WO2011093488A1 - 球状窒化アルミニウム粉末の製造方法及び該方法により得られた球状窒化アルミニウム粉末 - Google Patents

球状窒化アルミニウム粉末の製造方法及び該方法により得られた球状窒化アルミニウム粉末 Download PDF

Info

Publication number
WO2011093488A1
WO2011093488A1 PCT/JP2011/051886 JP2011051886W WO2011093488A1 WO 2011093488 A1 WO2011093488 A1 WO 2011093488A1 JP 2011051886 W JP2011051886 W JP 2011051886W WO 2011093488 A1 WO2011093488 A1 WO 2011093488A1
Authority
WO
WIPO (PCT)
Prior art keywords
aluminum nitride
spherical
powder
alumina
nitride powder
Prior art date
Application number
PCT/JP2011/051886
Other languages
English (en)
French (fr)
Inventor
一孝 渡辺
武彦 米田
Original Assignee
株式会社トクヤマ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社トクヤマ filed Critical 株式会社トクヤマ
Priority to JP2011551953A priority Critical patent/JP5686748B2/ja
Priority to CN201180005141.7A priority patent/CN102686511B/zh
Priority to EP11737197.1A priority patent/EP2530049B1/en
Priority to US13/516,268 priority patent/US9199848B2/en
Priority to KR1020127019939A priority patent/KR101545776B1/ko
Publication of WO2011093488A1 publication Critical patent/WO2011093488A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/06Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
    • C01B21/072Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron with aluminium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/06Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
    • C01B21/072Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron with aluminium
    • C01B21/0726Preparation by carboreductive nitridation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/32Spheres
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/14Pore volume
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/16Pore diameter
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/21Attrition-index or crushing strength of granulates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/32Thermal properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]

Definitions

  • the present invention relates to a novel method for producing aluminum nitride powder having characteristics suitable as a filler for heat-dissipating sheets, heat-dissipating grease, adhesives, paints and the like, and spherical aluminum nitride powder obtained by the production method.
  • a heat dissipation material in which silicone rubber or silicone grease is filled with a filler such as alumina or boron nitride is widely used in various electronic devices, for example, as a heat dissipation sheet or heat dissipation grease.
  • a filler such as alumina or boron nitride
  • Aluminum nitride is attracting attention as a filler for the heat dissipation material as described above because it has excellent electrical insulation and high thermal conductivity.
  • the particles forming the powder are spherical and have a wide particle size of about several tens to several hundreds of ⁇ m. That is, in order to highly fill a filler or other medium with a filler without impairing moldability (fluidity), a powder containing spherical particles having a relatively large particle size and spherical particles having a relatively small particle size is used. This is because it is most desirable to form a packed structure in which small spherical particles are distributed between large spherical particles.
  • an alumina reduction nitriding method is a method in which a mixture of alumina and carbon is heated in nitrogen to reduce alumina and further nitride to obtain aluminum nitride.
  • the direct nitriding method is a method in which aluminum nitride is directly obtained from aluminum by reacting nitrogen with aluminum.
  • the vapor phase method is a method in which aluminum nitride is obtained by heating after reacting alkylaluminum and ammonia.
  • the obtained aluminum nitride powder has a particle shape close to a sphere, but the particle size is almost in the submicron order.
  • the direct nitriding method aluminum nitride is obtained in the form of a lump, and this is adjusted to a predetermined particle size by pulverization and classification. Therefore, the particle size is relatively easy to control, but the particle shape is angular. It has a round shape and is far from spherical.
  • aluminum nitride powders composed of particles having various shapes and particle diameters and methods for producing the powders have been proposed. However, both have advantages and disadvantages and still have the above-mentioned particle characteristics, and resin. An aluminum nitride powder that can be highly filled in a medium such as the above has not been obtained.
  • Patent Document 1 discloses an aluminum nitride powder having a single particle diameter of 3 ⁇ m or more and having a rounded shape and a uniform single particle diameter. However, the particles of the aluminum nitride powder do not have a large particle size of 10 ⁇ m or more.
  • Patent Documents 2 and 3 disclose a method of producing an alumina nitride powder by reducing and nitriding spherical alumina or hydrated alumina with nitrogen gas or ammonia gas in the presence of carbon. According to this method, an aluminum nitride powder having a particle shape close to a true sphere and a relatively large particle size can be obtained, and an aluminum nitride powder having a small particle size can also be obtained.
  • the spherical aluminum nitride powder obtained by the methods described in these patent documents has a disadvantage that the particle strength is low because the aluminum powder easily becomes hollow and the particle size cannot be stably maintained.
  • Patent Document 4 a molding aid is blended with AlN powder produced by a predetermined method, wet pulverized, and then granulated using a spray dryer, and BN is added to the obtained granule.
  • spherical aluminum nitride powder is produced by mixing powders and firing and sintering the mixture at a high temperature in a nitrogen atmosphere.
  • this method requires firing for sintering the obtained particles in addition to firing for nitriding of aluminum, and firing at a high temperature must be performed twice.
  • pulverizing the aluminum nitride powder once manufactured is also required. Therefore, the production cost is excessive and industrial implementation is difficult.
  • the aluminum nitride powder obtained by this method is obtained by sintering, the particles are easily bonded and deformed during sintering, and the crushing strength is improved by the growth of aluminum nitride crystal grains. It is easy to make large irregularities. Therefore, the obtained aluminum nitride powder has a problem that the specific surface area is small, the adhesiveness with the resin to be filled becomes low, and the strength of the obtained heat dissipation material becomes insufficient.
  • Patent Document 5 aluminum nitride powder composed of irregularly shaped particles is spheroidized by aging (heat treatment) in a flux composed of a compound such as an alkaline earth element or a rare earth element, and then the flux is dissolved.
  • a method for obtaining an isolated crystalline aluminum nitride powder is disclosed. In this method, an aluminum nitride powder having a shape and particle size suitable for high filling can be obtained.
  • the aluminum nitride powder once manufactured must be further subjected to a special treatment. There is a problem. Further, the aluminum nitride powder obtained by this method has a drawback that the impurity content increases due to the use of a fluxing agent.
  • an object of the present invention is to provide a method for efficiently producing a spherical aluminum nitride powder having an optimum size for filler application, high sphericity and high particle strength, and spherical aluminum nitride obtained by the production method. It is to provide a powder.
  • the inventors of the present invention used a spherical granulated product obtained by granulating alumina powder or alumina hydrate powder once as a starting material, and reduced this. It has been found that by nitriding, an aluminum nitride powder comprising spherical particles having the intended properties can be produced with good productivity, and the present invention has been completed.
  • a spherical granulated product of alumina powder or alumina hydrate powder is used as a starting material, and the spherical granulated product is supplied to a reductive nitriding step to perform reductive nitriding.
  • a method for producing spherical aluminum nitride powder is provided.
  • the production method of the present invention includes a heat treatment step of heat-treating the spherical granulated product to such an extent that the BET specific surface area is once maintained at least 2 m 2 / g before being supplied to the reduction nitriding step. Can do.
  • the spherical granulated product is generally preferably obtained by spray-drying the powder, in which case the BET specific surface area is in the range of 30 to 500 m 2 / g, particularly 50 to 300 m 2 / g. Those are preferably used.
  • reductive nitriding of the spherical granulated product or heat-treated product thereof is performed at a temperature of 1200 to 1800 ° C. in a nitrogen atmosphere in which a reducing agent is present.
  • the average particle diameter (D 50 ) is in the range of 10 to 200 ⁇ m, and the BET specific surface area is composed of particles having an average sphericity of 0.8 or more and a crushing strength of 100 MPa or more. Can be obtained in the range of 0.5 to 20 m 2 / g.
  • the spherical aluminum nitride powder preferably has a pore volume having a pore diameter of 2 ⁇ m or less in the range of 0.02 to 1.0 cm 3 / g.
  • the above spherical aluminum nitride powder is suitably used as a filler for heat dissipation material.
  • the granule is obtained by using agglomeration and adhesion of fine powder to solidify it into a rounded fine shape.
  • the average particle diameter, the sphericity, the BET specific surface area, and the average crushing strength of the spherical aluminum nitride powder are values measured by the methods shown in Examples described later.
  • a spherical granulated product of alumina or alumina hydrate having a specific specific surface area is used as a starting material, and this granulated product is reduced and nitrided and converted into aluminum nitride.
  • Spherical aluminum nitride powder having a relatively large particle size that is optimal for filler applications and the like can be efficiently produced with a high conversion rate and a simple process.
  • the sphericity of the particles is as high as 0.8 or more, the average particle diameter is in a relatively large range of 10 to 200 ⁇ m, and the BET specific surface area is 0.5 to 20 m 2 / g.
  • the spherical aluminum nitride powder can be obtained. That is, this aluminum nitride powder has a shape close to a true sphere, and further includes particles having a wide average particle size ranging from particles having a relatively large particle size to particles having a small particle size. Yes. Therefore, the aluminum nitride powder can be highly filled into various media as a filler without impairing formability (fluidity).
  • the particles of the aluminum nitride powder are solid as understood from the SEM photograph of FIG. 1 and the like, and the average crushing strength of the particles is as extremely high as 100 MPa or more. Therefore, in this aluminum nitride powder, particle collapse is effectively prevented, the above-described particle shape and particle size are stably maintained, and a decrease in packing property due to particle collapse is effectively avoided, and further, such as powdering There is no inconvenience. Furthermore, since no metal additive such as a fluxing agent is used, the purity of the aluminum nitride powder is extremely high.
  • 6 is a SEM photograph showing the particle structure of the spherical aluminum nitride powder obtained in Example 5.
  • 6 is a SEM photograph showing the particle structure of the spherical aluminum nitride powder obtained in Example 6.
  • 4 is a SEM photograph showing the particle structure of spherical aluminum nitride powder obtained in Example 7.
  • 4 is a SEM photograph showing the particle structure of spherical aluminum nitride powder obtained in Example 8.
  • 4 is a SEM photograph showing the particle structure of the spherical aluminum nitride powder obtained in Comparative Example 1.
  • 4 is a SEM photograph showing the particle structure of the spherical aluminum nitride powder obtained in Comparative Example 2.
  • 4 is a SEM photograph showing the particle structure of the spherical aluminum nitride powder obtained in Comparative Example 3.
  • spherical alumina or a granulated product of alumina hydrate is used as a starting material, and this granulated product (or a heat-treated product thereof) is supplied to a reduction nitriding step to perform nitriding reduction.
  • the target spherical aluminum nitride powder is produced by appropriately performing post-treatment such as surface oxidation treatment.
  • the spherical alumina or alumina hydrate granule used as a starting material is obtained by granulating alumina powder or alumina hydrate powder into a spherical shape.
  • alumina may be used without particular limitation as long as it has a crystal structure such as ⁇ , ⁇ , ⁇ , ⁇ , and ⁇ .
  • Alumina hydrate is converted to transition alumina such as ⁇ , ⁇ , ⁇ , ⁇ , and ⁇ -alumina by heat treatment. Examples of such alumina hydrate include boehmite, diaspore, water, and the like. An aluminum oxide etc. can be mentioned.
  • Examples of the method for producing alumina and alumina hydrate as described above can be obtained by an alkoxide method, a Bayer method, an ammonium alum pyrolysis method, or an ammonium dosonite pyrolysis method.
  • alumina and alumina hydrate having high purity and uniform particle size distribution can be obtained. Therefore, in the present invention, aluminum hydroxide obtained by purifying aluminum alkoxide obtained by the alkoxide method and hydrolyzing it, boehmite obtained by heat treatment of the aluminum hydroxide, transition alumina, ⁇ -alumina It is suitably used as a raw material.
  • ⁇ -alumina, ⁇ -alumina, and boehmite are used as raw materials, there are advantages that the reductive nitridation reaction can be easily controlled and the nitridation easily proceeds.
  • the starting material used in the present invention is a spherical granulated product of the above-mentioned alumina powder or alumina hydrate powder, it has a large specific surface area, and is formed between particles by reducing and nitriding this. Nitrogen gas penetrates into the granulated material through the gap, and reduction nitriding proceeds. As a result, it is possible to obtain a spherical aluminum nitride powder having a true spherical shape substantially equal to that of the granulated product and made of solid particles.
  • the spherical granules for use as a starting material is set by adjusting the like granulation conditions, the range of the BET specific surface area of 30 ⁇ 500m 2 / g, particularly 50 ⁇ 300m 2 / g It is preferable.
  • this spherical granulated product causes a decrease in specific surface area accompanying the sintering of particles in a temperature rising process in a reduction nitriding step performed at a high temperature, which will be described later, and the voids between the particles become narrow. Further, as will be described later, this spherical granulated product may be appropriately heat-treated prior to reductive nitriding in order to enhance the strength of the particles. A decrease occurs, and the voids between the particles become narrower.
  • the BET specific surface area of the spherical granulated product is too small, voids between the particles are blocked in the temperature raising process in the reduction nitriding process or the heat treatment process appropriately performed, and the reduction to the inside of the spherical granulated product is performed. Nitriding is not sufficiently performed.
  • the BET specific surface area of the spherical granulated product is preferably 500 m 2 / g or less, particularly preferably 300 m 2 / g or less.
  • the sphericity of the spherical granulated product is preferably about the same as the sphericity of the target aluminum nitride powder particles.
  • the short diameter (DS) is measured by an electron micrograph.
  • the ratio (DS / DL) to the major axis (DL) is desirably 0.8 or more.
  • the above-mentioned spherical granulated product can be obtained by various methods, but it is easy to control the particle size of the granulated product, economical efficiency, and can easily obtain a granulated product with high sphericity.
  • a spray drying method is preferable. In this method, drying (granulation) is performed by spraying a liquid in which the fine powder of alumina or hydrated alumina described above is dispersed in a predetermined solvent (for example, alcohol or water).
  • a predetermined solvent for example, alcohol or water
  • a spray method a nozzle type, a disk type, etc. are typical, and any method can be adopted, but when a nozzle type spray dryer is used, the spray nozzle diameter should be controlled. There is an advantage that the particle diameter and BET specific surface area of the granulated product obtained can be controlled.
  • the spray drying conditions are not limited at all, and may be appropriately selected depending on the size and type of the spray dryer used, the solid content concentration of the spray liquid, the viscosity, the flow rate, and the like.
  • the spherical granulated product may include an alkaline earth metal compound, a rare earth element compound, a combination thereof, an alkaline earth metal for the purpose of low-temperature firing of a dispersant, a binder resin, a lubricant or aluminum nitride, if necessary. You may mix
  • the spherical granulated product of the above-mentioned alumina powder or alumina hydrate powder can be directly supplied to the reductive nitriding step described later to carry out reductive nitriding, or the spherical granulated product is once heat treated. It can also be supplied to the reduction nitriding step after the heat treatment step. That is, in the reductive nitriding step, the spherical granulated material used as a raw material is kept at a high temperature of 1200 ° C. or higher, and thus shrinks by heating in the temperature rising process, resulting in the passage of particle size and the decrease in BET specific surface area.
  • a spherical granulated product of ⁇ -alumina obtained by heat-treating a spherical granulated product of aluminum hydroxide or boehmite (the specific surface area being in the above-mentioned range) at about 600 ° C. for a certain time or 1100 ° C.
  • the spherical granules of ⁇ -alumina obtained by heat treatment at the above temperature for a certain time can be supplied to the reduction nitriding step.
  • the heat-treated product obtained by the heat treatment step should have a BET specific surface area of a certain degree or more (for example, 2 m 2 / g or more) as described below, and for this reason, the BET specific surface area is in an appropriate range. Even when such a heat treatment is performed, reductive nitridation is performed in a state having appropriate voids.
  • the heat-treated spherical granule when supplied to the reduction nitriding step, the granulated product is reduced and nitrided in a dense state.
  • the particle surface has very few irregularities and, therefore, its particle strength is high.
  • the above heat treatment must be a heat treatment that keeps the BET specific surface area at least 2 m 2 / g or more. Specifically, it is necessary to set the heat treatment time in an appropriate range according to the heat treatment temperature and to keep the BET specific surface area within the above range.
  • Reduction nitriding step In the present invention, the above-described spherical granulated product of alumina or hydrated alumina (or a heat-treated product thereof) is reduced in a reaction vessel formed of carbon or an aluminum nitride sintered body, for example, carbon or reducing agent.
  • the target spherical aluminum nitride powder can be obtained by firing (reduction nitriding) at a predetermined temperature in a nitrogen atmosphere in which a reactive gas is present.
  • the reducing gas used for the reductive nitriding can be used without limitation as long as it is a reducing gas.
  • Specific examples include hydrogen, carbon monoxide, and ammonia.
  • These reducing gases can be used as a mixture of two or more kinds, or can be used in combination with carbon described below.
  • carbon black As the carbon used as the reducing agent, carbon black, graphite, and a carbon precursor that can be a carbon source at a high temperature can be used.
  • carbon black such as furnace method and channel method and acetylene black can be used as the carbon black.
  • the particle size of these carbon blacks is not particularly limited, but in general, those having a particle size of 0.01 to 20 ⁇ m are preferably used.
  • the carbon precursor include synthetic resin condensates such as phenol resin, melamine resin, epoxy resin, and furanphenol resin, hydrocarbon compounds such as pitch and tar, and organic compounds such as cellulose, sucrose, polyvinylidene chloride, and polyphenylene.
  • a compound that carbonizes in the solid phase or via the gas phase is preferable.
  • a synthetic resin such as a phenol resin, cellulose, polyphenylene, and the like are preferable. These carbons are also preferably those having few impurities such as metals.
  • the nitrogen atmosphere in the reaction vessel is supplied continuously or intermittently with an amount of nitrogen gas sufficient for the nitriding reaction of alumina or hydrated alumina spherical granules used as a raw material to proceed sufficiently. Formed by. Further, it is preferable that the reducing gas is supplied into the reaction vessel along with the nitrogen gas. Furthermore, the carbon (including the carbon precursor) used as the reducing agent can be present in the reaction vessel by various methods. For example, the spherical granulated material and the carbon are separately present in the reaction vessel. Alternatively, the spherical granulated product and carbon can be mixed and exist in the reaction vessel. In particular, it is preferable to use a mixture of spherical granules and carbon in that the aggregation of particles during reductive nitriding can be reliably prevented.
  • the mixing ratio is generally in the range of 1 / 0.4 to 1 / 0.7 (weight ratio). Is preferred.
  • the carbon and the spherical granulated product may be mixed by dry-mixing them under conditions such that the specific surface area of the spherical granulated product is maintained within a predetermined range by a blender, a mixer, a ball mill or the like.
  • the reductive nitridation (calcination) performed in a nitrogen atmosphere in the presence of the reducing agent described above may be a condition known per se, specifically, a temperature of 1200 to 1800 ° C., preferably 1300 to 1700 ° C. It is carried out for about 20 hours, preferably about 2 to 10 hours.
  • the firing temperature is lower than the above temperature range, the nitriding reaction does not proceed sufficiently, and the target aluminum nitride powder may not be obtained.
  • the nitriding reaction proceeds sufficiently at a high temperature at which the firing temperature exceeds the above upper limit temperature, but oxynitride (AlON) with low thermal conductivity is often easily generated, and particle aggregation is likely to occur. There is a risk that it may be difficult to obtain an aluminum nitride powder having a target particle size.
  • a surface oxidation treatment can be appropriately performed after the above baking (reduction nitriding).
  • Such oxidation treatment for example, can remove carbon contained in aluminum nitride powder and improve the quality, but also improve its water resistance, for example, hold this powder in an environment containing moisture. Even in such a case, generation of ammonia odor can be effectively prevented.
  • As a gas used for such an oxidation treatment any gas that can remove carbon such as air and oxygen can be used without any limitation. However, in consideration of economy and the oxygen content of the obtained aluminum nitride, air is preferable. is there.
  • the treatment temperature is generally 500 to 900 ° C., preferably 600 to 750 ° C. in consideration of the decarbonization efficiency and excessive oxidation of the aluminum nitride surface.
  • a spherical aluminum nitride powder having a high sphericity and a relatively large particle size can be obtained as described above.
  • the sphericity is 0.8 or more, particularly 0.9 or more, and is composed of spherical particles that are very close to the sphere
  • the sphericity is measured by an electron micrograph as described above, and is represented by the ratio (DS / DL) of the minor axis (DS) to the major axis (DL).
  • the average particle diameter is represented by a particle diameter (D 50 ) that is 50% by volume integration by dispersing this powder in an appropriate solvent and using a laser diffraction scattering method.
  • the most significant feature of the spherical aluminum nitride powder is that the particle strength is extremely high and the average crushing strength (JIS R 1639-5) is in the range of 100 MPa or more. That is, the particles forming the spherical aluminum nitride powder are solid, as shown in FIG. 2 showing the cross-sectional structure of the particles, no cavities are formed inside the particles, and have an extremely large average crushing strength. Show. Therefore, this spherical aluminum nitride powder does not cause particle collapse during handling, etc., and powder formation is effectively prevented, and the sphericity, average particle diameter, BET specific surface area of the particles as described above The particle characteristics such as are stably maintained without fluctuation.
  • the spherical aluminum nitride powder of the present invention described above is solid and has a high crushing strength, but its specific surface area is very large as described above.
  • a spherical aluminum nitride powder having such a large specific surface area while being made of particles having a high crushing strength has not been known at all.
  • the spherical aluminum nitride powder of the present invention has fine pores inside the particles, and as can be understood from FIGS. 1 and 2, fine irregularities derived from the fine pores are formed on the particle surface. Therefore, it is considered to have a high crushing strength and a large specific surface area.
  • the spherical aluminum nitride powder of the present invention has a pore structure giving a high specific surface area by measuring the pore distribution by a mercury intrusion method.
  • the pore diameter is 0.1 to 2 ⁇ m and has a specific peak where the pore volume is maximized. It was confirmed that there are almost no pores having a diameter exceeding 2 ⁇ m in the particles.
  • the volume of the pores having a pore diameter of 2 ⁇ m or less is in the range of 0.02 to 1.0 cm 3 / g, particularly 0.1 to 0.5 cm 3 / g.
  • Such a pore distribution is not found in the spherical aluminum nitride powder obtained by the conventional method, as shown in a comparative example described later.
  • the presence of the pores as described above brings about an effect of improving the adhesion of the aluminum nitride powder to a resin or the like.
  • this aluminum nitride powder is used as a filler for filling a resin or grease or the like, since the resin or oil constituting the matrix (binder) enters into the pores, the anchor effect is exhibited, and these matrix and filler ( Adhesion with AlN powder) is improved and high thermal conductivity is imparted to these matrices.
  • the matrix is a resin, it is possible to increase the strength of the molded body.
  • the AlN powder of the present invention has a high conversion rate to aluminum nitride (hereinafter referred to as AlN conversion rate), for example, 50% or more, preferably compared to conventionally known aluminum nitride obtained by reducing and nitriding alumina.
  • AlN conversion rate for example, 50% or more, preferably compared to conventionally known aluminum nitride obtained by reducing and nitriding alumina.
  • the AlN conversion rate represents the conversion rate from alumina to aluminum nitride, and was obtained from the peak intensity ratio of aluminum nitride and alumina in the X-ray diffraction described later.
  • the spherical aluminum nitride powder of the present invention is not particularly limited with respect to impurities such as cations, but since the aluminum nitride powder is produced without using a fluxing agent or the like, the cation content is extremely small, For example, it is 0.3% by weight or less, particularly 0.2% by weight or less.
  • the spherical aluminum nitride powder of the present invention can be widely used as a filler for heat dissipation materials such as a heat dissipation sheet, a heat dissipation grease, a heat dissipation adhesive, a paint, and a heat conductive resin, in various applications utilizing the properties of aluminum nitride.
  • the resin and grease used as the matrix of the heat dissipation material are thermosetting resins such as epoxy resins and phenol resins, thermoplastic resins such as polyethylene, polypropylene, polyamide, polycarbonate, polyimide, polyphenylene sulfide, silicone rubber, EPR, Examples thereof include rubbers such as SBR and silicone oil.
  • a heat dissipation material it is preferable to add 150 to 1000 parts by weight per 100 parts by weight of resin or grease.
  • such a heat dissipation material may be filled with one kind or several kinds of fillers such as alumina, boron nitride, zinc oxide, silicon carbide, and graphite.
  • fillers for example, a surface treated with a silane coupling agent, phosphoric acid, phosphate, or the like may be used.
  • the shape and particle size of the spherical aluminum nitride powder of the present invention and other fillers may be selected according to the characteristics and application of the heat dissipation material. Further, the mixing ratio of the spherical aluminum nitride powder and the other filler in the heat dissipation material can be adjusted as appropriate within the range of 1:99 to 99: 1.
  • additives such as a plasticizer, a vulcanizing agent, a curing accelerator, and a release agent may be further added to the heat dissipation material.
  • Cationic impurity content (metal element concentration) was determined by ICP emission analysis of the solution using ICP-1000 manufactured by Shimadzu Corporation after the aluminum nitride powder was alkali-melted and then neutralized with acid. Quantified.
  • Average crushing strength The average crushing strength of the AlN powder was determined by a single particle compression test (JIS R 1639-5). Using a micro-compression tester (Shimadzu MTC-W), a single particle of 100 arbitrary particles was subjected to a compression test, the crushing strength was determined from the fracture test force and the particle size, and the arithmetic average was obtained.
  • Pore size distribution of the AlN powder was determined by a mercury intrusion method using a pore distribution measuring device (manufactured by Micromeritics, Autopore IV9510).
  • thermal conductivity of silicone rubber sheet A thermally conductive silicone rubber composition containing AlN powder is molded into a size of 10 cm ⁇ 6 cm and a thickness of 3 mm and heated in a hot air circulation oven at 150 ° C. for 1 hour. Then, the thermal conductivity of the AlN powder was measured using a thermal conductivity meter (QTM-500 manufactured by Kyoto Electronics Industry). In addition, in order to prevent electric leakage from the detection unit, the measurement was made through a polyvinylidene chloride film having a thickness of 10 ⁇ m.
  • boehmite granules were prepared as granules of alumina hydrate powder as a starting material.
  • the mixed powder was filled in a carbon container, subjected to reduction nitriding at 1600 ° C. for 3 hours under a nitrogen flow, and then subjected to an oxidation treatment at 680 ° C. for 8 hours under an air flow to obtain an AlN powder.
  • the average particle diameter, specific surface area, AlN conversion, sphericity, crushing strength, and pore size distribution were measured by the above-described methods. The results are shown in Table 1.
  • the SEM photograph of the obtained AlN powder is shown in FIG.
  • a silicone rubber As a silicone rubber, uncomfortable silicone (Momentive Performance Materials Japan GTS TSE201) was prepared. 450 parts by weight of the AlN powder obtained above, 100 parts by weight of the silicone rubber and 0.5 parts by weight of the release agent were kneaded with a pressure kneader. Next, after the kneaded product is cooled, 0.5 part by weight of a crosslinking agent is further mixed using a roll, and then press-pressed at 180 ° C. for 15 minutes to obtain a sheet having a length of 10 cm, a width of 6 cm, and a thickness of 3 mm. Obtained. About the obtained sheet
  • Example 2 An AlN powder was obtained in the same manner as in Example 1 except that the nitriding conditions were 1400 ° C. and 30 hours. About the obtained AlN powder, as in Example 1, the average particle size, specific surface area, AlN conversion, sphericity, crushing strength, and pore size distribution were measured, and the silicone rubber sheet in which the AlN powder was blended, In the same manner as in Example 1, the thermal conductivity, hardness, and tensile strength were measured. These results are shown in Table 1. Moreover, the SEM photograph of the obtained AlN powder is shown in FIG.
  • Example 3 An AlN powder was obtained in the same manner as in Example 1 except that the nitriding conditions were 1650 ° C. and 15 hours. About the obtained AlN powder, as in Example 1, the average particle size, specific surface area, AlN conversion, sphericity, crushing strength, and pore size distribution were measured, and the silicone rubber sheet in which the AlN powder was blended, In the same manner as in Example 1, the thermal conductivity, hardness, and tensile strength were measured. These results are shown in Table 1. Moreover, the SEM photograph of the obtained AlN powder is shown in FIG.
  • ⁇ -alumina granulated material was prepared as a granulated material of the starting alumina powder.
  • An AlN powder was obtained in the same manner as in Example 1 except that the above ⁇ -alumina granulated material was used as a starting material.
  • the average particle size, specific surface area, AlN conversion, sphericity, crushing strength, and pore size distribution were measured, and the silicone rubber sheet in which the AlN powder was blended,
  • the thermal conductivity, hardness, and tensile strength were measured.
  • boehmite granules were prepared as granules of alumina hydrate powder as a starting material.
  • AlN powder was obtained in the same manner as in Example 1 except that the above boehmite granulate was used as a starting material and the nitriding conditions were changed to 1650 ° C. for 3 hours.
  • the obtained AlN powder as in Example 1, the average particle size, specific surface area, AlN conversion, sphericity, crushing strength, and pore size distribution were measured, and the silicone rubber sheet in which the AlN powder was blended, In the same manner as in Example 1, the thermal conductivity, hardness, and tensile strength were measured. These results are shown in Table 1.
  • the SEM photograph of the obtained AlN powder is shown in FIG.
  • ⁇ -alumina granulated material was prepared as a granulated body of the starting alumina powder.
  • An AlN powder was obtained in the same manner as in Example 1 except that the above ⁇ -alumina granulated material was used as a starting material and the nitriding conditions were changed to 1650 ° C. for 3 hours.
  • the obtained AlN powder as in Example 1, the average particle size, specific surface area, AlN conversion, sphericity, crushing strength, and pore size distribution were measured, and the silicone rubber sheet in which the AlN powder was blended,
  • the thermal conductivity, hardness, and tensile strength were measured.
  • Example 7 The boehmite granule used in Example 1 was heat treated at 1200 ° C. for 5 hours under air flow to form ⁇ -alumina.
  • the physical properties of this ⁇ -alumina granular material are as follows. ⁇ -alumina granular material (heat treated boehmite); Average particle diameter (D 50 ) by sieving method: 25 ⁇ m BET specific surface area: 10.7 m 2 / g Sphericality: 0.95
  • Example 1 Using the above ⁇ -alumina granular material, reductive nitriding was performed in the same manner as in Example 1 to obtain an AlN powder. About the obtained AlN powder, as in Example 1, the average particle size, specific surface area, AlN conversion, sphericity, crushing strength, and pore size distribution were measured, and the silicone rubber sheet in which the AlN powder was blended, In the same manner as in Example 1, the thermal conductivity, hardness, and tensile strength were measured. These results are shown in Table 1. Moreover, the SEM photograph of the obtained AlN powder is shown in FIG.
  • Example 8 The ⁇ -alumina granule used in Example 6 was further heat-treated at 1200 ° C. for 5 hours under air flow to form ⁇ -alumina.
  • the physical properties of the ⁇ -alumina granular material ( ⁇ -alumina heat-treated product) are as follows. ⁇ -alumina granulated product; Average particle diameter (D 50 ) by sieving method: 19 ⁇ m BET specific surface area: 4.8 m 2 / g Sphericality: 0.95
  • An AlN powder was obtained in the same manner as in Example 1 except that the above ⁇ -alumina granulated material was used. About the obtained AlN powder, as in Example 1, the average particle size, specific surface area, AlN conversion, sphericity, crushing strength, and pore size distribution were measured, and the silicone rubber sheet in which the AlN powder was blended, In the same manner as in Example 1, the thermal conductivity, hardness, and tensile strength were measured. These results are shown in Table 1. Moreover, the SEM photograph of the obtained AlN powder is shown in FIG.
  • ⁇ -alumina powder having the following particle characteristics was prepared.
  • ⁇ -alumina powder non-granulated product
  • Average particle diameter (D 50 ) by laser diffraction scattering method 1.2 ⁇ m
  • BET specific surface area 9.5 m 2 / g Sphericality: 0.65
  • the above ⁇ -alumina powder 280 g and carbon black 140 g were mixed. Next, the mixed powder was filled in a carbon container, subjected to reduction nitriding at 1600 ° C. for 3 hours under a nitrogen flow, and then subjected to an oxidation treatment at 680 ° C. for 8 hours under an air flow to obtain an AlN powder. To 100 parts by weight of the obtained AlN powder, 5 parts by weight of yttria, 100 parts by weight of toluene solvent, 5 parts by weight of butyl methacrylate, and 2 parts by weight of hexaglycerin monooleate were added and mixed for 5 hours by a ball mill.
  • a granulated product of spherical aluminum nitride powder having an average particle size of 22 ⁇ m was obtained by spray drying.
  • the spray drying was performed under the following conditions. Spray drying conditions; Inlet temperature: 100 ° C Outlet temperature: 80 ° C Atomizer speed: 13000 rpm
  • the obtained spherical AlN granulated product was filled in a boron nitride container and fired at 1750 ° C. for 5 hours with nitrogen circulation to obtain a spherical AlN powder.
  • the average particle size, specific surface area, AlN conversion, sphericity, crushing strength, and pore size distribution were measured, and the silicone rubber sheet in which the AlN powder was blended, In the same manner as in Example 1, the thermal conductivity, hardness, and tensile strength were measured. These results are shown in Table 2.
  • the SEM photograph of the obtained AlN powder is shown in FIG.
  • spherical alumina having the following particle characteristics obtained by thermal spraying was prepared.
  • Spherical alumina by spraying method non-granulated material
  • Average particle diameter (D 50 ) by laser diffraction scattering method 16 ⁇ m
  • BET specific surface area 0.17 m 2 / g Sphericality: 0.98
  • An AlN powder was obtained in the same manner as in Example 1 except that the above spherical alumina was used. About the obtained AlN powder, as in Example 1, the average particle size, specific surface area, AlN conversion, sphericity, crushing strength, and pore size distribution were measured, and the silicone rubber sheet in which the AlN powder was blended, In the same manner as in Example 1, the thermal conductivity, hardness, and tensile strength were measured. These results are shown in Table 2. Moreover, the SEM photograph of the obtained AlN powder is shown in FIG.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Ceramic Products (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

【課題】フィラー用途に最適な大きさを有し、真球度が高く且つ粒子強度の高い球状窒化アルミニウム粉末を効率よく製造し得る方法を提供する。 【解決手段】アルミナ粉末又はアルミナ水和物粉末の球状造粒物を出発原料として使用し、該球状造粒物を、還元窒化工程に供給し、還元窒化を行うことにより球状窒化アルミニウム粉末を製造する。

Description

球状窒化アルミニウム粉末の製造方法及び該方法により得られた球状窒化アルミニウム粉末
 本発明は放熱シート、放熱グリース、接着剤、塗料などのフィラーとして好適な特性を有する窒化アルミニウム粉末の新規な製造方法及び該製造方法により得られた球状窒化アルミニウム粉末に関する。
 シリコーンゴムやシリコーングリースに、アルミナや窒化ホウ素などのフィラーが充填されている放熱材料は、例えば、放熱シートや放熱グリースとして各種電子機器に広く使用されている。窒化アルミニウムは、電気絶縁性に優れており且つ高熱伝導性を有していることから、上記のような放熱材料のフィラーとして注目されている。
 放熱材料の熱伝導率を向上させるためには、高熱伝導性を有したフィラーを高充填することが重要である。そのため、放熱材料のフィラーとして窒化アルミニウム粉末を用いる場合には、粉末を形成している粒子が球状であること及び数10μm~数100μm程度の幅広い粒径を有していることが求められる。即ち、成形性(流動性)を損なわずにフィラーを樹脂等の媒体に高充填するためには、比較的大きな粒径の球状の粒子と比較的小さな粒径の球状の粒子とを含む粉末を使用し、大きな球状粒子の間に小さな球状粒子が分布しているような充填構造が形成されていることが最も望ましいからである。
 ところで、窒化アルミニウムの製法としては、アルミナ還元窒化法、直接窒化法、気相法等が知られている。
 アルミナ還元窒化法は、アルミナとカーボンとの混合物を窒素中で加熱することにより、アルミナを還元し、さらに窒化させて窒化アルミニウムを得るという方法である。
 直接窒化法は、アルミニウムに窒素を反応させることにより、アルミニウムから直接窒化アルミニウムを得るという方法である。
 気相法は、アルキルアルミニウムとアンモニアを反応させた後、加熱することにより窒化アルミニウムを得るという方法である。
 上記のような窒化アルミニウムの製造方法では、樹脂等の媒体に高充填するために有利な窒化アルミニウムの粉末を得ることが困難であった。
 例えば、還元窒化法及び気相法では、得られる窒化アルミニウムの粉末は、粒子形状は球状に近いものの、その粒径はサブミクロンオーダーのものがほとんどである。
 また、直接窒化法では、窒化アルミニウムは塊状で得られ、これを、粉砕・分級することにより所定の粒度に調製されるため、粒径の制御は比較的容易であるが、その粒子形状は角張った形をしており、球状からはかけ離れている。
 そこで、種々の形状及び粒径を有した粒子からなる窒化アルミニウム粉末や該粉末を製造する方法が提案されているが、何れも一長一短があり、未だ、前述した粒子特性を有しており、樹脂等の媒体に高充填し得る窒化アルミニウム粉末は得られていない。
 例えば、特許文献1には、単一粒子の平均粒子径が3μm以上で、丸みをおびた形状を有した単一粒子径の揃った窒化アルミニウム粉末が開示されている。しかしながら、この窒化アルミニウム粉末の粒子は、10μm以上の大きな粒径を有するものではない。
 また、特許文献2及び3には、球状のアルミナ又は水和アルミナをカーボンの存在下に窒素ガスまたはアンモニアガスによって還元窒化することにより窒化アルミナ粉末を製造する方法が開示されている。この方法によれば、粒子形状が真球形状に近く、また、粒径が比較的大きな窒化アルミニウム粉末を得ることができ、更に、粒径が小さな窒化アルミニウム粉末も得ることができる。しかしながら、これらの特許文献に記載された方法では得られる球状の窒化アルミニウム粉末は中空になりやすいため粒子強度が低く、その粒径を安定に保持することができないという欠点を有している。即ち、樹脂等に配合したとき、粒子が崩壊して微粉化してしまい、この結果、樹脂等の成形性(流動性)が低下してしまうという問題がある。また、粉立ちを生じ易く、作業性が悪いという欠点もある。
 さらに、特許文献4には、所定の方法で製造されたAlN粉末に成形助剤を配合し、湿式粉砕し、次いでスプレードライヤーを用いて造粒し、得られた造粒物(granule)にBN粉末を混合し、該混合物を窒素雰囲気下、高温で焼成して焼結せしめることによって球状の窒化アルミニウム粉末を製造することが開示されている。しかしながら、この方法では、アルミニウムの窒化のための焼成に加え、得られた粒子を焼結するための焼成が必要であり、高温での焼成を二回行わなければならない。また、一旦製造された窒化アルミニウム粉末を粉砕する工程も必要である。従って、生産コストがかかり過ぎてしまい、工業的な実施が困難である。
 更に、この方法によって得られる窒化アルミニウム粉末は、焼結によって得られるため、焼結の際に粒子同士が結合して変形し易く、また、窒化アルミニウムの結晶粒子の成長により圧壊強度は向上するものの、大きな凹凸ができ易い。そのため、得られる窒化アルミニウム粉末は、比表面積が小さく、そのために充填する樹脂との密着性が低くなり、得られる放熱材料の強度が不十分となるという問題を有する。
 特許文献5には、不定形状の粒子からなる窒化アルミニウム粉末を、アルカリ土類元素、希土類元素などの化合物よりなるフラックス中で熟成(熱処理)することにより球状化させた後、フラックスを溶解して単離した結晶質窒化アルミニウム粉体を得る方法が開示されている。この方法では、高充填に適した形状及び粒径の窒化アルミニウム粉末を得ることができるが、一旦製造された窒化アルミニウム粉末を更に特殊な処理に付さなければならず、従って、生産コストの点で問題がある。また、この方法で得られる窒化アルミニウム粉末は、フラックス剤の使用により不純物含量が多くなってしまうという欠点もある。
特開平3-23206号公報 特開平4-74705号公報 特開平2005-162555号公報 特開平11-269302号公報 特開2002-179413号公報
 従って、本発明の目的は、フィラー用途に最適な大きさを有し、真球度が高く且つ粒子強度の高い球状窒化アルミニウム粉末を効率よく製造し得る方法及びその製造方法により得られる球状窒化アルミニウム粉末を提供することにある。
 本発明者らは、上記課題を解決すべく鋭意研究を行った結果、アルミナ粉末又はアルミナ水和物粉末を一旦、造粒して得られる球状造粒物を出発原料として使用し、これを還元窒化することによって、目的とする性状の球状粒子からなる窒化アルミニウム粉末を生産性良く製造し得ることを見出し、本発明を完成するに至った。
 即ち、本発明によれば、アルミナ粉末又はアルミナ水和物粉末の球状造粒物を出発原料として使用し、該球状造粒物を、還元窒化工程に供給し、還元窒化を行うことを特徴とする球状窒化アルミニウム粉末の製造方法が提供される。
 本発明の製造方法においては、還元窒化工程に供給する前に、上記の球状造粒物を、一旦、BET比表面積が少なくとも2m/g以上に維持される程度に熱処理する熱処理工程を含むことができる。
 また、前記球状造粒物としては、一般に、前記粉末をスプレードライにより得られたものが好ましく、その場合、BET比表面積が30~500m/g、特に50~300m/gの範囲にあるものが好適に使用される。
 更に、前記還元窒化工程において、還元剤が存在する窒素雰囲気において、1200~1800℃の温度で、前記球状造粒物またはその熱処理物の還元窒化が行われることが好適である。
 上記の製造方法によれば、平均して0.8以上の真球度と100MPa以上の圧壊強度を有する粒子からなり、平均粒径(D50)が10~200μmの範囲にあり、BET比表面積が0.5~20m/gの範囲にあることを特徴とする球状窒化アルミニウム粉末を得ることができる。
 本発明おいて、前記球状窒化アルミニウム粉末は、細孔直径が2μm以下の細孔の容積が、0.02~1.0cm/gの範囲にあることが好ましい。
 上記の球状窒化アルミニウム粉末は、放熱材料用フィラーとして好適に使用される。
 尚、本明細書において、造粒物(granule)とは、微粉末の凝集性、付着性を利用して、これを固めて丸みを帯びた微細な形状としたものである。
 また、本明細書において、球状窒化アルミニウム粉末の平均粒径、真球度、BET比表面積及び平均圧壊強度は、それぞれ、後述する実施例に示す方法によって測定した値である。
 本発明の製造方法においては、出発原料として特定の比表面積を有するアルミナ又はアルミナ水和物の球状造粒物が使用され、この造粒物を還元窒化して窒化アルミニウムに転化しているため、フィラー用途等に最適な比較的大きい粒径を有する球状窒化アルミニウム粉末を高い転化率で且つ簡単な工程で効率良く製造することができる。
 例えば、この方法によれば、粒子の真球度が0.8以上と高く、また、平均粒径が10~200μmと比較的大きな範囲にあり、BET比表面積が0.5~20m/gの球状窒化アルミニウム粉末を得ることができる。即ち、この窒化アルミニウム粉末は、粒子が真球に近い形状を有しており、更に、その平均粒径が比較的大きな粒径の粒子から小さな粒径の粒子まで幅広い粒径の粒子を含んでいる。従って、この窒化アルミニウム粉末はフィラーとして、成形性(流動性)を損なうことなく、種々の媒体に高充填可能である。
 しかも、この窒化アルミニウム粉末の粒子は、図1等のSEM写真から理解されるように中実であり、この粒子の平均圧壊強度は100MPa以上と極めて高い。従って、この窒化アルミニウム粉末では粒子の崩壊が有効に防止され、上記の粒子形状や粒子の大きさが安定に保持され、粒子崩壊による充填性の低下が有効に回避され、更に、粉立ち等の不都合を生じることもない。
 更に、フラックス剤等の金属添加剤を使用していないため、この窒化アルミニウム粉末の純度は極めて高い。
本発明の代表的な球状窒化アルミニウム粉末の粒子構造を示すSEM写真である。 本発明の代表的な球状窒化アルミニウム粉末の粒子構造(断面)を示すSEM写真である。 実施例1で得られた球状窒化アルミニウム粉末の粒子構造を示すSEM写真である。 実施例2で得られた球状窒化アルミニウム粉末の粒子構造を示すSEM写真である。 実施例3で得られた球状窒化アルミニウム粉末の粒子構造を示すSEM写真である。 実施例4で得られた球状窒化アルミニウム粉末の粒子構造を示すSEM写真である。 実施例5で得られた球状窒化アルミニウム粉末の粒子構造を示すSEM写真である。 実施例6で得られた球状窒化アルミニウム粉末の粒子構造を示すSEM写真である。 実施例7で得られた球状窒化アルミニウム粉末の粒子構造を示すSEM写真である。 実施例8で得られた球状窒化アルミニウム粉末の粒子構造を示すSEM写真である。 比較例1で得られた球状窒化アルミニウム粉末の粒子構造を示すSEM写真である。 比較例2で得られた球状窒化アルミニウム粉末の粒子構造を示すSEM写真である。 比較例3で得られた球状窒化アルミニウム粉末の粒子構造を示すSEM写真である。
<球状窒化アルミニウム粉末の製造>
 本発明の製造方法においては、出発原料として球状のアルミナ又はアルミナ水和物の造粒物を使用し、この造粒物(或いはその熱処理物)を、還元窒化工程に供給して窒化還元を行い、最後に、表面酸化処理等の後処理を適宜行うことにより、目的とする球状窒化アルミニウム粉末が製造される。
1.出発原料;
 出発原料として用いる球状のアルミナ又はアルミナ水和物の造粒物(granule)は、アルミナ粉末又はアルミナ水和物粉末を球状に造粒することにより得られたものである。
 かかる造粒物において、アルミナとしては、α、γ、θ、η、δ等の結晶構造を持つものであれば特に制限なく使用される。また、アルミナ水和物は、熱処理することによって、γ、θ、η、δなどの遷移アルミナ、さらにα-アルミナに変わるものであり、このようなアルミナ水和物としては、ベーマイト、ダイアスポア、水酸化アルミニウムなどを挙げることができる。
 上記のようなアルミナ及びアルミナ水和物の製造方法としては、例えば、アルコキシド法、バイヤー法、アンモニウム明ばん熱分解法、アンモニウムドーソナイト熱分解法によって得ることができる。特に、アルコキシド法では、高純度で均一な粒度分布を有するアルミナ、アルミナ水和物を得ることができる。
 従って、本発明では、アルコキシド法によって得られたアルミニウムアルコキシドを精製し、これを加水分解して得られる水酸化アルミニウムや、該水酸化アルミニウムを熱処理して得られるベーマイト、遷移アルミナ、α-アルミナが原料として好適に使用される。特に、α-アルミナ、γ-アルミナ、ベーマイトを原料として用いた時には、還元窒化反応を制御し易く、また、窒化が進行し易いという利点がある。
 本発明において用いる出発原料は、上記のアルミナ粉末又はアルミナ水和物粉末の球状造粒物であるため、大きな比表面積を有しており、これを還元窒化することにより、粒子間に形成される間隙を通じて、造粒物の内部まで窒素ガスが浸透して還元窒化が進行する。この結果、この造粒物とほぼ同等の真球形状を有し、しかも、中実な粒子からなる球状窒化アルミニウム粉末を得ることができる。
 本発明において、出発原料として用いる上記の球状造粒物は、造粒条件等の調整により、そのBET比表面積が30~500m/g、特に50~300m/gの範囲に設定されていることが好ましい。
 即ち、この球状造粒物は、後述する高温で実施される還元窒化工程での昇温過程で、粒子の焼結に伴う比表面積の低下を生じ、粒子間の空隙が狭くなっていく。また、この球状造粒物は、後述するように、粒子の強度を増強するために、還元窒化に先立って、適宜加熱処理されることがあり、このような加熱処理工程においても、比表面積の低下が生じ、粒子間の空隙が狭くなっていく。従って、球状造粒物のBET比表面積が小さ過ぎると、還元窒化工程での昇温過程或いは適宜実施される熱処理工程で粒子間の空隙が閉塞してしまい、球状造粒物の内部までの還元窒化が十分に行われなくなってしまう。このような不都合を防止するために、球状造粒物のBET比表面積を30m/g以上、特に50m/g以上に設定しておくことが好ましく、これにより、例えば高温での還元窒化反応に際して、球状造粒物のBET比表面積が2m/g以上に維持され、粒子間の空隙の閉塞を効果的に防止することが可能となる。
 また、球状造粒物のBET比表面積があまり大き過ぎると、一次粒子間の凝集が強くなり、窒素ガスの造粒物内への拡散が低下し、還元窒化における窒化の進行が遅くなり、窒化アルミニウムへの転化率が大きく低下してしまう。従って、該球状造粒物のBET比表面積は500m/g以下、特に300m/g以下の範囲であることが好ましいのである。
 本発明において、球状造粒物の真球度は、目的とする窒化アルミニウム粉末の粒子の真球度と同程度とすることが好ましく、例えば、電子顕微鏡写真で測定して短径(DS)と長径(DL)との比(DS/DL)が0.8以上であることが望ましい。
 上述した球状造粒物は種々の方法で得ることができるが、造粒物の粒径のコントロールのし易さ、経済性、及び容易に真球度の高い造粒物を得ることができるという観点から、スプレードライ方式が好適である。かかる方法では、前述したアルミナ又は水和アルミナの微細な粉末を所定の溶媒(例えばアルコールや水)に分散させた液を噴霧することにより乾燥(造粒)が行われるが、この噴霧液の固形分濃度の調製により得られる造粒物の粒径やBET比表面積を調整することができる。
 また、スプレー方式としては、ノズル式、ディスク式等が代表的であり、何れの方式も採用することができるが、ノズル式のスプレードライ機を用いた場合には、噴霧ノズル径をコントロールすることによっても得られる造粒物の粒径やBET比表面積をコントロールすることができるという利点がある。
 更に、スプレードライの条件は、何ら制限されず、使用されるスプレードライ機の大きさや種類、噴霧液の固形分濃度、粘度、流量などによって適宜選択すれば良い。
 また、該球状造粒物には、必要に応じて分散剤やバインダ樹脂、滑剤或いは窒化アルミニウムの低温焼成を目的としたアルカリ土類金属化合物、希土類元素化合物、これらの組み合わせ、アルカリ土類金属のフッ化物、アルカリ土類元素を含む複合化合物等を配合しても良い。
2.出発原料の熱処理物;
 本発明においては、上述したアルミナ粉末又はアルミナ水和物粉末の球状造粒物を、直接後述する還元窒化工程に供給して還元窒化を行うこともできるし、この球状造粒物を一旦熱処理する熱処理工程を経た後に還元窒化工程に供給することもできる。
 即ち、還元窒化工程では、原料として用いる球状造粒物は1200℃以上の高温に保持されるため、その昇温過程での加熱により収縮し、粒径の経過やBET比表面積の低下を生じ、この後に還元窒化が行われることとなる。従って、この昇温過程で加えられる程度に熱処理されたものを、一旦、冷却した後に還元窒化工程に供給することも可能である。例えば、水酸化アルミニウムやベーマイトの球状造粒物(その比表面積は前述した範囲内である)を、約600℃で一定時間熱処理することにより得られたγ-アルミナの球状造粒物や1100℃以上の温度で一定時間熱処理することにより得られたα-アルミナの球状造粒物を、還元窒化工程に供給することもできる。
 上記熱処理工程により得られる熱処理物は、以下に述べるように、ある程度以上のBET比表面積(例えば2m/g以上)を有しているべきであり、このために、BET比表面積が適度な範囲に調整された球状造粒物が使用され、このような熱処理が行われた場合にも、適度な空隙を有する状態で還元窒化が行われるようにされる。
 本発明において、上記のように、一旦、熱処理された球状造粒物を還元窒化工程に供給した場合には、造粒物がデンスな状態となって還元窒化されるため、得られる窒化アルミニウム粉末の粒子表面の凹凸が極めて少なく、従って、その粒子強度が高いという利点を有している。例えば、形が崩れやすいベーマイトの球状造粒物を原料粉末として用いた場合には、一旦、上記のような熱処理を行うことにより粒子強度を高め、粒度分布が安定した窒化アルミニウム粉末を得ることができる。
 ただし、このような熱処理を行った場合には、比表面積が低下し、樹脂等のバインダに対するなじみ性が低下する傾向がある。即ち、上記のような熱処理を行うと、粒子表面の平滑度が大きく、且つ粒子内部の細孔が閉塞し、これが比表面積の低下をもたらし、樹脂等のバインダに対するなじみ性や密着性を低下させる傾向がある。従って、上記の熱処理は、BET比表面積が少なくとも2m/g以上に保持される程度の熱処理としなければならない。具体的には、熱処理温度に応じて熱処理時間を適宜の範囲とし、BET比表面積を上記範囲内に保持することが必要である。
 また、この熱処理が過酷であり、BET比表面積が極度に低下してしまうと、先にも述べた様に、造粒物の還元窒化における窒化の進行が遅くなり、窒化アルミニウムへの転化率が著しく低下してしまい、生産性の低下という不都合も招いてしまうからである。
3.還元窒化工程;
 本発明においては、上述したアルミナ又は水和アルミナの球状造粒物(或いはその熱処理物)を、カーボンや窒化アルミニウム焼結体等によって形成された反応容器内において、還元剤(例えば、カーボンや還元性ガス)が存在する窒素雰囲気下、所定の温度で焼成(還元窒化)することにより、目的とする球状窒化アルミニウム粉末を得ることができる。
 本発明において、上記還元窒化に用いる還元性ガスは、還元性を示すガスであれば制限なく使用できる。具体的には、水素、一酸化炭素、アンモニアなどが挙げられる。
 これらの還元性ガスは、二種以上を混合して使用することもできるし、また、以下に述べるカーボンと併用することもできる。
 還元剤として用いるカーボンは、カーボンブラック、黒鉛および、高温においてカーボン源となり得るカーボン前駆体が使用できる。本発明において、カーボンブラックは、ファーネス法、チャンネル法などのカーボンブラック及びアセチレンブラックが使用できる。これらのカーボンブラックの粒径は、特に制限されるものではないが、一般的には、0.01~20μmのものを用いるのが好ましい。
 前記カーボン前駆体としては、フェノール樹脂、メラミン樹脂、エポキシ樹脂、フランフェノール樹脂等の合成樹脂縮合物やピッチ、タール等の炭化水素化合物や、セルロース、ショ糖、ポリ塩化ビニリデン、ポリフェニレン等の有機化合物が挙げられるが、固相のままないしは気相を経由して炭素化する化合物が好ましい。特に、フェノール樹脂等の合成樹脂やセルロース、ポリフェニレンなどが好ましい。これらのカーボンも、金属等の不純物が少ないものが好ましい。
 尚、反応容器内の窒素雰囲気は、原料として使用されるアルミナ又は水和アルミナの球状造粒物の窒化反応が十分に進行するだけの量の窒素ガスを、連続的又は間欠的に供給することによって形成される。
 また、還元性ガスは、上記窒素ガスに同伴させて前記反応容器内に供給することが好ましい。
 更に、還元剤として用いるカーボン(カーボン前駆体を含む)は、種々の方法で反応容器内に存在させることができ、例えば、反応容器内に原料の球状造粒物とカーボンとを分けて存在させることもできるし、球状造粒物とカーボンとを混合して反応容器内に存在させることもできる。特に、球状造粒物とカーボンとを混合して使用することは、還元窒化時における粒子の凝集を確実に防止することができるという点で好適である。
 尚、カーボンを球状造粒物に混合して使用する場合、その混合比(球状造粒物/カーボン)は、一般的に、1/0.4乃至1/0.7(重量比)の範囲が好適である。また、カーボンと球状造粒物との混合は、ブレンダー、ミキサー、ボールミル等により球状造粒物の比表面積が所定の範囲内に維持されるような条件下で両者を乾式混合すれば良い。
 上述した還元剤の存在下、窒素雰囲気中で行われる還元窒化(焼成)は、それ自体公知の条件でよく、具体的には、1200~1800℃、好ましくは1300~1700℃の温度で、1~20時間、好ましくは、2~10時間程度行われる。この焼成温度は、上記温度範囲よりも低い場合には、窒化反応が十分進行せず、目的の窒化アルミニウム粉末が得られない場合がある。また、焼成温度が前記の上限温度を越える高い温度では、窒化反応は十分進行するが、しばしば熱伝導率の低い酸窒化物(AlON)が生成し易く、また、粒子の凝集が起こり易くなり、目的とする粒度の窒化アルミニウム粉末を得ることが困難になる恐れがある。
4.表面酸化処理;
 本発明においては、上記の焼成(還元窒化)後、適宜表面酸化処理を行うことができる。かかる酸化処理により、例えば、窒化アルミニウムの粉末中に含まれるカーボンを除去し、品質を向上させることができるばかりか、その耐水性を向上させ、例えば、水分を含む環境下にこの粉末を保持せしめた場合においても、アンモニア臭の発生等を有効に防止することができる。
 このような酸化処理に用いるガスとしては、空気、酸素などの炭素を除去できるガスならば何等制限無く採用できるが、経済性や得られる窒化アルミニウムの酸素含有率を考慮して、空気が好適である。また、処理温度は一般的に500~900℃がよく、脱炭素の効率と窒化アルミニウム表面の過剰酸化を考慮して、600~750℃が好適である。
<球状窒化アルミニウム粉末>
 本発明においては、上記のようにして真球度が高く、比較的大きな粒子サイズの粒子からなる球状窒化アルミニウム粉末を得ることができる。
 例えば、上述した方法によれば、図1の電子顕微鏡写真から理解されるように、真球度が0.8以上、特に、0.9以上と極めて真球に近い球形状粒子からなり、且つ、平均粒子径が10~200μm、特に20~50μmと比較的大きく、BET比表面積が0.5~20m/g、特に0.8~17m/gの範囲にある球状窒化アルミニウム粉末が得られ、成形性を損なわずに樹脂等のバインダに高充填するために適した粒子特性を有している。
 尚、上記の真球度は、先にも述べたように電子顕微鏡写真で測定して短径(DS)と長径(DL)との比(DS/DL)で表わされる。また、平均粒径は、この粉末を適度な溶媒に分散させ、レーザ回折散乱法により、体積積算で50%となる粒子径(D50)で表わされる。
 また、上記の球状窒化アルミニウム粉末の最も大きな特徴は、粒子強度が極めて高く、その平均圧壊強度(JIS R 1639-5)が100MPa以上の範囲にある。即ち、この球状窒化アルミニウム粉末を形成する粒子は、粒子の断面構造を示す図2から理解されるように、中実であり、粒子内部に空洞が形成されておらず、極めて大きな平均圧壊強度を示す。
 従って、この球状窒化アルミニウム粉末は、取扱時等において粒子の崩壊を生じることがなく、粉立ち等が有効に防止され、また、上記のような粒子の真球度や平均粒径、BET比表面積等の粒子特性が変動することなく安定に保持される。例えば、前述した造粒を溶射法によって得られた、内部に空隙のない球状アルミナを出発原料として用いた場合、還元窒化時に内部に空洞ができてしまい、上記のような高い圧壊強度を示さない。
 また、上述した本発明の球状窒化アルミニウム粉末は、中実で、高い圧壊強度を有しながら、その比表面積が前記したように非常に大きい。圧壊強度が高い粒子からなっていると同時に、このような大きな比表面積を有する球状窒化アルミニウム粉末は、従来全く知られていない。
 本発明の球状窒化アルミニウム粉末は、その粒子内部に微細な細孔を有しており、図1及び図2より理解されるように、微細な細孔に由来する微細な凹凸が粒子表面に形成されているため、高い圧壊強度と大きな比表面積とを有しているものと考えられる。
 本発明の球状窒化アルミニウム粉末が、高い比表面積を与える細孔構造を有していることは、水銀圧入法により細孔分布を測定することにより確認することができる。例えば、横軸を細孔直径、縦軸を細孔容積とする細孔分布曲線において、細孔直径が0.1~2μmで細孔容積が極大となる特異的なピークを有し、細孔直径が2μmを超える大きさの細孔は、粒子中に殆ど存在しないことが確認された。また、細孔直径が2μm以下の細孔の容積は、0.02~1.0cm/g、特に、0.1~0.5cm/gの範囲にある。このような細孔分布は、後述の比較例に示されているように、従来法によって得られる球状窒化アルミニウム粉末には見られない。
 本発明において、上記の様な細孔の存在は、この窒化アルミニウム粉末の樹脂等に対する密着性を向上させる効果をもたらす。例えば、この窒化アルミニウム粉末を樹脂或いはグリース等に充填するフィラーとして用いた場合、マトリックス(バインダ)を構成する樹脂或いはオイルが細孔内に入り込むため、アンカー効果が発揮され、これらのマトリックスとフィラー(AlN粉末)との密着性が良くなり、これらのマトリックスに高い熱伝導性を付与する。特に、マトリックスが樹脂である場合には、その成形体の強度をも高めることが可能である。
 本発明のAlN粉末は、アルミナを還元窒化して得られる従来公知の窒化アルミニウムに比して、窒化アルミニウムへの転化率(以下、AlN転化率と呼ぶ)が高く、例えば、50%以上、好ましくは60%以上、更に好ましくは70%以上のAlN転化率を有しており、その熱伝導性が極めて高い。
 尚、AlN転化率は、アルミナから窒化アルミニウムへの転化率を表したものであり、後述するX線回折における窒化アルミニウムとアルミナのピーク強度比から求めたものである。
 更に、本発明の球状窒化アルミニウム粉末について、陽イオン等の不純物については特に制限はないが、係る窒化アルミニウム粉末は、フラックス剤等を用いずに製造されているため、陽イオン含量は極めて少なく、例えば、0.3重量%以下、特に0.2重量%以下である。
 本発明の球状窒化アルミニウム粉末は、窒化アルミニウムの性質を生かした種々の用途、特に放熱シート、放熱グリース、放熱接着剤、塗料、熱伝導性樹脂などの放熱材料用フィラーとして広く用いることができる。
 ここで放熱材料のマトリックスとなる樹脂、グリースは、エポキシ樹脂、フェノール樹脂等の熱硬化性樹脂や、ポリエチレン、ポリプロピレン、ポリアミド、ポリカーボネート、ポリイミド、ポリフェニレンサルファイド等の熱可塑性樹脂、またシリコーンゴム、EPR、SBR等のゴム類、シリコーンオイルが挙げられる。放熱材料として、樹脂又はグリース100重量部あたり150~1000重量部添加するのが良い。
 このような放熱材料には、本発明の球状窒化アルミニウム粉末以外に、アルミナ、窒化ホウ素、酸化亜鉛、炭化珪素、グラファイトなどのフィラーを一種、あるいは数種類充填しても良い。これらのフィラーは、例えばシランカップリング剤やリン酸又はリン酸塩などで表面処理したものを用いても良い。放熱材料の特性や用途に応じて、本発明の球状窒化アルミニウム粉末とそれ以外のフィラーの形状、粒径を選択すれば良い。また、放熱材料における球状窒化アルミニウム粉末とそれ以外のフィラーの混合比は、1:99~99:1の範囲で適宜調整できる。
 さらに、放熱材料には、可塑剤、加硫剤、硬化促進剤、離形剤等の添加剤をさらに添加しても良い。
 以下、本発明をさらに具体的に説明するが、本発明はこれらの実施例に限定されるものではない。実施例及び比較例における各種物性は、下記の方法により測定した。
(1)比表面積
 比表面積は、BET一点法にて測定を行った。
(2)アルミナ粉末又はアルミナ水和物粉末の球状造粒物の平均粒径
 振とうふるい機(田中化学機械製)を用いて、90、75、63、53、45、38、32、22μm網目のふるい(JIS Z8801)をセットし、試料20g(アルミナ又はアルミナ水和物の造粒物)を入れて7分間振動した後、各ふるい上の試料重量を測定し、ふるい上のふるい上残存率が重量積算で50%となる粒径(D50)を求めた。
(3)アルミナ粉末(未造粒物)、AlN粉末の平均粒径
 試料をホモジナイザーにて5%ピロリン酸ソーダ水溶液中に分散させ、レーザ回折粒度分布装置(日機装製MICROTRAC HRA)にて体積積算で50%となる平均粒径(D50)を測定した。
(4)AlN転化率
 X線回折(CuKα、10~70°)にて、検量線法によって窒化アルミニウム(AlN)の主要ピーク((100)面に由来するピーク)と各アルミナ成分(α-アルミナ,θ-アルミナ,γ-アルミナ、δ-アルミナ等)の主要ピークのピーク強度を求め、このピーク強度から下記式(1)よりAlN転化率を算出した。
 尚、その他の成分が含まれる場合は、その成分の主要ピークを選択し、式(1)の分母に加えた。
 AlN転化率(%)=(Q/R)×100    ……(1)
 式中、
  Qは、AlNピーク強度であり、
  Rは、AlNピーク強度と、アルミナ及びその他の成分のピーク強度と
 の合計である。
 各アルミナ成分の主要ピークの例
  α-アルミナ:(113)面に由来するピーク
  γ-アルミナ:(400)面に由来するピーク
  θ-アルミナ:(403)面に由来するピーク
  δ-アルミナ:(046)面に由来するピーク
(5)真球度
 電子顕微鏡の写真像から、任意の粒子100個を選んで、スケールを用いて粒子像の長径(DL)と短径(DS)とを測定し、その比(DS/DL)の平均値を真球度とした。
(6)陽イオン不純物含有量
 陽イオン不純物含有量(金属元素濃度)は、窒化アルミニウム粉末をアルカリ溶融後、酸で中和し、島津製作所製ICP-1000を使用して溶液のICP発光分析により定量した。
(7)平均圧壊強度
 AlN粉末の平均圧壊強度は、単一粒子の圧縮試験(JIS R 1639-5)によって求めた。微小圧縮試験機(島津製作所製MTC-W)を用いて、任意の粒子100個の単独粒子の圧縮試験を行い、破壊試験力と粒径より圧壊強度を求め、算術平均した。
(8)細孔径分布
 細孔分布測定装置(マイクロメリティックス社製、オートポアIV9510)を用い、水銀圧入法により、AlN粉末の細孔径分布を求めた。
(9)シリコーンゴムシートの熱伝導率
 AlN粉末が配合された熱伝導性シリコーンゴム組成物を、10cm×6cm、厚さ3mmの大きさに成形し150℃の熱風循環式オーブン中で1時間加熱して硬化し、熱伝導率計(京都電子工業製QTM-500)を用いてAlN粉末の熱伝導率を測定した。なお、検出部からの漏電防止のため、厚さ10μmのポリ塩化ビニリデンフイルムを介して測定した。
(10)シリコーンゴムシートの硬さの評価方法
 AlN粉末が配合された熱伝導性シリコーンゴム組成物を、150℃の熱風循環式オーブン中で1時間加熱して得た熱伝導性シリコーンゴムシートについて、JIS K6253によるデユロメータ硬さ試験機を用いて硬さを測定した。
(11)引っ張り強度
 前記熱伝導性シリコーンゴムシートについて、JIS K6301に準拠して引張試験を行い、破断時の引張強度を測定した。この引張強度が大きいほど、AlN粉末とマトリックスとの密着性が高い。
<実施例1>
 出発原料のアルミナ水和物粉末の造粒体として、下記のベーマイト造粒物を用意した。
ベーマイト造粒物;
   ふるい法による平均粒径(D50):40μm
   BET比表面積:135m/g
   真球度:0.98
 上記のベーマイト造粒物280gとカーボンブラック140gとを混合した。次いで、混合粉末をカーボン製容器に充填し、窒素流通下1600℃で3時間還元窒化させた後、空気流通下680℃で8時間酸化処理を行ってAlN粉末を得た。
 得られたAlN粉末について、前述の方法にて、平均粒径、比表面積、AlN転化率、真球度、圧壊強度並びに細孔径分布を測定した。結果を表1に示す。また、得られたAlN粉末のSEM写真を図3に示す。
 また、シリコーンゴムとして、ミゼラブル型シリコーン(モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社製TSE201)を用意した。
 上記で得られたAlN粉末450重量部と、上記のシリコーンゴム100重量部及び離型剤0.5重量部とを加圧ニーダーにて混練した。次いで、混練物を冷却した後に、ロールを用いて、更に架橋剤0.5重量部を混合した後、180℃で15分間加圧プレスして、縦10cm、横6cm、厚さ3mmのシートを得た。
 得られたシートについて、前述した方法で熱伝導率、硬さ及び引っ張り強度を測定した。結果を表1に示す。
<実施例2>
 窒化条件を1400℃、30時間とした以外は、実施例1と同様にしてAlN粉末を得た。
 得られたAlN粉末について、実施例1と同様、平均粒径、比表面積、AlN転化率、真球度、圧壊強度並びに細孔径分布を測定し、且つAlN粉末が配合されたシリコーンゴムシートについて、実施例1と同様に、熱伝導率、硬度及び引っ張り強度を測定した。これらの結果を表1に示す。
 また、得られたAlN粉末のSEM写真を図4に示す。
<実施例3>
 窒化条件を1650℃、15時間とした以外は、実施例1と同様にしてAlN粉末を得た。
 得られたAlN粉末について、実施例1と同様、平均粒径、比表面積、AlN転化率、真球度、圧壊強度並びに細孔径分布を測定し、且つAlN粉末が配合されたシリコーンゴムシートについて、実施例1と同様に、熱伝導率、硬度及び引っ張り強度を測定した。これらの結果を表1に示す。
 また、得られたAlN粉末のSEM写真を図5に示す。
<実施例4>
 出発原料のアルミナ粉末の造粒物として、下記のγ-アルミナ造粒物を用意した。
γ-アルミナ造粒物;
   ふるい法による平均粒径(D50):38μm
   BET比表面積:152m/g
   真球度:0.98
 上記のγ-アルミナ造粒物を出発原料として用いた以外は、実施例1と同様にAlN粉末を得た。
 得られたAlN粉末について、実施例1と同様、平均粒径、比表面積、AlN転化率、真球度、圧壊強度並びに細孔径分布を測定し、且つAlN粉末が配合されたシリコーンゴムシートについて、実施例1と同様に、熱伝導率、硬度及び引っ張り強度を測定した。これらの結果を表1に示す。
 また、得られたAlN粉末のSEM写真を図6に示す。
<実施例5>
 出発原料のアルミナ水和物粉末の造粒体として、下記のベーマイト造粒物を用意した。
ベーマイト造粒物;
   ふるい法による平均粒径(D50):20μm
   BET比表面積:51m/g
   真球度:0.98
 上記のベーマイト造粒物を出発原料として用いて、窒化条件を1650℃、3時間にした以外は、実施例1と同様にAlN粉末を得た。
 得られたAlN粉末について、実施例1と同様、平均粒径、比表面積、AlN転化率、真球度、圧壊強度並びに細孔径分布を測定し、且つAlN粉末が配合されたシリコーンゴムシートについて、実施例1と同様に、熱伝導率、硬度及び引っ張り強度を測定した。これらの結果を表1に示す。
 また、得られたAlN粉末のSEM写真を図7に示す。
<実施例6>
 出発原料のアルミナ粉末の造粒体として、下記のγ-アルミナ造粒物を用意した。
γ-アルミナ造粒物;
   ふるい法による平均粒径(D50):19μm
   BET比表面積:49m/g
   真球度:0.97
 上記のγ-アルミナ造粒物を出発原料として用いて、窒化条件を1650℃、3時間にした以外は、実施例1と同様にAlN粉末を得た。
 得られたAlN粉末について、実施例1と同様、平均粒径、比表面積、AlN転化率、真球度、圧壊強度並びに細孔径分布を測定し、且つAlN粉末が配合されたシリコーンゴムシートについて、実施例1と同様に、熱伝導率、硬度及び引っ張り強度を測定した。これらの結果を表1に示す。
 また、得られたAlN粉末のSEM写真を図8に示す。
<実施例7>
 実施例1で用いたベーマイト造粒物を、空気流通下1200℃で5時間熱処理してα-アルミナ化した。このα-アルミナ粒状物(ベーマイト熱処理物)の物性は以下のとおりである。
α-アルミナ粒状物(ベーマイト熱処理物);
   ふるい法による平均粒径(D50):25μm
   BET比表面積:10.7m/g
   真球度:0.95
 上記のα-アルミナ粒状物を用いて、実施例1と同様にして還元窒化を行い、AlN粉末を得た。
 得られたAlN粉末について、実施例1と同様、平均粒径、比表面積、AlN転化率、真球度、圧壊強度並びに細孔径分布を測定し、且つAlN粉末が配合されたシリコーンゴムシートについて、実施例1と同様に、熱伝導率、硬度及び引っ張り強度を測定した。これらの結果を表1に示す。
 また、得られたAlN粉末のSEM写真を図9に示す。
<実施例8>
 実施例6で用いたγ-アルミナ造粒物を、空気流通下1200℃で更に5時間熱処理してα-アルミナ化した。このα-アルミナ粒状物(γ―アルミナ熱処理物)の物性は以下のとおりである。
α-アルミナ造粒物;
   ふるい法による平均粒径(D50):19μm
   BET比表面積:4.8m/g
   真球度:0.95
 上記のα-アルミナ造粒物を用いた以外は、実施例1と同様にAlN粉末を得た。
 得られたAlN粉末について、実施例1と同様、平均粒径、比表面積、AlN転化率、真球度、圧壊強度並びに細孔径分布を測定し、且つAlN粉末が配合されたシリコーンゴムシートについて、実施例1と同様に、熱伝導率、硬度及び引っ張り強度を測定した。これらの結果を表1に示す。
 また、得られたAlN粉末のSEM写真を図10に示す。
<比較例1>
 下記の粒子特性を有するα-アルミナ粉末を用意した。
α-アルミナ粉末(非造粒物);
   レーザ回折散乱法による平均粒径(D50):1.2μm
   BET比表面積:9.5m/g
   真球度:0.65
 上記のα-アルミナ粉末280gとカーボンブラック140gを混合した。次いで、混合粉末をカーボン製容器に充填し、窒素流通下1600℃で3時間還元窒化させた後、空気流通下680℃で8時間酸化処理を行ってAlN粉末を得た。
 得られたAlN粉末100重量部に対し、イットリア5重量部、トルエン溶媒100重量部、メタクリル酸ブチル5重量部、ヘキサグリセリンモノオレート2重量部を加えてボールミルで5時間混合し、得られたスラリーをスプレードライにより平均粒径22μmの球状窒化アルミニウム粉末の造粒物を得た。尚、スプレードライは、下記条件で行った。
スプレードライ条件;
   入口温度:100℃
   出口温度:80℃
   アトマイザー回転数:13000rpm
 さらに得られた球状AlN造粒物を窒化ホウ素製容器に充填し、窒素流通化1750℃で5時間焼成し、球状AlN粉末を得た。
 得られたAlN粉末について、実施例1と同様、平均粒径、比表面積、AlN転化率、真球度、圧壊強度並びに細孔径分布を測定し、且つAlN粉末が配合されたシリコーンゴムシートについて、実施例1と同様に、熱伝導率、硬度及び引っ張り強度を測定した。これらの結果を表2に示す。
 また、得られたAlN粉末のSEM写真を図11に示す。
<比較例2>
 スラリーのスプレードライ条件を下記のように変更した以外は、比較例1と同様にして球状AlN粉末を得た。
スプレードライ条件;
   入口温度:100℃
   出口温度:80℃
   アトマイザー回転数:6000rpm
 得られたAlN粉末の平均粒径、比表面積、AlN転化率、真球度、圧壊強度並びに細孔径分布を測定し、且つAlN粉末が配合されたシリコーンゴムシートについて、実施例1と同様に、熱伝導率、硬度及び引っ張り強度を測定した。これらの結果を表2に示す。
 また、得られたAlN粉末のSEM写真を図12に示す。
<比較例3>
 出発原料として、溶射法により得られた下記粒子特性を有する球状アルミナを用意した。
溶射法による球状アルミナ(非造粒物);
   レーザ回折散乱法による平均粒径(D50):16μm
   BET比表面積:0.17m/g
   真球度:0.98
 上記の球状アルミナを用いた以外は、実施例1と同様にしてAlN粉末を得た。
 得られたAlN粉末について、実施例1と同様、平均粒径、比表面積、AlN転化率、真球度、圧壊強度並びに細孔径分布を測定し、且つAlN粉末が配合されたシリコーンゴムシートについて、実施例1と同様に、熱伝導率、硬度及び引っ張り強度を測定した。これらの結果を表2に示す。
 また、得られたAlN粉末のSEM写真を図13に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002

Claims (7)

  1.  アルミナ粉末又はアルミナ水和物粉末の球状造粒物を出発原料として使用し、該球状造粒物を、還元窒化工程に供給し、還元窒化を行うことを特徴とする球状窒化アルミニウム粉末の製造方法。
  2.  前記還元窒化工程に前記球状造粒物を供給する前に、該球状造粒物を、一旦、BET比表面積が少なくとも2m/g以上に維持される程度に熱処理する熱処理工程を含む、請求項1に記載の製造方法。
  3.  前記球状造粒物が、前記アルミナ粉末又はアルミナ水和物粉末のスプレードライにより得られたものであり、30~500m/gのBET比表面積を有している請求項1に記載の製造方法。
  4.  前記還元窒化工程において、還元剤が存在する窒素雰囲気において、1200~1800℃の温度で、前記球状造粒物またはその熱処理物の還元窒化が行われる請求項1記載の製造方法。
  5.  平均して0.8以上の真球度と100MPa以上の圧壊強度を有する粒子からなり、平均粒径(D50)が10~200μmの範囲にあり、BET比表面積が0.5~20m/gの範囲にあることを特徴とする球状窒化アルミニウム粉末。
  6.  細孔直径が2μm以下の細孔の容積が、0.02~1.0cm/gの範囲にある請求項5記載の球状窒化アルミニウム粉末。
  7.  請求項5に記載の球状窒化アルミニウム粉末よりなる放熱材料用フィラー。
PCT/JP2011/051886 2010-01-29 2011-01-31 球状窒化アルミニウム粉末の製造方法及び該方法により得られた球状窒化アルミニウム粉末 WO2011093488A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2011551953A JP5686748B2 (ja) 2010-01-29 2011-01-31 球状窒化アルミニウム粉末の製造方法及び該方法により得られた球状窒化アルミニウム粉末
CN201180005141.7A CN102686511B (zh) 2010-01-29 2011-01-31 球形氮化铝粉末的制造方法及通过该方法获得的球形氮化铝粉末
EP11737197.1A EP2530049B1 (en) 2010-01-29 2011-01-31 Process for production of spherical aluminum nitride powder, and spherical aluminum nitride powder produced by the process
US13/516,268 US9199848B2 (en) 2010-01-29 2011-01-31 Process for producing spherical aluminum nitride powder and spherical aluminum nitride powder produced by the same process
KR1020127019939A KR101545776B1 (ko) 2010-01-29 2011-01-31 구 형상 질화 알루미늄 분말의 제조 방법 및 상기 방법에 의해 얻어진 구 형상 질화 알루미늄 분말

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010-018515 2010-01-29
JP2010018515 2010-01-29
JP2010-083459 2010-03-31
JP2010083459 2010-03-31

Publications (1)

Publication Number Publication Date
WO2011093488A1 true WO2011093488A1 (ja) 2011-08-04

Family

ID=44319465

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/051886 WO2011093488A1 (ja) 2010-01-29 2011-01-31 球状窒化アルミニウム粉末の製造方法及び該方法により得られた球状窒化アルミニウム粉末

Country Status (7)

Country Link
US (1) US9199848B2 (ja)
EP (1) EP2530049B1 (ja)
JP (1) JP5686748B2 (ja)
KR (1) KR101545776B1 (ja)
CN (1) CN102686511B (ja)
TW (1) TWI573758B (ja)
WO (1) WO2011093488A1 (ja)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013087042A (ja) * 2011-10-21 2013-05-13 Tokuyama Corp 窒化アルミニウム焼結顆粒の製造方法
WO2014118993A1 (ja) * 2013-02-04 2014-08-07 株式会社トクヤマ 窒化アルミニウム焼結顆粒の製造方法
JP2016094315A (ja) * 2014-11-14 2016-05-26 株式会社トクヤマ 多孔質窒化アルミニウム粒子
JP2016124908A (ja) * 2014-12-26 2016-07-11 株式会社トクヤマ 樹脂成形体
JP2016164112A (ja) * 2015-03-06 2016-09-08 ナショナル チュン−シャン インスティテュート オブ サイエンス アンド テクノロジー 雰囲気が制御される炭素熱還元法によって窒化アルミニウム粉体の製造方法
JP2017178752A (ja) * 2016-03-31 2017-10-05 新日鉄住金マテリアルズ株式会社 球状AlN粒子、球状AlNフィラー、および、球状AlN粒子の製造方法
JP2017178751A (ja) * 2016-03-31 2017-10-05 新日鉄住金マテリアルズ株式会社 球状AlN粒子およびその製造方法
JP2019531247A (ja) * 2017-08-11 2019-10-31 エルジー・ケム・リミテッド 球状の窒化アルミニウム粉末を製造するための方法
CN110461461A (zh) * 2017-04-06 2019-11-15 萨索尔德国有限公司 生产磨蚀稳定的粒状材料的方法
JP2020083726A (ja) * 2018-11-29 2020-06-04 株式会社トクヤマ 窒化アルミニウム粉末
WO2020145304A1 (ja) * 2019-01-09 2020-07-16 株式会社燃焼合成 球状AlN粒子の製造方法、及び、球状AlN粒子
WO2020241716A1 (ja) * 2019-05-30 2020-12-03 デンカ株式会社 アルミナ粉末、樹脂組成物、放熱部品、及び被覆アルミナ粒子の製造方法
JP2021172535A (ja) * 2020-04-21 2021-11-01 信越化学工業株式会社 球状窒化アルミニウム粉末の製造方法および球状窒化アルミニウム粉末

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013095637A (ja) * 2011-11-01 2013-05-20 Shinano Denki Seiren Kk 球状α型炭化ケイ素、その製造方法、及び、該炭化ケイ素を原料としてなる焼結体又は有機樹脂複合体
TWI583622B (zh) * 2012-09-07 2017-05-21 德山股份有限公司 耐水性氮化鋁粉末之製造方法
WO2014123247A1 (ja) * 2013-02-08 2014-08-14 株式会社トクヤマ 窒化アルミニウム粉末
CN103589270A (zh) * 2013-10-12 2014-02-19 安徽自动化仪表有限公司 一种用于仪表壳的防火散热涂料及其制备方法
JP6216265B2 (ja) * 2014-03-04 2017-10-18 日東電工株式会社 窒化アルミニウム粉末、樹脂組成物、熱伝導性成形体、窒化アルミニウム粉末の製造方法、樹脂組成物の製造方法、及び、熱伝導性成形体の製造方法
CN104710792A (zh) * 2015-03-25 2015-06-17 合肥工业大学 一种球型核壳结构Al2O3/AlN导热粉体与高导热绝缘硅脂及其制备方法
CN104909762A (zh) * 2015-05-26 2015-09-16 北京科技大学 一种球形大颗粒氮化铝粉末的制备方法
CN105347779A (zh) * 2015-10-26 2016-02-24 西宁科进工业设计有限公司 一种氧化铝、氮化铝复合粉体的制造方法
JP6737819B2 (ja) * 2016-01-29 2020-08-12 株式会社トクヤマ 窒化アルミニウム粒子
US20180065852A1 (en) * 2016-09-07 2018-03-08 National Chung Shan Institute Of Science And Technology Method for preparing a spherical aln granule
CN106744739B (zh) * 2016-12-21 2019-02-15 潮州三环(集团)股份有限公司 氮化铝粉体的制备方法
TW201838913A (zh) 2017-01-18 2018-11-01 德商贏創德固賽有限責任公司 生產氮化鋁的方法與特殊氮化鋁本身
WO2018199322A1 (ja) 2017-04-27 2018-11-01 株式会社トクヤマ 窒化アルミニウム粒子
CN110691755B (zh) * 2017-05-22 2023-04-07 东洋铝株式会社 氮化铝系粉末及其制造方法
CN108863366A (zh) * 2018-07-11 2018-11-23 无锡市惠诚石墨烯技术应用有限公司 一种基于石墨烯制备高导热氮化铝粉末的方法
CN112543743B (zh) * 2018-08-06 2022-03-29 丸和公司 球形氮化铝粉末及其制备方法
KR102584925B1 (ko) * 2018-08-28 2023-10-04 주식회사 엘지화학 구형의 질화알루미늄의 제조방법
JPWO2020194974A1 (ja) * 2019-03-22 2020-10-01
JP7308636B2 (ja) * 2019-03-27 2023-07-14 株式会社トクヤマ 窒化アルミニウムからなる複合構造体
WO2021100807A1 (ja) * 2019-11-21 2021-05-27 デンカ株式会社 窒化ホウ素粉末の粒子圧壊強度を調整する方法、窒化ホウ素粉末及びその製造方法
CN112499602A (zh) * 2020-12-02 2021-03-16 天津泽希新材料有限公司 一种球形微米级氮化铝粉末的制备方法
KR102529239B1 (ko) * 2021-05-26 2023-05-08 주식회사 케이씨씨 미립 구상 방열 소재 및 이의 제조방법
CN114751733B (zh) * 2022-04-25 2023-03-21 中国振华集团云科电子有限公司 一种具备低温度系数球形陶瓷填料生产方法
CN115196970B (zh) * 2022-08-08 2023-07-04 四川大学 一种高流动性AlON球形粉体的制备方法
CN116253571A (zh) * 2023-03-16 2023-06-13 无锡海古德新技术有限公司 一种氮化铝陶瓷造粒粉及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62207703A (ja) * 1986-03-06 1987-09-12 Tokuyama Soda Co Ltd 窒化アルミニウム粉末の製造方法
JPH01119573A (ja) * 1986-12-11 1989-05-11 Shin Nippon Kagaku Kogyo Co Ltd 多孔質体およびその製造方法
JPH0474705A (ja) * 1990-07-09 1992-03-10 Lion Corp 球状窒化アルミニウム及びその製造方法
JPH0952704A (ja) * 1995-08-09 1997-02-25 Tokuyama Corp 窒化アルミニウム顆粒及びその製造方法
JP2002097006A (ja) * 2000-09-20 2002-04-02 Fine Ceramics Research Association 窒化アルミニウムの製法
JP2005162555A (ja) * 2003-12-04 2005-06-23 Tokuyama Corp 球状窒化アルミニウムおよび、その製法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3777564D1 (de) 1986-12-11 1992-04-23 Asahi Chemical Ind Aluminiumnitridprodukte und verfahren zu ihrer herstellung.
JPH0323206A (ja) 1989-06-20 1991-01-31 Showa Denko Kk 窒化アルミニウム粉末及びその製造方法
JPH11269302A (ja) 1998-03-23 1999-10-05 Nishimura Togyo Kk 樹脂製品の熱伝導性向上用充填剤及びその製造方法
JP3991098B2 (ja) * 2000-10-23 2007-10-17 独立行政法人産業技術総合研究所 火炎で合成した窒化アルミニウム製フィラー粉体
JP3911554B2 (ja) 2000-12-13 2007-05-09 独立行政法人産業技術総合研究所 球状窒化アルミニウムフィラー及びその製造方法
US20050173094A1 (en) 2002-05-22 2005-08-11 Masayuki Mori Particulate aluminum nitride and method for producing thereof
CN100545082C (zh) 2004-03-29 2009-09-30 电气化学工业株式会社 氮化铝粉末及氮化铝烧结体
JP5645559B2 (ja) * 2010-09-03 2014-12-24 株式会社トクヤマ 球状窒化アルミニウム粉末
JP5618734B2 (ja) * 2010-09-28 2014-11-05 株式会社トクヤマ 球状窒化アルミニウム粉末
CN103140436B (zh) * 2010-12-06 2015-06-10 株式会社德山 氮化铝粉末及其制造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62207703A (ja) * 1986-03-06 1987-09-12 Tokuyama Soda Co Ltd 窒化アルミニウム粉末の製造方法
JPH01119573A (ja) * 1986-12-11 1989-05-11 Shin Nippon Kagaku Kogyo Co Ltd 多孔質体およびその製造方法
JPH0474705A (ja) * 1990-07-09 1992-03-10 Lion Corp 球状窒化アルミニウム及びその製造方法
JPH0952704A (ja) * 1995-08-09 1997-02-25 Tokuyama Corp 窒化アルミニウム顆粒及びその製造方法
JP2002097006A (ja) * 2000-09-20 2002-04-02 Fine Ceramics Research Association 窒化アルミニウムの製法
JP2005162555A (ja) * 2003-12-04 2005-06-23 Tokuyama Corp 球状窒化アルミニウムおよび、その製法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2530049A4 *

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013087042A (ja) * 2011-10-21 2013-05-13 Tokuyama Corp 窒化アルミニウム焼結顆粒の製造方法
WO2014118993A1 (ja) * 2013-02-04 2014-08-07 株式会社トクヤマ 窒化アルミニウム焼結顆粒の製造方法
US9403680B2 (en) 2013-02-04 2016-08-02 Tokuyama Corporation Method for producing sintered aluminum nitride granules
JP2016094315A (ja) * 2014-11-14 2016-05-26 株式会社トクヤマ 多孔質窒化アルミニウム粒子
JP2016124908A (ja) * 2014-12-26 2016-07-11 株式会社トクヤマ 樹脂成形体
JP2016164112A (ja) * 2015-03-06 2016-09-08 ナショナル チュン−シャン インスティテュート オブ サイエンス アンド テクノロジー 雰囲気が制御される炭素熱還元法によって窒化アルミニウム粉体の製造方法
JP2017178752A (ja) * 2016-03-31 2017-10-05 新日鉄住金マテリアルズ株式会社 球状AlN粒子、球状AlNフィラー、および、球状AlN粒子の製造方法
JP2017178751A (ja) * 2016-03-31 2017-10-05 新日鉄住金マテリアルズ株式会社 球状AlN粒子およびその製造方法
CN110461461A (zh) * 2017-04-06 2019-11-15 萨索尔德国有限公司 生产磨蚀稳定的粒状材料的方法
JP7182557B2 (ja) 2017-04-06 2022-12-02 サゾル ジャーマニー ゲーエムベーハー 摩耗安定粒状材料の製造のためのプロセス
JP2020518430A (ja) * 2017-04-06 2020-06-25 サゾル ジャーマニー ゲーエムベーハー 摩耗安定粒状材料の製造のためのプロセス
US11559798B2 (en) 2017-04-06 2023-01-24 Sasol Germany Gmbh Process for production of attrition stable granulated material
JP2019531247A (ja) * 2017-08-11 2019-10-31 エルジー・ケム・リミテッド 球状の窒化アルミニウム粉末を製造するための方法
JP2020083726A (ja) * 2018-11-29 2020-06-04 株式会社トクヤマ 窒化アルミニウム粉末
JP7129892B2 (ja) 2018-11-29 2022-09-02 株式会社トクヤマ 窒化アルミニウム粉末
JP2020111477A (ja) * 2019-01-09 2020-07-27 株式会社燃焼合成 球状AlN粒子の製造方法、及び、球状AlN粒子
JP7185865B2 (ja) 2019-01-09 2022-12-08 株式会社燃焼合成 球状AlN粒子の製造方法
WO2020145304A1 (ja) * 2019-01-09 2020-07-16 株式会社燃焼合成 球状AlN粒子の製造方法、及び、球状AlN粒子
WO2020241716A1 (ja) * 2019-05-30 2020-12-03 デンカ株式会社 アルミナ粉末、樹脂組成物、放熱部品、及び被覆アルミナ粒子の製造方法
JP2021172535A (ja) * 2020-04-21 2021-11-01 信越化学工業株式会社 球状窒化アルミニウム粉末の製造方法および球状窒化アルミニウム粉末
JP7316249B2 (ja) 2020-04-21 2023-07-27 信越化学工業株式会社 球状窒化アルミニウム粉末の製造方法

Also Published As

Publication number Publication date
KR20120120268A (ko) 2012-11-01
JP5686748B2 (ja) 2015-03-18
CN102686511A (zh) 2012-09-19
US20120258310A1 (en) 2012-10-11
CN102686511B (zh) 2014-11-19
TW201132579A (en) 2011-10-01
EP2530049A1 (en) 2012-12-05
JPWO2011093488A1 (ja) 2013-06-06
TWI573758B (zh) 2017-03-11
US9199848B2 (en) 2015-12-01
EP2530049A4 (en) 2014-06-04
KR101545776B1 (ko) 2015-08-19
EP2530049B1 (en) 2016-07-20

Similar Documents

Publication Publication Date Title
JP5686748B2 (ja) 球状窒化アルミニウム粉末の製造方法及び該方法により得られた球状窒化アルミニウム粉末
JP5645559B2 (ja) 球状窒化アルミニウム粉末
JP5618734B2 (ja) 球状窒化アルミニウム粉末
JP4750220B2 (ja) 六方晶窒化ホウ素粉末およびその製造方法
JP5875525B2 (ja) 窒化アルミニウム粉末の製造方法
JP6979034B2 (ja) 六方晶窒化ホウ素粉末及びその製造方法
JP6038886B2 (ja) 窒化アルミニウム粉末の製造方法
JP2017036190A (ja) 窒化ホウ素凝集粒子組成物、bn凝集粒子含有樹脂組成物及びそれらの成形体、並びに窒化ホウ素凝集粒子の製造方法、
JP5877684B2 (ja) 窒化アルミニウム焼結顆粒の製造方法
JP2012121742A (ja) 球状窒化アルミニウム粉末の製造方法
WO2014118993A1 (ja) 窒化アルミニウム焼結顆粒の製造方法
JP7316249B2 (ja) 球状窒化アルミニウム粉末の製造方法
JP2023049232A (ja) 球状窒化アルミニウム粉末の製造方法
CN113226983B (zh) 氮化铝粒子
TW202302448A (zh) 六方晶氮化硼凝集粒子及六方晶氮化硼粉末、樹脂組成物、樹脂片
TW202330393A (zh) 填料用六方氮化硼粉末

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180005141.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11737197

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011551953

Country of ref document: JP

REEP Request for entry into the european phase

Ref document number: 2011737197

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13516268

Country of ref document: US

Ref document number: 2011737197

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20127019939

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE