WO2011089938A1 - 空気調和機 - Google Patents

空気調和機 Download PDF

Info

Publication number
WO2011089938A1
WO2011089938A1 PCT/JP2011/050214 JP2011050214W WO2011089938A1 WO 2011089938 A1 WO2011089938 A1 WO 2011089938A1 JP 2011050214 W JP2011050214 W JP 2011050214W WO 2011089938 A1 WO2011089938 A1 WO 2011089938A1
Authority
WO
WIPO (PCT)
Prior art keywords
oil return
return operation
outside air
air temperature
air conditioner
Prior art date
Application number
PCT/JP2011/050214
Other languages
English (en)
French (fr)
Inventor
司 笠木
誠司 平松
徹▲朗▼ 辻
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to US13/499,834 priority Critical patent/US9285148B2/en
Priority to CN201180004250.7A priority patent/CN102575884B/zh
Priority to EP11734545.4A priority patent/EP2530407B8/en
Priority to ES11734545.4T priority patent/ES2655533T3/es
Priority to KR1020127009251A priority patent/KR101297972B1/ko
Publication of WO2011089938A1 publication Critical patent/WO2011089938A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
    • F25B43/02Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat for separating lubricants from the refrigerant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B31/00Compressor arrangements
    • F25B31/002Lubrication
    • F25B31/004Lubrication oil recirculating arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/16Lubrication
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2106Temperatures of fresh outdoor air

Definitions

  • This oil return operation is generally performed by setting the refrigeration cycle to the cooling cycle, opening the cooling expansion valve on the indoor unit side, and increasing the number of rotations of the compressor to increase the circulation amount and flow rate of the refrigerant. .
  • the lubricating oil staying in the refrigerant circuit such as the heat exchanger or the refrigerant pipe is collected together with the refrigerant in the compressor.
  • the present invention has been made in view of such circumstances, and eliminates the long-term failure of oil return operation due to abnormally high outside air temperature, and prevents damage due to running out of lubricating oil in the compressor. It aims at providing the air conditioner which can be performed.
  • the air conditioner including the oil return operation control unit that performs the oil return operation
  • the outside air temperature rises, and the detected value by the outside air temperature sensor is higher than the set value.
  • a high outside temperature oil return operation means for forcibly performing the oil return operation via the oil return operation control unit when the high state continues for a predetermined time, and the oil is forcibly forced by the high outside temperature oil return operation means. Since the oil return operation is prohibited for a certain period of time after the return operation is performed, when the outside air temperature is higher than the set value for a predetermined time, the temperature further rises and the oil return operation is performed by high pressure cut.
  • the prohibition of the oil return operation for a certain time is canceled when the outside air temperature falls below the set value.
  • the high pressure protection value accompanying the increase in the refrigerant pressure is set. It is preferable that high-pressure protection value changing means for increasing by a predetermined value is provided.
  • the high-pressure protection value changing means for increasing the high-pressure protection value associated with the refrigerant pressure rise by a predetermined value is provided at least when the forced oil return operation is performed by the high outside air temperature oil return operation means, If the oil return operation is performed by increasing the compressor rotation speed in an outside air temperature environment, the high pressure tends to rise, the high pressure switch is activated, and the compressor may stop abnormally due to the high pressure cut.
  • the high pressure protection value higher by a predetermined value via the high pressure protection value changing means it is possible to prevent the compressor from being abnormally stopped due to the high pressure cut and to forcibly perform the oil return operation.
  • the oil return operation can be reliably performed even when installed in a high outside air temperature environment, and the reliability of the air conditioner can be improved by avoiding a situation where the compressor runs out of lubricating oil.
  • the high pressure protection value change by the high pressure protection value changing means is not only forcibly performing the oil return operation by the high outside air temperature oil return operation means, but also the normal oil return operation when the oil return condition is satisfied. Sometimes it may be carried out in the same way.
  • the air conditioner can reliably avoid the situation where the amount of lubricating oil in the compressor is reduced by continuing the operation for a long time while the oil return operation is not established, and the compressor becomes out of lubricating oil and is damaged. Can improve the reliability.
  • FIG. 1 shows a refrigerant circuit diagram of an air conditioner according to an embodiment of the present invention
  • FIG. 2 shows a control flow diagram during the oil return operation.
  • a multi-type air conditioner 1 in which a plurality of indoor units 3A and 3B are connected in parallel to one outdoor unit 2 is shown as the air conditioner 1.
  • the plurality of indoor units 3 ⁇ / b> A and 3 ⁇ / b> B are connected in parallel to each other via a branching unit 6 between the gas side pipe 4 and the liquid side pipe 5 led out from the outdoor unit 2.
  • an accumulator 19 for sucking only the gas component to the compressor 10 side, a gas side operation valve 20, and a liquid side operation valve 21.
  • Each of the above devices on the outdoor unit 2 side is connected in a known manner via a refrigerant pipe 22 to constitute an outdoor refrigerant circuit 23.
  • the outdoor unit 2 is provided with an outdoor fan 24 that blows outside air to the outdoor heat exchanger 13.
  • an oil return circuit 25 for returning the lubricating oil separated from the discharged refrigerant gas in the oil separator 11 to the compressor 10 side by a predetermined amount. Is provided.
  • the gas side pipe 4 and the liquid side pipe 5 are refrigerant pipes connected to the gas side operation valve 20 and the liquid side operation valve 21 of the outdoor unit 2, and are connected to the outdoor unit 2 and to it during installation on site.
  • the pipe length is set according to the distance between the plurality of indoor units 3A and 3B.
  • An appropriate number of branching devices 6 are provided in the middle of the gas side piping 4 and the liquid side piping 5, and an appropriate number of indoor units 3 ⁇ / b> A and 3 ⁇ / b> B are connected via the branching devices 6. Thereby, one sealed refrigeration cycle (refrigerant circuit) 7 is configured.
  • the indoor units 3 ⁇ / b> A and 3 ⁇ / b> B circulate indoor air through the indoor heat exchanger 30 that exchanges heat between the indoor air and the refrigerant for indoor air conditioning, an expansion valve (EEVC) 31 for cooling, and the indoor heat exchanger 30.
  • the indoor fan 32 and the indoor controller 33 are provided, and are connected to the branching device 6 via the indoor branch gas side pipes 4A and 4B and the branch liquid side pipes 5A and 5B.
  • the cooling operation is performed as follows.
  • the high-temperature and high-pressure refrigerant gas compressed and discharged by the compressor 10 is separated from the lubricating oil contained in the refrigerant by the oil separator 11. Thereafter, the refrigerant gas is circulated to the outdoor heat exchanger 13 side by the four-way switching valve 12 and is heat-exchanged with the outside air blown by the outdoor fan 24 in the outdoor heat exchanger 13 to be condensed and liquefied.
  • the liquid refrigerant is further cooled by the supercooling coil 14, passes through the heating expansion valve 15, and is temporarily stored in the receiver 16.
  • the liquid refrigerant whose circulation amount is adjusted by the receiver 16 is diverted from the liquid refrigerant pipe in the process of flowing through the liquid refrigerant pipe side through the supercooling heat exchanger 17 and is insulated by the supercooling expansion valve (EEVSC) 18. Heat exchange with the expanded refrigerant gives a degree of supercooling.
  • This liquid refrigerant is led out from the outdoor unit 2 to the liquid side pipe 5 through the liquid side operation valve 21, and the liquid refrigerant led out to the liquid side pipe 5 is further connected to each indoor unit 3A, 3B via the branching device 6. To the branched liquid side pipes 5A and 5B.
  • the liquid refrigerant divided into the branch liquid side pipes 5A and 5B flows into the indoor units 3A and 3B, is adiabatically expanded by the cooling expansion valve (EEVC) 31, and becomes a gas-liquid two-phase flow. 30.
  • EEVC cooling expansion valve
  • the indoor air circulated by the indoor fan 32 and the refrigerant are heat-exchanged, and the indoor air is cooled and supplied to the indoor cooling.
  • the refrigerant is gasified, reaches the branching device 6 through the branch gas side pipes 4A and 4B, and is merged with the refrigerant gas from the other indoor units in the gas side pipe 4.
  • the refrigerant gas merged in the gas side pipe 4 returns to the outdoor unit 2 again, merges with the refrigerant gas from the supercooling heat exchanger 17 through the gas side operation valve 20 and the four-way switching valve 12, and then accumulator 19. To be introduced. In the accumulator 19, the liquid component contained in the refrigerant gas is separated, and only the gas component is sucked into the compressor 10. This refrigerant is compressed again in the compressor 10, and the cooling operation is performed by repeating the above cycle.
  • the high-temperature and high-pressure refrigerant gas introduced into the indoor units 3A and 3B is heat-exchanged with the indoor air circulated through the indoor fan 32 in the indoor heat exchanger 30, and the indoor air is heated and used for indoor heating.
  • the liquid refrigerant condensed in the indoor heat exchanger 30 reaches the branching device 6 through the cooling expansion valve (EEVC) 31 and the branch liquid side pipes 5A and 5B, and is merged with the refrigerant from other indoor units. It returns to the outdoor unit 2 through the liquid side pipe 5.
  • EEVC cooling expansion valve
  • the refrigerant outlet temperature (hereinafter referred to as the heat exchange outlet temperature) or the refrigerant subcooling degree of the indoor heat exchanger 30 functioning as a condenser becomes the control target value.
  • the opening degree of the cooling expansion valve (EEVC) 31 is controlled via the indoor controller 33.
  • the refrigerant that has returned to the outdoor unit 2 reaches the supercooling heat exchanger 17 via the liquid side operation valve 21, and is given supercooling as in the case of cooling, and then flows into the receiver 16 and is temporarily stored. Thus, the circulation amount is adjusted.
  • This liquid refrigerant is supplied to the heating expansion valve (EEVH) 15 and adiabatically expanded, and then flows into the outdoor heat exchanger 13 through the supercooling coil 14.
  • the outdoor heat exchanger 13 the outside air blown through the outdoor fan 24 and the refrigerant are heat-exchanged, and the refrigerant absorbs heat from the outside air and is evaporated and gasified.
  • the refrigerant is introduced from the outdoor heat exchanger 13 through the four-way switching valve 12 to the refrigerant gas from the supercooling heat exchanger 17 and then introduced into the accumulator 19.
  • the liquid component contained in the refrigerant gas is separated, and only the gas component is sucked into the compressor 10 and compressed again in the compressor 10.
  • the heating operation is performed by repeating the above cycle.
  • the oil return operation control unit 40 performs the refrigeration cycle (refrigerant circuit) 7 as the cooling cycle via the four-way switching valve 12, and the compressor This is executed by increasing the opening number of the cooling expansion valves (EEVC) 31 of all the indoor units 3A and 3B to the set opening degree via the indoor controller 33 while the rotation number of 10 is increased to the set rotation speed.
  • EEVC cooling expansion valves
  • the oil return conditions (A) and (B) are conventionally known.
  • the outside air temperature is monitored, and the outside air temperature detected by the outside air temperature sensor 44 is higher than a set value (for example, 49 ° C.) for a predetermined time. (For example, for 3 minutes) It is added as a condition (C) that has been continued, and when the condition (C) is satisfied, the oil return operation is performed forcibly through the oil return operation control unit 40.
  • the driving means 43 is provided. Then, after the oil return operation is forcibly performed through the high outside air temperature oil return operation means 43, the oil return operation is prohibited for a certain time (for example, 3 hours).
  • the oil return operation is prohibited for a certain period of time, even if the outside air temperature continues to be high and an outside air temperature higher than the set value is detected again, the oil return conditions (A) and (B) above are satisfied. Even if it is satisfied, the oil return operation is prohibited. On the other hand, when the outside air temperature falls below the set value, the prohibition of oil return operation is canceled for a certain period of time, and the oil return operation is executed when the oil return conditions (A) and (B) are satisfied. It is like that.
  • the opening degree of the cooling expansion valve (EEVC) 31 is set by the indoor controller 33.
  • a high pressure switch for high pressure protection that not only increases the rotational speed of the compressor 10 to the set rotational speed but also operates based on the detection value of the high pressure sensor 45 and abnormally stops the compressor 10.
  • the high-pressure protection value change means 46 is increased by a predetermined value (for example, 3.7 MPa is changed to 3.8 MPa).
  • FIG. 2 is a control flow diagram of the above-described oil return operation.
  • the oil return operation is performed when the air conditioner 1 is in a normal cooling / heating operation, the operation time integrating means 41, the lubricating oil By the outflow amount calculation means 42 and the high outside air temperature oil return operation means 43, (A) When the continuous operation time or the accumulated operation time reaches a predetermined time. (B) When the lubricating oil outflow amount (oil rising amount) reaches a predetermined amount. (C) When the outside air temperature is higher than the set value for a predetermined time. When it is detected that any one of the three conditions is satisfied, the oil return operation is executed.
  • the oil return operation is terminated when a predetermined known operation termination condition is satisfied. Further, at the end of the oil return operation, the oil return operation is determined to be “success” or “failure” (for example, it is determined to be successful if the suction superheat degree SH of the compressor 10 continues below a predetermined value for a predetermined time). In the case of “failure”, the retry oil return operation is performed under a predetermined condition.
  • the oil return operation control unit 40 sets the refrigeration cycle (refrigerant circuit) 7 as a cooling cycle, and sets the high pressure protection value of the high pressure switch operated by the detection value of the high pressure sensor 45 to a predetermined value. And increasing the opening of the cooling expansion valve (EEVC) 31 of the indoor units 3A and 3B to the set opening by the indoor controller 33, and further increasing the rotation speed (drive frequency) of the compressor 10 to the set rotation speed.
  • the oil return operation is started.
  • This oil return operation increases the circulation amount of the refrigerant circulating in the refrigeration cycle (refrigerant circuit) 7 and increases the flow velocity, so that the refrigerant flows out from the compressor 10 to the refrigeration cycle 7 side, and the indoor heat exchanger 30 and Lubricating oil staying in the refrigerant pipes 4, 4A, 4B, 5, 5A, 5B and the like is collected in the compressor 10 along with the flow of the refrigerant. Then, when a predetermined end condition is satisfied, the oil return operation is ended and the original air conditioning operation is restored.
  • the amount of lubricating oil in the compressor 10 is reduced by continuing the operation for a long time while the oil return operation is not established due to an abnormally high temperature, and it is ensured that the compressor 10 runs out of lubricating oil and is damaged. This can be avoided, and the reliability of the air conditioner 1 can be improved.
  • the forced oil return operation by re-detecting the outside air temperature that is equal to or higher than the set value and the oil return by the detection of the oil return conditions of (A) and (B) above. Both driving are prohibited.
  • the oil return operation is forcibly performed through the high outside temperature oil return operation means 43, the oil return operation based on the detection of the oil return conditions (A) to (C) is prohibited for a certain period of time. By doing so, it is possible to prevent unnecessary repetition of the oil return operation. Therefore, the interruption of the normal air conditioning operation by performing the oil return operation can be minimized and the comfort can be maintained.
  • the high pressure protection value of the high pressure switch is increased by a predetermined value by the high pressure protection value changing means 46. For this reason, when the oil return operation is performed by increasing the number of rotations of the compressor 10 during the oil return operation, the high pressure is likely to increase, the high pressure switch is activated, and the compressor 10 may be abnormally stopped due to the high pressure cut.
  • the high-pressure protection value by increasing the high-pressure protection value by a predetermined value via the high-pressure protection value changing means 46, it is possible to prevent the compressor 10 from being abnormally stopped due to the high-pressure cut and to forcibly execute the oil return operation. . Therefore, even if the air conditioner 1 is installed in a high outside air temperature environment, the oil return operation can be performed reliably, and the situation where the compressor 10 runs out of lubricating oil can be avoided and the air conditioner 1 can be avoided. Can improve the reliability.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Power Engineering (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

 油戻し条件が満たされたとき、所定の冷媒サイクルにより圧縮機(10)の回転数および膨張弁(31)の開度等を制御して油戻し運転を行う油戻し運転制御部(40)を備えている空気調和機(1)において、外気温が上昇し、外気温センサ(44)による検出値が設定値よりも高い状態が所定時間継続したとき、油戻し運転制御部(40)を介して強制的に油戻し運転を実施する高外気温油戻し運転手段(43)を備え、該高外気温油戻し運転手段(43)により強制的に油戻し運転を実施した後は、油戻し運転を一定時間禁止するようにしている。

Description

空気調和機
 本発明は、冷媒回路側に流出した潤滑油を回収し、圧縮機内に所定量の潤滑油を確保する油戻し運転を行う油戻し運転制御部を備えている空気調和機に関するものである。
 ビル等の空調に用いられるマルチ形空気調和機では、複数台の室内機と室外機とを接続する冷媒配管の長さが長くなる。このため、空気調和機の運転中に、圧縮機から冷媒回路側に冷媒に伴われて流出された潤滑油が冷媒回路側に滞留しやすくなり、圧縮機側において潤滑油が不足する事態に陥りやすい。そこで、かかる空気調和機においては、圧縮機から冷媒回路側に流出した潤滑油を圧縮機内に回収するため、空気調和機の運転時間を積算して所定時間毎に、あるいは圧縮機からの潤滑油の流出量を算出し、それが所定量に達したことを検出して、油戻し運転を行うようにしている(例えば、特許文献1,2参照)。
 この油戻し運転は、一般に冷凍サイクルを冷房サイクルとし、室内機側の冷房用膨張弁を開とするとともに、圧縮機の回転数を上げて冷媒の循環量および流速を増大させることにより行っている。これによって、熱交換器や冷媒配管等の冷媒回路中に滞留していた潤滑油を冷媒と共に圧縮機に回収するようにしている。
 一方、元々圧力が高い状態で運転されている時に、油戻し運転に切換えられると、圧縮機の回転数上昇によって冷媒循環量が増加されることから、高圧が急激に上昇することがある。このように、高圧が過渡的に異常上昇した場合、高圧保護用の高圧圧力センサが作動し、高圧カットにより圧縮機が異常停止してしまうおそれがある。そこで、油回収条件の成立時、その時の運転条件に応じて、吐出ガスをバイパスさせて冷媒循環量を低減したり、室外ファンにより凝縮能力を増大したりすることによって、高圧の異常上昇を抑制するようにした技術が特許文献3に示されている。
特開2009-257759号公報 特開2005-351598号公報 特公平7-72654号(特許第2035389号)公報
 しかしながら、空気調和機が外気温の非常に高くなる地域で使用された場合や室外機が熱のこもり易い場所に設置されることで周囲温度が異常上昇したりした場合には、油戻し運転に切換って圧縮機の回転数が上昇すると、冷媒の圧力も上昇して高圧圧力スイッチの設定値を超えてしまい、油戻し運転が成立しないことがある。このため、潤滑油を回収できないまま、長時間運転が継続されることがあり、圧縮機内の潤滑油量が減少し、圧縮機が潤滑油切れにより故障するおそれがあるという課題がある。特許文献1-3は、このような高外気温による油戻し運転の長時間に亘る不成立を解消し得るものではなかった。
 本発明は、このような事情に鑑みてなされたものであって、異常な高外気温による油戻し運転の長時間に亘る不成立を解消し、圧縮機の潤滑油切れによる損傷を防止することができる空気調和機を提供することを目的とする。
 上記した課題を解決するために、本発明の空気調和機は、以下の手段を採用する。
 すなわち、本発明にかかる空気調和機は、油戻し条件が満たされたとき、所定の冷媒サイクルにより圧縮機回転数および膨張弁開度等を制御して油戻し運転を行う油戻し運転制御部を備えている空気調和機において、外気温が上昇し、外気温センサによる検出値が設定値よりも高い状態が所定時間継続したとき、前記油戻し運転制御部を介して強制的に油戻し運転を実施する高外気温油戻し運転手段を備え、該高外気温油戻し運転手段により強制的に油戻し運転を実施した後は、油戻し運転を一定時間禁止するようにしたものである。
 本発明によれば、油戻し条件が満たされたとき、油戻し運転を行う油戻し運転制御部を備えている空気調和機において、外気温が上昇し、外気温センサによる検出値が設定値よりも高い状態が所定時間継続したとき、油戻し運転制御部を介して強制的に油戻し運転を実施する高外気温油戻し運転手段を備え、該高外気温油戻し運転手段により強制的に油戻し運転を実施した後は、油戻し運転を一定時間禁止するようにしているため、外気温が設定値よりも高い状態が所定時間継続したとき、更に温度上昇して高圧カットにより油戻し運転が不成立(困難)となる状態に陥る前に、前以って高外気温油戻し運転手段により強制的に油戻し運転を実施することによって、それ以降の一定時間は油戻し運転を行わなくても空気調和機を継続して運転することが可能となる。従って、異常な高温により油戻し運転が不成立のまま長時間運転が継続されることで圧縮機内の潤滑油量が減少し、圧縮機が潤滑油切れとなって損傷する事態を確実に回避することができ、空気調和機の信頼性を高めることができる。
 本発明の空気調和機においては、上記の空気調和機において、前記油戻し運転の一定時間禁止中は、前記設定値以上の外気温再検出による強制油戻し運転および前記油戻し条件検出による油戻し運転が共に禁止されることが好ましい。
 この構成によれば、油戻し運転の一定時間禁止中は、設定値以上の外気温再検出による強制油戻し運転および油戻し条件検出による油戻し運転が共に禁止されるため、高外気温油戻し運転手段を介して強制的に油戻し運転を実施した後は、一定の時間、設定値以上の外気温再検出による強制油戻し運転および油戻し条件検出による油戻し運転を禁止しておくことにより、無駄な油戻し運転の繰り返しを防止することができる。従って、油戻し運転を行うことによる空調運転の中断を最小限に抑え、快適性を維持することができる。
 また、本発明の空気調和機においては、上述のいずれかの空気調和機において、外気温が前記設定値を下回った場合、前記油戻し運転の一定時間禁止が解除されることが好ましい。
 この構成によれば、外気温が設定値を下回った場合、油戻し運転の一定時間禁止が解除されるため、外気温が設定値を下回って、油戻し運転の一定時間禁止が解除されると、通常の油戻し運転制御が復帰され、所定の油戻し条件が満たされたときに油戻し運転が行われるようになる。従って、従前からの油戻し運転機能を維持したまま、高外気温環境下への対応が可能となり、空気調和機の設置領域を拡げることができる。
 さらに、本発明の空気調和機においては、上述のいずれかの空気調和機において、少なくとも前記高外気温油戻し運転手段による強制的な油戻し運転の実施時には、冷媒圧力上昇に伴う高圧保護値を所定値だけ高める高圧保護値変更手段を備えていることが好ましい。
 この構成によれば、少なくとも高外気温油戻し運転手段による強制的な油戻し運転の実施時に、冷媒圧力上昇に伴う高圧保護値を所定値だけ高める高圧保護値変更手段を備えているため、高外気温環境下で圧縮機回転数を上昇させて油戻し運転を行うと、高圧が上昇しやすく、高圧圧力スイッチが作動して、高圧カットにより圧縮機が異常停止してしまうおそれがあるが、高圧保護値変更手段を介して高圧保護値を所定値だけ高めに変更することにより、高圧カットによる圧縮機の異常停止を防止し、油戻し運転を強制的に実施することが可能となる。従って、高外気温環境下に設置しても確実に油戻し運転を実施することができ、圧縮機が潤滑油切れとなる事態を回避して空気調和機の信頼性を高めることができる。なお、高圧保護値変更手段による高圧保護値の変更は、高外気温油戻し運転手段により強制的に油戻し運転を行う時だけでなく、油戻し条件が満たされたときの通常の油戻し運転時にも、同様に実施するようにしてもよい。
 本発明によると、外気温が設定値よりも高い状態が所定時間継続したとき、更に温度上昇して高圧カットにより油戻し運転が不成立となる状態に陥る前に、前以って高外気温油戻し運転手段により強制的に油戻し運転を実施することによって、それ以降の一定時間は油戻し運転を行わなくても空気調和機を継続して運転することが可能となるため、異常な高温により油戻し運転が不成立のまま長時間運転が継続されることで圧縮機内の潤滑油量が減少し、圧縮機が潤滑油切れとなって損傷する事態を確実に回避することができ、空気調和機の信頼性を高めることができる。
本発明の一実施形態に係る空気調和機の冷媒回路図である。 図1に示す空気調和機における油戻し運転時の制御フロー図である。
 以下に、本発明の一実施形態について、図1および図2を参照して説明する。
 図1には、本発明の一実施形態に係る空気調和機の冷媒回路図が示され、図2には、その油戻し運転時の制御フロー図が示されている。本実施形態においては、空気調和機1として、1台の室外機2に、複数台の室内機3A,3Bが並列に接続されているマルチ形の空気調和機1が示されている。複数台の室内機3A,3Bは、室外機2から導出されるガス側配管4および液側配管5の間に分岐器6を介して互いに並列に接続されている。
 室外機2は、冷媒を圧縮するインバータ駆動の圧縮機10と、冷媒ガス中から潤滑油を分離する油分離器11と、冷媒の循環方向を切換える四方切換弁12と、冷媒と外気とを熱交換させる室外熱交換器13と、室外熱交換器13と一体的に構成されている過冷却コイル14と、暖房用膨張弁(EEVH)15と、液冷媒を貯留するレシーバ16と、液冷媒に過冷却を与える過冷却熱交換器17と、過冷却熱交換器17に分流される冷媒量を制御する過冷却用膨張弁(EEVSC)18と、圧縮機10に吸入される冷媒ガスから液分を分離し、ガス分のみを圧縮機10側に吸入させるアキュームレータ19と、ガス側操作弁20と、液側操作弁21とを備えている。
 室外機2側の上記各機器は、冷媒配管22を介して公知の如く接続され、室外側冷媒回路23を構成している。また、室外機2には、室外熱交換器13に対して外気を送風する室外ファン24が設けられている。さらに、油分離器11と圧縮機10の吸入配管との間には、油分離器11内で吐出冷媒ガスから分離された潤滑油を所定量ずつ圧縮機10側に戻すための油戻し回路25が設けられている。
 ガス側配管4および液側配管5は、室外機2のガス側操作弁20および液側操作弁21に接続される冷媒配管であり、現場での据え付け施工時に、室外機2とそれに接続される複数台の室内機3A,3Bとの間の距離に応じて、その配管長が設定されるようになっている。ガス側配管4および液側配管5の途中には、適宜数の分岐器6が設けられ、該分岐器6を介して適宜台数の室内機3A,3Bが接続されている。これによって、密閉された1系統の冷凍サイクル(冷媒回路)7が構成されている。
 室内機3A,3Bは、室内空気を冷媒と熱交換させて室内の空調に供する室内熱交換器30と、冷房用膨張弁(EEVC)31と、室内熱交換器30を介して室内空気を循環させる室内ファン32と、室内コントローラ33とを備えており、室内側の分岐ガス側配管4A,4Bおよび分岐液側配管5A,5Bを介して分岐器6に接続されている。
 上記のマルチ形空気調和機1において、冷房運転は、以下のように行われる。
 圧縮機10で圧縮され、吐出された高温高圧の冷媒ガスは、油分離器11で冷媒中に含まれている潤滑油が分離される。その後、冷媒ガスは、四方切換弁12により室外熱交換器13側に循環され、室外熱交換器13で室外ファン24により送風される外気と熱交換されて凝縮液化される。この液冷媒は、過冷却コイル14で更に冷却された後、暖房用膨張弁15を通過し、レシーバ16内にいったん貯留される。
 レシーバ16で循環量が調整された液冷媒は、過冷却熱交換器17を経て液冷媒配管側を流通される過程で、液冷媒配管から分流され、過冷却用膨張弁(EEVSC)18で断熱膨張された冷媒と熱交換されて過冷却度が付与される。この液冷媒は、液側操作弁21を経て室外機2から液側配管5へと導出され、更に液側配管5に導出された液冷媒は、分岐器6を介して各室内機3A,3Bの分岐液側配管5A,5Bへと分流される。
 分岐液側配管5A,5Bに分流された液冷媒は、各室内機3A,3Bに流入し、冷房用膨張弁(EEVC)31で断熱膨張され、気液二相流となって室内熱交換器30に流入される。室内熱交換器30では、室内ファン32により循環される室内空気と冷媒とが熱交換され、室内空気は冷却されて室内の冷房に供される。一方、冷媒はガス化され、分岐ガス側配管4A,4Bを経て分岐器6に至り、他の室内機からの冷媒ガスとガス側配管4で合流される。
 ガス側配管4で合流された冷媒ガスは、再び室外機2に戻り、ガス側操作弁20、四方切換弁12を経て、過冷却熱交換器17からの冷媒ガスと合流された後、アキュームレータ19に導入される。アキュームレータ19では、冷媒ガス中に含まれている液分が分離され、ガス分のみが圧縮機10に吸入される。この冷媒は、圧縮機10において再び圧縮され、以上のサイクルを繰り返すことによって冷房運転が行われる。
 一方、暖房運転は、以下のように行われる。
 圧縮機10により圧縮され、吐出された高温高圧の冷媒ガスは、油分離器11で冷媒中に含まれている潤滑油が分離された後、四方切換弁12を介してガス側操作弁20側に循環される。該冷媒は、ガス側操作弁20、ガス側配管4を経て室外機2から導出され、更に分岐器6、室内側の分岐ガス側配管4A,4Bを経て複数台の室内機3A,3Bに導入される。
 室内機3A,3Bに導入された高温高圧の冷媒ガスは、室内熱交換器30で室内ファン32を介して循環される室内空気と熱交換され、室内空気は加熱されて室内の暖房に供される。室内熱交換器30で凝縮された液冷媒は、冷房用膨張弁(EEVC)31、分岐液側配管5A,5Bを経て分岐器6に至り、他の室内機からの冷媒と合流された後、液側配管5を経て室外機2に戻される。なお、暖房時、室内機3A,3Bでは、凝縮器として機能する室内熱交換器30の冷媒出口温度(以下、熱交出口温度という。)または冷媒過冷却度が制御目標値となるように、冷房用膨張弁(EEVC)31の開度が室内コントローラ33を介して制御されるようになっている。
 室外機2に戻った冷媒は、液側操作弁21を経て過冷却熱交換器17に至り、冷房時の場合と同様に過冷却が付与された後、レシーバ16に流入され、いったん貯留されることにより循環量が調整される。この液冷媒は、暖房用膨張弁(EEVH)15に供給されて断熱膨張された後、過冷却コイル14を経て室外熱交換器13に流入される。
 室外熱交換器13においては、室外ファン24を介して送風される外気と冷媒とが熱交換され、冷媒は外気から吸熱して蒸発ガス化される。該冷媒は、室外熱交換器13から四方切換弁12を経て、過冷却熱交換器17からの冷媒ガスと合流された後、アキュームレータ19に導入される。アキュームレータ19では、冷媒ガス中に含まれている液分が分離されてガス分のみが圧縮機10に吸入され、圧縮機10において再び圧縮される。以上のサイクルを繰り返すことによって暖房運転が行われる。
 ビル等の空調に適用されるマルチ形の空気調和機1では、室外機2と室内機3A,3Bとの間の冷媒配管長が非常に長くなる。このため、圧縮機10から冷凍サイクル(冷媒回路)7側に冷媒に伴われて流出された潤滑油が冷凍サイクル(冷媒回路)7内に滞留しやすく、圧縮機10側で潤滑油が不足する事態に陥りやすい。そこで、圧縮機10から冷凍サイクル(冷媒回路)7側に流出した潤滑油を圧縮機10内に回収するため、空気調和機1の運転を続けることによって、所定の油戻し条件が満たされたとき、油戻し運転を行うようにしている。
 この油戻し運転は、油戻し条件が満たされたとき、油戻し運転制御部40により、四方切換弁12を介して冷凍サイクル(冷媒回路)7を上記冷房サイクルとして行われ、その際に圧縮機10の回転数が設定回転数に上昇されるとともに、全室内機3A,3Bの冷房用膨張弁(EEVC)31の開度が室内コントローラ33を介して設定開度に上げられることにより実行されるように構成されている。
 ここでの、油戻し条件は、
 (A)空気調和機1の連続運転時間または積算運転時間をカウントし、それが所定時間に到達したとき。
 (B)圧縮機10からの潤滑油流出量を算出し、それが所定量に到達したとき。
のいずれかまたはその両方であり、これらの条件(A),(B)が満たされたことが運転時間積算手段41または潤滑油流出量算出手段42によって検出されると、油戻し運転制御部40を介して油戻し運転が実行されるように構成されている。
 上記油戻し条件(A),(B)は、従来から知られている。本実施形態においては、この条件(A),(B)に加え、外気温度を監視し、外気温センサ44によって検出された外気温が設定値(例えば、49℃)よりも高い状態が所定時間(例えば、3分間)継続したことを条件(C)として追加し、該条件(C)を満たしたとき、油戻し運転制御部40を介して強制的に油戻し運転を行う高外気温油戻し運転手段43を備えた構成としている。そして、この高外気温油戻し運転手段43を介して強制的に油戻し運転を行った後は、油戻し運転を一定時間(例えば、3時間)禁止するようにしている。
 また、油戻し運転の一定時間禁止中には、外気温が高い状態が継続し、設定値以上の外気温が再検出されたとしても、あるいは上記(A),(B)の油戻し条件が満たされたとしても、油戻し運転が禁止されるようになっている。一方、外気温が上記設定値を下回った場合は、油戻し運転の一定時間禁止が解除され、上記(A),(B)の油戻し条件が満たされたとき、油戻し運転が実行されるようになっている。
 さらに、本実施形態では、上記3条件(A),(B),(C)が満たされることにより油戻し運転を行う際、冷房用膨張弁(EEVC)31の開度を室内コントローラ33により設定開度に上げるとともに、圧縮機10の回転数を設定回転数に上昇させるだけでなく、高圧センサ45の検出値に基づいて作動され、圧縮機10を異常停止する高圧保護用の高圧圧力スイッチ(図示省略)の高圧保護値を所定値だけ高める(例えば、3.7MPaを3.8MPaに変更)高圧保護値変更手段46を設けた構成としている。
 図2は、上記した油戻し運転の制御フロー図であり、油戻し運転は、この図2に示されるように、空気調和機1が通常の冷暖房運転中に、運転時間積算手段41、潤滑油流出量算出手段42および高外気温油戻し運転手段43により、
 (A)連続運転時間または積算運転時間が所定時間に到達したとき。
 (B)潤滑油流出量(油上がり量)が所定量に到達したとき。
 (C)外気温が設定値よりも高い状態が所定時間継続したとき。
の3条件のいずれかが満たされたことが検知されると、油戻し運転が実行されるようになっている。
 そして、この油戻し運転は、冷凍サイクル(冷媒回路)7を冷房サイクルとした上で、
 (1)高圧保護値を所定値だけ高める。
 (2)全室内機3A,3Bの冷房用膨張弁31の開度を設定開度に上げる。
 (3)圧縮機10の回転数(駆動周波数)を設定回転数に上昇させる。
の3要素を同時に実施して行われるようになっている。
 なお、油戻し運転は、予め定められている既知の運転終了条件が満たされたとき、終了されるようになっている。また、油戻し運転の終了時には、油戻し運転が「成功」または「失敗」を判定(例えば、圧縮機10の吸入過熱度SHが、所定値以下を所定時間連続した場合は成功と判定)し、「失敗」の場合は、所定条件にてリトライ油戻し運転が実施されるようになっている。
 以上に説明の構成により、本実施形態によれば、以下の作用効果を奏する。
 空気調和機1が冷暖房運転中に、運転時間積算手段41、潤滑油流出量算出手段42および高外気温油戻し運転手段43が、上記油戻し条件(A),(B),(C)のいずれかを満たすことを検知すると、油戻し運転制御部40は、冷凍サイクル(冷媒回路)7を冷房サイクルとし、高圧センサ45の検出値により作動される高圧圧力スイッチの高圧保護値を所定値だけ高めるとともに、室内機3A,3Bの冷房用膨張弁(EEVC)31の開度を室内コントローラ33により設定開度に上げ、更に圧縮機10の回転数(駆動周波数)を設定回転数に上昇させることにより、油戻し運転を開始する。
 この油戻し運転により、冷凍サイクル(冷媒回路)7内を循環する冷媒の循環量が増加するとともに、流速が増加するため、圧縮機10から冷凍サイクル7側に流出し、室内熱交換器30や冷媒配管4,4A,4B,5,5A,5B等に滞留していた潤滑油が、冷媒の流れに伴われて圧縮機10内に回収される。そして、予め定められている終了条件が満たされると、油戻し運転が終了され、元の冷暖房運転に復帰される。
 このように、本実施形態では、空気調和機1の連続運転時間または積算運転時間が所定時間に到達したときや、圧縮機10からの潤滑油流出量(油上がり量)が所定量に到達したときのほか、外気温が設定値よりも高い状態が所定時間継続したときにも、油戻し運転を実施するようにし、この高外気温油戻し運転手段43による強制的油戻し運転が実施された後は、油戻し運転を一定時間禁止するようにしている。このため、外気温が設定値よりも高い状態が所定時間継続したときは、更に温度上昇して高圧カットにより油戻し運転が困難となる状態に陥る前に、前以って強制的に油戻し運転を実施することができ、これにより、それ以降の一定時間は油戻し運転を行わなくても空気調和機1を継続して運転することが可能となる。
 従って、異常な高温により油戻し運転が不成立のまま長時間運転が継続されることで圧縮機10内の潤滑油量が減少し、圧縮機10が潤滑油切れとなって損傷する事態を確実に回避することができ、空気調和機1の信頼性を高めることができる。
 また、上記により油戻し運転を一定時間禁止している間に、設定値以上の外気温を再検出することによる強制油戻し運転および上記(A),(B)の油戻し条件検出による油戻し運転を共に禁止するようにしている。このように、高外気温油戻し運転手段43を介して強制的に油戻し運転を行った後は、一定の時間、上記油戻し条件(A)ないし(C)の検知による油戻し運転を禁止しておくことにより、無駄な油戻し運転の繰り返しを防止することができる。従って、油戻し運転を行うことによる通常の冷暖房運転の中断を最小限に抑え、快適性を維持することができる。
 さらに、外気温が設定値を下回った場合には、油戻し運転の一定時間禁止が解除されるようになっているため、外気温が設定値を下回って、油戻し運転の一定時間禁止が解除されると、通常の油戻し運転制御が復帰され、所定の油戻し条件(A)ないし(C)が満たされたときに油戻し運転が実行されるようになる。従って、従前からの油戻し条件(A)および(B)に基づく油戻し運転機能を維持したまま、高外気温環境下への対応が可能となり、空気調和機1の設置領域を拡げることができる。
 また、本実施形態においては、油戻し運転を実施する時、高圧圧力スイッチの高圧保護値を高圧保護値変更手段46により所定値だけ高めるようにしている。このため、油戻し運転時、圧縮機10の回転数を上昇させて油戻し運転すると、高圧が上昇しやすく、高圧圧力スイッチが作動し、高圧カットにより圧縮機10が異常停止してしまうおそれがあるが、高圧保護値変更手段46を介して高圧保護値を所定値だけ高めることによって、高圧カットによる圧縮機10の異常停止を防止し、油戻し運転を強制的に実行することが可能となる。従って、空気調和機1を高外気温環境下に設置しても確実に油戻し運転を実施することができるようになり、圧縮機10が潤滑油切れとなる事態を回避して空気調和機1の信頼性を高めることができる。
 なお、本発明は、上記実施形態にかかる発明に限定されるものではなく、その要旨を逸脱しない範囲において、適宜変形が可能である。例えば、上記実施形態では、油戻し条件(A)ないし(C)のいずれの条件で油戻し運転を行う時にも、高圧保護値変更手段46により高圧圧力スイッチの高圧保護値を所定値だけ高めるようにしているが、特に高圧が上昇しやすい、高外気温油戻し運転手段43を介して強制的に油戻し運転する時だけ、高圧圧力スイッチの高圧保護値を変更して油戻し運転を行うようにしてもよい。
  1 空気調和機
  2 室外機
  3A,3B 室内機
  7 冷凍サイクル(冷媒回路)
 10 圧縮機
 31 冷房用膨張弁(EEVC)
 40 油戻し運転制御部
 41 運転時間積算手段
 42 潤滑油流出量算出手段
 43 高外気温油戻し運転手段
 44 外気温センサ
 45 高圧センサ
 46 高圧保護値変更手段

Claims (4)

  1.  油戻し条件が満たされたとき、所定の冷媒サイクルにより圧縮機回転数および膨張弁開度等を制御して油戻し運転を行う油戻し運転制御部を備えている空気調和機において、
     外気温が上昇し、外気温センサによる検出値が設定値よりも高い状態が所定時間継続したとき、前記油戻し運転制御部を介して強制的に油戻し運転を実施する高外気温油戻し運転手段を備え、該高外気温油戻し運転手段により強制的に油戻し運転を実施した後は、油戻し運転を一定時間禁止するようにしている空気調和機。
  2.  前記油戻し運転の一定時間禁止中は、前記設定値以上の外気温再検出による強制油戻し運転および前記油戻し条件検出による油戻し運転が共に禁止される請求項1に記載の空気調和機。
  3.  外気温が前記設定値を下回った場合、前記油戻し運転の一定時間禁止が解除される請求項1または2に記載の空気調和機。
  4.  少なくとも前記高外気温油戻し運転手段による強制的な油戻し運転の実施時には、冷媒圧力上昇に伴う高圧保護値を所定値だけ高める高圧保護値変更手段を備えている請求項1ないし3のいずれかに記載の空気調和機。
PCT/JP2011/050214 2010-01-25 2011-01-07 空気調和機 WO2011089938A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US13/499,834 US9285148B2 (en) 2010-01-25 2011-01-07 Air conditioner using oil return operation based on outdoor air temperature
CN201180004250.7A CN102575884B (zh) 2010-01-25 2011-01-07 空气调节机
EP11734545.4A EP2530407B8 (en) 2010-01-25 2011-01-07 Air conditioner
ES11734545.4T ES2655533T3 (es) 2010-01-25 2011-01-07 Acondicionador de aire
KR1020127009251A KR101297972B1 (ko) 2010-01-25 2011-01-07 공기 조화기

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-013050 2010-01-25
JP2010013050A JP5484930B2 (ja) 2010-01-25 2010-01-25 空気調和機

Publications (1)

Publication Number Publication Date
WO2011089938A1 true WO2011089938A1 (ja) 2011-07-28

Family

ID=44306741

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/050214 WO2011089938A1 (ja) 2010-01-25 2011-01-07 空気調和機

Country Status (7)

Country Link
US (1) US9285148B2 (ja)
EP (1) EP2530407B8 (ja)
JP (1) JP5484930B2 (ja)
KR (1) KR101297972B1 (ja)
CN (1) CN102575884B (ja)
ES (1) ES2655533T3 (ja)
WO (1) WO2011089938A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109539630A (zh) * 2018-11-13 2019-03-29 青岛海尔空调器有限总公司 用于压缩制冷或制热装置的压缩机回油方法
CN111457544A (zh) * 2020-04-20 2020-07-28 宁波奥克斯电气股份有限公司 一种空调运行方法及空调器
JP2020193746A (ja) * 2019-05-27 2020-12-03 シャープ株式会社 空気調和機
CN114322267A (zh) * 2022-01-04 2022-04-12 广东美的制冷设备有限公司 空调器的控制方法、空调器及存储介质
CN115978738A (zh) * 2022-12-13 2023-04-18 珠海格力电器股份有限公司 回油控制方法以及空调系统
WO2024103687A1 (zh) * 2022-11-18 2024-05-23 青岛海尔空调器有限总公司 空调器的控制方法、控制装置及空调器

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013044512A (ja) * 2011-08-26 2013-03-04 Yanmar Co Ltd 空調システム
JP2013155964A (ja) * 2012-01-31 2013-08-15 Fujitsu General Ltd 空気調和装置
JP6012757B2 (ja) * 2012-11-21 2016-10-25 三菱電機株式会社 空気調和装置
CN104180563B (zh) * 2013-05-27 2017-06-20 珠海格力电器股份有限公司 多联机系统制热时的回油方法
JP6230931B2 (ja) * 2014-02-20 2017-11-15 三菱重工サーマルシステムズ株式会社 マルチ形空気調和機
JP6327558B2 (ja) * 2014-06-04 2018-05-23 パナソニックIpマネジメント株式会社 空気調和装置
JP6334320B2 (ja) * 2014-08-22 2018-05-30 株式会社Nttファシリティーズ 蒸気圧縮式冷凍サイクル
JP6509013B2 (ja) * 2015-04-01 2019-05-08 日立ジョンソンコントロールズ空調株式会社 冷凍装置及び冷凍機ユニット
CN104764167B (zh) * 2015-04-21 2018-05-01 珠海格力电器股份有限公司 变频空调压缩机的回油控制方法
JP6459800B2 (ja) * 2015-06-26 2019-01-30 株式会社富士通ゼネラル 空気調和装置
JP6458666B2 (ja) * 2015-06-30 2019-01-30 株式会社富士通ゼネラル 空気調和装置
JP6309169B2 (ja) * 2015-07-08 2018-04-11 三菱電機株式会社 空気調和装置
CN105066537B (zh) * 2015-07-15 2017-09-29 宁波奥克斯电气股份有限公司 多联机制热回油控制方法
JP6567171B2 (ja) * 2016-04-18 2019-08-28 三菱電機株式会社 冷凍サイクル装置
JP6615056B2 (ja) * 2016-06-28 2019-12-04 三菱電機株式会社 空気調和機
IT201600099499A1 (it) * 2016-10-04 2018-04-04 Carel Ind Spa Dispositivo per il rilevamento di una condizione di lubrificazione ottimizzabile in un compressore di un impianto frigorifero, gruppo compressore che lo comprende e metodo per il rilevamento di una condizione di lubrificazione ottimizzabile in un compressore di un impianto frigorifero
CN106524593B (zh) * 2016-11-08 2019-04-30 广东美的暖通设备有限公司 风冷热泵空调机组及其压缩机的回油控制方法和装置
JP6540666B2 (ja) * 2016-11-24 2019-07-10 ダイキン工業株式会社 冷凍装置
EP3643979A4 (en) * 2017-06-23 2020-07-15 Mitsubishi Electric Corporation REFRIGERATION CIRCUIT
CN107490129B (zh) 2017-08-02 2020-10-20 青岛海尔空调电子有限公司 一种设备控制的方法及装置
CN107575939B (zh) * 2017-09-07 2019-10-25 珠海格力电器股份有限公司 多联机系统及其控制方法
CN108613434A (zh) * 2018-04-12 2018-10-02 珠海格力电器股份有限公司 空调的回油控制方法及装置
JP7199032B2 (ja) * 2018-07-30 2023-01-05 パナソニックIpマネジメント株式会社 空気調和装置
CN109489210B (zh) * 2018-10-15 2020-12-29 珠海格力电器股份有限公司 多联机系统回油控制方法、装置、回油控制设备及空调
CN109357440B (zh) * 2018-10-26 2019-11-05 宁波奥克斯电气股份有限公司 一种多联机制热回油控制方法及多联机空调器
CN109539632B (zh) * 2018-11-28 2019-10-01 珠海格力电器股份有限公司 一种回油控制方法、装置、存储介质及空调
CN109539649B (zh) * 2018-12-04 2020-01-24 珠海格力电器股份有限公司 机组回油控制方法、系统及多联机
CN110608501B (zh) * 2019-09-04 2022-03-11 青岛海尔空调电子有限公司 用于空调器的回油控制方法及空调器
JP6828790B1 (ja) * 2019-10-31 2021-02-10 ダイキン工業株式会社 冷凍装置
CN113587499B (zh) * 2020-04-14 2022-10-28 青岛海尔空调器有限总公司 空调系统的冷冻机油循环量控制方法
CN113719963B (zh) * 2020-05-25 2022-12-27 青岛海尔空调电子有限公司 多联机系统的回油控制方法
US11874033B2 (en) * 2021-09-07 2024-01-16 Hill Phoenix, Inc. Increasing a flow rate of oil into a compressor of a refrigeration assembly

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0235389A (ja) 1988-05-27 1990-02-05 General Electric Co (Ge) フェイズド・アレイ超音波プローブの較正方式
JPH0772654B2 (ja) 1989-08-09 1995-08-02 ダイキン工業株式会社 空気調和装置の運転制御装置
JPH09170828A (ja) * 1995-12-20 1997-06-30 Toshiba Ave Corp マルチ式空気調和機の油回収制御装置
WO2003085332A1 (fr) * 2002-04-08 2003-10-16 Daikin Industries, Ltd. Refrigerateur
JP2005351598A (ja) 2004-06-14 2005-12-22 Mitsubishi Heavy Ind Ltd 空気調和装置の制御方法及びその制御装置、並びに空気調和装置
US20060080990A1 (en) * 2004-10-18 2006-04-20 Lg Electronics Inc. Air conditioner
JP2007057126A (ja) * 2005-08-23 2007-03-08 Matsushita Electric Ind Co Ltd 冷蔵庫
WO2008024110A1 (en) * 2006-08-22 2008-02-28 Carrier Corporation Improved oil return in refrigerant system

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5551249A (en) * 1992-10-05 1996-09-03 Van Steenburgh, Jr.; Leon R. Liquid chiller with bypass valves
JP2966786B2 (ja) * 1995-12-29 1999-10-25 三洋電機株式会社 空気調和機
JPH09318166A (ja) 1996-05-30 1997-12-12 Mitsubishi Heavy Ind Ltd 冷凍装置
JP4270765B2 (ja) 2001-02-16 2009-06-03 三洋電機株式会社 空気調和装置
KR100468916B1 (ko) * 2002-05-01 2005-02-02 삼성전자주식회사 공기 조화기 및 그 제어 방법
US7104076B2 (en) * 2004-06-24 2006-09-12 Carrier Corporation Lubricant return schemes for use in refrigerant cycle
JP2007139276A (ja) 2005-11-16 2007-06-07 Sanden Corp 冷却システム
KR101552618B1 (ko) * 2009-02-25 2015-09-11 엘지전자 주식회사 공기 조화기
US8234877B2 (en) * 2009-07-08 2012-08-07 Trane International Inc. Compressor discharge valve providing freeze and charge migration protection

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0235389A (ja) 1988-05-27 1990-02-05 General Electric Co (Ge) フェイズド・アレイ超音波プローブの較正方式
JPH0772654B2 (ja) 1989-08-09 1995-08-02 ダイキン工業株式会社 空気調和装置の運転制御装置
JPH09170828A (ja) * 1995-12-20 1997-06-30 Toshiba Ave Corp マルチ式空気調和機の油回収制御装置
WO2003085332A1 (fr) * 2002-04-08 2003-10-16 Daikin Industries, Ltd. Refrigerateur
JP2009257759A (ja) 2002-04-08 2009-11-05 Daikin Ind Ltd 冷凍装置
JP2005351598A (ja) 2004-06-14 2005-12-22 Mitsubishi Heavy Ind Ltd 空気調和装置の制御方法及びその制御装置、並びに空気調和装置
US20060080990A1 (en) * 2004-10-18 2006-04-20 Lg Electronics Inc. Air conditioner
JP2007057126A (ja) * 2005-08-23 2007-03-08 Matsushita Electric Ind Co Ltd 冷蔵庫
WO2008024110A1 (en) * 2006-08-22 2008-02-28 Carrier Corporation Improved oil return in refrigerant system

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109539630A (zh) * 2018-11-13 2019-03-29 青岛海尔空调器有限总公司 用于压缩制冷或制热装置的压缩机回油方法
JP2020193746A (ja) * 2019-05-27 2020-12-03 シャープ株式会社 空気調和機
JP7417368B2 (ja) 2019-05-27 2024-01-18 シャープ株式会社 空気調和機
CN111457544A (zh) * 2020-04-20 2020-07-28 宁波奥克斯电气股份有限公司 一种空调运行方法及空调器
CN114322267A (zh) * 2022-01-04 2022-04-12 广东美的制冷设备有限公司 空调器的控制方法、空调器及存储介质
CN114322267B (zh) * 2022-01-04 2024-01-26 广东美的制冷设备有限公司 空调器的控制方法、空调器及存储介质
WO2024103687A1 (zh) * 2022-11-18 2024-05-23 青岛海尔空调器有限总公司 空调器的控制方法、控制装置及空调器
CN115978738A (zh) * 2022-12-13 2023-04-18 珠海格力电器股份有限公司 回油控制方法以及空调系统
CN115978738B (zh) * 2022-12-13 2024-05-10 珠海格力电器股份有限公司 回油控制方法以及空调系统

Also Published As

Publication number Publication date
EP2530407A4 (en) 2014-01-08
ES2655533T3 (es) 2018-02-20
KR101297972B1 (ko) 2013-08-19
CN102575884B (zh) 2015-05-13
JP5484930B2 (ja) 2014-05-07
JP2011149659A (ja) 2011-08-04
EP2530407A1 (en) 2012-12-05
EP2530407B8 (en) 2017-12-06
CN102575884A (zh) 2012-07-11
US9285148B2 (en) 2016-03-15
EP2530407B1 (en) 2017-11-01
US20120192581A1 (en) 2012-08-02
KR20120065398A (ko) 2012-06-20

Similar Documents

Publication Publication Date Title
JP5484930B2 (ja) 空気調和機
JP6230931B2 (ja) マルチ形空気調和機
JP5125124B2 (ja) 冷凍装置
US9068766B2 (en) Air-conditioning and hot water supply combination system
KR101250100B1 (ko) 냉매시스템 및 그 제어방법
EP1659348A1 (en) Freezing apparatus
EP3252402B1 (en) Heat pump
WO2017061009A1 (ja) 冷凍サイクル装置
WO2015122056A1 (ja) 空気調和装置
JP5308205B2 (ja) 空気調和機
JP2009243842A (ja) マルチ型空気調和機および室外機の運転方法
JP2011202913A (ja) マルチ形空気調和装置
KR102390900B1 (ko) 멀티형 공기조화기 및 그의 제어방법
JP2017142017A (ja) 空気調和装置
JP6615363B2 (ja) 冷凍サイクル装置
JP2011242097A (ja) 冷凍装置
JP4301987B2 (ja) マルチ型空気調和装置
JP7258129B2 (ja) 空気調和装置
JP6003616B2 (ja) 冷凍装置
JP4735557B2 (ja) 冷凍装置
KR102250983B1 (ko) 멀티형 공기조화기
CN114341571A (zh) 制冷装置
JP2008209021A (ja) マルチ型空気調和装置
JP5578914B2 (ja) マルチ形空気調和装置
JP7375490B2 (ja) 空気調和装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180004250.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11734545

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13499834

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20127009251

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2011734545

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011734545

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE