WO2011108058A1 - 電動車両およびその制御方法 - Google Patents

電動車両およびその制御方法 Download PDF

Info

Publication number
WO2011108058A1
WO2011108058A1 PCT/JP2010/053195 JP2010053195W WO2011108058A1 WO 2011108058 A1 WO2011108058 A1 WO 2011108058A1 JP 2010053195 W JP2010053195 W JP 2010053195W WO 2011108058 A1 WO2011108058 A1 WO 2011108058A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
motor generator
current
command value
value
Prior art date
Application number
PCT/JP2010/053195
Other languages
English (en)
French (fr)
Inventor
中村 誠
亮次 佐藤
貴也 相馬
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to JP2012502901A priority Critical patent/JP5354086B2/ja
Priority to US13/581,749 priority patent/US9688154B2/en
Priority to PCT/JP2010/053195 priority patent/WO2011108058A1/ja
Priority to CN201080065059.9A priority patent/CN102781711B/zh
Priority to DE112010005325.1T priority patent/DE112010005325B4/de
Publication of WO2011108058A1 publication Critical patent/WO2011108058A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/51Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells characterised by AC-motors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the present invention relates to an electric vehicle and a control method therefor, and more specifically to electric motor control when an accelerator of an electric vehicle equipped with a running electric motor is off.
  • Such an electric vehicle includes a power storage device made up of a secondary battery and the like, and a motor generator as a traveling motor capable of receiving a power from the power storage device and generating a driving force.
  • the motor generator generates a vehicle driving force during acceleration, and performs regenerative power generation that converts kinetic energy of the vehicle into electric energy during deceleration such as braking.
  • the energy efficiency is improved by collecting the regenerative power from the motor generator by charging the power storage device.
  • Patent Document 1 describes an AC of a generator driven by an engine in a four-wheel drive vehicle in which one of front and rear wheels is driven by an engine and the other can be driven by a motor.
  • a configuration for suppressing and preventing damage to the inverter switching element due to overvoltage is described when the voltage is rectified and converted by an inverter to apply an AC voltage to the motor.
  • the target armature current is set so that the d-axis current that does not contribute to torque generation flows, so that the power generated by regeneration of the travel motor is reduced. It is described that it consumes. Thereby, since the increase in the DC link voltage of the inverter due to the excessive regenerative power from the electric motor for traveling can be suppressed, damage to the switching elements constituting the inverter can be prevented.
  • the motor generator In a scene where an electric vehicle is traveling by the output of the motor generator, the motor generator needs to generate a deceleration torque in order to realize a deceleration equivalent to a so-called engine brake when the accelerator pedal is turned off.
  • the generation of deceleration torque by the motor generator is accompanied by regenerative power generation, when charging of the power storage device is prohibited / restricted, it is necessary to consider that the power storage device is not overcharged.
  • the present invention has been made to solve such problems, and an object of the present invention is to prevent overcharging of a power storage device in an electric vehicle equipped with a traveling electric motor (motor generator).
  • the vehicle running motor (motor generator) is appropriately controlled when the accelerator is off.
  • an electric vehicle in one aspect of the present invention, includes a motor generator, a DC power source including a power storage device, and a motor control unit.
  • the motor generator is configured to be able to transmit torque to and from the drive shaft connected to the drive wheels.
  • the inverter is configured to perform bidirectional DC / AC power conversion between the DC power supply and the motor generator.
  • the motor control unit is configured to control a plurality of power semiconductor switching elements constituting the inverter according to a torque command value and a state value of the motor generator.
  • the motor control unit includes a DC offset generation unit for controlling the inverter so that a DC current component is superimposed on each phase AC current of the motor generator in accordance with the state of charge of the power storage device when the accelerator pedal is off.
  • the electric vehicle further includes a charge / discharge monitoring unit and a vehicle control unit.
  • the charge / discharge monitoring unit is configured to set a charging power upper limit value of the power storage device based on a state of charge of the power storage device.
  • the vehicle control unit is configured to set the torque command value based on the vehicle state and the charging power upper limit value set by the charge / discharge monitoring unit.
  • the vehicle control unit includes a determination unit. The determination unit determines whether or not the first power corresponding to the regenerative power generated by the motor generator outputting a deceleration torque necessary to ensure a predetermined deceleration when the accelerator pedal is off exceeds a charging power upper limit value. Configured to determine whether or not.
  • the direct current offset generation unit controls the inverter so that the direct current component is superimposed on each phase alternating current when it is determined that the first electric power exceeds the charging power upper limit value when the accelerator pedal is off.
  • the vehicle control unit further includes a torque command value setting unit for setting a torque command value by limiting the regenerative power generated by the motor generator to a range not exceeding the charge power upper limit value, and DC
  • the offset generation unit and the torque command value setting unit are necessary depending on the sum of the drag torque generated by the DC current component and the torque command value when the accelerator pedal is turned off at the time of charging limitation when the first power exceeds the charging power upper limit value.
  • a current amount of a DC current component and a torque command value are set so as to ensure a proper deceleration torque.
  • the torque command value setting unit sets the torque command value to zero when charging is prohibited when the charge power upper limit value is set to zero.
  • the DC offset generator sets the current amount of the DC current component to a predetermined value when charging is prohibited.
  • the electric vehicle further includes a charge / discharge monitoring unit and a vehicle control unit.
  • the charge / discharge monitoring unit is configured to set a charging power upper limit value of the power storage device based on a state of charge of the power storage device.
  • the vehicle control unit is configured to set a torque command value based on the vehicle state and the charging power upper limit value.
  • the vehicle control unit sets the torque command value to zero when charging upper limit is set to zero, and the DC offset generation unit sets the current amount of the DC current component to a predetermined value when charging is prohibited. .
  • the motor control unit includes a control command generation unit, an addition unit, a carrier wave control unit, and a modulation unit.
  • the control command generation unit is configured to generate a voltage command value of a voltage applied to the motor generator based on the torque command value and the state value.
  • the adding unit is configured to add an offset voltage corresponding to the DC current component to the voltage command value when the DC offset generating unit performs the superposition of the DC current component.
  • the carrier wave control unit controls the frequency of the carrier wave.
  • the modulation unit is configured to generate an on / off control signal for the plurality of power semiconductor switching elements based on a comparison between the voltage command value processed by the addition unit and the carrier wave. Then, the carrier wave control unit raises the frequency of the carrier wave when the superimposition of the DC current component is executed, compared to when the superposition of the DC current component is not executed.
  • the motor control unit further includes a demagnetization factor estimation unit for estimating a demagnetization factor of the motor generator. Then, the DC offset generation unit limits a period in which the DC current component is superimposed on each phase AC current according to the estimated value of the demagnetization factor.
  • the direct current offset generation unit variably sets the amount of direct current component to be superimposed on each phase alternating current according to the estimated value of the demagnetization factor.
  • a method for controlling an electric vehicle wherein the electric vehicle includes a motor generator configured to be able to transmit torque to and from a drive shaft connected to a drive wheel, and a power storage device.
  • a DC power source including the inverter and an inverter for performing bidirectional DC / AC power conversion between the DC power source and the motor generator.
  • the control method includes an step of detecting that the accelerator pedal is turned off, and an inverter that superimposes a DC current component on each phase AC current of the motor generator according to the state of charge of the power storage device when the accelerator pedal is turned off. For controlling.
  • the control method calculates a first power corresponding to the regenerative power generated by the motor generator outputting a deceleration torque necessary to ensure a predetermined deceleration when the accelerator pedal is off, A step of comparing the electric power of 1 with a charging power upper limit value set based on a charging state of the power storage device. And the step to control superimposes a direct-current component on each phase alternating current, when 1st electric power exceeds charging power upper limit.
  • control method restricts the regenerative power generated by the motor generator to a range in which the regenerative power generated by the motor generator does not exceed the charging power upper limit when the accelerator pedal is turned off when charging is limited when the first power exceeds the charging power upper limit.
  • the method further includes the step of setting the current value of the DC current component so as to secure the necessary deceleration torque by setting the torque command value of the generator and the sum of the drag torque generated by the DC current component and the torque command value.
  • the control method includes a step of determining whether or not the charging power upper limit value is set to zero when the first power exceeds the charging power upper limit value, and charging prohibition.
  • the torque command value of the motor generator is set to zero
  • the step of setting the current amount of the DC current component to a predetermined value and the regenerative power generated by the motor generator is set to the charge power upper limit when the charge power upper limit value is not zero.
  • the torque command value is set within a range that does not exceed the value, and the current amount of the DC current component is set so that the necessary deceleration torque is secured by the sum of the drag torque generated by the DC current component and the torque command value.
  • control method sets the torque command value of the motor generator to zero and sets the current amount of the DC current component when the accelerator pedal is off when charging is prohibited when the charging power upper limit value of the power storage device is set to zero.
  • the method further includes a step of setting to a predetermined value.
  • the controlling step executes the superposition of the direct current component, an offset voltage corresponding to the direct current component is added to the voltage command value.
  • the control method includes a step of determining whether or not DC current component superimposition is executed according to the controlling step, and a step of setting the carrier frequency to the first frequency when the DC current component superimposition is not performed. And a step of setting the frequency of the carrier wave to a second frequency higher than the first frequency when the DC current component is superimposed.
  • the control method further includes a step of estimating a demagnetization factor of the motor generator and a step of limiting a period in which a DC current component is superimposed on each phase AC current according to the estimated value of the demagnetization factor.
  • the control method further includes a step of estimating a demagnetizing factor of the motor generator, and a step of variably setting a magnitude of a DC current component to be superimposed on each phase AC current according to the estimated value of the demagnetizing factor.
  • the vehicle travel motor in an electric vehicle equipped with a vehicle travel motor (motor generator), the vehicle travel motor (motor generator) can be appropriately controlled when the accelerator is off so as to prevent overcharging of the power storage device. it can.
  • FIG. 1 It is a block diagram explaining the schematic structure of the electric vehicle by Embodiment 1 of this invention. It is a graph which shows an example of the setting aspect of the torque command value for prevention of the overcharge of a battery at the time of accelerator off of an electric vehicle. It is a block diagram for demonstrating deceleration control at the time of accelerator-off in the electric vehicle by Embodiment 1 of this invention. It is a wave form diagram explaining superimposition of direct current to each phase current of a motor generator. It is a block diagram for demonstrating the control structure of the motor generator in the electric vehicle by this Embodiment 1. FIG. It is a flowchart which shows the control processing procedure of the deceleration control at the time of accelerator-off in the electric vehicle by Embodiment 1 of this invention.
  • FIG. 1 is a block diagram illustrating a schematic configuration of electrically powered vehicle 100 according to the first embodiment of the present invention.
  • the electric vehicle 100 includes vehicles that generate vehicle driving force by electric energy such as hybrid vehicles, electric vehicles, and fuel cell vehicles.
  • electrically powered vehicle 100 includes motor generator MG configured to generate at least vehicle driving force as a driving force source.
  • an engine (not shown) is further mounted as a driving force source in addition to motor generator MG.
  • electrically powered vehicle 100 includes a DC power supply unit 10 #, a smoothing capacitor C0, an inverter 14, a motor generator MG, a control device 30, an accelerator pedal 51, a brake pedal 55, a drive shaft. 60, a differential gear 70, and a drive wheel 80.
  • DC power supply unit 10 # includes a power storage device B, system relays SR1 and SR2, a smoothing capacitor C1, and a converter 12.
  • the power storage device B is typically constituted by a secondary battery such as nickel metal hydride or lithium ion, the power storage device B is also referred to as a battery B below.
  • the “power storage device” is described in a confirming manner that it can be applied not only to a battery but also to an electric double layer capacitor or the like.
  • the monitoring unit 10 including a sensor group is arranged for the battery B.
  • Monitoring unit 10 is configured to detect the output voltage Vb, output current Ib, and temperature Tb of the power storage device, and to monitor the occurrence of the abnormal value.
  • the output current Ib it is assumed that the discharging time of the power storage device B is indicated by a positive value (Ib> 0) while the charging time is indicated by a negative value (Ib ⁇ 0).
  • the value detected by the monitoring unit 10 is output to the control device 30.
  • the system relay SR1 is connected between the positive terminal of the battery B and the power line 6, and the system relay SR1 is connected between the negative terminal of the battery B and the ground line 5.
  • System relays SR1 and SR2 are turned on / off by a control signal SE.
  • the smoothing capacitor C1 is connected between the power line 6 and the ground line 5.
  • Voltage sensor 11 detects the voltage across smoothing capacitor C 1, that is, DC voltage VL of power line 6, and outputs the detected value to control device 30.
  • Converter 12 includes a reactor L1 and power semiconductor switching elements Q1, Q2. Power semiconductor switching elements Q 1 and Q 2 are connected in series between power line 7 and ground line 5. On / off of power semiconductor switching elements Q1 and Q2 is controlled by switching control signals SG1 and SG2.
  • an IGBT Insulated Gate Bipolar Transistor
  • a power MOS Metal Oxide Semiconductor
  • a power bipolar transistor is used as a power semiconductor switching element (hereinafter simply referred to as “switching element”).
  • switching element a power semiconductor switching element
  • Anti-parallel diodes D1, D2 are arranged for switching elements Q1, Q2.
  • Reactor L1 is connected between a connection node of switching elements Q1 and Q2 and power line 6.
  • the smoothing capacitor C0 is connected between the power line 7 and the ground line 5.
  • Voltage sensor 13 detects the voltage across smoothing capacitor C 0, that is, DC voltage VH of power line 7, and outputs the detected value to control device 30.
  • the DC voltage VH corresponding to the DC side voltage of the inverter 14 is also referred to as a system voltage VH.
  • Converter 12 performs bidirectional DC voltage conversion between DC voltages VL and VH by ON / OFF control of switching elements Q1 and / or Q2.
  • the voltage conversion ratio (VH / VL) by converter 12 is controlled according to the duty ratio of switching elements Q1, Q2.
  • voltage command value VHr is set according to the state of motor generator MG, and the duty ratio in converter 12 is controlled based on the detected values of DC voltages VH and VL.
  • the converter 12 is basically controlled so that the switching elements Q1 and Q2 are turned on and off in a complementary manner within each switching period. In this way, DC voltage VH can be controlled to voltage command value VHr in accordance with both charging and discharging of battery B without particularly switching the control operation in accordance with the current direction of converter 12.
  • the inverter 14 includes a U-phase upper and lower arm 15, a V-phase upper and lower arm 16, and a W-phase upper and lower arm 17 that are provided in parallel between the power line 7 and the ground line 5.
  • Each phase upper and lower arm is constituted by a switching element connected in series between the power line 7 and the ground line 5.
  • the U-phase upper and lower arms 15 are composed of switching elements Q3 and Q4
  • the V-phase upper and lower arms 16 are composed of switching elements Q5 and Q6
  • the W-phase upper and lower arms 17 are composed of switching elements Q7 and Q8.
  • Antiparallel diodes D3 to D8 are connected to switching elements Q3 to Q8, respectively. Switching elements Q3 to Q8 are turned on and off by switching control signals SG3 to SG8 from control device 30.
  • Motor generator MG is typically composed of a three-phase permanent magnet type synchronous motor, and one end of three coils of U, V, and W phases wound around a stator (not shown) is commonly connected to a neutral point. The Further, the other end of each phase coil is connected to the intermediate point of the switching elements of the upper and lower arms 15 to 17 of each phase.
  • the motor generator MG generates a driving force in accordance with the three-phase AC power supplied from the inverter 14 and rotationally drives the driving wheel 80 via the mechanically connected driving shaft 60 and the differential gear 70. That is, motor generator MG is configured to be able to transmit torque to and from drive shaft 60 connected to drive wheels 80.
  • electric vehicle 100 is a hybrid vehicle further equipped with an engine (not shown)
  • the driving force from motor generator MG is used to enable rotational driving of drive wheels 80 by the output from the engine (not shown).
  • a power split mechanism using a planetary gear mechanism or the like may be interposed on the transmission path so as to appropriately distribute the driving force generated by the motor generator MG and the engine.
  • Current sensor 24 detects a current (phase current) flowing through motor generator MG and outputs the detected value to control device 30. Since the sum of instantaneous values of the three-phase currents Iu, Iv, and Iw is zero, the motor currents for two phases (for example, the V-phase current Iv and the W-phase current Iw) are detected as shown in FIG. You may arrange in.
  • the rotation angle sensor (resolver) 25 detects the rotor rotation angle ⁇ of the motor generator MG and sends the detected rotation angle ⁇ to the control device 30.
  • Control device 30 can calculate the rotation speed and rotation frequency ⁇ e of motor generator MG based on rotation angle ⁇ . Note that the rotation angle sensor 25 may be omitted by directly calculating the rotation angle ⁇ from the motor voltage or current by the control device 30.
  • the control device 30 is composed of a single or a plurality of electronic control units (ECUs).
  • the ECU executes a predetermined control operation by software processing by executing a program stored in advance by a CPU (Central Processing Unit) (not shown) and / or hardware processing by a dedicated electronic circuit.
  • a CPU Central Processing Unit
  • control device 30 is configured to include an MG-ECU 35, a battery ECU 40, and an HV-ECU 50. However, it is also possible to provide an ECU that integrates some or all of the functions of these ECUs.
  • battery ECU 40 determines the current charging state (SOC) of battery B (power storage device). ).
  • SOC is normally a percentage of the current charge amount with respect to the fully charged state (100%).
  • the battery ECU 40 sets the charging power upper limit value Win and the discharging power upper limit value Wout of the battery B based on at least the SOC in order to control charging / discharging of the battery B.
  • the discharge power is indicated by a positive value and the charge power is indicated by a negative value. Therefore, Win ⁇ 0 and Wout ⁇ 0.
  • the battery ECU 40 corresponds to a “charge / discharge monitoring unit”.
  • the HV-ECU 50 controls the travel of the electric vehicle 100 based on the operation amount AC of the accelerator pedal 51, the operation amount BK of the brake pedal 55, and information indicating the vehicle status from a sensor (not shown). For example, the HV-ECU 50 controls the travel of the electric vehicle 100 so that the acceleration or deceleration desired by the user is realized according to the accelerator operation (AC) and the brake operation (BK) of the user.
  • the HV-ECU 50 corresponds to a “vehicle control unit”.
  • torque command value Trqcom of motor generator MG for vehicle travel is set.
  • the torque command value of motor generator MG is set to positive (Trqcom> 0).
  • the HV-ECU 50 calculates a total braking force required for the entire vehicle based on the brake operation amount BK and a vehicle speed detected by a vehicle speed sensor (not shown), and uses this total braking force as a hydraulic pressure. Coordinated control is performed to distribute the hydraulic braking force by a brake (not shown) and the regenerative braking force by the motor generator MG.
  • the torque command value (Trqcom ⁇ 0) for generating the regenerative braking force by the motor generator MG is the charge power upper limit value generated by the motor generator MG outputting a deceleration torque corresponding to the torque command value. It is set so as to be within the range of Win. Even when the regenerative braking force by motor generator MG is limited, the total braking force can always be secured by securing the braking force by the hydraulic brake.
  • HV-ECU 50 sets torque command value Trqcom to a predetermined value (negative value) in order to ensure a predetermined deceleration corresponding to the engine brake.
  • the torque command value Trqcom is always set after limiting the power consumption when the motor generator outputs the torque or the charge / discharge power of the battery B accompanying the generated power to be within the range of Win to Wout.
  • MG-ECU 35 controls inverter 14 and converter 12 so that motor generator MG operates in accordance with torque command value Trqcom from HV-ECU 50.
  • the MG-ECU 35 includes a torque command value Trqcom, a DC voltage VL detected by the voltage sensor 11, a system voltage VH detected by the voltage sensor 13, motor currents Iv and Iw detected by the current sensor 24, and a rotation angle sensor. The rotation angle ⁇ from 25 is input.
  • MG-ECU 35 controls switching control signals SG1 and SG2 for controlling DC voltage conversion by converter 12, and switching control signals SG3 to SG3 for controlling DC / AC voltage conversion by inverter 14.
  • SG8 is generated. That is, the MG-ECU 35 corresponds to a “motor control unit”.
  • the motor generator MG operates as a generator by being driven by the rotational force of the drive wheels 80 when the electric vehicle 100 is decelerated.
  • “when decelerating” includes not only when braking with regenerative power generation when the brake pedal 55 is operated, but also when acceleration is stopped by turning off the accelerator pedal 51 without operating the brake pedal 55. .
  • torque command value Trqcom of motor generator MG is set to a negative value (Trqcom ⁇ 0).
  • inverter 14 converts the electric power generated by motor generator MG by the output of negative torque into DC power and outputs it to power line 7.
  • the regenerated DC power charges the battery B via the smoothing capacitor C0 and the converter 12.
  • FIG. 2 shows an example of a setting mode of a torque command value for preventing overcharging of the battery when the accelerator of the electric vehicle 100 is off.
  • continuous long-distance downhill driving is assumed.
  • the torque value -Trb corresponds to the deceleration torque for ensuring the deceleration equivalent to the engine brake.
  • the deceleration torque -Trb is not necessarily a constant value, and may be set to a variable value according to the vehicle situation (vehicle speed, road surface gradient, etc.).
  • inverter 14 is controlled so as to generate a rotating magnetic field that makes the output torque of motor generator MG zero.
  • the SOC increases after time t2, as shown by the dotted line in FIG. There is a possibility of being charged.
  • FIG. 3 is a block diagram for explaining deceleration control when the accelerator is off in the electric vehicle according to the embodiment of the present invention.
  • an electronic circuit (hardware) having a function corresponding to the block may be configured in the ECU or set in advance. You may implement
  • SOC estimation unit 42 estimates the SOC of battery B based on the state value (voltage, current, temperature, etc.) of battery B (power storage device) detected by monitoring unit 10. Briefly, a method for estimating the SOC based on the integrated value of the battery current Ib and / or the open circuit voltage is known.
  • the charge / discharge limit setting unit 44 sets the charge power upper limit value Win and the discharge power upper limit value Wout according to the SOC estimated by the SOC estimation unit 42.
  • Win and Wout may be set so that charging / discharging is limited as compared with normal temperature when the internal resistance of the battery B increases at low or high temperatures.
  • the SOC estimation unit 42 and the charge / discharge limit setting unit 44 correspond to functional blocks realized by the battery ECU 40 in the configuration of FIG.
  • Torque command value setting unit 54 sets torque command value Trqcom so that the acceleration or deceleration desired by the user is realized according to accelerator operation amount AC, brake operation amount BK, and vehicle status of electrically powered vehicle 100. .
  • torque command value Trqcom is set such that the generated power or the consumed power is within the range of Win to Wout when motor generator MG outputs a torque equivalent to Trqcom.
  • Determination unit 52 receives accelerator operation amount AC, vehicle speed of electric vehicle 100 (or the rotational speed of motor generator MG), and charging power upper limit value Win. Then, when accelerator is off, determination unit 52 provides deceleration torque -Trb necessary for obtaining a predetermined deceleration corresponding to engine braking, and regenerative power Wrb # generated by motor generator MG outputting the deceleration torque -Trb. Is estimated.
  • the determination unit 52 compares the estimated regenerative power generation Wrb # with the charging power upper limit value Win.
  • regenerative power generation power Wrb # is within the range of charge power upper limit Win (ie,
  • determination flag SOF is turned off, while regenerative power generation power Wrb #
  • the determination unit 52 sets the determination flag SOF according to the state of charge of the battery B when the accelerator is off. Whether the determination flag SOF is in a state in which a predetermined deceleration (equivalent to engine brake) cannot be ensured when the accelerator is off, within the range of the current charging power upper limit Win due to charging / discharging limitation / prohibition of the battery B Indicates whether or not.
  • the determination flag SOF may be further reflected in the setting of the torque command value Trqcom in the torque command value setting unit 54.
  • the determination unit 52 and the torque command value setting unit 54 correspond to functional blocks realized by the HV-ECU 50 in the configuration of FIG.
  • the inverter 14 When the determination flag SOF is on, the inverter 14 is controlled so as to superimpose a direct current on each phase alternating current of the motor generator MG as shown in FIG.
  • each phase current Iu, Iv, Iw of motor generator MG is generated according to the AC voltage output from inverter 14.
  • Inverter 14 controls the phase and / or amplitude of the output voltage so that the output torque of motor generator MG matches torque command value Trqcom.
  • the inverter 14 is generally controlled so that an offset does not occur as much as possible for each phase current of the motor generator MG.
  • an offset current If is intentionally generated in each phase current by superimposing a DC component on each phase current of motor generator MG.
  • the offset current If may be either positive or negative.
  • a non-rotating magnetic field that depends on the offset current If is generated in the stator of the motor generator MG.
  • This non-rotating magnetic field acts as a constant deceleration torque with respect to the rotor rotational force.
  • the deceleration torque generated by the offset current is also referred to as “drag torque”.
  • the generation of the offset current If leads to an increase in the rotor eddy current, the generation amount of the motor generator MG does not increase due to the generation of the drag torque.
  • FIG. 5 shows a control configuration of the motor generator in the electric vehicle according to the present embodiment.
  • FIG. 5 shows a configuration of pulse width modulation (PWM) control as a typical control configuration.
  • PWM pulse width modulation
  • MG-ECU 35 includes a PWM control unit 200 for controlling the output torque of motor generator MG.
  • PWM control unit 200 includes a current command generation unit 210, coordinate conversion units 220 and 250, a voltage command generation unit 240, addition units 251 to 253, a PWM modulation unit 280, and a carrier wave control unit 270.
  • the current command generation unit 210 generates a d-axis current command value Idcom and a q-axis current command value Iqcom according to the torque command value Trqcom of the motor generator MG according to a table created in advance.
  • the coordinate conversion unit 220 acquires the motor current of each phase by sampling the detection value by the current sensor 24. Further, the coordinate conversion unit 220 converts the acquired three-phase current (Iu, Iv, Iw) using the rotation angle ⁇ detected by the rotation angle sensor 25 (3 phase ⁇ 2 phase), thereby d. An axial current Id and a q-axis current Iq are calculated.
  • the voltage command generator 240 obtains a control deviation by performing a PI (proportional integration) operation with a predetermined gain for each of the d-axis current deviation ⁇ Id and the q-axis current deviation ⁇ Iq, and a d-axis voltage command value corresponding to the control deviation.
  • Vd # and q-axis voltage command value Vq # are generated.
  • the coordinate conversion unit 250 converts the d-axis voltage command value Vd # and the q-axis voltage command value Vq # to the U-phase, V-phase, W-phase by coordinate conversion (2 phase ⁇ 3 phase) using the rotation angle ⁇ of the motor generator MG. Convert to phase voltage command for each phase.
  • Each phase voltage command at this stage is given as a sinusoidal voltage not including an offset.
  • the current command generation unit 210, the coordinate conversion units 220 and 250, and the voltage command generation unit 240 constitute a “control command generation unit”.
  • DC offset generator 260 sets offset voltage Vf to a predetermined value (
  • > 0) when determination flag SOF is turned on by determination unit 52 (FIG. 3). On the other hand, when the determination flag SOF is off, the DC offset generation unit 260 sets the offset voltage Vf 0.
  • the adders 251 to 253 add each phase voltage command converted by the coordinate converter 250 and the offset voltage Vf set by the DC offset generator 260.
  • Each phase voltage command Vu, Vv, Vw is set according to the addition results by the adding units 251 to 253.
  • the offset current If (FIG. 4) can be generated in each phase current of the motor generator MG by superimposing the offset component (Vf) on the voltage commands Vu, Vv, Vw of each phase.
  • the carrier wave control unit 270 sets the carrier wave frequency fc.
  • the carrier frequency fc is set to a predetermined frequency that makes it difficult for the user to detect electromagnetic noise and does not cause significant switching loss in the inverter 14.
  • the PWM modulation unit 280 is configured to switch the switching control signal SG3 of the inverter 14 according to a voltage comparison between the carrier wave having the carrier frequency fc set by the carrier wave control unit 270 and the phase voltage commands Vu, Vv, Vw from the coordinate conversion unit 250. Generate SG8. Generally, a triangular wave or a sawtooth wave is used as the carrier wave.
  • each phase of the motor generator MG has a pseudo sine wave voltage constituted by a set of pulse voltages whose pulse widths are modulated. Is applied.
  • the amplitude of the carrier wave in the PWM modulation corresponds to the DC side voltage (system voltage VH) of the inverter 14. If the amplitude of each phase voltage command Vu, Vv, Vw is converted into a value obtained by dividing the original amplitude value based on Vd #, Vq # by the system voltage VH, the amplitude of the carrier wave used in the PWM modulator 280 can be fixed.
  • the output torque of the motor generator MG is controlled according to the torque command value Trqcom by the feedback control of the motor current, and drag torque is generated in each phase current of the motor generator MG when the determination flag SOF is on. It is possible to generate an offset current for generating the current. On the other hand, when determination flag SOF is off, motor generator MG is controlled so as not to generate an offset current.
  • FIG. 6 shows a control processing procedure of deceleration control when the accelerator is off in the electric vehicle according to the embodiment of the present invention.
  • Each step of the following flowchart including FIG. 6 is basically realized by software processing by the control device 30 (ECU), but is realized by hardware processing by an electronic circuit manufactured in the ECU. Also good.
  • step S ⁇ b> 100 control device 30 determines whether or not accelerator pedal 51 is turned off based on accelerator operation amount AC.
  • the accelerator pedal 51 is on, the following steps S110 to S130 for controlling the deceleration when the accelerator is off are skipped.
  • Control device 30 sets deceleration torque -Trb necessary for securing a predetermined deceleration (equivalent to engine brake) in step S110 when the accelerator is off (YES in S100). Further, in step S110, regenerative power generation power Wrb # (Wrb # ⁇ 0) when motor generator MG generates deceleration torque -Trb is calculated.
  • control device 30 compares regenerative power generation Wrb # calculated in step S110 with charging power upper limit value Win based on the current SOC. Then, control device 30 restricts charging of battery B when regenerative power generation power Wrb # exceeds charging power upper limit value Win (
  • control device 30 proceeds to step S140.
  • the determination flag SOF is turned off to turn off the superimposition of the direct current component.
  • the direct current is superimposed on each phase current according to the state of charge of battery B when the accelerator pedal is turned off.
  • Drag torque can be generated in the generator MG.
  • electric vehicle 100 does not generate power consumption by motor generator MG due to the generation of drag torque.
  • the deceleration of can be secured. That is, it is possible to appropriately control motor generator MG so that deceleration is automatically ensured when the accelerator is off while preventing overcharging of battery B (power storage device).
  • the torque command value Trqcom is limited and set to ⁇ Trb ⁇ Trqcom ⁇ 0.
  • an insufficient torque ⁇ Tb with respect to the deceleration torque ⁇ Trb for ensuring a predetermined deceleration is generated.
  • FIG. 8 is a graph illustrating the setting of the offset current in the deceleration control when the accelerator is off in the electric vehicle according to the second embodiment of the present invention.
  • the offset current If is set in accordance with the insufficient torque ⁇ Tb with respect to the deceleration torque ⁇ Trb, which is generated because the charging of the battery B is restricted for securing the deceleration torque when the accelerator is off. Therefore, as shown in FIG. 7, the offset current If is also set larger as the insufficient torque ⁇ Tb increases after time t1.
  • the magnitude of the current I1 can be appropriately designed.
  • FIG. 9 shows a control configuration of the deceleration control when the accelerator is off in the electric vehicle according to the second embodiment of the present invention.
  • determination unit 52 controls on / off of determination flag SOF in the same manner as shown in FIG. Offset amount setting unit 56 receives torque command value Trqcom, deceleration torque -Trb for ensuring a predetermined deceleration, and determination flag SOF.
  • torque command value Trqcom is set by torque command value setting unit 54 within the range of charging power upper limit value Win.
  • the offset amount setting unit 56 generates the command value Ifcom of the offset current If according to the insufficient torque ⁇ Tb of the torque command value Trqcom with respect to the deceleration torque ⁇ Trb when the determination flag SOF is on (
  • > 0). On the other hand, the offset amount setting unit 56 sets Ifcom 0 when the determination flag SOF is off.
  • the offset current command value Ifcom is input to the DC offset generator 260 together with the determination flag SOF.
  • FIG. 10 shows a control processing procedure for deceleration control when the accelerator is off in the electric vehicle according to the second embodiment, to which the variable setting of the offset current shown in FIGS. 7 to 9 is added.
  • control device 30 executes steps S110 to S140 similar to those in FIG. 6 when accelerator pedal 51 is off (NO in S100).
  • step S120 when the determination in step S120 is YES, that is, when charging of the battery B is restricted or prohibited for securing the deceleration torque when the accelerator is off, the deceleration torque ⁇ Trb calculated in step S110 is set to the torque command. If the value Trqcom is set as it is, the regenerative generated power exceeds the charging power upper limit Win.
  • control device 30 proceeds to step S160, and requires the sum of the deceleration torque according to torque control and the drag torque due to the superimposition of DC current. Torque distribution is controlled so as to ensure a proper deceleration torque -Trb. Specifically, torque command value Trqcom is set within the range of charging power upper limit value Win ( ⁇ Trb ⁇ Trqcom ⁇ 0), and offset current If is set according to insufficient torque ⁇ Trb with respect to deceleration torque ⁇ Trb. .
  • the deceleration torque by the normal torque control and the offset The motor generator MG can be controlled to ensure a predetermined deceleration when the accelerator is off, based on the sum of the drag torque generated by the current. Thereby, even when charging of power storage device (battery) B is restricted, a predetermined deceleration can be secured when the accelerator is off, and the drivability of electric vehicle 100 can be improved.
  • the magnet temperature may increase due to the increase in iron loss, and demagnetization may occur. Therefore, in the third embodiment, a control configuration for improving the protection performance of motor generator MG will be described for the deceleration control at the time of accelerator off shown in the first and second embodiments.
  • the configuration of the electric vehicle 100 and the basic control configuration are the same as those of the first and second embodiments. Therefore, only the differences from the first and second embodiments will be described for the third embodiment, and it is confirmed that the configuration is the same as that of the first and second embodiments unless otherwise described. It is described in.
  • FIG. 11 is a block diagram illustrating functions of the carrier wave control unit 270 in the electric vehicle according to the third embodiment of the present invention.
  • carrier wave control unit 270 shown in FIG. 5 does not set carrier wave frequency fc as a fixed frequency, but changes it according to determination flag SOF.
  • FIG. 12 is a flowchart for explaining control by the carrier wave control unit 270 shown in FIG.
  • step S200 carrier wave control unit 270 determines whether generation of an offset current due to the superimposition of DC current is turned on based on determination flag SOF.
  • the carrier frequency fc is set to the normal value f1 in step S210.
  • the normal value f1 is set so as to be an appropriate value for steady operation in consideration of these trade-off relationships.
  • the carrier wave control unit 270 increases the carrier frequency fc to f2 (f2> f1) in step S220.
  • FIG. 13 shows changes in each phase current of the motor generator MG accompanying the control of the carrier frequency shown in FIG.
  • the basic frequency of the phase current corresponds to the rotational frequency of motor generator MG.
  • the iron loss generated in the motor generator MG depends on both the offset component and the magnitude of the ripple of the high frequency component superimposed on the fundamental wave component. For this reason, when the direct current generated by the offset current is superimposed, an increase in iron loss, that is, an increase in the magnet temperature in motor generator MG can be suppressed by suppressing the amplitude of the high frequency component.
  • the magnitude of the offset current or its superposition period is variably determined according to the state of demagnetization of motor generator MG when DC current superposition is turned on.
  • demagnetization rate estimation unit 58 is further provided.
  • Demagnetization factor estimation unit 58 estimates the demagnetization factor of motor generator MG based on the state value of motor generator MG.
  • the offset amount setting unit 56 sets the offset current command value Ifcom based on the demagnetization factor estimated value Ddm from the demagnetization factor estimating unit 58.
  • the offset current If Corresponds to the command value Ifcom.
  • the demagnetization factor estimation unit 58 can calculate the demagnetization factor estimation value Ddm according to the acquired magnet temperature.
  • the magnet temperature is estimated based on the state value of motor generator MG, the temperature of cooling oil, and the like.
  • the demagnetization factor estimation unit 58 can obtain the demagnetization factor estimation value Ddm based on the voltage equation of the motor generator MG as described below.
  • Vq ⁇ LdId + RIq + ⁇ (1)
  • rotational angular velocity
  • armature flux linkage by permanent magnet
  • Ld q-axis inductance
  • R armature resistance
  • the estimated demagnetization value Ddm is obtained by the following equation (2) using the estimated value ⁇ 1. be able to.
  • the demagnetization factor estimation unit 58 can estimate and calculate the demagnetization factor based on the q-axis voltage command value when the motor generator MG is controlled using the dq-axis conversion.
  • a method for calculating the demagnetization factor estimated value Ddm is not particularly limited.
  • the offset amount setting unit 56 variably sets the offset current command value Ifcom according to the demagnetization factor estimated value Ddm, for example, according to the characteristics shown in FIG.
  • offset amount setting unit 56 generates drag torque so that offset current command value
  • the period in which the offset current is superimposed can be variably set according to the estimated demagnetization value Ddm.
  • the superimposition of the direct current is turned on from time t1, and the command value Ifcom of the offset current is set to
  • the offset amount setting unit 56 variably sets the offset current superposition period Tf according to the demagnetization factor estimated value Ddm, for example, according to the characteristics shown in FIG.
  • offset amount setting unit 56 generates drag torque by limiting superposition period Tf to be shorter as demagnetization factor estimated value Ddm is larger. Thereby, when the demagnetization is progressing, the generation period of the offset current is suppressed, so that further demagnetization can be prevented.
  • FIG. 18 shows a flowchart for explaining the control processing procedure of the deceleration control when the accelerator is off in the electric vehicle according to the modification of the third embodiment of the present invention.
  • control device 30 determines, based on determination flag SOF, whether or not generation of offset current due to superimposition of DC current is turned on. Then, control device 30 calculates demagnetization factor estimated value Ddm of motor generator MG in step S260 when a direct current is superimposed (when YES is determined in S250).
  • step S270 the control device 30 variably sets the amount of offset current and / or its overlapping period according to the demagnetization factor estimated value Ddm. That is, offset current command value Ifcom and / or superposition period Tf are set according to the characteristics shown in FIG. 15 and / or FIG.
  • the three-phase motor is exemplified as the motor generator MG.
  • the deceleration control according to the present invention can be applied to all AC motors other than the three-phase motor.
  • the DC power supply unit 10 # includes the converter 12 so that the input voltage (system voltage VH) to the inverter 14 can be variably controlled.
  • # Is not limited to the configuration exemplified in the present embodiment. That is, it is not essential that the inverter input voltage is variable, and the present invention is also applied to a configuration in which the output voltage of power storage device B is directly input to inverter 14 (for example, a configuration in which converter 12 is omitted). Is possible.
  • the present invention can be applied to an electric vehicle equipped with a motor generator configured to be able to transmit power to and from a drive shaft connected to a drive wheel as a vehicle running motor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Hybrid Electric Vehicles (AREA)

Abstract

 電動車両(100)は、駆動輪(80)と連結された駆動軸(60)との間でトルクを相互に伝達可能に構成されたモータジェネレータ(MG)と、蓄電装置(B)を含む直流電源(10♯)と、直流電源とモータジェネレータとの間で双方向の直流/交流電力変換を行うためのインバータ(14)とを備える。MG-ECU(35)は、モータジェネレータのトルク指令値(Trqcom)および状態値に従って、複数の電力用半導体スイッチング素子(Q3-Q8)のオンオフを制御する。MG-ECU(35)は、アクセルペダル(51)のオフ時に、蓄電装置(B)の充電状態に応じて、モータジェネレータ(MG)の各相交流電流に直流電流成分を重畳するようにインバータ(14)を制御する。

Description

電動車両およびその制御方法
 この発明は、電動車両およびその制御方法に関し、より特定的には、走行用電動機を搭載した電動車両のアクセルオフ時における電動機制御に関する。
 近年、環境に配慮した自動車として、ハイブリッド自動車や電気自動車、燃料電池自動車などの電動車両が注目されている。このような電動車両は、二次電池などからなる蓄電装置と、当該蓄電装置からの電力を受けて駆動力を発生可能な走行用電動機としてのモータジェネレータとを備えている。モータジェネレータは、加速時に車両駆動力を発生する一方で、制動時などの減速時において車両の運動エネルギを電気エネルギに変換する回生発電を行う。電動車両では、モータジェネレータからの回生電力を、蓄電装置への充電により回収することによって、エネルギ効率の向上が図られる。
 一方で、モータジェネレータからの回生電力が過剰になると、過電圧の発生や蓄電装置の過充電といった部品保護上の問題が発生する可能性がある。したがって、モータジェネレータからの回生電力が過剰にならないように制御する必要がある。
 たとえば、特開2009-219189号公報(特許文献1)には、前後輪の一方をエンジンで駆動し、他方をモータで駆動可能とした四輪駆動車両において、エンジンで駆動される発電機の交流電圧を整流し、それをインバータで変換してモータに交流電圧を付与する場合に、過電圧によるインバータスイッチング素子の損傷を抑制防止するための構成が記載されている。
 具体的には、車両駆動用電動機のロールバック状態が検出されると、トルク発生に寄与しないd軸電流が流れるように目標電機子電流を設定することにより、走行用電動機の回生による発電電力を消費することが記載されている。これにより、走行用電動機からの回生電力が過剰となることによるインバータの直流リンク電圧の増大を抑制できるので、インバータを構成するスイッチング素子の損傷を防止することができる。
特開2009-219189号公報
 電動車両がモータジェネレータの出力によって走行している場面では、アクセルペダルのオフ時に、いわゆるエンジンブレーキ相当の減速度を実現するためには、モータジェネレータが減速トルクを発生する必要がある。しかしながら、モータジェネレータによる減速トルクの発生は回生発電を伴うので、蓄電装置の充電が禁止・制限されている場合には、蓄電装置の過充電が発生しないように考慮する必要がある。
 たとえば、特許文献1の技術によれば、d軸電流の増大によってモータジェネレータの消費電力を増大することができるため、減速トルクを発生させつつ、モータジェネレータからの回生電力を抑制することが期待される。
 しかしながら、一般に知られているように、d-q軸変換に基づく電動機制御(ベクトル制御)では、直流成分であるd軸電流を発生させるために、モータジェネレータのロータ回転角を用いた2相-3相変換によって、モータジェネレータへの交流印加電圧が制御される。このため、回転角センサに誤差が生じている場合には、誤差の影響によって、意図したd軸電流を発生できなかったり、意図しない減速トルクを生じさせることによって、モータジェネレータからの回生電力が過剰となる虞がある。
 また、蓄電装置への充電が禁止されている場面では、モータジェネレータからの回生電力が発生しないように制御する必要がある。この場合には、モータジェネレータの出力トルクが零になるような回転磁界がステータに発生するように、モータジェネレータへの交流印加電圧を制御する必要がある。しかしながら、回転角センサに誤差が生じていると、制御誤差によって減速トルクが生じてしまうことにより、回生電力が生じてしまう虞がある。
 以上のように、電動車両では、蓄電装置の充電が制限あるいは禁止された状態におけるアクセルオフ時において、走行用電動機(モータジェネレータ)を慎重に制御する必要があることが理解される。
 この発明は、このような問題点を解決するためになされたものであって、この発明の目的は、走行用電動機(モータジェネレータ)を搭載した電動車両において、蓄電装置の過充電を防止するように、アクセルオフ時に車両走行用電動機(モータジェネレータ)を適切に制御することである。
 この発明のある局面では、電動車両は、モータジェネレータと、蓄電装置を含む直流電源と、モータ制御部とを備える。モータジェネレータは、駆動輪と連結された駆動軸との間でトルクを相互に伝達可能に構成される。インバータは、直流電源とモータジェネレータとの間で双方向の直流/交流電力変換を行うように構成される。モータ制御部は、モータジェネレータのトルク指令値および状態値に従って、インバータを構成する複数の電力用半導体スイッチング素子を制御するように構成される。モータ制御部は、アクセルペダルのオフ時に、蓄電装置の充電状態に応じて、モータジェネレータの各相交流電流に直流電流成分を重畳するようにインバータを制御するための直流オフセット生成部を含む。
 好ましくは、電動車両は、充放電監視部と、車両制御部とをさらに備える。充放電監視部は、蓄電装置の充電状態に基づいて、蓄電装置の充電電力上限値を設定するように構成される。車両制御部は、車両状態と充放電監視部によって設定された充電電力上限値とに基づいて、トルク指令値を設定するように構成される。車両制御部は、判定部を含む。判定部は、アクセルペダルのオフ時に所定の減速度を確保するために必要な減速トルクをモータジェネレータが出力することによる回生発電電力に相当する第1の電力が、充電電力上限値を超えるか否かを判定するように構成される。そして、直流オフセット生成部は、アクセルペダルのオフ時に、第1の電力が充電電力上限値を超えると判定されたときに、各相交流電流に直流電流成分を重畳するようにインバータを制御する。
 さらに好ましくは、車両制御部は、モータジェネレータによる回生発電電力が充電電力上限値を超えない範囲内に制限して、トルク指令値を設定するためのトルク指令値設定部をさらに含む、そして、直流オフセット生成部およびトルク指令値設定部は、第1の電力が充電電力上限値を超える充電制限時におけるアクセルペダルのオフ時には、直流電流成分によって生じる引き摺りトルクと、トルク指令値との和によって、必要な減速トルクを確保するように、直流電流成分の電流量およびトルク指令値を設定する。
 さらに好ましくは、トルク指令値設定部は、充電電力上限値が零に設定される充電禁止時には、トルク指令値を零に設定する。直流オフセット生成部は、充電禁止時には、直流電流成分の電流量を所定値に設定する。
 好ましくは、電動車両は、充放電監視部と、車両制御部とをさらに備える。充放電監視部は、蓄電装置の充電状態に基づいて、蓄電装置の充電電力上限値を設定するように構成される。車両制御部は、車両状態と充電電力上限値とに基づいてトルク指令値を設定するように構成される。車両制御部は、充電電力上限値が零に設定される充電禁止時には、トルク指令値を零に設定し、直流オフセット生成部は、充電禁止時には、直流電流成分の電流量を所定値に設定する。
 また好ましくは、モータ制御部は、制御指令生成部と、加算部と、搬送波制御部と、変調部とを含む。制御指令生成部は、トルク指令値および状態値に基づいて、モータジェネレータへの印加電圧の電圧指令値を生成するように構成される。加算部は、直流オフセット生成部が直流電流成分の重畳を実行するときに、直流電流成分に応じたオフセット電圧を電圧指令値に加算するように構成される。搬送波制御部は、搬送波の周波数を制御する。変調部は、加算部によって処理された電圧指令値と搬送波との比較に基づいて、複数の電力用半導体スイッチング素子のオンオフ制御信号を生成するように構成される。そして、搬送波制御部は、直流電流成分の重畳が実行されるときには、直流電流成分の重畳が非実行のときと比較して、搬送波の周波数を上昇させる。
 また好ましくは、モータ制御部は、モータジェネレータの減磁率を推定するための減磁率推定部をさらに含む。そして、直流オフセット生成部は、減磁率の推定値に応じて、各相交流電流に直流電流成分を重畳する期間を制限する。あるいは、直流オフセット生成部は、減磁率の推定値に応じて、各相交流電流に重畳する直流電流成分の電流量を可変に設定する。
 この発明の他の局面では、電動車両の制御方法であって、電動車両は、駆動輪と連結された駆動軸との間でトルクを相互に伝達可能に構成されたモータジェネレータと、蓄電装置を含む直流電源と、直流電源とモータジェネレータとの間で双方向の直流/交流電力変換を行うためのインバータとを備える。制御方法は、アクセルペダルがオフされていることを検知するステップと、アクセルペダルのオフ時に、蓄電装置の充電状態に応じて、モータジェネレータの各相交流電流に直流電流成分を重畳するようにインバータを制御するステップとを備える。
 好ましくは、制御方法は、アクセルペダルのオフ時に所定の減速度を確保するために必要な減速トルクをモータジェネレータが出力することによる回生発電電力に相当する第1の電力を算出するステップと、第1の電力と、蓄電装置の充電状態に基づいて設定された充電電力上限値とを比較するステップとをさらに備える。そして、制御するステップは、第1の電力が充電電力上限値を超えるときに、各相交流電流に直流電流成分を重畳する。
 さらに好ましくは、制御方法は、第1の電力が充電電力上限値を超える充電制限時におけるアクセルペダルのオフ時に、モータジェネレータによる回生発電電力が充電電力上限値を超えない範囲内に制限してモータジェネレータのトルク指令値を設定するとともに、直流電流成分によって生じる引き摺りトルクとトルク指令値との和によって必要な減速トルクを確保するように、直流電流成分の電流量を設定するステップをさらに備える。
 あるいは、さらに好ましくは、制御方法は、第1の電力が充電電力上限値を超えるときに、充電電力上限値が零に設定される充電禁止時であるか否かを判定するステップと、充電禁止時に、モータジェネレータのトルク指令値を零に設定するとともに、直流電流成分の電流量を所定値に設定するステップと、充電電力上限値が零でないときに、モータジェネレータによる回生発電電力が充電電力上限値を超えない範囲内に制限してトルク指令値を設定するとともに、直流電流成分によって生じる引き摺りトルクとトルク指令値との和によって必要な減速トルクを確保するように、直流電流成分の電流量を設定するステップとをさらに備える。
 好ましくは、制御方法は、蓄電装置の充電電力上限値が零に設定される充電禁止時におけるアクセルペダルのオフ時には、モータジェネレータのトルク指令値を零に設定するとともに、直流電流成分の電流量を所定値に設定するステップをさらに備える。
 また好ましくは、インバータを構成する複数の電力用半導体スイッチング素子のオンオフは、モータジェネレータへの印加電圧の電圧指令値と、搬送波との比較に従って制御される。そして、制御するステップが直流電流成分の重畳を実行するときに、電圧指令値には直流電流成分に応じたオフセット電圧が加算される。制御方法は、制御するステップにより直流電流成分の重畳が実行されるか否かを判定するステップと、直流電流成分の重畳が非実行のときに、搬送波の周波数を第1の周波数に設定するステップと、直流電流成分の重畳が実行されるときに、搬送波の周波数を第1の周波数よりも高い第2の周波数に設定するステップとをさらに備える。
 あるいは好ましくは、制御方法は、モータジェネレータの減磁率を推定するステップと、減磁率の推定値に応じて、各相交流電流に直流電流成分を重畳する期間を制限するステップとをさらに備える。あるいは、制御方法は、モータジェネレータの減磁率を推定するステップと、減磁率の推定値に応じて、各相交流電流に重畳する直流電流成分の大きさを可変に設定するステップとをさらに備える。
 この発明によれば、車両走行用電動機(モータジェネレータ)を搭載した電動車両において、蓄電装置の過充電を防止するように、アクセルオフ時に車両走行用電動機(モータジェネレータ)を適切に制御することができる。
本発明の実施の形態1による電動車両の概略構成を説明するブロック図である。 電動車両のアクセルオフ時におけるバッテリの過充電防止のためのトルク指令値の設定態様の一例を示すグラフである。 本発明の実施の形態1による電動車両におけるアクセルオフ時の減速制御を説明するためのブロック図である。 モータジェネレータの各相電流への直流電流の重畳を説明する波形図である。 本実施の形態1による電動車両におけるモータジェネレータの制御構成を説明するためのブロック図である。 本発明の実施の形態1による電動車両におけるアクセルオフ時の減速制御の制御処理手順を示すフローチャートである。 電動車両のアクセルオフ時におけるバッテリ充電制限に伴うトルク指令値の設定を説明するグラフである。 本発明の実施の形態2による電動車両におけるアクセルオフ時の減速制御でのオフセット電流の設定を説明するグラフである。 本発明の実施の形態2による電動車両におけるアクセルオフ時の減速制御を説明するためのブロック図である。 本発明の実施の形態2による電動車両におけるアクセルオフ時の減速制御の制御処理手順を示すフローチャートである。 本発明の実施の形態3による電動車両における搬送波制御部の機能を説明するブロック図である。 図11に示した搬送波制御部による制御を説明するのためのフローチャートである。 図12に示した搬送波制御によるモータジェネレータの各相電流の変化を説明する概念図である。 本発明の実施の形態3の変形例による電動車両におけるアクセルオフ時の減速制御を説明するためのブロック図である。 オフセット電流の可変設定を説明する概念図である。 オフセット電流の重畳期間の定義を説明する概念図である。 オフセット電流の重畳期間の可変設定を説明する概念図である。 本発明の実施の形態3の変形例による電動車両におけるアクセルオフ時の減速制御の制御処理手順を説明するためのフローチャートである。
 以下に、本発明の実施の形態について図面を参照して詳細に説明する。なお以下図中の同一または相当部分には同一符号を付してその説明は原則的に繰返さないものとする。
 [実施の形態1]
 図1は、本発明の実施の形態1による電動車両100の概略構成を説明するブロック図である。なお、電動車両100は、ハイブリッド自動車、電気自動車や燃料電池車等の電気エネルギによって車両駆動力を発生する自動車を包括するものである。すなわち、電動車両100には、駆動力源として、少なくとも車両駆動力を発生するように構成されたモータジェネレータMGを備える。電動車両100がハイブリッド自動車であるときには、駆動力源として、モータジェネレータMGに加えて、図示しないエンジンがさらに搭載される。
 図1を参照して、電動車両100は、直流電源部10♯と、平滑コンデンサC0と、インバータ14と、モータジェネレータMGと、制御装置30と、アクセルペダル51と、ブレーキペダル55と、駆動軸60と、ディファレンシャルギア70と、駆動輪80とを備える。
 直流電源部10♯は、蓄電装置Bと、システムリレーSR1,SR2と、平滑コンデンサC1と、コンバータ12とを含む。
 蓄電装置Bは、代表的には、ニッケル水素またはリチウムイオン等の二次電池によって構成されるため、以下では、蓄電装置BについてバッテリBとも表記する。ただし、「蓄電装置」については、バッテリのみならず、電気二重層キャパシタ等についても適用することが可能である点について、確認的に記載する。
 バッテリBに対して、センサ群を含む監視ユニット10が配置される。監視ユニット10は、蓄電装置の出力電圧Vb、出力電流Ibおよび温度Tbを検出するとともに、その異常値の発生を監視するように構成される。なお、出力電流Ibについては、蓄電装置Bの放電時を正値(Ib>0)で示す一方で、充電時を負値(Ib<0)で示すものとする。監視ユニット10による検出値は、制御装置30へ出力される。
 システムリレーSR1は、バッテリBの正極端子および電力線6の間に接続され、システムリレーSR1は、バッテリBの負極端子およびアース線5の間に接続される。システムリレーSR1,SR2は、制御信号SEによりオン/オフされる。
 平滑コンデンサC1は、電力線6およびアース線5の間に接続される。電圧センサ11は、平滑コンデンサC1の両端の電圧、すなわち、電力線6の直流電圧VLを検出し、その検出値を制御装置30へ出力する。
 コンバータ12は、リアクトルL1と、電力用半導体スイッチング素子Q1,Q2とを含む。電力用半導体スイッチング素子Q1およびQ2は、電力線7およびアース線5の間に直列に接続される。電力用半導体スイッチング素子Q1およびQ2のオン・オフは、スイッチング制御信号SG1およびSG2によって制御される。
 この発明の実施の形態において、電力用半導体スイッチング素子(以下、単に「スイッチング素子」と称する)としては、IGBT(Insulated Gate Bipolar Transistor)、電力用MOS(Metal Oxide Semiconductor)トランジスタあるいは、電力用バイポーラトランジスタ等を用いることができる。スイッチング素子Q1,Q2に対しては、逆並列ダイオードD1,D2が配置されている。リアクトルL1は、スイッチング素子Q1およびQ2の接続ノードと電力線6の間に接続される。
 平滑コンデンサC0は、電力線7およびアース線5の間に接続される。電圧センサ13は、平滑コンデンサC0の両端の電圧、すなわち、電力線7の直流電圧VHを検出し、その検出値を制御装置30へ出力する。以下では、インバータ14の直流側電圧に相当する直流電圧VHをシステム電圧VHとも称する。
 コンバータ12は、スイッチング素子Q1および/またはQ2のオンオフ制御により、直流電圧VLおよびVHの間で双方向の直流電圧変換を実行する。コンバータ12による電圧変換比(VH/VL)は、スイッチング素子Q1,Q2のデューティ比に応じて制御される。具体的には、モータジェネレータMGの状態に応じて電圧指令値VHrが設定されるとともに、コンバータ12におけるデューティ比が、直流電圧VH,VLの検出値に基づいて制御される。なお、直流電圧VHを直流電圧VLから昇圧する必要がない場合には、スイッチング素子Q1およびQ2をオンおよびオフにそれぞれ固定することにより、VH=VL(電圧変換比=1.0)とすることもできる。
 コンバータ12では、基本的には、各スイッチング周期内でスイッチング素子Q1およびQ2が相補的かつ交互にオンオフするように制御される。このようにすると、コンバータ12の電流方向に応じて特に制御動作を切換えることなく、バッテリBの充電および放電のいずれにも対応して、直流電圧VHを電圧指令値VHrに制御することができる。
 インバータ14は、電力線7およびアース線5の間に並列に設けられる、U相上下アーム15と、V相上下アーム16と、W相上下アーム17とから成る。各相上下アームは、電力線7およびアース線5の間に直列接続されたスイッチング素子から構成される。たとえば、U相上下アーム15は、スイッチング素子Q3,Q4から成り、V相上下アーム16は、スイッチング素子Q5,Q6から成り、W相上下アーム17は、スイッチング素子Q7,Q8から成る。また、スイッチング素子Q3~Q8に対して、逆並列ダイオードD3~D8がそれぞれ接続されている。スイッチング素子Q3~Q8のオンオフは、制御装置30からのスイッチング制御信号SG3~SG8によって制御される。
 モータジェネレータMGは、代表的には、3相の永久磁石型同期電動機で構成され、図示しないステータに巻回されたU,V,W相の3つのコイルの一端が中性点に共通接続される。さらに、各相コイルの他端は、各相上下アーム15~17のスイッチング素子の中間点と接続されている。
 モータジェネレータMGは、インバータ14から供給される三相交流電力に応じて駆動力を発生し、機械的に連結された駆動軸60およびディファレンシャルギア70を介して駆動輪80を回転駆動する。すなわち、モータジェネレータMGは、駆動輪80と連結された駆動軸60との間でトルクを相互に伝達可能に構成されている。
 なお、電動車両100が、図示しないエンジンをさらに搭載するハイブリッド車両である場合には、この図示しないエンジンからの出力による駆動輪80の回転駆動を可能にするために、モータジェネレータMGからの駆動力伝達経路上に、遊星歯車機構などを用いた動力分割機構などを介装し、モータジェネレータMGおよびエンジンが発生する駆動力を適切に分配するように構成してもよい。
 電流センサ24は、モータジェネレータMGに流れる電流(相電流)を検出し、その検出値を制御装置30へ出力する。なお、三相電流Iu,Iv,Iwの瞬時値の和は零であるので、図1に示すように2相分のモータ電流(たとえば、V相電流IvおよびW相電流Iw)を検出するように配置してもよい。
 回転角センサ(レゾルバ)25は、モータジェネレータMGのロータ回転角θを検出し、その検出した回転角θを制御装置30へ送出する。制御装置30では、回転角θに基づきモータジェネレータMGの回転速度および回転周波数ωeを算出できる。なお、回転角センサ25については、回転角θを制御装置30にてモータ電圧や電流から直接演算することによって、配置を省略してもよい。
 制御装置30は、単一あるいは複数の電子制御ユニット(ECU)により構成される。ECUは、予め記憶されたプログラムを図示しないCPU(Central Processing Unit)で実行することによるソフトウェア処理および/または専用の電子回路によるハードウェア処理により、所定の制御動作を実行する。
 図1の構成例では、制御装置30は、MG-ECU35と、バッテリECU40と、HV-ECU50とを含むように構成される。ただし、これらのECUの一部または全部の機能を統合したECUを設けることも可能である。
 バッテリECU40は、監視ユニット10によって検出された、バッテリB(蓄電装置)の状態値(出力電圧Vb、出力電流Ibおよび温度Tb)に基づいて、バッテリB(蓄電装置)の現在の充電状態(SOC)を推定する。SOCは、通常、満充電状態(100%)に対する現在の充電量の比率を百分率で示したものである。
 さらに、バッテリECU40は、バッテリBの充放電を制御するために、少なくともSOCに基づいて、バッテリBの充電電力上限値Winおよび放電電力上限値Woutを設定する。バッテリBの入出力電力についても、放電電力を正値、充電電力を負値で示すものとする。したがって、Win≦0であり、Wout≧0である。バッテリECU40は「充放電監視部」に対応する。
 HV-ECU50は、アクセルペダル51の操作量AC、ブレーキペダル55の操作量BKおよび、図示しないセンサからの車両状況を示す情報に基づいて、電動車両100の走行を制御する。たとえば、HV-ECU50は、ユーザのアクセル操作(AC)およびブレーキ操作(BK)に応じてユーザが所望する加速度または減速度が実現されるように、電動車両100の走行を制御する。HV-ECU50は「車両制御部」に対応する。
 この走行制御の一環として、車両走行用のモータジェネレータMGのトルク指令値Trqcomが設定される。電動車両100の加速時には、モータジェネレータMGのトルク指令値が正(Trqcom>0)に設定される。
 HV-ECU50は、ブレーキペダル55の操作時には、ブレーキ操作量BKと図示しない車速センサによって検出される車速に基づいて、車両全体で必要なトータル制動力を算出するとともに、このトータル制動力を、油圧ブレーキ(図示せず)による油圧制動力と、モータジェネレータMGによる回生制動力とに分配する協調制御を行う。この際に、モータジェネレータMGで回生制動力を発生するためのトルク指令値(Trqcom<0)は、モータジェネレータMGがトルク指令値相当の減速トルクを出力することによる発電電力が、充電電力上限値Winの範囲内に収まるように設定される。なお、モータジェネレータMGによる回生制動力が制限される場合でも、油圧ブレーキによる制動力を確保することによって、トータル制動力は常に確保することが可能である。
 また、内燃機関を駆動源とする従来の車両では、アクセルペダルのオフ時には、いわゆるエンジンブレーキ相当の減速度が自動的に発生される。したがって、HV-ECU50は、アクセルペダル51のオフ時には、上記エンジンブレーキ相当の所定の減速度を確保するために、トルク指令値Trqcomが所定値(負値)に設定される。
 ただし、常に、トルク指令値Trqcomは、モータジェネレータが当該トルクを出力した際の消費電力あるいは発電電力に伴うバッテリBの充放電電力がWin~Woutの範囲内となるように制限した上で設定される。
 MG-ECU35は、HV-ECU50によるトルク指令値Trqcomに従って、モータジェネレータMGが動作するように、インバータ14およびコンバータ12を制御する。MG-ECU35には、トルク指令値Trqcom、電圧センサ11によって検出された直流電圧VL、電圧センサ13によって検出されたシステム電圧VH、電流センサ24によって検出されるモータ電流Iv,Iw、および回転角センサ25からの回転角θが入力される。MG-ECU35は、これらの入力信号に基づいて、コンバータ12による直流電圧変換を制御するためのスイッチング制御信号SG1,SG2と、インバータ14による直流/交流電圧変換を制御するためのスイッチング制御信号SG3~SG8を生成する。すなわち、MG-ECU35は「モータ制御部」に対応する。
 電動車両100の加速時には、インバータ14が、正のトルク指令値(Trqcom>0)に従って制御されるように、スイッチング制御信号SG3~SG8が生成される。これにより、モータジェネレータMGのステータに正トルクを発生させるための回転磁界を生じされるための交流電圧が、インバータ14からモータジェネレータMGへ印加される。これにより、モータジェネレータMGは、バッテリBからの電力線7の直流電力を源に、電動車両100を加速するための駆動力を発生することができる。
 モータジェネレータMGは、電動車両100の減速時には、駆動輪80の回転力によって駆動されることによって発電機として動作する。なお、ここで言う「減速時」とは、ブレーキペダル55が操作された場合の回生発電を伴う制動時に加えて、ブレーキペダル55を操作しないもののアクセルペダル51をオフすることによる加速中止時を含む。
 基本的には、電動車両100の減速時には、モータジェネレータMGのトルク指令値Trqcomは負に設定される(Trqcom<0)。そして、インバータ14が、負トルクの出力によりモータジェネレータMGでの発電された電力を、直流電力に変換して電力線7へ出力する。この回生された直流電力は、平滑コンデンサC0およびコンバータ12を介して、バッテリBを充電する。
 また、トルク指令値Trqcom=0に設定された場合には、モータジェネレータMGの出力トルクを零とするような回転磁界をステータに生じさせるための交流電圧がインバータ14から出力されるように、スイッチング制御信号SG3~SG8が生成される。
 上述のように、バッテリBの過充電が懸念されるSOC上昇時には、バッテリBへの充電が制限あるいは禁止される。このときには、充電電力上限値Win(Win<0に設定)の絶対値が低下される。そして、充電禁止時にはWin=0となる。バッテリBの充電が制限あるいは禁止されている場合には、アクセルペダル51のオフ時(以下、単に「アクセルオフ時」とも称する)において、バッテリBの過充電を防止するために、モータジェネレータMGによる回生電力を抑制する必要がある。
 図2には、電動車両100のアクセルオフ時におけるバッテリの過充電防止のためのトルク指令値の設定態様の一例が示される。図2では、長距離の継続的な降坂走行が想定されている。
 図2を参照して、トルク値-Trbは、エンジンブレーキ相当の減速度を確保するための減速トルクに対応する。なお、この減速トルク-Trbについては、一定値であるとは限らず、車両状況(車速や路面勾配等)に応じて可変の値に設定されてもよい。
 時刻t1までの間は、充電電力上限値|Win|が、減速トルク-Trb発生時のモータジェネレータMGの発電電力よりも大きいため、トルク指令値Trqcom=-Trbに設定可能な状態であることを示している。この間、減速トルクの発生に伴うモータジェネレータMGからの回生電力によって、SOCは徐々に上昇する。
 そして、時刻t1では、SOCの上昇に応じて充電電力上限値|Win|が抑制されることにより、設定可能なトルク指令値Trqcom>-Trbとなり、減速トルクの発生が制限される。すなわち、アクセルオフ時のバッテリBへの充電が制限された状態となる。
 時刻t1以降では、充電電力上限値|Win|の範囲内に制限して、トルク指令値Trqcomが設定されるため、モータジェネレータMGによる減速トルクが減少するが、SOCの上昇度合は緩やかになる。
 そして、制限された減速トルクの発生がさらに継続することにより、時刻t2では、バッテリBの充電が禁止される制御上限値Smaxまで、SOCが上昇する。これにより、充電電力上限値Win=0に設定される。この場合には、モータジェネレータMGによる回生発電が禁止されるため、トルク指令値Trqcom=0に設定される。
 上述のように、トルク指令値Trqcom=0の状態では、モータジェネレータMGの出力トルクを零とするような回転磁界を生じさせるように、インバータ14が制御される。しかしながら、回転角センサ25の誤差等の影響によって、モータジェネレータMGからの意図しない回生電力が発生すると、図2に点線で示すように、時刻t2以降もSOCが上昇してしまい、バッテリBが過充電される可能性がある。
 また、バッテリBの充電が制限あるいは禁止されている場面では、特許文献1に記載されたように、d軸電流を積極的に流すことによって、モータジェネレータMGからの回生電力を抑制したり、SOCの低下を図ることも可能である。しかしながら、この場合にも、回転角センサ25の誤差等に起因する制御誤差によって、意図しない回生発電が実行されてしまう虞がある。
 したがって、本実施の形態による電動車両100では、以下に説明するようなアクセルオフ時の減速制御を実行する。
 図3は、本発明の実施の形態による電動車両におけるアクセルオフ時の減速制御を説明するためのブロック図である。
 なお、図3を始めとする各ブロック図に示された各機能ブロックについては、当該ブロックに相当する機能を有する電子回路(ハードウェア)をECU内に構成してもよいし、予め設定されたプログラムに従ってECUがソフトウェア処理を実行することにより実現してもよい。
 図3を参照して、SOC推定部42は、監視ユニット10によって検出された、バッテリB(蓄電装置)の状態値(電圧、電流、温度等)に基づいて、バッテリBのSOCを推定する。簡略的には、バッテリ電流Ibの積算値および/または開放電圧等に基づいて、SOCを推定する手法が知られている。
 充放電制限設定部44は、SOC推定部42によって推定されたSOCに応じて、充電電力上限値Winおよび放電電力上限値Woutを設定する。なお、バッテリ温度Tbを考慮して、バッテリBの内部抵抗が上昇する低温あるいは高温時には、充放電が通常温度時よりも制限されるように、Win,Woutが設定されてもよい。
 SOC推定部42および充放電制限設定部44は、図1の構成では、バッテリECU40によって実現される機能ブロックに相当する。
 トルク指令値設定部54は、アクセル操作量ACおよびブレーキ操作量BKおよび電動車両100の車両状況に応じて、ユーザが所望する加速度または減速度が実現されるように、トルク指令値Trqcomを設定する。ただし、上述のように、トルク指令値Trqcomは、モータジェネレータMGがTrqcom相当のトルクを出力したときの発電電力または消費電力がWin~Woutの範囲内となるように設定される。
 判定部52は、アクセル操作量ACと、電動車両100の車速(あるいは、モータジェネレータMGの回転速度)と、充電電力上限値Winとを受ける。そして、判定部52は、アクセルオフ時に、エンジンブレーキ相当の所定の減速度を得るために必要な減速トルク-Trbおよび、当該減速トルク-TrbをモータジェネレータMGが出力することによる回生発電電力Wrb♯を推定する。
 さらに、判定部52は、推定した回生発電電力Wrb♯と、充電電力上限値Winを比較する。そして、回生発電電力Wrb♯が充電電力上限値Winの範囲内(すなわち、|Wrb♯|≦|Win|)であるときには、判定フラグSOFをオフする一方で、回生発電電力Wrb♯が充電電力上限値Winを超えるとき(すなわち、|Wrb♯|>|Win|)には判定フラグSOFをオンする。
 このように、判定部52は、アクセルオフ時に、バッテリBの充電状態に応じて、判定フラグSOFを設定する。判定フラグSOFは、バッテリBの充放電制限・禁止により、現在の充電電力上限値Winの範囲内では、アクセルオフ時に所定の減速度(エンジンブレーキ相当)を確保することができない状態が生じているか否かを示している。なお、判定フラグSOFは、トルク指令値設定部54におけるトルク指令値Trqcomの設定にさらに反映されてもよい。
 判定部52およびトルク指令値設定部54は、図1の構成では、HV-ECU50によって実現される機能ブロックに相当する。
 判定フラグSOFのオン時には、図4に示されるように、モータジェネレータMGの各相交流電流に直流電流を重畳するようにインバータ14が制御される。
 図4を参照して、モータジェネレータMGの各相電流Iu,Iv,Iwは、インバータ14が出力する交流電圧に応じて発生する。インバータ14は、モータジェネレータMGの出力トルクがトルク指令値Trqcomと一致するように、出力電圧の位相および/または振幅を制御する。この際に、通常の電動機制御によれば、モータジェネレータMGの各相電流については、オフセットが極力生じないように、インバータ14を制御することが一般的である。
 これに対して、本実施の形態による電動車両100では、判定フラグSOFのオン時には、モータジェネレータMGの各相電流に直流成分を重畳することにより、各相電流に意図的にオフセット電流Ifを発生させる。なお、オフセット電流Ifは、正、負のいずれであってもよい。
 このようなオフセットが生じると、モータジェネレータMGのステータにオフセット電流Ifに依存する非回転磁界が生じることとなる。この非回転磁界は、ロータ回転力に対して、一定の減速トルクとして作用する。以下では、かかるオフセット電流によって生じる減速トルクを、「引き摺りトルク」とも称することとする。また、オフセット電流Ifの発生は、ロータ渦電流の増加につながるので、この引き摺りトルクの発生によって、モータジェネレータMGの発電量が増加することはない。
 このように、本実施の形態による電動車両100では、アクセルオフ時に判定フラグSOFがオンされると、モータジェネレータMGの各相電流に直流電流を重畳させることにより、モータジェネレータMGに引き摺りトルクを発生させる。
 図5には、本実施の形態の電動車両におけるモータジェネレータの制御構成が示される。図5には、代表的な制御構成として、パルス幅変調(PWM)制御の構成が示される。
 図5を参照して、MG-ECU35は、モータジェネレータMGの出力トルクを制御するためのPWM制御部200を含む。
 PWM制御部200は、電流指令生成部210と、座標変換部220,250と、電圧指令生成部240と、加算部251~253と、PWM変調部280と、搬送波制御部270とを含む。
 電流指令生成部210は、予め作成されたテーブル等に従って、モータジェネレータMGのトルク指令値Trqcomに応じて、d軸電流指令値Idcomおよびq軸電流指令値Iqcomを生成する。
 座標変換部220は、電流センサ24による検出値をサンプリングすることによって、各相のモータ電流を取得する。さらに、座標変換部220は、取得した三相電流(Iu,Iv,Iw)を、回転角センサ25によって検出される回転角θを用いて座標変換(3相→2相)することによって、d軸電流Idおよびq軸電流Iqを算出する。
 電圧指令生成部240には、d軸電流の指令値に対する偏差ΔId(ΔId=Idcom-Id)およびq軸電流の指令値に対する偏差ΔIq(ΔIq=Iqcom-Iq)が入力される。電圧指令生成部240は、d軸電流偏差ΔIdおよびq軸電流偏差ΔIqのそれぞれについて、所定ゲインによるPI(比例積分)演算を行なって制御偏差を求め、この制御偏差に応じたd軸電圧指令値Vd♯およびq軸電圧指令値Vq♯を生成する。
 座標変換部250は、モータジェネレータMGの回転角θを用いた座標変換(2相→3相)によって、d軸電圧指令値Vd♯およびq軸電圧指令値Vq♯をU相、V相、W相の各相電圧指令に変換する。この段階の各相電圧指令は、オフセットを含まない正弦波電圧で与えられる。このように、電流指令生成部210と、座標変換部220,250と、電圧指令生成部240とによって、「制御指令生成部」が構成される。
 直流オフセット生成部260は、判定部52(図3)によって判定フラグSOFがオンされると、オフセット電圧Vfを所定値に設定する(|Vf|>0)。一方で、判定フラグSOFのオフ時には、直流オフセット生成部260は、オフセット電圧Vf=0に設定する。
 加算部251~253は、座標変換部250によって変換された各相電圧指令と、直流オフセット生成部260によって設定されたオフセット電圧Vfとを加算する。加算部251~253による加算結果に従って、各相電圧指令Vu,Vv,Vwが設定される。
 このようにして、各相の電圧指令Vu,Vv,Vwにオフセット成分(Vf)を重畳することによって、モータジェネレータMGの各相電流に、オフセット電流If(図4)を発生させることができる。
 搬送波制御部270は、搬送波周波数fcを設定する。たとえば、搬送波周波数fcは、電磁騒音がユーザに検知され難く、かつ、インバータ14でのスイッチング損失が顕著とならないような所定周波数に設定される。
 PWM変調部280は、搬送波制御部270によって設定された搬送波周波数fcを有する搬送波と、座標変換部250からの各相電圧指令Vu,Vv,Vwとの電圧比較に従って、インバータ14のスイッチング制御信号SG3~SG8を生成する。搬送波は、一般的に、三角波やのこぎり波が用いられる。
 スイッチング制御信号SG3~SG8に従って、インバータ14の各相上下アーム素子のオンオフを制御することによって、モータジェネレータMGの各相に、パルス幅が変調されたパルス電圧の集合で構成される疑似正弦波電圧が印加される。
 なお、PWM変調における搬送波の振幅は、インバータ14の直流側電圧(システム電圧VH)に相当する。各相電圧指令Vu,Vv,Vwの振幅について、Vd♯,Vq♯に基づく本来の振幅値をシステム電圧VHで除算したものに変換すれば、PWM変調部280で用いる搬送波の振幅を固定できる。
 このような制御構成により、モータ電流のフィードバック制御によって、トルク指令値Trqcomに従ってモータジェネレータMGの出力トルクを制御するとともに、判定フラグSOFのオン時には、モータジェネレータMGの各相電流に、引き摺りトルクを発生させるためのオフセット電流を発生させることが可能となる。一方で、判定フラグSOFのオフ時には、オフセット電流を生じさせないように、モータジェネレータMGが制御される。
 図6には本発明の実施の形態による電動車両における、アクセルオフ時の減速制御の制御処理手順が示される。図6を始めとする以下のフローチャートの各ステップは、基本的には、制御装置30(ECU)によるソフトウェア処理によって実現されるが、ECU内に作製された電子回路によるハードウェア処理によって実現されてもよい。
 図6を参照して、制御装置30は、ステップS100では、アクセル操作量ACに基づいて、アクセルペダル51がオフされているか否かを判定する。アクセルペダル51のオン時には、アクセルオフ時の減速度を制御するための、以降のステップS110~S130はスキップされる。
 制御装置30は、アクセルオフ時(S100のYES判定時)には、ステップS110により、所定の減速度(エンジンブレーキ相当)確保のために必要な減速トルク-Trbを設定する。さらに、ステップS110では、当該減速トルク-TrbをモータジェネレータMGが発生する際の回生発電電力Wrb♯(Wrb♯<0)が算出される。
 そして、制御装置30は、ステップS120により、ステップS110で算出した回生発電電力Wrb♯と、現在のSOCに基づく充電電力上限値Winを比較する。そして、制御装置30は、回生発電電力Wrb♯が充電電力上限値Winを超えるとき(|Wrb♯|>|Win|)、すなわち、アクセルオフ時の減速トルク確保に対してバッテリBの充電が制限・禁止されている場合(S120のYES判定時)には、ステップS130に処理を進める。制御装置30は、ステップS130では、直流電流成分の重畳をオンするために、判定フラグSOFをオンする。
 一方、制御装置30は、回生発電電力Wrb♯が充電電力上限値Winの範囲内であるとき(|Wrb♯|≦|Win|)には(S120のNO判定時)、ステップS140に処理を進めて、直流電流成分の重畳をオフするために判定フラグSOFをオフする。
 この結果、判定フラグSOFのオン時には、図4に示したようにオフセット電流Ifが重畳された交流電流がモータジェネレータMGの各相に流される。一方で、バッテリBの充電電力上限値Winに余裕があるときには(判定フラグSOFのオフ時)には、モータジェネレータMGの各相にオフセット成分のない(If=0)交流電流が流れるように、インバータ14が制御される。
 なお、ステップS120における、直流電流の重畳をオンするか否かの判定については、単純にSOCのみに基づいて判定してもよい。あるいは、バッテリBへの充電が禁止されるとき(Win=0あるいは、Trqcom=0)のみに限定して、直流電流成分の重畳をオンすることとしてもよい。
 このように、本発明の実施の形態1による電動車両およびその制御方法によれば、アクセルペダルのオフ時に、バッテリBの充電状態に応じて、各相電流に直流電流を重畳することによって、モータジェネレータMGに引き摺りトルクを発生させることができる。これにより、アクセルオフ時の減速トルク確保に対してバッテリBの充電が制限・禁止されている場合にも、引き摺りトルクの発生により、モータジェネレータMGでの電力消費を発生させることなく、電動車両100の減速度を確保できる。すなわち、バッテリB(蓄電装置)の過充電を防止しながら、アクセルオフ時に減速度が自動的に確保されるように、モータジェネレータMGを適切に制御することができる。
 特に、特許文献1のようにd軸電流の発生によってモータジェネレータMGの銅損を発生させる場合と比較して、回転角センサ25の検出精度に依存せず確実に電力消費を発生させることができる点で有利である。また、モータジェネレータMGのコイル巻線抵抗は小さいため、銅損による電力消費を大きくすることには限界があるが、意図的なオフセット電流の発生による引き摺りトルクの発生によれば、より効果的に、回生電力を抑制しつつ減速トルクを発生させることが可能である。
 [実施の形態2]
 実施の形態2では、実施の形態1に示した電動車両において、引き摺りトルク発生のためのオフセット電流If(図4)の好ましい設定について説明する。すなわち、電動車両100の構成や基本的な制御は、実施の形態1と同様であるので、実施の形態1と共通する部分については説明を繰返さない。
 図7でも、図2と同様に、長距離の継続的な降坂走行が想定されている。図7を参照して、図2でも説明したように、時刻t1において、所定の減速度確保のための減速トルク-Trbを発生するための回生発電電力Wrb♯が、充電電力上限値Winを超えることになる。すなわち、アクセルオフ時の減速トルク確保に対してバッテリBの充電が制限される。
 このため、時刻t1以降では、トルク指令値Trqcomが制限されて、-Trb<Trqcom<0に設定される。この結果、所定の減速度確保のための減速トルク-Trbに対する不足トルクΔTbが発生することになる。
 図8は、本発明の実施の形態2による電動車両におけるアクセルオフ時の減速制御でのオフセット電流の設定を説明するグラフである。
 図8を参照して、時刻t1までは、Trqcom=-Trbと設定できるため、不足トルクΔTb=0である。このため、オフセット電流を発生させることなく(If=0)、モータジェネレータMGのトルクが制御される。
 時刻t1からは、アクセルオフ時の減速トルク確保に対してバッテリBの充電が制限されるために発生した、減速トルク-Trbに対する不足トルクΔTbに応じて、オフセット電流Ifは設定される。したがって、図7に示すように、時刻t1以降では不足トルクΔTbが増大するのに応じて、オフセット電流Ifも大きく設定される。
 このようにすると、バッテリBの充電制限が開始される時刻t1の前後で、モータジェネレータMGの減速トルクを同程度確保できる。これにより、アクセルオフ時の減速度が確保できるので、電動車両100の運転性が向上する。
 そして、バッテリBの充電が禁止(Win=0)されることにより、トルク指令値Trqcom=0となる時刻t2以降では、オフセット電流If=I1に設定される。
 オフセット電流If=I1のときに生じる引き摺りトルクが、所定の減速トルク-Trbに相当することが好ましい。ただし、後述するように、オフセット電流を発生させることによって、モータジェネレータMGの動作上のデメリットも存在するので、電流I1の大きさについては適宜設計することができる。
 なお、引き摺りトルクの活用によって確保される減速度が、いわゆるエンジンブレーキに対して不足する場合にも、ユーザによるブレーキ操作に応答して油圧ブレーキが作動することによって、電動車両100の減速度そのものは確実に確保できる点について、確認的に記載する。
 図9には、本発明の実施の形態2による電動車両におけるアクセルオフ時の減速制御の制御構成が示される。
 図9を参照して、判定部52は、図3に示したのと同様に判定フラグSOFのオンオフを制御する。そして、オフセット量設定部56は、トルク指令値Trqcomと、所定の減速度を確保するための減速トルク-Trbと、判定フラグSOFとを受ける。上述のように、トルク指令値Trqcomは、トルク指令値設定部54によって、充電電力上限値Winの範囲内で設定されている。
 オフセット量設定部56は、判定フラグSOFのオン時には、減速トルク-Trbに対するトルク指令値Trqcomの不足トルクΔTbに応じて、オフセット電流Ifの指令値Ifcomを生成する(|Ifcom|>0)。一方、オフセット量設定部56は、判定フラグSOFのオフ時には、Ifcom=0に設定する。
 オフセット電流指令値Ifcomは、判定フラグSOFとともに、直流オフセット生成部260へ入力される。
 直流オフセット生成部260は、判定フラグSOFのオン時には、オフセット電流指令値Ifcomに応じて、オフセット電圧Vfを設定する。一方、判定フラグSOFのオフ時には、既に説明したように、オフセット電流指令値Ifcom=0であるからVf=0に設定される。
 図10は、図7~図9に示したオフセット電流の可変設定を加えた、実施の形態2の電動車両におけるアクセルオフ時の減速制御の制御処理手順が示される。
 図10を参照して、制御装置30は、アクセルペダル51がオフされているとき(S100のNO判定時)には、図6と同様のステップS110~S140を実施する。
 そして、制御装置30は、必要減速トルク-Trbを充電電力上限値Winの範囲内で発生することができるとき(S120のNO判定時)には、ステップS140に加えて、ステップS145により、必要な減速度に応じてトルク指令値Trqcomを設定する。すなわちTrqcom=-Trbに設定される。
 一方、ステップS120のYES判定時、すなわち、アクセルオフ時の減速トルク確保に対してバッテリBの充電が制限・禁止されている場合には、ステップS110で算出された減速トルク-Trbを、トルク指令値Trqcomにそのまま設定すると、回生発電電力が充電電力上限値Winを超えてしまうことになる。
 このため、制御装置30は、直流電流成分の重畳をオンするために判定フラグSOFをオンする(ステップS130)とともに、ステップS150に処理を進めて、Win=0であるか否か、すなわちバッテリBへの充電が禁止されている状態であるか否かを判定する。
 制御装置30は、Win=0のとき(S150のYES判定時)には、ステップS155により、トルク指令値Trqcom=0に設定して、回生発電電力が生じないようにする。さらに、モータジェネレータMGの各相電流に重畳されるオフセット電流IfをI1に設定する。
 これにより、出力トルクを零に制御するとともにオフセット電流による電力消費を発生させることによって、モータジェネレータMGからの回生電力の発生をより確実に回避できるので、バッテリBの過充電をより確実に防止できる。また、モータジェネレータMGが引き摺りトルクを発生することによって、電動車両100の減速度も確保できる。
 一方、Win<0のとき(S150のNO判定時)には、制御装置30は、ステップS160に処理を進めて、トルク制御に従う減速トルクと、直流電流の重畳による引き摺りトルクとの合計によって、必要な減速トルク-Trbを確保するようにトルク配分を制御する。具体的には、充電電力上限値Winの範囲内でトルク指令値Trqcomを設定するとともに(-Trb<Trqcom<0)、減速トルク-Trbに対する不足トルクΔTrbに応じて、オフセット電流Ifが設定される。
 このように、実施の形態2による電動車両では、アクセルオフ時に、エンジンブレーキ相当の減速トルク確保に対してバッテリBの充電が制限されている場合には、通常のトルク制御による減速トルクと、オフセット電流の発生による引き摺りトルクとの和によって、アクセルオフ時の所定の減速度を確保するように、モータジェネレータMGを制御できる。これにより、蓄電装置(バッテリ)Bの充電制限時にも、アクセルオフ時に所定の減速度を確保して、電動車両100の運転性を向上することができる。
 さらに、バッテリBの充電禁止時には、トルク指令値Trqcom=0に設定するとともに、引き摺りトルクの発生に伴いモータジェネレータMGでの消費電力を発生することができるので、バッテリBの過充電を確実に防止できる。なお、過充電防止を優先する観点から、バッテリBの充電禁止時のみに限定して、オフセット電流の発生による引き摺りトルクを発生させることとしてもよい。
 [実施の形態3]
 実施の形態1および2では、電動車両100のアクセルオフ時に、バッテリBの充電状態に応じて、モータジェネレータMGの引き摺りトルクを意図的に発生させる減速制御を説明した。
 ただし、引き摺りトルク発生のためのオフセット電流の発生により、モータジェネレータMGでは、鉄損の上昇により磁石温度が上昇し、減磁が発生するおそれがある。したがって、実施の形態3では、実施の形態1,2に示したアクセルオフ時の減速制御について、モータジェネレータMGの保護性能を高めるための制御構成について説明する。
 すなわち、実施の形態3においても、電動車両100の構成および基本的な制御構成については実施の形態1,2と同様である。したがって、実施の形態3についても、実施の形態1,2との相違点のみを説明することとし、特に説明していない点については実施の形態1および2と同様の構成であることを確認的に記載しておく。
 図11は、本発明の実施の形態3による電動車両における搬送波制御部270の機能を説明するブロック図である。
 図11を参照して、実施の形態3による電動車両では、図5に示した搬送波制御部270は、搬送波周波数fcを固定周波数とするのではなく、判定フラグSOFに応じて変化させる。
 図12は、図11に示した搬送波制御部270による制御を説明するためのフローチャートである。
 図12を参照して、搬送波制御部270は、ステップS200により、判定フラグSOFに基づいて、直流電流の重畳によるオフセット電流の発生がオンされているかどうかを判定する。そして、直流電流が重畳されていないとき(ステップS200のNO判定時)には、ステップS210により、搬送波周波数fcを通常値f1に設定する。
 上述のように、搬送波周波数fcについては、高周波化することによってスイッチング損失の増大が懸念される一方で、低周波化すると電磁騒音の発生が懸念される。したがって、通常値f1は、これらのトレードオフの関係を考慮した上で、定常的に運転するときの適正値となるように設定される。
 一方、直流電流の重畳がオンされているとき(S200のYES判定時)には、搬送波制御部270は、ステップS220により、搬送波周波数fcをf2へ上昇させる(f2>f1)。
 図13には、図12に示した搬送周波数の制御に伴う、モータジェネレータMGの各相電流の変化が示される。
 図13を参照して、直流電流の重畳がオフされている場合には、通常の搬送波周波数(f1)によるPWM制御に従って、インバータ14からモータジェネレータMGへの出力電圧が制御される。この際には、オフセット電流を生じさせないようにインバータ14が制御されるので、モータジェネレータMGの各相電流は、オフセット電流If=0の正負対称の波形となる。相電流の基本周波数は、モータジェネレータMGの回転周波数に相当する。相電流は、この基本波成分に対して、インバータ14でのスイッチング周波数、すなわち搬送波周波数fc=f1に起因するリップル電流相当の高周波成分が重畳した形となる。
 これに対して、直流電流の重畳がオンされると、図5に示した直流オフセット生成部260によって、オフセット電圧Vfが各相電圧指令に重畳される。これにより、相電流には、オフセット電流If(|If|=Ifcom)が発生し、その波形は正負が非対称となる。さらに、搬送波周波数fcがf2に上昇することにより、基本波成分に重畳されるリップル電流(高周波成分)の振幅が小さくなる。
 ここで、モータジェネレータMGに発生する鉄損は、オフセット成分と、基本波成分に重畳された高周波成分のリップルの大きさとの両方に依存することが知られている。このため、オフセット電流が発生する直流電流の重畳時には、高周波成分の振幅を抑制することにより、鉄損の上昇、すなわちモータジェネレータMGでの磁石温度上昇を抑制することができる。
 これにより、搬送波周波数を固定する場合と比較して、減速度制御のための引き摺りトルク発生時におけるモータジェネレータMGの温度上昇(減磁発生)を防止することができる。
 [実施の形態3の変形例]
 実施の形態3の変形例では、直流電流の重畳をオンする際における、モータジェネレータMGの減磁の状態に応じて、オフセット電流の大きさあるいはその重畳期間を可変に定する。
 図14を参照して、実施の形態3の変形例による電動車両では、減磁率推定部58がさらに設けられる。減磁率推定部58は、モータジェネレータMGの状態値に基づいて、モータジェネレータMGの減磁率を推定する。オフセット量設定部56は、減磁率推定部58による減磁率推定値Ddmに基づいて、オフセット電流の指令値Ifcomを設定する。
 実施の形態2で説明したように、オフセット量設定部によって設定された指令値Ifcomに基づいて、直流オフセット生成部260(図5)によるオフセット電圧Vfの大きさが制御されるので、オフセット電流Ifは、指令値Ifcomに応じたものとなる。
 減磁率推定部58は、モータジェネレータMGの磁石温度を取得可能である場合には、取得した磁石温度に応じて減磁率推定値Ddmを算出することができる。一般に、ロータに装着された永久磁石の温度を測定することは困難であるので、モータジェネレータMGの状態値や、冷却油の温度等に基づいて磁石温度を推定することが行なわれている。
 あるいは、減磁率推定部58は、モータジェネレータMGの電圧方程式に基づいて、以下に示すように減磁率推定値Ddmを求めることも可能である。
 d-q軸変換を用いて永久磁石モータ(モータジェネレータMG)を制御するときのq軸の電圧方程式は、下記(1)式で示されることが知られている。
 Vq=ωLdId+RIq+ωΦ・・・(1)
 ただし、ω:回転角速度、Φ:永久磁石による電機子鎖交磁束、Ld:q軸のインダクタンス、R:電機子抵抗である。
 したがって、PWM制御部200によりフィードバック制御によって設定されたq軸電圧指令値Vq♯と、現在のd軸電流Idおよびq軸電流Iqと、現在のモータジェネレータMGの回転角速度ωを式(1)に代入することにより、現在の電機子鎖交磁束の推定値Φ1を算出することができる。
 そして、減磁の非発生時(永久磁石の常温状態)における電機子鎖交磁束Φmを予め求めておくことにより、推定値Φ1を用いて、下記(2)式により減磁率推定値Ddmを求めることができる。
 Ddm==(Φm-Φ1)/Φm・・・(2)
 このように、減磁率推定部58は、d-q軸変換を用いてモータジェネレータMGを制御する場合のq軸電圧指令値に基づいて減磁率を推定演算することができる。なお、本実施の形態において、減磁率推定値Ddmの算出手法については特に限定されるものではない。
 オフセット量設定部56は、たとえば、図15に示す特性に従って、減磁率推定値Ddmに応じてオフセット電流の指令値Ifcomを可変に設定する。
 図15を参照して、オフセット量設定部56は、減磁率推定値Ddmが大きくなるほど、オフセット電流指令値|Ifcom|を小さくするように、引き摺りトルクを発生させる。これにより、減磁が進んでいる場合にはオフセット電流の電流量を抑制するので、さらに減磁が進行することを防止できる。
 また、オフセット電流を重畳する期間についても減磁率推定値Ddmに応じて可変に設定することができる。
 図16を参照して、時刻t1から直流電流の重畳がオンされて、オフセット電流の指令値Ifcomが|Ifcom|>0に設定される。この際に、オフセット電流の発生は、重畳が開始される時刻t1から、重畳期間Tfが経過した時刻t3までの期間に制限される。すなわち、時刻t3以降では、オフセット量設定部56は、オフセット電流指令値Ifcom=0に復帰させるので、オフセット電流は非発生とされる。
 オフセット量設定部56は、たとえば、図17に示す特性に従って、減磁率推定値Ddmに応じてオフセット電流の重畳期間Tfを可変に設定する。
 図17を参照して、オフセット量設定部56は、減磁率推定値Ddmが大きくなるほど、重畳期間Tfが短くなるように制限して、引き摺りトルクを発生させる。これにより、減磁が進んでいる場合にはオフセット電流の発生期間を抑制するので、さらに減磁が進行することを防止できる。
 図18には、本発明の実施の形態3の変形例による電動車両におけるアクセルオフ時の減速制御の制御処理手順を説明するためのフローチャートが示される。
 図18を参照して、制御装置30は、ステップS250により、判定フラグSOFに基づいて、直流電流の重畳によるオフセット電流の発生がオンされているかどうかを判定する。そして、制御装置30は、直流電流が重畳されているとき(S250のYES判定時)には、ステップS260により、モータジェネレータMGの減磁率推定値Ddmを算出する。
 制御装置30は、ステップS270により、減磁率推定値Ddmに応じて、オフセット電流の量および/またはその重畳期間を可変に設定する。すなわち、オフセット電流指令値Ifcomおよび/または重畳期間Tfが、図15および/または図17に示した特性に従って設定される。
 以上説明したように、実施の形態1,2によるアクセルペダルオフ時の減速制御に、実施の形態3およびその変形例を組合せることにより、オフセット電流による引き摺りトルクの発生時にオフセット電流の量および/または重畳期間を可変に設定することによって、モータジェネレータMGの減磁を防止することが可能となる。
 なお、本実施の形態では、モータジェネレータMGとして三相電動機を例示したが、三相以外の交流電動機全般に対しても本発明による減速制御を適用することができる。
 また、図1では、好ましい構成例として、インバータ14への入力電圧(システム電圧VH)を可変制御可能なように、直流電源部10♯がコンバータ12を含む構成を示したが、直流電源部10♯は本実施の形態に例示した構成には限定されない。すなわち、インバータ入力電圧が可変であることは必須ではなく、蓄電装置Bの出力電圧がそのままインバータ14へ入力される構成(たとえば、コンバータ12の配置を省略した構成)に対しても本発明を適用可能である。
 今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
 本発明は、駆動輪と連結された駆動軸との間で動力を相互に伝達可能に構成されたモータジェネレータを車両走行用モータとして搭載した電動車両に適用することができる。
 5 アース線、6,7 電力線、10 監視ユニット、10♯ 直流電源部、11,13 電圧センサ、12 コンバータ、14 インバータ、15~17 各相上下アーム、24 電流センサ、25 回転角センサ、30 制御装置、35 MG-ECU、40 バッテリECU、42 SOC推定部、44 充放電制限設定部、50 HV-ECU、51 アクセルペダル、52 判定部、54 トルク指令値設定部、55 ブレーキペダル、56 オフセット量設定部、58 減磁率推定部、60 駆動軸、70 ディファレンシャルギア、80 駆動輪、100 電動車両、200 制御部、210 電流指令生成部、220,250 座標変換部、240 電圧指令生成部、251~253 加算部、260 直流オフセット生成部、270 搬送波制御部、280 変調部、AC アクセル操作量、B バッテリ(蓄電装置)、BK ブレーキ操作量、C0,C1 平滑コンデンサ、D1~D8 逆並列ダイオード、Ddm 減磁率推定値、Iu,Iv,Iw モータ電流(相電流)、Ib 出力電流(蓄電装置)、Id d軸電流、Idcom d軸電流指令値、If オフセット電流、Ifcom オフセット電流指令値、Iq q軸電流、Iqcom q軸電流指令値、L1 リアクトル、MG モータジェネレータ、Q1~Q8 電力用半導体スイッチング素子、SE 制御信号、SG1~SG8 スイッチング制御信号、SOF 判定フラグ(直流電流重畳オンオフ)、SR1,SR2 システムリレー、Smax 制御上限値、Tb 温度(蓄電装置)、Tf オフセット電流重畳期間、Trqcom トルク指令値、VH 直流電圧(システム電圧)、VL 直流電圧、VHr 電圧指令値、Vb 出力電圧、Vf オフセット電圧、Vu,Vv,Vw 各相電圧指令、Win 充電電力上限値、Wout 放電電力上限値、Wrb♯ 回生発電電力、fc 搬送波周波数。

Claims (16)

  1.  駆動輪(80)と連結された駆動軸(60)との間でトルクを相互に伝達可能に構成されたモータジェネレータ(MG)と、
     蓄電装置(B)を含む直流電源(10♯)と、
     前記直流電源と前記モータジェネレータとの間で双方向の直流/交流電力変換を行うためのインバータ(14)と、
     前記モータジェネレータのトルク指令値(Trqcom)および状態値に従って、前記インバータを構成する複数の電力用半導体スイッチング素子(Q3-Q8)を制御するためのモータ制御部(35)とを備え、
     前記モータ制御部は、
     アクセルペダル(51)のオフ時に、前記蓄電装置の充電状態に応じて、前記モータジェネレータの各相交流電流に直流電流成分(If)を重畳するように前記インバータを制御するための直流オフセット生成部(260)を含む、電動車両。
  2.  前記蓄電装置(B)の充電状態に基づいて、前記蓄電装置の充電電力上限値(Win)を設定するための充放電監視部(40)と、
     車両状態と前記充放電監視部によって設定された前記充電電力上限値とに基づいて、前記トルク指令値を設定するための車両制御部(50)とをさらに備え、
     前記車両制御部は、
     前記アクセルペダル(51)のオフ時に所定の減速度を確保するために必要な減速トルク(-Trb)を前記モータジェネレータ(MG)が出力することによる回生発電電力に相当する第1の電力(-Wrb♯)が、前記充電電力上限値を超えるか否かを判定するための判定部(52)を含み、
     前記直流オフセット生成部(260)は、前記アクセルペダル(51)のオフ時に、前記第1の電力が前記充電電力上限値を超えると判定されたときに、前記各相交流電流に前記直流電流成分(If)を重畳するように前記インバータ(14)を制御する、請求の範囲第1項に記載の電動車両。
  3.  前記車両制御部(50)は、
     前記モータジェネレータ(MG)による回生発電電力が前記充電電力上限値(Win)を超えない範囲内に制限して、前記トルク指令値(Trqcom)を設定するためのトルク指令値設定部(54)をさらに含み、
     前記直流オフセット生成部(260)および前記トルク指令値設定部は、前記第1の電力(-Wrb♯)が前記充電電力上限値を超える充電制限時における前記アクセルペダル(51)のオフ時には、前記直流電流成分(If)によって生じる引き摺りトルクと、前記トルク指令値との和によって、前記必要な減速トルクを確保するように、前記直流電流成分の電流量および前記トルク指令値を設定する、請求の範囲第2項に記載の電動車両。
  4.  前記トルク指令値設定部(54)は、前記充電電力上限値(Win)が零に設定される充電禁止時には、前記トルク指令値(Trqcom)を零に設定し、
     前記直流オフセット生成部(260)は、前記充電禁止時には、前記直流電流成分(If)の電流量を所定値(I1)に設定する、請求の範囲第3項に記載の電動車両。
  5.  前記蓄電装置(B)の充電状態に基づいて、前記蓄電装置の充電電力上限値(Win)を設定するための充放電監視部(40)と、
     車両状態と前記充放電監視部によって設定された前記充電電力上限値とに基づいて、前記トルク指令値(Trqcom)を設定するための車両制御部(50)とをさらに備え、
     前記車両制御部は、前記充電電力上限値が零に設定される充電禁止時には、前記トルク指令値を零に設定し、
     前記直流オフセット生成部(260)は、前記充電禁止時には、前記直流電流成分(If)の電流量を所定値(I1)に設定する、請求の範囲第1項に記載の電動車両。
  6.  前記モータ制御部(35)は、
     前記トルク指令値(Trqcom)および前記状態値に基づいて、前記モータジェネレータ(MG)への印加電圧の電圧指令値(Vu,Vv,Vw)を生成するための制御指令生成部(210,220,240,250)と、
     前記直流オフセット生成部(260)が前記直流電流成分(If)の重畳を実行するときに、前記直流電流成分に応じたオフセット電圧(Vf)を前記電圧指令値に加算するための加算部(251-253)と、
     搬送波の周波数(fc)を制御するための搬送波制御部(270)と
     前記加算部によって処理された前記電圧指令値と前記搬送波との比較に基づいて、前記複数の電力用半導体スイッチング素子(Q3-Q8)のオンオフ制御信号(SG3-SG8)を生成するための変調部(280)とを含み、
     前記搬送波制御部は、前記直流電流成分の重畳が実行されるときには、前記直流電流成分の重畳が非実行のときと比較して、前記搬送波の周波数を上昇させる、請求の範囲第1項から第5項のいずれか1項に記載の電動車両。
  7.  前記モータ制御部(35)は、
     前記モータジェネレータ(MG)の減磁率を推定するための減磁率推定部(58)をさらに含み、
     前記直流オフセット生成部(260)は、前記減磁率の推定値(Ddm)に応じて、前記各相交流電流に直流電流成分(If)を重畳する期間(Tf)を制限する、請求の範囲第1項または第5項に記載の電動車両。
  8.  前記モータ制御部(35)は、
     前記モータジェネレータ(MG)の減磁率を推定するための減磁率推定部(58)をさらに含み、
     前記直流オフセット生成部(260)は、前記減磁率の推定値(Ddm)に応じて、前記各相交流電流に重畳する直流電流成分(If)の電流量を可変に設定する、請求の範囲第1項または第5項に記載の電動車両。
  9.  駆動輪(80)と連結された駆動軸(60)との間でトルクを相互に伝達可能に構成されたモータジェネレータ(MG)と、蓄電装置(B)を含む直流電源(10♯)と、前記直流電源と前記モータジェネレータとの間で双方向の直流/交流電力変換を行うためのインバータ(14)とを備える電動車両の制御方法であって、
     アクセルペダル(51)がオフされていることを検知するステップ(S100)と、
     前記アクセルペダルのオフ時に、前記蓄電装置の充電状態に応じて、前記モータジェネレータの各相交流電流に直流電流成分(If)を重畳するように前記インバータを制御するステップ(S130)とを備える、電動車両の制御方法。
  10.  前記アクセルペダル(51)のオフ時に所定の減速度を確保するために必要な減速トルク(-Trb)を前記モータジェネレータ(MG)が出力することによる回生発電電力に相当する第1の電力(-Wrb♯)を算出するステップ(S110)と、
     前記第1の電力と、前記蓄電装置の充電状態に基づいて設定された充電電力上限値(Win)とを比較するステップ(S120)とをさらに備え、
     前記制御するステップ(S130)は、前記第1の電力が前記充電電力上限値を超えるときに、前記各相交流電流に前記直流電流成分(If)を重畳する、請求の範囲第9項に記載の電動車両の制御方法。
  11.  前記第1の電力(-Wrb♯)が前記充電電力上限値(Win)を超える充電制限時における前記アクセルペダル(51)のオフ時に、前記モータジェネレータ(MG)による回生発電電力が前記充電電力上限値を超えない範囲内に制限して前記モータジェネレータのトルク指令値(Trqcom)を設定するとともに、前記直流電流成分(If)によって生じる引き摺りトルクと前記トルク指令値との和によって前記必要な減速トルク(-Trb)を確保するように、前記直流電流成分の電流量を設定するステップ(S160)をさらに備える、請求の範囲第10項に記載の電動車両の制御方法。
  12.  前記第1の電力(-Wrb♯)が前記充電電力上限値(Win)を超えるときに、前記充電電力上限値が零に設定される充電禁止時であるか否かを判定するステップ(S150)と、
     前記充電禁止時に、前記モータジェネレータ(MG)のトルク指令値(Trqcom)を零に設定するとともに、前記直流電流成分(If)の電流量を所定値に設定するステップ(S155)と、
     前記充電電力上限値が零でないときに、前記モータジェネレータによる回生発電電力が前記充電電力上限値を超えない範囲内に制限して前記トルク指令値を設定するとともに、前記直流電流成分によって生じる引き摺りトルクと前記トルク指令値との和によって前記必要な減速トルク(-Trb)を確保するように、前記直流電流成分の電流量を設定するステップ(S160)とをさらに備える、請求の範囲第10項に記載の電動車両の制御方法。
  13.  前記蓄電装置(B)の充電電力上限値(Win)が零に設定される充電禁止時における前記アクセルペダル(51)のオフ時には、前記モータジェネレータ(MG)のトルク指令値(Trqcom)を零に設定するとともに、前記直流電流成分(If)の電流量を所定値(I1)に設定するステップ(S155)をさらに備える、請求の範囲第9項に記載の電動車両の制御方法。
  14.  前記インバータ(14)を構成する複数の電力用半導体スイッチング素子(Q3-Q8)のオンオフは、前記モータジェネレータ(MG)への印加電圧の電圧指令値(Vu,Vv,Vw)と、搬送波との比較に従って制御され、
     前記制御するステップ(S130)が前記直流電流成分(If)の重畳を実行するときに、前記電圧指令値には前記直流電流成分に応じたオフセット電圧(Vf)が加算され、
     前記制御方法は、
     前記制御するステップにより前記直流電流成分の重畳が実行されるか否かを判定するステップ(S200)と、
     前記直流電流成分の重畳が非実行のときに、前記搬送波の周波数(fc)を第1の周波数(f1)に設定するステップ(S210)と、
     前記直流電流成分の重畳が実行されるときに、前記搬送波の周波数を前記第1の周波数よりも高い第2の周波数(f2)に設定するステップ(S220)とをさらに備える、請求の範囲第9項から第13項のいずれか1項に記載の電動車両の制御方法。
  15.  前記モータジェネレータ(MG)の減磁率を推定するステップ(S260)と、
     前記減磁率の推定値(Ddm)に応じて、前記各相交流電流に前記直流電流成分(If)を重畳する期間を制限するステップ(S270)とをさらに備える、請求の範囲第9項または第13項に記載の電動車両の制御方法。
  16.  前記モータジェネレータ(MG)の減磁率を推定するステップ(S260)と、
     前記減磁率の推定値(Ddm)に応じて、前記各相交流電流に重畳する前記直流電流成分(If)の大きさを可変に設定するステップ(S270)とをさらに備える、請求の範囲第9項または第13項に記載の電動車両の制御方法。
PCT/JP2010/053195 2010-03-01 2010-03-01 電動車両およびその制御方法 WO2011108058A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2012502901A JP5354086B2 (ja) 2010-03-01 2010-03-01 電動車両およびその制御方法
US13/581,749 US9688154B2 (en) 2010-03-01 2010-03-01 Electrically powered vehicle and method of controlling the same
PCT/JP2010/053195 WO2011108058A1 (ja) 2010-03-01 2010-03-01 電動車両およびその制御方法
CN201080065059.9A CN102781711B (zh) 2010-03-01 2010-03-01 电动车辆及其控制方法
DE112010005325.1T DE112010005325B4 (de) 2010-03-01 2010-03-01 Elektrisch betriebenes Fahrzeug und Verfahren zur Steuerung desselben

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/053195 WO2011108058A1 (ja) 2010-03-01 2010-03-01 電動車両およびその制御方法

Publications (1)

Publication Number Publication Date
WO2011108058A1 true WO2011108058A1 (ja) 2011-09-09

Family

ID=44541744

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/053195 WO2011108058A1 (ja) 2010-03-01 2010-03-01 電動車両およびその制御方法

Country Status (5)

Country Link
US (1) US9688154B2 (ja)
JP (1) JP5354086B2 (ja)
CN (1) CN102781711B (ja)
DE (1) DE112010005325B4 (ja)
WO (1) WO2011108058A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015033164A (ja) * 2013-07-31 2015-02-16 トヨタ自動車株式会社 自動車
JP2017077808A (ja) * 2015-10-21 2017-04-27 いすゞ自動車株式会社 ハイブリッド車両及びその制御方法

Families Citing this family (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5362840B2 (ja) * 2009-10-13 2013-12-11 本田技研工業株式会社 ハイブリッド車両
JP5330354B2 (ja) * 2010-11-09 2013-10-30 株式会社東芝 モータ制御装置
JP5657425B2 (ja) * 2011-02-25 2015-01-21 Ntn株式会社 電気自動車
CN103415992B (zh) 2011-02-25 2016-07-27 Ntn株式会社 电动汽车
US9166518B2 (en) * 2011-06-27 2015-10-20 GM Global Technology Operations LLC Rotor temperature estimation for an electric vehicle
US20130076128A1 (en) * 2011-09-28 2013-03-28 Caterpillar, Inc. Active Switching Frequency Modulation
CN104395133B (zh) * 2012-06-28 2016-08-24 三菱电机株式会社 交流电车的控制装置
CN103042927B (zh) * 2012-12-17 2015-11-18 联合汽车电子有限公司 一种新能源汽车的拖车保护电路及其实现方法
DE102013108258A1 (de) * 2013-08-01 2015-02-05 Truma Gerätetechnik GmbH & Co. KG Antriebssystem für einen Fahrzeuganhängerrangierantrieb
JP6211353B2 (ja) * 2013-09-03 2017-10-11 Ntn株式会社 電気自動車の制御装置
CN104417554B (zh) 2013-09-09 2018-03-13 比亚迪股份有限公司 混合动力汽车及其的巡航控制方法
CN104417344B (zh) 2013-09-09 2017-03-15 比亚迪股份有限公司 混合动力汽车及其的驱动控制方法
CN104417346B (zh) 2013-09-09 2017-04-12 比亚迪股份有限公司 混合动力汽车的控制系统和控制方法
CN104417543B (zh) 2013-09-09 2017-08-22 比亚迪股份有限公司 混合动力汽车的控制系统和控制方法
CN104417557B (zh) * 2013-09-09 2017-07-04 比亚迪股份有限公司 一种车辆的滑行回馈控制系统及其控制方法
CN104417347B (zh) 2013-09-09 2017-08-04 比亚迪股份有限公司 混合动力汽车的控制系统和控制方法
CN104417544B (zh) 2013-09-09 2017-08-22 比亚迪股份有限公司 混合动力汽车的控制系统和控制方法
JP6236672B2 (ja) * 2013-09-26 2017-11-29 日立オートモティブシステムズ株式会社 電動車両の制御装置
US10309842B2 (en) * 2014-05-09 2019-06-04 Honda Motor Co., Ltd. Magnet temperature estimation device for rotating electric machine and magnet temperature estimation method for rotating electric machine
US20150375612A1 (en) * 2014-06-25 2015-12-31 Heinz Welschoff All electric vehicle without plug-in requirement
US10569638B2 (en) * 2014-06-25 2020-02-25 Heinz Welschoff All electric vehicle without plug-in requirement
JP6377985B2 (ja) * 2014-07-24 2018-08-22 ファナック株式会社 停電時におけるトルク指令制限機能を備えたモータ制御装置
TW201630295A (zh) * 2015-02-09 2016-08-16 Fu-Tzu Hsu 動態磁電放大裝置
JP6260587B2 (ja) * 2015-06-29 2018-01-17 トヨタ自動車株式会社 電源装置
JP6400617B2 (ja) * 2016-02-29 2018-10-03 ファナック株式会社 トルク指令制限部を有するモータ制御装置
JP6694156B2 (ja) * 2016-03-30 2020-05-13 三菱自動車工業株式会社 ハイブリッド車両の制御装置
JP6675259B2 (ja) * 2016-04-20 2020-04-01 株式会社マキタ 電動作業機
CN107813805A (zh) * 2016-09-09 2018-03-20 比亚迪股份有限公司 陡坡缓降系统及其控制方法
JP6614097B2 (ja) * 2016-10-27 2019-12-04 トヨタ自動車株式会社 電動車両
US10148209B2 (en) * 2017-03-01 2018-12-04 Ford Global Technologies, Llc System and method for in-vehicle resolver alignment
JP6607217B2 (ja) * 2017-03-03 2019-11-20 トヨタ自動車株式会社 ハイブリッド自動車
US9941831B1 (en) * 2017-06-09 2018-04-10 Caterpillar Inc. Switched reluctance motor power estimation compensation for variable DC-link voltage
JP6546967B2 (ja) * 2017-07-10 2019-07-17 本田技研工業株式会社 動力装置
DE102017214207A1 (de) * 2017-08-15 2019-02-21 Robert Bosch Gmbh Verfahren zur Ansteuerung eines pulsbreitenmodulierten Stromrichters, Steuervorrichtung für einen pulsbreitenmodulierten Stromrichter, Stromrichteranordnung und elektrisches Antriebssystem
JP7059790B2 (ja) * 2018-05-15 2022-04-26 トヨタ自動車株式会社 車両の駆動装置、および車両の制御方法
KR102492487B1 (ko) * 2018-08-16 2023-01-27 현대모비스 주식회사 차량의 제동 장치 및 방법
CN112567620B (zh) * 2018-08-30 2024-03-01 日立安斯泰莫株式会社 逆变装置
JP2020078128A (ja) * 2018-11-06 2020-05-21 トヨタ自動車株式会社 電気自動車
KR20210027663A (ko) * 2019-08-30 2021-03-11 현대자동차주식회사 모터 구동 시스템을 이용한 배터리 승온 시스템 및 방법
CN117021970B (zh) * 2023-08-09 2024-05-07 广州汽车集团股份有限公司 车辆的行驶控制方法及装置、设备、介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005168140A (ja) * 2003-12-01 2005-06-23 Nissan Motor Co Ltd モータ制御装置及びその制御方法
JP2006033969A (ja) * 2004-07-14 2006-02-02 Fuji Heavy Ind Ltd ハイブリッド車の制御装置
JP2009112150A (ja) * 2007-10-31 2009-05-21 Toyota Motor Corp 電力装置およびその制御方法並びに車両
JP2009131077A (ja) * 2007-11-26 2009-06-11 Toyota Motor Corp 車両の電源装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3531703A (en) * 1968-03-04 1970-09-29 Sherwood Medical Ind Inc Ac motor speed control system
US3816807A (en) * 1973-07-18 1974-06-11 Gen Electric Impedance controlled battery charger and method of charging with monitoring of a.c. answer signal
US5457372A (en) * 1993-07-16 1995-10-10 Pignatelli; Joseph Load sensing, soft-braking method and apparatus using the same
US5950752A (en) 1997-11-21 1999-09-14 Lockheed Martin Corp. Heating system for a hybrid electric vehicle
WO2002006072A1 (de) 2000-07-18 2002-01-24 Siemens Aktiengesellschaft Steuereinheit für ein getriebe und zugehöriges betriebsverfahren
DE10212751A1 (de) 2002-03-22 2003-10-02 Bosch Gmbh Robert Verfahren und Vorrichtung zur Ermittlung der Rotortemperatur bei einer PM-Synchronmaschine
JP4749852B2 (ja) * 2005-11-30 2011-08-17 日立オートモティブシステムズ株式会社 モータ駆動装置及びそれを用いた自動車
DE102005058829A1 (de) 2005-12-09 2007-06-14 Robert Bosch Gmbh Aktives Einstellen der Verlustleistung einer elektrischen Maschine im Rekuperationsbetrieb eines Hybrid-Fahrzeugs
JP4380700B2 (ja) * 2006-12-29 2009-12-09 トヨタ自動車株式会社 電動車両
JP4349447B2 (ja) 2007-07-19 2009-10-21 トヨタ自動車株式会社 インバータ制御装置および車両
JP2009219189A (ja) 2008-03-07 2009-09-24 Nissan Motor Co Ltd 四輪駆動車両

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005168140A (ja) * 2003-12-01 2005-06-23 Nissan Motor Co Ltd モータ制御装置及びその制御方法
JP2006033969A (ja) * 2004-07-14 2006-02-02 Fuji Heavy Ind Ltd ハイブリッド車の制御装置
JP2009112150A (ja) * 2007-10-31 2009-05-21 Toyota Motor Corp 電力装置およびその制御方法並びに車両
JP2009131077A (ja) * 2007-11-26 2009-06-11 Toyota Motor Corp 車両の電源装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015033164A (ja) * 2013-07-31 2015-02-16 トヨタ自動車株式会社 自動車
JP2017077808A (ja) * 2015-10-21 2017-04-27 いすゞ自動車株式会社 ハイブリッド車両及びその制御方法

Also Published As

Publication number Publication date
JPWO2011108058A1 (ja) 2013-06-20
CN102781711A (zh) 2012-11-14
JP5354086B2 (ja) 2013-11-27
CN102781711B (zh) 2014-12-10
US9688154B2 (en) 2017-06-27
DE112010005325T5 (de) 2013-01-03
US20120323430A1 (en) 2012-12-20
DE112010005325B4 (de) 2021-05-06

Similar Documents

Publication Publication Date Title
JP5354086B2 (ja) 電動車両およびその制御方法
US7893637B2 (en) Motor drive system
JP5413505B2 (ja) モータ駆動システムのための制御装置およびそれを搭載した車両
JP5055246B2 (ja) 回転電機の制御装置
JP5454685B2 (ja) モータ駆動装置およびそれを搭載する車両
US9694688B2 (en) Electric vehicle drive system
US8575875B2 (en) Control device for voltage converter, vehicle equipped with the same, and control method for voltage converter
US8674637B2 (en) Vehicle
JP4844753B2 (ja) 電気自動車の制御装置
EP2566046B1 (en) Motor control apparatus
US9020731B2 (en) Control apparatus for electric motor, electrically-powered vehicle including the control apparatus, and method for controlling electric motor
JP5573968B2 (ja) 車両および車両用制御方法
WO2014050283A1 (ja) 回転電機の駆動制御装置および電動車両駆動システム
JP2007290483A (ja) 内燃機関の停止制御装置および停止制御方法
JP5837439B2 (ja) 電動車両
JP4765939B2 (ja) 電動車両
JP2017093218A (ja) 交流電動機の制御システム
JP2016123168A (ja) 駆動装置
JP2017070048A (ja) 電動機駆動制御システム
JP2023050099A (ja) モータジェネレータ制御システム及びハイブリッド車両

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080065059.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10846965

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012502901

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13581749

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1120100053251

Country of ref document: DE

Ref document number: 112010005325

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10846965

Country of ref document: EP

Kind code of ref document: A1