WO2011093141A1 - エンジンの吸気系に用いられる制御弁の制御装置及び制御方法 - Google Patents

エンジンの吸気系に用いられる制御弁の制御装置及び制御方法 Download PDF

Info

Publication number
WO2011093141A1
WO2011093141A1 PCT/JP2011/050473 JP2011050473W WO2011093141A1 WO 2011093141 A1 WO2011093141 A1 WO 2011093141A1 JP 2011050473 W JP2011050473 W JP 2011050473W WO 2011093141 A1 WO2011093141 A1 WO 2011093141A1
Authority
WO
WIPO (PCT)
Prior art keywords
control valve
target opening
intake system
engine
opening
Prior art date
Application number
PCT/JP2011/050473
Other languages
English (en)
French (fr)
Inventor
和成 井出
恒 高柳
博義 久保
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to US13/388,156 priority Critical patent/US9500148B2/en
Priority to KR1020127000432A priority patent/KR101361907B1/ko
Priority to EP11736856.3A priority patent/EP2444642B1/en
Publication of WO2011093141A1 publication Critical patent/WO2011093141A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/0047Controlling exhaust gas recirculation [EGR]
    • F02D41/0077Control of the EGR valve or actuator, e.g. duty cycle, closed loop control of position
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/22Safety or indicating devices for abnormal conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D21/00Controlling engines characterised by their being supplied with non-airborne oxygen or other non-fuel gas
    • F02D21/06Controlling engines characterised by their being supplied with non-airborne oxygen or other non-fuel gas peculiar to engines having other non-fuel gas added to combustion air
    • F02D21/08Controlling engines characterised by their being supplied with non-airborne oxygen or other non-fuel gas peculiar to engines having other non-fuel gas added to combustion air the other gas being the exhaust gas of engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D35/00Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for
    • F02D35/0007Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for using electrical feedback
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/22Safety or indicating devices for abnormal conditions
    • F02D41/221Safety or indicating devices for abnormal conditions relating to the failure of actuators or electrically driven elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D9/00Controlling engines by throttling air or fuel-and-air induction conduits or exhaust conduits
    • F02D9/02Controlling engines by throttling air or fuel-and-air induction conduits or exhaust conduits concerning induction conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D2041/1409Introducing closed-loop corrections characterised by the control or regulation method using at least a proportional, integral or derivative controller
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/0047Controlling exhaust gas recirculation [EGR]
    • F02D41/005Controlling exhaust gas recirculation [EGR] according to engine operating conditions
    • F02D41/0052Feedback control of engine parameters, e.g. for control of air/fuel ratio or intake air amount
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/04EGR systems specially adapted for supercharged engines with a single turbocharger
    • F02M26/05High pressure loops, i.e. wherein recirculated exhaust gas is taken out from the exhaust system upstream of the turbine and reintroduced into the intake system downstream of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/22Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/22Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
    • F02M26/23Layout, e.g. schematics
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the present invention is provided in an intake system of an engine, and includes an intake throttle valve for controlling an intake air amount to the engine or an EGR valve for controlling an EGR amount, and a control valve used for the intake system, and an operating state of the engine And a control means for determining a target opening of a control valve used in the intake system according to the control and adjusting the opening of the control valve used in the intake system so as to coincide with the target opening.
  • the present invention relates to a control device and a control method for a control valve used in an intake system.
  • An exhaust gas recirculation (hereinafter referred to as EGR) device is known as a technique for reducing nitrogen oxide (NOx) in exhaust gas of an internal combustion engine.
  • the EGR device recirculates EGR gas obtained by extracting a part of exhaust gas from the exhaust passage of the internal combustion engine to the intake passage through the EGR passage. That is, when EGR is used, new intake air and a part of the exhaust gas, that is, EGR gas is mixed and introduced into the combustion chamber of the engine.
  • an EGR control valve for controlling the flow rate of the EGR gas is provided in the EGR passage, and the amount of EGR gas recirculated to the intake passage is controlled by controlling the opening degree of the EGR control valve.
  • the EGR control valve fails, the amount of EGR gas that recirculates to the intake passage cannot be controlled, and there is a possibility that the amount of EGR gas that recirculates to the intake passage is excessive or insufficient, or that the EGR gas stops. is there.
  • Patent Document 1 discloses an actual opening that changes following a change in the target opening after the target opening starts changing when an EGR operation condition in which the target opening of the EGR control valve changes by a predetermined amount or more is established. Is detected by the actual opening detection means, and when it is confirmed that the detected actual opening does not change following the target opening, a technique for determining that the device including the EGR control valve has failed is disclosed. Has been.
  • an EGR control valve 102 provided with a valve shaft 102b and a reciprocating drive shaft 112 arranged on the extension of the valve shaft 102b reciprocate in the axial direction.
  • the reciprocating drive shaft 112 of the drive means opens the EGR control valve 102 by pressing the front end of the central axis of the EGR control valve 102 when the drive means is operated.
  • the control means determines that a failure has occurred in the EGR control valve 102 depending on the duty ratio of a control signal oscillated by the control means with respect to the drive means 106. It is disclosed.
  • the sticking of the control valve due to running out of lubricating oil due to being held is not limited to the EGR control valve, but also in the intake system of other engines such as a throttle valve provided in the intake passage for intake to the engine from the outside The same is true for the control valve used.
  • the present invention is directed to the intake system even under operating conditions in which the target opening of the control valve used in the intake system of the engine matches the actual opening and the target opening does not change. It is possible to detect a failure of the control valve used in the engine, and the motor bearing is caused by running out of lubricating oil caused by holding the control valve used in the intake system at the same opening for a long time.
  • An object of the present invention is to provide a control device and a control method for a control valve used in an intake system of an engine, which can prevent the control valve used in the intake system from sticking due to damage.
  • an intake throttle valve for controlling the intake air amount to the engine or an EGR valve for controlling the EGR amount, which is provided in the intake system of the engine, and used for the intake system
  • the target opening of the control valve used for the intake system is determined according to the valve and the operating state of the engine, and the opening of the control valve used for the intake system is adjusted so as to match the target opening
  • a control valve used in an intake system of an engine comprising a control means, wherein the control means determines the target opening when the target opening remains the same for a predetermined time or more. It is configured to prevent and detect a failure of a control valve used in the intake system by changing over time from a target opening determined in accordance with the operating state of the engine.
  • the opening of the control valve used in the intake system is not maintained at the same opening for a long time. Therefore, sticking of the control valve used in the intake system due to damage to the motor bearing caused by holding the opening of the control valve used in the intake system at the same opening for a long time can be avoided. Further, since the target opening is changed with time, there is no problem that a failure cannot be detected under an operating condition in which the target opening does not change as in the prior art. A failure of the control valve used in the intake system can be detected by confirming the tracking of the actual opening of the control valve used.
  • control means changes the target opening over time within a dead zone region where there is no influence on the intake air amount or EGR amount even if the opening of a control valve used in the intake system changes. It is good to be configured.
  • EGR gas flow rate, EGR mixing rate during intake (EGR rate), intake flow rate, excess oxygen rate, air There is a dead zone where the excess rate hardly changes.
  • the dead zone region varies depending on the size and structure of the valve, and the range is unique to the valve. However, the range of about 60 to 100% of the opening is the dead zone region in many cases.
  • the present invention can be implemented with little influence on the operating state of the engine.
  • control means when the control means changes the target opening over time, a time during which a difference between the target opening and an actual opening of a control valve used in the intake system is equal to or greater than a predetermined allowable value.
  • it may be configured to determine that the control valve used in the intake system has failed when the operation continues for a predetermined allowable time or longer. Thereby, it is possible to reliably determine the failure of the control valve used in the intake system.
  • a difference between the target opening and an actual opening of a control valve used in the intake system becomes equal to or greater than a predetermined allowable value.
  • the target opening may be held without changing.
  • the reason why the difference between the target opening and the actual opening of the control valve used in the intake system is greater than or equal to a predetermined allowable value is that the opening of the control valve used in the intake system does not change. It is possible to specify whether the cause is the slow follow-up of the change in the opening degree to the command value.
  • control means forcibly sets the target opening to the dead zone when the target opening is not kept the same for a certain period of time and the target opening is within the dead zone. It is better to keep it constant within the range. As a result, it is possible to avoid frequent operation of the control valve used in the intake system in the dead zone when it is not necessary to change the target opening over time. Thereby, the valve shaft of the control valve used in the intake system operates more than necessary, and troubles such as wear of the seal of the valve shaft portion and leakage of exhaust gas from the seal portion can be avoided.
  • control means holds a function representing a relationship between a parameter ⁇ determined according to an operating state of the engine and the target opening, and determines the target opening based on the parameter ⁇ , It is preferable to give hysteresis to the function.
  • a control valve used in an intake system which is a throttle valve for controlling an intake air amount to the engine or an EGR valve for controlling an EGR amount according to an operating state of the engine
  • the target opening is A failure of a control valve used in the intake system by changing the target opening over time from a target opening determined in accordance with the operating state of the engine when the same opening is maintained for a certain period of time. It is characterized by prevention and failure detection.
  • the target opening is changed with time within a dead zone where there is no influence on the intake air amount or the EGR amount even if the opening of a control valve used in the intake system changes.
  • the time during which the difference between the target opening and the actual opening of the control valve used in the intake system is equal to or greater than a predetermined allowable value is a predetermined allowable value. If it continues for more than a certain time, it may be determined that the control valve used in the intake system has failed.
  • the target opening is changed over time, if the difference between the target opening and the actual opening of the control valve used in the intake system is equal to or greater than a predetermined allowable value, It is good to hold without changing the target opening.
  • the target opening when the target opening is not kept the same for the predetermined time or more and the target opening is within the dead zone, the target opening is forcibly fixed within the dead zone. It is good to fix to.
  • the control valve used for the intake system fails.
  • the motor bearing is damaged and used for the intake system due to running out of lubricating oil caused by holding the control valve used for the intake system at the same opening for a long time. It is possible to prevent sticking of the control valve.
  • 3 is a flowchart illustrating a control procedure regarding a change in a target opening degree of an EGR control valve according to the first embodiment. It is a flowchart which shows the procedure of a dead zone determination process. It is a flowchart which shows the procedure of the process of judgment of abnormality of the EGR control valve in EGR valve sticking prevention mode. It is a flowchart which shows another example which shows the procedure of the process of judgment of abnormality of the EGR control valve in EGR valve sticking prevention mode.
  • FIG. 6 is a flowchart illustrating a control procedure related to a change in a target opening degree of an EGR control valve according to a second embodiment. It is the flowchart which showed the procedure of hysteresis operation determination. It is a flowchart which shows the procedure of the process in hysteresis operation mode. It is sectional drawing of the EGR control valve periphery in a prior art example.
  • FIG. 1 is a schematic diagram illustrating an EGR device to which the control device for an EGR control valve according to the first embodiment is applied.
  • the engine 2 is a four-cycle diesel engine having four cylinders.
  • An intake passage 8 is joined to the engine 2 via an intake manifold 6 and an exhaust passage 12 is connected via an exhaust manifold 10.
  • the intake passage 8 is provided with a compressor 14 a of the turbocharger 14.
  • the compressor 14a is coaxially driven by a turbine 14b described later.
  • An intercooler 16 for exchanging heat between the intake air flowing through the intake passage 8 and the atmosphere is provided downstream of the compressor 14a in the intake passage 8.
  • a throttle valve 18 that adjusts the flow rate of intake air flowing through the intake passage 8 is provided downstream of the intercooler 16 in the intake passage 8.
  • a turbine 14b of the turbocharger 14 is provided in the exhaust passage 12.
  • the turbine 14 b is driven by exhaust gas from the engine 2.
  • the exhaust manifold 10 is connected to an EGR passage 20 that recirculates a part of the exhaust to the intake side.
  • the EGR passage 20 is provided with an EGR cooler 22 and an EGR control valve 24.
  • the EGR cooler 22 is provided closer to the exhaust manifold 10 than the EGR control valve 24.
  • the EGR cooler 22 exchanges heat between the EGR gas passing through the EGR cooler 22 and the cooling water to lower the temperature of the EGR gas.
  • the EGR control valve 24 controls the flow rate of EGR gas flowing through the EGR passage 20.
  • the opening degree of the EGR control valve 24 and the throttle valve 18 is controlled by an engine control unit (ECU) 40.
  • ECU 40 engine control unit
  • actual opening amounts of the EGR control valve 24 and the throttle valve 18 are inputted, and an intake air temperature sensor 28 and an intake pressure sensor 30 attached to the intake passage 8 or the intake manifold 6 on the downstream side of the throttle valve 18.
  • the detected values are input via A / D converters 43 and 44, respectively.
  • the detected value of the intake flow rate detected by the air flow meter 26 attached to the intake passage 8 on the upstream side of the compressor 14 a is input via the A / D converter 42.
  • the detection value of the engine speed sensor 32 is input via the pulse count circuit 47.
  • the CPU 48 calculates the target opening degree of the EGR control valve 24 and the throttle valve 18 based on the respective input values described above, and the opening degree of the EGR control valve 24 and the throttle valve 18 via the drive circuits 45 and 46. To control. Further, the CPU 48 calculates the fuel injection amount to the engine 4 based on the respective input values described above, and controls the fuel injection amount to the engine 4 via the injector drive circuit 41.
  • FIG. 2 shows an example of control logic performed by the ECU 40.
  • the engine speed [rpm] and the fuel injection amount [mg / st] to the engine 2 are input to the ECU 40 in the target ⁇ map 51 and the target ⁇ O 2 map 52, and the target ⁇ and the target ⁇ O are based on the input values. 2 is created.
  • is a value determined by the opening degrees of the EGR control valve 24 and the throttle valve 18, and will be described in detail later.
  • ⁇ O 2 is the oxygen excess rate.
  • ⁇ O 2 is estimated from the air flow rate [kg / s], the intake manifold pressure (intake manifold pressure) [kPa], the intake manifold temperature [° C.], the engine speed [rpm], the fuel injection amount [mg / st], and the like.
  • a value calculation 53 is performed.
  • an error between the target ⁇ O 2 and the calculated value of the estimated value of ⁇ O 2 is calculated by the subtraction processing 54, and PID control 55 is performed based on the error.
  • the parameter ⁇ is determined by the PID control 55, addition processing between the ⁇ and the target ⁇ is performed, and a saturation calculation 57 is performed, so that ⁇ is corrected.
  • the function 58 for determining the opening degree of the EGR control valve 24 from the parameter ⁇ and the function 59 for determining the opening degree of the throttle valve 18 from the parameter ⁇ , the EGR control valve 24 and the slot valve 18 Determine the opening command value.
  • the functions 58 and 59 are stored in the ECU 40 in advance.
  • the EGR control valve 24 and the throttle valve 18 have a fully open position and a fully closed position, that is, there is saturation. For this reason, when the EGR control valve 24 or the throttle valve 18 is fully opened or fully closed, the control deviation remains.
  • the error used for the PID control 55 is maintained in a non-zero state, the integral value in the PID control 55 continues to increase, resulting in a windup problem in which the control responsiveness deteriorates.
  • the difference between the parameter ⁇ obtained by the PID control and the parameter ⁇ corrected by the saturation calculation 39 is calculated by the subtraction process 60, and antiwindup compensation is performed based on the difference. ing.
  • EGR control valve 24 and the throttle valve 18 have almost the same EGR gas flow rate, EGR mixing rate (EGR rate) during intake, intake flow rate, excess oxygen rate, excess air rate, etc. There is a region that does not change (hereinafter referred to as a dead zone region).
  • FIG. 3 is a graph showing an example of the characteristics of the EGR control valve 24, and FIG. 4 is a graph showing an example of the characteristics of the throttle valve 18.
  • the vertical axis represents the oxygen excess rate ⁇ O 2
  • the horizontal axis represents the opening degree [%] of the EGR control valve 24.
  • the vertical axis represents the oxygen excess ratio ⁇ O 2
  • the horizontal axis represents the opening degree [%] of the throttle valve 18.
  • the dead zone region is a region where the opening degree of the EGR control valve 24 is about 60 to 100%.
  • EGR gas flow rate EGR mixing rate (EGR rate) during intake, intake flow rate, excess air rate, etc.
  • EGR rate EGR mixing rate
  • the area where the opening degree of the throttle valve 18 is about 70 to 100%, particularly 80 to 100% is the dead zone.
  • FIG. 5 shows an example of a function for determining the opening degree of the EGR control valve 24 from the parameter ⁇ and a function for determining the opening degree of the throttle valve 18 from the parameter ⁇ .
  • the functions 58 and 58 shown in FIG. This corresponds to 59.
  • the vertical axis represents the target value (command value) of the opening degree of the EGR control valve
  • the horizontal axis represents ⁇ .
  • the vertical axis represents the target value (command value) of the throttle valve opening
  • the horizontal axis represents ⁇ .
  • is a value determined by the opening degree of the EGR control valve and the opening degree of the throttle valve.
  • region indicated by a in the upper diagram of FIG. 5 indicates the dead zone region of the EGR control valve
  • region indicated by b indicates the region sensitive to the opening degree of the EGR control valve
  • a region indicated by a ′ indicates a dead zone region of the throttle valve
  • a region indicated by b ′ indicates a region sensitive to the opening of the throttle valve.
  • the target opening degree of the EGR control valve 24 is 100%, and the opening degree of the EGR control valve 24 is the same opening degree (100%) for a long time.
  • the motor bearing lubricating oil (oil curtain) runs out as shown by 101 in FIG. 18, and the motor bearing is damaged due to the running out of lubricating oil, and there is a risk of malfunction or sticking to the EGR control valve. It sometimes occurred.
  • the target opening does not change, so even if the EGR control valve fails, the target opening and the actual opening coincide with each other at the time of failure. It was not detected.
  • the opening degree of the EGR control valve in the dead zone region where the opening degree of the EGR control valve is about 60 to 100%, attention is paid to the fact that the excess oxygen ratio ⁇ O 2 and the like hardly change even if the opening degree of the EGR control valve is changed.
  • the target value of the opening degree of the EGR control valve is kept the same for a certain time or longer, the target value is changed in the dead zone region as indicated by c in the upper diagram of FIG.
  • the target opening degree of the EGR control valve 24 changes, so that the EGR control valve sticking due to the damage of the motor bearing caused by holding the opening degree of the EGR control valve at the same opening degree for a long time is avoided. And a failure of the EGR control valve can be detected.
  • Such a change in the dead zone region of the target opening of the EGR control valve can be performed if the target valve opening is ⁇ in the dead zone region, and can be implemented when ⁇ ⁇ 1 in FIG. .
  • FIG. 6 is a graph showing the change over time of the target opening of the EGR control valve when the target opening of the EGR control valve is changed in the dead zone region.
  • the vertical axis represents the target opening of the EGR control valve
  • the horizontal axis represents time.
  • the target opening of the EGR control valve is changed to a wave shape.
  • the target opening degree of the EGR control valve is changed so that the graph of the time change of the target opening degree of the EGR control valve has a wave shape. If the degree changes with time, the graph can be changed to be rectangular, for example.
  • FIG. 7 is a graph showing the change over time of the target opening of the throttle valve when the target opening of the EGR control valve is changed in the dead zone region.
  • the vertical axis represents the target opening of the throttle valve
  • the horizontal axis represents time. At this time, the target opening of the throttle valve does not change.
  • FIG. 8 is a flowchart showing a control procedure related to a change in the target opening degree of the EGR control valve.
  • the cooling water means engine cooling water
  • T1 is a specified temperature. If NO in step S101, that is, if the cooling water temperature is equal to or lower than T1, the process proceeds to step S108, stops the EGR without performing the EGR operation, and ends the process. If YES in step S101, that is, if the coolant temperature is higher than T1, the process proceeds to step S102.
  • step S102 dead zone determination is performed.
  • the dead zone determination is performed according to the flowchart shown in FIG. The dead zone determination will be described with reference to FIG.
  • step S201 it is determined in step S201 whether ⁇ is smaller than ⁇ 1.
  • is a value commanded by the logic shown in FIG. 2
  • ⁇ 1 is a boundary value of ⁇ in which the target valve opening is in the dead zone region, and corresponds to ⁇ 1 shown in FIG. If YES in step S201, that is, if ⁇ ⁇ 1, the process proceeds to step S202, the dead zone determination flag is turned on, and the process ends. If NO in step S201, that is, if ⁇ ⁇ ⁇ 1, the process proceeds to step S203, where the dead zone determination flag is turned off and the process ends.
  • step S102 in the flowchart shown in FIG. 8 when the dead zone determination is completed according to the flowchart shown in FIG. 9, the process proceeds to step S103.
  • step S103 it is determined whether or not the dead zone determination flag is ON. If NO in step S3, that is, if the dead zone determination flag is OFF, the process proceeds to step S107 and is commanded by the function 58 without forcibly changing the normal control mode of the EGR control valve, that is, the target opening of the EGR control valve as in the conventional case.
  • the opening degree of the EGR control valve is controlled according to the opening degree command of the EGR control valve.
  • step S104 it is determined whether it is a sticking prevention operation timing. As described above, when the opening degree of the EGR control valve is maintained at the same opening degree for a long time, the lubricating oil runs out, the motor bearing is damaged, and the EGR control valve is fixed. Therefore, when the target value of the opening degree of the EGR control valve is not constant for a long time, the sticking or the like does not occur. Therefore, in step S104, it is determined whether or not the target value of the opening degree of the EGR control valve is constant over a certain period of time when it is necessary to perform the sticking prevention operation.
  • the predetermined time is determined individually for each EGR control valve according to the performance of the EGR control valve to be used, equipment around the engine, and the like.
  • step S104 determines NO in step S104, that is, it is not the sticking prevention operation timing
  • step S107 the EGR control valve normal control mode, that is, the EGR control valve target opening is not forcibly changed as in the prior art. Controls the opening of the control valve.
  • step S106 the opening of the EGR control valve is controlled in the EGR valve sticking prevention mode, and the process is terminated.
  • the target value of the opening degree of the EGR control valve is changed within the range of the dead zone.
  • an abnormality of the EGR control valve can be determined from the target value and the actual opening of the EGR control valve. Determination of abnormality of the EGR control valve in the EGR valve sticking prevention mode will be described using the flowchart shown in FIG.
  • FIG. 10 is a flowchart showing a procedure of processing for determining abnormality of the EGR control valve in the EGR valve sticking prevention mode.
  • the process proceeds to step S301.
  • step S301 a command value for the opening degree of the EGR control valve is calculated. This can be obtained by calculating ⁇ in accordance with the logic procedure shown in FIG.
  • step S301 ends, the process proceeds to step S302.
  • step S302 an EGR control valve opening command is output.
  • step S302 ends, the process proceeds to step S303.
  • step S303 an EGR valve opening deviation e is calculated. This means the difference between the command value of the EGR valve opening and the actually measured value.
  • step S304 it is determined whether the absolute value
  • the allowable value means an upper limit value of
  • the allowable value is a value determined individually for each EGR control valve depending on the performance of the EGR control valve, equipment around the engine, and the like.
  • step S304 If NO in step S304, that is, if
  • t e the duration of the state in which
  • t s the calculation cycle.
  • the calculation cycle t s is meant a period processing from the start of the flowchart in FIG. 10 to the end is executed.
  • (1) is the current duration duration t e shown in the left-hand side in the equation
  • the duration time t e shown in the right-hand side refers to the duration of one period before.
  • step S305 ends, the process proceeds to step S306.
  • t e calculated in step S305 it is determined whether longer or not than the allowed time.
  • the allowable time is,
  • the allowable time is a value determined individually for each EGR control valve depending on the performance of the EGR control valve, equipment around the engine, and the like.
  • step S306 determines that the "EGR valve operation abnormality", and the process is terminated stopping the EGR control in Step S308.
  • FIG. 11 is a flowchart showing another example of a procedure for determining an abnormality of the EGR control valve in the EGR valve sticking prevention mode.
  • steps S401 to S405 are the same as steps S301 to S305 in the flowchart shown in FIG.
  • steps S407 to S410 are the same as steps S306 to S309 in the flowchart shown in FIG. Therefore, in FIG. 11, description is abbreviate
  • step S404 when> is determined that the allowable value, after calculating the t e at step S405, and holds the EGR valve opening command at step S406.
  • the command value of the EGR valve opening is held at a constant value.
  • > allowable value that is, the reason why the absolute value of the difference between the command value of the EGR valve opening and the actually measured value exceeds the allowable value. It is possible to specify whether the cause is that the opening degree of the EGR control valve does not change or that the follow-up of the change in opening degree to the command value is slow.
  • the case where the EGR control valve is almost fully open and the target value of the opening degree of the EGR control valve is in the dead zone has been described so far with reference to FIGS.
  • the target value of the opening degree of the EGR control valve is not in the dead zone region, that is, when ⁇ > ⁇ 1 in FIG. 5, the target opening degree of the EGR control valve is changed similarly.
  • the target value of the EGR control valve opening is not in the dead zone region, the sensitivity of changes such as the EGR gas flow rate, the EGR rate, the intake flow rate, the oxygen excess rate, and the air excess rate with respect to the EGR control valve opening rate is high.
  • the minute change in the opening of the EGR control valve affects the effect of reducing harmful substances in exhaust gas by EGR. Therefore, an abnormality of the EGR control valve can be detected by slightly changing the target opening degree of the EGR control valve and confirming the influence on the harmful substance reduction effect in the exhaust gas.
  • FIG. 12 is a graph showing the change over time of the target opening of the EGR control valve when the target opening of the EGR control valve is changed in a state where the target opening of the EGR control valve is close to zero.
  • the vertical axis represents the target opening of the EGR control valve
  • the horizontal axis represents time.
  • the target opening of the EGR control valve is slightly changed.
  • FIG. 13 is a graph showing a change over time in the target opening of the throttle valve when the target opening of the EGR control valve is changed in a state where the target opening of the EGR control valve is close to zero.
  • the vertical axis represents the target opening of the throttle valve
  • the horizontal axis represents time. At this time, the target opening of the throttle valve does not change.
  • the abnormality of the EGR control valve is detected as described above by minutely changing the target value of the opening degree of the EGR control valve.
  • the opening of the EGR control valve is not maintained at the same opening for a long time, it is possible to prevent the EGR control valve from sticking due to damage to the motor bearing due to the occurrence of running out of lubricating oil.
  • the EGR control valve When the EGR control valve is opened due to the minute change, smoke is generated. However, the condition for generating smoke is when the engine speed and load increase. Even if the EGR control valve is opened by a small opening amount in a steady state, it does not lead to smoke generation. By making the degree as small as 4 to 8% at a maximum and making the influence on the amount of EGR gas small, the occurrence of the smoke does not become a problem. Further, in the EGR device equipped with the EGR cooler as shown in FIG. 1, the exhaust gas containing smoke and unburned fuel is cooled when passing through the EGR cooler, and the smoke is gradually used with the unburned fuel as a binder. It tends to deposit as a soot.
  • FIG. 1 and FIG. 2 used in the first embodiment are also applied to the second embodiment. The description is omitted.
  • Example 2 the function for determining the opening degree of the EGR control valve from the parameter ⁇ indicated by 58 in FIG. 2 is provided with hysteresis.
  • FIG. 14 shows an example of a function for determining the opening degree of the EGR control valve 24 from the parameter ⁇ in the second embodiment, and corresponds to the function 58 shown in FIG.
  • the vertical axis represents the target value of the opening degree of the EGR control valve
  • the horizontal axis represents ⁇ .
  • region shown by a has shown the dead zone area
  • region shown by b has shown the area
  • the second embodiment as shown in FIG.
  • ⁇ 3 is a boundary value of ⁇ in which the target valve opening is in the dead zone region, and is the same value as ⁇ 1 shown in the upper diagram of FIG. ⁇ 2 is a value smaller than ⁇ 3.
  • Example 2 control of the change in the target opening degree of the EGR control valve when a function having hysteresis as shown in FIG. 14 is applied will be described with reference to the flowchart shown in FIG.
  • FIG. 15 is a flowchart illustrating a control procedure related to a change in the target opening of the EGR control valve according to the second embodiment.
  • step S502 a hysteresis operation determination is performed.
  • the hysteresis operation determination is performed according to the flowchart shown in FIG.
  • the hysteresis determination flag is a flag for determining whether to perform the EGR valve normal control mode, the EGR valve sticking prevention mode, or the hysteresis operation mode in step S503 described later, and is affected by ⁇ . Value.
  • step S601 determines whether or not ⁇ commanded by the logic shown in FIG. 2 is smaller than ⁇ 2. If YES in step S602, that is, if it is determined that ⁇ ⁇ 2, the hysteresis determination flag is changed to ON, and the process ends. If NO in step S602, that is, if it is determined that ⁇ ⁇ ⁇ 2, the process ends without changing the hysteresis determination flag while being OFF.
  • step S604 it is determined whether ⁇ is larger than ⁇ 3. If YES in step S604, that is, if ⁇ > ⁇ 3 is determined, the hysteresis determination flag is changed to OFF, and the process ends. If it is determined NO in step S604, that is, ⁇ ⁇ ⁇ 3, the process is terminated without changing the hysteresis determination flag to be ON.
  • the hysteresis determination flag is ON when ⁇ ⁇ 2, the hysteresis determination flag is OFF when ⁇ > ⁇ 3, and the process ends. Within the range of ⁇ ⁇ ⁇ ⁇ 3, the current state of the hysteresis determination flag is maintained and the process is terminated.
  • step S502 is finished in the flowchart shown in FIG. 15, and the process proceeds to step S503.
  • step S503 it is determined whether the hysteresis determination flag is ON. If NO in step S503, that is, if the hysteresis determination flag is OFF, the process proceeds to step S507 and is commanded by the function 58 without forcibly changing the normal control mode of the EGR control valve, that is, the target opening of the EGR control valve as in the conventional case.
  • the opening degree of the EGR control valve is controlled according to the opening degree command of the EGR control valve.
  • step S503 If YES in step S503, that is, if the hysteresis determination flag is ON, the process proceeds to step S504.
  • step S504 it is determined whether or not it is a sticking prevention operation timing. Since the sticking prevention operation time is the same as that described in step S104 in FIG. 8, the description thereof is omitted.
  • step S504 If YES in step S504, that is, if it is determined that the sticking prevention operation time is reached, the process proceeds to step S506, where the opening of the EGR control valve is controlled in the EGR valve sticking prevention mode, and the process is terminated.
  • the EGR valve sticking prevention mode is the same as that of the first embodiment, and the target value of the opening degree of the EGR control valve is changed in the dead zone region as described with reference to FIGS. Further, the abnormality of the EGR control valve is also determined by the processing of the procedure of the flowchart shown in FIG.
  • step S504 If it is determined NO in step S504, that is, it is not the sticking prevention operation timing, the process proceeds to step S505, where the opening degree of the EGR control valve is controlled in the hysteresis operation mode, and the process is terminated.
  • FIG. 17 is a flowchart illustrating a processing procedure in the hysteresis operation mode.
  • the process proceeds to step S701.
  • step S701 the EGR valve opening is fixed to 100% and the process is terminated.
  • the opening degree of the EGR control valve is fixed at 100% in the hysteresis operation mode as shown in step S701 in FIG. 17, but the opening degree in the dead zone is other than 100%. It can also be fixed at the opening.
  • the opening degree of the EGR control valve is kept constant at the opening degree of the dead zone.
  • the present invention detects a failure of a control valve used in an intake system even under an operating condition in which the target opening of the control valve used in the intake system of the engine matches the actual opening and the target opening does not change.
  • the control valve used for the intake system that is damaged by the motor bearing caused by running out of lubricating oil caused by holding the control valve used for the intake system at the same opening for a long time. It can be used as a control device and control method for a control valve used in an intake system of an engine that can prevent the occurrence of sticking.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Exhaust-Gas Circulating Devices (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Control Of Throttle Valves Provided In The Intake System Or In The Exhaust System (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

 エンジンの吸気系統に設けられ、エンジンへの吸気量の制御を行う吸気スロットル弁又はEGR量の制御を行うEGR弁を備え、吸気系に用いられる制御弁と、前記エンジンの運転状態に応じて前記吸気系に用いられる制御弁の目標開度を決定し、該目標開度に一致するように前記吸気系に用いられる制御弁の開度調整を行う制御手段と、を備えたエンジンの吸気系に用いられる制御弁の制御装置において、前記制御手段は、前記目標開度が一定時間以上同一のまま維持された場合に、前記目標開度を、前記エンジンの運転状態に応じて決定される目標開度から経時的に変化させて、前記吸気系に用いられる制御弁の故障防止及び故障検知をする。

Description

エンジンの吸気系に用いられる制御弁の制御装置及び制御方法
 本発明は、エンジンの吸気系統に設けられ、エンジンへの吸気量の制御を行う吸気スロットル弁又はEGR量の制御を行うEGR弁を備え、吸気系に用いられる制御弁と、前記エンジンの運転状態に応じて前記吸気系に用いられる制御弁の目標開度を決定し、該目標開度に一致するように前記吸気系に用いられる制御弁の開度調整を行う制御手段と、を備えたエンジンの吸気系に用いられる制御弁の制御装置及び制御方法に関するものである。
 内燃機関の排気ガス中の窒素酸化物(NOx)を低減する技術として、排気ガス再循環(以下、EGRと称する)装置が知られている。EGR装置は、内燃機関の排気通路から排気ガスの一部を抽出してなるEGRガスを、EGR通路を通して吸気通路に還流するものである。即ち、EGRを使用した場合、エンジンの燃焼室内には新規の吸入空気と排気ガスの一部、即ちEGRガスが混合されて導入される。
 このようなEGR装置では、EGR通路内にEGRガス流量を制御するEGR制御弁を設け、該EGR制御弁の開度を制御することにより、吸気通路に還流するEGRガス量を制御している。
 前記EGR装置において、前記EGR制御弁が故障すると、吸気通路に還流するEGRガス量の制御ができなくなり、吸気通路に還流するEGRガス量の過不足の発生又はEGRガスの停止が生じる可能性がある。
 そこで、EGR制御弁の故障の判断を行うことができる技術が種々提案されている。
 例えば特許文献1には、EGR制御弁の目標開度が所定量以上変化するEGR運転条件成立時に、目標開度が変化を開始してから目標開度の変化に追従して変化する実開度を実開度検出手段により検出し、検出した実開度が目標開度に追従して変化していないことを確認したときに、EGR制御弁を含む装置が故障したものと判定する技術が開示されている。
 また、特許文献2には、図18に示したように、バルブシャフト102bを備えたEGR制御弁102と、前記バルブシャフト102bの延長上に配置された往復駆動軸112が軸方向に往復動をなす駆動手段106と、制御手段(不図示)とを有し、前記駆動手段の往復駆動軸112は駆動手段作動時にEGR制御弁102の中心軸先端を押圧することによってEGR制御弁102を開放するように構成された排気ガス還流装置において、前記制御手段は、前記制御手段が駆動手段106に対して発振する制御信号のデューティー比の大小によってEGR制御弁102に故障が発生したと判断する技術が開示されている。
特開平10-122058号公報 特開2007-255251号公報
 しかしながら、特許文献1、特許文献2に開示された何れの技術においても、EGR制御弁が故障した場合であっても、故障発生時にEGR制御弁の目標開度と実開度が一致していて、目標開度が変化しない運転条件では故障を検知することができない。
 特に、EGR制御弁の目標開度が全閉である場合にはEGR制御弁の構造によってはEGR制御弁を全閉方向に押し戻す機能が付いているため、見かけ上は目標開度に実開度が追従しており、故障を検知することができない。
 また、特許文献1、特許文献2に開示された技術を含めたEGR制御弁に関して、EGR制御弁の開度が同じ開度で長時間保持された場合、EGR制御弁を駆動するEGRモータの微小回転変動により、図18において101で示したようなモータベアリングの潤滑油(油幕)切れが発生し、該潤滑油切れが原因でモータベアリングが損傷して、EGR制御弁に動作不良や固着のリスクが生じるという問題がある。
 また、上述のような、目標開度と実開度が一致していて目標開度が変化しない運転条件である場合には制御弁の故障を検知することができないこと、同じ開度で長時間保持されることによって潤滑油切れに起因する制御弁の固着が生じることは、EGR制御弁に限らず外部からのエンジンに吸気する吸気通路に設けられたスロットルバルブなどのその他のエンジンの吸気系に用いられる制御弁についても同様のことがいえる。
 従って、本発明はかかる従来技術の問題に鑑み、エンジンの吸気系に用いられる制御弁の目標開度と実開度が一致していて目標開度が変化しない運転条件であっても、吸気系に用いられる制御弁の故障を検知することが可能であって、しかも吸気系に用いられる制御弁の開度が同じ開度で長時間保持されることによって生じる潤滑油切れに起因してモータベアリングが損傷し吸気系に用いられる制御弁の固着が生じることを防止することができるエンジンの吸気系に用いられる制御弁の制御装置及び制御方法を提供することを目的とする。
 上記課題を解決するための装置の発明として、エンジンの吸気系統に設けられ、エンジンへの吸気量の制御を行う吸気スロットル弁又はEGR量の制御を行うEGR弁を備え、吸気系に用いられる制御弁と、前記エンジンの運転状態に応じて前記吸気系に用いられる制御弁の目標開度を決定し、該目標開度に一致するように前記吸気系に用いられる制御弁の開度調整を行う制御手段と、を備えたエンジンの吸気系に用いられる制御弁の制御装置において、前記制御手段は、前記目標開度が一定時間以上同一のまま維持された場合に、前記目標開度を、前記エンジンの運転状態に応じて決定される目標開度から経時的に変化させて、前記吸気系に用いられる制御弁の故障防止及び故障検知をするように構成されていることを特徴とする。
 前記目標開度を経時的に変化させることで、前記吸気系に用いられる制御弁の開度が同じ開度で長時間保持することがなくなる。従って、吸気系に用いられる制御弁の開度を同じ開度で長時間保持することによるモータベアリングの損傷に起因する吸気系に用いられる制御弁の固着等を回避することができる。
 また、前記目標開度を経時的に変化させるので、従来のような目標開度が変化しない運転条件で故障を検知することができないという問題は生じず、目標開度の変化に対する前記吸気系に用いられる制御弁の実開度の追従を確認することで前記吸気系に用いられる制御弁の故障を検知することができる。
 また、前記制御手段は、前記吸気系に用いられる制御弁の開度が変わっても吸気量又はEGR量への影響がない不感帯領域の範囲内で、前記目標開度を経時的に変化させるように構成されているとよい。
 EGR制御弁や、スロットルバルブなどの吸気系に用いられる制御弁には、弁の開度変化に対してEGRガス流量、吸気中のEGR混合率(EGR率)、吸気流量、酸素過剰率、空気過剰率などがほとんど変化しない不感帯領域が存在する。不感帯領域は弁の大きさ、構造等によって異なり、その範囲は弁固有のものであるが、開度60~100%程度の範囲が不感帯領域であるものが多い。
 前記不感帯領域で、前記目標開度を経時的に変化させることで、該目標開度に追従して吸気系に用いられる制御弁の開度が変化しても、EGRガス流量、吸気中のEGR混合率(EGR率)、吸気流量、酸素過剰率、空気過剰率にほとんど影響しない。従って、エンジンの運転状態にほとんど影響を与えることなく本発明を実施することができる。
 また、前記制御手段は、前記目標開度を経時的に変化させる際に、前記目標開度と前記吸気系に用いられる制御弁の実際の開度との差が所定の許容値以上となる時間が、所定の許容時間以上継続した場合には、前記吸気系に用いられる制御弁が故障したと判断するように構成されているとよい。
 これにより、前記吸気系に用いられる制御弁の故障を確実に判断することができる。
 また、前記制御手段は、前記目標開度を経時的に変化させる際に、前記目標開度と前記吸気系に用いられる制御弁の実際の開度との差が所定の許容値以上となった場合には、前記目標開度を変化させずに保持するとよい。
 これにより、前記目標開度と前記吸気系に用いられる制御弁の実際の開度との差が所定の許容値以上となった原因が吸気系に用いられる制御弁の開度が変化しないことが原因なのか、開度の変化の指令値への追従が遅いことが原因なのかを特定することができる。
 また、前記制御手段は、前記目標開度が前記一定時間以上同一のまま保持されず、前記目標開度が前記不感帯領域の範囲内にある場合に、前記目標開度を強制的に前記不感帯領域の範囲内で一定に固定するとよい。
 これにより、前記目標開度を経時的に変化させる必要がない時期に、前記吸気系に用いられる制御弁が不感帯領域内で頻繁に動作することを回避することができる。これにより、吸気系に用いられる制御弁のバルブシャフトが必要以上に動作し、バルブシャフト部のシールが磨耗し、シール部から排気ガスが漏洩するなどのトラブルを回避することができる。
 また、前記制御手段は、前記エンジンの運転状態に応じて決まるパラメータθと、前記目標開度との関係を表す関数を保持し、前記パラメータθによって前記目標開度を決定するものであって、前記関数にヒステリシスを持たせるとよい。
 また、課題を解決するための方法の発明として、エンジンの運転状態に応じて、エンジンへの吸気量の制御を行うスロットル弁又はEGR量の制御を行うEGR弁である吸気系に用いられる制御弁の目標開度を決定し、該目標開度に一致するように前記吸気系に用いられる制御弁の開度調整を行うエンジンの吸気系に用いられる制御弁の制御方法において、前記目標開度が一定時間以上同一のまま維持された場合に、前記目標開度を、前記エンジンの運転状態に応じて決定される目標開度から経時的に変化させて、前記吸気系に用いられる制御弁の故障防止及び故障検知をすることを特徴とする。
 また、前記目標開度を、前記吸気系に用いられる制御弁の開度が変わっても吸気量又はEGR量への影響がない不感帯領域の範囲内で、経時的に変化させるとよい。
 また、前記目標開度を経時的に変化させる際に、前記目標開度と前記吸気系に用いられる制御弁の実際の開度との差が所定の許容値以上となる時間が、所定の許容時間以上継続した場合には、前記吸気系に用いられる制御弁が故障したと判断するとよい。
 また、前記目標開度を経時的に変化させる際に、前記目標開度と前記吸気系に用いられる制御弁の実際の開度との差が所定の許容値以上となった場合には、前記目標開度を変化させずに保持するとよい。
 また、前記目標開度が前記一定時間以上同一のまま保持されず、前記目標開度が前記不感帯領域の範囲内にある場合に、前記目標開度を強制的に前記不感帯領域の範囲内で一定に固定するとよい。
 本発明によれば、エンジンの吸気系に用いられる制御弁の目標開度と実開度が一致していて目標開度が変化しない運転条件であっても、吸気系に用いられる制御弁の故障を検知することが可能であって、しかも吸気系に用いられる制御弁の開度が同じ開度で長時間保持されることによって生じる潤滑油切れに起因してモータベアリングが損傷し吸気系に用いられる制御弁の固着が生じることを防止することができる。
EGR制御弁の制御装置が適用されるEGR装置を示す概略図である。 ECUによって行われる制御ロジックの一例を示す図である。 EGR制御弁の特性の一例を示すグラフである。 スロットルバルブの特性の一例を示すグラフである。 実施例1におけるパラメータθからEGR制御弁の開度を決定する関数と、パラメータθからスロットルバルブの開度を決定する関数の一例を示した図である。 不感帯領域においてEGR制御弁の目標開度を変化させた際の、EGR制御弁の目標開度の時間変化を示したグラフである。 不感帯領域においてEGR制御弁の目標開度を変化させた際の、スロットルバルブの目標開度の時間変化を示したグラフである。 実施例1におけるEGR制御弁の目標開度の変化に関する制御の手順を示すフローチャートである。 不感帯領域判定の処理の手順を示すフローチャートである。 EGR弁固着防止モードにおけるEGR制御弁の異常の判断の処理の手順を示すフローチャートである。 EGR弁固着防止モードにおけるEGR制御弁の異常の判断の処理の手順を示す別の例を示すフローチャートである。 EGR制御弁の目標開度が0に近い状態においてEGR制御弁の目標開度を変化させた際の、EGR制御弁の目標開度の時間変化を示したグラフである。 EGR制御弁の目標開度が0に近い状態においてEGR制御弁の目標開度を変化させた際の、スロットルバルブの目標開度の時間変化を示したグラフである。 実施例2におけるパラメータθからEGR制御弁の開度を決定する関数の一例を示した図である。 実施例2におけるEGR制御弁の目標開度の変化に関する制御の手順を示すフローチャートである。 ヒステリシス動作判定の手順を示したフローチャートである。 ヒステリシス動作モードにおける処理の手順を示すフローチャートである。 従来例におけるEGR制御弁周辺の断面図である。
 以下、図面を参照して本発明の好適な実施例を例示的に詳しく説明する。但しこの実施例に記載されている構成部品の寸法、材質、形状、その相対的配置等は特に特定的な記載がない限りは、この発明の範囲をそれに限定する趣旨ではなく、単なる説明例に過ぎない。
 図1は、実施例1に係るEGR制御弁の制御装置が適用されるEGR装置を示す概略図である。図1において、エンジン2は4つの気筒を有する4サイクルディーゼルエンジンである。
 エンジン2には、吸気マニホールド6を介して吸気通路8が合流されるとともに、排気マニホールド10を介して排気通路12が接続されている。
 吸気通路8には、ターボチャージャ14のコンプレッサ14aが設けられている。コンプレッサ14aは後述するタービン14bに同軸駆動されるものである。吸気通路8のコンプレッサ14aよりも下流側には、吸気通路8を流れる吸入空気と大気で熱交換を行うインタークーラー16が設けられている。また、吸気通路8のインタークーラー16よりも下流側には、吸気通路8内を流通する吸入空気の流量を調節するスロットルバルブ18が設けられている。
 排気通路12には、ターボチャージャ14のタービン14bが設けられている。タービン14bは、エンジン2からの排気ガスにより駆動されるものである。また、排気マニホールド10には、排気の一部を吸気側へ再循環させるEGR通路20が接続されている。EGR通路20には、EGRクーラー22及びEGR制御弁24が設けられている。
 EGRクーラー22は、EGR制御弁24よりも排気マニホールド10側に設けられ、EGRクーラー22を通過するEGRガスと冷却水とで熱交換して、該EGRガスの温度を低下させるものである。また、EGR制御弁24は、EGR通路20を流れるEGRガスの流量を制御するものである。
 EGR制御弁24及びスロットルバルブ18の開度は、エンジンコントロールユニット(ECU)40によって制御される。
 ECU40におけるEGR制御弁24及びスロットルバルブ18の開度の制御の概要について説明する。ECU40においては、EGR制御弁24及びスロットルバルブ18の実開度が入力されるとともに、スロットルバルブ18の下流側の吸気通路8又は吸気マニホールド6に取り付けられた、吸気温度センサ28及び吸気圧力センサ30のそれぞれの検出値が、それぞれA/D変換器43、44を介して入力される。また、コンプレッサ14aの上流側の吸気通路8に取り付けられたエアフローメーター26により検出される吸気流量の検出値が、A/D変換器42を介して入力される。さらに、エンジンスピードセンサー32の検出値がパルスカウント回路47を介して入力される。
 ECU40では、前述の各入力された値を基にCPU48でEGR制御弁24及びスロットルバルブ18の目標開度を演算し、駆動回路45、46を介してEGR制御弁24及びスロットルバルブ18の開度を制御する。また、前述の各入力された値を基にCPU48でエンジン4への燃料噴射量を演算し、インジェクタ駆動回路41を介してエンジン4への燃料噴射量を制御する。
 図2は、ECU40によって行われる制御ロジックの一例を示している。ECU40には、エンジン回転数[rpm]と、エンジン2への燃料噴射量[mg/st]が目標θマップ51及び目標λOマップ52に入力され、該入力値を基に目標θ及び目標λOが作成される。ここで、θはEGR制御バルブ24と、スロットルバルブ18の開度によって決まる値であり、詳しくは後述する。またλOは、酸素過剰率である。
 また、空気流量[kg/s]、吸気マニホールドの圧力(インマニ圧)[kPa]、インマニ温度[℃]、エンジン回転数[rpm]、燃料噴射量[mg/st]などから、λOの推定値の演算53がなされる。
 そして、目標λOと、λOの推定値の演算値との誤差が減算処理54によって算出され、該誤差に基づいてPID制御55が行われる。PID制御55によりパラメータθが決定され、該θと目標θとの加算処理をし、飽和演算57を行うことで、θが補正される。該補正されたθを用い、パラメータθからEGR制御弁24の開度を決定する関数58と、パラメータθからスロットルバルブ18の開度を決定する関数59とからEGR制御弁24とスロットバルブ18の開度の指令値を決定する。なお、関数58及び59は、ECU40に予め記憶されているものである。
 ここで、EGR制御弁24とスロットルバルブ18には、全開位置と全閉位置がある、即ち飽和がある。そのため、EGR制御弁24又はスロットルバルブ18が全開又は全閉になると制御偏差が生じた状態のままとなる。一方、PID制御55に使用される前記誤差が0でない状態で維持されるので、PID制御55における積分値が増加し続け、制御応答性が悪くなるワインドアップの問題が生じる。ワインドアップの問題を回避するために、PID制御によって得られたパラメータθと、飽和演算39で補正したパラメータθとの差を減算処理60によって算出し、該差に基づいてアンチワインドアップ補償を行っている。
 ところで、EGR制御弁24や、スロットルバルブ18には、弁の開度変化に対してEGRガス流量、吸気中のEGR混合率(EGR率)、吸気流量、酸素過剰率、空気過剰率などがほとんど変化しない領域(以下、不感帯領域と称する)が存在する。
 前記不感帯領域について図3及び図4を用いて、酸素過剰率λOを例にとって説明する。
 図3は、EGR制御弁24の特性の一例を示すグラフであり、図4は、スロットルバルブ18の特性の一例を示すグラフである。
 図3において、縦軸は酸素過剰率λO、横軸はEGR制御弁24の開度[%]である。また、図4において、縦軸は酸素過剰率λO、横軸はスロットルバルブ18の開度[%]である。
 EGR制御弁24においては、図3に示したように、EGR制御弁24の開度が約60~100%、特に約80~100%の領域で、EGR制御弁24の開度変化に対して酸素過剰率λOがほとんど変化しない。即ち、図3に示したような特性のEGR制御弁24においては、EGR制御弁24の開度が約60~100%の領域が不感帯領域であるといえる。なお、不感帯領域においては、図3に示した酸素過剰率λOのみならず、EGRガス流量、吸気中のEGR混合率(EGR率)、吸気流量、空気過剰率などその他EGR弁開度に依存する値についても、EGR制御弁24の開度変化に対してほとんど変化しない。
 同様に、スロットルバルブにおいては、図4に示したようにスロットルバルブ18の開度が約70~100%、特に80~100%の領域が不感帯領域であるといえる。
 図5は、パラメータθからEGR制御弁24の開度を決定する関数と、パラメータθからスロットルバルブ18の開度を決定する関数の一例を示したものであり、図2に示した関数58及び59に相当する。
 図5の上図において、縦軸はEGR制御弁の開度の目標値(指令値)、横軸はθである。図5の下図において、縦軸はスロットルバルブの開度の目標値(指令値)、横軸はθである。
 ここで、θはEGR制御弁の開度とスロットルバルブの開度によって決まる値であり、EGR制御弁の開度が100%であるときのスロットルバルブの開度(0~100%)を0~1で表すとともに、スロットルバルブの開度が100%であるときのEGR制御弁の開度(0~100%)を2~1で表したものである。
 従って、図5の上図においては、θ=0~1の範囲でEGR制御弁の開度の目標値が100%であり、θ=1~2の範囲ではEGR制御弁の開度の目標値が100%から0%までθに比例して単調減少し、図5の下図においては、θ=0~1の範囲でスロットルバルブの開度の目標値が0%から100%までθに比例して単調増加し、θ=1~2の範囲ではスロットルバルブの開度の目標値は100%となっている。
 また、図5の上図においてaで示した領域はEGR制御弁の不感帯領域、bで示した領域はEGR制御弁の開度に対する感度がある領域を示している。同様に図5の下図においてa’で示した領域はスロットルバルブの不感帯領域、b’で示した領域はスロットルバルブの開度に対する感度がある領域を示している。
 ここで、図2に示したロジックによりθ<1.0なる値が指令された場合について考える。この場合、図5上図から明らかであるように、従来であればEGR制御弁24の目標開度は100%であり、EGR制御弁24の開度が同じ開度(100%)で長時間保持され図18において101で示したようなモータベアリングの潤滑油(油幕)切れが発生し、該潤滑油切れが原因でモータベアリングが損傷して、EGR制御弁に動作不良や固着のリスクが生じることがあった。また、この領域では、目標開度が変化しないため、EGR制御弁が故障しても故障時に目標開度と実開度が一致して、即ち故障時に実開度が100%であると故障を検知できなかった。
 本発明においては、EGR制御弁の開度が約60~100%である不感帯領域においては、EGR制御弁の開度を変化させても酸素過剰率λO等がほとんど変化しないことに着目して、EGR制御弁の開度の目標値が一定時間以上同一のまま維持された場合に該目標値を図5の上図においてcで示したように不感帯領域において変化させている。これにより、EGR制御弁24の目標開度が変化するため、EGR制御弁の開度を同じ開度で長時間保持することによる前記モータベアリングの損傷に起因するEGR制御弁の固着等を回避することができるとともに、EGR制御弁の故障を検知することができる。
 このような、EGR制御弁の目標開度の不感帯領域における変化は、目標弁開度が不感帯領域にあるθであれば実施可能であり、図5においてはθ<θ1のときに実施可能である。
 図6は、不感帯領域においてEGR制御弁の目標開度を変化させた際の、EGR制御弁の目標開度の時間変化を示したグラフである。図6において縦軸はEGR制御弁の目標開度、横軸は時間である。図6に示したようにEGR制御弁の目標開度を波形状に変化させる。本実施例においては、EGR制御弁の目標開度の時間変化のグラフが波形状となるように、EGR制御弁の目標開度を変化させているが、これに限らずEGR制御弁の目標開度が経時的に変化すれば前記グラフが例えば矩形状となるように変化させることなども可能である。
 図7は、不感帯領域においてEGR制御弁の目標開度を変化させた際の、スロットルバルブの目標開度の時間変化を示したグラフである。図7において縦軸はスロットルバルブの目標開度、横軸は時間である。この際、スロットルバルブの目標開度は変化しない。
 次に、上述したEGR制御弁の目標開度の変化に関する制御について、フローチャートを用いて詳細に説明する。
 図8は、EGR制御弁の目標開度の変化に関する制御の手順を示すフローチャートである。
 処理が開始されると、ステップS101で、冷却水温度がT1より高いか否かを判断する。ここで、冷却水とはエンジンの冷却水を意味し、T1は規定温度である。ステップS101でNO即ち冷却水温度がT1以下であればステップS108に進み、EGR運転を行わずEGRを停止し、処理を終了する。ステップS101でYES即ち冷却水温度がT1よりも高ければステップS102に進む。
 ステップS102では、不感帯領域判定を行う。不感帯領域判定は、図9に示したフローチャートに従って行う。不感帯領域判定について、図9を用いて説明する。
 処理がスタートすると、ステップS201でθがθ1よりも小さいか否かを判断する。ここでθは図2に示したロジックにより指令される値であり、θ1は目標弁開度が不感帯領域にあるθの境界値であり、図5において示したθ1に相当する。
 ステップS201でYES即ちθ<θ1であれば、ステップS202に進み不感帯判定フラグをONにして処理を終了する。また、ステップS201でNO即ちθ≧θ1であれば、ステップS203に進み不感帯判定フラグをOFFにして処理を終了する。
 図8に示したフローチャートにおけるステップS102において、図9に示したフローチャートに従って不感帯領域判定が終了すると、ステップS103に進む。
 ステップS103では、不感帯判定フラグがONであるか否かを判断する。
 ステップS3でNO即ち不感帯判定フラグがOFFであればステップS107に進み、EGR制御弁の通常制御モード、即ち従来と同様EGR制御弁の目標開度を強制的に変化させずに関数58によって指令されるEGR制御弁の開度指令に従ってEGR制御弁の開度を制御する。
 ステップS103でYES即ち不感帯判定フラグがONであればステップS104に進む。
 ステップS104では、固着防止動作時期か否かを判断する。
 前述の通り、EGR制御弁の開度が同じ開度で長時間保持することにより、潤滑油切れが発生して、前記モータベアリングの損傷し、EGR制御弁の固着等が発生する。そのため、EGR制御弁の開度の目標値が長時間一定でない場合には前記固着等の発生は生じない。従って、ステップS104においては、固着防止動作を行う必要がある程度の一定時間にわたってEGR制御弁の開度の目標値が一定であるか否かを判断する。即ち、一定時間にわたってEGR制御弁の開度の目標値が一定であれば固着防止動作時期であると判断する。ここで、前記一定時間については、使用するEGR制御弁の性能やエンジン周辺の機器等により、EGR制御弁個々に決定する。
 ステップS104でNO即ち固着防止動作時期ではないと判断されると、ステップS107に進み、EGR制御弁の通常制御モード、即ち従来と同様EGR制御弁の目標開度を強制的に変化させずにEGR制御弁の開度を制御する。
 ステップS104でYES即ち固着防止動作時期であると判断されると、ステップS106に進み、EGR弁固着防止モードにてEGR制御弁の開度を制御して処理を終了する。EGR弁固着防止モードにおいては、図5及び図6を用いて説明したように、EGR制御弁の開度の目標値を不感帯領域の範囲で変化させる。これにより、EGR制御弁の目標開度が変化するため、EGR制御弁の開度を同じ開度で長時間保持することによる前記モータベアリングの損傷に起因するEGR制御弁の固着を回避することができる。
 さらに、EGR弁固着モードにおいては、前記目標値とEGR制御弁の実開度から、EGR制御弁の異常を判断することができる。EGR弁固着防止モードにおけるEGR制御弁の異常の判断について、図10に示したフローチャートを用いて説明する。
 図10は、EGR弁固着防止モードにおけるEGR制御弁の異常の判断の処理の手順を示すフローチャートである。
 図10において、処理が開始されると、ステップS301に進む。
 ステップS301では、EGR制御弁の開度の指令値を演算する。これは、図2に示したロジックの手順に従ってθを算出し、該θと関数58を用いて求めることができる。
 ステップS301が終了すると、ステップS302に進む。
 ステップS302では、EGR制御弁の開度指令を出力する。
 ステップS302が終了すると、ステップS303に進む。
 ステップS303では、EGR弁開度偏差eを演算する。これは、EGR弁開度の指令値と実測値の差を意味する。
 ステップS303が終了すると、ステップS304に進む。
 ステップS304では、前記EGR弁解度偏差eの絶対値|e|が許容値よりも大きいか否かを判断する。ここで、前記許容値とは、EGR制御弁の使用時において許容され得る|e|の上限値を意味する。前記許容値は、EGR制御弁の性能やエンジン周辺の機器等により、EGR制御弁個々に決定する値である。
 ステップS304でNO即ち、|e|が許容値以下であればステップS309に進む。ステップS309については後述する。
 ステップS304でYES即ち、|e|が許容値よりも大きければステップS305に進む。
 ステップS305では、
 t=t+t     ・・・(1)
 の演算を行う。ここで、tは|e|が許容値よりも大きい状態の継続時間であり、tは演算周期である。演算周期tとは、図10におけるフローチャートのスタートからエンドまでの処理が実行される周期を意味する。
 (1)式における左辺に示した継続時間tは現在の継続時間であり、右辺に示した継続時間tは1周期前の継続時間を意味する。(1)式に示した演算を行うことにより、|e|が許容値よりも大きい状態の現時点での継続時間を求めることができる。
 ステップS305が終了するとステップS306に進む。
 ステップS306では、ステップS305で演算したtが許容時間より長いか否かを判断する。ここで、前記許容時間とは、|e|が前記許容値よりも大きい状態が継続しても許容され得る上限の時間、即ちtの上限値を意味する。前記許容時間は、EGR制御弁の性能やエンジン周辺の機器等により、EGR制御弁個々に決定する値である。
 ステップS306でYES即ちtが前記許容時間よりも長い場合には、ステップS307に進み「EGR弁動作異常」と判断し、ステップS308でEGR制御を停止して処理を終了する。
 ステップS306でNO即ちtが前記許容時間よりも短い場合には、そのまま処理を終了する。
 ステップS304でNO又はステップS306でNOと判断された場合に進むステップS309においては、t=0として処理を終了する。
 また、図10に示したフローチャートの処理の手順に変えて、図11に示した処理の手順においても、EGR弁固着モードにおけるEGR制御弁の異常の判断をすることができる。
 図11は、EGR弁固着防止モードにおけるEGR制御弁の異常の判断の処理の手順を示す別の例を示すフローチャートである。
 図11に示したフローチャートにおいて、ステップS401からステップS405までは、それぞれ、図10に示したフローチャートにおけるステップS301からステップS305までと同じである。また、図11に示したフローチャートにおいて、ステップS407からS410までは、それぞれ、図10に示したフローチャートにおけるステップS306からステップS309までと同じである。よって、図11において、ステップS401からステップS405まで、及びステップS407からステップS410までについては説明を省略する。
 図11においては、ステップS404で|e|>許容値と判断された場合において、ステップS405でtを算出した後、ステップS406でEGR弁開度指令を保持している。EGR弁開度指令を保持することで、EGR弁開度の指令値は一定値で保持される。ステップS406でEGR弁開度指令を保持することにより、|e|>許容値となった、即ちEGR弁開度の指令値と実測値の差の絶対値が許容値を超えるほど大きくなった原因がEGR制御弁の開度が変化しないことが原因なのか、開度の変化の指令値への追従が遅いことが原因なのかを特定することができる。
 本実施例1において、ここまで図3~図10を用いてEGR制御弁が全開に近く、EGR制御弁の開度の目標値が不感帯領域にある場合について説明した。
 EGR制御弁が全閉に近く、EGR制御弁の開度の目標値が不感帯領域にない場合、即ち図5においてθ>θ1である場合についても同様に、EGR制御弁の目標開度を変化させる。
 この場合には、EGR制御弁開度の目標値が不感帯領域にないので、EGR制御弁開度に対するEGRガス流量、EGR率、吸気流量、酸素過剰率、空気過剰率などの変化の感度が高く、EGR制御弁の微小な開度変化でEGRによる排ガス中の有害物質低減効果に影響を与える。そこで、前記EGR制御弁の目標開度を微小変化させて、排ガス中の有害物質低減効果への影響を確認することで、EGR制御弁の異常を検知することができる。
 図12は、EGR制御弁の目標開度が0に近い状態においてEGR制御弁の目標開度を変化させた際の、EGR制御弁の目標開度の時間変化を示したグラフである。図12において縦軸はEGR制御弁の目標開度、横軸は時間である。図12に示したようにEGR制御弁の目標開度を微小変化させる。
 また、図13は、EGR制御弁の目標開度が0に近い状態においてEGR制御弁の目標開度を変化させた際の、スロットルバルブの目標開度の時間変化を示したグラフである。図13において縦軸はスロットルバルブの目標開度、横軸は時間である。この際、スロットルバルブの目標開度は変化しない。
 このようにして、EGR制御弁の開度の目標値が不感帯領域にない場合に、EGR制御弁の開度の目標値を微小変化させることで、前述の通りEGR制御弁の異常を検知することができるとともに、EGR制御弁の開度が同じ開度で長時間保持されなくなるため潤滑油切れ発生によるモータベアリングの損傷に起因するEGR制御弁の固着を防止することができる。
 なお、前記微小変化によりEGR制御弁を開弁すると、スモークが発生する。しかし、スモークが発生する条件はエンジン回転数や負荷が増大する場合であり定常状態においてEGR制御弁を微小開度開いてもスモーク発生には繋がらないこと、前記微小変化によるEGR制御弁の弁開度を最大で4~8%と小さなものとしてEGRガス量への影響を小さい範囲とすることで、前記スモークの発生は問題とならない。
 また、図1に示したようなEGRクーラーを装着したEGR装置においては、スモーク及び未燃燃料分を含む排気がEGRクーラー内を通過する際に冷却され、スモークが未燃燃料分をバインダとして徐々に煤として堆積し易い。そこでEGRクーラーが目詰まりしてEGRクーラーの冷却効率が低下することを防止するために、排気ガス温度が低い条件では、EGR制御弁の目標開度が0に近い状態においてのEGR制御弁の目標開度の微小変化を行わない。
 実施例2におけるEGR制御弁の制御装置が適用されるEGR装置、及び制御ロジックは実施例1と同様であるので、実施例1において用いた図1及び図2を実施例2にも流用し、その説明を省略する。
 実施例2においては、図2において58で示したパラメータθからEGR制御弁の開度を決定する関数にヒステリシスを持たせた。
 図14は、実施例2における、パラメータθからEGR制御弁24の開度を決定する関数の一例を示したものであり、図2に示した関数58に相当する。
 図14において、縦軸はEGR制御弁の開度の目標値、横軸はθである。また、aで示した領域はEGR制御弁の不感帯領域、bで示した領域はEGR制御弁の開度に対する感度がある領域を示している。本実施例2においては、図14に示したように、θ=θ2~θ3の間で関数58にヒステリシスを持たせている。ここで、θ3は、目標弁開度が不感帯領域にあるθの境界値であって、図5の上図に示したθ1と同値である。θ2はθ3よりも小さい値である。
 実施例2に関して、図14に示したようなヒステリシスを持たせた関数を適用した場合におけるEGR制御弁の目標開度の変化の制御について、図15に示したフローチャートを用いて説明する。
 図15は、実施例2におけるEGR制御弁の目標開度の変化に関する制御の手順を示すフローチャートである。
 処理が開始されると、ステップS501で、冷却水温度がT1より高いか否かを判断する。ステップS501でNO即ち冷却水温度がT1以下であればステップS508に進み、EGR運転を行わずEGRを停止し、処理を終了する。ステップS501でYES即ち冷却水温度がT1よりも高ければステップS502に進む。
 ステップS502では、ヒステリシス動作判定を行う。ヒステリシス動作判定は、図16に示したフローチャートに従って行う。
 ヒステリシス動作判定について、図16を用いて説明する。
 処理がスタートすると、ステップS601で現状におけるヒステリシス判定フラグがOFFであるか否かを判断する。ここでヒステリシス判定フラグとは、後述するステップS503にてEGR弁通常制御モードを行うか、EGR弁固着防止モード又はヒステリシス動作モードを行うかの判断を行うためのフラグであり、θに影響される値である。
 ステップS601でYES即ち現状におけるヒステリシス判定フラグがOFFであると判断されると、ステップS602に進む。
 ステップS602では、図2に示したロジックにより指令されるθがθ2よりも小さいか否かを判断する。ステップS602でYES即ちθ<θ2であると判断されるとヒステリシス判定フラグをONに変更して処理を終了する。ステップS602でNO即ちθ≧θ2であると判断されるとヒステリシス判定フラグをOFFのまま変更せずに処理を終了する。
 また、ステップS601でNO即ち現状におけるヒステリシス判定フラグがONであると判断されると、ステップS604に進む。
 ステップS604では、θがθ3よりも大きいか否かを判断する。ステップS604でYES即ちθ>θ3であると判断されるとヒステリシス判定フラグをOFFに変更して処理を終了する。ステップS604でNO即ちθ≦θ3であると判断されるとヒステリシス判定フラグをONのまま変更せずに処理を終了する。
 図16に示したヒステリシス動作判定によれば、現状におけるヒステリシス判定フラグの状態に関わらずθ<θ2ではヒステリシス判定フラグがON、θ>θ3ではヒステリシス判定フラグがOFFとなって処理を終了し、θ2≦θ≦θ3の範囲では現状のヒステリシス判定フラグの状態を維持して処理を終了する。
 図16のフローチャートに示した手順によるヒステリシス動作判定が終了すると、図15に示したフローチャートにおいてステップS502を終了し、ステップS503へ進む。
 ステップS503では、ヒステリシス判定フラグがONであるか否かを判断する。
 ステップS503でNO即ちヒステリシス判定フラグがOFFであればステップS507に進み、EGR制御弁の通常制御モード、即ち従来と同様EGR制御弁の目標開度を強制的に変化させずに関数58によって指令されるEGR制御弁の開度指令に従ってEGR制御弁の開度を制御する。
 ステップS503でYES即ちヒステリシス判定フラグがONであればステップS504に進む。
 ステップS504では、固着防止動作時期か否かを判断する。固着防止動作時期については、図8においてステップS104で説明したものと同じものであるのでその説明を省略する。
 ステップS504でYES即ち固着防止動作時期であると判断されると、ステップS506に進み、EGR弁固着防止モードにてEGR制御弁の開度を制御して処理を終了する。EGR弁固着防止モードについては、実施例1と同様であり、図5及び図6を用いて説明したように、EGR制御弁の開度の目標値を不感帯領域の範囲で変化させる。また、図10又は図11に示したフローチャートの手順の処理によってEGR制御弁の異常の判断も行う。
 ステップS504でNO即ち固着防止動作時期ではないと判断されると、ステップS505に進み、ヒステリシス動作モードにてEGR制御弁の開度を制御して処理を終了する。
 ヒステリシス動作モードにおける処理の手順について図17を用いて説明する。図17は、ヒステリシス動作モードにおける処理の手順を示すフローチャートである。
 図17において、処理が開始されると、ステップS701に進む。
 ステップS701では、EGR弁開度を100%に固定して処理を終了する。なお、本実施例2においては、図17におけるステップS701示したようにヒステリシス動作モードでEGR制御弁の開度を100%に固定しているが、不感帯領域の開度であれば100%以外の開度で固定することもできる。
 即ちヒステリシス動作モードでは、EGR制御弁の開度を不感帯領域の開度で一定に保持している。ヒステリシス動作モードを適用することで、EGR弁固着防止モードで運転する必要がない時期に、EGR制御弁が不感帯領域内で頻繁に動作することを回避することができる。これにより、EGR制御弁のバルブシャフトが必要以上に動作し、バルブシャフト部のシールが磨耗し、シール部から排気ガスが漏洩するなどのトラブルを回避することができる。
 なお、ヒステリシス動作モードにおいては、不感帯領域でEGR制御弁の開度を一定に保持しているため、ヒステリシス動作モードで運転を行うことによってEGRガス流量、EGR率、吸気流量、酸素過剰率、空気過剰率等には影響はない。
 以上の実施例1及び実施例2においては、EGR制御弁の制御について説明したが、スロットルバルブについても同様に適用することができる。
 本発明は、エンジンの吸気系に用いられる制御弁の目標開度と実開度が一致していて目標開度が変化しない運転条件であっても、吸気系に用いられる制御弁の故障を検知することが可能であって、しかも吸気系に用いられる制御弁の開度が同じ開度で長時間保持されることによって生じる潤滑油切れに起因するモータベアリングの損傷し吸気系に用いられる制御弁の固着が生じることを防止することができるエンジンの吸気系に用いられる制御弁の制御装置及び制御方法として利用することができる。

Claims (11)

  1.  エンジンの吸気系統に設けられ、エンジンへの吸気量の制御を行う吸気スロットル弁又はEGR量の制御を行うEGR弁を備え、吸気系に用いられる制御弁と、
     前記エンジンの運転状態に応じて前記吸気系に用いられる制御弁の目標開度を決定し、該目標開度に一致するように前記吸気系に用いられる制御弁の開度調整を行う制御手段と、を備えたエンジンの吸気系に用いられる制御弁の制御装置において、
     前記制御手段は、前記目標開度が一定時間以上同一のまま維持された場合に、前記目標開度を、前記エンジンの運転状態に応じて決定される目標開度から経時的に変化させて、前記吸気系に用いられる制御弁の故障防止及び故障検知をするように構成されていることを特徴とするエンジンの吸気系に用いられる制御弁の制御装置。
  2.  前記制御手段は、前記吸気系に用いられる制御弁の開度が変わっても吸気量又はEGR量への影響がない不感帯領域の範囲内で、前記目標開度を経時的に変化させるように構成されていることを特徴とする請求項1記載のエンジンの吸気系に用いられる制御弁の制御装置。
  3.  前記制御手段は、前記目標開度を経時的に変化させる際に、前記目標開度と前記吸気系に用いられる制御弁の実際の開度との差が所定の許容値以上となる時間が、所定の許容時間以上継続した場合には、前記吸気系に用いられる制御弁が故障したと判断するように構成されていることを特徴とする請求項1又は2記載のエンジンの吸気系に用いられる制御弁の制御装置。
  4.  前記制御手段は、前記目標開度を経時的に変化させる際に、前記目標開度と前記吸気系に用いられる制御弁の実際の開度との差が所定の許容値以上となった場合には、前記目標開度を変化させずに保持することを特徴とする請求項3記載のエンジンの吸気系に用いられる制御弁の制御装置。
  5.  前記制御手段は、前記目標開度が前記一定時間以上同一のまま保持されず、前記目標開度が前記不感帯領域の範囲内にある場合に、前記目標開度を強制的に前記不感帯領域の範囲内で一定に固定することを特徴とする請求項1~4何れかに記載のエンジンの吸気系に用いられる制御弁の制御装置。
  6.  前記制御手段は、前記エンジンの運転状態に応じて決まるパラメータθと、前記目標開度との関係を表す関数を保持し、前記パラメータθによって前記目標開度を決定するものであって、
     前記関数にヒステリシスを持たせたことを特徴とする請求項5記載のエンジンの吸気系に用いられる制御弁の制御装置。
  7.  エンジンの運転状態に応じて、エンジンへの吸気量の制御を行うスロットル弁又はEGR量の制御を行うEGR弁である吸気系に用いられる制御弁の目標開度を決定し、該目標開度に一致するように前記吸気系に用いられる制御弁の開度調整を行うエンジンの吸気系に用いられる制御弁の制御方法において、
     前記目標開度が一定時間以上同一のまま維持された場合に、前記目標開度を、前記エンジンの運転状態に応じて決定される目標開度から経時的に変化させて、前記吸気系に用いられる制御弁の故障防止及び故障検知をすることを特徴とするエンジンの吸気系に用いられる制御弁の制御方法。
  8.  前記目標開度を、前記吸気系に用いられる制御弁の開度が変わっても吸気量又はEGR量への影響がない不感帯領域の範囲内で、経時的に変化させることを特徴とする請求項7記載のエンジンの吸気系に用いられる制御弁の制御方法。
  9.  前記目標開度を経時的に変化させる際に、前記目標開度と前記吸気系に用いられる制御弁の実際の開度との差が所定の許容値以上となる時間が、所定の許容時間以上継続した場合には、前記吸気系に用いられる制御弁が故障したと判断することを特徴とする請求項7又は8記載のエンジンの吸気系に用いられる制御弁の制御方法。
  10.  前記目標開度を経時的に変化させる際に、前記目標開度と前記吸気系に用いられる制御弁の実際の開度との差が所定の許容値以上となった場合には、前記目標開度を変化させずに保持することを特徴とする請求項9記載のエンジンの吸気系に用いられる制御弁の制御方法。
  11.  前記目標開度が前記一定時間以上同一のまま保持されず、前記目標開度が前記不感帯領域の範囲内にある場合に、前記目標開度を強制的に前記不感帯領域の範囲内で一定に固定することを特徴とする請求項7~10何れかに記載のエンジンの吸気系に用いられる制御弁の制御方法。
PCT/JP2011/050473 2010-01-27 2011-01-13 エンジンの吸気系に用いられる制御弁の制御装置及び制御方法 WO2011093141A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US13/388,156 US9500148B2 (en) 2010-01-27 2011-01-13 Control device and control method used for engine intake air-or-gas system
KR1020127000432A KR101361907B1 (ko) 2010-01-27 2011-01-13 엔진의 흡기계에 이용되는 제어 밸브의 제어 장치 및 제어 방법
EP11736856.3A EP2444642B1 (en) 2010-01-27 2011-01-13 Control method and control device of control valve used in induction system of engine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-015900 2010-01-27
JP2010015900A JP5393506B2 (ja) 2010-01-27 2010-01-27 エンジンの吸気系に用いられる制御弁の制御装置及び制御方法

Publications (1)

Publication Number Publication Date
WO2011093141A1 true WO2011093141A1 (ja) 2011-08-04

Family

ID=44319133

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/050473 WO2011093141A1 (ja) 2010-01-27 2011-01-13 エンジンの吸気系に用いられる制御弁の制御装置及び制御方法

Country Status (5)

Country Link
US (1) US9500148B2 (ja)
EP (1) EP2444642B1 (ja)
JP (1) JP5393506B2 (ja)
KR (1) KR101361907B1 (ja)
WO (1) WO2011093141A1 (ja)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8682569B2 (en) * 2009-12-17 2014-03-25 GM Global Technology Operations LLC Systems and methods for diagnosing valve lift mechanisms and oil control valves of camshaft lift systems
US8620565B2 (en) * 2009-12-21 2013-12-31 International Engine Intellectual Property Company, Llc. Control system and method for limiting engine torque based on engine oil pressure and engine oil temperature data
CN103210197B (zh) * 2010-11-02 2016-03-09 丰田自动车株式会社 内燃机的控制装置
JP5972597B2 (ja) * 2012-02-21 2016-08-17 三菱重工業株式会社 Egr制御装置およびegr制御装置を備えたエンジン
DE102012219516A1 (de) * 2012-10-25 2014-04-30 Robert Bosch Gmbh Verfahren zum Erkennen einer Manipulation an einem Verbrennungsmotor
US9574526B2 (en) 2013-02-01 2017-02-21 Nissan Motor Co., Ltd. Exhaust gas recirculation control device and exhaust gas recirculation control method for internal combustion engine
JP5716771B2 (ja) * 2013-02-25 2015-05-13 トヨタ自動車株式会社 内燃機関の制御装置
JP2014169684A (ja) * 2013-03-05 2014-09-18 Denso Corp 内燃機関のegr制御装置
KR102044994B1 (ko) 2013-04-17 2019-11-14 대우조선해양 주식회사 안전밸브의 고착방지를 위한 제어방법
US9534546B2 (en) * 2014-05-14 2017-01-03 Caterpillar Inc. System and method for operating engine
EP3075991B1 (en) * 2015-03-31 2019-08-21 Toyota Jidosha Kabushiki Kaisha Control device for internal combustion engine
TWM522269U (zh) * 2016-01-14 2016-05-21 Autoland Scientech Co Ltd 車輛節氣門診斷裝置
CN112523878B (zh) * 2020-11-10 2021-11-09 东风汽车集团有限公司 一种基于egr率的egr阀闭环控制方法
CN114962086A (zh) * 2021-08-24 2022-08-30 长城汽车股份有限公司 Egr系统冷却控制方法和控制器、egr系统、介质和车辆

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07189763A (ja) * 1993-12-28 1995-07-28 Nissan Motor Co Ltd 内燃機関のスロットル弁制御装置
JPH10122058A (ja) 1996-10-16 1998-05-12 Toyota Motor Corp 内燃機関の排ガス再循環装置
JP2003106241A (ja) * 2001-09-28 2003-04-09 Isuzu Motors Ltd コモンレール式燃料噴射制御装置
JP2004278307A (ja) * 2002-05-24 2004-10-07 Denso Corp Egr装置
JP2006132449A (ja) * 2004-11-05 2006-05-25 Toyota Motor Corp スロットル制御装置
JP2006161569A (ja) * 2004-12-02 2006-06-22 Mitsubishi Fuso Truck & Bus Corp 内燃機関のegr制御装置
JP2007255251A (ja) 2006-03-22 2007-10-04 Nissan Diesel Motor Co Ltd Egr制御バルブの故障判定装置及び方法
JP2007263051A (ja) * 2006-03-29 2007-10-11 Mitsubishi Fuso Truck & Bus Corp 内燃機関の吸入空気量制御装置

Family Cites Families (56)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2313090A (en) * 1939-09-29 1943-03-09 Alfred A Reiser Plug valve
US2746711A (en) * 1952-04-10 1956-05-22 Allis Chalmers Mfg Co Valve actuating means
US3327554A (en) * 1964-09-21 1967-06-27 Ford Motor Co Automatic control system for a multiple speed ratio power transmission mechanism
US4309022A (en) * 1980-04-14 1982-01-05 Consolidated Controls Corporation Poppet valve actuator apparatus
DE3519220A1 (de) * 1984-05-30 1985-12-05 Nissan Motor Co., Ltd., Yokohama, Kanagawa Vorrichtung zur drosselklappensteuerung
JPH0759901B2 (ja) * 1985-10-04 1995-06-28 株式会社日立製作所 絞弁の自動制御装置
JPH0835449A (ja) * 1994-07-25 1996-02-06 Mitsubishi Electric Corp 排気ガス還流制御装置の故障検出装置
JP2776271B2 (ja) * 1994-10-27 1998-07-16 株式会社デンソー 定速走行制御時のモータロック検出装置
US6186115B1 (en) * 1995-12-19 2001-02-13 Hitachi, Ltd. Throttle valve control device for an internal combustion engine
US5771869A (en) * 1996-06-12 1998-06-30 Toyota Jidosha Kabushiki Kaisha Malfunction determining apparatus of an exhaust gas recirculation system
JP3487094B2 (ja) * 1996-10-18 2004-01-13 株式会社日立製作所 スロットル弁制御装置
FR2755215B1 (fr) * 1996-10-28 1999-01-08 Valeo Climatisation Installation de chauffage, ventilation et/ou climatisation a regulation par logique floue, notamment pour vehicule automobile
US6047679A (en) * 1997-04-25 2000-04-11 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Control apparatus for an internal combustion engine
JPH10299555A (ja) * 1997-04-25 1998-11-10 Mitsubishi Motors Corp 電子スロットル制御装置付き内燃機関の制御装置
JP3572996B2 (ja) * 1999-05-12 2004-10-06 トヨタ自動車株式会社 内燃機関のスロットル制御装置
US6199535B1 (en) * 1999-05-13 2001-03-13 Denso Corporation Throttle control for internal combustion engine having failure detection function
US6431144B1 (en) * 1999-09-02 2002-08-13 Siemens Vdo Automotive Inc. Electronic throttle control system
JP4234289B2 (ja) * 1999-12-27 2009-03-04 日産自動車株式会社 エンジンの制御装置
US6263858B1 (en) * 2000-01-20 2001-07-24 Ford Global Technologies, Inc. Powertrain output monitor
US6318337B1 (en) * 2000-05-19 2001-11-20 Visteon Global Technologies, Inc. Electronic throttle control
EP1310660B1 (en) * 2000-08-14 2011-04-20 Mitsubishi Denki Kabushiki Kaisha Method for controlling exhaust gas recirculation valve
US6640688B1 (en) * 2000-08-25 2003-11-04 Tyco Flow Control, Inc. Actuator assembly
DE10050408A1 (de) * 2000-10-12 2002-04-18 Siemens Ag Drosselklappenstutzen
JP2002161758A (ja) * 2000-11-27 2002-06-07 Denso Corp 内燃機関のスロットル制御装置
US6837226B2 (en) * 2001-01-31 2005-01-04 Cummins, Inc. System for diagnosing EGR valve, actuator and sensor related failure conditions
JP2002322934A (ja) * 2001-04-26 2002-11-08 Toyota Motor Corp 内燃機関の吸気制御装置
JP2003262178A (ja) * 2002-03-07 2003-09-19 Denso Corp 内燃機関の制御装置
US6769398B2 (en) * 2002-06-04 2004-08-03 Ford Global Technologies, Llc Idle speed control for lean burn engine with variable-displacement-like characteristic
JP2004011564A (ja) * 2002-06-10 2004-01-15 Hitachi Ltd モータ駆動式スロットル弁の制御方法及びモータ駆動式スロットル弁制御装置
US7089910B2 (en) * 2002-07-12 2006-08-15 Yamaha Marine Kabushiki Kaisha Watercraft propulsion system and control method of the system
JP3977199B2 (ja) * 2002-08-22 2007-09-19 本田技研工業株式会社 スロットル弁駆動装置の制御装置
US6711492B1 (en) * 2002-09-19 2004-03-23 Visteon Global Technologies, Inc. Off-line diagnostics for an electronic throttle
DE10354470A1 (de) * 2003-11-21 2005-06-30 Siemens Ag Verfahren zum Steuern eines Stellelementes einer Abgasrückführeinrichtung für eine Brennkraftmaschine
DE102004057612B4 (de) * 2003-12-03 2010-04-08 Continental Automotive Systems US, Inc. (n. d. Gesetzen des Staates Delaware), Auburn Hills Elektronisches Kontrollsystem für einen Drosselkörper und Verfahren
JP4270099B2 (ja) * 2004-10-19 2009-05-27 トヨタ自動車株式会社 内燃機関の制御装置
GB0424249D0 (en) * 2004-11-02 2004-12-01 Camcon Ltd Improved actuator requiring low power for actuation for remotely located valve operation and valve actuator combination
JP4380509B2 (ja) * 2004-11-26 2009-12-09 トヨタ自動車株式会社 内燃機関の制御装置
JP4412161B2 (ja) * 2004-12-07 2010-02-10 日産自動車株式会社 内燃機関のフェールセーフ制御装置
JP2006242027A (ja) * 2005-03-01 2006-09-14 Honda Motor Co Ltd エンジンの燃料噴射制御装置
JP2007023933A (ja) * 2005-07-19 2007-02-01 Mitsubishi Electric Corp 内燃機関の制御装置
JP4529831B2 (ja) * 2005-07-25 2010-08-25 トヨタ自動車株式会社 内燃機関のバルブ制御装置
JP4728832B2 (ja) * 2006-02-14 2011-07-20 愛三工業株式会社 内燃機関のスロットル制御装置
JP4683300B2 (ja) * 2006-09-05 2011-05-18 株式会社デンソー 排気還流装置
JP2008075517A (ja) 2006-09-20 2008-04-03 Denso Corp 内燃機関の制御装置
US7434566B2 (en) * 2006-10-31 2008-10-14 Delphi Technologies, Inc. ETC control system and method
JP2008215112A (ja) * 2007-02-28 2008-09-18 Mitsubishi Heavy Ind Ltd ディーゼルエンジンシステム及びその制御方法
US7503311B2 (en) * 2007-04-13 2009-03-17 Delphi Technologies, Inc. Method for sensing and clearing throttle plate obstruction
JP2008267172A (ja) * 2007-04-17 2008-11-06 Yamaha Motor Co Ltd 車両並びにその制御装置およびその制御方法
JP4424372B2 (ja) * 2007-05-16 2010-03-03 トヨタ自動車株式会社 アクチュエータの制御装置
JP2008291746A (ja) * 2007-05-24 2008-12-04 Toyota Motor Corp アクチュエータの制御装置
JP2009121298A (ja) * 2007-11-13 2009-06-04 Daihatsu Motor Co Ltd 内燃機関用スロットルバルブの凍結防止制御方法
JP2009215926A (ja) 2008-03-07 2009-09-24 Mitsubishi Heavy Ind Ltd ディーゼルエンジン監視システム、及び監視方法
JP4859875B2 (ja) 2008-05-12 2012-01-25 三菱重工業株式会社 ディーゼルエンジンの排ガス再循環制御装置
SG178489A1 (en) * 2009-08-18 2012-03-29 Carrier Corp Damper apparatus for transport refrigeration system, transport refrigeration unit, and methods for same
US8627802B2 (en) * 2010-02-19 2014-01-14 Honda Motor Co., Ltd. Evaporated fuel treatment apparatus and method of detecting failure in control valve
US8812914B2 (en) * 2011-10-24 2014-08-19 Fisher Controls International, Llc Field control devices having pre-defined error-states and related methods

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07189763A (ja) * 1993-12-28 1995-07-28 Nissan Motor Co Ltd 内燃機関のスロットル弁制御装置
JPH10122058A (ja) 1996-10-16 1998-05-12 Toyota Motor Corp 内燃機関の排ガス再循環装置
JP2003106241A (ja) * 2001-09-28 2003-04-09 Isuzu Motors Ltd コモンレール式燃料噴射制御装置
JP2004278307A (ja) * 2002-05-24 2004-10-07 Denso Corp Egr装置
JP2006132449A (ja) * 2004-11-05 2006-05-25 Toyota Motor Corp スロットル制御装置
JP2006161569A (ja) * 2004-12-02 2006-06-22 Mitsubishi Fuso Truck & Bus Corp 内燃機関のegr制御装置
JP2007255251A (ja) 2006-03-22 2007-10-04 Nissan Diesel Motor Co Ltd Egr制御バルブの故障判定装置及び方法
JP2007263051A (ja) * 2006-03-29 2007-10-11 Mitsubishi Fuso Truck & Bus Corp 内燃機関の吸入空気量制御装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2444642A4 *

Also Published As

Publication number Publication date
EP2444642A4 (en) 2015-11-18
US9500148B2 (en) 2016-11-22
EP2444642A1 (en) 2012-04-25
KR101361907B1 (ko) 2014-02-12
US20120130623A1 (en) 2012-05-24
JP2011153578A (ja) 2011-08-11
KR20120024948A (ko) 2012-03-14
EP2444642B1 (en) 2019-12-25
JP5393506B2 (ja) 2014-01-22

Similar Documents

Publication Publication Date Title
JP5393506B2 (ja) エンジンの吸気系に用いられる制御弁の制御装置及び制御方法
EP1870584B1 (en) Exhaust gas recirculation device of internal combustion engine, and control method of the device
JP4301295B2 (ja) 内燃機関のegrシステム
JP5364610B2 (ja) 内燃機関の排ガス再循環制御装置
US8844505B2 (en) Method for managing the exhaust gas circulation circuit of a petrol thermal engine and corresponding recirculation system
CN104747307A (zh) 应用egr系统的增压汽油机的控制方法、系统及车辆
WO2015053260A1 (ja) 内燃機関の制御装置
US9567926B2 (en) Control unit of internal combustion engine
JP2008261300A (ja) 内燃機関の排気還流装置
WO2017163397A1 (ja) 内燃機関のegr制御装置及びegr制御方法
JP2008150978A (ja) 内燃機関の排気還流装置
JP6458480B2 (ja) 排気還流制御装置
JP2007303380A (ja) 内燃機関の排気制御装置
JP4765966B2 (ja) 内燃機関の排気還流装置
KR20130057839A (ko) Egr밸브 및 이를 이용한 egr 제어 시스템 및 방법
JP2011185160A (ja) Egrシステムの異常検出装置及び異常検出方法
JP2008128043A (ja) 内燃機関の排気再循環装置
JP2010190176A (ja) 内燃機関の異常判定装置
JP2011226437A (ja) Egrシステムの異常検出装置及び異常検出方法
JP2019152122A (ja) 内燃機関システム
JP2014034921A (ja) 内燃機関の制御装置
JP2011185096A (ja) 内燃機関の排気還流装置
JP5206514B2 (ja) 内燃機関の排気還流装置
JP2005127231A (ja) 車両用故障診断方法及び装置
JP4682931B2 (ja) 内燃機関の排気還流装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11736856

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20127000432

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2011736856

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13388156

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE