WO2011111559A1 - 炭素繊維チョップドストランド及びその製造方法 - Google Patents

炭素繊維チョップドストランド及びその製造方法 Download PDF

Info

Publication number
WO2011111559A1
WO2011111559A1 PCT/JP2011/054505 JP2011054505W WO2011111559A1 WO 2011111559 A1 WO2011111559 A1 WO 2011111559A1 JP 2011054505 W JP2011054505 W JP 2011054505W WO 2011111559 A1 WO2011111559 A1 WO 2011111559A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon fiber
chopped strand
strand
sizing agent
dmin
Prior art date
Application number
PCT/JP2011/054505
Other languages
English (en)
French (fr)
Inventor
浩 恒川
尚郎 佐伯
明郎 吉田
Original Assignee
東邦テナックス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東邦テナックス株式会社 filed Critical 東邦テナックス株式会社
Priority to US13/583,137 priority Critical patent/US9181640B2/en
Priority to SG2012063269A priority patent/SG183499A1/en
Priority to KR1020127023239A priority patent/KR20130038194A/ko
Priority to CN201180010301.7A priority patent/CN102884247B/zh
Priority to EP11753219.2A priority patent/EP2546409B1/en
Publication of WO2011111559A1 publication Critical patent/WO2011111559A1/ja

Links

Classifications

    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02GCRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
    • D02G3/00Yarns or threads, e.g. fancy yarns; Processes or apparatus for the production thereof, not otherwise provided for
    • D02G3/02Yarns or threads characterised by the material or by the materials from which they are made
    • D02G3/16Yarns or threads made from mineral substances
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/12Making granules characterised by structure or composition
    • B29B9/14Making granules characterised by structure or composition fibre-reinforced
    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02GCRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
    • D02G3/00Yarns or threads, e.g. fancy yarns; Processes or apparatus for the production thereof, not otherwise provided for
    • D02G3/02Yarns or threads characterised by the material or by the materials from which they are made
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M14/00Graft polymerisation of monomers containing carbon-to-carbon unsaturated bonds on to fibres, threads, yarns, fabrics, or fibrous goods made from such materials
    • D06M14/36Graft polymerisation of monomers containing carbon-to-carbon unsaturated bonds on to fibres, threads, yarns, fabrics, or fibrous goods made from such materials on to carbon fibres
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/37Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/59Polyamides; Polyimides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/02Making granules by dividing preformed material
    • B29B9/06Making granules by dividing preformed material in the form of filamentary material, e.g. combined with extrusion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/04Particle-shaped
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/06Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts
    • B29K2105/12Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts of short lengths, e.g. chopped filaments, staple fibres or bristles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/06Elements
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/08Ingredients agglomerated by treatment with a binding agent
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02GCRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
    • D02G3/00Yarns or threads, e.g. fancy yarns; Processes or apparatus for the production thereof, not otherwise provided for
    • D02G3/22Yarns or threads characterised by constructional features, e.g. blending, filament/fibre
    • D02G3/26Yarns or threads characterised by constructional features, e.g. blending, filament/fibre with characteristics dependent on the amount or direction of twist
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2101/00Chemical constitution of the fibres, threads, yarns, fabrics or fibrous goods made from such materials, to be treated
    • D06M2101/40Fibres of carbon
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2101/00Inorganic fibres
    • D10B2101/10Inorganic fibres based on non-oxides other than metals
    • D10B2101/12Carbon; Pitch
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/13Hollow or container type article [e.g., tube, vase, etc.]
    • Y10T428/1334Nonself-supporting tubular film or bag [e.g., pouch, envelope, packet, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2918Rod, strand, filament or fiber including free carbon or carbide or therewith [not as steel]

Definitions

  • the present invention relates to a carbon fiber chopped strand that is important as a raw material for producing a short carbon fiber reinforced thermoplastic resin and a method for producing the same. More specifically, the present invention relates to a carbon fiber chopped strand having high fluidity and a method for producing the same.
  • the present carbon fiber chopped strand is smoothly supplied from a hopper of an extruder to a measuring instrument when producing resin pellets containing carbon fibers, resin molded products containing carbon fibers, or the like.
  • CFRTP short carbon fiber reinforced thermoplastic resin
  • a method for producing this CFRTP there are methods described below.
  • carbon fiber filament bundles (so-called carbon fiber chopped strands) cut to 3 to 10 mm and focused with a sizing agent, or so-called carbon fiber milled fibers pulverized to 1 mm or less, are made of thermoplastic resin pellets. Or it supplies to an extruder with powder, these are melt-kneaded with an extruder, and are pelletized. Then, CFRTP is manufactured with an injection molding machine or an extrusion molding machine using the obtained pellet.
  • thermoplastic resin a method for producing pellets by supplying carbon fiber chopped strands and a thermoplastic resin to an extruder.
  • a method of dry blending a carbon fiber chopped strand and a thermoplastic resin and supplying the mixture to an extruder dry blend method.
  • CFRTP various properties of CFRTP are related to the fiber length of carbon fiber.
  • the fiber length in the molded CFRTP is extremely short, so that various properties of this CFRTP are inferior to those of CFRTP using a carbon fiber chopped strand.
  • CFRTP may be manufactured using long fiber pellets having the same fiber length as the cut length. In this case, it is difficult to control the fiber orientation of the obtained CFRTP. Therefore, the production method using long fiber pellets is not suitable for the production of inexpensive CFRTP which needs to be mass-produced. For the above reasons, carbon fiber chopped strands are generally used for the production of CFRTP.
  • the carbon fiber chopped strand is not quantitatively supplied to the extrusion screw of the extruder. Furthermore, in extreme cases, it may be impossible to supply the carbon fiber chopped strands.
  • carbon fiber chopped strands used industrially in large quantities are required to have high fluidity.
  • a method of applying a sizing agent with high bundling property to a carbon fiber strand and a method of applying a large amount of sizing agent are employed.
  • another sizing agent is added to carbon fiber chopped strands obtained by cutting the strands to form rice grains.
  • CFRTP is produced by blending a chopped strand with a large amount of the sizing agent added with a heat-resistant thermoplastic resin having a high processing temperature
  • gas due to thermal decomposition of the sizing agent is generated during the production.
  • This gas also causes problems such as poor appearance of the obtained CFRTP and a decrease in weld strength (see, for example, Patent Documents 1 and 2).
  • thermal decomposition of the sizing agent tends to cause a decrease in physical properties of CFRTP.
  • the dispersibility of the carbon fiber may decrease due to the influence of a large amount of sizing agent added to the carbon fiber. In this case, the dispersibility of the carbon fiber in the obtained pellet is insufficient.
  • CFRTP is produced using this pellet, there will be a bundle of fibers that are not sufficiently dispersed in the resulting CFRTP. This bundle of fibers becomes a stress concentration source, and the mechanical properties (particularly tensile strength) of CFRTP are lowered.
  • chopped strands comprising 30000 or more single yarns are known.
  • the chopped strand has a flat shape. By flattening the shape, carbon fibers are easily dispersed in a single yarn state in CFRTP, and the carbon fibers are prevented from collecting in a bundle.
  • the time for the chopped strands to stay in the extruder becomes longer.
  • the chopped strand is subjected to much shearing by the screw of the extruder, and the carbon fiber is broken.
  • the fiber length is shortened and the mechanical properties of the resulting CFRTP are reduced.
  • the present inventor has made various studies in order to solve the above problems. As a result, after forming a twist of 0.5 to 50 twists / m on a carbon fiber strand in which 30,000 or more single yarns are bundled, the yarn is bundled by applying a sizing agent of 1 to 10% by mass, Subsequently, the chopped strands obtained by cutting into a predetermined shape were found to have high dispersibility in CFRTP, contrary to expectations. Furthermore, since the chopped strand is not flat, it has been found that the chopped strand has high fluidity and smoothly flows down in the hopper.
  • the object of the present invention is to enable large-scale packaging suitable for mass production, and further stably supply from the hopper to the extruder, and exhibit a good dispersibility of the carbon fiber in the kneading operation of the extruder. And a manufacturing method thereof.
  • a carbon fiber chopped strand composed of a single yarn composed of 30,000 to 120,000 carbon fibers and a sizing agent of 1 to 10% by mass for converging the single yarn, wherein the major axis ( Dmax) and minor axis (Dmin) ratio (Dmax / Dmin) is 1.0 to 1.8, the length (L) along the fiber direction is 3 to 10 mm, and the angle of repose is 10 to 30 degrees. Is a carbon fiber chopped strand.
  • [4] A step of applying a twist of 0.5 to 50 pieces / m to an untwisted carbon fiber strand having 30,000 to 120,000 single yarns, and using the twisted carbon fiber strand in a sizing agent bath And a step of concentrating carbon fiber strands by applying a sizing agent of 1 to 10% by mass by introduction and drying, and a step of cutting the converging carbon fiber strands into a predetermined length.
  • a carbon fiber chopped strand composed of 30,000 to 120,000 carbon fiber single yarns and 1 to 10% by mass of a sizing agent for bundling the single yarns, the major axis (Dmax) of the cross section thereof And the minor axis (Dmin) ratio (Dmax / Dmin) is 1.0 to 1.8, the length (L) along the fiber direction of the chopped strand is 3 to 10 mm, and the angle of repose is 10 to 30.
  • a carbon fiber chopped strand comprising 30,000 to 120,000 carbon fiber single yarns and 1 to 10% by mass of a sizing agent for bundling the single yarns, the major axis (Dmax) of the cross section thereof And the minor axis (Dmin) ratio (Dmax / Dmin) is 1.0 to 1.8, the length (L) along the fiber direction of the chopped strand is 3 to 10 mm, and the angle of repose is 10 to 30.
  • Carbon fiber chopped strands, and a flexible container bag for packing the carbon fiber chopped strands, and a carbon fiber chopped strand bundle residual rate contained in the packing body is 70% or more. Package of fiber chopped strands.
  • a process for producing pellets comprising a thermoplastic resin and carbon fibers dispersed in the thermoplastic resin, produced using an extruder, comprising a single yarn comprising 30,000 to 120,000 carbon fibers And a carbon fiber chopped strand consisting of 1 to 10% by mass of a sizing agent for bundling the single yarn, the ratio of the major axis (Dmax) and minor axis (Dmin) of the cross section (Dmax / Dmin) being 1.
  • a carbon fiber chopped strand having a length (L) along the fiber direction of 3 to 10 mm and an angle of repose of 10 to 30 degrees is directly transferred from the flexible container bag to the hopper of the extruder.
  • a method for producing pellets characterized in that the carbon fiber chopped strand and the resin are kneaded in an extruder.
  • the carbon fiber chopped strand of the present invention uses as a raw material a carbon fiber strand obtained by impregnating 30,000 to 120,000 carbon fiber strands with a predetermined amount of sizing agent. Since this strand has a twist of 0.5 to 50 pieces / m, the present carbon fiber chopped strand obtained by cutting the strand is excellent in converging property and the cross-sectional shape is hardly flattened. As a result, the present carbon fiber chopped strand is excellent in fluidity.
  • the strand flows smoothly in the hopper and is stably supplied to the meter of the extruder.
  • the chopped strand can be stably supplied to the extrusion screw of the extruder.
  • the carbon fiber chopped strand can be stably supplied to the extruder as described above, it is difficult for the time to pass through the extruder to vary. As a result, the residence time in the extrusion screw part can be shortened. For the above reason, there is little cutting at the time of kneading the strand in the extrusion screw part. As a result, a molding material in which long fibers are dispersed is obtained. For the above reasons, when a molding is produced using this molding material, a molding having excellent mechanical properties can be obtained.
  • the carbon fiber chopped strand of the present invention is manufactured by the following method.
  • the carbon fiber that is the raw material for producing the present carbon fiber chopped strand is a filament-like carbon fiber that can be twisted.
  • Polyacrylonitrile (PAN), rayon and pitch carbon fibers (including graphite fibers), and carbon fibers coated with a metal film on the fiber surface can be used.
  • the single fiber diameter of the carbon fiber is preferably 3 to 15 ⁇ m, more preferably 5 to 10 ⁇ m.
  • These carbon fibers are produced by a known method and are usually supplied in the form of strands.
  • the number of single yarns constituting the strand is preferably 30,000 to 120,000, more preferably 40,000 to 110,000, and particularly preferably 50,000 to 100,000.
  • the production cost depends on the number of single yarns constituting the strand and the diameter of the single yarn. Accordingly, strands having a single yarn number of less than 30,000 can be used, but the production cost is increased. Furthermore, it is difficult to achieve economically as a CFRTP reinforcing material that is required to be inexpensive.
  • a strand having more than 120,000 single yarns is difficult to penetrate into the strand when the sizing agent is applied. As a result, the stranding property of the strand is likely to deteriorate. Furthermore, when the chopped strand is cut, the strand is easily broken along the fiber axis direction. Furthermore, since the uniform dispersibility of the pellets produced by melt-kneading the resin and the chopped strands and the carbon fibers dispersed in the CFRTP tends to decrease, it is not preferable.
  • the mass per unit length of the single yarn is suitably 0.8 to 8.0 g / m.
  • the carbon fiber strand is then given a twist of 0.5 to 50 pieces / m.
  • the number of twists is less than 0.5 / m, the cross-sectional shape of the chopped strand obtained is flat. That is, a carbon fiber chopped strand having a flat shape with a ratio value (Dmax / Dmin) of the major axis (Dmax) and minor axis (Dmin) of the cross section of the chopped strand exceeding 1.8 is obtained. As a result, the fluidity of the chopped strand is reduced.
  • Carbon fiber strands having a twist of 0.5 to 50 pieces / m are pre-twisted with a precursor (carbon fiber precursor) such as an oxidized fiber bundle, and then the precursor with the twist is fired by a usual method. It can also be produced by a carbonizing method.
  • a precursor carbon fiber precursor
  • the twist is preferably given after the precursor is carbonized.
  • the twist may be applied after applying a sizing agent to the untwisted carbon fiber strand.
  • you may provide a sizing agent after giving twist, without providing a sizing agent.
  • thermoplastic resins and thermosetting resins are preferable.
  • epoxy resins urethane-modified epoxy resins, polyurethane resins, and polyamide resins are preferable, and polyamide resins are particularly preferable in terms of versatility, easy handling, and high functionality.
  • polyamide resins 8 nylon (trademark) which is a soluble nylon resin is particularly preferable.
  • the amount of the sizing agent applied to the carbon fiber strand is 1 to 10% by mass, preferably 3 to 8% by mass, preferably 4 to 7% by mass based on the total mass of the carbon fiber strand and the sizing agent. Is more preferable.
  • the amount of the sizing agent is less than 1% by mass, the resulting carbon fiber chopped strands are less converging, and strand breakage is likely to occur during transportation and handling.
  • the amount of the sizing agent exceeds 10% by mass, the dispersibility of the carbon fibers dispersed in these when kneaded with a molten resin to produce pellets or CFRTP is deteriorated. As a result, the mechanical properties of the resulting pellets and the like are reduced. In addition, the amount of pyrolysis gas generated during kneading increases and the resulting CFRTP deteriorates. Furthermore, since it becomes difficult to cut
  • Sizing agent is usually applied to the carbon fiber strand in the form of a solution or dispersion dissolved in a solvent.
  • a solvent e.g., water; alcohols such as ethyl alcohol and methyl alcohol; ketones such as acetone and methyl ethyl ketone; aromatics such as toluene and xylene; dichloromethane, N-methylpyrrolidone, dimethylformamide , Tetrahydrofuran, and the like are selected.
  • a mixed system of these solvents is also appropriately selected and used.
  • the sizing agent concentration of the sizing agent solution or sizing agent dispersion is preferably 0.5 to 30% by mass.
  • a known method such as a method of immersing the carbon fiber strand in the sizing solution or a method of spraying the sizing solution using a spray nozzle is employed.
  • the carbon fiber strand provided with the sizing agent is then dried by a known method. Drying is performed, for example, by passing the strand through an air dryer or the like.
  • the drying temperature is preferably 50 to 200 ° C. In this way, by drying, the carbon fiber strand naturally approaches a circular cross section perpendicular to the fiber axis direction due to the imparting twist and the sizing action of the sizing agent.
  • the ratio of diameter (Dmin) (Dmax / Dmin) is in the range of 1.0 to 1.8.
  • the cross section of the carbon fiber strand to which the sizing agent is applied may be formed using a grooved roller.
  • the cross-sectional shape of the groove of the roller is preferably U-shaped.
  • the carbon fiber strand produced as described above is then cut into 3 to 10 mm, preferably 5 to 8 mm, to obtain the carbon fiber chopped strand of the present invention.
  • the average diameter of the carbon fiber chopped strand of the present invention is usually 1 to 10 mm, although it varies depending on the number of bundled single yarns.
  • the carbon fiber chopped strand of the present invention has a ratio (Dmax / Dmin) of a major axis (Dmax) to a minor axis (Dmin) in a cross section perpendicular to the fiber axis direction of 1.0 to 1.8, preferably 1 0.0 to 1.6.
  • this ratio exceeds 1.8, the contact area between the strands increases and the fluidity of the strands decreases, which is not preferable.
  • the fiber length (L) of the chopped strand of the present invention is 3 to 10 mm, and more preferably 5 to 8 mm.
  • the contact area between the strands increases and the fluidity decreases, which is not preferable.
  • the fiber length of the chopped strand is less than 3 mm, the reinforcing effect when the fiber-reinforced composite material is obtained cannot be obtained sufficiently, which is not preferable.
  • the ratio (L / Dmin) between the fiber length (L) of the chopped strand and the short diameter (Dmin) of the chopped strand is preferably 4 or less, and more preferably 3 or less. When this ratio exceeds 4, the contact area between the strands increases, and the fluidity may decrease.
  • the fluidity of carbon fiber chopped strands is evaluated by the angle of repose.
  • the angle of repose is measured by the method described below. The smaller the angle of repose, the better the fluidity.
  • the angle of repose of the chopped strand evaluated to have good fluidity is 30 degrees or less and more preferably 25 degrees or less. When the angle of repose exceeds 30 degrees, the stability of the strand flowing down when the chopped strand in the hopper is supplied to the extruder is lowered, which is not preferable. When the angle of repose is less than 10 degrees, the fluidity is too high, and the handling becomes difficult.
  • the bulk density of the carbon fiber chopped strand is represented by the mass of the chopped strand per fixed volume (1 L).
  • the bulk density of the carbon fiber chopped strand is preferably 200 g / L or more, more preferably 250 g / L, and particularly preferably 300 g / L or more.
  • the upper limit of the bulk density is usually about 700 g / L.
  • the frictional resistance between the surfaces of the chopped strands becomes larger than the gravity applied to one chopped strand. As a result, a portion where the chopped strand cannot flow down occurs in the hopper.
  • the free fiber generation rate is desirably 3% or less.
  • the free fiber generation rate is 5% or more, the shape of the chopped strand cannot be maintained during transportation or when the chopped strand is supplied from the hopper to the extruder, and the fiber is opened. As a result, a flocculent lump is produced, causing a decrease in the fluidity of the chopped strands.
  • the free fiber occurrence rate was determined by the following method.
  • a carbon fiber chopped strand was dropped into a beaker from a height of 30 cm above the beaker in a 500 ml beaker. Carbon fiber chopped strands were fed into the beaker until the carbon fiber chopped strands were stacked over the top of the beaker and dropped from the top of the beaker. Then, the glass rod was moved along the upper end of the beaker, and the carbon fiber chopped strand protruding upward from the upper end surface of the beaker was removed. Then, the mass (W1g) of the carbon fiber chopped strand in the beaker was measured.
  • this carbon fiber chopped strand was transferred to a 2000 ml graduated cylinder and sealed.
  • the sample was rotated at 25 rpm for 20 minutes around the axis of the graduated cylinder.
  • the rotation of the graduated cylinder was stopped, and the carbon fiber chopped strand was transferred to a sieve (3 mesh).
  • the carbon fiber chopped strands were sieved by moving the sieve back and forth and left and right until the carbon fiber chopped strands did not fall from the sieve eyes. Free fiber remaining on the sieve was collected, and its mass (W2 g) was measured. The free fiber incidence was calculated using the following formula.
  • Free fiber generation rate (%) (W2 / W1) ⁇ 100
  • the chopped strands of the present invention are packed in a flexible container bag or the like in the state of an aggregate of a large number of chopped strands, and used for the pellet manufacturing process. In this case, it is preferable that the chopped strands constituting the aggregate or the package are stably present in the original number of chopped strands without being broken into a smaller number of chopped strands.
  • the degree of strand breakage is indicated by the bundle remaining rate described later.
  • the bundle remaining rate is preferably 50% or more, and more preferably 70% or more. When the bundle remaining rate is lower than 50%, the contact area between the strands increases, and therefore the fluidity of the chopped strands decreases, which is not preferable.
  • the flexible container bag is a bag-shaped packaging material used for storing and transporting a powdered material or a granular material.
  • a commercially available flexible container bag can be used as appropriate.
  • the flexible container bag is preferably of a type whose lower part can be opened and closed. This flexible container bag facilitates the operation of putting chopped strands into the hopper.
  • the sizing agent was quantified by the so-called sulfuric acid decomposition method described below.
  • 2 g (W1) of carbon fiber chopped strands were placed and precisely weighed.
  • Concentrated sulfuric acid (100 ml) was added, capped with a watch glass, and heated at about 200 ° C. for 1 hour to thermally decompose the sizing agent.
  • a hydrogen peroxide aqueous solution was added in small portions in a beaker until the solution became transparent. Thereafter, the carbon fibers were filtered off using a glass filter (W2) precisely weighed in advance.
  • the carbon fiber separated by filtration was washed with about 1000 ml of water, and the glass filter containing the carbon fiber was dried at 110 ⁇ 3 ° C. for 2 hours.
  • the weight (W3) of the glass filter containing the carbon fiber after drying was precisely weighed.
  • the bulk density A 2 L graduated cylinder was filled with 300 g of chopped strands and kept lightly impacted. The volume was measured when there was no change in the volume of the filled chopped strands. The bulk density was calculated using this volume and the mass of the chopped strand.
  • Examples 1 to 6 and Comparative Examples 1 to 4 A PAN-based carbon fiber strand of 48,000 single yarns without twists (Toho Tenax Co., Ltd. Tenax STS40-48K) was continuously twisted to obtain carbon fiber strands of the twist numbers shown in Table 1, respectively. . These twisted carbon fiber strands were continuously introduced into the sizing bath at a treatment speed of 4 m / min to impregnate the sizing agent.
  • the sizing agent was a methanol solution of a soluble 8-nylon resin [Drac Co., Ltd., Rakkamide 5003]. At this time, the concentration of the sizing agent bath was adjusted to adjust the sizing agent amount of the carbon fiber strands to the values shown in Table 1. By this operation, the carbon fiber strand was subjected to a bundling process.
  • the strand After passing through a grooved roller having a rectangular cross section (width 3 mm, depth 2 mm), the strand was sent to an air dryer (140 ° C.) to dry the carbon fiber strand. The strand was maintained in a substantially circular cross section by passing the grooved roller. Thereafter, the dried carbon fiber strand was cut into a length of 6 mm to obtain a carbon fiber chopped strand. The angle of repose and bulk density of these carbon fiber chopped strands were measured by the method described above. Next, 200 kg of the obtained carbon fiber chopped strand was packed in a flexible container bag whose lower part can be opened and closed. Thereafter, the bundle residual rate of the carbon fiber chopped strands packed in the flexible container bag was measured. These results are shown in Table 1.
  • Example 7 3 strands of PAN-based carbon fiber strand [Toho Tenax Co., Ltd. Tenax STS40-12K] with no twist is obtained to obtain a carbon fiber strand with 36,000 single yarns. A carbon fiber chopped strand was obtained in the same manner as in Example 1 except that twisting was applied. The results are shown in Table 1.
  • Example 8 Two strands of PAN-based carbon fiber strands [Toho Tenax Co., Ltd. Tenax STS40-48K] with no twist are combined to obtain a carbon fiber strand of 96,000 single yarns. A carbon fiber chopped strand was obtained in the same manner as in Example 1 except that twisting was applied. The results are shown in Table 1.
  • Example 9 5 strands of PAN-based carbon fiber strand [Toho Tenax Co., Ltd. Tenax STS40-24K] without twist is combined to obtain a carbon fiber strand with 120,000 single yarns. A carbon fiber chopped strand was obtained in the same manner as in Example 1 except that twisting was applied. The results are shown in Table 1.
  • Comparative Example 6 The carbon fiber chopped strand was operated in the same manner as in Example 1 except that a twist was applied to the PAN-based carbon fiber strand [Toho Tenax Co., Ltd. Tenax STS40-24K] having 24,000 single yarns without twist as the carbon fiber. Manufactured. However, since the number of single yarns was small, the angle of repose was as high as 32 degrees.
  • Comparative Example 7 As a carbon fiber, 5 pieces of PAN-based carbon fiber strands [Toho Tenax Co., Ltd. Tenax STS40-48K] having 48,000 single yarns without twist are combined to obtain a carbon fiber strand having 240,000 single yarns. A carbon fiber chopped strand was produced in the same manner as in Example 1 except that the strand was twisted. However, the number of single yarns was too large, and the sizing process and the strand cutting process became unstable, and a chopped strand having the desired properties could not be obtained.
  • Example 10 A carbon fiber chopped strand was produced in the same manner as in Example 1 except that an acetone solution of urethane-modified epoxy resin (trade name Adeka Resin EPU-4-75X manufactured by ADEKA) was used as a sizing agent. The results are shown in Table 1.
  • Example 11 A carbon fiber chopped strand was produced in the same manner as in Example 1 except that an aqueous dispersion solution of polyurethane resin (trade name Dispacol U-54 manufactured by Bayer Co., Ltd.) was used as a sizing agent. The results are shown in Table 1.
  • polyurethane resin trade name Dispacol U-54 manufactured by Bayer Co., Ltd.
  • Examples 12-22 Each of the carbon fiber chopped strands 200 kg obtained in Examples 1 to 11 was packed in a flexible container bag whose lower part was openable and closable, and subjected to a pellet manufacturing process. That is, the package was lifted with a crane, the lower part of the flexible container bag was opened and closed, and the hopper of the extruder was supplied with a quantity of carbon fiber chopped strands that filled the hopper at a time.
  • the carbon fiber chopped strands obtained in Examples 1 to 11 all had a low angle of repose of 30 degrees or less and excellent fluidity. For this reason, a large amount of carbon fiber chopped strands in the hopper was stably supplied from the hopper to the meter without causing fuzz.
  • Comparative Examples 8-13 The carbon fiber chopped strands 200 Kg obtained in Comparative Examples 1 to 6 were each operated in the same manner as in Example 12 and packed in flexible container bags whose lower portions could be opened and closed, and used for the pellet manufacturing process.
  • Comparative Example 11 The carbon fiber chopped strands obtained in Comparative Example 4 had a large size adhesion amount of 14.2%, so the chopped strand surface was not smooth. That is, the angle of repose was 36 degrees and the fluidity was low. Fluffing occurred in the hopper, and the chopped strand could not be stably supplied to the measuring instrument. In the kneading of the resin and the carbon fiber chopped strands in the extruder, the dispersibility of the carbon fiber chopped strands in the resin was poor, and as a result, good quality pellets were not obtained.
  • Comparative Example 12 The carbon fiber chopped strand obtained in Comparative Example 5 had a small number of carbon fibers used of 12,000. Therefore, the diameter of the chopped strand obtained was reduced. As a result, the ratio of the fiber length (L) to the short diameter (Dmin) was increased to 6.32. That is, since the contact area increased, the angle of repose obtained exceeded 30 degrees, and the fluidity of the chopped strand decreased. Fluffing occurred in the hopper, and the chopped strand could not be stably supplied to the measuring instrument.
  • Comparative Example 13 The carbon fiber chopped strands obtained in Comparative Example 6 had a small number of carbon fibers used of 24,000. Therefore, the diameter of the chopped strand obtained was reduced. As a result, the ratio of the fiber length (L) to the short diameter (Dmin) was increased to 4.48. That is, since the contact area was increased, the angle of repose was increased to 32 degrees, and the fluidity of the chopped strand was lowered. As a result, fluff clogging occurred in the hopper, and the chopped strand could not be stably supplied to the measuring instrument.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
  • Reinforced Plastic Materials (AREA)
  • Inorganic Fibers (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)

Abstract

本発明により、30,000~120,000本の炭素繊維からなる単糸と、前記単糸を集束する1~10質量%のサイズ剤とからなる炭素繊維チョップドストランドであって、その断面の長径(Dmax)と短径(Dmin)の比(Dmax/Dmin)が1.0~1.8であり、繊維方向に沿う長さ(L)が3~10mmであり、その安息角が10~30度である炭素繊維チョップドストランド、およびその製造方法が開示される。

Description

炭素繊維チョップドストランド及びその製造方法
 本発明は、短炭素繊維強化熱可塑性樹脂の製造原料として重要な炭素繊維チョップドストランド及びその製造方法に関する。更に詳述すれば、本発明は、流動性が高い炭素繊維チョップドストランド及びその製造方法に関する。本炭素繊維チョップドストランドは、炭素繊維を含有する樹脂ペレットや、炭素繊維を含有する樹脂成型物等を製造する際に、押出機のホッパーから計量器に円滑に供給される。
 従来、熱可塑性樹脂をマトリックス樹脂として製造される短炭素繊維強化熱可塑性樹脂(以下「CFRTP」と記す)は、高性能なエンジニアリング材料として注目されており、その需要が急激に増加している。このCFRTPは、射出成形により製造できるので、生産性が高い。且つ、従来の未強化の熱可塑性樹脂や短ガラス繊維強化熱可塑性樹脂と比較して、機械特性、摺動特性、電気特性、寸法安定性などに優れる。
通常、このCFRTPを製造する方法としては、以下に記載する方法がある。
 (1) 先ず、3~10mmに切断され、サイズ剤で集束された炭素繊維フィラメント束(所謂炭素繊維チョップドストランド)、或いは1mm以下に粉砕された、所謂炭素繊維ミルドファイバーを、熱可塑性樹脂のペレット又はパウダーと共に押出機に供給し、押出機でこれらを溶融混練してペレット化する。その後、得られたペレットを用いて、射出成形機或いは押出成形機でCFRTPを製造する。
 (2) 炭素繊維チョップドストランドと熱可塑性樹脂のペレット又はパウダーとを押出成形機に投入し、直接CFRTPを製造する。
 一方、押出機に炭素繊維チョップドストランドと熱可塑性樹脂とを供給してペレットを製造する方法として、主に次の2通りの方法が採用されている。
(1)炭素繊維チョップドストランドと熱可塑性樹脂をドライブレンドし、その混合物を押出機に供給する方法(ドライブレンド法)。  
(2)熱可塑性樹脂を押出機の押出方向の後端側に供給し、一方、供給した熱可塑性樹脂が溶融している押出機の押出方向中間部分に炭素繊維チョップドストランドを供給する方法(サイドフィード法)。
 広く知られているように、CFRTPの各種特性は、炭素繊維の繊維長に関連する。繊維長が極めて短いミルドファイバーを用いると、成形されるCFRTP中の繊維長は極めて短いので、このCFRTPの有する各種特性は炭素繊維チョップドストランドを用いるCFRTPと比較して劣る。
 CFRTP中の繊維長を長く保たせるため、カット長と同じ繊維長を有する長繊維ペレットを用いてCFRTPを製造する場合がある。この場合は、得られるCFRTPの繊維配向制御が難しい。従って、量産をする必要がある、安価なCFRTPの製造には、この長繊維ペレットを用いる製造方法は不向きである。上記理由で、一般的には、炭素繊維チョップドストランドがCFRTPの製造に用いられる。
 CFRTPを製造する際に炭素繊維チョップドストランドの流動性が低い場合は、炭素繊維チョップドストランドを押出機に安定に供給し難くなる問題がある。
 ドライブレンド法においては、使用する炭素繊維チョップドストランドの流動性が低い場合、押出機や射出成形機のホッパー内で炭素繊維チョップドストランドは流下し難い問題がある。その結果、ホッパー下部に設けられている計量器が定量的に押出機の押出スクリューに供給する炭素繊維チョップドストランド量が不安定になる。上記理由で、均一な組成のCFRTPを定常的に得ることが困難になる。更に、製造効率が低下する。
 一方、サイドフィード法においても、同様に、炭素繊維チョップドストランドの流動性が低い場合、炭素繊維チョップドストランドが押出機の押出スクリューに定量的に供給されなくなる。更に、極端な場合は、炭素繊維チョップドストランドの供給自体が不可能となる場合がある。
 これらの理由で、工業的に大量に使用される炭素繊維チョップドストランドは、流動性が高い性質を有することが要求される。この要求に応えるため、炭素繊維ストランドに集束性の高いサイズ剤を付与する方法や、サイズ剤を多く付与する方法が採用されている。更に、ストランドをカットして得られる炭素繊維チョップドストランドに、別のサイズ剤を添加して米粒状に成形することが行われている。
 しかし、上記サイズ剤の添加量が多いチョップドストランドを加工温度の高い耐熱性熱可塑性樹脂に配合してCFRTPを製造する場合、その製造時に、サイズ剤の熱分解に基因するガスが発生する。このガスは、得られるCFRTPの外観不良や、ウェルド強さの低下などの問題も生じる原因になる(例えば、特許文献1、2参照)。さらには、サイズ剤の熱分解は、CFRTPの物性低下の要因になりやすい。
 また更に、炭素繊維に添加する多量のサイズ剤の影響で、押出機中において、チョップドストランドと熱可塑性樹脂とを溶融混練する際に、炭素繊維の分散性が低下する場合がある。この場合は、得られるペレット中の炭素繊維の分散性は不十分である。このペレットを用いてCFRTPを製造する場合は、得られるCFRTP中に十分に分散されていない繊維の束が存在することになる。この繊維の束は応力集中源になり、CFRTPの機械特性(特に引っ張り強度)が低下する。
 一方、チョップドストランドを大量生産するためには、チョップドストランドを構成する単糸数を増加させることが有効である。従来、30000本以上の単糸数からなるチョップドストランドは知られている。このチョップドストランドは、その形態が扁平に形成されている。形態を扁平にすることにより、CFRTP中において、炭素繊維が単糸状態で分散し易くなり、炭素繊維が束状に集合することが避けられる。
 しかし扁平な形態のチョップドストランドは、表面積が大きいので、チョップドストランド同士の接触面積が大きくなる。その結果、チョップドストランドの流動性が低下し、このチョップドストランドを押出機に供給する場合、計量器への供給不良や押出機への供給不良を生じる。
 さらに、前記供給不良に基因し、チョップドストランドが押出機内で滞留する時間が長くなる。この場合は、チョップドストランドは押出機のスクリューによる剪断を多く受け、炭素繊維が折れる。その結果、繊維長が短くなり、得られるCFRTPの機械特性が低下する。
 上述する通り、炭素繊維チョップドストランドにおいて、炭素繊維の分散性や、得られるCFRTPの物性を低下させること無く、チョップドストランドの流動性を高め、この流動性を高めることにより、大量のチョップドストランドを押出機のホッパーから押出機の押出スクリューに安定な状態で供給することは、従来から困難なことである。
特開2003-165849号公報 特開2004-149725号公報
 本発明者は、上記問題を解決するために種々検討した。その結果、単糸が30000本以上集束される炭素繊維ストランドに、撚り数が0.5~50個/mの撚りを形成した後、1~10質量%のサイズ剤を付与して集束し、その後所定形状に切断して得られるチョップドストランドは、CFRTP中において、予想に反して、分散性が高いことを見出した。更に、このチョップドストランドは、扁平ではないので、流動性が高く、ホッパー内において円滑に流下することを見出した。
 本発明は上記発見に基づき完成するに至った。従って、本発明の目的は、大量生産に適する大型梱包を可能とし、更にホッパーから押出機に安定供給でき、押出機の混練操作においては炭素繊維の良好な分散性を示す、炭素繊維チョップドストランド、及びその製造方法を提供することにある。
 本発明の上記目的は、下記の本発明の各態様によって達成される。
 〔1〕 30,000~120,000本の炭素繊維からなる単糸と、前記単糸を集束する1~10質量%のサイズ剤とからなる炭素繊維チョップドストランドであって、その断面の長径(Dmax)と短径(Dmin)の比(Dmax/Dmin)が1.0~1.8であり、繊維方向に沿う長さ(L)が3~10mmであり、その安息角が10~30度である炭素繊維チョップドストランド。
 〔2〕 チョップドストランドの繊維方向に沿う長さ(L)とチョップドストランドの短径(Dmin)との比(L/Dmin)が4以下である〔1〕に記載の炭素繊維チョップドストランド。
 〔3〕サイズ剤がポリアミド樹脂である〔1〕に記載の炭素繊維チョップドストランド。
 〔4〕単糸数が30,000~120,000本の撚りのない炭素繊維ストランドに0.5~50個/mの撚りを与える工程と、前記撚りを与えた炭素繊維ストランドをサイズ剤浴に導入した後乾燥することにより1~10質量%のサイズ剤を付与して炭素繊維ストランドを集束させる工程と、前記集束させた炭素繊維ストランドを所定長さに切断する工程と、を有することを特徴とする〔1〕に記載の炭素繊維チョップドストランドの製造方法。
 〔5〕サイズ剤がポリアミド樹脂であり、サイズ剤浴のサイズ剤濃度が0.5~30質量%である〔4〕に記載の炭素繊維チョップドストランドの製造方法。
 〔6〕30,000~120,000本の炭素繊維単糸と、前記単糸を集束する1~10質量%のサイズ剤とからなる炭素繊維チョップドストランドであって、その断面の長径(Dmax)と短径(Dmin)の比(Dmax/Dmin)が1.0~1.8であり、チョップドストランドの繊維方向に沿う長さ(L)が3~10mmであり、その安息角が10~30度である炭素繊維チョップドストランドの集合体であって、前記集合体に含まれる炭素繊維チョップドストランドの束残存率が70%以上である炭素繊維チョップドストランドの集合体。
 〔7〕30,000~120,000本の炭素繊維単糸と、前記単糸を集束する1~10質量%のサイズ剤とからなる炭素繊維チョップドストランドであって、その断面の長径(Dmax)と短径(Dmin)の比(Dmax/Dmin)が1.0~1.8であり、チョップドストランドの繊維方向に沿う長さ(L)が3~10mmであり、その安息角が10~30度である炭素繊維チョップドストランドと、前記炭素繊維チョップドストランドを梱包するフレキシブルコンテナバックと、からなる梱包体であって、梱包体に含まれる炭素繊維チョップドストランドの束残存率が70%以上である炭素繊維チョップドストランドの梱包体。
 〔8〕押出機を用いて製造する、熱可塑性樹脂と前記熱可塑性樹脂に分散する炭素繊維とからなるペレットの製造方法であって、30,000~120,000本の炭素繊維からなる単糸と、前記単糸を集束する1~10質量%のサイズ剤とからなる炭素繊維チョップドストランドであって、その断面の長径(Dmax)と短径(Dmin)の比(Dmax/Dmin)が1.0~1.8であり、繊維方向に沿う長さ(L)が3~10mmであり、その安息角が10~30度である炭素繊維チョップドストランドを、フレキシブルコンテナバックから直接押出機のホッパーに投入して、押出機中で前記炭素繊維チョップドストランドと樹脂とを混練りすることを特徴とするペレットの製造方法。
 本発明の炭素繊維チョップドストランドは、30,000~120,000本の炭素繊維ストランドに所定量のサイズ剤を含浸させた炭素繊維ストランドを原材料として用いている。このストランドは、0.5~50個/mの撚りを有するので、これを裁断して得られる本炭素繊維チョップドストランドは集束性に優れ、断面形状が扁平になり難い。その結果、本炭素繊維チョップドストランドは、流動性に優れる。
 従って、押出機のホッパーに本炭素繊維チョップドストランドを投入する場合、ホッパー内でのストランドの流下が円滑に行われ、押出機の計量器に安定に供給される。その結果、押出機の押出スクリューにチョップドストランドを安定供給できる。
 本炭素繊維チョップドストランドは、上述のように押出機に安定供給することができるので、押出機を通過する時間のバラツキが起きがたい。その結果、押出スクリュー部における滞留時間を短縮できる。上記理由で、押出スクリュー部におけるストランドの混練りの際の切断が少ない。その結果、長い繊維を分散する成形材料が得られる。上記理由で、この成形材料を使用して成型物を製造する場合、機械特性の優れた成形物が得られる。
 本発明の炭素繊維チョップドストランドは、以下の方法によって製造される。
 本炭素繊維チョップドストランドの製造原料の炭素繊維は、撚りを与えることが可能なフィラメント状の炭素繊維である。
ポリアクリロニトリル(PAN)系、レーヨン系、ピッチ系等の各 炭素繊維(黒鉛繊維を含む)や、これらの繊維表面に金属皮膜をコーテイングした炭素繊維等が使用できる。
炭素繊維の単糸直径は3~15μmが好ましく、5~10μmがより好ましい。
 これらの炭素繊維は既知の方法で製造され、通常ストランドの形態で供給される。ストランドを構成する単糸の本数としては30,000~120,000本が好ましく、40,000~110,000本がより好ましく、50,000~100,000本が特に好ましい。
 現状の炭素繊維の製造方法においては、その製造コストは、ストランドを構成する単糸本数と、単糸の直径に依存する。従って、単糸本数が30,000本未満のストランドは、使用可能であるが、製造コストが高くなる。さらに、廉価を要求されるCFRTPの強化材としては、経済的に成立ち難い。
 単糸本数が120,000本を超えるストランドは、サイズ剤を付与する際に、サイズ剤がストランドの中まで浸透し難い。その結果、ストランドの集束性が悪化し易くなる。更に、チョップドストランドを裁断する時に、ストランドが繊維軸方向に沿って割れやすくなる。さらに、樹脂とチョップドストランドとを溶融混練して製造するペレットや、CFRTPの内部に分散する炭素繊維の均一分散性が低下する傾向を示すため、好ましくない。
 単糸の単位長さ当たりの質量は、0.8~8.0g/mが適当である。
 上記炭素繊維ストランドは、次いで0.5~50個/mの撚りが与えられる。撚り数が0.5個/m未満の場合は、得られるチョップドストランドの断面形状が扁平になる。即ち、チョップドストランドの断面の長径(Dmax)と短径(Dmin)との比の値(Dmax/Dmin)が1.8を超える値を有する、扁平な形状の炭素繊維チョップドストランドになる。その結果、チョップドストランドの流動性が低下する。
 撚り数が50個/mを超える場合は、繊維束内部にサイズ剤が含浸し難くなる。その結果、ストランドをカットしたときに、サイズ剤が含浸されていない内部の炭素繊維が外部に放出される。この炭素繊維は外部で綿状の毛羽の塊を形成し、チョップドストランドの流動性を低下させる。
 0.5~50個/mの撚りを有する炭素繊維ストランドは、予め酸化繊維束等のプリカーサー(炭素繊維前駆体)に撚りを与えた後、前記撚りを与えたプリカーサーを通常の方法によって焼成して炭素化する方法によっても製造できる。
 通常、撚りは、プリカーサーを炭素化した後に与えることが好ましい。炭素化後に炭素繊維ストランドに撚りを与える場合には、無撚りの炭素繊維ストランドにサイズ剤を付与した後に撚りを与えてもよい。また、サイズ剤を付与せずに撚りを与えた後、サイズ剤を付与しても良い。一般的には、撚りを与えた後にサイズ剤を付与することが好ましい。
 本発明において用いられるサイズ剤としては、各種の熱可塑性樹脂、熱硬化性樹脂が好ましい。例えば、エポキシ樹脂、ウレタン変性エポキシ樹脂、ポリエステル樹脂、フエノール樹脂、ポリアミド樹脂、ポリウレタン樹脂、ポリカーボネート樹脂、ポリエーテルイミド樹脂、ポリアミドイミド樹脂、ポリスチルピリジン樹脂、ポリイミド樹脂、ビスマレイミド樹脂、ポリサルホン樹脂、ポリエーテルサルホン樹脂、エポキシ変性ウレタン樹脂、ポリビニルアルコール樹脂、ポリビニルピロリドン樹脂又はこれらの変性樹脂が挙げられる。更に、これら樹脂の混合物が使用される。これらの内でも、エポキシ樹脂、ウレタン変性エポキシ樹脂、ポリウレタン樹脂、ポリアミド樹脂が好ましく、特にポリアミド樹脂が汎用性、容易な取扱性、高機能性の点で好ましい。ポリアミド樹脂の中でも、可溶性ナイロン樹脂である8ナイロン(商標)が特に好ましい。
 炭素繊維ストランドに付与されるサイズ剤量は、炭素繊維ストランドとサイズ剤との合計質量を基準として、合計質量の1~10質量%であり、3~8質量%が好ましく、4~7質量%がより好ましい。
 サイズ剤量が1質量%未満の場合は、得られる炭素繊維チョップドストランドの集束性が低くなり、輸送や取扱中にストランド割れが生じやすい。
 サイズ剤量が10質量%を超える場合は、溶融樹脂と混練してペレットやCFRTPを製造する際に、これらに分散する炭素繊維の分散性が悪くなる。その結果、得られるペレット等の機械特性が低下する。また、混練の際に発生する熱分解ガス量が多くなり、得られるCFRTPが劣化する。さらに、ストランドの裁断時に裁断し難くなるため、得られるチョップドストランドの切断面が扁平になりやすい。即ち、円形に近い形状になり難く、この場合は流動性が低下するため、好ましくない。
 サイズ剤は、通常溶剤に溶解した溶液又は分散液の形態で、炭素繊維ストランドに付与する。溶剤としては、サイズ剤の種類に応じて、水;エチルアルコール、メチルアルコール等のアルコール類;アセトン、メチルエチルケトン等のケトン類;トルエン、キシレン等の芳香族類;ジクロロメタン、N‐メチルピロリドン、ジメチルホルムアミド、テトラヒドロフラン、などが選択される。更に、これら溶剤の混合系も適宜選択して用いられる。サイズ剤溶液またはサイズ剤分散液のサイズ剤濃度は0.5~30質量%が好ましい。
 サイズ剤を炭素繊維ストランドに付与する方法としては、サイズ剤溶液に炭素繊維ストランドを浸漬する方法、スプレイノズルを用いてサイズ剤溶液を噴霧する方法等の公知の方法が採用される。
 サイズ剤を付与された炭素繊維ストランドは、次いで、公知の方法により乾燥される。乾燥は、例えば、空気乾燥機等の内部にストランドを通過させることにより行われる。乾燥温度は、50~200℃が好ましい。この様にして、乾燥させることにより、撚りの付与とサイズ剤の集束作用で、炭素繊維ストランドは自然に、繊維軸方向に直交する断面形状が円形に近づき、その断面の長径(Dmax)と短径(Dmin)の比(Dmax/Dmin)が1.0~1.8の範囲に入るようになる。
 なお、上記乾燥に際しては、溝付きローラを用いて、サイズ剤が付与された炭素繊維ストランドの断面の成形を行っても良い。ローラの溝の断面形状は、U字状が好ましい。
 上記のようにして製造される炭素繊維ストランドは、次いで3~10mm、好ましくは5~8mmに切断され、本発明の炭素繊維チョップドストランドが得られる。本発明の炭素繊維チョップドストランドの平均直径は、集束した単糸数により異なるが、通常1~10mmである。
 本発明の炭素繊維チョプドストランドは、その繊維軸方向に直交する断面における長径(Dmax)と短径(Dmin)との比(Dmax/Dmin)が1.0~1.8で、好ましくは1.0~1.6である。この比が1.8を超える場合は、ストランド同士の接触面積が多くなり、ストランドの流動性が低下するため好ましくない。
 本発明のチョップドストランドの繊維長(L)は3~10mmであり、5~8mmであることがより好ましい。チョップドストランドの繊維長が10mmを超える場合は、ストランド同士の接触面積が多くなり、流動性が低下するため好ましくない。一方、チョップドストランドの繊維長が3mmに満たない場合は、繊維強化複合材料とした場合の補強効果が十分得られないため好ましくない。
 チョップドストランドの繊維長(L)とチョップドストランドの短径(Dmin)との比(L/Dmin)は、4以下が好ましく、3以下がより好ましい。この比が4を超える場合は、ストランド同士の接触面積が多くなり、流動性が低下する場合がある。
 炭素繊維チョップドストランドの流動性は、その安息角によって評価される。安息角は後述の方法により測定される。安息角の値が小さいほど、流動性が良いと評価される。流動性の良いと評価されるチョップドストランドの安息角は、30度以下で、25度以下であることがより好ましい。安息角が30度を超える場合は、ホッパー内のチョップドストランドを押出機へ供給する際のストランドの流下の安定性が低下するため、好ましくない。安息角が10度未満である場合は、流動性が高すぎ、かえって取り扱いが困難になるため、好ましくない。
 炭素繊維チョップドストランドの嵩密度は、一定体積(1L)当りのチョップドストランドの質量で表される。炭素繊維チョップドストランドの嵩密度は、200g/L以上が好ましく、250g/Lがより好ましく、300g/L以上が特に好ましい。嵩密度の上限は、通常700g/L程度である。
 一般的に、嵩密度が150g/L以下の場合は、チョップドストランド1箇にかかる重力よりも、チョップドストランド同士の表面における摩擦抵抗が大きくなる。その結果、ホッパー内で、チョップドストランドが流下できない部分が発生する。
 フリーファイバー発生率を測定することにより、チョップドストランドの形態維持安定性が評価できる。フリーファイバー発生率は3%以下が望ましい。フリーファイバー発生率が5%以上の場合は、輸送中やホッパーから押出機にチョップドストランドを供給している際に、チョップドストランドの形態が維持できず、開繊する。その結果、綿状の塊が生成し、チョップドストランドの流動性の低下を引き起こす。
フリーファイバー発生率は、以下の方法により求めた。
 500mlのビーカーに、ビーカーの上方30cmの高さから、ビーカー内に炭素繊維チョップドストランドを落とした。炭素繊維チョップドストランドがビーカー上端を超えて積重なり、ビーカーの上端から落下するまで、炭素繊維チョップドストランドをビーカーに供給した。その後、ガラス棒をビーカーの上端に沿って移動させ、ビーカーの上端面から上方に突出している炭素繊維チョップドストランドを除去した。その後、ビーカー内の炭素繊維チョップドストランドの質量(W1g)を測定した。
 次に、この炭素繊維チョップドストランドを2000mlのメスシリンダーに移し、密閉した。メスシリンダーの軸を中心として、25rpmで20分間回転させた。メスシリンダーの回転を停止し、炭素繊維チョップドストランドを篩(3メッシュ)に移した。炭素繊維チョップドストランドが篩の目から落下しなくなるまで前後左右に篩を動かして、炭素繊維チョップドストランドを篩い分けした。篩に残ったフリーファイバーを採取し、その質量(W2g)を測定した。フリーファイバー発生率を次の式を用いて算出した。
フリーファイバー発生率(%)=(W2/W1)×100
 本発明のチョップドストランドは、多数のチョップドストランドの集合体の状態でフレキシブルコンテナバック等に梱包され、ペレットの製造工程に供される。この場合、集合体、もしくは梱包体を構成するチョップドストランドは、より少ない本数のチョップドストランドに割れずに、元の本数のチョップドストランドのままで安定に存在することが好ましい。
 ストランド割れの程度は、後述する束残存率で示される。束残存率は50%以上が好ましく、70%以上がより好ましい。束残存率が50%より低い場合は、ストランド同士の接触面積が増えるため、チョップドストランドの流動性が低下し、好ましくない。
 チョップドストランドの梱包方法は、公知の方法を用いることができるが、中でもフレキシブルコンテナバックを用いる方法が好ましい。フレキシブルコンテナバックは、粉末状物や粒状物を保管、運搬するために用いる袋状の包材である。フレキシブルコンテナバッグは市販のものを適宜使用できる。フレキシブルコンテナバッグは、その下部が開閉可能なタイプのものが好ましい。このフレキシブルコンテナバッグは、ホッパーへのチョップドストランドの投入操作が容易になる。
以上の方法を用いることで、本発明の炭素繊維チョップドストランドを得ることができる。
 以下、実施例によって、本発明をさらに具体的に説明するが、本発明はこれら実施例に限定されない。
 (硫酸分解法)  
サイズ剤の定量は、以下に記載する、所謂硫酸分解法によって行なった。
200mlのコニカルビーカー中に、炭素繊維チョップドストランド2g(W1)を入れ、精秤した。濃硫酸100mlを加え、時計皿で蓋をし、約200℃で1時間加熱してサイズ剤を熱分解した。冷却後、ビーカー中に過酸化水素水溶液を、溶液が透明になるまで、少量づつ加えた。その後、予め精秤したガラスフィールター(W2)を用いて炭素繊維を濾別した。濾別した炭素繊維を約1000mlの水で洗浄した後、炭素繊維の入ったガラスフィールターを110±3℃で2時間乾燥した。乾燥後の炭素繊維の入ったガラスフィールターの質量(W3)を精秤した。
 次式によって、サイズ剤付着量を求めた。  
サイズ剤付着量(質量%)=(W1-(W3-W2))×100/W1
 (束残存率)
チョップドストランドを1g測り取った。測り取ったチョップドストランドの個数と、割れる前の構成本数を保っているチョップドストランドの個数とを計測した。得られた計測値を用いて、構成本数を保っているチョップドストランドの比率を算出した。
 (嵩密度)
2Lのメスシリンダーに、300gのチョップドストランドを充填し、軽く衝撃を与え続けた。充填したチョップドストランドの体積に変化が無くなったときの体積を測定した。この体積とチョップドストランドの質量とを用いて嵩密度を算出した。
 (安息角の測定方法)
40gの炭素繊維チョップドストランドを、下部の口径が18mmの漏斗に充填し、このチョップドストランドを100mmの高さから床面に自由落下させた。床面に降り積もったチョップドストランドの高さ(h)と、落下範囲の半径(r)とを計測した。床面とチョップドストランドの山の斜面のなす角度(安息角θ)を、下記式
tanθ=h/r
を用いて算出した。
 実施例1~6及び比較例1~4
撚りがない、単糸数48,000本のPAN系炭素繊維ストランド〔東邦テナックス(株) テナックスSTS40-48K〕に連続的に撚りを与え、それぞれ表1に記載の撚り数の炭素繊維ストランドを得た。これらの撚りを与えた炭素繊維ストランドを、連続的に4m/分の処理速度でサイズ剤浴に導入して、サイズ剤を含浸させた。サイズ剤は、可溶性8ナイロン樹脂〔DIC(株)製 ラッカマイド5003〕のメタノール溶液であった。この際、サイズ剤浴液の濃度を調整して、炭素繊維ストランドのサイズ剤量を表1に示す値に調節した。この操作により、炭素繊維ストランドは、集束処理が施された。
 溝の断面の形状が矩形(幅3mm深さ2mm)の溝付きローラーを通した後、ストランドを空気乾燥器(140℃)に送り、炭素繊維ストランドを乾燥させた。ストランドは、溝付きローラーを通すことにより、断面が略円形に維持された。その後、乾燥させた炭素繊維ストランドを6mmの長さにカットして、炭素繊維チョップドストランドを得た。先に述べた方法によって、これらの炭素繊維チョップドストランドの安息角、嵩密度を測定した。次に、得られた炭素繊維チョップドストランド200Kgを、下部が開閉可能なフレキシブルコンテナバッグに梱包した。その後、フレキシブルコンテナバッグに梱包した炭素繊維チョップドストランドの束残存率を測定した。これらの結果を表1に示した。
 実施例7
撚りがない、単糸数12,000本のPAN系炭素繊維ストランド〔東邦テナックス(株) テナックスSTS40-12K〕を3本合わせて、単糸数36,000本の炭素繊維ストランドを得、次いでこのストランドに撚りを与えた以外は、実施例1と同様に操作して炭素繊維チョップドストランドを得た。その結果を表1に示す。
 実施例8
撚りがない、単糸数48,000本のPAN系炭素繊維ストランド〔東邦テナックス(株) テナックスSTS40-48K〕を2本合わせて、単糸数96,000本の炭素繊維ストランドを得、次いでこのストランドに撚りを与えた以外は、実施例1と同様に操作して炭素繊維チョップドストランドを得た。その結果を表1に示す。
 実施例9
 撚りがない、単糸数24,000本のPAN系炭素繊維ストランド〔東邦テナックス(株) テナックスSTS40-24K〕を5本合わせて、単糸数120,000本の炭素繊維ストランドを得、次いでこのストランドに撚りを与えた以外は、実施例1と同様にして炭素繊維チョップドストランドを得た。その結果を表1に示す。
 比較例5
撚りがない、単糸数12,000本のPAN系炭素繊維ストランド〔東邦テナックス(株) テナックスSTS40-12K〕を用いて実施例1と同様に連続的に撚りを与えて炭素繊維チョップドストランドを得た。その結果を表1に示す。
 比較例6
 炭素繊維として撚りがない単糸数24,000本のPAN系炭素繊維ストランド〔東邦テナックス(株) テナックスSTS40-24K〕に撚りを与えた以外は実施例1と同様に操作して炭素繊維チョップドストランドの製造を行った。しかし、単糸数が少ないため安息角が32度と、高くなった。
 比較例7
炭素繊維として撚りがない単糸数48,000本のPAN系炭素繊維ストランド〔東邦テナックス(株) テナックスSTS40-48K〕を5本合わせて、単糸数240,000本の炭素繊維ストランドを得、次いでこのストランドに撚りを与えた以外は実施例1と同様に操作して炭素繊維チョップドストランドの製造を行った。しかし、単糸数が多すぎ、サイズ付与工程、ストランドの切断工程が不安定となり、目的とする性状を有するチョップドストランドを得ることができなかった。
Figure JPOXMLDOC01-appb-T000001
 実施例10
 ウレタン変性エポキシ樹脂((株)ADEKA社製商品名アデカレジンEPU-4-75X)のアセトン溶液をサイズ剤として用いた以外は、実施例1と同様に操作して、炭素繊維チョップドストランドを製造した。その結果を表1に示した。
 実施例11
 ポリウレタン樹脂(バイエル(株)社製商品名ディスパコールU-54)の水分散溶液をサイズ剤として用いた以外は、実施例1と同様に操作して、炭素繊維チョップドストランドを製造した。その結果を表1に示した。
 実施例12~22
実施例1~11で得られた炭素繊維チョップドストランド200Kgを、下部が開閉可能なフレキシブルコンテナバッグにそれぞれ梱包し、ペレット製造工程に供した。即ち、梱包体をクレーンで吊り上げ、フレキシブルコンテナバッグの下部を開閉操作して、押し出し機のホッパーに、一度にホッパーが充満する量の炭素繊維チョップドストランドを供給した。
実施例1~11で得られた炭素繊維チョップドストランドは、いずれも安息角が30度以下と低く、流動性に優れていた。この理由で、ホッパー内の大量の炭素繊維チョップドストランドは、毛羽詰まりを起こすことなく、安定にホッパーから計量器に供給された。
 比較例8~13
比較例1~6で得られた炭素繊維チョップドストランド
200Kgを、実施例12と同様に操作して、下部が開閉可能なフレキシブルコンテナバッグにそれぞれ梱包し、ペレット製造工程に供した。
 比較例8 
比較例1で得られた炭素繊維チョップドストランドは、炭素繊維を加撚していないため、Dmax/Dminの値(=1.97)が大きかった。即ち、チョップドストランドの断面は比較的扁平になったので、チョップドストランド同士の接触面積が大きくなった。その結果、チョップドストランドの安息角は34度になり、チョップドストランドの流動性は低かった。ホッパー内で毛羽詰まりが起こり、チョップドストランドを安定に計量器に供給することができなかった。
 比較例9
比較例2で得られた炭素繊維チョップドストランドは、撚り数が100個/mと多すぎたので、ストランド内部までサイズ剤が浸透しなかった。その理由で、ストランドが集束し難いものであった。即ち、Dmax/Dminの値(=1.84)が大きくなり、更に束残存率が低くなった。安息角は45度で、チョップドストランドの流動性は低かった。その結果、ホッパー内で毛羽詰まりが起こり、チョップドストランドを安定に計量器に供給することができなかった。
 比較例10
比較例3で得られた炭素繊維チョップドストランドは、サイズ剤の付着量が0.5質量%と低かったため、繊維が十分集束していなかった。即ち、Dmax/Dminの値(=1.97)が大きくなり、束残存率が低くなった。安息角は53度で、流動性は低かった。その結果、ホッパー内で毛羽詰まりが起こり、チョップドストランドを安定に計量器に供給することができなかった。
 比較例11
比較例4で得られた炭素繊維チョップドストランドは、サイズ付着量が14.2%と多かったので、チョップドストランド表面は滑らかでは無かった。即ち、安息角は36度で、流動性は低かった。ホッパー内で毛羽詰まりが起こり、チョップドストランドを安定に計量器に供給できなかった。
押出機における樹脂と炭素繊維チョップドストランドとの混練においては、樹脂への炭素繊維チョップドストランドの分散性が悪く、その結果良質なペレットは得られなかった。
 比較例12
比較例5で得られた炭素繊維チョップドストランドは、用いた炭素繊維の単糸数が12,000本で、少なかった。従って、得られたチョップドストランドの径は小さくなった。その結果、繊維長(L)と短径(Dmin)の比が6.32と大きくなった。即ち、接触面積が増加したため、得られる安息角は30度を越え、チョップドストランドの流動性が低下した。ホッパー内で毛羽詰まりが起こり、チョップドストランドを安定に計量器に供給することができなかった。
 比較例13
比較例6で得られた炭素繊維チョップドストランドは、用いた炭素繊維の単糸数が24,000本で、少なかった。従って、得られたチョップドストランドの径は小さくなった。その結果、繊維長(L)と短径(Dmin)の比が4.48と大きくなった。即ち、接触面積が増加したため、安息角が32度と大きくなり、チョップドストランドの流動性が低下した。その結果、ホッパー内で毛羽詰まりが起こり、チョップドストランドを安定に計量器に供給することができなかった。

Claims (8)

  1. 30,000~120,000本の炭素繊維からなる単糸と、前記単糸を集束する1~10質量%のサイズ剤とからなる炭素繊維チョップドストランドであって、その断面の長径(Dmax)と短径(Dmin)の比(Dmax/Dmin)が1.0~1.8であり、繊維方向に沿う長さ(L)が3~10mmであり、その安息角が10~30度である炭素繊維チョップドストランド。
  2. チョップドストランドの繊維方向に沿う長さ(L)とチョップドストランドの短径(Dmin)との比(L/Dmin)が4以下である請求項1に記載の炭素繊維チョップドストランド。
  3. サイズ剤がポリアミド樹脂である請求の範囲第1項に記載の炭素繊維チョップドストランド。
  4. 単糸数が30,000~120,000本の撚りのない炭素繊維ストランドに0.5~50個/mの撚りを与える工程と、前記撚りを与えた炭素繊維ストランドをサイズ剤浴に導入した後乾燥することにより1~10質量%のサイズ剤を付与して炭素繊維ストランドを集束させる工程と、前記集束させた炭素繊維ストランドを所定長さに切断する工程と、を有することを特徴とする請求の範囲第1項に記載の炭素繊維チョップドストランドの製造方法。
  5. サイズ剤がポリアミド樹脂であり、サイズ剤浴のサイズ剤濃度が0.5~30質量%である請求の範囲第4項に記載の炭素繊維チョップドストランドの製造方法。
  6. 30,000~120,000本の炭素繊維単糸と、前記単糸を集束する1~10質量%のサイズ剤とからなる炭素繊維チョップドストランドであって、その断面の長径(Dmax)と短径(Dmin)の比(Dmax/Dmin)が1.0~1.8であり、チョップドストランドの繊維方向に沿う長さ(L)が3~10mmであり、その安息角が10~30度である炭素繊維チョップドストランドの集合体であって、前記集合体に含まれる炭素繊維チョップドストランドの束残存率が70%以上である炭素繊維チョップドストランドの集合体。
  7. 30,000~120,000本の炭素繊維単糸と、前記単糸を集束する1~10質量%のサイズ剤とからなる炭素繊維チョップドストランドであって、その断面の長径(Dmax)と短径(Dmin)の比(Dmax/Dmin)が1.0~1.8であり、チョップドストランドの繊維方向に沿う長さ(L)が3~10mmであり、その安息角が10~30度である炭素繊維チョップドストランドと、前記炭素繊維チョップドストランドを梱包するフレキシブルコンテナバックと、からなる梱包体であって、梱包体に含まれる炭素繊維チョップドストランドの束残存率が70%以上である炭素繊維チョップドストランドの梱包体。
  8. 押出機を用いて製造する、熱可塑性樹脂と前記熱可塑性樹脂に分散する炭素繊維とからなるペレットの製造方法であって、30,000~120,000本の炭素繊維からなる単糸と、前記単糸を集束する1~10質量%のサイズ剤とからなる炭素繊維チョップドストランドであって、その断面の長径(Dmax)と短径(Dmin)の比(Dmax/Dmin)が1.0~1.8であり、繊維方向に沿う長さ(L)が3~10mmであり、その安息角が10~30度である炭素繊維チョップドストランドを、フレキシブルコンテナバックから直接押出機のホッパーに投入して、押出機中で前記炭素繊維チョップドストランドと樹脂とを混練りすることを特徴とするペレットの製造方法。
PCT/JP2011/054505 2010-03-08 2011-02-28 炭素繊維チョップドストランド及びその製造方法 WO2011111559A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US13/583,137 US9181640B2 (en) 2010-03-08 2011-02-28 Carbon-fiber chopped strand and manufacturing method of the same
SG2012063269A SG183499A1 (en) 2010-03-08 2011-02-28 Carbon-fiber chopped strand and manufacturing method of the same
KR1020127023239A KR20130038194A (ko) 2010-03-08 2011-02-28 탄소 섬유 절단 스트랜드 및 그 제조 방법
CN201180010301.7A CN102884247B (zh) 2010-03-08 2011-02-28 碳纤维短切纤维束及其制造方法
EP11753219.2A EP2546409B1 (en) 2010-03-08 2011-02-28 Carbon-fiber chopped strand and manufacturing method of the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010050008 2010-03-08
JP2010-050008 2010-03-08
JP2010-071863 2010-03-26
JP2010071863A JP5700496B2 (ja) 2010-03-08 2010-03-26 炭素繊維チョップドストランド及びその製造法

Publications (1)

Publication Number Publication Date
WO2011111559A1 true WO2011111559A1 (ja) 2011-09-15

Family

ID=44563366

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/054505 WO2011111559A1 (ja) 2010-03-08 2011-02-28 炭素繊維チョップドストランド及びその製造方法

Country Status (8)

Country Link
US (1) US9181640B2 (ja)
EP (1) EP2546409B1 (ja)
JP (1) JP5700496B2 (ja)
KR (1) KR20130038194A (ja)
CN (1) CN102884247B (ja)
SG (1) SG183499A1 (ja)
TW (1) TW201202315A (ja)
WO (1) WO2011111559A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130207051A1 (en) * 2012-02-13 2013-08-15 Korea Kumho Petrochemical Co., Ltd. Carbon nano-material pellets and a method for preparing the pellets from powder of carbon nano-material
WO2014037724A1 (en) * 2012-09-05 2014-03-13 University Of Ulster Carbon fibre composites
US10337129B2 (en) 2012-05-01 2019-07-02 Continental Structural Plastics, Inc. Process of debundling carbon fiber tow and molding compositions containing such fibers
WO2020004307A1 (ja) * 2018-06-27 2020-01-02 株式会社ブリヂストン 炭素繊維撚糸

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6105332B2 (ja) * 2012-03-09 2017-03-29 帝人株式会社 強化繊維及びそれからなる強化繊維束
JP5996320B2 (ja) * 2012-08-01 2016-09-21 帝人株式会社 ランダムマットの製造方法
KR101754064B1 (ko) * 2012-11-26 2017-07-05 미쯔비시 케미컬 주식회사 촙드 탄소섬유속 및 촙드 탄소섬유속의 제조 방법
KR101439150B1 (ko) * 2013-05-06 2014-09-11 현대자동차주식회사 탄소연속섬유/열가소성수지섬유 복합사 및 이의 제조방법
JP5905866B2 (ja) * 2013-10-04 2016-04-20 トヨタ自動車株式会社 炭素繊維用サイジング剤
CN103569953B (zh) * 2013-11-12 2016-01-20 无锡英普林纳米科技有限公司 截面十字型的聚合物纤维束的制备方法
JP6739210B2 (ja) * 2016-03-11 2020-08-12 ダイセルポリマー株式会社 樹脂含浸繊維束、圧縮成形品およびその製造方法
CN108004620B (zh) * 2016-10-28 2022-02-08 中国石油化工股份有限公司 一种聚酯树脂基复合材料用碳纤维及其制备方法
CN108004781B (zh) * 2016-10-28 2022-02-25 中国石油化工股份有限公司 一种碳纤维用聚酰胺树脂基悬浮液上浆剂及其制备方法
KR102463416B1 (ko) * 2016-12-12 2022-11-03 현대자동차주식회사 유리섬유 및 탄소섬유로 강화된 폴리아미드 하이브리드 조성물
EP3584358B1 (en) * 2017-02-16 2021-12-29 Mitsubishi Chemical Corporation Carbon fiber precursor acrylic fiber, carbon fiber, and manufacturing method for same
US20190184619A1 (en) * 2017-12-15 2019-06-20 GM Global Technology Operations LLC Long fiber reinforced thermoplastic filament
CN113583435B (zh) * 2021-09-10 2024-01-26 中国科学院苏州纳米技术与纳米仿生研究所 连续碳纳米管复合纤维3d打印线材及其制备方法与应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003165849A (ja) 2001-11-30 2003-06-10 Toho Tenax Co Ltd 炭素繊維チョップドストランド、及びその製造方法
JP2004084133A (ja) * 2002-08-28 2004-03-18 Toray Ind Inc 炭素繊維チョップドストランドおよびその製造方法
JP2004149725A (ja) 2002-10-31 2004-05-27 Toho Tenax Co Ltd 炭素繊維チョップドストランド
JP2004197230A (ja) * 2002-12-16 2004-07-15 Mitsubishi Rayon Co Ltd 高機械物性と低導電性を発現する繊維強化樹脂用炭素繊維束及びチョップド炭素繊維束並びに炭素繊維強化樹脂組成物
JP4365502B2 (ja) * 2000-02-02 2009-11-18 東邦テナックス株式会社 炭素繊維チョップドストランドの連続的製造方法
JP2010030176A (ja) * 2008-07-30 2010-02-12 Toray Ind Inc 熱可塑性樹脂組成物ペレットの製造方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5951359A (ja) 1982-09-18 1984-03-24 Nippon Tectron Co Ltd 生化学自動分析装置における試薬供給装置
JPH02129229A (ja) 1988-11-10 1990-05-17 Toho Rayon Co Ltd 炭素繊維チョップドストランド及びその製造法
US5227238A (en) * 1988-11-10 1993-07-13 Toho Rayon Co., Ltd. Carbon fiber chopped strands and method of production thereof
JP3584065B2 (ja) * 1994-09-12 2004-11-04 住友化学工業株式会社 長繊維強化樹脂構造物の製造装置及び製造方法
US6066395A (en) * 1997-05-23 2000-05-23 Toray Industries, Inc. Chopped carbon fibers and a production process there of
JP2006119673A (ja) * 1998-01-30 2006-05-11 Sharp Corp 液晶表示装置
NL1016864C2 (nl) * 2000-12-13 2002-06-14 Bekaert Sa Nv Wapeningsvezelbundel en werkwijze voor het vervaardigen van een dergelijke wapeningsvezelbundel.
JP2005048342A (ja) * 2003-07-31 2005-02-24 Mitsubishi Rayon Co Ltd 炭素繊維束及びその製造方法、並びに熱可塑性樹脂組成物及びその成形品
JP2005119673A (ja) * 2003-10-14 2005-05-12 Nippon Electric Glass Co Ltd チョップドストランドの梱包体
US20070132126A1 (en) * 2005-12-14 2007-06-14 Shao Richard L Method for debundling and dispersing carbon fiber filaments uniformly throughout carbon composite compacts before densification

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4365502B2 (ja) * 2000-02-02 2009-11-18 東邦テナックス株式会社 炭素繊維チョップドストランドの連続的製造方法
JP2003165849A (ja) 2001-11-30 2003-06-10 Toho Tenax Co Ltd 炭素繊維チョップドストランド、及びその製造方法
JP2004084133A (ja) * 2002-08-28 2004-03-18 Toray Ind Inc 炭素繊維チョップドストランドおよびその製造方法
JP2004149725A (ja) 2002-10-31 2004-05-27 Toho Tenax Co Ltd 炭素繊維チョップドストランド
JP2004197230A (ja) * 2002-12-16 2004-07-15 Mitsubishi Rayon Co Ltd 高機械物性と低導電性を発現する繊維強化樹脂用炭素繊維束及びチョップド炭素繊維束並びに炭素繊維強化樹脂組成物
JP2010030176A (ja) * 2008-07-30 2010-02-12 Toray Ind Inc 熱可塑性樹脂組成物ペレットの製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2546409A4

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130207051A1 (en) * 2012-02-13 2013-08-15 Korea Kumho Petrochemical Co., Ltd. Carbon nano-material pellets and a method for preparing the pellets from powder of carbon nano-material
US9837180B2 (en) * 2012-02-13 2017-12-05 Korea Kumho Petrochemical Co., Ltd. Carbon nano-material pellets and a method for preparing the pellets from powder of carbon nano-material
US10337129B2 (en) 2012-05-01 2019-07-02 Continental Structural Plastics, Inc. Process of debundling carbon fiber tow and molding compositions containing such fibers
US11214894B2 (en) 2012-05-01 2022-01-04 Continental Structural Plastics, Inc. Process of debundling carbon fiber tow and molding compositions containing such fibers
WO2014037724A1 (en) * 2012-09-05 2014-03-13 University Of Ulster Carbon fibre composites
WO2020004307A1 (ja) * 2018-06-27 2020-01-02 株式会社ブリヂストン 炭素繊維撚糸

Also Published As

Publication number Publication date
US20120326342A1 (en) 2012-12-27
TW201202315A (en) 2012-01-16
SG183499A1 (en) 2012-09-27
CN102884247A (zh) 2013-01-16
JP5700496B2 (ja) 2015-04-15
US9181640B2 (en) 2015-11-10
EP2546409A1 (en) 2013-01-16
EP2546409B1 (en) 2018-04-04
CN102884247B (zh) 2015-07-29
JP2011208285A (ja) 2011-10-20
KR20130038194A (ko) 2013-04-17
EP2546409A4 (en) 2016-03-30

Similar Documents

Publication Publication Date Title
WO2011111559A1 (ja) 炭素繊維チョップドストランド及びその製造方法
AU2010328139B2 (en) CNT-infused fibers in thermoplastic matrices
JP3972674B2 (ja) 炭素繊維その製造方法および炭素繊維強化樹脂組成物
JP5772988B2 (ja) チョップド炭素繊維束およびチョップド炭素繊維束の製造方法
JP5753102B2 (ja) ガス予熱方法を用いた低温cnt成長
US4713283A (en) Reinforced composite structures
JP2015533187A (ja) カーボンナノ構造体の剪断混合により形成される複合体材料及び関連方法
US20120189846A1 (en) Cnt-infused ceramic fiber materials and process therefor
WO2009110885A1 (en) Continuous process for the production of carbon nanotube reinforced continuous fiber preforms and composites made therefrom
JP4365502B2 (ja) 炭素繊維チョップドストランドの連続的製造方法
JP5668310B2 (ja) ハイブリッド炭素繊維強化熱可塑性樹脂複合材料
JP5059259B2 (ja) 長繊維ペレットおよび長繊維ペレットの製造方法および装置
EP0368312B1 (en) Carbon fiber chopped strands and method of production thereof
JP2003268674A (ja) サイズされた炭素繊維束の製造方法およびチョップド炭素繊維
JP2914469B2 (ja) 炭素繊維チョップドストランドの製造方法
WO2021077849A1 (zh) 玻璃纤维组及玻纤增强树脂基复合材料
Fulmali et al. Functionalization of Carbon Nanotube
JP2004084133A (ja) 炭素繊維チョップドストランドおよびその製造方法
JP4703159B2 (ja) 長繊維強化熱可塑性樹脂成形材料の製造方法
JP2024003850A (ja) 炭素繊維含有樹脂成形品の製造方法
JP3948766B2 (ja) 炭素繊維チョップドストランドの製造方法、及びこれを含む熱可塑性樹脂組成物
JP2003181833A (ja) 炭素繊維チョップドファイバー
Mwafy et al. Fabrication and Characterization of Carbon Nanotubes/PMMA Nanocomposite
CN111020782A (zh) 一种碳纤维短切纤维束
Oh et al. The influence of microstructure of carbon nanotubes on the degree of length reduction during melt processing with polycarbonate

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180010301.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11753219

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 7490/DELNP/2012

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 20127023239

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13583137

Country of ref document: US

Ref document number: 2011753219

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1201004547

Country of ref document: TH

NENP Non-entry into the national phase

Ref country code: DE