WO2011090020A1 - 二次電池の充電状態測定装置及び二次電池の充電状態測定方法 - Google Patents

二次電池の充電状態測定装置及び二次電池の充電状態測定方法 Download PDF

Info

Publication number
WO2011090020A1
WO2011090020A1 PCT/JP2011/050730 JP2011050730W WO2011090020A1 WO 2011090020 A1 WO2011090020 A1 WO 2011090020A1 JP 2011050730 W JP2011050730 W JP 2011050730W WO 2011090020 A1 WO2011090020 A1 WO 2011090020A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit voltage
open circuit
state
secondary battery
charge
Prior art date
Application number
PCT/JP2011/050730
Other languages
English (en)
French (fr)
Inventor
将司 中村
英史 長谷川
Original Assignee
株式会社Gsユアサ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Gsユアサ filed Critical 株式会社Gsユアサ
Priority to CN201180005535.2A priority Critical patent/CN102695961B/zh
Priority to US13/522,301 priority patent/US9263773B2/en
Priority to KR1020127018930A priority patent/KR101750739B1/ko
Priority to EP11734626.2A priority patent/EP2527855B1/en
Priority to JP2011550907A priority patent/JPWO2011090020A1/ja
Publication of WO2011090020A1 publication Critical patent/WO2011090020A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • G01R31/3842Arrangements for monitoring battery or accumulator variables, e.g. SoC combining voltage and current measurements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/165Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values
    • G01R19/16533Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values characterised by the application
    • G01R19/16538Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values characterised by the application in AC or DC supplies
    • G01R19/16542Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values characterised by the application in AC or DC supplies for batteries
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/367Software therefor, e.g. for battery testing using modelling or look-up tables
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • G01R31/3828Arrangements for monitoring battery or accumulator variables, e.g. SoC using current integration
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/392Determining battery ageing or deterioration, e.g. state of health
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/3644Constructional arrangements
    • G01R31/3648Constructional arrangements comprising digital calculation means, e.g. for performing an algorithm
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/396Acquisition or processing of data for testing or for monitoring individual cells or groups of cells within a battery
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a secondary battery charge state measuring apparatus and a secondary battery charge state measuring method for measuring the state of charge of a secondary battery based on a predetermined open circuit voltage-charge state characteristic.
  • Such a secondary battery state-of-charge measuring apparatus and method for measuring a state of charge include a state of charge (hereinafter also referred to as “SOC”) required for charge / discharge control of the secondary battery.
  • SOC is an abbreviation for State of Charge.
  • the SOC refers to the ratio of the remaining capacity of the secondary battery at each time point to the remaining capacity of the secondary battery when fully charged (so-called battery capacity).
  • the open circuit voltage hereinafter referred to as “OCV” is also described using the open circuit voltage-charge state characteristics.
  • the secondary battery In the latter method of integrating the charge / discharge current of the secondary battery, the secondary battery is usually used as the total capacity of the secondary battery as a denominator when obtaining the SOC. If the battery capacity decreases due to deterioration, the obtained SOC will contain an error.
  • OCV-SOC characteristic open-circuit voltage-charge state characteristic
  • the present invention has been made in view of such circumstances, and an object thereof is to enable accurate measurement of the SOC of a secondary battery.
  • a first characteristic configuration of the secondary battery charge state measuring device is that the secondary battery charge state measuring device measures an open circuit voltage measuring means for measuring an open circuit voltage of the secondary battery, and charging the secondary battery.
  • Current integration means for integrating current or discharge current, correspondence between the degree of decrease in battery capacity of the secondary battery from the reference time point and open circuit voltage-charge state characteristics, and the value of the battery capacity at the reference time point or the reference Storage means for storing a value corresponding to the value of the battery capacity at the time, and an open circuit voltage for capacity reduction estimation that the relationship between the open circuit voltage and the state of charge does not change due to deterioration of the secondary battery from the reference time
  • the integrated current value of the charging current or discharging current in the process of changing the charging state between a plurality of open circuit voltage values is measured by the current integrating means, and the integrated current value and the battery capacity value at the reference time point or in front Estimating the degree of decrease in battery capacity using a value corresponding to the value of the battery capacity at the reference time point, and specify
  • the OCV-SOC characteristics which are normally considered not to change due to deterioration of the secondary battery, may also change depending on the secondary battery. Moreover, it has been found that there are certain characteristics in the mode of change. In other words, the OCV-SOC characteristics do not vary in the whole area due to the deterioration of the secondary battery, but the OCV-SOC characteristics change in some areas due to the deterioration of the secondary battery. As understood, the OCV-SOC characteristics do not change even when the secondary battery deteriorates. This tendency is remarkable in a secondary battery in which two or more kinds of lithium-containing metal oxides are mixed as a positive electrode active material.
  • the SOC can be measured using the OCV-SOC characteristic.
  • a region where the OCV-SOC characteristic is not changed by the deterioration of the secondary battery is used.
  • the charge current or discharge current is integrated in the process of changing the charge state between a plurality of open circuit voltage values, and the integrated current is calculated. taking measurement.
  • the above integrated current corresponds to the amount of change in the charged state.
  • the battery capacity at the time of measurement is obtained. By comparing it with that at the reference time, the degree of decrease in battery capacity from the reference time can be estimated.
  • the reference time is preferably the initial stage when the secondary battery is manufactured, but the time when the user actually starts using the secondary battery can be appropriately set as the reference time. It is.
  • An appropriate OCV-SOC characteristic can be specified from the estimated degree of battery capacity reduction by obtaining a correspondence relationship between the degree of battery capacity reduction and the OCV-SOC characteristic in advance. Since the degree of decrease in battery capacity from the reference time corresponds to the degree of deterioration of the secondary battery, using the OCV-SOC characteristics specified as described above, if the state of charge is obtained from the measurement result of the open circuit voltage, The state of charge can be measured in a state where the change in the OCV-SOC characteristics due to the deterioration of the secondary battery is also taken into consideration.
  • an area where the deviation of the open circuit voltage between the reference time point and the capacity decrease due to deterioration in the same charging state is 10 mV or less is the open circuit voltage area for capacity decrease estimation.
  • an area where the deviation of the open circuit voltage between the reference time point and the capacity decrease due to deterioration in the same state of charge is 2 mV or less is the open circuit voltage area for capacity decrease estimation.
  • the secondary battery is preferably a battery having a positive electrode active material obtained by mixing two or more kinds of lithium-containing metal oxides, and includes a lithium-containing metal oxide having a spinel structure and a lithium-containing metal oxide having a layered structure. More preferably, the secondary battery has a positive electrode active material obtained by mixing a product.
  • the charge state calculation means is configured to cause the open circuit voltage measurement means to measure a plurality of open circuit voltage values in the capacity drop estimation open circuit voltage region, and to measure the open circuit voltage by the open circuit voltage measurement means.
  • the integrated current value of the charging current or discharging current in the process of changing the charging state between the values is measured, and the plurality of open circuit voltage values, the integrated current value, the battery capacity value at the reference time point, or the reference time point It is preferable to estimate the degree of decrease in battery capacity using a value corresponding to the value of battery capacity.
  • the second characteristic configuration of the secondary battery charge state measuring device includes an open circuit voltage measuring device for measuring an open circuit voltage of the secondary battery, and a current integrating device for integrating the charging current or discharging current of the secondary battery. Corresponding to the degree of decrease in the battery capacity of the secondary battery from the reference time point and the open circuit voltage-charge state characteristics and the battery capacity value at the reference time point or the battery capacity value at the reference time point. Between a plurality of open-circuit voltage values in a storage device storing values and an open-circuit voltage region for capacity reduction estimation that the relationship between the open-circuit voltage and the state of charge does not change due to deterioration of the secondary battery from the reference time point.
  • the integrated current value of the charging current or discharging current in the process of changing the charging state is measured by the current integrating device, and the integrated current value and the battery capacity value at the reference time point or the battery capacity value at the reference time point are obtained.
  • the charge condition calculating apparatus which calculates
  • the characteristic configuration of the method for measuring the state of charge of the secondary battery according to the present invention includes a plurality of characteristics in the open circuit voltage region for capacity reduction estimation that the relationship between the open circuit voltage and the state of charge does not change even when the secondary battery deteriorates from the reference time point.
  • the accumulated current value is measured by integrating the charging current or discharging current in the process of changing the charging state between the open circuit voltage values of the battery, and the battery capacity is calculated using the accumulated current value and the battery capacity value at the reference time point.
  • the voltage-charge state characteristic is specified, the specified open circuit voltage-charge state characteristic is applied, and the charge state is obtained from the measurement result of the open circuit voltage.
  • the charging state changes between a plurality of open circuit voltage values in the open circuit voltage region where the OCV-SOC characteristics do not change even when the secondary battery deteriorates.
  • the charging current or discharging current is integrated to measure the integrated current. This integrated current is equivalent to the change in the state of charge, and the battery capacity at the time of measurement is substantially determined, so by comparing it with that at the reference time, The degree of decrease in battery capacity is estimated.
  • An appropriate OCV-SOC characteristic can be identified from the estimated degree of decrease in battery capacity by using the correspondence relationship between the degree of decrease in battery capacity and the OCV-SOC characteristic obtained in advance. Since the degree of decrease in battery capacity from the reference time corresponds to the degree of deterioration of the secondary battery, using the OCV-SOC characteristics specified as described above, if the state of charge is obtained from the measurement result of the open circuit voltage, The state of charge can be measured in a state where the change in the OCV-SOC characteristics due to the deterioration of the secondary battery is also taken into consideration.
  • an area where the deviation of the open circuit voltage between the reference time point and the capacity decrease due to deterioration in the same charging state is 10 mV or less is the open circuit voltage area for capacity decrease estimation.
  • an area where the deviation of the open circuit voltage between the reference time point and the capacity decrease due to deterioration in the same state of charge is 2 mV or less is the open circuit voltage area for capacity decrease estimation.
  • the secondary battery is preferably a battery having a positive electrode active material obtained by mixing two or more kinds of lithium-containing metal oxides, and the secondary battery includes a lithium-containing metal oxide having a spinel structure and a layered structure. More preferably, it is a secondary battery having a positive electrode active material obtained by mixing a lithium-containing metal oxide comprising
  • the OCV-SOC characteristic taking into account the deterioration state of the secondary battery while taking the SOC measurement based on the OCV-SOC characteristic as a basis. Since it is used, the SOC of the secondary battery can be measured with high accuracy.
  • FIG. 1 is a block diagram showing an overall configuration according to an embodiment of the present invention.
  • FIG. 2 is an explanatory diagram showing changes in OCV-SCO characteristics.
  • FIG. 3 is a characteristic diagram for explaining a decrease in capacity of the secondary battery.
  • FIG. 4 is a flowchart according to the embodiment of the present invention.
  • the secondary battery state-of-charge measuring device As schematically shown in FIG. 1, the secondary battery state-of-charge measuring device according to the present embodiment is provided as a function in the battery monitoring device 2 that monitors each unit cell 1 a constituting the assembled battery 1. In other words, the battery monitoring device 2 itself functions as a charging state measuring device.
  • each of the unit cells 1a is a secondary battery.
  • each unit cell 1a will be described by exemplifying a lithium ion battery, particularly a lithium ion battery using two or more types of lithium-containing metal oxides as the positive electrode active material.
  • said lithium containing metal oxide there exist some which contain each element, such as Co, Mn, or Ni, one type or two types or more, for example.
  • a positive electrode active material obtained by mixing a lithium-containing metal oxide having a spinel structure and a lithium-containing metal oxide having a layered structure may be used.
  • Typical lithium-containing metal oxides having a layered structure include cobalt-based LiCoO 2 , nickel-based LiNiO 2 , or Li—Co—Ni—Mn-based oxide (so-called ternary system).
  • a typical lithium-containing metal oxide having a spinel structure is LiMn 2 O 4 .
  • the battery monitoring device 2 includes an A / D converter and the like, and measures a voltage (cell voltage) of each unit cell 1a, a discharge current from the assembled battery 1 and a charging current to the assembled battery 1
  • a current integrating unit 2b that is a current integrating unit CS that measures and integrates the discharge current and the charging current based on detection information of the current sensor 5 to be detected
  • a control unit 2c that controls the operation of the battery monitoring device 2
  • a memory 2d which is a storage means MM for storing and holding various data necessary for measuring the state of charge of the unit cell 1a, is provided.
  • the battery monitoring device 2 monitors whether the assembled battery 1 is operating properly on the basis of the state of charge (SOC) data obtained by the function as the state of charge measuring device, and sends it to the charging power source 3 as necessary. Send various control signals.
  • SOC state of charge
  • the battery monitoring device 2 basically measures the state of charge from the measured value of the open circuit voltage of each unit cell 1a using the open circuit voltage-charge state characteristic (hereinafter also simply referred to as “OCV-SOC characteristic”). To do. However, in the lithium ion battery according to the present embodiment, it has been confirmed that the OCV-SOC characteristics are not unchanged and fluctuate depending on the degree of deterioration of the unit cell 1a.
  • OCV-SOC characteristic open circuit voltage-charge state characteristic
  • FIG. 2 shows an example of OCV-SOC characteristics of the lithium ion battery of the present embodiment.
  • the OCV-SOC characteristics in FIG. 2 show the characteristics of one single cell 1a.
  • a forced deterioration test (accelerated deterioration test) is performed in four stages, and the OCV-SOC characteristics in each stage are shown.
  • the data is shown together with the initial data (initial stage of battery manufacture).
  • the full charge is obtained when the open circuit voltage is 4.1V.
  • the data indicated by the symbol “A” is the initial OCV-SOC characteristic
  • the data indicated by the symbols “B” to “E” are 300 times, 700 times, 1000 times, and 1500 times, respectively.
  • the OCV-SOC characteristics when the battery is forcibly deteriorated in the charge / discharge cycle are shown. It can be understood from FIG. 2 that the OCV-SOC characteristics change due to deterioration of the unit cell 1a, and that the OCV-SOC characteristics change over the entire range of the OCV-SOC characteristics. Rather, the OCV-SOC characteristics hardly change even when the degree of deterioration indicated by “ ⁇ ” in FIG. 2 differs, and the degree of deterioration of the unit cell 1a indicated by “ ⁇ ” in FIG. There is a region where the OCV-SOC characteristic changes.
  • FIG. 3 shows a result of measuring how the battery capacity of the unit cell 1a changes by performing the above-mentioned forced deterioration test.
  • the vertical axis represents “open circuit voltage”
  • the horizontal axis represents “discharge capacity”
  • the horizontal axis indicates whether it was made.
  • the data indicated by the symbol “A ′” is initial data
  • the data indicated by the symbols “B ′” to “E ′” is filled 300 times, 700 times, 1000 times, and 1500 times, respectively. Data is shown when the battery is forcibly deteriorated in the discharge cycle. It can be understood from FIG. 3 that the battery capacity has decreased depending on the degree of deterioration of the unit cell 1a.
  • the battery monitoring device 2 estimates the degree of deterioration of the unit cell 1a by obtaining the degree of reduction in battery capacity from the reference time point, and specifies the OCV-SOC characteristic corresponding to the degree of deterioration. Then, the “charge state” is obtained from the measured value of “open circuit voltage” using the specified OCV-SOC characteristic.
  • the “reference time point” “initial”, that is, the initial production of the assembled battery 1 is set as described above. However, any time point may be used as long as the reference time points of various data are unified. You can set the “reference time”.
  • the battery capacity at an appropriate timing after the start of use of the assembled battery 1 is obtained.
  • an open circuit voltage region corresponding to the region “ ⁇ ” in the OCV-SOC characteristic shown in FIG. 2 is used.
  • This region indicated by “ ⁇ ” is a region where the OCV-SOC characteristics are considered not to change even when the single cell 1a is deteriorated. Regardless of the deterioration state of the single cell 1a, the change in the measured value of the “open circuit voltage” A change in “charge state” can be uniquely identified.
  • the “open circuit voltage” is measured by integrating the charging current to the assembled battery 1 or the discharging current from the assembled battery 1 in the process of changing the state of charge among a plurality of “open circuit voltages” to measure the integrated current.
  • the amount of electricity (integrated current value) corresponding to the change in “charge state” corresponding to the change in value is known, and the battery capacity at that time is obtained.
  • two “open circuit voltages” are used as the plurality of “open circuit voltages” in order to simplify the processing.
  • the OCV-SOC characteristic set in advance corresponding to the degree is used for measuring the state of charge. That is, the region indicated by “ ⁇ ” is defined as a capacity drop estimation open circuit voltage region. Strictly speaking, in the region indicated by “ ⁇ ”, the difference in the open circuit voltage between the reference time point in the same charge state and the capacity decrease due to deterioration is about 30 mV at the maximum, and the region below 30 mV is estimated as the capacity decrease.
  • the open circuit voltage range is used.
  • the detection accuracy of the charge state can be further improved. If the area where the deviation of the open circuit voltage between the reference time and the capacity drop due to deterioration in the same charge state is 2 mV or less is the open circuit voltage area for capacity drop estimation, the charge state detection accuracy is further improved. Can be made.
  • the initial (reference time) battery capacity value is stored and held in the memory 2d, and the correspondence between the degree of decrease in battery capacity from the initial (reference time) and the OCV-SOC characteristics It is obtained in advance and stored in the memory 2d.
  • the correspondence between the degree of decrease in battery capacity from the initial (reference time) and the OCV-SOC characteristics is obtained by obtaining the OCV-SOC characteristics in a forced deterioration test as shown in FIG. 2, and the battery capacity at each deterioration stage.
  • the initial battery capacity: Cini is known, and the degree of decrease in battery capacity from the initial stage is specified as, for example, Cini-Crt.
  • the battery monitoring device 2 has a basic operation of obtaining “charge state (SOC)” from the OCV-SOC characteristic based on the measured “open circuit voltage (OCV)”, and functions as a charge state calculation unit. .
  • SOC charge state
  • OCV-SOC characteristic is not used permanently, but the OCV-SOC characteristic to be used is changed according to the deterioration state of the unit cell 1a.
  • the “table update process” shown in FIG. 4 is a process for measuring the degree of battery capacity reduction and specifying the OCV-SOC characteristic to be used at that time. The processing in FIG.
  • step # 1 the processing is substantially started.
  • step # 2 the processing is substantially started (step # 1).
  • step # 3 the voltage measured by each voltage cell 1a by the voltage measuring unit 2a at this time is treated as an “open circuit voltage” (step # 3). Therefore, the voltage measuring unit 2a and the current sensor 5 function as open circuit voltage measuring means OV that measures the open circuit voltage of each single cell 1a.
  • the voltage range of the “open circuit voltage” corresponding to the “ ⁇ ” region is an open circuit voltage region that can be used to measure the degree of battery capacity decrease (the open circuit for capacity decrease estimation). Voltage range) and whether it is within that range. In terms of specific open circuit voltage values, there are a region where the open circuit voltage is 3.4 V or less and a region where 3.8 V or more. If it is within the above range (region where the open circuit voltage is 3.4 V or less or 3.8 V or more), it is confirmed whether or not the “updating flag” is “1” (step # 5).
  • the battery capacity is obtained from the integrated current value and the SOC difference between the two “open circuit voltages”, so that the state where the “open circuit voltage” has not been measured yet is “updated”.
  • the state of charge (SOC) at that time is obtained from the “open circuit voltage” measured in step # 3 and the OCV-SOC characteristics used at that time.
  • the memory 2d Store in the memory 2d (step # 6).
  • the measured “open circuit voltage” is Vp
  • the state of charge: Sp is stored in the memory 2d.
  • the current integration unit 2b is started to integrate the discharge current from the assembled battery 1 and the charging current to the assembled battery 1 based on the detection information of the current sensor 5 (step # 7). Is set to “1”.
  • the current integrating unit 2b integrates the discharge current and the charging current in consideration of the signs (different signs).
  • step # 2 when the current flowing through the assembled battery 1 becomes almost “0” (step # 2), the “open circuit voltage” is measured in the same manner as described above, and the measured voltage (assuming Vq Is determined to be within the above-mentioned predetermined voltage range (steps # 3 and # 4).
  • the “updating flag” 1 (step # 5)
  • the difference between the previous measured value Vp of the “open circuit voltage” and the measured value Vq of the current “open circuit voltage” is greater than or equal to the set value. Is confirmed (step # 9). That is, if Vp and Vq are too close to each other, even if a difference in charge state is obtained, it cannot be accurately converted into a battery capacity, so a certain voltage difference is required.
  • the above set value may be set to an appropriate value in relation to the required battery capacity accuracy.
  • step # 9 If the difference between Vq and Vp is equal to or greater than the set value (step # 9), the state of charge (that is, Sq) at that time is obtained from the “open circuit voltage” Vq and the OCV-SOC characteristics used at that time. And stored in the memory 2d (step # 10), and causes the current integrating section 2b to stop the current integrating operation (step # 11). Next, the current integration value Ci is obtained from the current integration unit 2b, and the degree of decrease in the battery capacity is obtained (step # 12).
  • an OCV-SOC characteristic corresponding to the degree of battery capacity reduction obtained is selected from the data table in the memory 2d, and the OCV-SOC characteristic used at that time is updated by the selected OCV-SOC characteristic (step). # 13). Since a series of processing is completed, the “updating flag” and “update execution flag” are reset to “0” (steps # 14 and # 15). Thereafter, the state of charge is obtained from the measured value of “open circuit voltage” using the OCV-SOC characteristic updated in step # 13.
  • the degree of decrease in battery capacity from the initial stage is obtained by direct comparison with Ci in the above embodiment.
  • the content of the data table in the memory 2d that stores the correspondence between the degree of decrease in battery capacity from the initial (reference time) and the OCV-SOC characteristic is also the accumulated current amount between the charge state Sp and the charge state Sq.
  • the data content is based on
  • the case where the correspondence relationship between the battery capacity decrease degree and the OCV-SOC characteristic obtained in advance is stored and held in the data table is illustrated.
  • FIG. In the area shown, the OCV value corresponding to the SOC value changes with a change in the battery capacity reduction degree by approximating the function for each SOC value, and the obtained battery capacity
  • the OCV-SOC characteristic to be used may be configured by obtaining the OCV value corresponding to each SOC value from the degree of decrease by the above function.
  • the above embodiment exemplifies a case where the OCV-SOC characteristic corresponding to the obtained battery capacity reduction degree is selected and the OCV-SOC characteristic used for measuring the state of charge is updated. Instead of updating the entire OCV-SOC characteristic, only the data in the area indicated by “ ⁇ ” in FIG. 2 where the OCV-SOC characteristic changes may be updated.
  • the unit cell 1a constituting the assembled battery 1 is illustrated as a secondary battery, but the present invention can also be applied to the case where the unit battery is used instead of the assembled battery.
  • the case where the accumulated current of the charging current and the discharging current in the process of changing the charging state between the two open circuit voltages of Vp and Vq is illustrated, but three or more An integrated current such as a charging current in a process in which a charging state changes between open circuit voltages may be measured.
  • the integrated current value and the charging state can be plotted on a graph, and the correspondence between the charging state and the integrated current value can be specified by minimizing the detection error by the least square method or the like.

Landscapes

  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Secondary Cells (AREA)
  • Tests Of Electric Status Of Batteries (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

 二次電池のSOCを精度良く測定できるようにする。 開路電圧-充電状態特性における、前記二次電池1aの劣化によっても開路電圧と充電状態との関係は変化しないとみなす容量低下推定用開路電圧領域において、複数の開路電圧値間で充電状態が変化する過程における充電電流又は放電電流を積算して積算電流を測定し、その測定結果に基づいて前記基準時点からの電池容量の低下度合いを推定し、推定した電池容量の低下度合いと、予め求められている基準時点からの前記二次電池1aの電池容量の低下度合いと開路電圧-充電状態特性との対応関係とに基づいて開路電圧-充電状態特性を特定し、特定した開路電圧-充電状態特性を適用して、開路電圧の測定結果から充電状態を求める。

Description

二次電池の充電状態測定装置及び二次電池の充電状態測定方法
 本発明は、予め求められている開路電圧-充電状態特性に基づいて、二次電池の充電状態を測定する二次電池の充電状態測定装置、及び、二次電池の充電状態測定方法に関する。
 かかる二次電池の充電状態測定装置及び充電状態測定方法は、二次電池の充放電制御等に必要となる充電状態(以下、「SOC」とも記す。SOCは、State of Chargeの略記である。)の値を測定するための装置及び方法である。
 ここで、SOCは、満充電時の二次電池の残存容量(いわゆる、電池容量)に対する各時点の二次電池の残存容量の比率をいう。
 二次電池のSOCを測定するための手法として、一般に、下記特許文献1に記載されているように、開路電圧-充電状態特性を利用して、開路電圧(以下、「OCV」とも記す。OCVは、Open circuit voltageの略記である。)の測定値からSOCを求める手法と、二次電池の充放電電流を積算して、その積算値の二次電池の総容量に対する比率として求める手法とがある。
 後者の二次電池の充放電電流を積算する手法では、SOCを求める際の分母となる二次電池の総容量として、通常は二次電池の初期の総容量を使用するため、二次電池が劣化して電池容量が低下すると、求めたSOCが誤差を含んでしまうことになる。
 この点、前者の開路電圧-充電状態特性(以下、「OCV-SOC特性」とも記す。)を利用する手法では、通常、二次電池が劣化して二次電池の総容量が変化してもOCV-SOC特性自体は変化しないと考えられており、良く利用されている。
特開2003-68369号公報
 しかしながら、上記のOCV-SOC特性を利用して、OCVの測定値から単純にSOCを求める方法では、必ずしも正確にSOCを測定できない場合もあり得ることが判ってきた。
 本発明は、かかる実情に鑑みてなされたものであって、その目的は、二次電池のSOCを精度良く測定できるようにする点にある。
 本発明による二次電池の充電状態測定装置の第1の特徴構成は、二次電池の充電状態測定装置が、二次電池の開路電圧を測定する開路電圧測定手段と、前記二次電池の充電電流又は放電電流を積算する電流積算手段と、基準時点からの前記二次電池の電池容量の低下度合いと開路電圧-充電状態特性との対応関係及び前記基準時点での電池容量の値又は前記基準時点での電池容量の値に対応する値を記憶している記憶手段と、基準時点からの二次電池の劣化によっても開路電圧と充電状態との関係は変化しないと見なす容量低下推定用開路電圧領域において、複数の開路電圧値間で充電状態が変化する過程における充電電流又は放電電流の積算電流値を前記電流積算手段に測定させ、前記積算電流値と前記基準時点での電池容量の値又は前記基準時点での電池容量の値に対応する値とを用いて電池容量の低下度合いを推定し、推定した電池容量の低下度合いと前記対応関係とに基づいて開路電圧-充電状態特性を特定し、特定した開路電圧-充電状態特性を適用して、前記開路電圧測定手段による開路電圧の測定結果から充電状態を求める充電状態演算手段とが備えられて構成されている点にある。
 通常は二次電池の劣化によっても変化しないと考えられているOCV-SOC特性も、二次電池によっては変化してしまう場合もあることが判ってきた。しかもその変化の態様には一定の特徴が存在することが判った。
 すなわち、二次電池の劣化によってOCV-SOC特性が全域でばらばらに変化してしまうのではなく、ある領域ではOCV-SOC特性が二次電池の劣化によって変化するが、それ以外の領域では従来の理解通りOCV-SOC特性が二次電池の劣化によっても変化しないのである。この傾向は、正極活物質として、2種類以上のリチウム含有金属酸化物を混合してなる二次電池において顕著である。
 二次電池のOCV-SOC特性が二次電池の劣化によって変化しても、二次電池の劣化状態に応じてOCV-SOC特性がどのように変化するかを予め把握しておけば、二次電池の劣化状態を検出することで、OCV-SOC特性を利用したSOCの測定は行える。
 この二次電池の劣化状態の検出に、OCV-SOC特性が二次電池の劣化によっても変化しない領域を利用する。
 具体的には、OCV-SOC特性が二次電池の劣化によっても変化しない開路電圧領域において、複数の開路電圧値間で充電状態が変化する過程で充電電流又は放電電流を積算して積算電流を測定する。
 この開路電圧領域では、開路電圧と充電状態との関係が二次電池の劣化状態に拘わらず一意に決まるので、上記の積算電流が充電状態の変化分に相当することになり、実質的にはその測定時点の電池容量を求めたことになっている。
 それを基準時点のものと比較することで、基準時点からの電池容量の低下度合いを推定できる。
 尚、この基準時点としては、二次電池を製造したときの初期とすることが好適であるが、ユーザ側で実際に二次電池の使用を開始した時点等を適宜に基準時点として設定できるものである。
 電池容量の低下度合いとOCV-SOC特性との対応関係を予め求めておくことで、推定した電池容量の低下度合いから適切なOCV-SOC特性を特定できる。
 基準時点からの電池容量の低下度合いは二次電池の劣化の程度に対応するので、上記のようにして特定したOCV-SOC特性を使用して、開路電圧の測定結果から充電状態を求めれば、二次電池の劣化によるOCV-SOC特性の変化も考慮に入れた状態で充電状態を測定できることになる。
 ここに、同一の充電状態における前記基準時点と劣化による容量低下後との開路電圧のずれが10mV以下の領域を、前記容量低下推定用開路電圧領域とすることが好ましい。
 また、同一の充電状態における前記基準時点と劣化による容量低下後との開路電圧のずれが2mV以下の領域を、前記容量低下推定用開路電圧領域とすることが好ましい。
 さらに、開路電圧-充電状態特性における充電状態が100%より小さい開路電圧領域において、前記積算電流値を測定することが好ましい。
 開路電圧が3.4V以下もしくは3.8V以上の領域において、前記積算電流値を測定することが好ましい。
 前記二次電池は、2種類以上のリチウム含有金属酸化物を混合してなる正極活物質を有する電池であることが好ましく、スピネル構造を有するリチウム含有金属酸化物と層状構造を有するリチウム含有金属酸化物とを混合してなる正極活物質を有する二次電池であることがより好ましい。
 前記充電状態演算手段は、前記容量低下推定用開路電圧領域において、前記開路電圧測定手段にて複数の開路電圧値を測定させ、前記開路電圧測定手段にて開路電圧を測定した前記複数の開路電圧値間で充電状態が変化する過程における充電電流又は放電電流の積算電流値を測定させ、前記複数の開路電圧値と前記積算電流値と前記基準時点での電池容量の値又は前記基準時点での電池容量の値に対応する値とを用いて電池容量の低下度合いを推定することが好ましい。
 本発明による二次電池の充電状態測定装置の第2の特徴構成は、二次電池の開路電圧を測定する開路電圧測定装置と、前記二次電池の充電電流又は放電電流を積算する電流積算装置と、基準時点からの前記二次電池の電池容量の低下度合いと開路電圧-充電状態特性との対応関係及び前記基準時点での電池容量の値又は前記基準時点での電池容量の値に対応する値を記憶している記憶装置と、基準時点からの二次電池の劣化によっても開路電圧と充電状態との関係は変化しないと見なす容量低下推定用開路電圧領域において、複数の開路電圧値間で充電状態が変化する過程における充電電流又は放電電流の積算電流値を前記電流積算装置に測定させ、前記積算電流値と前記基準時点での電池容量の値又は前記基準時点での電池容量の値に対応する値とを用いて電池容量の低下度合いを推定し、推定した電池容量の低下度合いと前記対応関係とに基づいて開路電圧-充電状態特性を特定し、特定した開路電圧-充電状態特性を適用して、前記開路電圧測定装置による開路電圧の測定結果から充電状態を求める充電状態演算装置と、が備えられた点にある。
 本発明による二次電池の充電状態測定方法の特徴構成は、基準時点からの二次電池の劣化によっても開路電圧と充電状態との関係は変化しないと見なす容量低下推定用開路電圧領域において、複数の開路電圧値間で充電状態が変化する過程における充電電流又は放電電流を積算して積算電流値を測定し、前記積算電流値と前記基準時点での電池容量の値とを用いて電池容量の低下度合いを推定し、推定した電池容量の低下度合いと、予め求められている基準時点からの前記二次電池の電池容量の低下度合いと開路電圧-充電状態特性との対応関係とに基づいて開路電圧-充電状態特性を特定し、特定した開路電圧-充電状態特性を適用して、開路電圧の測定結果から充電状態を求める点にある。
 すなわち、上記の充電状態測定装置の第1の特徴構成について説明したように、OCV-SOC特性が二次電池の劣化によっても変化しない開路電圧領域において、複数の開路電圧値間で充電状態が変化する過程で充電電流又は放電電流を積算して積算電流を測定する。
 この積算電流が充電状態の変化分に相当することになり、実質的にその測定時点の電池容量を求めたことになっているので、それを基準時点のものと比較することで、基準時点からの電池容量の低下度合いを推定する。
 予め求められている電池容量の低下度合いとOCV-SOC特性との対応関係を利用して、推定した電池容量の低下度合いから適切なOCV-SOC特性を特定できる。
 基準時点からの電池容量の低下度合いは二次電池の劣化の程度に対応するので、上記のようにして特定したOCV-SOC特性を使用して、開路電圧の測定結果から充電状態を求めれば、二次電池の劣化によるOCV-SOC特性の変化も考慮に入れた状態で充電状態を測定できることになる。
 ここに、同一の充電状態における前記基準時点と劣化による容量低下後との開路電圧のずれが10mV以下の領域を、前記容量低下推定用開路電圧領域とすることが好ましい。
 また、同一の充電状態における前記基準時点と劣化による容量低下後との開路電圧のずれが2mV以下の領域を、前記容量低下推定用開路電圧領域とすることが好ましい。
 さらに、開路電圧-充電状態特性における充電状態が100%より小さい開路電圧領域において、前記積算電流値を測定することが好ましい。
 開路電圧が3.4V以下もしくは3.8V以上の領域において、前記積算電流値を測定することがさらに好ましい。
 前記二次電池は、2種類以上のリチウム含有金属酸化物を混合してなる正極活物質を有する電池であることが好ましく、前記二次電池は、スピネル構造を有するリチウム含有金属酸化物と層状構造を有するリチウム含有金属酸化物とを混合してなる正極活物質を有する二次電池であることがより好ましい。
 本発明による二次電池の充電状態測定装置及び装置によれば、OCV-SOC特性に基づいてSOCを測定するのを基本としながら、二次電池の劣化状態も考慮に入れたOCV-SOC特性を利用するので、二次電池のSOCを精度良く測定することができようになった。
図1は本発明の実施の形態にかかる全体構成を示すブロック図である。 図2はOCV-SCO特性の変化を示す説明図である。 図3は二次電池の容量低下を説明する特性図である。 図4は本発明の実施の形態にかかるフローチャートである。
 以下、本発明の実施の形態を図面に基づいて説明する。
 本実施の形態の二次電池の充電状態測定装置は、図1に概略的に示すように、組電池1を構成する各単電池1aを監視する電池監視装置2内の一機能として備えられており、換言すると、電池監視装置2自体が充電状態測定装置として機能している。
 本実施の形態では、上記各単電池1aが二次電池である。
 より具体的には、各単電池1aは、リチウムイオン電池、特に、正極活物質として2種類以上のリチウム含有金属酸化物を用いたリチウムイオン電池を例示して説明する。
 尚、上記のリチウム含有金属酸化物としては、例えば、Co,MnあるいはNi等の各元素を1種類又は2種類以上含むものがある。
 結晶構造で言うと、例えば、正極活物質としてスピネル構造を有するリチウム含有金属酸化物と層状構造を有するリチウム含有金属酸化物とを混合してなるものを用いても良い。層状構造を有する代表的なリチウム含有金属酸化物としては、コバルト系のLiCoO、ニッケル系のLiNiO、あるいは、Li-Co-Ni-Mn系酸化物(いわゆる三成分系)がある。又、スピネル構造を有する代表的なリチウム含有金属酸化物としては、LiMnがある。
 本実施の形態では、組電池1に対して充電電源3にて充電すると共に、それらと並列に接続されている負荷4に対して、組電池1あるいは充電電源3から電力を供給する場合を例示して説明する。
 電池監視装置2には、A/Dコンバータ等を備えて各単電池1aの電圧(セル電圧)を測定する電圧測定部2aと、組電池1からの放電電流及び組電池1への充電電流を検出する電流センサ5の検出情報に基づいて上記放電電流及び充電電流を測定して積算する電流積算手段CSである電流積算部2bと、電池監視装置2の動作を制御する制御部2cと、各単電池1aの充電状態を測定するために必要となる各種のデータを記憶保持する記憶手段MMであるメモリ2d等が備えられている。
 電池監視装置2は、充電状態測定装置としての機能によって得た充電状態(SOC)のデータをもとに、組電池1が適正に動作しているかを監視し、必要に応じて充電電源3へ各種の制御信号を送る。
 電池監視装置2は、開路電圧-充電状態特性(以下、単に「OCV-SOC特性」とも記す。)を用いて、各単電池1aの開路電圧の測定値から充電状態を測定するのを基本とする。
 但し、本実施の形態のリチウムイオン電池では、OCV-SOC特性が不変ではなく、単電池1aの劣化の程度によって変動してしまうことを確認している。
 この単電池1aの劣化によるOCV-SOC特性の変化について更に詳細に説明する。
 図2に、本実施の形態のリチウムイオン電池のOCV-SOC特性の一例を示す。図2のOCV-SOC特性は、1つの単電池1aについての特性を示すもので、図2中では、4段階に強制劣化試験(加速劣化試験)を行い、各段階でのOCV-SOC特性を、初期(電池の製造当初)のデータと併せて記載している。尚、図2で示す例では、開路電圧が4.1Vのときを、満充電としている。
 図2中で、符号「A」で示すデータは初期のOCV-SOC特性であり、符号「B」~符号「E」で示すデータは、夫々、300回、700回、1000回及び1500回の充放電サイクルで強制的に劣化させたときのOCV-SOC特性を示している。
 図2から特徴的に把握できることは、OCV-SOC特性は単電池1aの劣化によって変化していること、及び、そのOCV-SOC特性の変化は、OCV-SOC特性の全域に亘って変化しているのではなく、図2中で「α」で示す劣化の程度が異なってもOCV-SOC特性にほとんど変化がない領域と、図2中で「β」で示す単電池1aの劣化の程度によってOCV-SOC特性が変化する領域とが存在することである。
 次ぎに、上記の強制劣化試験を行って、単電池1aの電池容量がどのように変化するかを測定した結果を図3に示す。図3では、縦軸に「開路電圧」をとり、横軸に「放電容量」をとって、満充電の状態から縦軸の「開路電圧」に低下するまでに、どれだけの電気量を放電できたかを横軸で示している。
 図3では、符号「A’」で示すデータは初期のデータであり、符号「B’」~符号「E’」で示すデータは、夫々、300回、700回、1000回及び1500回の充放電サイクルで強制的に劣化させたときのデータを示している。
 図3からは、単電池1aの劣化の程度に依存して、電池容量が低下した様子が理解できる。
 以上から、電池監視装置2は、基準時点からの電池容量の低下の度合いを求めることによって、単電池1aの劣化の程度を推定し、その劣化の程度に応じたOCV-SOC特性を特定して、その特定したOCV-SOC特性を利用して「開路電圧」の測定値から「充電状態」を得る。本実施の形態では、この「基準時点」として、上述のように「初期」すなわち組電池1の製造当初を設定しているが、各種のデータの基準時点が統一されてさえいれば任意の時点を「基準時点」を設定できる。
 上記の初期(基準時点)からの電池容量の低下の度合いを得るために、組電池1の使用開始後の適宜のタイミングでの電池容量を求める。
 このために、図2に示すOCV-SOC特性における「α」の領域に対応する開路電圧領域を利用する。
 この「α」で示す領域は、単電池1aの劣化によってもOCV-SOC特性が変化しないとみなす領域であり、単電池1aの劣化の状態に拘わらず、「開路電圧」の測定値の変化から一義的に「充電状態」の変化を特定できる。
 従って、複数の「開路電圧」間で充電状態が変化する過程における組電池1への充電電流又は組電池1からの放電電流を積算して積算電流を測定することで、「開路電圧」の測定値の変化に対応する「充電状態」の変化がどれだけの電気量(積算電流値)に相当するかがわかり、その時点の電池容量が得られる。尚、本実施の形態では、上記複数の「開路電圧」として、処理の簡素化のために2点の「開路電圧」を使用する。
 上記のようにして得られた電池容量を初期(基準時点)の電池容量と対比して初期からの電池容量の低下度合いを推定することで、単電池1aの劣化の度合いが把握でき、その劣化の度合い(実際には、初期からの電池容量の低下度合い)に対応して予め設定されているOCV-SOC特性を、充電状態の測定のために利用する。
 すなわち、上記「α」で示す領域を、容量低下推定用開路電圧領域としている。
 厳密には、上記「α」で示す領域は、同一の充電状態における前記基準時点と劣化による容量低下後との開路電圧のずれが最大で30mV程度であり、30mV以下の領域を前記容量低下推定用開路電圧領域としている。
 同一の充電状態における前記基準時点と劣化による容量低下後との開路電圧のずれが10mV以下の領域を、前記容量低下推定用開路電圧領域とすれば、充電状態の検出精度を更に向上させることができ、同一の充電状態における前記基準時点と劣化による容量低下後との開路電圧のずれが2mV以下の領域を、前記容量低下推定用開路電圧領域とすれば、より一層充電状態の検出精度を向上させることができる。
 この一連の処理のために、初期(基準時点)の電池容量の値がメモリ2dに記憶保持され、更に、初期(基準時点)からの電池容量の低下度合いとOCV-SOC特性との対応関係が予め求められ、メモリ2dに記憶保持されている。
 この初期(基準時点)からの電池容量の低下度合いとOCV-SOC特性との対応関係は、図2に示すような強制劣化試験でOCV-SOC特性を求めると共に、各劣化段階での電池容量を測定し、初期(基準時点)からの電池容量の低下度合いを例えば「初期の電池容量」-「劣化後の電池容量」で表現し、それとOCV-SOC特性との対応関係をメモリ2d上でデータテーブル化しておく。
 上記の処理を数式を利用して説明する。
 組電池1を運用中のある時点で、開路電圧:Vpが得られると(図2参照)、その時点で使用しているOCV-SOC特性から充電状態:Spを求めて、それと同時に組電池1への充電電流又は組電池1からの放電電流の積算を開始する。充電電流と放電電流とが混在する状況では、両者間で正負の符号を異ならせて積算する。
 この充電電流又は放電電流の積算動作を継続しながら、次ぎに、開路電圧:Vqが得られたときに(図2参照)、その時点で使用しているOCV-SOC特性から充電状態:Sqを求めると同時に、充電電流又は放電電流の積算を停止して積算電流値:Ciを得る。
 このVq-Vp間の充電状態の差:Sq-Sp(%)が、この間の積算電流値:Ciに相当するので、この時点の電池容量:Crtは、Crt=Ci*100/(Sq-Sp)
(*は、積を意味する演算子)で求まる。
 初期の電池容量:Ciniは既知であり、初期からの電池容量の低下度合いを、例えば、Cini-Crtとして特定する。
 電池容量の低下度合いに応じたOCV-SOC特性を予め求めておくことで、それらのOCV-SOC特性の中から、上記のようにして測定した電池容量の低下度合いに対応するOCV-SOC特性を選択し、それを充電状態の測定に用いる。
 次ぎに、電池監視装置2の制御部2cによる処理を図4のフローチャートを用いて説明する。
 電池監視装置2は、上述のように、測定した「開路電圧(OCV)」に基づいてOCV-SOC特性から「充電状態(SOC)」を求めるのを基本動作とし、充電状態演算手段として機能する。
 但し、1つのOCV-SOC特性を永続的に使用するのではなく、単電池1aの劣化状態に応じて、使用するOCV-SOC特性を変更する。
 図4に示す「テーブル更新処理」は、上記の電池容量の低下度合いを測定して、その時点で使用すべきOCV-SOC特性を特定する処理である。
 図4の処理は、高速に常時実行されており、電池監視装置2における他の処理部において「更新実行フラグ」を適宜のタイミングで「1」にセットすると、実質的に処理を開始する(ステップ#1)。
 先ず、電流センサ5の検出情報に基づいて、組電池1に流れる電流がほぼ「0」になっているか否かを確認して(ステップ#2)、ほぼ「0」になっていれば開路状態になっているものと見なして、この時点での電圧測定部2aによる各単電池1aの測定電圧を「開路電圧」として扱う(ステップ#3)。従って、電圧測定部2a及び電流センサ5は各単電池1aの開路電圧を測定する開路電圧測定手段OVとして機能する。
 次ぎに、測定した電圧が、電池容量の低下度合いの測定に利用できる電圧範囲にあるか否かを確認する(ステップ#4)。
 具体的には、図2のOCV-SOC特性において、「α」領域に対応する「開路電圧」の電圧範囲が、電池容量の低下度合いの測定に利用できる開路電圧領域(前記容量低下推定用開路電圧領域)であり、その範囲内にあるか否かを確認する。具体的な開路電圧値でいうと、開路電圧が3.4V以下の領域と3.8V以上の領域である。
 上記範囲内(開路電圧が3.4V以下もしくは3.8V以上の領域)に入っていれば、「更新中フラグ」が「1」か否かを確認する(ステップ#5)。本実施の形態では、上述のように、2個の「開路電圧」間での電流積算値とSOC差とから電池容量を求めるので、「開路電圧」を未だ測定していない状態を「更新中フラグ」=0、1個目の「開路電圧」を測定した状態を「更新中フラグ」=1として、管理している。
 「更新中フラグ」=0の状態であったとすると、ステップ#3で測定した「開路電圧」とその時点で使用しているOCV-SOC特性から、その時点での充電状態(SOC)を求めてメモリ2dに記憶する(ステップ#6)。例えば、図2において、測定した「開路電圧」がVpであれば、充電状態:Spをメモリ2dに記憶する。
 その後、電流積算部2bに対して、電流センサ5の検出情報によって組電池1からの放電電流と組電池1への充電電流を積算する処理を開始させ(ステップ#7)、「更新中フラグ」を「1」にセットする。尚、電流積算部2bは、放電電流と充電電流とを符号を考慮して(符号を異ならせて)積算する。
 この状態で、次ぎに、組電池1に流れる電流がほぼ「0」になったときに(ステップ#2)、上記と同様に「開路電圧」を測定して、その測定電圧(仮に、Vqであったものとする)が上述の所定の電圧範囲内にあるか否かを確認する(ステップ#3,#4)。
 ここでは、「更新中フラグ」=1になっているので(ステップ#5)、前回の「開路電圧」の測定値Vpと今回の「開路電圧」の測定値Vqとの差が設定値以上となっているか否かを確認する(ステップ#9)。すなわち、VpとVqとがあまりに近い電圧値であると、充電状態の差を求めても精度良く電池容量に換算できないため、ある程度の電圧差を必要とする。上記の設定値は、求める電池容量の精度との関係で適切な値を設定すれば良い。
 VqとVpとの差が設定値以上であれば(ステップ#9)、「開路電圧」Vqとその時点で使用しているOCV-SOC特性から、その時点での充電状態(すなわちSq)を求めてメモリ2dに記憶し(ステップ#10)、電流積算部2bに対して電流の積算動作を停止させる(ステップ#11)。
 次ぎに、電流積算部2bから電流積算値:Ciを取得して、電池容量の低下度合いを求める(ステップ#12)。
 具体的には、上述のように、Crt=Ci*100/(Sq-Sp)の関係式で、その時点の電池容量:Crtを求め、メモリ2dに記憶している初期の電池容量:Ciniとの差(Cini-Crt)を、電池容量の低下度合いとして求める。
 このように、SCOが100%より小さい開路電圧領域において、積算電流値を測定することで、満充電になるのを待たずに測定でき、測定機会が確保し易い。
 そして、求めた電池容量の低下度合いに対応するOCV-SOC特性をメモリ2dの上記データテーブルから選び出し、その選び出したOCV-SOC特性によってその時点で使用しているOCV-SOC特性を更新する(ステップ#13)。
 これで一連の処理が終了したので、「更新中フラグ」及び「更新実行フラグ」を「0」にリセットする(ステップ#14,#15)。
 これ以降は、ステップ#13で更新されたOCV-SOC特性を利用して「開路電圧」の測定値から充電状態を求める。
〔別実施形態〕
 以下、本発明の別実施形態を列記する。
(1)上記実施の形態では、電流センサ5の検出情報に基づいて、「開路電圧」として測定できる程度に電流がほぼ「0」になるのを待つ場合を例示して説明しているが、スイッチ装置等で組電池1と充電電源3との間の回路接続を遮断して、強制的に「開路電圧」を測定するようにしても良い。
 このようにして「開路電圧」を測定する場合では、適宜のタイミングで「開路電圧」を測定することで、測定時点の電池容量を求めるための「開路電圧」(上記実施の形態におけるVp,Vq)を固定的に予め設定しておくこともできる。
 測定時点の電池容量を求めるための「開路電圧」Vp,Vqを固定的に設定すると、上記実施の形態のように、充電状態の差(Sq-Sp)から電池容量:Crtを求める必要は必ずしもない。
 「開路電圧」Vp,Vq間に対応する充電状態の差(Sq-Sp)も固定的に設定されるので、この間の積算電流量で電池容量を代表させることができる。
 上記実施の形態における「初期(基準時点)の電池容量:Cini」の代わりに、「初期(基準時点)での電池容量に対応する値」として、初期の充電状態Spと充電状態Sqとの間の積算電流量をメモリ2dに記憶保持しておき、上記実施の形態におけるCiとの直接比較で初期からの電池容量の低下度合いを求めるのである。
 この場合、初期(基準時点)からの電池容量の低下度合いとOCV-SOC特性との対応関係を記憶するメモリ2dのデータテーブルの内容も、充電状態Spと充電状態Sqとの間の積算電流量を基礎としたデータ内容となる。
(2)上記実施の形態では、組電池1を充電電源3及び負荷4と接続した状態で、充電状態を測定する場合を例示しているため、組電池1への充電電流及び組電池1からの放電電流の双方を、正負の符号を異ならせて積算しているが、組電池1を負荷4にのみ接続して放電状態でのみ使用するケースであれば、放電電流だけを積算すれば良いし、逆に、組電池1を充電電源3にのみ接続して充電状態でのみ使用するケースであれば、充電電流だけを積算すれば良い。
(3)上記実施の形態では、電池容量の低下度合いを評価するものとして、初期の電池容量と測定時点の電池容量との差(Cini-Crt)を用いているが、電池容量の低下度合いを両者の比(Crt/Cini)で評価する等、評価値の具体的な演算手法は種々に変更可能である。
(4)上記実施の形態では、予め求めた電池容量の低下度合いとOCV-SOC特性との対応関係をデータテーブルに記憶保持する場合を例示しているが、例えば、図2に「β」で示す領域において、SOCの値に対応するOCVの値が、電池容量の低下度合いの変化に伴ってどのように変化するかをSOC値毎に関数近似して求めておき、得られた電池容量の低下度合いから、各SOC値に対応するOCV値を上記関数によって求めることで、使用するOCV-SOC特性を構成するようにしても良い。
(5)上記実施の形態では、得られた電池容量の低下度合いから、それに対応するOCV-SOC特性を選んで、充電状態の測定に用いるOCV-SOC特性を更新する場合を例示しているが、OCV-SOC特性の全体を更新するのではなく、OCV-SOC特性が変化する図2の「β」で示す領域のデータのみを更新するように構成しても良い。
(6)上記実施の形態では、二次電池として組電池1を構成する単電池1aを例示しているが、組電池ではなく単電池だけで使用する場合にも本発明を適用できる。
(7)上記実施の形態では、VpとVqとの2つの開路電圧間で充電状態が変化する過程における充電電流及び放電電流の積算電流を測定する場合を例示しているが、3つ以上の開路電圧間で充電状態が変化する過程における充電電流等の積算電流を測定するようにしても良い。
 この場合、積算電流値と充電状態とをグラフにプロットし、最小二乗法等によって検出誤差を極力小さくして、充電状態と積算電流値との対応関係を特定することができる。
 1a 二次電池
 CS 電流積算手段
 MM 記憶手段
 OV 開路電圧測定手段 

Claims (16)

  1.  二次電池の開路電圧を測定する開路電圧測定手段と、
     前記二次電池の充電電流又は放電電流を積算する電流積算手段と、
     基準時点からの前記二次電池の電池容量の低下度合いと開路電圧-充電状態特性との対応関係及び前記基準時点での電池容量の値又は前記基準時点での電池容量の値に対応する値を記憶している記憶手段と、
     基準時点からの二次電池の劣化によっても開路電圧と充電状態との関係は変化しないと見なす容量低下推定用開路電圧領域において、複数の開路電圧値間で充電状態が変化する過程における充電電流又は放電電流の積算電流値を前記電流積算手段に測定させ、前記積算電流値と前記基準時点での電池容量の値又は前記基準時点での電池容量の値に対応する値とを用いて電池容量の低下度合いを推定し、推定した電池容量の低下度合いと前記対応関係とに基づいて開路電圧-充電状態特性を特定し、特定した開路電圧-充電状態特性を適用して、前記開路電圧測定手段による開路電圧の測定結果から充電状態を求める充電状態演算手段と、
    が備えられた二次電池の充電状態測定装置。
  2.  同一の充電状態における前記基準時点と劣化による容量低下後との開路電圧のずれが10mV以下の領域を、前記容量低下推定用開路電圧領域とする請求項1記載の二次電池の充電状態測定装置。
  3.  同一の充電状態における前記基準時点と劣化による容量低下後との開路電圧のずれが2mV以下の領域を、前記容量低下推定用開路電圧領域とする請求項1記載の二次電池の充電状態測定装置。
  4.  開路電圧-充電状態特性における充電状態が100%より小さい開路電圧領域において、前記積算電流値を測定する請求項1~3のいずれか1項に記載の二次電池の充電状態測定装置。
  5.  開路電圧が3.4V以下もしくは3.8V以上の領域において、前記積算電流値を測定する請求項1記載の二次電池の充電状態測定装置。
  6.  前記二次電池は、2種類以上のリチウム含有金属酸化物を混合してなる正極活物質を有する電池である請求項1~3のいずれか1項に記載の二次電池の充電状態測定装置。
  7.  前記二次電池は、スピネル構造を有するリチウム含有金属酸化物と層状構造を有するリチウム含有金属酸化物とを混合してなる正極活物質を有する二次電池である請求項6記載の二次電池の充電状態測定装置。
  8.  前記充電状態演算手段は、
     前記容量低下推定用開路電圧領域において、前記開路電圧測定手段にて複数の開路電圧値を測定させ、
     前記開路電圧測定手段にて開路電圧を測定した前記複数の開路電圧値間で充電状態が変化する過程における充電電流又は放電電流の積算電流値を測定させ、
     前記複数の開路電圧値と前記積算電流値と前記基準時点での電池容量の値又は前記基準時点での電池容量の値に対応する値とを用いて電池容量の低下度合いを推定する請求項1~3のいずれか1項に記載の二次電池の充電状態装置。
  9.  二次電池の開路電圧を測定する開路電圧測定装置と、
     前記二次電池の充電電流又は放電電流を積算する電流積算装置と、
     基準時点からの前記二次電池の電池容量の低下度合いと開路電圧-充電状態特性との対応関係及び前記基準時点での電池容量の値又は前記基準時点での電池容量の値に対応する値を記憶している記憶装置と、
     基準時点からの二次電池の劣化によっても開路電圧と充電状態との関係は変化しないと見なす容量低下推定用開路電圧領域において、複数の開路電圧値間で充電状態が変化する過程における充電電流又は放電電流の積算電流値を前記電流積算装置に測定させ、前記積算電流値と前記基準時点での電池容量の値又は前記基準時点での電池容量の値に対応する値とを用いて電池容量の低下度合いを推定し、推定した電池容量の低下度合いと前記対応関係とに基づいて開路電圧-充電状態特性を特定し、特定した開路電圧-充電状態特性を適用して、前記開路電圧測定装置による開路電圧の測定結果から充電状態を求める充電状態演算装置と、
    が備えられた二次電池の充電状態測定装置。
  10.  基準時点からの二次電池の劣化によっても開路電圧と充電状態との関係は変化しないと見なす容量低下推定用開路電圧領域において、複数の開路電圧値間で充電状態が変化する過程における充電電流又は放電電流を積算して積算電流値を測定し、
     前記積算電流値と前記基準時点での電池容量の値とを用いて電池容量の低下度合いを推定し、
     推定した電池容量の低下度合いと、予め求められている基準時点からの前記二次電池の電池容量の低下度合いと開路電圧-充電状態特性との対応関係とに基づいて開路電圧-充電状態特性を特定し、
     特定した開路電圧-充電状態特性を適用して、開路電圧の測定結果から充電状態を求める二次電池の充電状態測定方法。
  11.  同一の充電状態における前記基準時点と劣化による容量低下後との開路電圧のずれが10mV以下の領域を、前記容量低下推定用開路電圧領域とする請求項10記載の二次電池の充電状態測定方法。
  12.  同一の充電状態における前記基準時点と劣化による容量低下後との開路電圧のずれが2mV以下の領域を、前記容量低下推定用開路電圧領域とする請求項10記載の二次電池の充電状態測定方法。
  13.  開路電圧-充電状態特性における充電状態が100%より小さい開路電圧領域において、前記積算電流値を測定する請求項10~12のいずれか1項に記載の二次電池の充電状態測定方法。
  14.  開路電圧が3.4V以下もしくは3.8V以上の領域において、前記積算電流値を測定する請求項10記載の二次電池の充電状態測定方法。
  15.  前記二次電池は、2種類以上のリチウム含有金属酸化物を混合してなる正極活物質を有する電池である請求項10~12のいずれか1項に記載の二次電池の充電状態測定方法。
  16.  前記二次電池は、スピネル構造を有するリチウム含有金属酸化物と層状構造を有するリチウム含有金属酸化物とを混合してなる正極活物質を有する二次電池である請求項15記載の二次電池の充電状態測定方法。
PCT/JP2011/050730 2010-01-19 2011-01-18 二次電池の充電状態測定装置及び二次電池の充電状態測定方法 WO2011090020A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201180005535.2A CN102695961B (zh) 2010-01-19 2011-01-18 二次电池的充电状态测定装置以及二次电池的充电状态测定方法
US13/522,301 US9263773B2 (en) 2010-01-19 2011-01-18 Secondary battery state of charge determination apparatus, and method of determining state of charge of secondary battery
KR1020127018930A KR101750739B1 (ko) 2010-01-19 2011-01-18 2차 전지의 충전 상태 측정 장치 및 2차 전지의 충전 상태 측정 방법
EP11734626.2A EP2527855B1 (en) 2010-01-19 2011-01-18 Device for measuring state of charge of secondary battery and method for measuring state of charge of secondary battery
JP2011550907A JPWO2011090020A1 (ja) 2010-01-19 2011-01-18 二次電池の充電状態測定装置及び二次電池の充電状態測定方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010009011 2010-01-19
JP2010-009011 2010-01-19

Publications (1)

Publication Number Publication Date
WO2011090020A1 true WO2011090020A1 (ja) 2011-07-28

Family

ID=44306822

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/050730 WO2011090020A1 (ja) 2010-01-19 2011-01-18 二次電池の充電状態測定装置及び二次電池の充電状態測定方法

Country Status (6)

Country Link
US (1) US9263773B2 (ja)
EP (1) EP2527855B1 (ja)
JP (2) JPWO2011090020A1 (ja)
KR (1) KR101750739B1 (ja)
CN (2) CN102695961B (ja)
WO (1) WO2011090020A1 (ja)

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013044734A (ja) * 2011-08-26 2013-03-04 Gs Yuasa Corp 容量演算装置、容量演算方法、被充電装置、及び充電率の参照値域決定方法
JP2013096861A (ja) * 2011-11-01 2013-05-20 Toyota Motor Corp 電池の制御装置及び電池の制御方法
WO2013133017A1 (ja) * 2012-03-06 2013-09-12 株式会社日立製作所 リチウムイオン二次電池の充放電制御方法及び充放電制御装置
JP2013190259A (ja) * 2012-03-13 2013-09-26 Sony Corp 電池の温度を変数とした開放電圧の微分係数の測定方法、電池の温度を変数とした開放電圧の微分係数の測定装置、電池の温度推定方法、電池の温度推定装置、電池の劣化状態予測方法、及び、電池の劣化状態予測装置
US20130257409A1 (en) * 2012-03-27 2013-10-03 Fujitsu Semiconductor Limited Control circuit for dc-dc converter, dc-dc converter, and control method of dc-dc converter
JP2013250159A (ja) * 2012-05-31 2013-12-12 Sanyo Electric Co Ltd 二次電池の残容量算出方法及びパック電池
WO2014050114A1 (ja) * 2012-09-28 2014-04-03 三洋電機株式会社 非水電解質二次電池
WO2014156265A1 (ja) * 2013-03-29 2014-10-02 日立オートモティブシステムズ株式会社 電池制御装置
KR101504804B1 (ko) 2012-06-05 2015-03-20 주식회사 엘지화학 노화를 고려한 이차 전지의 상태 추정 방법 및 장치
JP2015108579A (ja) * 2013-12-05 2015-06-11 パナソニックIpマネジメント株式会社 電池残存容量推定装置、電池残存容量判定方法及び電池残存容量判定プログラム
WO2015129117A1 (ja) * 2014-02-25 2015-09-03 三菱電機株式会社 二次電池のsoc推定装置
JP2016099251A (ja) * 2014-11-21 2016-05-30 古河電気工業株式会社 二次電池状態検出装置および二次電池状態検出方法
JP5948518B1 (ja) * 2016-02-04 2016-07-06 本田技研工業株式会社 蓄電装置、該蓄電装置を有する輸送機器、故障判断方法、および故障判断プログラム
JP5980457B1 (ja) * 2016-03-30 2016-08-31 本田技研工業株式会社 電源装置、該電源装置を有する輸送機器、蓄電部の充電率と開放端電圧の相関情報を推定する推定方法、および該相関情報を推定するためのプログラム
JP5980459B1 (ja) * 2016-03-30 2016-08-31 本田技研工業株式会社 電源装置、該電源装置を有する輸送機器、蓄電部の充電率と開放端電圧の相関情報を推定する推定方法、および該相関情報を推定するためのプログラム
JP5980458B1 (ja) * 2016-03-30 2016-08-31 本田技研工業株式会社 電源装置、該電源装置を有する輸送機器、蓄電部の充電率と開放端電圧の相関情報を推定する推定方法、および該相関情報を推定するためのプログラム
JP2016217951A (ja) * 2015-05-22 2016-12-22 本田技研工業株式会社 蓄電器管理装置及び蓄電器管理方法
JP2017523395A (ja) * 2014-05-28 2017-08-17 ボルボトラックコーポレーション 劣化状態パラメータ値の信頼性を判定する方法
US10114078B2 (en) 2015-02-06 2018-10-30 Samsung Electronics Co., Ltd. Method and apparatus to estimate state of battery based on battery charging voltage data
JP2018169237A (ja) * 2017-03-29 2018-11-01 日本電気株式会社 蓄電制御装置、蓄電制御システム、サーバ、蓄電制御方法及びプログラム
JP2018169238A (ja) * 2017-03-29 2018-11-01 日本電気株式会社 蓄電制御装置、蓄電制御システム、サーバ、蓄電制御方法及びプログラム
JP2019092276A (ja) * 2017-11-14 2019-06-13 株式会社Gsユアサ 管理装置、蓄電システム、蓄電素子の残存容量を均等化する方法、蓄電素子の内部状態を推定する方法
CN110911764A (zh) * 2018-09-14 2020-03-24 丰田自动车株式会社 二次电池系统及二次电池的劣化状态推定方法
JP2022536310A (ja) * 2019-12-11 2022-08-15 エルジー エナジー ソリューション リミテッド バッテリー退化度診断装置及び方法
EP3872506A4 (en) * 2018-10-26 2023-01-11 Vehicle Energy Japan Inc. BATTERY MONITORING DEVICE

Families Citing this family (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9263773B2 (en) * 2010-01-19 2016-02-16 Gs Yuasa International Ltd. Secondary battery state of charge determination apparatus, and method of determining state of charge of secondary battery
GB2490295B (en) * 2010-02-12 2014-07-30 Poweroasis Ltd Management of battery charging through coulomb counting
KR101454832B1 (ko) * 2012-12-04 2014-10-28 주식회사 엘지화학 이차 전지의 방전 심도 추정 장치 및 방법
JP5994680B2 (ja) * 2013-02-27 2016-09-21 株式会社豊田自動織機 電池残容量推定方法及び装置
US9360530B2 (en) 2013-08-19 2016-06-07 Google Technology Holdings LLC Method and system for energy storage capacity estimation of battery cells
DE102014200669A1 (de) 2014-01-16 2015-07-16 Robert Bosch Gmbh Verfahren zum Bestimmen von Größen für Batteriemanagementfunktionen
FR3018607B1 (fr) * 2014-03-17 2017-11-24 Commissariat Energie Atomique Procede d'estimation et de recalage de l'etat de charge d'une cellule de batterie
KR102165937B1 (ko) * 2014-05-30 2020-10-14 삼성전자주식회사 배터리 관리 방법 및 장치
US9358899B2 (en) * 2014-06-19 2016-06-07 Ford Global Technologies, Llc Method for revitalizing and increasing lithium ion battery capacity
CN107076803B (zh) * 2014-11-19 2021-07-13 株式会社杰士汤浅国际 二次电池的管理装置及二次电池的管理方法
FR3031814B1 (fr) * 2015-01-16 2017-02-10 Peugeot Citroen Automobiles Sa Procede d’identification de la courbe de tension a vide d’une cellule electrique en vieillissement
JP6546261B2 (ja) * 2015-02-19 2019-07-17 株式会社東芝 蓄電システム、蓄電制御方法、および蓄電制御プログラム
US10101401B2 (en) * 2015-03-05 2018-10-16 Gs Yuasa International Ltd. Energy storage device management apparatus, energy storage device management method, energy storage device module, energy storage device management program, and movable body
JP6134438B1 (ja) * 2015-07-31 2017-05-24 株式会社東芝 蓄電池評価装置、蓄電システムおよび蓄電池評価方法
JP6735360B2 (ja) * 2016-02-02 2020-08-05 トヨタ・モーター・ヨーロッパToyota Motor Europe 蓄電池放電のための制御装置および蓄電池を放電する方法
US10670665B2 (en) 2016-11-04 2020-06-02 Lg Chem, Ltd. Method for estimating reaction of secondary battery and secondary battery comprising battery cell used for the same
KR20180091541A (ko) * 2017-02-07 2018-08-16 삼성전자주식회사 배터리 충전 방법 및 장치
JP6834608B2 (ja) * 2017-03-07 2021-02-24 株式会社Gsユアサ 電気化学素子の管理装置
JP6939057B2 (ja) * 2017-04-27 2021-09-22 トヨタ自動車株式会社 車載の電池システムおよび電池の経年劣化推定方法
KR102258833B1 (ko) * 2017-09-28 2021-05-31 주식회사 엘지에너지솔루션 리튬 이온 배터리 셀의 퇴화 정보를 획득하는 장치
JP6641334B2 (ja) * 2017-09-29 2020-02-05 本田技研工業株式会社 電池容量推定装置、方法及びプログラム
WO2019069435A1 (ja) * 2017-10-05 2019-04-11 三菱電機株式会社 組電池の管理装置および組電池システム
KR102683336B1 (ko) * 2017-10-11 2024-07-09 주식회사 엘지에너지솔루션 배터리의 용량 추정 장치 및 방법, 이를 구비하는 배터리 관리 장치 및 방법
CN109683104A (zh) * 2017-10-12 2019-04-26 本田技研工业株式会社 电池状态推定方法以及电池状态推定装置
KR102239365B1 (ko) 2017-10-20 2021-04-09 주식회사 엘지화학 배터리 충전 상태 추정 장치
JP6927009B2 (ja) * 2017-12-12 2021-08-25 トヨタ自動車株式会社 二次電池システムおよび二次電池のsoc推定方法
JP6871145B2 (ja) * 2017-12-14 2021-05-12 本田技研工業株式会社 電池状態推定装置
KR102452626B1 (ko) 2018-03-07 2022-10-06 주식회사 엘지에너지솔루션 Soc-ocv 프로파일 추정 방법 및 장치
KR102043645B1 (ko) * 2018-04-03 2019-12-02 주식회사 엘지화학 이차전지의 불량 검출을 위한 저전압 발현 수준 연산 시스템 및 검출 방법
JP6922144B2 (ja) * 2018-04-10 2021-08-18 エルジー・ケム・リミテッド バッテリー診断装置及び方法
WO2020026509A1 (ja) * 2018-07-30 2020-02-06 日立オートモティブシステムズ株式会社 電池状態推定装置、電池制御装置
JP2020034524A (ja) * 2018-08-31 2020-03-05 株式会社デンソー 電源システム
JP6867987B2 (ja) * 2018-10-09 2021-05-12 株式会社豊田中央研究所 電源装置の満充電容量推定装置
KR102439598B1 (ko) 2018-10-25 2022-09-05 주식회사 엘지에너지솔루션 이차 전지의 내부 가스 발생 가속 구간 판단 방법
JP7276676B2 (ja) * 2019-01-28 2023-05-18 トヨタ自動車株式会社 二次電池の評価方法、二次電池の評価装置および電源システム
JP7346034B2 (ja) * 2019-02-01 2023-09-19 株式会社東芝 蓄電池管理装置及び方法
EP3923396B1 (en) * 2019-02-28 2023-05-10 Furukawa Electric Co., Ltd. Chargeable battery state detection device and chargeable battery state detection method
KR102493232B1 (ko) * 2019-03-18 2023-01-27 주식회사 엘지에너지솔루션 배터리 관리 장치
CN110045296B (zh) * 2019-04-12 2021-02-26 奇瑞新能源汽车股份有限公司 一种电动汽车电池循环寿命估算系统及方法
CN110967647B (zh) * 2019-06-24 2020-11-17 宁德时代新能源科技股份有限公司 荷电状态修正方法及装置
FR3098922B1 (fr) * 2019-07-18 2021-07-23 Commissariat Energie Atomique Procédé de détermination de l'état de charge des cellules d'une batterie
CN113075562A (zh) * 2020-01-06 2021-07-06 东莞新能德科技有限公司 电池压差更新方法、电量预估方法、电子装置及存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002243813A (ja) * 2001-02-16 2002-08-28 Nissan Motor Co Ltd 二次電池の電池容量劣化演算装置
JP2002286818A (ja) * 2001-03-26 2002-10-03 Toyota Motor Corp バッテリ容量判定装置
JP2003068369A (ja) 2001-08-23 2003-03-07 Japan Storage Battery Co Ltd 二次電池の総容量の検出方法及び総容量検出装置
JP2006012433A (ja) * 2004-06-22 2006-01-12 Nichia Chem Ind Ltd 非水電解質二次電池用正極活物質および非水電解質二次電池

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3716619B2 (ja) 1998-05-14 2005-11-16 日産自動車株式会社 電池の残容量計
JP4032934B2 (ja) * 2002-11-15 2008-01-16 ソニー株式会社 電池容量算出方法、電池容量算出装置、及び電池容量算出プログラム
JP2004354148A (ja) * 2003-03-31 2004-12-16 Yazaki Corp バッテリの充電状態推定方法およびその装置並びに開回路電圧推定方法およびその装置
KR100759706B1 (ko) * 2005-05-11 2007-09-17 주식회사 엘지화학 하이브리드 차량용 배터리의 충전상태 추정 방법
US8446127B2 (en) * 2005-08-03 2013-05-21 California Institute Of Technology Methods for thermodynamic evaluation of battery state of health
JP4183004B2 (ja) * 2006-11-14 2008-11-19 ソニー株式会社 電池パック
CN102037601B (zh) * 2007-07-12 2014-04-23 A123系统公司 用于锂离子电池的多功能混合金属橄榄石
JP4884404B2 (ja) * 2007-09-07 2012-02-29 日立ビークルエナジー株式会社 二次電池の内部情報検知方法及び装置
JP4943296B2 (ja) * 2007-10-30 2012-05-30 ソニー株式会社 電池パック、二次電池の充電方法、および充電装置
JP4649682B2 (ja) * 2008-09-02 2011-03-16 株式会社豊田中央研究所 二次電池の状態推定装置
FR2946150B1 (fr) * 2009-05-27 2011-05-13 Peugeot Citroen Automobiles Sa Systeme et procede de determination de la perte de capacite d'une batterie.
US8653793B2 (en) * 2009-09-25 2014-02-18 Toyota Jidosha Kabushiki Kaisha Secondary battery system
US9263773B2 (en) * 2010-01-19 2016-02-16 Gs Yuasa International Ltd. Secondary battery state of charge determination apparatus, and method of determining state of charge of secondary battery

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002243813A (ja) * 2001-02-16 2002-08-28 Nissan Motor Co Ltd 二次電池の電池容量劣化演算装置
JP2002286818A (ja) * 2001-03-26 2002-10-03 Toyota Motor Corp バッテリ容量判定装置
JP2003068369A (ja) 2001-08-23 2003-03-07 Japan Storage Battery Co Ltd 二次電池の総容量の検出方法及び総容量検出装置
JP2006012433A (ja) * 2004-06-22 2006-01-12 Nichia Chem Ind Ltd 非水電解質二次電池用正極活物質および非水電解質二次電池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2527855A4

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013044734A (ja) * 2011-08-26 2013-03-04 Gs Yuasa Corp 容量演算装置、容量演算方法、被充電装置、及び充電率の参照値域決定方法
JP2013096861A (ja) * 2011-11-01 2013-05-20 Toyota Motor Corp 電池の制御装置及び電池の制御方法
WO2013133017A1 (ja) * 2012-03-06 2013-09-12 株式会社日立製作所 リチウムイオン二次電池の充放電制御方法及び充放電制御装置
JP2013190259A (ja) * 2012-03-13 2013-09-26 Sony Corp 電池の温度を変数とした開放電圧の微分係数の測定方法、電池の温度を変数とした開放電圧の微分係数の測定装置、電池の温度推定方法、電池の温度推定装置、電池の劣化状態予測方法、及び、電池の劣化状態予測装置
US20130257409A1 (en) * 2012-03-27 2013-10-03 Fujitsu Semiconductor Limited Control circuit for dc-dc converter, dc-dc converter, and control method of dc-dc converter
US9276467B2 (en) * 2012-03-27 2016-03-01 Socionext Inc. Control circuit for DC-DC converter, DC-DC converter, and control method of DC-DC converter
JP2013250159A (ja) * 2012-05-31 2013-12-12 Sanyo Electric Co Ltd 二次電池の残容量算出方法及びパック電池
KR101504804B1 (ko) 2012-06-05 2015-03-20 주식회사 엘지화학 노화를 고려한 이차 전지의 상태 추정 방법 및 장치
WO2014050114A1 (ja) * 2012-09-28 2014-04-03 三洋電機株式会社 非水電解質二次電池
JPWO2014050114A1 (ja) * 2012-09-28 2016-08-22 三洋電機株式会社 非水電解質二次電池
US9685807B2 (en) 2013-03-29 2017-06-20 Hitachi Automotive Systems, Ltd. Battery control device
WO2014156265A1 (ja) * 2013-03-29 2014-10-02 日立オートモティブシステムズ株式会社 電池制御装置
JP2015108579A (ja) * 2013-12-05 2015-06-11 パナソニックIpマネジメント株式会社 電池残存容量推定装置、電池残存容量判定方法及び電池残存容量判定プログラム
WO2015129117A1 (ja) * 2014-02-25 2015-09-03 三菱電機株式会社 二次電池のsoc推定装置
US10254346B2 (en) 2014-02-25 2019-04-09 Mitsubishi Electric Corporation SOC estimation device for secondary battery
JP6037369B2 (ja) * 2014-02-25 2016-12-07 三菱電機株式会社 二次電池のsoc推定装置
US10365331B2 (en) 2014-05-28 2019-07-30 Volvo Truck Corporation Method for determining the reliability of state of health parameter values
JP2017523395A (ja) * 2014-05-28 2017-08-17 ボルボトラックコーポレーション 劣化状態パラメータ値の信頼性を判定する方法
JP2016099251A (ja) * 2014-11-21 2016-05-30 古河電気工業株式会社 二次電池状態検出装置および二次電池状態検出方法
US10114078B2 (en) 2015-02-06 2018-10-30 Samsung Electronics Co., Ltd. Method and apparatus to estimate state of battery based on battery charging voltage data
JP2016217951A (ja) * 2015-05-22 2016-12-22 本田技研工業株式会社 蓄電器管理装置及び蓄電器管理方法
JP5948518B1 (ja) * 2016-02-04 2016-07-06 本田技研工業株式会社 蓄電装置、該蓄電装置を有する輸送機器、故障判断方法、および故障判断プログラム
JP2017138241A (ja) * 2016-02-04 2017-08-10 本田技研工業株式会社 蓄電装置、該蓄電装置を有する輸送機器、故障判断方法、および故障判断プログラム
JP5980459B1 (ja) * 2016-03-30 2016-08-31 本田技研工業株式会社 電源装置、該電源装置を有する輸送機器、蓄電部の充電率と開放端電圧の相関情報を推定する推定方法、および該相関情報を推定するためのプログラム
JP5980458B1 (ja) * 2016-03-30 2016-08-31 本田技研工業株式会社 電源装置、該電源装置を有する輸送機器、蓄電部の充電率と開放端電圧の相関情報を推定する推定方法、および該相関情報を推定するためのプログラム
JP5980457B1 (ja) * 2016-03-30 2016-08-31 本田技研工業株式会社 電源装置、該電源装置を有する輸送機器、蓄電部の充電率と開放端電圧の相関情報を推定する推定方法、および該相関情報を推定するためのプログラム
JP2018169237A (ja) * 2017-03-29 2018-11-01 日本電気株式会社 蓄電制御装置、蓄電制御システム、サーバ、蓄電制御方法及びプログラム
JP2018169238A (ja) * 2017-03-29 2018-11-01 日本電気株式会社 蓄電制御装置、蓄電制御システム、サーバ、蓄電制御方法及びプログラム
JP2019092276A (ja) * 2017-11-14 2019-06-13 株式会社Gsユアサ 管理装置、蓄電システム、蓄電素子の残存容量を均等化する方法、蓄電素子の内部状態を推定する方法
CN110911764A (zh) * 2018-09-14 2020-03-24 丰田自动车株式会社 二次电池系统及二次电池的劣化状态推定方法
CN110911764B (zh) * 2018-09-14 2023-01-10 丰田自动车株式会社 二次电池系统及二次电池的劣化状态推定方法
EP3872506A4 (en) * 2018-10-26 2023-01-11 Vehicle Energy Japan Inc. BATTERY MONITORING DEVICE
JP2022536310A (ja) * 2019-12-11 2022-08-15 エルジー エナジー ソリューション リミテッド バッテリー退化度診断装置及び方法
JP7293566B2 (ja) 2019-12-11 2023-06-20 エルジー エナジー ソリューション リミテッド バッテリー退化度診断装置及び方法
US11821960B2 (en) 2019-12-11 2023-11-21 Lg Energy Solution, Ltd. Apparatus and method for diagnosing degree of degradation of battery

Also Published As

Publication number Publication date
CN105277899B (zh) 2018-02-13
EP2527855A4 (en) 2015-09-30
JPWO2011090020A1 (ja) 2013-05-23
CN102695961A (zh) 2012-09-26
KR101750739B1 (ko) 2017-06-27
EP2527855B1 (en) 2019-03-06
JP6252875B2 (ja) 2017-12-27
EP2527855A1 (en) 2012-11-28
KR20120123346A (ko) 2012-11-08
US9263773B2 (en) 2016-02-16
CN102695961B (zh) 2015-12-02
CN105277899A (zh) 2016-01-27
US20120293131A1 (en) 2012-11-22
JP2016186487A (ja) 2016-10-27

Similar Documents

Publication Publication Date Title
JP6252875B2 (ja) 二次電池の充電状態測定装置及び二次電池の充電状態測定方法
EP2711727B1 (en) Battery condition estimation device and method of generating open circuit voltage characteristic
CN104698385B (zh) 电池状态计算装置和电池状态计算方法
JP6634854B2 (ja) 蓄電素子管理装置、蓄電素子管理方法、蓄電素子モジュール、蓄電素子管理プログラム及び移動体
JP4759795B2 (ja) 二次電池の残存容量検知方法
JP2019070621A (ja) 二次電池システム
JP2011085592A (ja) 電源装置用状態検知装置及び電源装置
EP3145021A1 (en) Secondary-battery monitoring device and method for predicting capacity of secondary battery
JP2010272365A (ja) 二次電池の劣化診断方法、及び二次電池の劣化診断装置
US20140111214A1 (en) Electric storage condition detecting apparatus
US20140365150A1 (en) Method and device for determining a charge state of an electric energy store
JP2019045351A (ja) 二次電池システム
JP7452924B2 (ja) バッテリーsoh推定装置及び方法
WO2019181138A1 (ja) 二次電池の劣化度合測定装置
JP2020079723A (ja) 二次電池システム
JP2014109535A (ja) 内部抵抗推定装置、充電装置、放電装置、内部抵抗推定方法
JP2013096861A (ja) 電池の制御装置及び電池の制御方法
JP2018137109A (ja) 寿命推定装置
JP2020153922A (ja) 電池状態評価装置
JP2020068606A (ja) 車両用二次電池システム
JP2014059251A (ja) 内部抵抗推定装置及び内部抵抗推定方法
KR102375843B1 (ko) 배터리 관리 장치 및 방법
JP4802414B2 (ja) 電池の残容量計
JP2018091701A (ja) 電圧推定装置
JP2019070622A (ja) 二次電池システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11734626

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011550907

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13522301

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20127018930

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2011734626

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE