车限速的控制方法
CN112208513B (zh) * 2020-10-20 2022-08-12 睿驰电装(大连)电动系统有限公司 消除传动系间隙产生的噪音方法和装置
CN113263923A (zh) * 2021-07-05 2021-08-17 珠海格力电器股份有限公司 电动车辆的电机控制方法、装置、存储介质及整车控制器

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003065106A (ja) * 2001-08-28 2003-03-05 Toyota Motor Corp 動力出力装置および電気自動車
JP2007153110A (ja) * 2005-12-05 2007-06-21 Toyota Motor Corp 車両用駆動装置の制御装置
JP2007236168A (ja) 2006-03-03 2007-09-13 Nissan Motor Co Ltd 車両制御装置
JP2010045899A (ja) * 2008-08-11 2010-02-25 Toyota Motor Corp 車両およびその制御方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3612711B2 (ja) * 2002-07-03 2005-01-19 トヨタ自動車株式会社 自動車
JP3610970B2 (ja) * 2002-08-30 2005-01-19 日産自動車株式会社 四輪駆動車両の駆動力制御装置
RU2285847C1 (ru) * 2005-02-10 2006-10-20 Общевойсковая Академия Вооруженных Сил Российской Федерации (Оа Вс Рф) Система регулирования плавности переключения передач гусеничных и колесных машин
JP4127310B2 (ja) * 2006-12-27 2008-07-30 トヨタ自動車株式会社 車両の制御装置、制御方法、その方法を実現するプログラムおよびそのプログラムを記録した記録媒体
KR101054756B1 (ko) * 2009-07-31 2011-08-05 현대자동차주식회사 하이브리드 차량의 백래시 진동 저감 방법

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003065106A (ja) * 2001-08-28 2003-03-05 Toyota Motor Corp 動力出力装置および電気自動車
JP2007153110A (ja) * 2005-12-05 2007-06-21 Toyota Motor Corp 車両用駆動装置の制御装置
JP2007236168A (ja) 2006-03-03 2007-09-13 Nissan Motor Co Ltd 車両制御装置
JP2010045899A (ja) * 2008-08-11 2010-02-25 Toyota Motor Corp 車両およびその制御方法

Also Published As

Publication number Publication date
KR20130036744A (ko) 2013-04-12
RU2012158124A (ru) 2014-07-20
CN102917912B (zh) 2016-05-25
BR112012030661A2 (pt) 2016-08-16
JP5700955B2 (ja) 2015-04-15
EP2578440A4 (en) 2017-03-15
MX2012013805A (es) 2012-12-17
US20130066509A1 (en) 2013-03-14
JP2011250648A (ja) 2011-12-08
RU2534491C2 (ru) 2014-11-27
EP2578440A1 (en) 2013-04-10
BR112012030661B1 (pt) 2019-12-03
EP2578440B1 (en) 2019-08-28
CN102917912A (zh) 2013-02-06
KR101524343B1 (ko) 2015-05-29

Similar Documents

Publication Publication Date Title
JP5700955B2 (ja) 電動車両のガタ詰め制御装置
EP2589509B1 (en) Creep cut-off control device for electric vehicle
JP4516577B2 (ja) 車両駆動装置
WO2012002049A1 (ja) 電動車両のクリープカット制御装置
JP2008001349A (ja) ハイブリッド車両のエンジン始動制御装置及びハイブリッド車両のエンジン始動制御方法。
US20150222208A1 (en) Vehicle
JP4720549B2 (ja) 車両の制御装置
JP2007307995A (ja) ハイブリッド車両の制御装置及びハイブリッド車両の制御方法。
JP2011131829A (ja) ハイブリッド電気自動車の制御装置
JP2007168551A (ja) ハイブリッド車両の制御装置
WO2014083955A1 (ja) 走行制御装置
JP2007261415A (ja) ハイブリッド自動車の制御装置
JP5386935B2 (ja) ハイブリッド車両のエンジン始動制御装置
JP4767041B2 (ja) 電気自動車の制御装置
JP3951955B2 (ja) 車両用走行制御装置
JP2005006395A (ja) ハイブリッド車両の発進駆動力制御装置
JP5691383B2 (ja) 車両用走行制御装置
JP4439310B2 (ja) ハイブリッド車両
CN113060128B (zh) 车辆
JP2011259601A (ja) 電動車両のモータロック対策制御装置
JP4179999B2 (ja) ハイブリッド車両
WO2021100802A1 (ja) 車両用制御装置
JP5077038B2 (ja) シリーズ走行方式のハイブリッド型産業車両におけるエンジン制御方法および制御装置
JP2008007045A (ja) ハイブリッド車両の制御装置
JP2004232486A (ja) 内燃機関の燃料噴射制御装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180026801.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11789539

Country of ref document: EP

Kind code of ref document: A1

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2011789539

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13699978

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: MX/A/2012/013805

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 4099/KOLNP/2012

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 20127033946

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2012158124

Country of ref document: RU

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112012030661

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112012030661

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20121130