WO2011125282A1 - シリコンエピタキシャルウェーハ及びその製造方法、並びに貼り合わせsoiウェーハ及びその製造方法 - Google Patents

シリコンエピタキシャルウェーハ及びその製造方法、並びに貼り合わせsoiウェーハ及びその製造方法 Download PDF

Info

Publication number
WO2011125282A1
WO2011125282A1 PCT/JP2011/001175 JP2011001175W WO2011125282A1 WO 2011125282 A1 WO2011125282 A1 WO 2011125282A1 JP 2011001175 W JP2011001175 W JP 2011001175W WO 2011125282 A1 WO2011125282 A1 WO 2011125282A1
Authority
WO
WIPO (PCT)
Prior art keywords
wafer
angle
silicon
silicon epitaxial
single crystal
Prior art date
Application number
PCT/JP2011/001175
Other languages
English (en)
French (fr)
Inventor
正弘 加藤
岡 哲史
徳弘 小林
徹 石塚
能登 宣彦
Original Assignee
信越半導体株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 信越半導体株式会社 filed Critical 信越半導体株式会社
Priority to EP11765184.4A priority Critical patent/EP2555227B1/en
Priority to CN201180017235.6A priority patent/CN102859649B/zh
Priority to KR1020127024972A priority patent/KR101729474B1/ko
Priority to US13/582,614 priority patent/US8823130B2/en
Publication of WO2011125282A1 publication Critical patent/WO2011125282A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02381Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/02433Crystal orientation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/0257Doping during depositing
    • H01L21/02573Conductivity type
    • H01L21/02576N-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • H01L21/7624Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology
    • H01L21/76251Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology using bonding techniques
    • H01L21/76254Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology using bonding techniques with separation/delamination along an ion implanted layer, e.g. Smart-cut, Unibond
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78603Thin film transistors, i.e. transistors with a channel being at least partly a thin film characterised by the insulating substrate or support

Definitions

  • the present invention relates to a silicon epitaxial wafer in which a silicon epitaxial layer is formed on the main surface of a silicon single crystal substrate, a manufacturing method thereof, a bonded SOI wafer, and a manufacturing method thereof.
  • a silicon single crystal substrate used as a semiconductor substrate is manufactured by, for example, slicing, chamfering, lapping, etching, mirror polishing, and the like on a silicon single crystal ingot pulled up by a CZ (Czochralski) method.
  • a method of vapor-phase growth of the silicon epitaxial layer by supplying silicon raw material to the main surface of the silicon single crystal substrate under a high temperature condition is also used.
  • a silicon epitaxial wafer hereinafter sometimes simply referred to as an epitaxial wafer
  • unevenness is formed on the surface depending on conditions, thereby deteriorating device characteristics.
  • Patent Document 1 proposes a technique for controlling the crystallographic step density of the main surface of a silicon single crystal substrate to be epitaxially grown to about 10 10 pieces / cm 2 or less.
  • Patent Document 2 proposes a method for reducing irregularities called haze by defining the angle range of the crystal axis with respect to the surface of the silicon single crystal substrate.
  • Patent Document 3 when an epitaxial silicon layer is grown on a silicon single crystal substrate having a defect called COP (Crystal Originated Particle), in order to prevent unevenness called tear drop from occurring, A technique for defining an angle range of a crystal axis with respect to a crystal substrate surface has been proposed.
  • COP Crystal Originated Particle
  • the present invention has been made in view of the above problems, and is a case where an epitaxial layer having a high dopant concentration of 1 ⁇ 10 19 / cm 3 or more is formed on the main surface of a silicon single crystal substrate.
  • Another object of the present invention is to provide a silicon epitaxial wafer in which striped irregularities on the surface of the epitaxial layer are suppressed, a manufacturing method thereof, a bonded SOI wafer using the silicon epitaxial wafer, and a manufacturing method thereof. .
  • the present invention provides a silicon epitaxial wafer obtained by vapor-phase growth of a silicon epitaxial layer on the main surface of a silicon single crystal substrate, the main surface of the silicon single crystal substrate having a [100] axis. With respect to the (100) plane, it is inclined by an angle ⁇ in the [011] direction or [0-1-1] direction, and is inclined by an angle ⁇ in the [01-1] direction or [0-11] direction.
  • a silicon epitaxial wafer characterized in that ⁇ and angle ⁇ are less than 10 ′, and the dopant concentration of the silicon epitaxial layer is 1 ⁇ 10 19 / cm 3 or more.
  • the main surface of the silicon single crystal substrate is tilted only in a specific direction substantially from the (100) plane (in the [011] direction or [0-1] from the (100) plane with respect to the [100] axis. -1] incline by an angle ⁇ , and incline by an angle ⁇ in the [01-1] direction or the [0-11] direction so that the angle ⁇ and the angle ⁇ are less than 10 ′)
  • the dopant may be phosphorus.
  • the silicon single crystal substrate has a main surface with respect to the [100] axis. Inclined from the (100) plane by the angle ⁇ in the [011] direction or the [0-1-1] direction, and inclined by the angle ⁇ in the [01-1] direction or the [0-11] direction.
  • a silicon epitaxial characterized in that a silicon single crystal substrate having an angle ⁇ of less than 10 ′ is used, and an epitaxial layer having a dopant concentration of 1 ⁇ 10 19 / cm 3 or more is vapor-phase grown on the main surface of the silicon single crystal substrate.
  • a method for manufacturing a wafer is provided.
  • the dopant can be phosphorus.
  • the silicon epitaxial wafer manufactured by the above method is used as the bond wafer and / or the base wafer.
  • a method for manufacturing a bonded SOI wafer characterized by manufacturing a bonded SOI wafer.
  • the silicon epitaxial wafer manufactured by the above method is used as a bond wafer, a bonded SOI wafer having an SOI layer having a high concentration (dopant concentration of 1 ⁇ 10 19 / cm 3 or more) can be manufactured. it can.
  • a bonded SOI wafer having a high concentration layer (epitaxial layer) immediately below the insulating film (buried oxide film) can be manufactured.
  • the silicon epitaxial wafer manufactured by the above method can be used for both the bond wafer and the base wafer.
  • a bonded SOI wafer in which at least a buried oxide film and an SOI layer are sequentially formed on the base wafer, and the dopant concentration of the SOI layer is 1 ⁇ 10 19 / cm 3 or more.
  • the SOI layer main surface is inclined by an angle ⁇ in the [011] direction or the [0-1-1] direction from the (100) plane with respect to the [100] axis, and the [01-1] direction or [
  • the bonded SOI wafer is characterized in that it is inclined by an angle ⁇ in the 0-11] direction, and the angle ⁇ and the angle ⁇ are less than 10 ′.
  • Such a bonded SOI wafer of the present invention is a bonded SOI wafer having a high-concentration SOI layer having a dopant concentration of 1 ⁇ 10 19 / cm 3 or more, and further improved adhesion at the bonding interface. As a result, a high-quality bonded SOI wafer in which the occurrence of defects due to poor bonding is suppressed is obtained.
  • the base wafer is a silicon epitaxial wafer obtained by vapor-phase-growing a silicon epitaxial layer having a dopant concentration of 1 ⁇ 10 19 / cm 3 or more on a silicon single crystal substrate, and the main surface of the silicon epitaxial wafer is [ Inclined by the angle ⁇ in the [011] direction or [0-1-1] direction from the (100) plane with respect to the [100] axis, and inclined by the angle ⁇ in the [01-1] direction or [0-11] direction.
  • the angle ⁇ and the angle ⁇ can be less than 10 ′.
  • the base wafer is the silicon epitaxial wafer, it can have a high-concentration layer (epitaxial layer) immediately below the buried oxide film, and can further adhere to the bonding interface of the bonded SOI wafer.
  • the occurrence of defects in the bonded SOI wafer is greatly suppressed.
  • a bonded SOI wafer in which at least a buried oxide film and an SOI layer are sequentially formed on the base wafer, the base wafer having a dopant concentration of 1 ⁇ 10 19 on a silicon single crystal substrate.
  • a silicon epitaxial wafer obtained by vapor phase growth and the main surface of the silicon epitaxial wafer has a [011] direction or [0-1-] from the (100) plane with respect to the [100] axis. 1) Inclined by an angle ⁇ in the direction, and inclined by an angle ⁇ in the [01-1] direction or the [0-11] direction, and the angle ⁇ and the angle ⁇ are less than 10 ′
  • An SOI wafer is provided.
  • Such a bonded SOI wafer of the present invention becomes a bonded SOI wafer having a high-concentration layer (epitaxial layer) directly under the buried oxide film, and the adhesion at the bonding interface is further improved. This results in a high-quality bonded SOI wafer in which the occurrence of defects due to poor alignment is suppressed.
  • the dopant may be phosphorus.
  • an epitaxial wafer in which an epitaxial layer having a high dopant concentration of 1 ⁇ 10 19 / cm 3 or more is formed on the main surface of a silicon single crystal substrate. It is possible to provide a silicon epitaxial wafer in which the striped unevenness is suppressed and a method for manufacturing the same.
  • a bonded SOI wafer having a high-quality, high-concentration (dopant concentration of 1 ⁇ 10 19 / cm 3 or more) SOI layer in which generation of defects is suppressed, or an insulating film (buried oxide) It is possible to provide a bonded SOI wafer having a high concentration layer (epitaxial layer) directly under the film) and a method for manufacturing these.
  • (A) is a display with the Miller index indicating the [0-1-1] direction
  • (b) is a display with the Miller index indicating the [01-1] direction
  • (c) is a display with the [0-11] direction. It is the display by the Miller index which shows.
  • It is a longitudinal section showing a silicon epitaxial wafer concerning the present invention. It is a figure for demonstrating the inclination (off angle) of the main surface of a silicon single crystal substrate. It is a figure which shows the inclination range of the main surface of a silicon single crystal substrate. It is explanatory drawing of silicon epitaxial growth in case dopant concentration is low. It is explanatory drawing of silicon epitaxial growth in case dopant concentration is high.
  • the main surface of the silicon single crystal substrate is substantially specified from the (100) plane. Even if the epitaxial layer is formed on the main surface of the silicon single crystal substrate under the condition that the dopant concentration is 1 ⁇ 10 19 / cm 3 or more by adjusting so as to have a certain inclination only in the direction, It was found that the unevenness was suppressed.
  • the silicon epitaxial wafer of the present invention is a silicon epitaxial wafer obtained by vapor-phase growth of a silicon epitaxial layer on the main surface of a silicon single crystal substrate, and the main surface of the silicon single crystal substrate is in relation to the [100] axis.
  • the angle ⁇ and the angle ⁇ is less than 10 ′, and the dopant concentration of the silicon epitaxial layer is 1 ⁇ 10 19 / cm 3 or more.
  • the [0-1-1] direction, the [01-1] direction, and the [0-11] direction are directions shown in FIGS.
  • the main surface of the silicon single crystal substrate is off-angled by an angle ⁇ from the (100) plane to the [011] direction or the [0-1-1] direction with respect to the [100] axis, and [ [01-1] or [0-11] direction is off-angled by an angle ⁇ , and the off-angle angle ⁇ and the off-angle angle ⁇ are less than 10 ′, so that silicon is formed on the main surface of the silicon single crystal substrate.
  • the dopant concentration of the silicon epitaxial layer is 1 ⁇ 10 19 / cm 3 or more when the epitaxial layer is vapor-phase grown, unevenness on the surface of the epitaxial layer is greatly suppressed.
  • FIG. 2 is a longitudinal sectional view showing the silicon epitaxial wafer of the present invention.
  • a silicon epitaxial wafer W includes a silicon single crystal substrate 1 in which a silicon epitaxial layer 2 having a dopant concentration of 1 ⁇ 10 19 / cm 3 or more is vapor-grown on a main surface 1a. .
  • the main surface 1a of the silicon single crystal substrate 1 is adjusted so as to have a constant inclination (off angle) substantially only in a specific direction from the (100) plane.
  • the off-angle of the main surface 1a of the silicon single crystal substrate 1 will be described with reference to FIG.
  • one point in the (100) plane 3 is defined as an O point. Further, crystal axes [011], [0-1-1], [01-1], and [0-11] passing through the O point are taken in the (100) plane 3. Further, a rectangular parallelepiped 4 is arranged in the (100) plane 3. More specifically, the rectangular parallelepiped 4 is placed by placing one vertex of the rectangular parallelepiped 4 at the point O and making the three sides gathered at this vertex coincide with the [011] [01-1] and [100] axes.
  • the inclination angle (off-angle angle) between the diagonal lines OA and OB of the side faces 5 and 6 of the rectangular parallelepiped 4 and the [100] axis is the angle ⁇ and the angle ⁇
  • the crystal substrate 1 has a main surface 1a inclined with respect to the [100] axis from the (100) plane in the [011] direction by an angle ⁇ and in the [01-1] direction by an angle ⁇ . These angles ⁇ and ⁇ are both less than 10 ′ as shown in FIG.
  • a silicon atom layer is stacked by fixing silicon atoms at step positions as shown in FIG. In this case, as shown in FIG. 5B, the height of the step is maintained for one atom and does not become extremely large even when the lamination proceeds.
  • the concentration of the dopant (for example, phosphorus) in the epitaxial layer is 1 ⁇ 10 19 / cm 3 or more
  • the concentration of phosphorus is as high as 1 ⁇ 10 19 / cm 3 or more
  • the probability that phosphorus atoms stick to the step position increases as shown in FIG.
  • the sticking of silicon is inhibited and the growth is temporarily delayed.
  • the density of steps is high, the next step catches up during this delay, and a step having a level difference of two atoms is formed.
  • the step for two atoms the number of silicon atoms required for growth is doubled as compared to the one-atom step, and the growth movement of the step is delayed. Therefore, when such an abnormal step is formed, as shown in FIG. 6C, one atomic step catches up one after another, and the step becomes larger. When this phenomenon occurs in a plurality of places, the irregularities on the main surface as shown in FIG. Such a phenomenon also occurs in dopants (antimony, arsenic, boron) other than phosphorus.
  • dopants antimony, arsenic, boron
  • the density of crystallographic atomic steps on the main surface of the silicon single crystal substrate for epitaxial growth is reduced.
  • the effect in this case will be described with reference to FIG.
  • the density of steps is low, as shown in FIG. 7 (a), even if a temporary growth delay of a step occurs due to phosphorus atoms, before the next atomic step arrives as shown in FIG. 7 (b). This increases the probability that silicon growth will resume.
  • the atomic step interval slightly changes, the step difference of the atomic step remains one step as shown in FIGS. 7 (c) and 7 (d). Therefore, unevenness on the main surface of the silicon epitaxial wafer can be reduced even by epitaxial growth containing a high concentration of dopant.
  • a method for manufacturing the silicon epitaxial wafer W of FIG. 2 according to the present invention will be described.
  • a silicon single crystal ingot (not shown) is pulled up by the CZ method.
  • block cutting is performed on the silicon single crystal ingot.
  • the silicon single crystal ingot is sliced.
  • the main surface 1a of the silicon single crystal substrate 1 to be generated is inclined by an angle ⁇ in the [011] direction or the [0-1-1] direction from the (100) plane with respect to the [100] axis.
  • the silicon single crystal ingot is sliced so as to be inclined in the [01-1] direction or the [0-11] direction by an angle ⁇ , and so that these angles ⁇ and ⁇ are less than 10 ′.
  • surface treatment such as chamfering, lapping, etching, mirror polishing and cleaning is performed to prepare the silicon single crystal substrate 1.
  • a silicon epitaxial layer 2 having a dopant concentration of 1 ⁇ 10 19 / cm 3 or more is vapor-phase grown on the main surface 1 a of the silicon single crystal substrate 1.
  • the vapor phase growth can be performed by a conventional general method.
  • phosphine gas or the like is used as the dopant gas
  • dichlorosilane gas or monosilane gas is used as the source gas
  • the epitaxial layer 2 is vapor-phase grown under the condition that the dopant concentration is 1 ⁇ 10 19 / cm 3 or more.
  • As the dopant antimony, arsenic, boron, etc. other than phosphorus can be employed.
  • the surface of the epitaxial layer doped with a high concentration of dopants had a problem of unevenness, but the surface of the silicon epitaxial layer 2 of the present invention was greatly suppressed from such striped unevenness. It will be a thing.
  • the bonded SOI wafer is manufactured using the silicon epitaxial wafer W obtained in this way as a bond wafer and / or a base wafer, the adhesion on the bonded surface is improved. Occurrence can be suppressed.
  • the silicon epitaxial wafer of the present invention can be used for any of the methods.
  • An example of a method for manufacturing a bonded SOI wafer (smart cut method (registered trademark)) according to the present invention is shown in FIG.
  • a bond wafer 7 and a base wafer 8 are prepared.
  • the epitaxial wafer W can be used as the bond wafer 7 and / or the base wafer 8.
  • FIG. 8 the manufacturing method of the bonding SOI wafer at the time of using the said epitaxial wafer W as the bond wafer 7 is shown.
  • various wafers such as a silicon single crystal polished wafer and a heat-treated wafer can be applied.
  • An insulating film 9 is formed on both the bond wafer 7 and the base wafer 8 in advance or on one of them. Further, both wafers may not be formed. In FIG. 8A, an insulating film 9 is formed on the bond wafer 7. At this time, as the insulating film 9, for example, a thermal oxide film, a CVD oxide film, or the like can be formed.
  • step (b) at least one kind of gas ions such as hydrogen ions and rare gas ions are ion-implanted from the surface of the insulating film 9 of the bond wafer 7 to ion-implant the layer 10 into the wafer (epitaxial layer).
  • gas ions such as hydrogen ions and rare gas ions
  • ion-implanted from the surface of the insulating film 9 of the bond wafer 7 to ion-implant the layer 10 into the wafer (epitaxial layer).
  • other ion implantation conditions such as implantation energy, implantation amount, and implantation temperature can be appropriately selected so that an SOI layer having a predetermined thickness can be obtained.
  • step (c) the insulating film 9 of the bond wafer 7 and the base wafer 8 are adhered and bonded together.
  • the bond wafer 7 is peeled off by the ion implantation layer 10 and the SOI layer 11 is formed on the base wafer 8 via the buried oxide film (insulating film) 9.
  • the formed bonded SOI wafer 12 is produced.
  • the peeling heat treatment is not particularly limited, but the bond wafer 7 can be peeled by performing the heat treatment while raising the bonded wafer to 500 to 600 ° C. in a nitrogen atmosphere.
  • the bonded SOI wafer 12 thus manufactured is subjected to, for example, a bonding heat treatment for increasing the bonding strength at the bonding interface in an oxidizing atmosphere or a non-oxidizing atmosphere at 1000 ° C. or higher, and then the SOI layer side is desired.
  • the final bonded SOI wafer is completed by performing polishing or sacrificial oxidation treatment so as to reduce the film thickness to a thickness of 1 mm.
  • the bonded SOI wafer 12 can be manufactured by using the silicon epitaxial wafer W of the present invention as the bond wafer 7.
  • the SOI wafer 12 is a bonded SOI wafer 12 in which at least a buried oxide film 9 and an SOI layer 11 are sequentially formed on the base wafer 8, and the SOI layer 11 has a dopant concentration of 1 ⁇ 10 19 / cm 3 or more, and the main surface of this SOI layer 11 is in the [011] direction or [0-1-1] from the (100) plane with respect to the [100] axis.
  • a bonded SOI wafer 12 that is inclined by an angle ⁇ in the direction and is inclined by an angle ⁇ in the [01-1] direction or the [0-11] direction, and the angle ⁇ and the angle ⁇ are less than 10 ′. can do.
  • an SOI wafer 12 having a high-concentration SOI layer 11 can be provided. Further, such a bonded SOI wafer 12 has improved adhesion at the bonding interface, and becomes a high-quality bonded SOI wafer 12 in which generation of defects is suppressed.
  • the silicon epitaxial wafer W of the present invention can be used as the base wafer 8. That is, according to the present invention, as shown in FIG. 9A, a silicon epitaxial wafer W obtained by vapor-phase growth of a silicon epitaxial layer 2 having a dopant concentration of 1 ⁇ 10 19 / cm 3 or more on a silicon single crystal substrate 1.
  • the main surface of the silicon epitaxial wafer W is inclined by an angle ⁇ in the [011] direction or the [0-1-1] direction from the (100) plane with respect to the [100] axis, and in the [01-1] direction.
  • the wafer 13 can be manufactured.
  • the epitaxial wafer W having a high concentration epitaxial layer may be used for both the bond wafer 7 and the base wafer 8.
  • the epitaxial wafer W having the high concentration epitaxial layer of the present invention can be used only for the base wafer 8. That is, according to the present invention, as shown in FIG. 9B, a silicon epitaxial wafer W in which a silicon epitaxial layer 2 having a dopant concentration of 1 ⁇ 10 19 / cm 3 or more is vapor-phase grown on a silicon single crystal substrate 1.
  • the main surface of the silicon epitaxial wafer W is inclined with respect to the [100] axis from the (100) plane in the [011] direction or the [0-1-1] direction by an angle ⁇ , and [01-1] At least the buried oxide film 9 and the SOI layer 11 ′ are sequentially formed on the recon epitaxial wafer W inclined at an angle ⁇ in the direction or [0-11] direction and the angle ⁇ and the angle ⁇ are less than 10 ′.
  • a bonded SOI wafer 14 can be provided. That is, the bonded SOI wafer 14 having the high-concentration epitaxial layer 2 immediately below the buried oxide film 9 can be manufactured.
  • the selection of whether the silicon epitaxial wafer of the present invention is used as a bond wafer and / or a base wafer is determined based on the specifications of a device manufactured using a bonded SOI wafer.
  • Such bonded SOI wafers 12, 13, and 14 of the present invention are those in which defects on the SOI surface due to defective bonding are greatly suppressed.
  • PH 3 phosphine
  • the phosphorus concentration in the epitaxial layer is 2 ⁇ 10 19 on the main surface of a plurality of silicon single crystal substrates (diameter 300 mm) satisfying the angles ⁇ and ⁇ of 10 ′ ⁇ ⁇ ⁇ 14 ′ and 1 ′ ⁇ ⁇ ⁇ 5 ′.
  • An epitaxial layer of 3 ⁇ m was vapor-phase grown at a growth temperature of 1080 ° C. while introducing phosphine (PH 3 ) gas under the condition of / cm 3 . Dichlorosilane was used as the source gas.
  • FIG. 10A shows a graph comparing the size of the step on the surface of the silicon epitaxial wafer obtained in Example 1, Comparative Example 1, and Comparative Example 2.
  • the step was measured by using an AFM (Atomic Force Microscope) device, measuring a 30 ⁇ m square area, and setting the PV (Peak to Valley) value in the area as the step.
  • An observation view of the surface of the epitaxial wafer obtained in Example 1 and Comparative Example 1 using an AFM apparatus is shown in FIG.
  • Example 1 In Example 1 and Comparative Example 1, ⁇ was fixed to 5 ′ or less and ⁇ was changed. However, since ⁇ and ⁇ are equivalent in crystallography, the same applies to ⁇ . It is clear that there is an angle dependency. In Comparative Example 2, ⁇ was changed as in Comparative Example 1, but in this case, the step was suppressed to less than 0.5 nm regardless of ⁇ . This is probably because in Comparative Example 2, the level difference was not increased even when the dopant concentration was low and the angle ⁇ was large.
  • the size of the step on the surface was measured, it was suppressed to a step of less than 0.5 nm in any case. From this, it can be said that the present invention is effective when the phosphorus concentration of the epitaxial layer is 1 ⁇ 10 19 / cm 3 or more.
  • Example 2 The epitaxial wafer obtained in Example 1 is used as a bond wafer (wafer for forming an SOI layer), and bonded SOI under the following conditions by the bonded SOI wafer manufacturing method (ion implantation separation method) shown in FIG. A wafer was produced.
  • (Bond wafer) Epitaxial wafer (base wafer) produced in Example 1 Silicon single crystal substrate, diameter 300 mm, p-type (100), 10 ⁇ cm (Oxide film formation) Thermal oxide film formation of 150 nm on the bond wafer surface (ion implantation) Through the oxide film on the bond wafer surface, hydrogen ions, 50 keV, 6 ⁇ 10 16 / cm 2 (Peeling heat treatment) 500 ° C, 30 minutes
  • a bonded heat treatment is performed on the peeled SOI wafer in an oxidizing atmosphere to remove the surface oxide film, and then a flat heat treatment is performed in an Ar atmosphere at 1200 ° C. for 1 hour, and the final SOI layer thickness is further increased.
  • the sacrificial oxidation treatment was performed so that the thickness became 100 nm. Thereafter, the SOI surface was observed using a surface defect inspection apparatus SP2 (manufactured by KLA-Tencor), and defects having a size of 0.5 ⁇ m or more were counted as the number of defective defects.
  • Comparative Example 3 Using the stepped epitaxial wafer obtained in Comparative Example 1 as a bond wafer (wafer for forming an SOI layer), a bonded SOI wafer was fabricated by an ion implantation delamination method under the same conditions as in Example 3, and the surface The defects were observed.
  • FIG. 11 shows a graph comparing the number of defective bonding defects on the SOI wafer obtained in Example 2 and Comparative Example 3.
  • the SOI wafer of Comparative Example 3 defects on the SOI surface due to poor bonding occurred frequently due to the unevenness of the epitaxial wafer as a material, whereas in Example 2, the generation of defects was suppressed.
  • the present invention has any configuration substantially the same as the technical idea described in the claims of the present invention and exhibits the same function and effect.
  • the main surface of the silicon single crystal substrate is the (100) plane, and the tilt direction from the main surface is [011] or [0-1-1], [01-1] or [0-11].
  • the main surface and the inclined direction equivalent to these are provided, the same operational effects as those of the present invention can be obtained and included in the technical scope of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Recrystallisation Techniques (AREA)

Abstract

 本発明は、シリコン単結晶基板の主表面にエピタキシャル層を気相成長させたシリコンエピタキシャルウェーハであって、シリコン単結晶基板の主表面は、[100]軸に対して(100)面から[011]方向又は[0-1-1]方向に角度θだけ傾斜し、[01-1]方向又は[0-11]方向に角度φ傾斜し、θ及びφが10'未満であり、シリコンエピタキシャル層のドーパント濃度が1×1019/cm以上であることを特徴とするシリコンエピタキシャルウェーハである。これにより、シリコン単結晶基板主表面に、ドーパント濃度が1×1019/cm以上であるエピタキシャル層が形成されたエピタキシャルウェーハにおいても、エピタキシャル層表面の縞状の凹凸が抑制されたエピタキシャルウェーハ及びその製造方法、該シリコンエピタキシャルウェーハを使用した貼り合わせSOIウェーハ及びその製造方法が提供される。

Description

シリコンエピタキシャルウェーハ及びその製造方法、並びに貼り合わせSOIウェーハ及びその製造方法
 本発明は、シリコン単結晶基板の主表面にシリコンエピタキシャル層が形成されたシリコンエピタキシャルウェーハ及びその製造方法、並びに、貼り合わせSOIウェーハ及びその製造方法に関する。
 
 半導体基板として使用されるシリコン単結晶基板は、例えばCZ(Czochralski)法により引き上げられたシリコン単結晶インゴットに対して、スライス、面取り、ラッピング、エッチング、鏡面研磨などを施すことで作製される。
 また、該シリコン単結晶基板の表面部分の結晶品質を向上させるため、高温条件下でシリコン単結晶基板の主表面にシリコン原料を供給することにより、シリコンエピタキシャル層を気相成長させる方法も用いられる。
 このようなシリコンエピタキシャルウェーハ(以下、単にエピタキシャルウェーハと記載することがある。)の製造方法においては、条件によっては、表面に凹凸が形成され、デバイス特性を悪化させることが知られている。
 このような凹凸を防ぐ方法として、例えば特許文献1では、エピタキシャル成長を行うシリコン単結晶基板の主表面の結晶学的ステップ密度を約1010個/cm以下に制御する技術が提案されている。
 また、特許文献2では、シリコン単結晶基板表面に対する結晶軸の角度範囲を規定することで、ヘイズと呼ばれる凹凸を低減する方法が提案されている。
 また、特許文献3では、COP(Crystal Originated Particle)と呼ばれる欠陥が存在するシリコン単結晶基板上に、エピタキシャルシリコン層を成長させる場合に、ティアドロップと呼ばれる凹凸が発生するのを防ぐため、シリコン単結晶基板表面に対する結晶軸の角度範囲を規定する技術が提案されている。
 ここで、シリコン単結晶基板にシリコンエピタキシャル層を気相成長させる気相成長法において、エピタキシャル層を成長させる際に、高濃度のドーパントをドープすると、エピタキシャル層表面に段差が縞状に形成され、表面形状が悪化する問題がある。
特開平6-338464 特開2000-260711 特開2004-339003
 上述したように、シリコン単結晶基板の主表面にエピタキシャル層を成長させる際に、高濃度のドーパントをドープすると、エピタキシャル層表面に段差が縞状に形成され、表面形状が悪化する問題がある。
 しかし、何れの上記技術もエピタキシャル層の成長時に高濃度のドーパントをドープした場合に発生する凹凸の抑制に関しては記述がなされていない。このような凹凸が存在すると、デバイス特性に悪影響を及ぼし、また、このような凹凸のあるシリコンエピタキシャルウェーハを貼り合わせて、SOI(Silicon on Insulator)と呼ばれるウェーハを作製すると、貼り合わせ面の密着性が悪くなり、欠陥が発生する問題がある。
 本発明は、上記問題に鑑みてなされたものであって、シリコン単結晶基板主表面に、ドーパント濃度が1×1019/cm以上と高濃度であるエピタキシャル層が形成された場合であっても、エピタキシャル層表面の縞状の凹凸が抑制されたものとなるシリコンエピタキシャルウェーハ、及びこの製造方法、並びに該シリコンエピタキシャルウェーハを使用した貼り合わせSOIウェーハ及びその製造方法を提供することを目的とする。
 上記課題を解決するため、本発明では、シリコン単結晶基板の主表面にシリコンエピタキシャル層を気相成長させたシリコンエピタキシャルウェーハであって、前記シリコン単結晶基板の主表面は、[100]軸に対して(100)面から[011]方向または[0-1-1]方向に角度θだけ傾斜するとともに、[01-1]方向または[0-11]方向に角度φだけ傾斜し、前記角度θ及び角度φが10′未満であり、前記シリコンエピタキシャル層のドーパント濃度が1×1019/cm以上であることを特徴とするシリコンエピタキシャルウェーハを提供する。
 このように、シリコン単結晶基板の主表面を(100)面から実質的に特定の方向にのみ一定の傾き([100]軸に対して(100)面から[011]方向または[0-1-1]方向に角度θだけ傾斜するとともに、[01-1]方向または[0-11]方向に角度φだけ傾斜し、角度θ及び角度φが10′未満である傾き)をもつように調整することによって、該シリコン単結晶基板上にドーパント濃度が1×1019/cm以上という高濃度のエピタキシャル層が形成された場合でも、エピタキシャル層表面の縞状の凹凸が抑制されたシリコンエピタキシャルウェーハとなる。
 ここで、ドーパントはリンとすることができる。
 また、本発明では、シリコン単結晶基板の主表面に、シリコンエピタキシャル層を気相成長させる工程を有するシリコンエピタキシャルウェーハの製造方法において、前記シリコン単結晶基板として、主表面が[100]軸に対し(100)面から[011]方向または[0-1-1]方向に角度θだけ傾斜するとともに、[01-1]方向または[0-11]方向に角度φだけ傾斜し、前記角度θ及び角度φが10′未満であるシリコン単結晶基板を用い、該シリコン単結晶基板の主表面にドーパント濃度が1×1019/cm以上のエピタキシャル層を気相成長させることを特徴とするシリコンエピタキシャルウェーハの製造方法を提供する。
 このような本発明のシリコンエピタキシャルウェーハの製造方法を用いれば、ドーパントを高濃度にドープする場合であっても、シリコンエピタキシャル層表面の縞状の凹凸が抑制されたシリコンエピタキシャルウェーハを製造することができる。
 ここで、ドーパントをリンとすることができる。
 また、本発明では、ボンドウェーハとベースウェーハとを貼り合わせて貼り合わせSOIウェーハを製造する方法において、前記の方法により製造されたシリコンエピタキシャルウェーハを、前記ボンドウェーハ及び/又は前記ベースウェーハとして用いて貼り合わせSOIウェーハを製造することを特徴とする貼り合わせSOIウェーハの製造方法を提供する。
 このように、前記の方法により製造されたシリコンエピタキシャルウェーハをボンドウェーハとして用いれば、高濃度(ドーパント濃度が1×1019/cm以上)のSOI層を有する貼り合わせSOIウェーハを製造することができる。また、前記の方法により製造されたシリコンエピタキシャルウェーハをベースウェーハとして用いると、絶縁膜(埋め込み酸化膜)直下に高濃度層(エピタキシャル層)を有する貼り合わせSOIウェーハを製造することができる。また、前記の方法により製造されたシリコンエピタキシャルウェーハを、ボンドウェーハとベースウェーハの両方に用いることもできる。
 また、本発明では、ベースウェーハの上部に、少なくとも、埋め込み酸化膜、SOI層が順次形成された貼り合わせSOIウェーハであって、前記SOI層のドーパント濃度が1×1019/cm以上であり、かつ、該SOI層主表面は、[100]軸に対し(100)面から[011]方向または[0-1-1]方向に角度θだけ傾斜するとともに、[01-1]方向または[0-11]方向に角度φだけ傾斜しており、前記角度θ及び角度φが10′未満であることを特徴とする貼り合わせSOIウェーハを提供する。
 このような本発明の貼り合わせSOIウェーハは、ドーパント濃度が1×1019/cm以上の高濃度のSOI層を有する貼り合わせSOIウェーハであり、更に、貼り合わせ界面の密着性が改善されたものとなり、貼り合わせ不良に起因する欠陥の発生が抑制された高品質な貼り合わせSOIウェーハとなる。
 この場合、前記ベースウェーハは、シリコン単結晶基板にドーパント濃度が1×1019/cm以上のシリコンエピタキシャル層を気相成長させたシリコンエピタキシャルウェーハであり、該シリコンエピタキシャルウェーハの主表面は、[100]軸に対し(100)面から[011]方向または[0-1-1]方向に角度θだけ傾斜するとともに、[01-1]方向または[0-11]方向に角度φだけ傾斜し、前記角度θ及び角度φが10′未満とすることができる。
 このように、ベースウェーハが上記シリコンエピタキシャルウェーハであれば、埋め込み酸化膜直下に高濃度層(エピタキシャル層)を有するものとすることができる上、更に、貼り合わせSOIウェーハの貼り合わせ界面の密着性が改善されたものとなり、貼り合わせSOIウェーハの欠陥の発生が大幅に抑制されたものとなる。
 また、本発明では、ベースウェーハの上部に、少なくとも、埋め込み酸化膜、SOI層が順次形成された貼り合わせSOIウェーハであって、前記ベースウェーハは、シリコン単結晶基板にドーパント濃度が1×1019/cm以上のシリコンエピタキシャル層を気相成長させたシリコンエピタキシャルウェーハであり、該シリコンエピタキシャルウェーハの主表面は、[100]軸に対し(100)面から[011]方向または[0-1-1]方向に角度θだけ傾斜するとともに、[01-1]方向または[0-11]方向に角度φだけ傾斜し、前記角度θ及び角度φが10′未満であることを特徴とする貼り合わせSOIウェーハを提供する。
 このような本発明の貼り合わせSOIウェーハは、埋め込み酸化膜直下に高濃度層(エピタキシャル層)を有する貼り合わせSOIウェーハとなる上、更に、貼り合わせ界面の密着性が改善されたものとなり、貼り合わせ不良に起因する欠陥の発生が抑制された高品質な貼り合わせSOIウェーハとなる。またこのとき、ドーパントをリンとすることができる。
 以上説明したように、本発明によれば、シリコン単結晶基板主表面に、ドーパント濃度が1×1019/cm以上と高濃度であるエピタキシャル層が形成されたエピタキシャルウェーハであり、エピタキシャル層表面の縞状の凹凸が抑制されたシリコンエピタキシャルウェーハ及びこの製造方法を提供することができる。また、本発明によれば、欠陥の発生が抑制された高品質な、高濃度(ドーパント濃度が1×1019/cm以上)のSOI層を有する貼り合わせSOIウェーハや、絶縁膜(埋め込み酸化膜)直下に高濃度層(エピタキシャル層)を有する貼り合わせSOIウェーハ、並びにこれらの製造方法を提供することができる。
 
(a)は[0-1-1]方向を示すミラー指数による表示であり、(b)は[01-1]方向を示すミラー指数による表示であり、(c)は[0-11]方向を示すミラー指数による表示である。 本発明に係るシリコンエピタキシャルウェーハを示す縦断面図である。 シリコン単結晶基板の主表面の傾き(オフアングル)を説明するための図である。 シリコン単結晶基板の主表面の傾斜範囲を示す図である。 ドーパント濃度が低い場合のシリコンエピタキシャル成長の説明図である。 ドーパント濃度が高い場合のシリコンエピタキシャル成長の説明図である。 本発明に係るシリコンエピタキシャルウェーハのエピタキシャル成長の説明図である。 本発明に係る貼り合わせSOIウェーハの製造方法の一例を示したフロー図である。 本発明に係る貼り合わせSOIウェーハの別の例を示す図である。 (a)実施例1、比較例1、及び比較例2で得られたシリコンエピタキシャルウェーハの表面の段差の大きさを比較する図である。(b)AFM装置による実施例1及び比較例1で得られたエピタキシャルウェーハの表面の観察図である。 実施例2および、比較例3で得られた、SOIウェーハ上の貼り合わせ不良欠陥の個数を比較する図である。
 以下、本発明についてより具体的に説明する。
 前述のように、シリコン単結晶基板の主表面にシリコンエピタキシャル層を気相成長させたエピタキシャルウェーハにおいて、エピタキシャル層の成長時に高濃度のドーパントをドープした場合に縞状の凹凸が発生する問題が生じていた。
 本発明者らが種々検討した結果、シリコン単結晶基板の主表面にシリコンエピタキシャル層を気相成長させたシリコンエピタキシャルウェーハにおいて、シリコン単結晶基板の主表面を(100)面から実質的に特定の方向にのみ一定の傾きをもつように調整することによって、シリコン単結晶基板の主表面にドーパント濃度が1×1019/cm以上となる条件でエピタキシャル層を形成しても、エピタキシャル層表面の凹凸が抑制されたものとなることを見出した。
 すなわち、本発明のシリコンエピタキシャルウェーハは、シリコン単結晶基板の主表面にシリコンエピタキシャル層を気相成長させたシリコンエピタキシャルウェーハであって、シリコン単結晶基板の主表面は、[100]軸に対して(100)面から[011]方向または[0-1-1]方向に角度θだけ傾斜するとともに、[01-1]方向または[0-11]方向に角度φだけ傾斜し、角度θ及び角度φが10′未満であり、シリコンエピタキシャル層のドーパント濃度が1×1019/cm以上であることを特徴とする。
 ここで、[0-1-1]方向、[01-1]方向、[0-11]方向とは、図1(a)~(c)に示す方向のことである。
 本発明によれば、シリコン単結晶基板の主表面を、[100]軸に対して(100)面から[011]方向または[0-1-1]方向に角度θだけオフアングルさせるとともに、[01-1]方向または[0-11]方向に角度φだけオフアングルさせ、かつ、オフアングル角度θ及びオフアングル角度φを10′未満とすることにより、該シリコン単結晶基板の主表面にシリコンエピタキシャル層を気相成長させた際に、シリコンエピタキシャル層のドーパント濃度が1×1019/cm以上となる条件であっても、エピタキシャル層表面の凹凸が大幅に抑制されたものとなる。
 以下、図2は本発明のシリコンエピタキシャルウェーハを示す縦断面図である。図2に示すように、シリコンエピタキシャルウェーハWは、ドーパント濃度が1×1019/cm以上のシリコンエピタキシャル層2を、主表面1a上に気相成長させたシリコン単結晶基板1を備えている。
 シリコン単結晶基板1の主表面1aは、(100)面から実質的に特定の方向にのみ一定の傾き(オフアングル)をもつように調整されている。ここで、シリコン単結晶基板1の主表面1aのオフアングルについて図3を参照して説明する。
 図3において、(100)面3内の一点をO点とする。また、(100)面3内に、O点を通る結晶軸[011]、[0-1-1]、[01-1]、及び[0-11]をとる。更に、(100)面3内に直方体4を配置する。より詳細には、直方体4の一つの頂点をO点に置き、この頂点に集まる3辺を[011][01-1]及び[100]軸に一致させて直方体4を配置する。
 このとき、直方体4の側面5,6の対角線OA,OBが[100]軸となす傾斜角度(オフアングル角度)を角度θ、角度φとすると、直方体4の対角線OCを法線とするシリコン単結晶基板1は、その主表面1aが[100]軸に対して(100)面から[011]方向に角度θだけ傾斜し、かつ[01-1]方向に角度φだけ傾斜したものとなる。これら、角度θ及び角度φは、図4に示す様に、共に10′未満となっている。
 シリコン単結晶基板の[100]軸に対し、主表面の傾斜角度φおよびθが大きくなると、シリコン単結晶基板の主表面上に結晶学的な原子ステップが形成される。この場合の主表面でのシリコンエピタキシャル成長の様子を図を用いて説明する。
 リン等のドーパント濃度が低い通常のエピタキシャル成長では、図5の(a)のように、ステップ位置にシリコン原子が固着することで、シリコン原子層が積層される。この場合積層が進行しても、図5の(b)に示すように、ステップの高さは1原子分を保ち、極端に大きくなることはない。
 これに対し、エピタキシャル層中のドーパント(例えばリン)の濃度が1×1019/cm以上となる条件でのエピタキシャル成長について、図6を用いて説明する。リンの濃度が1×1019/cm以上と高い場合は、図6の(a)のように、ステップ位置にリン原子が固着する確率が高まる。このリン原子の位置では、図6の(b)のように、シリコンの固着が阻害され、一時的に成長が遅れる。ステップの密度が高い場合は、この遅延の間に次のステップが追いつき、原子2個分の段差をもつステップが形成される。2原子分のステップは1原子ステップに比べ、成長に必要なシリコン原子の数が2倍となり、ステップの成長移動が遅くなる。したがって、このような異常ステップが形成されると、図6の(c)に示すように、1原子ステップが次々と追いつき、段差がさらに大きくなる。この現象が複数の場所で発生すると、図6(d)に示すような主表面の凹凸が形成されてしまう。このような現象は、リン以外のドーパント(アンチモン、砒素、ボロン)においても発生する。
 本発明では、傾斜角度φおよびθを10′未満に設定することで、エピタキシャル成長を行うシリコン単結晶基板の主表面の結晶学的な原子ステップの密度を低減する。この場合の効果を図7を用いて説明する。ステップの密度が低い場合、図7(a)に示すように、リン原子による一時的なステップの成長遅延が生じた場合でも、図7(b)のように、次の原子ステップが到着する前にシリコンの成長が再開される確率が高まる。この場合、原子ステップの間隔に多少の変化が生じるが、図7(c)および(d)に示すように原子ステップの段差は1段分のままである。従って、高濃度のドーパントを含むエピタキシャル成長であってもシリコンエピタキシャルウェーハ主表面の凹凸を低減することができる。
 次に、本発明に係る図2のシリコンエピタキシャルウェーハWの製造方法について説明する。
 まず、CZ法によってシリコン単結晶インゴット(不図示)を引上げる。次に、シリコン単結晶インゴットに対して、ブロック切断を行う。続いて、シリコン単結晶インゴットをスライスする。
 ここで、生成されるべきシリコン単結晶基板1の主表面1aが、[100]軸に対して(100)面から[011]方向または[0-1-1]方向に角度θだけ傾斜するとともに、[01-1]方向または[0-11]方向に角度φだけ傾斜し、かつ、これらの角度θ及び角度φが10′未満になるように、シリコン単結晶インゴットをスライスする。更に、面取り、ラッピング、エッチング、鏡面研磨及び洗浄などの表面処理を行い、シリコン単結晶基板1を準備する。
 そして、シリコン単結晶基板1の主表面1aに、ドーパント濃度が1×1019/cm以上のシリコンエピタキシャル層2を気相成長させる。
 尚、気相成長は従来の一般的な方法で行うことができる。本発明においては、ドーパントガスとしてホスフィンガス等、原料ガスとしてジクロロシランガスやモノシランガス等を用い、ドーパント濃度が1×1019/cm以上となる条件で、エピタキシャル層2を気相成長させる。尚、ドーパントとしてはリン以外の、アンチモン、砒素、ボロン等を採用することもできる。
 従来、高濃度のドーパントがドープされたエピタキシャル層の表面には凹凸が発生する問題が生じていたが、本発明のシリコンエピタキシャル層2の表面はこのような縞状の凹凸が大幅に抑制されたものとなる。
 また、このようにして得られたシリコンエピタキシャルウェーハWをボンドウェーハ及び/又はベースウェーハとして用い、貼り合わせSOIウェーハを作製すると、貼り合わせ面における密着性が向上するため、貼り合わせSOIウェーハの欠陥の発生を抑制することができる。
 貼り合わせウェーハの製造方法においては、2枚のウェーハを貼り合わせた後、一方のウェーハを薄膜化する方法として、研削・研磨で行う方法とイオン注入剥離法(スマートカット(登録商標)法ともいう)が一般的に知られているが、いずれの方法にも、本発明のシリコンエピタキシャルウェーハを用いることができる。
 本発明に係る貼り合わせSOIウェーハの製造方法(スマートカット法(登録商標))の一例を図8に示す。
 まず、図8の工程(a)では、ボンドウェーハ7及びベースウェーハ8を用意する。本発明においては、ボンドウェーハ7及び/又はベースウェーハ8として上記エピタキシャルウェーハWを使用することができる。図8においては、上記エピタキシャルウェーハWをボンドウェーハ7として用いた際の貼り合わせSOIウェーハの製造方法を示す。
 尚、上記エピタキシャルウェーハWを用いない方のウェーハとしては、例えば、シリコン単結晶のポリッシュドウェーハ、熱処理ウェーハ等、様々なウェーハを適用することができる。
 予めボンドウェーハ7及びベースウェーハ8の両ウェーハに、又はどちらか一方に絶縁膜9を形成する。また、両ウェーハともに形成されていなくても良い。図8(a)においては、ボンドウェーハ7に絶縁膜9が形成されている。この時絶縁膜9としては、例えば熱酸化膜、CVD酸化膜等を形成させることができる。
 次に、工程(b)では、ボンドウェーハ7の絶縁膜9の表面から水素イオン、希ガスイオン等の少なくとも1種類以上のガスイオンをイオン注入してウェーハ(エピタキシャル層)内部にイオン注入層10を形成する。この際、注入エネルギー、注入量、注入温度等その他のイオン注入条件を、所定の厚さのSOI層を得ることができるように適宜選択することができる。
 次に、工程(c)では、ボンドウエーハ7の絶縁膜9と、ベースウェーハ8を密着させて貼り合わせる。
 次に、工程(d)では、剥離熱処理を行うことによって、ボンドウェーハ7をイオン注入層10にて剥離してベースウェーハ8上に埋め込み酸化膜(絶縁膜)9を介して、SOI層11が形成された貼り合わせSOIウェーハ12を作製する。
 この剥離熱処理としては、特に限定されないが、貼り合わせられたウェーハを窒素雰囲気で500~600℃まで昇温しながら熱処理を行うことでボンドウェーハ7の剥離を行うことができる。
 このように作製された貼り合わせSOIウェーハ12に、例えば貼り合わせ界面の結合強度を高めるための結合熱処理を酸化性雰囲気下又は非酸化性雰囲気下で1000℃以上で行い、その後SOI層側を所望の厚さまで薄膜化するように研磨や犠牲酸化処理を行う等して、最終的な貼り合わせSOIウェーハが完成する。
 このように、本発明のシリコンエピタキシャルウェーハWを、ボンドウェーハ7として用いることにより、貼り合わせSOIウェーハ12を製造することができる。
 即ち、本発明においては、図8(d)に示すような、ベースウェーハ8の上部に、少なくとも、埋め込み酸化膜9、SOI層11が順次形成された貼り合わせSOIウェーハ12であって、SOI層11のドーパント濃度が1×1019/cm以上であり、かつ、このSOI層11の主表面は、[100]軸に対し(100)面から[011]方向または[0-1-1]方向に角度θだけ傾斜するとともに、[01-1]方向または[0-11]方向に角度φだけ傾斜しており、この角度θ及び角度φが10′未満である貼り合わせSOIウェーハ12を提供することができる。
 そして、ドーパント濃度が1×1019/cm以上という高濃度エピタキシャル層を有するエピタキシャルウェーハWをボンドウェーハ7として用いると、高濃度SOI層11を有するSOIウェーハ12を提供することができる。また、このような貼り合わせSOIウェーハ12は、貼り合わせ界面の密着性が改善されたものとなり、欠陥の発生が抑制された高品質な貼り合わせSOIウェーハ12となる。
 図8に示す本発明の貼り合わせSOIウェーハの製造方法において、更に、ベースウェーハ8としても、本発明のシリコンエピタキシャルウェーハWを用いることができる。
 即ち、本発明によれば、図9(a)に示すように、シリコン単結晶基板1にドーパント濃度が1×1019/cm以上のシリコンエピタキシャル層2を気相成長させたシリコンエピタキシャルウェーハWであり、シリコンエピタキシャルウェーハWの主表面は、[100]軸に対し(100)面から[011]方向または[0-1-1]方向に角度θだけ傾斜するとともに、[01-1]方向または[0-11]方向に角度φだけ傾斜し、前記角度θ及び角度φが10′未満であるシリコンエピタキシャルウェーハWの上部に、埋め込み酸化膜9、SOI層11が順次形成された貼り合わせSOIウェーハ13を製造することができる。このように、高濃度エピタキシャル層を有するエピタキシャルウェーハWを、ボンドウェーハ7とベースウェーハ8の両方に用いてもよい。
 また、本発明の高濃度エピタキシャル層を有するエピタキシャルウェーハWを、ベースウェーハ8のみに用いることができる。
 すなわち、本発明によれば、図9(b)に示すように、シリコン単結晶基板1にドーパント濃度が1×1019/cm以上のシリコンエピタキシャル層2を気相成長させたシリコンエピタキシャルウェーハWであり、該シリコンエピタキシャルウェーハWの主表面は、[100]軸に対し(100)面から[011]方向または[0-1-1]方向に角度θだけ傾斜するとともに、[01-1]方向または[0-11]方向に角度φだけ傾斜し、前記角度θ及び角度φが10′未満であるリコンエピタキシャルウェーハWの上部に、少なくとも、埋め込み酸化膜9、SOI層11’が順次形成された貼り合わせSOIウェーハ14を提供することができる。即ち、埋め込み酸化膜9直下に高濃度のエピタキシャル層2を有する貼り合わせSOIウェーハ14を作製することができる。
 本発明のシリコンエピタキシャルウェーハを、ボンドウェーハ及び/又はベースウェーハに用いるかの選択は、貼り合わせSOIウェーハを用いて作製されるデバイスの仕様に基いて決定される。
 このような本発明の貼り合わせSOIウェーハ12、13、14は、貼り合わせ不良に起因するSOI表面の欠陥が大幅に抑制されたものとなる。
 
 以下、実施例及び比較例を示して本発明をより具体的に説明するが、本発明はこれに限定されるものではない。
 (実施例1)
 シリコン単結晶基板の主表面が、[100]軸に対して(100)面から[011]方向に角度θだけ傾斜するとともに、[01-1]方向に角度φだけ傾斜し、角度θとφが6′(0.1°)≦θ≦9′(0.15°)、φ=1′を満たす複数のシリコン単結晶基板(直径300mm)の主表面に、エピタキシャル層中のリンの濃度が2×1019/cmとなる条件で、ホスフィン(PH)ガスを導入しながら、1080℃の成長温度で3μmのエピタキシャル層を気相成長させた。原料ガスはジクロロシランを用いた。
 
 (比較例1)
 上記角度θとφが10′≦θ≦14′、1′≦φ≦5′を満たす複数のシリコン単結晶基板(直径300mm)の主表面に、エピタキシャル層中のリンの濃度が2×1019/cmとなる条件で、ホスフィン(PH)ガスを導入しながら、1080℃の成長温度で3μmのエピタキシャル層を気相成長させた。原料ガスはジクロロシランを用いた。
 
 (比較例2)
 上記の角度θとφが10′≦θ≦14′、1′≦φ≦5′を満たす複数のシリコン単結晶基板(直径300mm)の主表面に、エピタキシャル層中のリンの濃度が5×1018/cmとなる条件で、ホスフィン(PH)ガスを導入しながら、1080℃の成長温度で3μmのエピタキシャル層を気相成長させた。原料ガスはジクロロシランを用いた。
 実施例1、比較例1、及び比較例2で得られたシリコンエピタキシャルウェーハの表面の段差の大きさを比較するグラフを図10(a)に示す。なお、段差の測定にはAFM(Atomic Force Microscope)装置を使用し、30μm角の領域の測定を実施し、その領域内のP-V(Peak to Valley)値を段差とした。尚、AFM装置による実施例1及び比較例1で得られたエピタキシャルウェーハの表面の観察図を図10(b)に示す。
 比較例1で得られたエピタキシャルウェーハは、0.5nmを超える段差が形成され、かつ、その大きさはθのオフ角に依存して大きくなる傾向が見られた。これに対し、実施例1のウェーハの表面の段差は0.5nm未満に抑制された。このことから、θを10′未満とすることで、ウェーハの表面の段差を0.5nm未満に抑制できることが確認された。なお、0.5nmという段差の値はこの測定装置で測定される段差の下限値にほぼ等しく、この値以下であれば段差は軽微と判断される。
 なお、実施例1と比較例1では、何れもφを5′以下に固定し、θを変化させたが、結晶学的にθとφは等価な関係にあることから、φについても同様の角度依存性があることは明らかである。
 また、比較例2では、比較例1と同様にθを変化させているが、この場合はθに関係なく0.5nm未満の段差に抑制された。これは、比較例2では、ドーパントの濃度が低く、θの角度が大きくても、段差が大きくならなかったものと思われる。
 更に、エピタキシャル層のリン濃度を1×1019/cm、3×1019/cm、5×1019/cmとした以外は、実施例1と同一条件で作製されたシリコンエピタキシャルウェーハの表面の段差の大きさを測定したところ、いずれの場合も0.5nm未満の段差に抑制された。このことから、本発明はエピタキシャル層のリン濃度が1×1019/cm以上となる場合に、有効といえる。
 次に、上記実験で得られたエピタキシャルウェーハを使用して、貼り合わせSOIウェーハを作製した場合の効果について、以下の実施例と比較例を用いて説明する。
 
(実施例2)
 実施例1で得られたエピタキシャルウェーハをボンドウェーハ(SOI層を形成するウェーハ)として利用し、図8に示す貼り合わせSOIウェーハの製造方法(イオン注入剥離法)により、以下の条件で貼り合わせSOIウェーハを作製した。
 
(ボンドウェーハ)実施例1で作製したエピタキシャルウェーハ
(ベースウェーハ)シリコン単結晶基板、直径300mm 、p型(100)、10Ωcm
(酸化膜形成)ボンドウェーハの表面に150nmの熱酸化膜形成
(イオン注入)ボンドウェーハ表面の酸化膜を通して、水素イオン、50keV、6×1016/cm
(剥離熱処理)500℃、30分
 剥離後のSOIウェーハに対して酸化性雰囲気で結合熱処理を行い、表面酸化膜を除去した後、平坦加熱処理としてAr雰囲気下、1200℃、1時間の熱処理を行い、更に、最終SOI層膜厚が100nmになるように犠牲酸化処理を行った。その後、SOI表面を表面欠陥検査装置SP2(KLA-Tencor社製)を用いて観察し、0.5μm以上のサイズの欠陥を貼り合わせ不良欠陥の個数としてカウントした。
 
(比較例3)
 比較例1で得られた段差のあるエピタキシャルウェーハウェーハをボンドウェーハ(SOI層を形成するウェーハ)として利用し、実施例3と同様の条件でイオン注入剥離法により貼り合わせSOIウェーハを作製し、表面の欠陥を観察した。
 実施例2および、比較例3で得られた、SOIウェーハ上の貼り合わせ不良欠陥の個数を比較するグラフを図11に示す。比較例3のSOIウェーハは、材料となるエピタキシャルウェーハの凹凸により、貼り合わせ不良に起因するSOI表面の欠陥が多発したのに対し、実施例2では欠陥の発生が抑制された。
 なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。
 例えば、本発明においては、シリコン単結晶基板の主表面として(100)面、主表面からの傾斜方向として[011]又は[0-1-1]、[01-1]又は[0-11]と開示しているが、これらと等価な主表面及び傾斜方向であれば本発明と同様な作用効果を奏するものであり、本発明の技術的範囲に包含される。

Claims (9)

  1.  シリコン単結晶基板の主表面にシリコンエピタキシャル層を気相成長させたシリコンエピタキシャルウェーハであって、
     前記シリコン単結晶基板の主表面は、[100]軸に対して(100)面から[011]方向または[0-1-1]方向に角度θだけ傾斜するとともに、[01-1]方向または[0-11]方向に角度φだけ傾斜し、前記角度θ及び角度φが10′未満であり、
     前記シリコンエピタキシャル層のドーパント濃度が1×1019/cm以上であることを特徴とするシリコンエピタキシャルウェーハ。
     
  2.  前記ドーパントがリンであることを特徴とする請求項1に記載のシリコンエピタキシャルウェーハ。
     
  3.  シリコン単結晶基板の主表面に、シリコンエピタキシャル層を気相成長させる工程を有するシリコンエピタキシャルウェーハの製造方法において、
     前記シリコン単結晶基板として、主表面が[100]軸に対し(100)面から[011]方向または[0-1-1]方向に角度θだけ傾斜するとともに、[01-1]方向または[0-11]方向に角度φだけ傾斜し、前記角度θ及び角度φが10′未満であるシリコン単結晶基板を用い、
     該シリコン単結晶基板の主表面にドーパント濃度が1×1019/cm以上のエピタキシャル層を気相成長させることを特徴とするシリコンエピタキシャルウェーハの製造方法。
     
  4.  前記ドーパントをリンとすることを特徴とする請求項3に記載のシリコンエピタキシャルウェーハの製造方法。
     
  5.  ボンドウェーハとベースウェーハとを貼り合わせて貼り合わせSOIウェーハを製造する方法において、請求項3又は請求項4に記載の方法により製造されたシリコンエピタキシャルウェーハを、前記ボンドウェーハ及び/又は前記ベースウェーハとして用いて貼り合わせSOIウェーハを製造することを特徴とする貼り合わせSOIウェーハの製造方法。
     
  6.  ベースウェーハの上部に、少なくとも、埋め込み酸化膜、SOI層が順次形成された貼り合わせSOIウェーハであって、
     前記SOI層のドーパント濃度が1×1019/cm以上であり、かつ、該SOI層主表面は、[100]軸に対し(100)面から[011]方向または[0-1-1]方向に角度θだけ傾斜するとともに、[01-1]方向または[0-11]方向に角度φだけ傾斜しており、前記角度θ及び角度φが10′未満であることを特徴とする貼り合わせSOIウェーハ。
     
  7.  前記ベースウェーハは、シリコン単結晶基板にドーパント濃度が1×1019/cm以上のシリコンエピタキシャル層を気相成長させたシリコンエピタキシャルウェーハであり、該シリコンエピタキシャルウェーハの主表面は、[100]軸に対し(100)面から[011]方向または[0-1-1]方向に角度θだけ傾斜するとともに、[01-1]方向または[0-11]方向に角度φだけ傾斜し、前記角度θ及び角度φが10′未満であることを特徴とする請求項6に記載の貼り合わせSOIウェーハ。
     
  8.  ベースウェーハの上部に、少なくとも、埋め込み酸化膜、SOI層が順次形成された貼り合わせSOIウェーハであって、
     前記ベースウェーハは、シリコン単結晶基板にドーパント濃度が1×1019/cm以上のシリコンエピタキシャル層を気相成長させたシリコンエピタキシャルウェーハであり、該シリコンエピタキシャルウェーハの主表面は、[100]軸に対し(100)面から[011]方向または[0-1-1]方向に角度θだけ傾斜するとともに、[01-1]方向または[0-11]方向に角度φだけ傾斜し、前記角度θ及び角度φが10′未満であることを特徴とする貼り合わせSOIウェーハ。
     
  9.  前記ドーパントがリンであることを特徴とする請求項6乃至請求項8のいずれか一項に記載の貼り合わせSOIウェーハ。
PCT/JP2011/001175 2010-04-01 2011-03-01 シリコンエピタキシャルウェーハ及びその製造方法、並びに貼り合わせsoiウェーハ及びその製造方法 WO2011125282A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP11765184.4A EP2555227B1 (en) 2010-04-01 2011-03-01 Bonded soi wafer and method for producing the same
CN201180017235.6A CN102859649B (zh) 2010-04-01 2011-03-01 外延硅晶片及其制造方法、以及贴合soi晶片及其制造方法
KR1020127024972A KR101729474B1 (ko) 2010-04-01 2011-03-01 접합 soi 웨이퍼의 제조방법 및 접합 soi 웨이퍼
US13/582,614 US8823130B2 (en) 2010-04-01 2011-03-01 Silicon epitaxial wafer, method for manufacturing the same, bonded SOI wafer and method for manufacturing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010085381A JP5544986B2 (ja) 2010-04-01 2010-04-01 貼り合わせsoiウェーハの製造方法、及び貼り合わせsoiウェーハ
JP2010-085381 2010-04-01

Publications (1)

Publication Number Publication Date
WO2011125282A1 true WO2011125282A1 (ja) 2011-10-13

Family

ID=44762253

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/001175 WO2011125282A1 (ja) 2010-04-01 2011-03-01 シリコンエピタキシャルウェーハ及びその製造方法、並びに貼り合わせsoiウェーハ及びその製造方法

Country Status (6)

Country Link
US (1) US8823130B2 (ja)
EP (1) EP2555227B1 (ja)
JP (1) JP5544986B2 (ja)
KR (1) KR101729474B1 (ja)
CN (1) CN102859649B (ja)
WO (1) WO2011125282A1 (ja)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6200273B2 (ja) * 2013-10-17 2017-09-20 信越半導体株式会社 貼り合わせウェーハの製造方法
US20150270344A1 (en) * 2014-03-21 2015-09-24 International Business Machines Corporation P-fet with graded silicon-germanium channel
CN103871902A (zh) 2014-03-24 2014-06-18 上海华力微电子有限公司 半导体处理工艺及半导体器件的制备方法
CN105869991B (zh) 2015-01-23 2018-05-11 上海华力微电子有限公司 用于改善SiGe厚度的均匀性的方法和系统
CN105990172B (zh) 2015-01-30 2018-07-31 上海华力微电子有限公司 嵌入式SiGe外延测试块的设计
CN105990342B (zh) 2015-02-13 2019-07-19 上海华力微电子有限公司 具有用于嵌入锗材料的成形腔的半导体器件及其制造工艺
CN104851884A (zh) 2015-04-14 2015-08-19 上海华力微电子有限公司 用于锗硅填充材料的成形腔
CN104821336B (zh) 2015-04-20 2017-12-12 上海华力微电子有限公司 用于使用保形填充层改善器件表面均匀性的方法和系统
FR3036845B1 (fr) * 2015-05-28 2017-05-26 Soitec Silicon On Insulator Procede de transfert d'une couche d'un substrat monocristallin
CN105097554B (zh) 2015-08-24 2018-12-07 上海华力微电子有限公司 用于减少高浓度外延工艺中的位错缺陷的方法和系统
EP3179093A1 (en) * 2015-12-08 2017-06-14 Winfoor AB Rotor blade for a wind turbine and a sub-member
JP6474048B2 (ja) * 2015-12-25 2019-02-27 信越半導体株式会社 エピタキシャルウェーハの製造方法
CN109791878B (zh) * 2016-08-10 2023-05-09 胜高股份有限公司 外延硅晶片及外延硅晶片的制造方法
CN109844938B (zh) * 2016-08-12 2023-07-18 Qorvo美国公司 具有增强性能的晶片级封装
JP6662250B2 (ja) * 2016-09-07 2020-03-11 信越半導体株式会社 シリコンエピタキシャルウェーハの製造方法及び半導体デバイスの製造方法
US10867791B2 (en) * 2017-04-06 2020-12-15 Sumco Corporation Method for manufacturing epitaxial silicon wafer and epitaxial silicon wafer
US11152363B2 (en) 2018-03-28 2021-10-19 Qorvo Us, Inc. Bulk CMOS devices with enhanced performance and methods of forming the same utilizing bulk CMOS process
US11646242B2 (en) 2018-11-29 2023-05-09 Qorvo Us, Inc. Thermally enhanced semiconductor package with at least one heat extractor and process for making the same
WO2020153983A1 (en) 2019-01-23 2020-07-30 Qorvo Us, Inc. Rf semiconductor device and manufacturing method thereof
US20200235040A1 (en) 2019-01-23 2020-07-23 Qorvo Us, Inc. Rf devices with enhanced performance and methods of forming the same
US11387157B2 (en) 2019-01-23 2022-07-12 Qorvo Us, Inc. RF devices with enhanced performance and methods of forming the same
US20200235066A1 (en) 2019-01-23 2020-07-23 Qorvo Us, Inc. Rf devices with enhanced performance and methods of forming the same
US11646289B2 (en) 2019-12-02 2023-05-09 Qorvo Us, Inc. RF devices with enhanced performance and methods of forming the same
US11923238B2 (en) 2019-12-12 2024-03-05 Qorvo Us, Inc. Method of forming RF devices with enhanced performance including attaching a wafer to a support carrier by a bonding technique without any polymer adhesive

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06338464A (ja) 1993-05-31 1994-12-06 Toshiba Corp 半導体装置用基板
JP2000260711A (ja) 1999-03-11 2000-09-22 Toshiba Corp 半導体基板製造方法
JP2003204048A (ja) * 2002-01-09 2003-07-18 Shin Etsu Handotai Co Ltd Soiウエーハの製造方法及びsoiウエーハ
JP2004339003A (ja) 2003-05-15 2004-12-02 Shin Etsu Handotai Co Ltd シリコンエピタキシャルウェーハ及びシリコンエピタキシャルウェーハの製造方法
JP2008171958A (ja) * 2007-01-10 2008-07-24 Hitachi Kokusai Electric Inc 半導体装置の製造方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62226891A (ja) * 1986-03-28 1987-10-05 Shin Etsu Handotai Co Ltd 半導体装置用基板
JPH03194921A (ja) * 1989-12-22 1991-08-26 Showa Denko Kk 半導体エピタキシャルウェハー及びその製造方法
JP2772183B2 (ja) * 1991-11-30 1998-07-02 東芝セラミックス株式会社 シリコンウェハの製造方法
JP2001274049A (ja) * 2000-03-27 2001-10-05 Toshiba Microelectronics Corp 半導体基板及びその製造方法
US6743495B2 (en) * 2001-03-30 2004-06-01 Memc Electronic Materials, Inc. Thermal annealing process for producing silicon wafers with improved surface characteristics
JP4089354B2 (ja) * 2002-08-30 2008-05-28 株式会社Sumco エピタキシャルウェーハとその製造方法
JP4423903B2 (ja) * 2003-07-17 2010-03-03 信越半導体株式会社 シリコンエピタキシャルウェーハ及びその製造方法
EP1868230B1 (en) * 2005-04-06 2013-10-23 Shin-Etsu Handotai Co., Ltd. Manufacting method of soi wafer and soi wafer manufactured by this method
JP2008159667A (ja) * 2006-12-21 2008-07-10 Siltronic Ag Soi基板及びsoi基板の製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06338464A (ja) 1993-05-31 1994-12-06 Toshiba Corp 半導体装置用基板
JP2000260711A (ja) 1999-03-11 2000-09-22 Toshiba Corp 半導体基板製造方法
JP2003204048A (ja) * 2002-01-09 2003-07-18 Shin Etsu Handotai Co Ltd Soiウエーハの製造方法及びsoiウエーハ
JP2004339003A (ja) 2003-05-15 2004-12-02 Shin Etsu Handotai Co Ltd シリコンエピタキシャルウェーハ及びシリコンエピタキシャルウェーハの製造方法
JP2008171958A (ja) * 2007-01-10 2008-07-24 Hitachi Kokusai Electric Inc 半導体装置の製造方法

Also Published As

Publication number Publication date
CN102859649B (zh) 2015-06-24
EP2555227B1 (en) 2019-07-03
US8823130B2 (en) 2014-09-02
CN102859649A (zh) 2013-01-02
US20120326268A1 (en) 2012-12-27
KR20130023207A (ko) 2013-03-07
JP5544986B2 (ja) 2014-07-09
EP2555227A1 (en) 2013-02-06
KR101729474B1 (ko) 2017-04-24
JP2011216780A (ja) 2011-10-27
EP2555227A4 (en) 2015-08-26

Similar Documents

Publication Publication Date Title
JP5544986B2 (ja) 貼り合わせsoiウェーハの製造方法、及び貼り合わせsoiウェーハ
JP5604629B2 (ja) 半導体バッファ構造体内の歪み層
US10424514B2 (en) Method for manufacturing semiconductor substrate
US20060049399A1 (en) Germanium-on-insulator fabrication utilizing wafer bonding
TWI693640B (zh) 使半導體表面平整之製造方法
JP4552858B2 (ja) 貼り合わせウェーハの製造方法
EP2012346B1 (en) Method for producing soi wafer
WO2016047046A1 (ja) 貼り合わせウェーハの製造方法
US8659020B2 (en) Epitaxial silicon wafer and method for manufacturing same
EP1632591A1 (en) Silicon epitaxial wafer, and silicon epitaxial wafer producing method
JP2001253797A (ja) シリコンエピタキシャルウェーハの製造方法及びシリコンエピタキシャルウェーハ
JP5533869B2 (ja) エピタキシャルシリコンウェーハとその製造方法
JP5045095B2 (ja) 半導体デバイスの製造方法
JP2008166646A (ja) 半導体基板の製造方法
US11505878B2 (en) Diamond crystal substrate, method for producing diamond crystal substrate, and method for homo-epitaxially growing diamond crystal
JP2000260711A (ja) 半導体基板製造方法
WO2021246279A1 (ja) 貼り合わせウェーハ用の支持基板
JP6702422B2 (ja) エピタキシャルシリコンウェーハの製造方法
US20150011079A1 (en) Method for manufacturing silicon epitaxial wafer
JP6474048B2 (ja) エピタキシャルウェーハの製造方法
WO2017183277A1 (ja) エピタキシャルウェーハの製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180017235.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11765184

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13582614

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20127024972

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2011765184

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE