WO2015122056A1 - 空気調和装置 - Google Patents

空気調和装置 Download PDF

Info

Publication number
WO2015122056A1
WO2015122056A1 PCT/JP2014/078437 JP2014078437W WO2015122056A1 WO 2015122056 A1 WO2015122056 A1 WO 2015122056A1 JP 2014078437 W JP2014078437 W JP 2014078437W WO 2015122056 A1 WO2015122056 A1 WO 2015122056A1
Authority
WO
WIPO (PCT)
Prior art keywords
expansion valve
compressor
outdoor
defrosting
heat exchanger
Prior art date
Application number
PCT/JP2014/078437
Other languages
English (en)
French (fr)
Inventor
浦田 和幹
内藤 宏治
和彦 谷
裕昭 金子
Original Assignee
日立アプライアンス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立アプライアンス株式会社 filed Critical 日立アプライアンス株式会社
Publication of WO2015122056A1 publication Critical patent/WO2015122056A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B47/00Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass
    • F25B47/02Defrosting cycles
    • F25B47/022Defrosting cycles hot gas defrosting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/41Defrosting; Preventing freezing
    • F24F11/42Defrosting; Preventing freezing of outdoor units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/07Details of compressors or related parts
    • F25B2400/075Details of compressors or related parts with parallel compressors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/021Inverters therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/11Fan speed control
    • F25B2600/111Fan speed control of condenser fans
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2501Bypass valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2509Economiser valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2513Expansion valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/193Pressures of the compressor
    • F25B2700/1931Discharge pressures
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • the present invention relates to an air conditioner, and more particularly to a device having a defrosting operation function for melting frost adhering to an outdoor heat exchanger.
  • the outdoor heat exchanger of the air conditioner acts as an evaporator, and when the heat transfer surface falls below zero degrees, moisture in the air condenses and freezes on the heat transfer surface. Arise.
  • frost adheres to the heat transfer surface and its thickness (frost formation amount) increases, the air flow path in the outdoor heat exchanger becomes narrower, and the amount of air flow flowing through the outdoor heat exchanger becomes smaller. The heat transfer from the air to the refrigerant is hindered. For this reason, the heat exchange efficiency of an outdoor heat exchanger falls and the performance as an air conditioning apparatus falls.
  • the air conditioner generally has a defrosting operation function for removing frost attached to the outdoor heat exchanger, and is configured to execute the defrosting operation when the amount of frost formation increases.
  • a defrosting operation as disclosed in, for example, Japanese Patent Application Laid-Open No. 2010-164257 (Patent Document 1), the refrigerant discharged from the compressor bypasses the condenser (indoor heat exchanger), and the evaporator (outdoor A hot gas bypass defrosting system that directly flows into a heat exchanger is known.
  • the air conditioner described in Patent Document 1 includes a compressor, a load side heat exchanger (water heat exchanger), a first expansion valve, a receiver, a second expansion valve, and a heat source side heat exchanger (outdoor heat exchanger). Are connected in series to form a refrigerant circuit.
  • a refrigerant-refrigerant heat exchanger for exchanging heat between the refrigerant flowing through the intermediate pressure pipe connecting the first expansion valve and the second expansion valve and the refrigerant flowing through the suction pipe to the compressor, the compressor A bypass pipe connecting the discharge pipe from the first pipe and a low-pressure pipe between the second expansion valve and the heat source side heat exchanger, a bypass expansion valve provided in the bypass pipe, the first expansion valve, and the first (2)
  • the defrosting operation is executed by closing the expansion valve and controlling the opening degree of the bypass expansion valve according to the degree of superheat of the refrigerant sucked into the compressor or the degree of superheat of the refrigerant discharged from the compressor.
  • the control apparatus which controls to do is provided.
  • the first expansion valve and the second expansion valve are closed and the defrosting operation is performed, so that the air is retained in the load side heat exchanger functioning as a condenser. Since the state of a refrigerant
  • the degree of refrigerant superheating on the compressor suction side or the degree of refrigerant superheat on the compressor discharge side is increased, and the opening degree of the bypass expansion valve is controlled to be increased.
  • the pressure on the discharge side of the compressor is reduced during the defrosting operation, so that the amount of electric input consumed by the compressor as the defrosting heat source is reduced. Therefore, there is a problem that the defrosting heat source becomes insufficient and the defrosting operation time becomes long.
  • the object of the present invention is to sufficiently extract the heat source necessary for melting the frost adhered to the outdoor heat exchanger while ensuring the reliability of the compressor during the defrosting operation by the hot gas bypass method.
  • An object of the present invention is to obtain an air conditioner that can shorten the defrosting operation time.
  • the present invention is an air conditioner including a compressor, an outdoor heat exchanger, and an outdoor expansion valve, the refrigerant pipe on the discharge side of the compressor, the outdoor heat exchanger, A defrosting bypass circuit for connecting a refrigerant pipe to which the outdoor expansion valve is connected, a defrosting expansion valve provided in the defrosting bypass circuit, and a discharge pressure detecting means for detecting the pressure on the discharge side of the compressor; And a control device that controls the opening degree of the defrosting expansion valve, and when the defrosting operation of the outdoor heat exchanger is performed, the control device opens the defrosting expansion valve and opens the outdoor expansion valve. Further, the opening degree of the defrosting expansion valve is controlled according to the discharge pressure value detected by the discharge pressure detecting means.
  • the heat source necessary for melting the frost attached to the outdoor heat exchanger can be sufficiently extracted while ensuring the reliability of the compressor.
  • the effect which can obtain the air conditioning apparatus which can shorten defrost operation time by is acquired.
  • FIG. 1 is a configuration diagram of a refrigeration cycle showing Example 1 of the air-conditioning apparatus of the present invention.
  • the air conditioner shown in FIG. 1 includes one outdoor unit 1 and one indoor unit 2.
  • the outdoor unit 1 connects a compressor 3, a four-way valve (switching valve) 4 for switching between cooling operation and heating operation, an outdoor heat exchanger 5, an outdoor expansion valve 6, and the outdoor unit 1 and the indoor unit 2.
  • a liquid blocking valve 7 on the refrigerant liquid pipe 19 side, a gas blocking valve 8 on the refrigerant gas pipe 20 side for connecting the outdoor unit 1 and the indoor unit 2, and an accumulator 9 are provided, and these devices are connected by a refrigerant pipe. ing.
  • the indoor unit 2 includes an indoor heat exchanger 21 and an indoor expansion valve 22, and these devices are connected by refrigerant piping.
  • the indoor unit 2 is connected to the liquid blocking valve 7 via the outdoor unit 1 and the refrigerant liquid pipe 19, and is connected to the gas blocking valve 8 via a refrigerant gas pipe 20. Thereby, a refrigerant circuit is formed.
  • the outdoor unit 1 is provided with an outdoor fan 10 for supplying outdoor air to the outdoor heat exchanger 5 and an outdoor fan motor 11 for driving the outdoor fan 10.
  • the refrigerant flowing through and the air supplied by the outdoor fan 10 are configured to exchange heat.
  • the indoor unit 2 is also provided with an indoor fan 23 for supplying indoor air to the indoor heat exchanger 21 and an indoor fan motor 24 for driving the indoor fan 23.
  • the refrigerant flowing through and the air supplied by the indoor fan 23 are configured to exchange heat.
  • the outdoor unit 1 is branched from a pipe connecting the discharge side of the compressor 3 and the four-way valve 4, and the pipe connecting the outdoor heat exchanger 5 and the outdoor expansion valve 6 is connected.
  • the defrosting bypass circuit 15 to be bypassed is provided, and the defrosting bypass circuit 15 is provided with a defrosting expansion valve 12.
  • the defrosting expansion valve 12 operates so as to close the defrosting bypass circuit 15 during the heating operation.
  • the defrosting expansion valve 12 opens the predetermined opening and discharges the high-temperature and high-pressure refrigerant discharged from the compressor. It operates to flow through the defrost bypass circuit 15.
  • the outdoor unit 1 is provided with a supercooling heat exchanger 13 having a main flow portion and a sub flow portion in the middle of a pipe connecting the outdoor expansion valve 6 and the liquid blocking valve 7.
  • a supercooling heat exchanger 13 having a main flow portion and a sub flow portion in the middle of a pipe connecting the outdoor expansion valve 6 and the liquid blocking valve 7.
  • One end of the main flow portion of the supercooling heat exchanger 13 is connected to the outdoor expansion valve 6 side, and the other end is connected to the liquid blocking valve 7 side by a refrigerant pipe.
  • the subcooling bypass circuit 16 provided at one end of the subflow portion of the supercooling heat exchanger 13 is branched from a refrigerant pipe connecting the supercooling heat exchanger 13 and the outdoor expansion valve 6.
  • the other end side of the sub-flow part is connected so as to join the refrigerant pipe 25 on the compressor suction side connecting the four-way valve 4 and the accumulator 9.
  • the supercooling bypass circuit 16 is provided with a supercooling expansion valve 14.
  • the supercooling expansion valve 14 adjusts the amount of refrigerant flowing through the supercooling bypass circuit 16 and decompresses the supercooling heat. It is configured to flow into the side flow portion of the exchanger 13.
  • the supercooling bypass circuit 16 may be branched from a refrigerant pipe connecting the supercooling heat exchanger 13 and the liquid blocking valve 7.
  • the refrigerant pipe 26 on the discharge side of the compressor 3 is provided with a discharge pressure sensor (discharge pressure detecting means) 18 for detecting the discharge pressure of the compressor 3.
  • Each actuator such as the indoor fan motor 24 is communicably connected to a microcomputer (control device) 17, and each actuator is controlled by a command from the microcomputer 17 according to the operating state of the refrigeration cycle. It is configured as follows.
  • the outdoor heat exchanger 5 acts as an evaporator
  • the heat transfer surface falls below zero degree, moisture in the air condenses and freezes on the heat transfer surface, resulting in frost.
  • the flow path of the air passing through the outdoor heat exchanger 5 becomes narrower. For this reason, since air volume falls and the heat transfer from air to a refrigerant
  • coolant is inhibited, the heat exchange efficiency of the outdoor heat exchanger 5 falls, and the performance as an air conditioning apparatus falls.
  • the air conditioner of the present embodiment is configured to perform a defrosting operation for removing frost attached to the outdoor heat exchanger 5.
  • this defrosting operation will be described using FIG. 2 with reference to FIG.
  • FIG. 2 is a flowchart for explaining the processing flow during the defrosting operation in the air-conditioning apparatus shown in FIG.
  • the arithmetic processing in FIG. 2 is performed in the microcomputer (control device) 17 shown in FIG.
  • the outdoor fan 10 provided in the outdoor unit 1 is stopped, the outdoor expansion valve 6 is set to an opening A (fully closed state), and supercooling expansion is performed.
  • Control is performed (step S1).
  • the compressor is operated at the maximum frequency during the defrosting operation. Therefore, the initial opening degree of the defrosting expansion valve 12 is determined in advance according to the capacity. Is set to the opening degree.
  • the opening degree according to the compressor operating capacity refers to the size (capacity) of the installed compressor, or in this embodiment, an inverter compressor capable of controlling the rotational speed is used as the compressor 3. Therefore, the initial opening is set according to the compressor operating capacity (operating frequency) at the start of the defrosting operation.
  • step S2 the indoor fan 23 provided in the indoor unit 2 is stopped, and the indoor expansion valve 22 is set to an opening B (a predetermined opening at which the refrigerant can flow to the indoor unit).
  • step S3 in order to secure a sufficient defrosting heat source, control is performed to maximize the compressor operating frequency so as to maximize the electric input amount of the compressor 3. Note that the present invention is not limited to the one that maximizes the operating frequency during the defrosting operation.
  • the refrigerant flows as shown by solid arrows in FIG. That is, the high-temperature and high-pressure gas refrigerant compressed by the compressor 3 is distributed into a flow flowing into the defrost bypass circuit 15 and a flow flowing into the four-way valve 4 side, and flows into the four-way valve 4 side. After passing through the four-way valve 4, the gas passes through the gas blocking valve 8 and the refrigerant gas pipe 20 and flows into the indoor heat exchanger 21.
  • the indoor expansion valve 22 Since the indoor expansion valve 22 is adjusted to an opening degree through which the refrigerant can flow, the high-temperature and high-pressure gas refrigerant passes through the indoor heat exchanger 21 and the indoor expansion valve 22, and passes through the refrigerant liquid pipe 19 and the liquid blocking valve 7. And flows into the outdoor unit 1. Since the refrigerant flowing to the indoor heat exchanger 21 side is a high-temperature and high-pressure refrigerant, the air conditioner in which the indoor unit 2 is installed can be heated simultaneously with the return of the heating operation.
  • the high-temperature and high-pressure refrigerant that has flowed into the defrost bypass circuit 15 passes through the defrost expansion valve 12 and then flows into the refrigerant pipe 27 that connects the outdoor heat exchanger 5 and the outdoor expansion valve 6.
  • the outdoor expansion valve 6 since the outdoor expansion valve 6 is fully closed, all of the refrigerant flowing into the refrigerant pipe 27 flows into the outdoor heat exchanger 5. Since the outdoor fan 10 attached to the outdoor heat exchanger 5 is stopped, the refrigerant flowing into the outdoor heat exchanger 5 exchanges heat with frost adhering to the outdoor heat exchanger 5, and frost As it melts, it forms a gas-liquid two-phase and flows out of the outdoor heat exchanger 5.
  • the refrigerant in the gas-liquid two-phase that has flowed out of the outdoor heat exchanger 5 passes through the four-way valve 4 and flows into the accumulator 9.
  • the accumulator 9 adjusts the refrigerant to a predetermined degree of refrigerant, flows into the suction side of the compressor 3, and is compressed by the compressor 3 to form a refrigeration cycle during the defrosting operation.
  • the amount of frost to be melted decreases and the temperature of the frost increases, so the suction side pressure of the compressor 3 Increases and the density of the refrigerant increases. For this reason, the amount of refrigerant circulation increases, the degree of refrigerant flowing out of the outdoor heat exchanger 5 increases, and the temperature of the compressor 3 rises. For this reason, the ratio used for raising the temperature of the compressor 3 (increase in the heat capacity of the compressor) in the electric input amount generated in the compressor 3 is increased, and the compression used for melting the frost. Since the electric input amount of the machine 3 decreases, the defrosting operation time becomes longer.
  • the supercooling expansion valve 14 is set to a predetermined opening degree (fully opened state or slightly opened state), the inside of the pipe between the outdoor expansion valve 6 and the indoor expansion valve 22 is set.
  • the liquid refrigerant flows from the supercooling bypass circuit 16 through the supercooling heat exchanger 13 and flows into a refrigerant pipe 25 connecting the four-way valve 4 and the accumulator 9.
  • the degree of cooling of the refrigerant flowing into the accumulator 9 can be reduced, so that the temperature of the compressor 3 can be lowered, and the electric input amount of the compressor 3 used for melting frost can be reduced. Can be increased.
  • the heat capacity of the compressor 3 can also be used as the amount of heat for melting frost, the defrosting operation time can be shortened.
  • Pc1 2.2 MPaG
  • step S5 when “discharge pressure Pd ⁇ predetermined pressure Pc1” is established (in the case of YES), the amount of electrical input to the compressor 3 decreases and is insufficient as a defrosting heat source. Control is performed so that the opening degree D of the expansion valve 12 is closed by a predetermined opening degree ⁇ PLS (step S5). By this control, the resistance of the defrosting expansion valve 12 is increased and the discharge pressure Pd of the compressor 3 is increased, so that the compressor electric input amount is increased and the defrosting heat source can be always kept high. become.
  • step S6 determines whether or not the defrosting end determination condition is satisfied.
  • step S6 for example, whether the temperature of the outdoor heat exchanger 5 is a predetermined value (for example, 3 ° C.) or more, whether the suction pressure of the compressor 3 is a predetermined value (for example, 0.7 MPaG), or the like. It is determined whether or not the defrosting operation can be terminated.
  • step S4 when the detected discharge pressure value Pd is equal to or higher than the predetermined pressure value Pc1 (in the case of NO), the process proceeds to step S6 described above, and whether or not the defrosting end determination condition is satisfied. Determine.
  • step S6 If the defrosting determination condition is not satisfied in step S6 (in the case of NO), the process returns to step S4, and the above steps S4 to S6 are repeated. If the defrosting determination condition is satisfied in step S6 (in the case of YES), the defrosting operation is terminated and the heating operation is started again. That is, the outdoor expansion valve 6 is set to a predetermined opening, the outdoor fan 10 is driven at a predetermined rotation speed suitable for heating operation, the defrosting expansion valve 12 is set to be closed, and the indoor expansion valve 22 is Control is performed so that the indoor fan 23 is driven at a predetermined rotational speed while being set to a predetermined opening degree that allows heating. This makes it possible to immediately start normal heating operation.
  • the discharge pressure Pd of the compressor 3 is detected by the discharge pressure sensor 18, and defrosting is performed so that the discharge pressure Pd of the compressor 3 is equal to or higher than a predetermined pressure value Pc1. Since the opening degree of the expansion valve 12 is controlled, it is possible to always keep the compressor electric input amount as a defrosting heat source high, and it is possible to obtain an air conditioner that can shorten the defrosting time.
  • the supercooling expansion valve 14 is removed during the defrosting operation. It can also comprise so that it may control according to the superheat degree of the refrigerant
  • FIG. 1 the refrigerant having the smallest possible degree of cooling can be supplied to the compressor 3 within a range in which the reliability of the compressor 3 can be ensured. Therefore, the heat capacity possessed by the compressor 3 can be sufficiently extracted and removed. It can be used as a frost heat source. Therefore, it is possible to shorten the defrosting operation time while ensuring the reliability of the compressor 3.
  • the degree of superheat of the refrigerant discharged from the compressor is obtained from a temperature sensor (not shown) for detecting the compressor discharge side temperature, and obtained from the discharge side temperature and the discharge pressure detected by the discharge pressure sensor 18. be able to.
  • the refrigerant state on the indoor unit 2 side is a state in which a high-temperature and high-pressure refrigerant is circulating, it is possible to immediately return to the heating operation after the completion of the defrosting. Therefore, since the start of the heating operation after the completion of the defrosting operation can be performed quickly, the integrated heating capacity for heating the room can be improved, and the indoor comfort can be further improved.
  • the evaporator can be used as an evaporator by using the supercooling heat exchanger 13 and the supercooling bypass circuit 16 even during normal heating operation. It is possible to reduce the refrigerant circulation amount flowing into the acting outdoor exchanger 5. For this reason, the pressure loss in the outdoor heat exchanger 5 acting as an evaporator can be reduced, and the effect of further improving the performance of the air conditioner can be obtained.
  • FIG. 3 is a flowchart for explaining another processing flow at the time of the defrosting operation in the air conditioning apparatus shown in FIG. 1, and an example of another processing flow in the defrosting operation will be described with reference to FIG.
  • the arithmetic processing according to this example is also performed in the microcomputer (control device) 17 shown in FIG. 1, similarly to the case described with reference to FIG.
  • steps S1 to S4 are executed in the same manner as in the control described in FIG. In steps S1 to S4, the same control as that described with reference to FIG. 2 is performed, and a description thereof will be omitted.
  • step S4 when “discharge pressure Pd ⁇ predetermined pressure Pc1” is established in step S4 (YES), the process proceeds to step S5, and the opening degree D of the defrosting expansion valve 12 is determined in advance. Control to close only the opening degree ⁇ PLS is the same.
  • step S7 is performed after step S5 or when the detected discharge pressure value Pd is equal to or higher than the predetermined pressure value Pc1 in step S4 (in the case of NO).
  • step S7 is performed. Controlled to execute.
  • step S7 the discharge pressure Pd detected by the discharge pressure sensor 18 is compared with a predetermined pressure value Pc2.
  • step S7 if “discharge pressure Pd> predetermined pressure Pc2” is satisfied (in the case of YES), the discharge pressure becomes too high and the reliability of the compressor 3 may be impaired.
  • the process proceeds to S8 and the opening degree D of the defrosting expansion valve 12 is controlled to be opened by a predetermined opening degree ⁇ PLS. By this control, the resistance of the defrosting expansion valve 12 is reduced, the discharge pressure Pd of the compressor 3 is reduced, and the compressor is controlled in a direction that can ensure the reliability of the compressor.
  • step S8 After executing step S8 or when the detected discharge pressure value Pd is equal to or lower than the predetermined pressure value Pc2 (in the case of NO) in step S7, the process proceeds to step S6, and the defrosting end determination condition Whether or not is satisfied is determined.
  • the determination in step S6 is performed in the same manner as described with reference to FIG.
  • step S6 If the defrosting determination condition is not satisfied in step S6 (in the case of NO), the process returns to step S4, and steps S4, S5, S7, S8, and S6 are repeated. If the defrosting determination condition is satisfied in step S6 (in the case of YES), the defrosting operation is terminated and the heating operation is started again.
  • the other control is the same as that described with reference to FIG.
  • the same effect as in the case of the processing flow described in FIG. 2 can be obtained as the processing flow during the defrosting operation shown in FIG.
  • the defrosting expansion valve 12 when the value of the discharge pressure Pd of the compressor 3 is low during the defrosting operation, the defrosting expansion valve 12 is closed to keep the discharge pressure Pd of the compressor 3 high.
  • the defrosting expansion valve 12 is opened to reduce the discharge pressure Pd of the compressor 3 so as to maintain the reliability of the compressor. Since it controls, a big defrost heat source can be ensured, improving the reliability of the compressor 3 further. For this reason, there exists an effect which can obtain the air conditioning apparatus which can aim at shortening of a defrost time, maintaining high reliability.
  • FIG. 4 is a refrigeration cycle configuration diagram showing Embodiment 2 of the air conditioning apparatus of the present invention
  • FIG. 5 is a flowchart for explaining a processing flow during a defrosting operation in the air conditioning apparatus shown in FIG.
  • a second embodiment of the air conditioner of the present invention will be described with reference to FIGS. 4 and 5.
  • the portions denoted by the same reference numerals as those in FIGS. 1 to 3 indicate the same or corresponding portions.
  • the compressor mounted on the outdoor unit 1 is composed of a plurality of compressors of a first compressor 3a and a second compressor 3b.
  • the first and second compressors 3a and 3b are also communicably connected to the microcomputer (control device) 17 and are configured to be controlled by commands from the microcomputer 17. .
  • the other configuration is the same as that in FIG.
  • the arithmetic processing in FIG. 5 is also performed in the microcomputer (control device) 17 shown in FIG. 4 in the same manner as described with reference to FIGS.
  • the outdoor fan 10 provided in the outdoor unit 1 is stopped, the outdoor expansion valve 6 is set to an opening A (fully closed state), and supercooling expansion is performed.
  • Control for setting the valve 14 to the opening degree C is performed (step S9).
  • step S10 the process proceeds to step S10, where it is determined whether or not the number of operating compressors is one.
  • the process proceeds to step S11, and the defrosting expansion valve 12 is moved to the opening degree D1 (removal). Control is performed so that the opening is set to a value smaller than the fully opened frost expansion valve 12 and corresponding to the compressor operating capacity. If the number of operating compressors is not one in step S10 (that is, two in this embodiment), the process proceeds to step S12, and the opening degree of the defrosting expansion valve 12 is set to D2 (fully opened or fully opened). The opening is set to be smaller than the opening D1 and larger than the opening D1.
  • the defrosting operation is executed by sequentially performing the control of steps S2 to S5, S7, S8, and S6.
  • the set opening degree of the defrosting expansion valve 12 when switching from the heating operation to the defrosting operation is set according to the number of compressors operated as in the second embodiment. It is possible to suppress a decrease in the defrosting heat source due to a pressure drop on the compressor discharge side of the compressor and a decrease in the reliability of the compressor due to an abnormal increase in pressure. Therefore, the defrosting operation time can be shortened and the reliability of the air conditioner can be ensured.
  • the initial opening degree of the defrosting expansion valve 12 is set in accordance with the number of operating units. it can.
  • the discharge pressure of the compressor is detected by a discharge pressure sensor, and the opening degree of the defrosting expansion valve is adjusted so that the discharge pressure of the compressor becomes equal to or higher than a predetermined pressure. Since it controls, it becomes possible to always maintain the compressor electric input amount which is a defrost heat source high, and the air conditioning apparatus which can shorten defrost time can be obtained.
  • a supercooling heat exchanger In addition, a supercooling heat exchanger, a supercooling bypass circuit, and a supercooling expansion valve are provided in the air conditioner, and the opening degree of the supercooling expansion valve is controlled according to the degree of compressor discharge gas superheat during defrosting operation.
  • This makes it possible to return more refrigerant liquid to the accumulator while maintaining the operation reliability of the compressor.
  • the two heat sources of the heat capacity possessed by the compressor and the amount of electric input consumed by the compressor can be utilized to the maximum extent as the melting heat of the frost adhering to the outdoor heat exchanger.
  • the operation time can be shortened.
  • the opening degree of the defrosting expansion valve is increased so as to lower the discharge pressure of the compressor, thereby improving the reliability of the compressor. It is possible to obtain the maximum defrosting heat source while improving, and it is possible to obtain an air conditioner that can shorten the defrosting time while maintaining high reliability.
  • this invention is not limited to the above-mentioned Example, Various modifications are included.
  • the example in which the supercooling heat exchanger, the supercooling bypass circuit, and the supercooling expansion valve are provided has been described.
  • the present invention is not limited to the one provided with these devices, Even if it is not equipped with an exchanger, the defrosting heat source is secured by controlling the compressor discharge side pressure during the defrosting operation to be a predetermined value or more by the above defrosting expansion valve. It is possible to shorten the defrosting operation.
  • the opening degree of the defrosting expansion valve is determined in advance. Any opening degree may be set.
  • the present invention is not limited to an air conditioner having a switching valve (for example, a four-way valve) that switches between heating and cooling, and can be similarly applied to a heating-only machine.
  • a switching valve for example, a four-way valve
  • the above-described embodiment has been described with one outdoor unit and one indoor unit, it can be similarly applied to an air conditioner having a plurality of outdoor units and an air conditioner having a plurality of indoor units. .

Abstract

圧縮機の信頼性を確保しつつ室外熱交換器に付着した霜を融解するために必要な熱源を十分に引き出すことができ、それによって除霜運転時間を短縮する。 空気調和装置は、圧縮機3、室外熱交換器5及び室外膨張弁6を備える。また、圧縮機の吐出側の冷媒配管26と、室外熱交換器と室外膨張弁を接続する冷媒配管27とを接続する除霜バイパス回路15と、該除霜バイパス回路に設けられた除霜用膨張弁12と、圧縮機の吐出側の圧力を検出する吐出圧力検出手段18と、除霜用膨張弁の開度を制御する制御装置17を備える。この制御装置は、室外熱交換器の除霜運転を行う場合、除霜用膨張弁を開き、室外膨張弁を全閉とし、更に吐出圧力検出手段で検出される吐出圧力値に応じて除霜用膨張弁の開度を制御する。

Description

空気調和装置
 本発明は空気調和装置に関し、特に室外熱交換器に付着する霜を融解するための除霜運転機能を備えているものに関する。
 空気調和装置を暖房運転した場合、空気調和装置の室外熱交換器は蒸発器として作用し、その伝熱面が零度以下になると、伝熱面に空気中の水分が凝縮・氷結して霜が生じる。このような霜が伝熱面に付着してその厚み(着霜量)が増加していくと、前記室外熱交換器における空気の流路が狭くなり、該室外熱交換器を流れる空気風量が低下して、空気から冷媒への伝熱が阻害される。このため、室外熱交換器の熱交換効率が低下し、空気調和装置としての性能が低下する。
 そこで、空気調和装置においては、一般に、室外熱交換器に付着した霜を取り除く除霜運転機能を備えており、着霜量が増加すると除霜運転を実行するように構成されている。
  この除霜運転としては、例えば特開2010-164257号公報(特許文献1)に示すように、圧縮機から吐出された冷媒を、凝縮器(室内熱交換器)をバイパスさせ、蒸発器(室外熱交換器)に直接流入させるホットガスバイパス除霜方式が知られている。
 この特許文献1に記載の空気調和装置は、圧縮機、負荷側熱交換器(水熱交換器)、第1膨張弁、レシーバ、第2膨張弁及び熱源側熱交換器(室外熱交換器)が順次配管接続されて冷媒回路を構成している。また、前記第1膨張弁と前記第2膨張弁を接続している中圧管を流れる冷媒と、前記圧縮機への吸入配管を流れる冷媒とを熱交換させる冷媒-冷媒熱交換器、前記圧縮機からの吐出配管と、前記第2膨張弁と前記熱源側熱交換器の間の低圧管とを接続するバイパス配管、このバイパス配管に設けられたバイパス膨張弁、及び前記第1膨張弁及び前記第2膨張弁を閉止し、前記バイパス膨張弁の開度を前記圧縮機に吸入される冷媒の過熱度又は前記圧縮機から吐出された冷媒の過熱度に応じて制御することにより除霜運転を実行するように制御する制御装置を備えている。
 この特許文献1に記載の空気調和装置によれば、前記第1膨張弁及び前記第2膨張弁を閉止して除霜運転を実行するため、凝縮器として機能する負荷側熱交換器に滞留した冷媒の状態は変化しないため、除霜運転終了後の暖房立ち上がり時間を短くすることができるという特徴を有する。
特開2010-164257号公報
 上記特許文献1に記載されているホットガスバイパス方式による除霜運転を実行する場合、室外熱交換器に付着した霜を融解する熱源としては、圧縮機に蓄えられている(保有されている)熱容量と、圧縮機で消費される電気入力量の二つの熱源がある。ところが、上記に示す空気調和装置では、前記第1膨張弁と前記第2膨張弁を接続している中圧管を流れる冷媒と、圧縮機の吸入配管を流れる冷媒とを前記冷媒-冷媒熱交換器により熱交換させる構成としているため、除霜運転中には、レシーバ内に閉じ込められた冷媒と、圧縮機に吸入される冷媒とが熱交換する。このため、圧縮機吸入側の冷媒過熱度若しくは圧縮機吐出側の冷媒過熱度が大きくなり、前記バイパス膨張弁の開度は大きくなるように制御される。これにより除霜運転中には圧縮機吐出側の圧力が低下するので、除霜熱源である圧縮機で消費される電気入力量が低下する。従って、除霜熱源不足となり、除霜運転時間が長くなるという課題がある。
 本発明の目的は、ホットガスバイパス方式による除霜運転時に、圧縮機の信頼性を確保しつつ室外熱交換器に付着した霜を融解するために必要な熱源を十分に引き出すことができ、それによって除霜運転時間を短縮することのできる空気調和装置を得ることにある。
 上記目的を達成するために、本発明は、圧縮機、室外熱交換器及び室外膨張弁を備える空気調和装置であって、前記圧縮機の吐出側の冷媒配管と、前記室外熱交換器と前記室外膨張弁を接続する冷媒配管とを接続する除霜バイパス回路と、該除霜バイパス回路に設けられた除霜用膨張弁と、前記圧縮機の吐出側の圧力を検出する吐出圧力検出手段と、前記除霜用膨張弁の開度を制御する制御装置を備え、前記制御装置は、前記室外熱交換器の除霜運転を行う場合、前記除霜用膨張弁を開き、前記室外膨張弁を全閉とし、更に前記吐出圧力検出手段で検出される吐出圧力値に応じて前記除霜用膨張弁の開度を制御することを特徴とする。
 本発明によれば、ホットガスバイパス方式による除霜運転時に、圧縮機の信頼性を確保しつつ室外熱交換器に付着した霜を融解するために必要な熱源を十分に引き出すことができ、それによって除霜運転時間を短縮することのできる空気調和装置を得ることができる効果が得られる。
本発明の空気調和装置の実施例1を示す冷凍サイクル構成図である。 図1に示す空気調和装置における除霜運転時の処理フローを説明するフローチャートである。 図1に示す空気調和装置における除霜運転時の他の処理フローを説明するフローチャートである。 本発明の空気調和装置の実施例2を示す冷凍サイクル構成図である。 図4に示す空気調和装置における除霜運転時の処理フローを説明するフローチャートである。
 以下、本発明の空気調和装置の具体的実施例を図1~図5を用いて説明する。各図において、同一符号を付した部分は同一或いは相当する部分を示している。
 図1は、本発明の空気調和装置の実施例1を示す冷凍サイクル構成図である。この図1に示す空気調和装置は、1台の室外機1と1台の室内機2により構成されている。前記室外機1は、圧縮機3、冷房運転と暖房運転を切替えるための四方弁(切替弁)4、室外熱交換器5、室外膨張弁6、前記室外機1と前記室内機2を接続する冷媒液配管19側の液阻止弁7、前記室外機1と前記室内機2を接続する冷媒ガス配管20側のガス阻止弁8、アキュムレータ9を備えており、これらの機器は冷媒配管で接続されている。
 前記室内機2は、室内熱交換器21と室内膨張弁22を備え、これらの機器は冷媒配管で接続されている。また、前記室内機2は、前記室外機1と前記冷媒液配管19を介して前記液阻止弁7と接続され、また冷媒ガス配管20を介して前記ガス阻止弁8に接続されている。これにより冷媒回路が形成されている。
 前記室外機1には、前記室外熱交換器5に室外空気を供給するための室外ファン10と、この室外ファン10を駆動するための室外ファンモータ11が設けられ、前記室外熱交換器5内を流れる冷媒と前記室外ファン10により供給される空気とが熱交換されるように構成されている。前記室内機2にも、前記室内熱交換器21に室内空気を供給するための室内ファン23と、該室内ファン23を駆動するための室内ファンモータ24が設けられ、前記室内熱交換器21内を流れる冷媒と前記室内ファン23により供給される空気とが熱交換されるように構成されている。
 また、前記室外機1には、前記圧縮機3の吐出側と前記四方弁4を接続している配管から分岐して、前記室外熱交換器5と前記室外膨張弁6を接続している配管にバイパスさせる除霜バイパス回路15が設けられ、この除霜バイパス回路15には、除霜用膨張弁12が設けられている。前記除霜用膨張弁12は、暖房運転中は前記除霜バイパス回路15を閉止させるように動作し、除霜運転時には所定開度に開かれて圧縮機から吐出された高温高圧の冷媒を前記除霜バイパス回路15に流すように動作する。
 更に、前記室外機1には、前記室外膨張弁6と前記液阻止弁7を接続する配管の途中に、主流部と副流部を備えた過冷却熱交換器13が設けられている。この過冷却熱交換器13の前記主流部は、その一端を前記室外膨張弁6側に、その他端を前記液阻止弁7側に冷媒配管で接続されている。また、前記過冷却熱交換器13の副流部は、その一端を、前記過冷却熱交換器13と前記室外膨張弁6を接続している冷媒配管から分岐して設けた過冷却バイパス回路16に接続され、前記副流部の他端側は、前記四方弁4と前記アキュムレータ9を接続している圧縮機吸入側の冷媒配管25に合流するように接続されている。
 前記過冷却バイパス回路16には過冷却膨張弁14が設けられており、この過冷却膨張弁14により、前記過冷却バイパス回路16を流れる冷媒の量を調節すると共に減圧した後、前記過冷却熱交換器13の副流部に流入するように構成されている。 
 なお、前記過冷却バイパス回路16は前記過冷却熱交換器13と前記液阻止弁7を接続している冷媒配管から分岐させるようにしても良い。
 また、前記圧縮機3の吐出側の冷媒配管26には、該圧縮機3の吐出圧力を検出する吐出圧力センサ(吐出圧力検出手段)18が設けられている。前記圧縮機3、四方弁4、室外膨張弁6、室外ファンモータ11、除霜用膨張弁12、過冷却膨張弁14、吐出圧力センサ18、室内機2に設けられている室内膨張弁22及び室内ファンモータ24などの各々のアクチュエータは、マイコン(制御装置)17とそれぞれ通信可能に接続されており、前記各アクチュエータは、冷凍サイクルの運転状態に応じて前記マイコン17からの指令により制御されるように構成されている。
 上述したように構成されている本実施例の空気調和装置において、室外機1の周囲空気温度が低い状況で暖房運転を継続した場合、室外熱交換器5は蒸発器として作用しているため、その伝熱面が零度以下になると、伝熱面に空気中の水分が凝縮・氷結して霜が生じる。この伝熱面に付着した霜の厚みが次第に増加していくと、前記室外熱交換器5を通過する空気の流路が狭くなっていく。このため、風量が低下し、空気から冷媒への伝熱が阻害されるので、室外熱交換器5の熱交換効率は低下し、空気調和装置としての性能が低下する。
 そこで、本実施例の空気調和装置においては、室外熱交換器5に付着した霜を取り除くための除霜運転を実施するように構成されている。以下、この除霜運転について、図1を参照しつつ図2を用いて説明する。
 図2は、図1に示す空気調和装置における除霜運転時の処理フローを説明するフローチャートである。この図2における演算処理は、図1に示すマイコン(制御装置)17内で行われる。まず、マイコン17から除霜運転の指令が為されると、室外機1に設けられている室外ファン10を停止、室外膨張弁6を開度A(全閉状態)に設定し、過冷却膨張弁14を開度C(全開状態若しくは微開状態の所定開度)、除霜用膨張弁12を開度D(全開状態若しくは圧縮機運転容量に応じた開度(所定開度))に設定する制御が行われる(ステップS1)。本実施例では、後述するステップS3に示すように、除霜運転時は圧縮機を最大周波数で運転するので、その容量に合わせて、除霜用膨張弁12の初期開度が予め定めた所定の開度に設定される。なお、圧縮機運転容量に応じた開度とは、搭載される圧縮機の大きさ(容量)に応じて、或いは本実施例では圧縮機3として回転数制御が可能なインバータ圧縮機を用いているので、除霜運転開始時の圧縮機運転容量(運転周波数)に応じて設定される初期開度である。
 ステップS2では、室内機2に設けられている室内ファン23を停止させ、室内膨張弁22を開度B(室内機側に冷媒が流通できる所定開度)に設定される。 
 ステップS3では、十分な除霜熱源を確保するため、圧縮機3の電気入力量を最大にするように、圧縮機運転周波数を最大にする制御が行われる。なお、本発明は、除霜運転時の運転周波数は、最大にするものに限定されるものではない。
 上記S1からS3までのステップが実行されると、図1において、実線矢印で示すように冷媒が流れる。即ち、圧縮機3で圧縮された高温高圧のガス冷媒は、除霜バイパス回路15に流入する流れと、四方弁4側に流れる流れとに分配され、四方弁4側に流れる高温高圧のガス冷媒は、四方弁4を通過後、ガス阻止弁8、冷媒ガス配管20を通過して室内熱交換器21に流入する。室内膨張弁22は、冷媒が流通可能な開度に調整されているため、前記高温高圧のガス冷媒は、室内熱交換器21、室内膨張弁22を通り、冷媒液配管19、液阻止弁7を通過して室外機1に流入する。前記室内熱交換器21側に流れる冷媒は、高温高圧の冷媒であるため、暖房運転復帰と同時に室内機2が設置されている空調場を暖房することができる。
 一方、除霜バイパス回路15に流れた高温高圧の冷媒は、除霜用膨張弁12を通過後、前記室外熱交換器5と前記室外膨張弁6を接続している冷媒配管27に流入する。ここで、前記室外膨張弁6は全閉状態となっているため、前記冷媒配管27に流入した冷媒は全て室外熱交換器5内に流れる。室外熱交換器5に付設されている室外ファン10は停止しているため、室外熱交換器5内に流入した前記冷媒は、室外熱交換器5に付着している霜と熱交換し、霜を融解させながら自らは気液二相化して、室外熱交換器5から流出する。室外熱交換器5から流出した前記気液二相となった冷媒は、四方弁4を通過しアキュムレータ9内に流入する。このアキュムレータ9により所定の冷媒かわき度に調整されて前記圧縮機3の吸入側に流入し、この圧縮機3で圧縮されることにより除霜運転中の冷凍サイクルが形成される。
 ここで、上記除霜運転により、室外熱交換器5における霜の融解が進むにつれて、融解する霜の量は減少していくこと、また霜の温度も高くなるため、圧縮機3の吸入側圧力が高くなり、冷媒の密度大きくなる。このため冷媒循環量が増加し、室外熱交換器5から流出する冷媒かわき度が大きくなり、圧縮機3の温度が上昇する。このため、圧縮機3で発生している電気入力量の内、圧縮機3の温度を上げるため(圧縮機の熱容量の増加)に用いられる比率が大きくなり、霜を融解するために用いられる圧縮機3の電気入力量が減少するので、除霜運転時間が長くなる。
 本実施例では、前記過冷却膨張弁14を予め定めた所定開度(全開状態もしくは微開状態)に設定しているため、前記室外膨張弁6と前記室内膨張弁22の間の配管内の液冷媒は、前記過冷却バイパス回路16から前記過冷却熱交換器13を通過して、前記四方弁4と前記アキュムレータ9とを接続している冷媒配管25の部分に流れる。これにより、前記アキュムレータ9内に流入する冷媒のかわき度を小さくすることができるので、圧縮機3の温度を下げることが可能となり、霜を融解するために用いられる圧縮機3の電気入力量を増加させることができる。また、圧縮機3が保有している熱容量分も霜を融解する熱量として利用できるため、除霜運転時間の短縮を図ることができる。
 図2に戻り、ステップS4では、圧縮機3の吐出圧力Pdの状態を吐出圧力センサ18で検出し、この検出された吐出圧力Pdを予め定めた所定の圧力値Pc1(この圧力値は圧縮機3の電気入力量が低下して除霜熱源として不十分になってしまうような圧力、例えばPc1=2.2MPaGなどの値に設定される)と比較する。このステップS4で、「吐出圧力Pd<所定の圧力Pc1」が成立した場合(YESの場合)には、圧縮機3への電気入力量が低下し除霜熱源として不十分なため、前記除霜用膨張弁12の開度Dを予め定めた所定開度ΔPLSだけ閉じるように制御する(ステップS5)。この制御により、前記除霜用膨張弁12の抵抗が大きくなり、圧縮機3の吐出圧力Pdが上昇するから、圧縮機電気入力量が増大し、除霜熱源を常に高く確保することができるようになる。
 そして、ステップS6に移り、除霜終了判定条件が成立するかどうかを判定する。このステップS6では、例えば、室外熱交換器5の温度が所定の値(例えば3℃)以上か否か、圧縮機3の吸入圧力が所定の値(例えば0.7MPaG)以上か否か、などで除霜運転を終了して良いかどうかを判定する。
 なお、前記ステップS4において、検出された吐出圧力値Pdが所定の圧力値Pc1以上となっている場合(NOの場合)には上述したステップS6に移り、除霜終了判定条件が成立するかどうかを判定する。
 ステップS6で除霜判定条件が成立していない場合(NOの場合)には、前記ステップS4に戻り、上記ステップS4~S6を繰り返す。ステップS6で除霜判定条件が成立した場合(YESの場合)には、除霜運転を終了し、再び暖房運転を開始する。即ち、室外膨張弁6を所定の開度に設定すると共に室外ファン10を暖房運転に適した所定の回転数で駆動し、除霜用膨張弁12については閉に設定し、室内膨張弁22を暖房ができる所定の開度に設定すると共に室内ファン23を所定の回転数で駆動するように制御する。これにより、直ちに正常な暖房運転を開始することが可能となる。
 以上のように、本実施例では、圧縮機3の吐出圧力Pdを吐出圧力センサ18で検出し、前記圧縮機3の吐出圧力Pdを予め定めた所定の圧力値Pc1以上になるように除霜用膨張弁12の開度を制御するため、除霜熱源である圧縮機電気入力量を常に高く維持することが可能となり、除霜時間を短縮できる空気調和装置を得ることができる。
 また、本実施例では、空気調和装置に過冷却熱交換器13、過冷却膨張弁14及び過冷却バイパス回路16を付設しているので、除霜運転中に、前記過冷却膨張弁14を、前記圧縮機3から吐出される冷媒の過熱度に応じて制御するように構成することもできる。このように構成すれば、圧縮機3の信頼性を確保できる範囲において、かわき度のできるだけ小さい冷媒を圧縮機3に供給できるから、圧縮機3の保有している熱容量を十分に抽出して除霜熱源として利用できる。従って、圧縮機3の信頼性を確保しつつ除霜運転時間を短縮することが可能となる。なお、圧縮機から吐出される冷媒過熱度は、圧縮機吐出側温度を検出する温度センサ(図示せず)を設け、この吐出側温度と、前記吐出圧力センサ18で検出される吐出圧力から求めることができる。
 また、本実施例では、室内機2側の冷媒状態は、高温高圧の冷媒が流通している状態となっているため、除霜終了後は直ちに暖房運転に復帰させることが可能となる。従って、除霜運転終了後の暖房運転の立ち上りを迅速に行えるから、室内を暖房する積算暖房能力も向上させることができ、室内の快適性をより向上することができる。
 更に、本実施例では、前述した過冷却熱交換器13を備えているので、通常の暖房運転時にも、この過冷却熱交換器13と前記過冷却バイパス回路16を用いることにより、蒸発器として作用する室外交換器5に流入する冷媒循環量を低減できる。このため、蒸発器として作用している室外熱交換器5での圧力損失を低減でき、空気調和装置の性能を更に向上できる効果も得られる。
 図3は図1に示す空気調和装置における除霜運転時の他の処理フローを説明するフローチャートで、この図3により、除霜運転における他の処理フローの例を説明する。この例による演算処理も、図2で説明した場合と同様に、図1に示すマイコン(制御装置)17内で行われる。
 この図3に示す例でも、マイコン17から除霜運転の指令が為されると、図2で説明した制御と同様にステップS1からステップS4が実行される。ステップS1~S4は図2で説明したものと同様の制御が行われるので、それらの説明については省略する。
 この例においては、上記ステップS4において、「吐出圧力Pd<所定の圧力Pc1」が成立した場合(YESの場合)、ステップS5に移り、除霜用膨張弁12の開度Dを予め定めた所定開度ΔPLSだけ閉じるように制御することは同じである。そして、この例では、更に前記ステップS5の処理後、或いは前記ステップS4において、検出された吐出圧力値Pdが所定の圧力値Pc1以上となっている場合(NOの場合)には、ステップS7を実行するように制御される。このステップS7では、吐出圧力センサ18で検出された吐出圧力Pdを予め定めた所定の圧力値Pc2と比較する。この圧力値Pc2はステップS4における所定の圧力値Pc1よりも大きな値であり、圧縮機3の信頼性が損なわれるような圧力、例えばPc2=3.5MPaGなどの値に設定される。
 上記ステップS7において、「吐出圧力Pd>所定の圧力Pc2」が成立した場合(YESの場合)には、吐出圧力が高くなり過ぎて圧縮機3の信頼性が損なわれ可能性があるため、ステップS8に移り、前記除霜用膨張弁12の開度Dを予め定めた所定開度ΔPLSだけ開くように制御する。この制御により、前記除霜用膨張弁12の抵抗が小さくなり、圧縮機3の吐出圧力Pdが低下し、圧縮機の信頼性を確保できる方向に制御される。
 上記ステップS8を実行した後、或いは前記ステップS7で、検出された吐出圧力値Pdが所定の圧力値Pc2以下となっている場合(NOの場合)にはステップS6に移り、除霜終了判定条件が成立するかどうかを判定する。このステップS6の判定は図2で説明したものと同様に行う。
 ステップS6で除霜判定条件が成立していない場合(NOの場合)には、前記ステップS4に戻り、上記ステップS4、S5、S7、S8、S6を繰り返す。ステップS6で除霜判定条件が成立した場合(YESの場合)には、除霜運転を終了し、再び暖房運転を開始する。 
 他の制御は上記図2で説明したものと同様であるので、説明を省略する。
 以上のように、この図3に示す除霜運転時の処理フローとしても、図2で説明した処理フローの場合と同様の効果を得ることができる。また、この図3に示す例では、除霜運転中において圧縮機3の吐出圧力Pdの値が低い場合には、除霜用膨張弁12を閉じて圧縮機3の吐出圧力Pdを高く維持するように制御すると共に、前記圧縮機3の吐出圧力Pdが高い場合には、圧縮機の信頼性を維持するように除霜用膨張弁12を開いて圧縮機3の吐出圧力Pdを下げるように制御するので、圧縮機3の信頼性を更に向上しつつ、大きな除霜熱源を確保することができる。このため、高い信頼性を維持しながら除霜時間の短縮を図れる空気調和装置を得ることができる効果がある。
 図4は本発明の空気調和装置の実施例2を示す冷凍サイクル構成図、図5は図4に示す空気調和装置における除霜運転時の処理フローを説明するフローチャートである。これら図4及び図5を用いて、本発明の空気調和装置の実施例2を説明する。これらの図において、図1~図3と同一符号を付した部分は同一或いは相当する部分を示している。
 本実施例2の空気調和装置が前述した実施例1と異なる点は、室外機1に搭載されている圧縮機が、第1圧縮機3aと第2圧縮機3bの複数台の圧縮機で構成されている点、これら第1、第2の圧縮機3a,3bもマイコン(制御装置)17に通信可能に接続され、前記マイコン17からの指令により制御されるように構成されている点である。図4において、それ以外の構成については、図1と同様であるので、それらの説明については省略する。
 次に、図5により、本実施例2の空気調和装置における除霜運転時の処理フローを説明する。この図5における演算処理も、図2及び図3で説明したものと同様に、図4に示すマイコン(制御装置)17内で行われる。まず、マイコン17から除霜運転の指令が為されると、室外機1に設けられている室外ファン10を停止、室外膨張弁6を開度A(全閉状態)に設定し、過冷却膨張弁14を開度C(全開状態もしくは微開状態)に設定する制御が行われる(ステップS9)。
 次に、ステップS10に移り、圧縮機運転台数が1台か否かを判定し、圧縮機運転台数が1台の場合は、ステップS11に移り、除霜用膨張弁12を開度D1(除霜用膨張弁12の全開よりは小さい値で圧縮機運転容量に見合った開度)に設定する制御が行われる。前記ステップS10で、圧縮機運転台数が1台でない場合(即ち、本実施例では2台の場合)は、ステップS12に移り、前記除霜用膨張弁12の開度をD2(全開、または全開よりも小さく且つ前記開度D1よりも大きい開度)に設定する制御が行われる。
 そして、その後は図3に示す除霜運転時の処理フローと同様に、ステップS2~S5、S7、S8、S6の制御が順次行われることにより、除霜運転が実行される。
 本実施例2のように、暖房運転から除霜運転に切り替える時の前記除霜用膨張弁12の設定開度を、圧縮機運転台数に応じて設定することにより、除霜運転への切り替え直後の圧縮機吐出側の圧力低下による除霜熱源の低下や、圧力の異常上昇による圧縮機の信頼性低下を抑制することが可能となり、延いては除霜運転に切り替え直後から、圧縮機吐出側の圧力を適正な圧力に設定できるため、除霜運転時間を短縮できると共に、空気調和装置の信頼性を確保することも可能となる。
 なお、本実施例2では、圧縮機が2台の例で説明したが、3台以上の場合にも運転台数に応じて除霜用膨張弁12の初期開度を設定することで同様に実施できる。
 以上述べた本発明の各実施例によれば、圧縮機の吐出圧力を吐出圧力センサで検出し、前記圧縮機の吐出圧力を所定の圧力以上となるように除霜用膨張弁の開度を制御するため、除霜熱源である圧縮機電気入力量を常に高く維持することが可能となり、除霜時間を短縮できる空気調和装置を得ることができる。
 また、空気調和装置に過冷却熱交換器、過冷却バイパス回路及び過冷却膨張弁を設け、除霜運転時に、前記過冷却膨張弁の開度を圧縮機吐出ガス過熱度に応じて制御することにより、圧縮機の運転信頼性を維持しつつ、アキュームレータに冷媒液をより多く戻すことが可能となる。この結果、圧縮機にかわき度の小さい冷媒を供給することができ、圧縮機に保有されている熱容量をより多く抽出して除霜熱源として利用することができる。このため、圧縮機に保有されている熱容量と、圧縮機で消費される電気入力量の二つの熱源を、室外熱交換器に付着した霜の融解熱として最大限利用することができ、除霜運転時間の短縮を図ることができる。
 更に、除霜運転において、圧縮機の吐出圧力が高い場合には除霜用膨張弁の開度を大きくして圧縮機の吐出圧力を下げるように制御することにより、圧縮機の信頼性をより向上しつつ除霜熱源を最大限確保することが可能となり、高い信頼性を維持しつつ除霜時間の短縮を図れる空気調和装置を得ることができる。
 なお、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記実施例では、過冷却熱交換器、過冷却バイパス回路及び過冷却膨張弁を備える例で説明したが、本発明はこれらの機器を備えるものに限定されるものではなく、過冷却熱交換器などを備えていないものであっても、上記除霜用膨張弁により除霜運転時の圧縮機吐出側圧力を所定値以上になるように制御することにより、除霜熱源を確保して除霜運転の短縮を図ることができるものである。
 また、除霜用膨張弁の初期開度は、全開状態若しくは圧縮機運転容量に応じた所定開度に設定するように制御する例を説明したが、除霜用膨張弁の開度は予め定めた任意の開度に設定しても良い。 
 更に、本発明は、暖房と冷房を切替える切替弁(例えば四方弁)をもつ空気調和装置には限定されず、暖房専用機であっても同様に適用可能である。また、上述した実施例は、室外機と室内機が1台づつのもので説明したが、室外機が複数台の空気調和装置や、室内機が複数台の空気調和装置にも同様に適用できる。
 なお、上記した実施例は本発明を分かり易く説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。
1…室外機、2…室内機、
3…圧縮機、3a…第1圧縮機、3b…第2圧縮機、
5…室外熱交換器、6…室外膨張弁、
7…液阻止弁、8…ガス阻止弁、
9…アキュムレータ、
10…室外ファン、11…室外ファンモータ、
12…除霜用膨張弁、
13…過冷却熱交換器、14…過冷却膨張弁、
15…除霜バイパス回路、16…過冷却バイパス回路、
17…マイコン(制御装置)、
18…吐出圧力センサ(吐出圧力検出手段)、
19…冷媒液配管、20…冷媒ガス配管、
21…室内熱交換器、22…室内膨張弁、
23…室内ファン、24…室内ファンモータ、
25~27…冷媒配管。

Claims (8)

  1.  圧縮機、室外熱交換器及び室外膨張弁を備える空気調和装置であって、
     前記圧縮機の吐出側の冷媒配管と、前記室外熱交換器と前記室外膨張弁を接続する冷媒配管とを接続する除霜バイパス回路と、
     該除霜バイパス回路に設けられた除霜用膨張弁と、
     前記圧縮機の吐出側の圧力を検出する吐出圧力検出手段と、
     前記除霜用膨張弁の開度を制御する制御装置を備え、
     前記制御装置は、前記室外熱交換器の除霜運転を行う場合、前記除霜用膨張弁を開き、前記室外膨張弁を全閉とし、更に前記吐出圧力検出手段で検出される吐出圧力値に応じて前記除霜用膨張弁の開度を制御する
     ことを特徴とする空気調和装置。
  2.  請求項1に記載の空気調和装置であって、
     前記圧縮機、前記室外熱交換器及び前記室外膨張弁を備えると共にこれらの機器を接続する冷媒配管を有する室外機と、室内熱交換器及び室内膨張弁を備えると共にこれらの機器を接続する冷媒配管を有する室内機と、前記室外機と前記室内機を接続する冷媒液配管及び冷媒ガス配管を備え、
     前記制御装置は、前記室外熱交換器の除霜運転を行う場合、前記室内膨張弁も開くように制御する
     ことを特徴とする空気調和装置。
  3.  請求項2に記載の空気調和装置であって、
     前記室外機は、冷房運転と暖房運転を切替えるための切替弁と、前記圧縮機の吸入側と前記切替弁との間に設けられたアキュムレータを備え、
     前記制御装置は、前記室外熱交換器の除霜運転を行う場合、前記切替弁を暖房運転の状態に維持しながら前記除霜用膨張弁と前記室内膨張弁を開き、前記室外膨張弁を全閉とし、前記吐出圧力検出手段で検出される吐出圧力値に応じて前記除霜用膨張弁の開度を制御する
     ことを特徴とする空気調和装置。
  4.  請求項3に記載の空気調和装置であって、
     前記室外機は、該室外機と前記室内機を接続する前記冷媒液配管側の液阻止弁と、前記室外機と前記室内機を接続する冷媒ガス配管側のガス阻止弁と、
     前記室外膨張弁と前記液阻止弁を接続する配管の途中に設けられ、主流部を流れる冷媒と副流部を流れる冷媒とを熱交換させる過冷却熱交換器と、
     前記室外膨張弁と前記液阻止弁を接続する配管の途中から分岐され、前記過冷却熱交換器の副流部を通過後、前記切替弁と前記アキュームレータを接続する冷媒配管にバイパスされる過冷却バイパス回路と、
     この過冷却バイパス回路における前記過冷却熱交換器上流側に設けられた過冷却膨張弁と、を備え、
     前記過冷却膨張弁は、前記圧縮機から吐出される冷媒の過熱度に応じて制御されることを特徴とする空気調和装置。
  5.  請求項1に記載の空気調和装置であって、除霜運転時には前記圧縮機の周波数を最大容量で運転し、且つ前記吐出圧力検出手段により検出される吐出圧力値が所定値以下となった場合、前記除霜用膨張弁の開度を所定量絞るように制御されることを特徴とする空気調和装置。
  6.  請求項5に記載の空気調和装置であって、前記吐出圧力検出手段により検出される吐出圧力値が所定値より高い場合、前記除霜用膨張弁の開度を所定量開くように制御されることを特徴とする空気調和装置。
  7.  請求項1に記載の空気調和装置であって、除霜運転開始時における圧縮機運転容量に応じて前記除霜用膨張弁の初期開度を設定することを特徴とする空気調和装置。
  8.  請求項2に記載の空気調和装置であって、前記室外機に搭載される圧縮機を複数台とし、除霜運転開始時には、圧縮機の運転台数に応じて、前記除霜用膨張弁の初期開度を設定することを特徴とする空気調和装置。
PCT/JP2014/078437 2014-02-13 2014-10-27 空気調和装置 WO2015122056A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-025266 2014-02-13
JP2014025266A JP6138711B2 (ja) 2014-02-13 2014-02-13 空気調和装置

Publications (1)

Publication Number Publication Date
WO2015122056A1 true WO2015122056A1 (ja) 2015-08-20

Family

ID=53799812

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/078437 WO2015122056A1 (ja) 2014-02-13 2014-10-27 空気調和装置

Country Status (2)

Country Link
JP (1) JP6138711B2 (ja)
WO (1) WO2015122056A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108895584A (zh) * 2018-07-19 2018-11-27 广东志高暖通设备股份有限公司 一种不停机化霜提升制热能力的多联式热泵循环装置
CN109442824A (zh) * 2018-12-27 2019-03-08 重庆大学 一种空气源热泵定位除霜方法和除霜系统
CN109631236A (zh) * 2018-12-14 2019-04-16 广东Tcl智能暖通设备有限公司 多联式空调器及其除霜方法
WO2019128516A1 (zh) * 2017-12-29 2019-07-04 青岛海尔空调器有限总公司 空调器系统
CN110268203A (zh) * 2017-03-24 2019-09-20 东芝开利株式会社 空调装置
CN110986440A (zh) * 2019-12-20 2020-04-10 珠海格力电器股份有限公司 热氟除霜装置、空调机组及除霜控制方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10866018B2 (en) 2016-02-19 2020-12-15 Samsung Electronics Co., Ltd. Air conditioner and control method thereof
CN108050652A (zh) * 2017-11-24 2018-05-18 Tcl空调器(中山)有限公司 空调器除霜控制方法、空调器及存储介质
CN114234470B (zh) * 2021-12-27 2023-07-14 珠海格力电器股份有限公司 空调系统以及空调控制方法
CN114963406A (zh) * 2022-05-23 2022-08-30 南京天加环境科技有限公司 一种提高长连管机组运行可靠性的控制方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008096033A (ja) * 2006-10-12 2008-04-24 Hitachi Appliances Inc 冷凍装置
JP2011080733A (ja) * 2009-10-09 2011-04-21 Hitachi Appliances Inc 空気調和機
JP2014020679A (ja) * 2012-07-19 2014-02-03 Panasonic Corp 蓄熱装置及びそれを備えた空気調和機

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008096033A (ja) * 2006-10-12 2008-04-24 Hitachi Appliances Inc 冷凍装置
JP2011080733A (ja) * 2009-10-09 2011-04-21 Hitachi Appliances Inc 空気調和機
JP2014020679A (ja) * 2012-07-19 2014-02-03 Panasonic Corp 蓄熱装置及びそれを備えた空気調和機

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110268203A (zh) * 2017-03-24 2019-09-20 东芝开利株式会社 空调装置
WO2019128516A1 (zh) * 2017-12-29 2019-07-04 青岛海尔空调器有限总公司 空调器系统
CN108895584A (zh) * 2018-07-19 2018-11-27 广东志高暖通设备股份有限公司 一种不停机化霜提升制热能力的多联式热泵循环装置
CN109631236A (zh) * 2018-12-14 2019-04-16 广东Tcl智能暖通设备有限公司 多联式空调器及其除霜方法
CN109442824A (zh) * 2018-12-27 2019-03-08 重庆大学 一种空气源热泵定位除霜方法和除霜系统
CN109442824B (zh) * 2018-12-27 2023-05-09 重庆大学 一种空气源热泵定位除霜方法和除霜系统
CN110986440A (zh) * 2019-12-20 2020-04-10 珠海格力电器股份有限公司 热氟除霜装置、空调机组及除霜控制方法
CN110986440B (zh) * 2019-12-20 2024-03-19 珠海格力电器股份有限公司 热氟除霜装置、空调机组及除霜控制方法

Also Published As

Publication number Publication date
JP6138711B2 (ja) 2017-05-31
JP2015152205A (ja) 2015-08-24

Similar Documents

Publication Publication Date Title
JP6138711B2 (ja) 空気調和装置
US9791193B2 (en) Air conditioner and method of controlling the same
JP5634682B2 (ja) 空気調和機
US10724777B2 (en) Refrigeration cycle apparatus capable of performing refrigerant recovery operation and controlling blower
JP4654828B2 (ja) 空気調和装置
JP2008096033A (ja) 冷凍装置
EP3546850B1 (en) Refrigeration device
JP6880204B2 (ja) 空気調和装置
EP3144606B1 (en) Air conditioner
JP2003240391A (ja) 空気調和機
JP2015064169A (ja) 温水生成装置
WO2017037891A1 (ja) 冷凍サイクル装置
JP2009145032A (ja) 冷凍サイクル装置およびそれを備えた空気調和機
JP2015117847A (ja) 空気調和装置
EP1983277B1 (en) Refrigeration cycle apparatus
JP5517891B2 (ja) 空気調和装置
KR102500807B1 (ko) 공기 조화기 및 그 제어방법
JP5601890B2 (ja) 空気調和装置
KR102390900B1 (ko) 멀티형 공기조화기 및 그의 제어방법
JP4802602B2 (ja) 空気調和装置
JP5313467B2 (ja) 空気調和システム及びその制御方法
KR101527214B1 (ko) 공기 조화기 및 그의 제어방법
JP2008267691A (ja) 空気調和装置
JP7000261B2 (ja) 複合熱源ヒートポンプ装置
JP6704513B2 (ja) 冷凍サイクル装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14882409

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14882409

Country of ref document: EP

Kind code of ref document: A1