JP6012757B2 - 空気調和装置 - Google Patents

空気調和装置 Download PDF

Info

Publication number
JP6012757B2
JP6012757B2 JP2014548363A JP2014548363A JP6012757B2 JP 6012757 B2 JP6012757 B2 JP 6012757B2 JP 2014548363 A JP2014548363 A JP 2014548363A JP 2014548363 A JP2014548363 A JP 2014548363A JP 6012757 B2 JP6012757 B2 JP 6012757B2
Authority
JP
Japan
Prior art keywords
refrigerant
compressor
temperature
heat medium
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014548363A
Other languages
English (en)
Other versions
JPWO2014080464A1 (ja
Inventor
亮宗 石村
亮宗 石村
山下 浩司
浩司 山下
若本 慎一
慎一 若本
直史 竹中
直史 竹中
石園 文彦
文彦 石園
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Application granted granted Critical
Publication of JP6012757B2 publication Critical patent/JP6012757B2/ja
Publication of JPWO2014080464A1 publication Critical patent/JPWO2014080464A1/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B31/00Compressor arrangements
    • F25B31/006Cooling of compressor or motor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • F25B41/24Arrangement of shut-off valves for disconnecting a part of the refrigerant cycle, e.g. an outdoor part
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/003Indoor unit with water as a heat sink or heat source
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0233Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units in parallel arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/0272Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using bridge circuits of one-way valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/02743Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using three four-way valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/029Control issues
    • F25B2313/0291Control issues related to the pressure of the indoor unit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/031Sensor arrangements
    • F25B2313/0314Temperature sensors near the indoor heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/19Calculation of parameters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/027Compressor control by controlling pressure
    • F25B2600/0271Compressor control by controlling pressure the discharge pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2513Expansion valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/193Pressures of the compressor
    • F25B2700/1931Discharge pressures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/193Pressures of the compressor
    • F25B2700/1933Suction pressures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2115Temperatures of a compressor or the drive means therefor
    • F25B2700/21151Temperatures of a compressor or the drive means therefor at the suction side of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2115Temperatures of a compressor or the drive means therefor
    • F25B2700/21152Temperatures of a compressor or the drive means therefor at the discharge side of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2115Temperatures of a compressor or the drive means therefor
    • F25B2700/21156Temperatures of a compressor or the drive means therefor of the motor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/31Expansion valves
    • F25B41/34Expansion valves with the valve member being actuated by electric means, e.g. by piezoelectric actuators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Description

本発明は、たとえばビル用マルチエアコンなどに適用される空気調和装置に関するものである。
凝縮器の下流側に受液器が接続され、この受液器で貯留された液冷媒をリキッドインジェクション回路を介して圧縮機に供給し、圧縮機の吐出冷媒温度を低減する冷凍装置が提案されている(たとえば、特許文献1参照)。
特許文献1に記載の技術は、圧縮機の吐出冷媒温度を検出し、その検出温度に応じて流量調整弁の開度を変化させ、インジェクション流量を制御する。
また、四方弁を備え、冷媒の流れを逆方向に切り換えて冷房及び暖房を実施するヒートポンプ空調機が各種提案されている(たとえば、特許文献2参照)。
特許文献2に記載の技術は、圧縮機と、室内熱交換器と室外熱交換器とを接続する配管との間に、インジェクション配管が接続されており、当該配管を流れる液冷媒を圧縮機に供給することができるようになっている。
さらに、複数の電磁弁を備え、冷房及び暖房に加えて、冷暖房混在運転を実施することができる空気調和装置が提案されている(たとえば、特許文献3参照)。
特許文献3に記載の技術は、暖房時におけるインジェクションでは、中間圧力の冷媒(以下、中圧冷媒との称する)を圧縮機にインジェクションするために、インジェクション回路に絞り装置が設けられている。
このように、特許文献1〜3に記載の技術は、圧縮機に液冷媒をインジェクションし、圧縮機の吐出冷媒温度を低減して、圧縮機が損傷してしまうことを抑制している。
特開平7−260262号公報(たとえば、図1参照) 特開平8−210709号公報(たとえば、図1参照) 特開2010−139205号公報(たとえば、図1参照)
特許文献1の冷凍装置は、冷媒の流れ方向が1方向に流れる場合のインジェクションを実施するものであり、たとえば冷媒の流れ方向が逆になった場合におけるインジェクションを想定したものではない。また、特許文献2に記載の空気調和装置については、冷媒の流れ方向を逆に切り換えた場合においても、インジェクションを実施することができるが、冷房暖房混在運転を実施しているときにインジェクションすることを想定したものではなかった。
すなわち、特許文献1、2に記載の技術は、インジェクションを行う際の運転モードが限定されており、その分、利便性が損なわれてしまう可能性があるという課題があった。
特許文献3に記載の技術は、冷房、暖房及び冷暖房混在運転時にインジェクションをすることができるが、インジェクション回路の絞り装置の開度について特定されていないため、中圧冷媒の圧力を状況に応じて変化させるものではなかった。
すなわち、特許文献3に記載の技術は、中圧冷媒の圧力を運転モードに応じて制御するものではない分、圧縮機の損傷が生じやすく、空気調和装置の動作の安定性、信頼性が低減してしまうという課題があった。
本発明は、上記の課題を解決するものであり、運転モードによらないで、圧縮機の吐出冷媒温度を低下させて動作の安定性を向上させ、信頼性の高い空気調和装置を提供することを目的としている。
本発明に係る空気調和装置は、圧縮機、冷媒流路切替装置、熱源側熱交換器、第1の絞り装置及び熱媒体間熱交換器を有し、これらが冷媒配管を介して接続され、冷媒循環回路を構成し空気調和装置において、暖房運転時における熱源側熱交換器の上流側であって第1の絞り装置の下流側に設けられた第2の絞り装置と、圧縮機の上流側に設けられた余剰冷媒を貯留するためのアキュムレータと、一方が暖房運転時における第2の絞り装置の上流側に接続され、他方が圧縮機の吸入側とアキュムレータとの間の流路に接続された吸入インジェクション配管と、吸入インジェクション配管に設けられた第3の絞り装置と、圧縮機の吐出冷媒温度を検出する吐出冷媒温度検出装置と、圧縮機の吸入冷媒温度を検出する吸入圧力検出装置と、暖房運転時における第2の絞り装置の上流側であって第1の絞り装置又は熱媒体間熱交換器の下流側の冷媒圧力又は冷媒飽和温度を検出する中圧検出装置と、中圧検出装置の検出結果に基づいて第2の絞り装置の開度を制御するとともに、吐出冷媒温度検出装置、中圧検出装置及び吸入圧力検出装置の検出結果に基づいて第3の絞り装置の開度を制御する制御装置と、を有し、冷媒配管の内部には、冷媒として、R410Aよりも吐出冷媒温度が高温になる冷媒を循環させ、制御装置は、第2の絞り装置の開度、第3の絞り装置の開度、中圧検出装置及び吸入圧力検出装置の検出結果に基づいて圧縮機に吸入される冷媒の乾き度を算出し、吐出冷媒温度検出装置の検出結果に基づく第1の開度で第3の絞り装置を制御しているときに、乾き度が予め定められた値より小さくなると、第3の絞り装置の開度を第1の開度よりも小さい第2の開度にし、圧縮機に、乾き度が0.9以上0.99以下となる冷媒を吸入させるものである。
本発明に係る空気調和装置によれば、上記構成を有しているので、運転モードによらないで、圧縮機の吐出冷媒温度を低下させて動作の安定性を向上させ、信頼性の高い空気調和装置を得ることができる。
本発明の実施の形態1に係る空気調和装置の設置例を示す概略図である。 本発明の実施の形態1に係る空気調和装置の回路構成例である。 図2に示す空気調和装置の全冷房運転時の冷媒及び熱媒体の流れを説明する図である。 図3に示す全冷房運転時におけるp−h線図(圧力−エンタルピ線図)である。 図2に示す空気調和装置の全暖房運転時の冷媒及び熱媒体の流れを説明する図である。 図5に示す全暖房運転時におけるp−h線図である。 図2に示す空気調和装置の冷房主体運転時の冷媒及び熱媒体の流れを説明する図である。 図7に示す冷房主体運転時におけるp−h線図である。 図2に示す空気調和装置の全暖房運転時の冷媒及び熱媒体の流れを説明する図である。 図9に示す暖房主体運転時におけるp−h線図である。 本発明の実施の形態1に係る空気調和装置の中圧制御と起動制御及び定常制御の動作を表すフローチャートである。 本発明の実施の形態1に係る空気調和装置の中圧制御の動作を表すフローチャートである。 本発明の実施の形態1に係る空気調和装置の定常制御の動作を表すフローチャートである。 三点予測について説明するためのグラフである。 本発明の実施の形態1に係る空気調和装置の起動制御の動作を表すフローチャートである。 本発明の実施の形態1に係る空気調和装置の起動制御で用いる終了判定フラグの状態を表すグラフである。 図2に示す回路構成例とは異なる回路構成の説明図である。 本発明の実施の形態2に係る空気調和装置の起動制御の動作を表すフローチャートである。 本発明の実施の形態3に係る空気調和装置の起動制御の動作を表すフローチャートである。 本発明の実施の形態4に係る空気調和装置の圧縮機に吸入される冷媒の乾き度を求める演算フローチャートである。 冷媒と冷凍機油の混合物の粘度の挙動を示したグラフである。
実施の形態1.
本発明の実施の形態について、図面に基づいて説明する。図1は、本実施の形態に係る空気調和装置の設置例を示す概略図である。図1に基づいて、空気調和装置の設置例について説明する。本空気調和装置は、冷媒及び熱媒体を循環させる冷凍サイクル(冷媒循環回路A、熱媒体循環回路B)を利用することで各室内機が運転モードとして冷房モード或いは暖房モードを自由に選択できるものである。なお、図1を含め、以下の図面では各構成部材の大きさの関係が実際のものとは異なる場合がある。
図1においては、本実施の形態に係る空気調和装置は、熱源機である1台の室外機1と、複数台の室内機2と、室外機1と室内機2との間に介在する熱媒体変換機3と、を有している。熱媒体変換機3は、冷媒(熱源側冷媒)と熱媒体とで熱交換を行なうものである。室外機1と熱媒体変換機3とは、冷媒を導通する冷媒配管4で接続されている。熱媒体変換機3と室内機2とは、熱媒体を導通する配管(熱媒体配管)5で接続されている。そして、室外機1で生成された冷熱或いは温熱は、熱媒体変換機3を介して室内機2に伝達されるようになっている。
室外機1は、通常、ビルなどの建物9の外の空間(たとえば、屋上など)である室外空間6に配置され、熱媒体変換機3を介して室内機2に冷熱又は温熱を供給するものである。室内機2は、建物9の内部の空間(たとえば、居室など)である室内空間7に冷房用空気或いは暖房用空気を供給できる位置に配置され、空調対象空間となる室内空間7に冷房用空気或いは暖房用空気を供給するものである。熱媒体変換機3は、室外機1及び室内機2とは別筐体として、室外空間6及び室内空間7とは別の位置に設置できるように構成されており、室外機1及び室内機2とは冷媒配管4及び配管5でそれぞれ接続され、室外機1から供給される冷熱或いは温熱を室内機2に伝達するものである。
図1に示すように、本実施の形態に係る空気調和装置においては、室外機1と熱媒体変換機3とが2本の冷媒配管4を用いて、熱媒体変換機3と各室内機2とが2本の配管5を用いて、それぞれ接続されている。このように、本実施の形態に係る空気調和装置では、2本の配管(冷媒配管4、配管5)を用いて各ユニット(室外機1、室内機2及び熱媒体変換機3)を接続することにより、施工が容易となっている。
なお、図1においては、熱媒体変換機3が、建物9の内部ではあるが室内空間7とは別の空間である天井裏などの空間(以下、単に空間8と称する)に設置されている状態を例に示している。熱媒体変換機3は、その他、エレベーターなどがある共用空間などに設置することも可能である。また、図1及び図2においては、室内機2が天井カセット型である場合を例に示してあるが、これに限定するものではなく、天井埋込型や天井吊下式など、室内空間7に直接又はダクトなどにより、暖房用空気或いは冷房用空気を吹き出せるようになっていればどんな種類のものでもよい。
図1においては、室外機1が室外空間6に設置されている場合を例に示しているが、これに限定するものではない。たとえば、室外機1は、換気口付の機械室などの囲まれた空間に設置してもよく、排気ダクトで廃熱を建物9の外に排気することができるのであれば建物9の内部に設置してもよく、或いは、水冷式の室外機1を用いて建物9の内部に設置するようにしてもよい。どのような場所に室外機1を設置するとしても、特段の問題が発生することはない。
また、熱媒体変換機3は、室外機1の近傍に設置することもできる。ただし、熱媒体変換機3から室内機2までの距離が長すぎると、熱媒体の搬送動力がかなり大きくなるため、省エネの効果は薄れることに留意が必要である。さらに、室外機1、室内機2及び熱媒体変換機3の接続台数を図1及び図2に図示してある台数に限定するものではなく、本実施の形態に係る空気調和装置が設置される建物9に応じて台数を決定すればよい。
図2は、本実施の形態1に係る空気調和装置(以下、空気調和装置100と称する)の回路構成例である。図2に基づいて、空気調和装置100の詳しい構成について説明する。
図2に示すように、室外機1と熱媒体変換機3とが、熱媒体変換機3に備えられている熱媒体間熱交換器15a及び熱媒体間熱交換器15bを介して冷媒配管4で接続されている。また、熱媒体変換機3と室内機2とも、熱媒体間熱交換器15a及び熱媒体間熱交換器15bを介して配管5で接続されている。なお、冷媒配管4については後段で詳述する。
空気調和装置100は、冷媒を循環させる冷凍サイクルである冷媒循環回路A及び熱媒体を循環させる熱媒体循環回路Bを有しており、各室内機2が冷房運転、暖房運転を選択できるものである。そして、動作している室内機2の全てが冷房運転を実行するモードである全冷房運転モード、動作している室内機2の全てが暖房運転を実行するモードである全暖房運転モード、冷房運転と暖房運転を実行する室内機が混在するモードである冷房暖房混在運転モードを行うことができる。なお、冷暖房混在運転モードには、冷房負荷の方が大きい冷房主体運転モード、及び暖房負荷の方が大きい暖房主体運転モードがある。全冷房運転モード、全暖房運転モード、冷房主体運転モード、及び暖房主体運転モードについては、図3〜図10の説明で詳しく説明する。
[室外機1]
室外機1には、圧縮機10、四方弁などの第1冷媒流路切替装置11、熱源側熱交換器12と、アキュムレータ19とが冷媒配管4で直列に接続されて搭載されている。
また、室外機1には、第1接続配管4a、第2接続配管4b、逆止弁13a、逆止弁13b、逆止弁13c、及び、逆止弁13dが設けられている。
さらに、室外機1には、分岐部27a、分岐部27b、開閉装置24、逆流防止装置20、絞り装置14a、絞り装置14b、中圧検出装置32、吐出冷媒温度検出装置37、吸入冷媒温度検出装置38、分岐冷媒温度検出装置33、高圧検出装置39、吸入圧力検出装置60、圧縮機シェル温度検出装置61、吸入インジェクション配管4c、分岐配管4d、制御装置50が備えられている。
圧縮機10は、冷媒を吸入し、その冷媒を圧縮して高温高圧の状態にするものであり、たとえば容量制御可能なインバータ圧縮機などで構成するとよい。圧縮機10は、吐出側が第1冷媒流路切替装置11に接続され、吸入側が吸入インジェクション配管4c及びアキュムレータ19に接続されている。圧縮機10は、密閉容器内に圧縮室を有し、密閉容器内が低圧の冷媒圧雰囲気となり、圧縮室に密閉容器内の低圧冷媒を吸入して圧縮する低圧シェル型の圧縮機である。そして、圧縮機10は、圧縮機10の吸入側とアキュムレータ19との間の冷媒配管4に接続される吸入インジェクション配管4cに接続されており、高圧又は中圧の冷媒を吸入インジェクション配管4cに供給することができるようになっている。
圧縮機10の下部は、圧縮機10の吸入側から流入した冷媒及び油(冷凍機油)が流入可能となっている。また、圧縮機10は、モータが配置され、圧縮機10の下部から流入した冷媒を圧縮する中間部を有している。さらに、圧縮機10の上部には、密閉容器で構成される吐出室が備えられており、中間部で圧縮された冷媒及び油を吐出可能となっている。このように、圧縮機10は、圧縮機10の上部のように高温高圧の冷媒にさらされる部分と、圧縮機10の下部のように低温低圧の冷媒にさらされる部分とを有しているため、圧縮機10を構成する密閉容器の温度はその中間的な温度になる。なお、圧縮機10の運転中は、中間部のモータに供給される電流によってモータが発熱する。したがって、圧縮機10に吸入された低温低圧の気液二相冷媒は、圧縮機10の密閉容器とモータによって加熱される。
第1冷媒流路切替装置11は、暖房運転時(全暖房運転モード時及び暖房主体運転モード時)における冷媒の流れと冷房運転時(全冷房運転モード時及び冷房主体運転モード時)における冷媒の流れとを切り替えるものである。なお、図2では、第1冷媒流路切替装置11が、圧縮機10の吐出側と第1接続配管4aとを接続するとともに、熱源側熱交換器12とアキュムレータ19とを接続している状態を図示している。
熱源側熱交換器12は、暖房運転時には蒸発器として機能し、冷房運転時には凝縮器(又は放熱器)として機能し、図示省略のファンなどの送風機から供給される空気と冷媒との間で熱交換を行ない、その冷媒を蒸発ガス化又は凝縮液化するものである。熱源側熱交換器12は、一方が第1冷媒流路切替装置11に接続され、他方が逆止弁13aが設けられる冷媒配管4に接続されている。
アキュムレータ19は、圧縮機10の吸入側に設けられており、過剰な冷媒を貯留するものである。アキュムレータ19は、一方が第1冷媒流路切替装置11に接続され、他方が圧縮機10の吸入側に接続される。
逆止弁13aは、熱源側熱交換器12と熱媒体変換機3との間における冷媒配管4に設けられ、所定の方向(室外機1から熱媒体変換機3への方向)のみに冷媒の流れを許容するものである。逆止弁13bは、第1接続配管4aに設けられ、暖房運転時において圧縮機10から吐出された冷媒を熱媒体変換機3に流通させるものである。逆止弁13cは、第2接続配管4bに設けられ、暖房運転時において熱媒体変換機3から戻ってきた冷媒を圧縮機10の吸入側に流通させるものである。逆止弁13dは、熱媒体変換機3と第1冷媒流路切替装置11との間における冷媒配管4に設けられ、所定の方向(熱媒体変換機3から室外機1への方向)のみに冷媒の流れを許容するものである。
第1接続配管4aは、室外機1内において、第1冷媒流路切替装置11と逆止弁13dとの間における冷媒配管4と、逆止弁13aと熱媒体変換機3との間における冷媒配管4と、を接続するものである。
第2接続配管4bは、室外機1内において、逆止弁13dと熱媒体変換機3との間における冷媒配管4と、熱源側熱交換器12と逆止弁13aとの間における冷媒配管4と、を接続するものである。第1接続配管4a、第2接続配管4b、逆止弁13a〜13dを設けることで、室内機2の要求する運転に関わらず、熱媒体変換機3に流入させる冷媒の流れを一定方向にすることができる。
2つの分岐部27(分岐部27a、分岐部27b)は、流入してきた冷媒を分岐させるものである。分岐部27aは、冷媒流入側が逆止弁13aが設けられる冷媒配管4に接続され、冷媒流出側の一方が室外機1と熱媒体変換機3とを接続する冷媒配管4に接続され、冷媒流出側の他方が分岐配管4dに接続される。また、分岐部27bは、冷媒流入側が熱媒体変換機3と室外機1とを接続する冷媒配管4に接続され、冷媒流出側の一方が逆止弁13dが設けられる冷媒配管4及び第2接続配管4bに接続され、冷媒流出側の他方が分岐配管4dに接続される。なお、分岐部27は、たとえばY継手やT継手などで構成するとよい。
分岐部27には、空気調和装置100の運転モードに応じて、液冷媒又は気液二相冷媒が流れ込む。たとえば、冷房主体運転モードの場合には、分岐部27aに気液二相冷媒が流れ、全暖房運転モード及び暖房主体運転モードの場合には、分岐部27bに気液二相冷媒が流れる。そこで、分岐部27は、気液二相冷媒を均等に分配するために、下から上に冷媒が流れた後に、2手に分岐するような構成状態で分流させる構造とする。すなわち、分岐部27の冷媒流入側を下側(重力方向における下)とし、分岐部27の冷媒流出側(両方)を上側(重力方向における上)とするということである。これにより、分岐部27に流入した気液二相冷媒を均等に分配させることができ、空気調和装置100の空調能力の低減を抑制することができる。
開閉装置24は、分岐部27aと吸入インジェクション配管4cとの間の流路の開閉をするものである。開閉装置24は、全冷房運転モードでインジェクションする場合及び冷房主体運転モードでインジェクションする場合には開き、インジェクションしない場合には閉じるものである。そして、開閉装置24は、全暖房運転モード及び暖房主体運転モードでは閉じるものである。開閉装置24は、分岐配管4dに設けられており、一方が分岐部27aに接続され、他方が吸入インジェクション配管4cに接続される。なお、開閉装置24は、開閉を切り替え可能な電磁弁、開口面積を変化させることが可能な電子式膨張弁などのように流路の開閉を切り替えられるものであればよい。
逆流防止装置20は、全暖房運転モードでインジェクションする場合及び暖房主体運転モードでインジェクションする場合に分岐部27bから吸入インジェクション配管4cに冷媒が流れるようにするものである。なお、逆流防止装置20は、全冷房運転モードでインジェクションする場合及び冷房主体運転モードでインジェクションする場合では、閉じている。なお、逆流防止装置20は、図2では逆止弁である場合を例に図示しているが、開閉を切り替え可能な電磁弁、開口面積を変化させることが可能な電子式膨張弁などでもよい。
中圧検出装置32は、分岐部27bと絞り装置14aとの間を流れる冷媒の圧力を検出するものである。すなわち、中圧検出装置32は、熱媒体変換機3の絞り装置16で減圧させられて、室外機1に戻ってきた中圧の冷媒の圧力を検出するものである。この中圧検出装置32は、分岐部27bと絞り装置14aとの間に設けられている。
高圧検出装置39は、圧縮機10で圧縮され、高圧となった冷媒の圧力を検出するものである。高圧検出装置39は、圧縮機10の吐出側に接続される冷媒配管4に設けられている。
中圧検出装置32及び高圧検出装置39は、圧力センサでもよいが、温度センサで構成してもよい。すなわち、検出した温度に基づいて、制御装置50が演算により中圧を演算することができるようにしてもよい。
吐出冷媒温度検出装置37は、圧縮機10から吐出された冷媒の温度を検出するもので、圧縮機10の吐出側に接続される冷媒配管4に設けられている。
吸入冷媒温度検出装置38は、圧縮機10に流入する冷媒の温度を検出するもので、アキュムレータ19の下流側の冷媒配管4に設けられている。
分岐冷媒温度検出装置33は、分岐部27aへ流入する冷媒温度を検出するものであり、分岐部27aの流入側の流路に設けられている。
吸入圧力検出装置60は、圧縮機10に吸入される冷媒の圧力を検出するもので、アキュムレータ19の上流側の冷媒配管4に設けられている。
圧縮機シェル温度検出装置61は、圧縮機10のシェルの温度を検出するものであり、圧縮機10のシェルの下部に設けられている。なお、圧縮機シェル温度検出装置61を設ける圧縮機10は、密閉容器(=シェル)内に圧縮室を有し、密閉容器内が低圧の冷媒圧雰囲気となり、圧縮室に密閉容器内の低圧冷媒を吸入して圧縮する低圧シェル構造の圧縮機であることが一般的であり、実施の形態1ではこのような圧縮機であることに限定されない。
2つの絞り装置14(絞り装置14a、14b)は、減圧弁や膨張弁としての機能を有し、冷媒を減圧して膨張させるものである。絞り装置14aは、第2接続配管4b(後述する全暖房運転モード及び暖房主体運転モードにおける分岐部27bから熱源側熱交換器12に至る流路)に設けられ、逆止弁13cの上流側に設けられている。また、絞り装置14bは、吸入インジェクション配管4cに設けられている。絞り装置14aには、全暖房運転モード及び暖房主体運転モードの場合に、気液二相冷媒が流入する。また、絞り装置14bには、全冷房運転モードのときに液冷媒が流れ込み、冷房主体運転モード、全暖房運転モード、及び暖房主体運転モードの場合に、気液二相状態の冷媒が流入する。
絞り装置14aは、開口面積を変化させることが可能である電子式膨張弁で構成するとよい。絞り装置14aを電子式膨張弁で構成すれば、絞り装置14aの上流側の圧力を任意の圧力に制御することができる。なお、絞り装置14aは、電子式膨張弁に限定されるものではなく、制御性は少し悪化するが、小型の電磁弁などを組み合わせて開口面積を複数選択できるようにしてもよいし、キャピラリチューブとして冷媒の圧損に応じて中圧が形成されるようにしてもよい。
また、絞り装置14bについても、開口面積を変化させることが可能である電子式膨張弁で構成するとよい。この絞り装置14bは、インジェクションする場合において、吐出冷媒温度検出装置37が検出する圧縮機10の吐出冷媒温度が高くなり過ぎないように、絞り装置14bの開口面積を制御する。
吸入インジェクション配管4cは、圧縮機10に液冷媒を供給する配管である。ここで、吸入インジェクションとは、圧縮機10とアキュムレータ19との間の冷媒配管4、つまり圧縮機10の吸入側に液冷媒を供給することを指す。
吸入インジェクション配管4cは、一方が分岐配管4dに接続され、他方がアキュムレータ19と圧縮機10とを接続する冷媒配管4に接続されている。吸入インジェクション配管4cには、絞り装置14bが設けられている。
分岐配管4dは、圧縮機10にインジェクションする場合に、冷媒を吸入インジェクション配管4cに導くための配管である。分岐配管4dは、分岐部27a、分岐部27b、及び吸入インジェクション配管4cに接続されている。分岐配管4dには、逆流防止装置20及び開閉装置24が設けられている。
制御装置50は、マイコンなどで構成されており、各種検出装置での検出情報及びリモコンからの指示に基づいて、制御を行うもので、上述のアクチュエータの制御の他に、圧縮機10の駆動周波数、熱源側熱交換器12に付設される送風機の回転数(ON/OFF含む)、開閉装置24の開閉、絞り装置14の開度(絞り量)、第1冷媒流路切替装置11の切り替え、及び熱媒体変換機3及び室内機2に設けられた各種機器などを制御し、後述する各運転モードを実行するようになっている。
この制御装置50は、全冷房運転モード及び冷房主体運転モード時には、開閉装置24を開き、絞り装置14bの開度を調整することで、インジェクションする冷媒の流量を制御可能となっている。また、制御装置50は、全暖房運転モード及び暖房主体運転モード時には、開閉装置24を閉じ、絞り装置14a及び絞り装置14bの開度を調整することで、インジェクションする冷媒の流量を制御可能となっている。そして、圧縮機10にインジェクションを行うことで、圧縮機10から吐出される冷媒の温度を低減することができる。なお、具体的な制御動作については、後述の各運転モードの動作説明において説明を行う。
なお、インジェクションする場合において、絞り装置14aについては、制御装置50が、全暖房運転モード及び暖房主体運転モード時において、中圧検出装置32で検出した中圧が一定値(目標値)になるように、又は目標範囲に収まるように絞り装置14aの開度を制御すると、絞り装置14bによる吐出冷媒温度の制御が安定する。
より詳細には、制御装置50は、中圧検出装置32の検出圧力、或いは中圧検出装置32の検出温度の飽和圧力、又は中圧検出装置32の検出温度、或いは中圧検出装置32の検出圧力の飽和温度が、一定値(目標値)になるように、又は目標範囲に収まるように絞り装置14aの開度を制御すれば、絞り装置14bによる吐出冷媒温度の制御が安定するということである。
また、インジェクションする場合において、絞り装置14bについては、制御装置50が、吐出冷媒温度検出装置37が検出する圧縮機10の吐出冷媒温度が高くなり過ぎないように絞り装置14bの開口面積を制御するとよい。
より詳細には、吐出冷媒温度が一定値(例えば110℃など)を超えたと判断したときに、一定の開度分、たとえば10パルスずつ、絞り装置14bが開くように制御してもよいし、吐出冷媒温度が目標値(例えば100℃)になるように、絞り装置14bの開度を制御するようにしてもよいし、吐出冷媒温度が目標値(例えば100℃)以下になるように制御してもよいし、吐出冷媒温度が目標の範囲内(例えば90℃から100℃の間)に入るように制御してもよい。
さらに、制御装置50は、吐出冷媒温度検出装置37の検出温度と高圧検出装置39の検出圧力から、圧縮機10の吐出過熱度を求め、吐出過熱度が目標値(例えば40℃)になるように、絞り装置14bの開度を制御するようにしてもよいし、吐出過熱度が目標値(例えば40℃)以下になるように制御してもよいし、吐出過熱度が目標の範囲内(例えば20℃から40℃の間)に入るように制御してもよい。
[室内機2]
室内機2には、それぞれ利用側熱交換器26が搭載されている。この利用側熱交換器26は、配管5によって熱媒体変換機3の熱媒体流量調整装置25と第2熱媒体流路切替装置23に接続するようになっている。この利用側熱交換器26は、図示省略のファンなどの送風機から供給される空気と熱媒体との間で熱交換を行ない、室内空間7に供給するための暖房用空気或いは冷房用空気を生成するものである。
この図2では、4台の室内機2が熱媒体変換機3に接続されている場合を例に示しており、紙面下から室内機2a、室内機2b、室内機2c、室内機2dとして図示している。また、室内機2a〜室内機2dに応じて、利用側熱交換器26も、紙面下側から利用側熱交換器26a、利用側熱交換器26b、利用側熱交換器26c、利用側熱交換器26dとして図示している。なお、図1と同様に、室内機2の接続台数を図2に示す4台に限定するものではない。
[熱媒体変換機3]
熱媒体変換機3には、2つの熱媒体間熱交換器15と、2つの絞り装置16と、2つの開閉装置17と、2つの第2冷媒流路切替装置18と、2つのポンプ21と、4つの第1熱媒体流路切替装置22と、4つの第2熱媒体流路切替装置23と、4つの熱媒体流量調整装置25と、が搭載されている。
2つの熱媒体間熱交換器15(熱媒体間熱交換器15a、熱媒体間熱交換器15b)は、凝縮器(放熱器)又は蒸発器として機能し、冷媒と熱媒体とで熱交換を行ない、室外機1で生成され冷媒に貯えられた冷熱又は温熱を熱媒体に伝達するものである。熱媒体間熱交換器15aは、冷媒循環回路Aにおける絞り装置16aと第2冷媒流路切替装置18aとの間に設けられており、全冷房運転モード時の熱媒体の冷却、全暖房運転モード時の熱媒体の加熱、及び冷房暖房混在運転モード時において熱媒体の冷却に供するものである。また、熱媒体間熱交換器15bは、冷媒循環回路Aにおける絞り装置16bと第2冷媒流路切替装置18bとの間に設けられており、全冷房運転モード時の熱媒体の冷却、全暖房運転モード時の熱媒体の加熱、及び冷房暖房混在運転モード時において熱媒体の加熱に供するものである。
2つの絞り装置16(絞り装置16a、絞り装置16b)は、減圧弁や膨張弁としての機能を有し、冷媒を減圧して膨張させるものである。絞り装置16aは、冷房運転時の冷媒の流れにおいて熱媒体間熱交換器15aの上流側に設けられている。絞り装置16bは、冷房運転時の冷媒の流れにおいて熱媒体間熱交換器15bの上流側に設けられている。2つの絞り装置16は、開度が可変に制御可能なもの、たとえば電子式膨張弁などで構成するとよい。
2つの開閉装置17(開閉装置17a、開閉装置17b)は、二方弁などで構成されており、冷媒配管4を開閉するものである。開閉装置17aは、冷媒の入口側における冷媒配管4に設けられている。開閉装置17bは、冷媒の入口側と出口側の冷媒配管4を接続した配管に設けられている。2つの第2冷媒流路切替装置18(第2冷媒流路切替装置18a、第2冷媒流路切替装置18b)は、四方弁などで構成され、運転モードに応じて冷媒の流れを切り替えるものである。第2冷媒流路切替装置18aは、冷房運転時の冷媒の流れにおいて熱媒体間熱交換器15aの下流側に設けられている。第2冷媒流路切替装置18bは、全冷房運転時の冷媒の流れにおいて熱媒体間熱交換器15bの下流側に設けられている。
2つのポンプ21(ポンプ21a、ポンプ21b)は、配管5を導通する熱媒体を循環させるものである。ポンプ21aは、熱媒体間熱交換器15aと第2熱媒体流路切替装置23との間における配管5に設けられている。ポンプ21bは、熱媒体間熱交換器15bと第2熱媒体流路切替装置23との間における配管5に設けられている。2つのポンプ21は、たとえば容量制御可能なポンプなどで構成するとよい。
4つの第1熱媒体流路切替装置22(第1熱媒体流路切替装置22a〜第1熱媒体流路切替装置22d)は、三方弁などで構成されており、熱媒体の流路を切り替えるものである。第1熱媒体流路切替装置22は、室内機2の設置台数に応じた個数(ここでは4つ)が設けられるようになっている。第1熱媒体流路切替装置22は、三方のうちの一つが熱媒体間熱交換器15aに、三方のうちの一つが熱媒体間熱交換器15bに、三方のうちの一つが熱媒体流量調整装置25に、それぞれ接続され、利用側熱交換器26の熱媒体流路の出口側に設けられている。なお、室内機2に対応させて、紙面下側から第1熱媒体流路切替装置22a、第1熱媒体流路切替装置22b、第1熱媒体流路切替装置22c、第1熱媒体流路切替装置22dとして図示している。
4つの第2熱媒体流路切替装置23(第2熱媒体流路切替装置23a〜第2熱媒体流路切替装置23d)は、三方弁などで構成されており、熱媒体の流路を切り替えるものである。第2熱媒体流路切替装置23は、室内機2の設置台数に応じた個数(ここでは4つ)が設けられるようになっている。第2熱媒体流路切替装置23は、三方のうちの一つが熱媒体間熱交換器15aに、三方のうちの一つが熱媒体間熱交換器15bに、三方のうちの一つが利用側熱交換器26に、それぞれ接続され、利用側熱交換器26の熱媒体流路の入口側に設けられている。なお、室内機2に対応させて、紙面下側から第2熱媒体流路切替装置23a、第2熱媒体流路切替装置23b、第2熱媒体流路切替装置23c、第2熱媒体流路切替装置23dとして図示している。
4つの熱媒体流量調整装置25(熱媒体流量調整装置25a〜熱媒体流量調整装置25d)は、開口面積を制御できる二方弁などで構成されており、配管5に流れる流量を制御するものである。熱媒体流量調整装置25は、室内機2の設置台数に応じた個数(ここでは4つ)が設けられるようになっている。熱媒体流量調整装置25は、一方が利用側熱交換器26に、他方が第1熱媒体流路切替装置22に、それぞれ接続され、利用側熱交換器26の熱媒体流路の出口側に設けられている。なお、室内機2に対応させて、紙面下側から熱媒体流量調整装置25a、熱媒体流量調整装置25b、熱媒体流量調整装置25c、熱媒体流量調整装置25dとして図示している。また、熱媒体流量調整装置25を利用側熱交換器26の熱媒体流路の入口側に設けてもよい。
また、熱媒体変換機3には、各種検出装置(2つの第1温度センサ31、4つの第2温度センサ34、4つの第3温度センサ35、及び、1つの圧力センサ36)が設けられている。これらの検出装置で検出された情報(温度情報、圧力情報)は、空気調和装置100の動作を統括制御する制御装置(図示省略)に送られ、圧縮機10の駆動周波数、図示省略の送風機の回転数、第1冷媒流路切替装置11の切り替え、ポンプ21の駆動周波数、第2冷媒流路切替装置18の切り替え、熱媒体の流路の切替などの制御に利用されることになる。
2つの第1温度センサ31(第1温度センサ31a、第1温度センサ31b)は、熱媒体間熱交換器15から流出した熱媒体、つまり熱媒体間熱交換器15の出口における熱媒体の温度を検出するものであり、たとえばサーミスタなどで構成するとよい。第1温度センサ31aは、ポンプ21aの入口側における配管5に設けられている。第1温度センサ31bは、ポンプ21bの入口側における配管5に設けられている。
4つの第2温度センサ34(第2温度センサ34a〜第2温度センサ34d)は、第1熱媒体流路切替装置22と熱媒体流量調整装置25との間に設けられ、利用側熱交換器26から流出した熱媒体の温度を検出するものであり、サーミスタなどで構成するとよい。第2温度センサ34は、室内機2の設置台数に応じた個数(ここでは4つ)が設けられるようになっている。なお、室内機2に対応させて、紙面下側から第2温度センサ34a、第2温度センサ34b、第2温度センサ34c、第2温度センサ34dとして図示している。
4つの第3温度センサ35(第3温度センサ35a〜第3温度センサ35d)は、熱媒体間熱交換器15の冷媒の入口側又は出口側に設けられ、熱媒体間熱交換器15に流入する冷媒の温度又は熱媒体間熱交換器15から流出した冷媒の温度を検出するものであり、サーミスタなどで構成するとよい。第3温度センサ35aは、熱媒体間熱交換器15aと第2冷媒流路切替装置18aとの間に設けられている。第3温度センサ35bは、熱媒体間熱交換器15aと絞り装置16aとの間に設けられている。第3温度センサ35cは、熱媒体間熱交換器15bと第2冷媒流路切替装置18bとの間に設けられている。第3温度センサ35dは、熱媒体間熱交換器15bと絞り装置16bとの間に設けられている。
圧力センサ36は、第3温度センサ35dの設置位置と同様に、熱媒体間熱交換器15bと絞り装置16bとの間に設けられ、熱媒体間熱交換器15bと絞り装置16bとの間を流れる冷媒の圧力を検出するものである。
また、図示省略の熱媒体変換機3に備えられた制御装置は、マイコンなどで構成されており、各種検出装置での検出情報及びリモコンからの指示に基づいて、ポンプ21の駆動、絞り装置16の開度、開閉装置17の開閉、第2冷媒流路切替装置18の切り替え、第1熱媒体流路切替装置22の切り替え、第2熱媒体流路切替装置23の切り替え、及び、熱媒体流量調整装置25の開度などを制御し、後述する各運転モードを実行するようになっている。なお、室外機1と熱媒体変換機3の両方の動作を制御する制御装置を、室外機1と熱媒体変換機3のいずれかのみに設けるようにしてもよい。
[冷媒配管4]
室外機1と熱媒体変換機3とは冷媒配管4で接続され、冷媒配管4には冷媒が流れている。
[配管5]
熱媒体変換機3と室内機2は(熱媒体)配管5で接続され、配管5には水や不凍液などの熱媒体が流れている。
熱媒体を導通する配管5は、熱媒体間熱交換器15aに接続されるものと、熱媒体間熱交換器15bに接続されるものと、で構成されている。配管5は、熱媒体変換機3に接続される室内機2の台数に応じて分岐(ここでは、各4分岐)されている。そして、配管5は、第1熱媒体流路切替装置22、及び、第2熱媒体流路切替装置23で接続されている。第1熱媒体流路切替装置22及び第2熱媒体流路切替装置23を制御することで、熱媒体間熱交換器15aからの熱媒体を利用側熱交換器26に流入させるか、熱媒体間熱交換器15bからの熱媒体を利用側熱交換器26に流入させるかが決定されるようになっている。
そして、空気調和装置100では、圧縮機10、第1冷媒流路切替装置11、熱源側熱交換器12、開閉装置17、第2冷媒流路切替装置18、熱媒体間熱交換器15aの冷媒流路、絞り装置16、及び、アキュムレータ19を、冷媒配管4で接続して冷媒循環回路Aを構成している。また、熱媒体間熱交換器15aの熱媒体流路、ポンプ21、第1熱媒体流路切替装置22、熱媒体流量調整装置25、利用側熱交換器26、及び、第2熱媒体流路切替装置23を、配管5で接続して熱媒体循環回路Bを構成している。つまり、熱媒体間熱交換器15のそれぞれに複数台の利用側熱交換器26が並列に接続され、熱媒体循環回路Bを複数系統としているのである。
よって、空気調和装置100では、室外機1と熱媒体変換機3とが、熱媒体変換機3に設けられている熱媒体間熱交換器15a及び熱媒体間熱交換器15bを介して接続され、熱媒体変換機3と室内機2とも、熱媒体間熱交換器15a及び熱媒体間熱交換器15bを介して接続されている。すなわち、空気調和装置100では、熱媒体間熱交換器15a及び熱媒体間熱交換器15bで冷媒循環回路Aを循環する冷媒と熱媒体循環回路Bを循環する熱媒体とが熱交換するようになっている。
次に、空気調和装置100が実行する各運転モードについて説明する。この空気調和装置100は、各室内機2からの指示に基づいて、その室内機2で冷房運転或いは暖房運転が可能になっている。つまり、空気調和装置100は、室内機2の全部で同一運転をすることができるとともに、室内機2のそれぞれで異なる運転をすることができるようになっている。
空気調和装置100が実行する運転モードには、駆動している室内機2の全てが冷房運転を実行する全冷房運転モード、駆動している室内機2の全てが暖房運転を実行する全暖房運転モード、冷房負荷の方が大きい冷房主体運転モード、及び、暖房負荷の方が大きい暖房主体運転モードがある。以下に、各運転モードについて、冷媒及び熱媒体の流れとともに説明する。
[全冷房運転モード]
図3は、図2に示す空気調和装置100の全冷房運転時の冷媒及び熱媒体の流れを説明する図である。この図3では、利用側熱交換器26a及び利用側熱交換器26bでのみ冷熱負荷が発生している場合を例に全冷房運転モードについて説明する。なお、図3では、太線で表された配管が冷媒(冷媒及び熱媒体)の流れる配管を示している。また、図3では、冷媒の流れ方向を実線矢印で、熱媒体の流れ方向を破線矢印で示している。
図3に示す全冷房運転モードの場合、室外機1では、第1冷媒流路切替装置11を、圧縮機10から吐出された冷媒を熱源側熱交換器12へ流入させるように切り替える。熱媒体変換機3では、ポンプ21a及びポンプ21bを駆動させ、熱媒体流量調整装置25a及び熱媒体流量調整装置25bを開放し、熱媒体流量調整装置25c及び熱媒体流量調整装置25dを全閉とし、熱媒体間熱交換器15a及び熱媒体間熱交換器15bのそれぞれと利用側熱交換器26a及び利用側熱交換器26bとの間を熱媒体が循環するようにしている。
まず始めに、冷媒循環回路Aにおける冷媒の流れについて説明する。
低温低圧の冷媒が圧縮機10によって圧縮され、高温高圧のガス冷媒となって吐出される。圧縮機10から吐出された高温高圧のガス冷媒は、第1冷媒流路切替装置11を介して熱源側熱交換器12に流入する。そして、熱源側熱交換器12で室外空気に放熱しながら凝縮液化し、高圧の液冷媒となる。熱源側熱交換器12から流出した高圧の液冷媒は、逆止弁13aを通って、分岐部27aを介して、室外機1から流出し、冷媒配管4を通って熱媒体変換機3に流入する。熱媒体変換機3に流入した高圧の気液二相冷媒は、開閉装置17aを経由した後に分岐されて絞り装置16a及び絞り装置16bで膨張させられて、低温低圧の二相冷媒となる。
この二相冷媒は、蒸発器として作用する熱媒体間熱交換器15a及び熱媒体間熱交換器15bのそれぞれに流入し、熱媒体循環回路Bを循環する熱媒体から吸熱することで、熱媒体を冷却しながら、低温低圧のガス冷媒となる。熱媒体間熱交換器15a及び熱媒体間熱交換器15bから流出したガス冷媒は、第2冷媒流路切替装置18a及び第2冷媒流路切替装置18bを介して熱媒体変換機3から流出し、冷媒配管4を通って再び室外機1へ流入する。室外機1に流入した冷媒は、分岐部27bを介して、逆止弁13dを通って、第1冷媒流路切替装置11及びアキュムレータ19を介して、圧縮機10へ再度吸入される。
このとき、絞り装置16aは、第3温度センサ35aで検出された温度と第3温度センサ35bで検出された温度との差として得られるスーパーヒート(過熱度)が一定になるように開度が制御される。同様に、絞り装置16bは、第3温度センサ35cで検出された温度と第3温度センサ35dで検出された温度との差として得られるスーパーヒートが一定になるように開度が制御される。また、開閉装置17aは開、開閉装置17bは閉となっている。
[全冷房運転モードのp−h線図]
図4は、図3に示す全冷房運転時におけるp−h線図(圧力−エンタルピ線図)である。このモードでのインジェクションの動作を図3及び図4のp−h線図により説明する。
圧縮機10に吸入され、圧縮機10で圧縮された冷媒は、熱源側熱交換器12にて凝縮されて高圧の液冷媒となる(図4の点J)。この高圧の液冷媒は、逆止弁13aを介して、分岐部27aに至る。
インジェクションを行う場合には、開閉装置24を開とし、分岐部27aで分岐した高圧の液冷媒の一部を、開閉装置24及び分岐配管4dを介して、吸入インジェクション配管4cに流入させる。吸入インジェクション配管4cに流入した高圧の液冷媒は、絞り装置14bによって減圧されて低温低圧の気液二相冷媒となり(図4の点K)、圧縮機10とアキュムレータ19とをつなぐ冷媒配管に流入する。
また、分岐部27aで分岐した高圧の液冷媒の残りは、熱媒体変換機3に流入し、絞り装置16で減圧させられて低圧の気液二相冷媒となり、さらに、蒸発器として機能する熱媒体間熱交換器15に流入して低温低圧のガス冷媒となる。その後、この低温低圧のガス冷媒は、室外機1に流入して、アキュムレータ19に流入する。
吸入インジェクション配管4cから流出した低温低圧の気液二相冷媒と、アキュムレータ19から流出した低温低圧のガス冷媒とは、圧縮機10の吸入側に接続される冷媒配管4で合流し(図4の点H)、圧縮機10に吸入される。圧縮機10に吸入された低温低圧の気液二相冷媒は、圧縮機10の密閉容器及びモータで加熱されて蒸発し、インジェクションを行わない場合よりも温度の低い低温低圧のガス冷媒になり、圧縮機10の圧縮室に吸入され、再び圧縮機10から吐出される(図4の点I)。
なお、インジェクションを行わない場合には、開閉装置24を閉とし、分岐部27aで分岐した高圧の液冷媒は、絞り装置16で減圧させられて低圧の気液二相冷媒となり、蒸発器として機能する熱媒体間熱交換器15に流入して低温低圧のガス冷媒となり、アキュムレータ19を介して圧縮機10に吸入される(図4の点F)。この低温低圧のガス冷媒は、圧縮機10の密閉容器及びモータで加熱され、インジェクションを行う場合よりも温度の高い低温低圧のガス冷媒となり、圧縮機10の圧縮室に吸入され、再び圧縮機10から吐出される(図4の点G)。
そして、インジェクションを行う場合の圧縮機10から吐出される冷媒温度(図4の点I)は、インジェクションを行わない場合の圧縮機10から吐出される冷媒温度(図4の点G)に対して低下している。このように、空気調和装置100は、圧縮機10の吐出冷媒温度が高温になる冷媒(たとえばR32など)を採用しても、圧縮機10の吐出冷媒温度を低下させることができ、空気調和装置100の動作の安定性を向上させることができる。
なお、分岐配管4dの開閉装置24から逆流防止装置20に至る流路の冷媒は高圧冷媒であり、熱媒体変換機3から冷媒配管4を経由して室外機1に戻り、分岐部27bに至る冷媒は低圧冷媒である。逆流防止装置20の作用により、分岐配管4dの高圧冷媒が分岐部27bの低圧冷媒と混合することが防止されている。絞り装置14aは、冷媒が流れないので、任意の開度に設定しておいてよい。絞り装置14bは、吐出冷媒温度検出装置37が検出する圧縮機10の吐出冷媒温度が高くなり過ぎないように、開度(絞り量)を制御するとよい。
次に、熱媒体循環回路Bにおける熱媒体の流れについて説明する。
全冷房運転モードでは、熱媒体間熱交換器15a及び熱媒体間熱交換器15bの双方で冷媒の冷熱が熱媒体に伝えられ、冷やされた熱媒体がポンプ21a及びポンプ21bによって配管5内を流動させられることになる。ポンプ21a及びポンプ21bで加圧されて流出した熱媒体は、第2熱媒体流路切替装置23a及び第2熱媒体流路切替装置23bを介して、利用側熱交換器26a及び利用側熱交換器26bに流入する。そして、熱媒体が利用側熱交換器26a及び利用側熱交換器26bで室内空気から吸熱することで、室内空間7の冷房を行なう。
それから、熱媒体は、利用側熱交換器26a及び利用側熱交換器26bから流出して熱媒体流量調整装置25a及び熱媒体流量調整装置25bに流入する。このとき、熱媒体流量調整装置25a及び熱媒体流量調整装置25bの作用によって熱媒体の流量が室内にて必要とされる空調負荷を賄うのに必要な流量に制御されて利用側熱交換器26a及び利用側熱交換器26bに流入するようになっている。熱媒体流量調整装置25a及び熱媒体流量調整装置25bから流出した熱媒体は、第1熱媒体流路切替装置22a及び第1熱媒体流路切替装置22bを通って、熱媒体間熱交換器15a及び熱媒体間熱交換器15bへ流入し、再びポンプ21a及びポンプ21bへ吸い込まれる。
なお、利用側熱交換器26の配管5内では、第2熱媒体流路切替装置23から熱媒体流量調整装置25を経由して第1熱媒体流路切替装置22へ至る向きに熱媒体が流れている。また、室内空間7にて必要とされる空調負荷は、第1温度センサ31aで検出された温度、或いは、第1温度センサ31bで検出された温度と第2温度センサ34で検出された温度との差を目標値に保つように制御することにより、賄うことができる。熱媒体間熱交換器15の出口温度は、第1温度センサ31a又は第1温度センサ31bのどちらの温度を使用してもよいし、これらの平均温度を使用してもよい。このとき、第1熱媒体流路切替装置22及び第2熱媒体流路切替装置23は、熱媒体間熱交換器15a及び熱媒体間熱交換器15bの双方へ流れる流路が確保されるように、中間的な開度にしている。
[全暖房運転モード]
図5は、図2に示す空気調和装置100の全暖房運転時の冷媒及び熱媒体の流れを説明する図である。この図5では、利用側熱交換器26a及び利用側熱交換器26bでのみ温熱負荷が発生している場合を例に全暖房運転モードについて説明する。なお、図5では、太線で表された配管が冷媒(冷媒及び熱媒体)の流れる配管を示している。また、図5では、冷媒の流れ方向を実線矢印で、熱媒体の流れ方向を破線矢印で示している。
図5に示す全暖房運転モードの場合、室外機1では、第1冷媒流路切替装置11を、圧縮機10から吐出された冷媒を熱源側熱交換器12を経由させずに熱媒体変換機3へ流入させるように切り替える。熱媒体変換機3では、ポンプ21a及びポンプ21bを駆動させ、熱媒体流量調整装置25a及び熱媒体流量調整装置25bを開放し、熱媒体流量調整装置25c及び熱媒体流量調整装置25dを全閉とし、熱媒体間熱交換器15a及び熱媒体間熱交換器15bのそれぞれと利用側熱交換器26a及び利用側熱交換器26bとの間を熱媒体が循環するようにしている。
まず始めに、冷媒循環回路Aにおける冷媒の流れについて説明する。
低温低圧の冷媒が圧縮機10によって圧縮され、高温高圧のガス冷媒となって吐出される。圧縮機10から吐出された高温高圧のガス冷媒は、第1冷媒流路切替装置11を通り、第1接続配管4aを導通し、逆止弁13b、分岐部27aを通過し、室外機1から流出する。室外機1から流出した高温高圧のガス冷媒は、冷媒配管4を通って熱媒体変換機3に流入する。熱媒体変換機3に流入した高温高圧のガス冷媒は、分岐されて第2冷媒流路切替装置18a及び第2冷媒流路切替装置18bを通って、熱媒体間熱交換器15a及び熱媒体間熱交換器15bのそれぞれに流入する。
熱媒体間熱交換器15a及び熱媒体間熱交換器15bに流入した高温高圧のガス冷媒は、熱媒体循環回路Bを循環する熱媒体に放熱しながら凝縮液化し、高圧の液冷媒となる。熱媒体間熱交換器15a及び熱媒体間熱交換器15bから流出した液冷媒は、絞り装置16a及び絞り装置16bで膨張させられて、中温中圧の二相冷媒となる。この二相冷媒は、開閉装置17bを通って、熱媒体変換機3から流出し、冷媒配管4を通って再び室外機1へ流入する。室外機1に流入した冷媒は、分岐部27bを介して、第2接続配管4bに流れ込んで絞り装置14aを通り、絞り装置14aにより絞られて、低温低圧の二相冷媒となり、逆止弁13cを通過して、蒸発器として作用する熱源側熱交換器12に流入する。
そして、熱源側熱交換器12に流入した冷媒は、熱源側熱交換器12で室外空気から吸熱して、低温低圧のガス冷媒となる。熱源側熱交換器12から流出した低温低圧のガス冷媒は、第1冷媒流路切替装置11及びアキュムレータ19を介して圧縮機10へ再度吸入される。
このとき、絞り装置16aは、圧力センサ36で検出された圧力を飽和温度に換算した値と第3温度センサ35bで検出された温度との差として得られるサブクール(過冷却度)が一定になるように開度が制御される。同様に、絞り装置16bは、圧力センサ36で検出された圧力を飽和温度に換算した値と第3温度センサ35dで検出された温度との差として得られるサブクールが一定になるように開度が制御される。また、開閉装置17aは閉、開閉装置17bは開となっている。なお、熱媒体間熱交換器15の中間位置の温度が測定できる場合は、その中間位置での温度を圧力センサ36の代わりに用いてもよく、安価にシステムを構成できる。
[全暖房運転モードのp−h線図]
図6は、図5に示す全暖房運転時におけるp−h線図である。このモードでのインジェクションの動作を図5及び図6のp−h線図により説明する。
圧縮機10に吸入され、圧縮機10で圧縮された冷媒は、室外機1から流出して熱媒体変換機3の熱媒体間熱交換器15で凝縮されて中温となり、絞り装置16で減圧されて中圧となり(図6の点J)、熱媒体変換機3から冷媒配管4を経由して室外機1に流入する。室外機1に流入した中温中圧の二相冷媒は、分岐部27bに至る。
インジェクションを行う場合には、絞り装置14bを所定の開度で開き、分岐部27bで分岐した中温中圧の冷媒の一部を、分岐配管4dを介して、吸入インジェクション配管4cに流入させる。吸入インジェクション配管4cに流入した中温中圧の冷媒は、絞り装置14bによって減圧されて低温低圧の気液二相冷媒となり(図6の点K)、圧縮機10とアキュムレータ19とをつなぐ冷媒配管に流入する。
また、分岐部27bで分岐した中温中圧の冷媒の残りは、絞り装置14aで減圧させられて低圧の気液二相冷媒となり、さらに、蒸発器として機能する熱源側熱交換器12に流入して低温低圧のガス冷媒となる。その後、この低温低圧のガス冷媒はアキュムレータ19に流入する。
吸入インジェクション配管4cから流出した低温低圧の気液二相冷媒と、アキュムレータ19から流出した低温低圧のガス冷媒とは、圧縮機10の吸入側に接続される冷媒配管4で合流し(図6の点H)、圧縮機10に吸入される。圧縮機10に吸入された低温低圧の気液二相冷媒は、圧縮機10の密閉容器及びモータで加熱されて蒸発し、インジェクションを行わない場合よりも温度の低い低温低圧のガス冷媒になり、圧縮機10の圧縮室に吸入され、再び圧縮機10から吐出される(図4の点I)。
なお、インジェクションを行わない場合には、絞り装置14bを閉とし、分岐部27bを通過した中温中圧の気液二相冷媒は、絞り装置14aで減圧させられて低圧の気液二相冷媒となり、蒸発器として機能する熱源側熱交換器12に流入して低温低圧のガス冷媒となり、アキュムレータ19を介して圧縮機10に吸入される(図6の点F)。この低温低圧のガス冷媒は、圧縮機10の密閉容器及びモータで加熱され、インジェクションを行う場合よりも温度の高い低温低圧のガス冷媒となり、圧縮機10の圧縮室に吸入され、再び圧縮機10から吐出される(図6の点G)。
そして、インジェクションを行う場合の圧縮機10から吐出される冷媒温度(図6の点I)は、インジェクションを行わない場合の圧縮機10から吐出される冷媒温度(図6の点G)に対して低下している。このように、空気調和装置100は、圧縮機10の吐出冷媒温度が高温になる冷媒(たとえばR32など)を採用しても、圧縮機10の吐出冷媒温度を低下させることができ、空気調和装置100の動作の安定性を向上させることができる。
なお、開閉装置24を閉とし、分岐部27aから高圧状態の冷媒が、逆流防止装置20を通って来た中圧状態の冷媒と混合するのを防止している。また、絞り装置14aは、中圧検出装置32で検出した中圧が一定値になるように制御すれば、絞り装置14bによる吐出冷媒温度の制御が安定する。さらに、絞り装置14bは、吐出冷媒温度検出装置37が検出する圧縮機10の吐出冷媒温度が高くなり過ぎないように、開度(絞り量)が制御される。
また、全暖房運転モードにおいては、熱媒体間熱交換器15a及び熱媒体間熱交換器15bは、共に熱媒体を加熱しているため、絞り装置16a及び絞り装置16bでサブクールが制御できる範囲内であれば、絞り装置14aの上流側の冷媒の圧力(中圧)が高めになるように制御しても構わない。中圧が高めになるように制御すると、圧縮室内との圧力との差圧を大きくできるため、圧縮室の吸入側にインジェクションする冷媒の量を多くすることができ、外気温度が低い場合においても、吐出冷媒温度を低下させるために十分なインジェクション流量を圧縮機10に供給することができる。
次に、熱媒体循環回路Bにおける熱媒体の流れについて説明する。
全暖房運転モードでは、熱媒体間熱交換器15a及び熱媒体間熱交換器15bの双方で冷媒の温熱が熱媒体に伝えられ、暖められた熱媒体がポンプ21a及びポンプ21bによって配管5内を流動させられることになる。ポンプ21a及びポンプ21bで加圧されて流出した熱媒体は、第2熱媒体流路切替装置23a及び第2熱媒体流路切替装置23bを介して、利用側熱交換器26a及び利用側熱交換器26bに流入する。そして、熱媒体が利用側熱交換器26a及び利用側熱交換器26bで室内空気に放熱することで、室内空間7の暖房を行なう。
それから、熱媒体は、利用側熱交換器26a及び利用側熱交換器26bから流出して熱媒体流量調整装置25a及び熱媒体流量調整装置25bに流入する。このとき、熱媒体流量調整装置25a及び熱媒体流量調整装置25bの作用によって熱媒体の流量が室内にて必要とされる空調負荷を賄うのに必要な流量に制御されて利用側熱交換器26a及び利用側熱交換器26bに流入するようになっている。熱媒体流量調整装置25a及び熱媒体流量調整装置25bから流出した熱媒体は、第1熱媒体流路切替装置22a及び第1熱媒体流路切替装置22bを通って、熱媒体間熱交換器15a及び熱媒体間熱交換器15bへ流入し、再びポンプ21a及びポンプ21bへ吸い込まれる。
なお、利用側熱交換器26の配管5内では、第2熱媒体流路切替装置23から熱媒体流量調整装置25を経由して第1熱媒体流路切替装置22へ至る向きに熱媒体が流れている。また、室内空間7にて必要とされる空調負荷は、第1温度センサ31aで検出された温度、或いは、第1温度センサ31bで検出された温度と第2温度センサ34で検出された温度との差を目標値に保つように制御することにより、賄うことができる。熱媒体間熱交換器15の出口温度は、第1温度センサ31a又は第1温度センサ31bのどちらの温度を使用してもよいし、これらの平均温度を使用してもよい。
このとき、第1熱媒体流路切替装置22及び第2熱媒体流路切替装置23は、熱媒体間熱交換器15a及び熱媒体間熱交換器15bの双方へ流れる流路が確保されるように、中間的な開度にしている。また、本来、利用側熱交換器26aは、その入口と出口の温度差で制御すべきであるが、利用側熱交換器26の入口側の熱媒体温度は、第1温度センサ31bで検出された温度とほとんど同じ温度であり、第1温度センサ31bを使用することにより温度センサの数を減らすことができ、安価にシステムを構成できる。
[冷房主体運転モード]
図7は、図2に示す空気調和装置100の冷房主体運転時の冷媒及び熱媒体の流れを説明する図である。この図7では、利用側熱交換器26aで冷熱負荷が発生し、利用側熱交換器26bで温熱負荷が発生している場合を例に冷房主体運転モードについて説明する。なお、図7では、太線で表された配管が冷媒(冷媒及び熱媒体)の循環する配管を示している。また、図7では、冷媒の流れ方向を実線矢印で、熱媒体の流れ方向を破線矢印で示している。
図7に示す冷房主体運転モードの場合、室外機1では、第1冷媒流路切替装置11を、圧縮機10から吐出された冷媒を熱源側熱交換器12へ流入させるように切り替える。熱媒体変換機3では、ポンプ21a及びポンプ21bを駆動させ、熱媒体流量調整装置25a及び熱媒体流量調整装置25bを開放し、熱媒体流量調整装置25c及び熱媒体流量調整装置25dを全閉とし、熱媒体間熱交換器15aと利用側熱交換器26aとの間を、熱媒体間熱交換器15bと利用側熱交換器26bとの間を、それぞれ熱媒体が循環するようにしている。
まず始めに、冷媒循環回路Aにおける冷媒の流れについて説明する。
低温低圧の冷媒が圧縮機10によって圧縮され、高温高圧のガス冷媒となって吐出される。圧縮機10から吐出された高温高圧のガス冷媒は、第1冷媒流路切替装置11を介して熱源側熱交換器12に流入する。そして、熱源側熱交換器12で室外空気に放熱しながら凝縮し、二相冷媒となる。熱源側熱交換器12から流出した二相冷媒は、逆止弁13aを通って、分岐部27aを介して、室外機1から流出し、冷媒配管4を通って熱媒体変換機3に流入する。熱媒体変換機3に流入した二相冷媒は、第2冷媒流路切替装置18bを通って凝縮器として作用する熱媒体間熱交換器15bに流入する。
熱媒体間熱交換器15bに流入した二相冷媒は、熱媒体循環回路Bを循環する熱媒体に放熱しながら凝縮液化し、液冷媒となる。熱媒体間熱交換器15bから流出した液冷媒は、絞り装置16bで膨張させられて低圧二相冷媒となる。この低圧二相冷媒は、絞り装置16aを介して蒸発器として作用する熱媒体間熱交換器15aに流入する。熱媒体間熱交換器15aに流入した低圧二相冷媒は、熱媒体循環回路Bを循環する熱媒体から吸熱することで、熱媒体を冷却しながら、低圧のガス冷媒となる。このガス冷媒は、熱媒体間熱交換器15aから流出し、第2冷媒流路切替装置18aを介して熱媒体変換機3から流出し、冷媒配管4を通って再び室外機1へ流入する。室外機1に流入した冷媒は、分岐部27bを介して、逆止弁13dを通って、第1冷媒流路切替装置11及びアキュムレータ19を介して、圧縮機10へ再度吸入される。
このとき、絞り装置16bは、第3温度センサ35aで検出された温度と第3温度センサ35bで検出された温度との差として得られるスーパーヒートが一定になるように開度が制御される。また、絞り装置16aは全開、開閉装置17a、17bは閉となっている。なお、絞り装置16bは、圧力センサ36で検出された圧力を飽和温度に換算した値と第3温度センサ35dで検出された温度との差として得られるサブクールが一定になるように開度を制御してもよい。また、絞り装置16bを全開とし、絞り装置16aでスーパーヒート又はサブクールを制御するようにしてもよい。
[冷房主体運転モードのp−h線図]
図8は、図7に示す冷房主体運転時におけるp−h線図である。このモードでのインジェクションの動作を図7及び図8のp−h線図により説明する。
圧縮機10に吸入され、圧縮機10で圧縮された冷媒は、熱源側熱交換器12にて凝縮されて高圧の気液二相冷媒となる(図8の点J)。この高圧の気液二相冷媒は、逆止弁13aを介して、分岐部27aに至る。
インジェクションを行う場合には、開閉装置24を開とし、分岐部27aで分岐した高圧の気液二相冷媒の一部を、開閉装置24及び分岐配管4dを介して、吸入インジェクション配管4cに流入させる。吸入インジェクション配管4cに流入した高圧の気液二相冷媒は、絞り装置14bによって減圧されて低温低圧の気液二相冷媒となり(図8の点K)、圧縮機10とアキュムレータ19とをつなぐ冷媒配管に流入する。
また、分岐部27aで分岐した高圧の気液二相冷媒の残りは、熱媒体変換機3に流入して絞り装置16で減圧させられて低圧の気液二相冷媒となり、さらに、蒸発器として機能する熱媒体間熱交換器15に流入して低温低圧のガス冷媒となる。その後、この低温低圧のガス冷媒は、室外機1に戻りアキュムレータ19に流入する。
吸入インジェクション配管4cから流出した低温低圧の気液二相冷媒と、アキュムレータ19から流出した低温低圧のガス冷媒とは、圧縮機10の吸入側に接続される冷媒配管4で合流し(図8の点H)、圧縮機10に吸入される。圧縮機10に吸入された低温低圧の気液二相冷媒は、圧縮機10の密閉容器及びモータで加熱されて蒸発し、インジェクションを行わない場合よりも温度の低い低温低圧のガス冷媒になり、圧縮機10の圧縮室に吸入され、再び圧縮機10から吐出される(図8の点I)。
なお、インジェクションを行わない場合には、開閉装置24を閉とし、分岐部27aで分岐した高圧の気液二相冷媒は、凝縮器として機能する熱媒体間熱交換器15bを介して絞り装置16b及び絞り装置16aに流入して低圧の気液二相冷媒となり、蒸発器として機能する熱媒体間熱交換器15aに流入して低温低圧のガス冷媒となった後、アキュムレータ19を介して圧縮機10に吸入される(図8の点F)。この低温低圧のガス冷媒は、圧縮機10の密閉容器及びモータで加熱されて、インジェクションを行う場合よりも温度の高い低温低圧のガス冷媒となり、圧縮機10の圧縮室に吸入され、再び圧縮機10から吐出される(図8の点G)。
そして、インジェクションを行う場合の圧縮機10から吐出される冷媒温度(図8の点I)は、インジェクションを行わない場合の圧縮機10から吐出される冷媒温度(図8の点G)に対して低下している。このように、空気調和装置100は、圧縮機10の吐出冷媒温度が高温になる冷媒(たとえばR32など)を採用しても、圧縮機10の吐出冷媒温度を低下させることができ、空気調和装置100の動作の安定性を向上させることができる。
なお、分岐配管4dの開閉装置24から逆流防止装置20に至る流路の冷媒は高圧冷媒であり、熱媒体変換機3から冷媒配管4を経由して室外機1に戻り、分岐部27bに至る冷媒は低圧冷媒である。逆流防止装置20の作用により、分岐配管4dの高圧冷媒が分岐部27bの低圧冷媒と混合することが防止されている。絞り装置14aは、冷媒が流れないので、任意の開度に設定しておいてよい。絞り装置14bは、吐出冷媒温度検出装置37が検出する圧縮機10の吐出冷媒温度が高くなり過ぎないように、開度(絞り量)を制御するとよい。
次に、熱媒体循環回路Bにおける熱媒体の流れについて説明する。
冷房主体運転モードでは、熱媒体間熱交換器15bで冷媒の温熱が熱媒体に伝えられ、暖められた熱媒体がポンプ21bによって配管5内を流動させられることになる。また、冷房主体運転モードでは、熱媒体間熱交換器15aで冷媒の冷熱が熱媒体に伝えられ、冷やされた熱媒体がポンプ21aによって配管5内を流動させられることになる。ポンプ21a及びポンプ21bで加圧されて流出した熱媒体は、第2熱媒体流路切替装置23a及び第2熱媒体流路切替装置23bを介して、利用側熱交換器26a及び利用側熱交換器26bに流入する。
利用側熱交換器26bでは熱媒体が室内空気に放熱することで、室内空間7の暖房を行なう。また、利用側熱交換器26aでは熱媒体が室内空気から吸熱することで、室内空間7の冷房を行なう。このとき、熱媒体流量調整装置25a及び熱媒体流量調整装置25bの作用によって熱媒体の流量が室内にて必要とされる空調負荷を賄うのに必要な流量に制御されて利用側熱交換器26a及び利用側熱交換器26bに流入するようになっている。利用側熱交換器26bを通過し若干温度が低下した熱媒体は、熱媒体流量調整装置25b及び第1熱媒体流路切替装置22bを通って、熱媒体間熱交換器15bへ流入し、再びポンプ21bへ吸い込まれる。利用側熱交換器26aを通過し若干温度が上昇した熱媒体は、熱媒体流量調整装置25a及び第1熱媒体流路切替装置22aを通って、熱媒体間熱交換器15aへ流入し、再びポンプ21aへ吸い込まれる。
この間、暖かい熱媒体と冷たい熱媒体とは、第1熱媒体流路切替装置22及び第2熱媒体流路切替装置23の作用により、混合することなく、それぞれ温熱負荷、冷熱負荷がある利用側熱交換器26へ導入される。なお、利用側熱交換器26の配管5内では、暖房側、冷房側ともに、第2熱媒体流路切替装置23から熱媒体流量調整装置25を経由して第1熱媒体流路切替装置22へ至る向きに熱媒体が流れている。また、室内空間7にて必要とされる空調負荷は、暖房側においては第1温度センサ31bで検出された温度と第2温度センサ34で検出された温度との差を、冷房側においては第2温度センサ34で検出された温度と第1温度センサ31aで検出された温度との差を目標値に保つように制御することにより、賄うことができる。
[暖房主体運転モード]
図9は、図2に示す空気調和装置100の全暖房運転時の冷媒及び熱媒体の流れを説明する図である。この図9では、利用側熱交換器26aで温熱負荷が発生し、利用側熱交換器26bで冷熱負荷が発生している場合を例に暖房主体運転モードについて説明する。なお、図9では、太線で表された配管が冷媒(冷媒及び熱媒体)の循環する配管を示している。また、図9では、冷媒の流れ方向を実線矢印で、熱媒体の流れ方向を破線矢印で示している。
図9に示す暖房主体運転モードの場合、室外機1では、第1冷媒流路切替装置11を、圧縮機10から吐出された冷媒を熱源側熱交換器12を経由させずに熱媒体変換機3へ流入させるように切り替える。熱媒体変換機3では、ポンプ21a及びポンプ21bを駆動させ、熱媒体流量調整装置25a及び熱媒体流量調整装置25bを開放し、熱媒体流量調整装置25c及び熱媒体流量調整装置25dを全閉とし、熱媒体間熱交換器15a及び熱媒体間熱交換器15bのそれぞれと利用側熱交換器26a及び利用側熱交換器26bとの間を熱媒体が循環するようにしている。
まず始めに、冷媒循環回路Aにおける冷媒の流れについて説明する。
低温低圧の冷媒が圧縮機10によって圧縮され、高温高圧のガス冷媒となって吐出される。圧縮機10から吐出された高温高圧のガス冷媒は、第1冷媒流路切替装置11を通り、第1接続配管4aを導通し、逆止弁13bを通過し、分岐部27aを介して、室外機1から流出する。室外機1から流出した高温高圧のガス冷媒は、冷媒配管4を通って熱媒体変換機3に流入する。熱媒体変換機3に流入した高温高圧のガス冷媒は、第2冷媒流路切替装置18bを通って凝縮器として作用する熱媒体間熱交換器15bに流入する。
熱媒体間熱交換器15bに流入したガス冷媒は、熱媒体循環回路Bを循環する熱媒体に放熱しながら凝縮液化し、液冷媒となる。熱媒体間熱交換器15bから流出した液冷媒媒は、絞り装置16bで膨張させられて中圧二相冷媒となる。この中圧二相冷媒は、絞り装置16aを介して蒸発器として作用する熱媒体間熱交換器15aに流入する。熱媒体間熱交換器15aに流入した中圧二相冷媒は、熱媒体循環回路Bを循環する熱媒体から吸熱することで蒸発し、熱媒体を冷却する。この熱媒体間熱交換器15aを通過した中圧二相冷媒は、熱媒体間熱交換器15aから流出し、第2冷媒流路切替装置18aを介して熱媒体変換機3から流出し、冷媒配管4を通って再び室外機1へ流入する。
室外機1に流入した冷媒は、分岐部27bを介して、第2接続配管4bに流れ込んで絞り装置14aを通り、絞り装置14aにより絞られて、低温低圧の二相冷媒となり、逆止弁13cを通って、蒸発器として作用する熱源側熱交換器12に流入する。そして、熱源側熱交換器12に流入した冷媒は、熱源側熱交換器12で室外空気から吸熱して、低温低圧のガス冷媒となる。熱源側熱交換器12から流出した低温低圧のガス冷媒は、第1冷媒流路切替装置11及びアキュムレータ19を介して圧縮機10へ再度吸入される。
このとき、絞り装置16bは、圧力センサ36で検出された圧力を飽和温度に換算した値と第3温度センサ35bで検出された温度との差として得られるサブクールが一定になるように開度が制御される。また、絞り装置16aは全開、開閉装置17aは閉、開閉装置17bは閉となっている。なお、絞り装置16bを全開とし、絞り装置16aでサブクールを制御するようにしてもよい。
[暖房主体運転モードのp−h線図]
図10は、図9に示す暖房主体運転時におけるp−h線図である。このモードでのインジェクションの動作を図9及び図10のp−h線図により説明する。
圧縮機10に吸入され、圧縮機10で圧縮された冷媒は、室外機1から流出して熱媒体変換機3の熱媒体間熱交換器15aで凝縮され、絞り装置16a及び絞り装置16bで減圧されて中圧となり、熱媒体間熱交換器15bで蒸発して中温となり(図10の点J)、熱媒体変換機3から冷媒配管4を経由して室外機1に流入する。室外機1に流入した中温中圧の冷媒は、分岐部27bに至る。
吸入インジェクションを行う場合には、絞り装置14bを所定の開度で開き、分岐部27bで分岐した中温中圧の気液二相冷媒の一部を、分岐配管4dを介して、吸入インジェクション配管4cに流入させる。吸入インジェクション配管4cに流入した中温中圧の冷媒は、絞り装置14bによって減圧されて低温低圧の気液二相冷媒となり(図10の点K)、圧縮機10とアキュムレータ19とをつなぐ冷媒配管に流入する。
また、分岐部27bで分岐した中温中圧の気液二相冷媒の残りは、絞り装置14aで減圧させられて低圧の気液二相冷媒となり、さらに、蒸発器として機能する熱源側熱交換器12に流入して低温低圧のガス冷媒となる。その後、この低温低圧のガス冷媒はアキュムレータ19に流入する。
吸入インジェクション配管4cから流出した低温低圧の気液二相冷媒と、アキュムレータ19から流出した低温低圧のガス冷媒とは、圧縮機10の吸入側に接続される冷媒配管4で合流し(図10の点H)、圧縮機10に吸入される。この低温低圧の気液二相冷媒は、圧縮機10の密閉容器及びモータで加熱されて蒸発し、インジェクションを行わない場合よりも温度の低い低温低圧のガス冷媒になり、圧縮機10の圧縮室に吸入され、再び圧縮機10から吐出される(図10の点I)。
なお、インジェクションを行わない場合には、絞り装置14bを閉とし、分岐部27bを通過した中温中圧の気液2相冷媒は、絞り装置14aで減圧させられて低圧の気液二相冷媒となり、蒸発器として機能する熱源側熱交換器12に流入して低温低圧のガス冷媒となり、アキュムレータ19を介して圧縮機10に吸入される(図10の点F)。この低温低圧のガス冷媒は、圧縮機10の密閉容器及びモータで加熱されて、インジェクションを行う場合よりも温度の高い低温低圧のガス冷媒となり、圧縮機10の圧縮室に吸入され、再び圧縮機10から吐出される(図10の点G)。
そして、インジェクションを行う場合の圧縮機10から吐出される冷媒温度(図10の点I)は、インジェクションを行わない場合の圧縮機10から吐出される冷媒温度(図10の点G)に対して低下している。このように、空気調和装置100は、圧縮機10の吐出冷媒温度が高温になる冷媒(たとえばR32など)を採用しても、圧縮機10の吐出冷媒温度を低下させることができ、空気調和装置100の動作の安定性を向上させることができる。
なお、開閉装置24は閉となっており、分岐部27aから高圧状態の冷媒が、逆流防止装置20を通って来た中圧状態の冷媒と混合するのを防止している。また、絞り装置14aは、中圧検出装置32で検出した中圧が一定値になるように制御すれば、絞り装置14bによる吐出冷媒温度の制御が安定する。さらに、絞り装置14bは、吐出冷媒温度検出装置37が検出する圧縮機10の吐出冷媒温度が高くなり過ぎないように、開度(絞り量)が制御される。
また、暖房主体運転モードでは、熱媒体間熱交換器15bにおいて、熱媒体を冷やす必要があり、絞り装置14aの上流側の冷媒の圧力(中圧)をあまり高く制御することができない。中圧を高くすることができないと、圧縮機10の吸入側にインジェクションする冷媒の流量が少なくなり、吐出冷媒温度の低下分が小さくなってしまう。しかし、熱媒体の凍結を防止する必要があるため、外気温度が低い時、例えば外気温度が−5℃以下、は、暖房主体運転モードには入らないようになっており、外気温度が高い時は、吐出冷媒温度があまり高くなく、吸入インジェクションの流量もそれほど多くなくてよいため、問題はない。絞り装置14aにより、熱媒体間熱交換器15bでの熱媒体の冷却もでき、吸入インジェクション流量も吐出冷媒温度を低下させるために十分な量を供給できる中圧に設定することにより安全に運転することができる。
次に、熱媒体循環回路Bにおける熱媒体の流れについて説明する。
暖房主体運転モードでは、熱媒体間熱交換器15bで冷媒の温熱が熱媒体に伝えられ、暖められた熱媒体がポンプ21bによって配管5内を流動させられることになる。また、暖房主体運転モードでは、熱媒体間熱交換器15aで冷媒の冷熱が熱媒体に伝えられ、冷やされた熱媒体がポンプ21aによって配管5内を流動させられることになる。ポンプ21a及びポンプ21bで加圧されて流出した熱媒体は、第2熱媒体流路切替装置23a及び第2熱媒体流路切替装置23bを介して、利用側熱交換器26a及び利用側熱交換器26bに流入する。
利用側熱交換器26bでは熱媒体が室内空気から吸熱することで、室内空間7の冷房を行なう。また、利用側熱交換器26aでは熱媒体が室内空気に放熱することで、室内空間7の暖房を行なう。このとき、熱媒体流量調整装置25a及び熱媒体流量調整装置25bの作用によって熱媒体の流量が室内にて必要とされる空調負荷を賄うのに必要な流量に制御されて利用側熱交換器26a及び利用側熱交換器26bに流入するようになっている。利用側熱交換器26bを通過し若干温度が上昇した熱媒体は、熱媒体流量調整装置25b及び第1熱媒体流路切替装置22bを通って、熱媒体間熱交換器15aに流入し、再びポンプ21aへ吸い込まれる。利用側熱交換器26aを通過し若干温度が低下した熱媒体は、熱媒体流量調整装置25a及び第1熱媒体流路切替装置22aを通って、熱媒体間熱交換器15bへ流入し、再びポンプ21bへ吸い込まれる。
この間、暖かい熱媒体と冷たい熱媒体とは、第1熱媒体流路切替装置22及び第2熱媒体流路切替装置23の作用により、混合することなく、それぞれ温熱負荷、冷熱負荷がある利用側熱交換器26へ導入される。なお、利用側熱交換器26の配管5内では、暖房側、冷房側ともに、第2熱媒体流路切替装置23から熱媒体流量調整装置25を経由して第1熱媒体流路切替装置22へ至る向きに熱媒体が流れている。また、室内空間7にて必要とされる空調負荷は、暖房側においては第1温度センサ31bで検出された温度と第2温度センサ34で検出された温度との差を、冷房側においては第2温度センサ34で検出された温度と第1温度センサ31aで検出された温度との差を目標値に保つように制御することにより、賄うことができる。
なお、全冷房運転モード、全暖房運転モード、冷房主体運転モード、及び暖房主体運転モードを実行する際、熱負荷のない利用側熱交換器26(サーモオフを含む)へは熱媒体を流す必要がないため、熱媒体流量調整装置25により流路を閉じて、利用側熱交換器26へ熱媒体が流れないようにする。
すなわち、熱媒体流量調整装置25は、利用側熱交換器26で発生する熱負荷に応じて全開にするか、或いは全閉にするかの制御がなされる。
[圧縮機保護制御について]
図11は、実施の形態1に係る空気調和装置100の中圧制御と起動制御及び定常制御の動作を表すフローチャートである。なお、以下の説明においては、絞り装置14a及び絞り装置14bは、開度を連続的に変化させられるもの、たとえばステッピングモータ駆動の電子式膨張弁であるものとして説明する。
本実施の形態1に係る空気調和装置100は、圧縮機10への液冷媒のインエジェクションを、運転モードによらないで効果的に実施することができるように、中圧制御に利用される絞り装置14a及び圧縮機10の吐出温度制御に利用される絞り装置14bの制御(圧縮機保護制御)を実施することができる。
この圧縮機保護制御は、絞り装置14aによる中圧制御と、過渡的に圧縮機10の吐出冷媒温度が変化しない場合における絞り装置14bの定常制御と、過渡的に圧縮機10の吐出冷媒温度が上昇する場合における絞り装置14bの起動制御とに大別される。
なお、過渡的とは、圧縮機10の起動後或いは霜取り運転からの復帰後などのように圧縮機10の吐出冷媒温度が大きく上昇することを指している。
(中圧制御)
中圧制御を実施する目的としては、たとえば次のようなものがある。低外気温度である場合には、蒸発器として機能する熱源側熱交換器12の蒸発圧力が低下し、圧縮機10の吐出冷媒温度が非常に高温となる場合や圧縮機10に吸入される冷媒密度が低下することで、全暖房運転モード及び暖房主体運転モードの能力が低減する場合がある。
そこで、絞り装置14aの開度を調整する中圧制御を実施することで、絞り装置14aより上流側の冷媒を、ガス冷媒などよりも冷媒圧力が高く密度の大きい中圧冷媒としている。そして、この中圧冷媒を、吸入インジェクション配管4cに供給することで、低外気温時における圧縮機10の吐出冷媒温度の低減及び全暖房運転モード及び暖房主体運転モードの能力が低減を抑制している。
ここで、中圧について説明する。
全暖房運転モード時においては、熱源側熱交換器12から流出する冷媒を低圧冷媒と定義し、熱媒体間熱交換器15a、15bに供給する冷媒を高圧冷媒と定義する。このとき、中圧は、ここで述べた高圧よりも小さく、低圧よりも大きい圧力を指す。
暖房主体運転モード時においては、熱源側熱交換器12から流出する冷媒を低圧冷媒とし、熱媒体間熱交換器15bに供給される冷媒を高圧冷媒と定義する。中圧は、ここで述べた高圧よりも小さく、低圧よりも大きい圧力を指す。
中圧制御は、上述した冷媒循環回路Aの冷媒流れで説明したように、絞り装置14aの開度を調整して、絞り装置16で減圧される冷媒を中圧とする制御である。この中圧制御は、図11のステップA1に対応し、より詳しくは、後述の図12の制御方法で表されるものである。
中圧制御は、全暖房運転モード時において、絞り装置14aの開度を予め設定された目標値となるように開度を調整し、絞り装置14aよりも上流側であって絞り装置16a及び絞り装置16bの下流側の冷媒圧力を中圧とする制御である(図5参照)。
また、中圧制御は、暖房主体運転モード時において、絞り装置14aの開度を予め設定された目標値となるように開度を調整し、絞り装置14aよりも上流側であって絞り装置16bの下流側の冷媒圧力を中圧とする制御である(図9参照)。なお、絞り装置14aは、中圧検出装置32で検出される中圧が目標値となるように開度の制御がなされる。
さらに、中圧制御は、全冷房運転モード及び冷房主体運転モード時においては、熱源側熱交換器12から流出した高圧の気液二相冷媒が、分岐装置27a及び開閉装置24を介して吸入インジェクション配管4cに供給される。この吸入インジェクション配管4cに供給された冷媒は、絞り装置14bにより減圧される。そして、圧縮機10の吸入側に液冷媒が供給される。
なお、全冷房運転モード及び冷房主体運転モード時においては、熱源側熱交換器12から流出する冷媒が、絞り装置16を通過していないため、高圧となっている。このため、全冷房運転モード及び冷房主体運転モード時においては、絞り装置14aの開度に関して特に制御を行わず、固定開度(たとえば、全開開度)とし、絞り装置14bによって圧縮機10の吸入側に供給する冷媒を低圧としている。
(定常制御)
定常制御は、絞り装置14bの開度を制御して、圧縮機10の吐出部の冷媒が高温になることによる冷凍機の劣化や圧縮機10の破損するリスクを抑制する制御である。この定常制御は、圧縮機10の吐出冷媒温度が過渡的に上昇することがない場合に実施される。
なお、定常制御は、全冷房運転モード、全暖房運転モード、冷房主体運転モード、及び暖房主体運転モードで実施することができ、圧縮機10の吐出冷媒温度の目標値(以下、吐出冷媒温度の目標値Tdmとも称する)に基づいて絞り装置14bの開度制御を行う。定常制御は、図11のステップA5に対応し、より詳しくは、後述の図13の制御方法で表される。
(起動制御)
起動制御は、絞り装置14bの開度を制御して、圧縮機10の吐出部の冷媒が高温になることによる冷凍機の劣化や圧縮機10の破損するリスクを抑制する制御である点で定常制御と同様である。しかし、この起動制御は、吐出冷媒温度が過渡的に上昇する場合に、定常制御の代わりに実施される。
圧縮機10の起動直後、或いは霜取運転からの復帰直後などの場合には、圧縮機10の吐出冷媒温度が低い値から高い値へ過渡的に変化するが、この場合における絞り装置14bの開度は、起動前の状態、或いは霜取運転時の状態の閉となっている。
このように、吐出冷媒温度が過渡的に上昇するにもかかわらず、絞り装置14bの開度を大きくしないと、冷凍機油の劣化や圧縮機10の破損のリスクをより確実に抑制することができなくなる可能性がある。すなわち、圧縮機10の起動時には、冷媒温度が過渡的に上がり、高温となりうる一方で、その冷媒温度が時間的に安定しておらず、吐出冷媒温度検出装置37が正確な温度を検出できないため、絞り装置14bの開度を大きくする制御が実施されない。このため、圧縮機10の吐出冷媒温度が高温となり、冷凍機の劣化や圧縮機10が破損してしまう可能性があるということである。
そこで、この起動制御では、圧縮機10の起動直後、或いは霜取運転からの復帰直後などのときに、絞り装置14bの開度を大きくする。
なお、どの程度まで絞り装置14bの開度を大きくするかであるが、定常制御よりも起動制御の方が開度が大きくなるように設定する。より詳細には、起動運転の吐出冷媒温度の目標値Tdmの値を、定常制御の吐出冷媒温度の目標値Tdmよりも小さく設定することで(後述の図15のステップD2参照)、絞り装置14bの開度は、定常制御よりも起動制御の方が大きくなる。これにより、圧縮機10に供給される液冷媒量が増大し、圧縮機10の吐出冷媒温度が過渡的に上昇しても、速やかに冷媒温度を低減することができる。
なお、起動制御も、定常制御と同様に、全冷房運転モード、全暖房運転モード、冷房主体運転モード、及び暖房主体運転モードで実施することができ、圧縮機10より吐出される冷媒温度に基づいて絞り装置14bの開度制御を行う。起動制御は、図11のステップA3に対応し、より詳しくは、後述の図15の制御方法で表される。
次に、図11を参照して、圧縮機保護制御における中圧制御、定常制御及び起動制御のフローについて説明する。なお、中圧制御、定常制御及び起動制御の詳細な内容については、後述の図12、13、15で説明する。
<ステップA0>
制御装置50は、圧縮機10の起動により圧縮機起動制御を開始する。
制御装置50は、絞り装置14aの開度を中圧を生成しない開度(たとえば、全開)とし、絞り装置14bの開度を吸入インジェクションを実施しない開度(たとえば、全閉)とする。
<ステップA1>
制御装置50は、絞り装置14aによる中圧制御のフローに移行する。ステップA1における制御は、図12で詳しく説明する。
<ステップA2>
制御装置50は、起動制御の開始条件の判定をする。
起動制御の開始条件を満たした場合はステップA3へ進む。
起動制御の開始条件を満たさない場合はステップA5へ進む。
なお、起動制御の開始条件は、圧縮機10の起動後或いは霜取り運転からの復帰後などのように圧縮機10の吐出冷媒温度が大きく増加することに基づいて決定される。そこで、開始条件としては、たとえば、(1)圧縮機10の起動後から予め設定される時間が経過したとき、或いは、(2)霜取り運転から復帰してから予め設定されている時間が経過したときなどとするとよい。
<ステップA3>
ステップA3において、絞り装置14bの起動制御を実施する。ステップA3における制御は、図15で詳しく説明する。
<ステップA4>
制御装置50は、起動制御の終了条件の判定をする。
起動制御の終了条件を満たした場合はステップA5へ進む。
起動制御の終了条件を満たさない場合はステップA3に戻る。
<ステップA5>
制御装置50は、定常制御を実施する。
<ステップA6>
制御装置50は、圧縮機起動制御を終了する。
(中圧制御の詳細説明)
図12は、空気調和装置100の中圧制御の動作を表すフローチャートである。図12を参照して、絞り装置14aの中圧制御について詳しく説明する。
<ステップB0>
制御装置50は、絞り装置14aの中圧制御を開始する。
制御装置50は、絞り装置14aの開度を中圧を生成しない開度(たとえば、全開)とし、絞り装置14bの開度を吸入インジェクションを実施しない開度(たとえば、全閉)とする。
<ステップB1>
制御装置50は、全暖房運転モードであるか、又は暖房主体運転モードであるか否かを判定する。
これらの運転モードである場合には、ステップB2に進む。
これらの運転モードでない場合には、ステップB6に進む。
<ステップB2>
制御装置50は、中圧目標値PMmの設定を行う。
全暖房運転モード時においては、暖房主体運転よりも外気温度が低い運転条件で運転する分、吐出冷媒温度が上昇しやすいため、圧縮機10の吸入側へインジェクションする冷媒流量を多くする。そこで、全暖房運転モード時には、暖房主体運転モードと比較すると中圧目標値PMmを高めに設定して冷媒流量を大きくするとよく、たとえば20℃の飽和圧力などに設定するとよい。
一方、暖房主体運転モード時においては、室内機2a〜2dのいずれかが冷房運転を実施しており、熱媒体間熱交換器15aを蒸発器として機能させる分、中圧をあまり高い値にはできない。このため、暖房主体運転モードでは、全暖房運転モードと比較すると、中圧目標値PMmを低めに設定し、たとえば、0〜10℃の飽和圧力などに設定するとよい。
なお、全暖房運転モードと暖房主体運転モードとの間のモード変化をスムーズにするために、全暖房運転モードにおける中圧目標値PMmを、暖房主体運転モード時の中圧目標値PMmと同程度の値に設定しても良い。
<ステップB3>
制御装置50は、中圧検出装置32の検出結果(以下では、中圧検出値PMとも称する)と、ステップB2の中圧目標値PMmとに基づいて、絞り装置14aの開度変更量ΔLEVaを算出する。
なお、絞り装置14aの開度変更量ΔLEVaは、下記の式(1)に示す計算式で計算する。また、式(1)は、絞り装置14aの開度変更量ΔLEVaを、中圧目標値PMmから中圧検出装置32による中圧検出値PMを差し引いた値に、制御ゲインGaを乗じた形で表している。ここで、制御ゲインGaは、絞り装置14aの仕様によって決まる値である。
<ステップB4>
制御装置50は、下記の式(2)にあるように、ステップB3で算出した開度変更量ΔLEVaと、前回出力した絞り装置14aの開度LEVa*との和を算出する。当該和の値が、絞り装置14aの開度LEVaに対応する。
なお、前回出力した絞り装置14aの開度LEVa*とは、ステップA0から始まり、ステップA6で終わる圧縮機保護制御(図11参照)を1つのサイクルとしたとき、現在実施しているサイクルの1つ前に実施したサイクルにおけるステップB4で算出した開度LEVaの値をいう。
<ステップB5>
制御装置50は、絞り装置14aの開度を、ステップB4で算出した絞り装置14aの開度LEVaとなるように調整する。
<ステップB6>
制御装置50は、絞り装置14aの開度を、固定開度(たとえば、全開)とする。
<ステップB7>
制御装置50は、絞り装置14aの中圧制御を終了する。
(数1)
ΔLEVa=Ga×(PMm−PM)…(1)
(数2)
LEVa=LEVa*+ΔLEVa…(2)
(定常制御の詳細説明)
図13は、空気調和装置100の定常制御の動作を表すフローチャートである。図13を参照して、圧縮機10の吐出冷媒温度が過渡的に上昇しない場合に実施される絞り装置14bの定常制御について詳しく説明する。
<ステップC0>
制御装置50は、絞り装置14aの定常制御を開始する。
<ステップC1>
制御装置50は、圧縮機10の吐出冷媒温度の目標値Tdmの設定を行う。
この図13での説明においては、吐出冷媒温度の目標値Tdmが、たとえば105℃に設定されている場合を例に説明する。
<ステップC2>
制御装置50は、予め設定されているステップC1の吐出冷媒温度の目標値Tdmと、吐出冷媒温度検出装置37の検出結果、すなわち圧縮機10の吐出冷媒温度の現在値Td0とに基づいて、絞り装置14bの開度変更量ΔLEVbを算出する。
なお、絞り装置14bの開度変更量ΔLEVbは、下記の式(3)に示す計算式で計算する。また、式(3)は、吐出冷媒温度の目標値Tdmから圧縮機10の吐出冷媒温度の現在値Td0を差し引いた値に、制御ゲインGbを乗じた形で表している。ここで、制御ゲインGbは、絞り装置14bの仕様によって決まる値である。
なお、本ステップC2においては、圧縮機10の吐出冷媒温度の目標値Tdmを採用するものとして説明するがそれに限定されるものではない。たとえば、吐出冷媒温度の目標値Tdmの代わりに、吐出冷媒温度検出装置37の検出温度と高圧検出装置39の検出圧力とに基づいて得られる圧縮機10の吐出過熱度を用いてもよい。このように、吐出冷媒温度だけでなく、過熱度といったような、吐出冷媒温度に係るものを用いてもよい。
すなわち、本ステップC2では、吐出冷媒温度の目標値Tdmの代わりに、吐出冷媒温度に係る目標値である吐出過熱度の目標値(Tdmに対応)と、吐出冷媒温度検出装置37の検出温度及び高圧検出装置39の検出圧力から得られ、吐出冷媒温度に係る吐出過熱度の値(Td0に対応)とに基づいて、絞り装置14bの開度変更量ΔLEVbを算出してもよいということである。
<ステップC3>
制御装置50は、下記の式(4)にあるように、式(3)で算出した絞り装置14bの開度変更量ΔLEVbと、前回出力した絞り装置14bの開度LEVb*との和を算出する。当該和の値が、絞り装置14bの開度LEVbに対応する。
<ステップC4>
制御装置50は、絞り装置14bの開度を、ステップC3で算出した絞り装置14bの開度LEVbとなるように調整する。
<ステップC5>
制御装置50は、絞り装置14aの定常制御を終了する。
(数3)
ΔLEVb=Gb×(Tdm−Td0)…(3)
(数4)
LEVb=LEVb*+ΔLEVb …(4)
図14は、三点予測について説明するためのグラフである。絞り装置14bの開度変更量ΔLEVbは、式(3)に基づいて算出したが、それに限定されるものではなく、後述の三点予測を利用してもよい。
すなわち、式(3)のように圧縮機10の吐出冷媒温度の現在値Td0を用いるのではなく、次の制御のタイミングにおける吐出冷媒温度予測値Tdnを算出する三点予測を利用して絞り装置14bの開度変更量ΔLEVbを算出してもよい。
三点予測とは、各種応答が一次遅れ特性になるものと仮定し、異なる三つの時刻の値から次の時刻における予測値又はそのままの状態で到達する終点値Tdeを計算する方法である。
圧縮機10の吐出冷媒温度を例に図14を用いて説明すると、絞り装置14bの開度変化による圧縮機10の吐出冷媒温度の応答が一次遅れ(図14の曲線)で表される場合、異なる三つの時刻における吐出冷媒温度Td0、Td1、Td2を用いると、次の時刻における吐出冷媒温度の予測値Tdnは、以下に示す式(5)に示す形で計算することができる。
Figure 0006012757
ここで、式(5)中のTd0は、圧縮機10の吐出冷媒温度の現在値であり、Td1はΔT秒前の圧縮機10の吐出冷媒温度であり、Td2は(ΔT×2)秒前の圧縮機10の吐出冷媒温度である。ここで、ΔTは、絞り装置14bの制御間隔が(ΔT×3)秒以上となるように設定する。
式(5)で次の制御のタイミング時における圧縮機10の吐出冷媒温度予測値Tdnを算出するためには、式(6)で表される3つの条件式を満たしている必要がある。
(数6)
Td0>Td1、且つ、Td1>Td2、且つ、Td0−Td1<Td1−Td2…(6)
実際の運転状態では、必ずしも予測が可能な運転状態とはならないため、予測が不可の場合は式(7)で計算される値を次の制御のタイミング時における圧縮機10の吐出冷媒温度予測値Tdnのとして使用する。
(数7)
Tdn=Td0+(Td0−Td1)…(7)
なお、圧縮機10の吐出冷媒温度の目標値Tdmは、冷凍機油の劣化を防ぐなどといった目的で設定されている圧縮機10の吐出冷媒温度の上限値よりも低い値として設定する必要があるが、低く設定しすぎると圧縮機10の吐出冷媒温度が下がって暖房能力及び冷房能力が小さくなってしまう。
そこで、吐出冷媒温度の目標値Tdmは、なるべく高い値に設定するのが望ましい。たとえば、圧縮機10の吐出冷媒温度の上限値が120℃である場合を仮定すると、それよりも15℃低い値である105℃に設定するとよい。本実施の形態1では、105℃を制御目標値とすることを例に説明しているが、それに限定されるものではなく、たとえば100℃程度の値としても大きな問題は起きない。110℃で圧縮機10を停止または減速させるため、吐出冷媒温度の目標値を100〜110℃の間の値に設定するとよい。
また、図14の説明では、図13の制御における圧縮機10の吐出冷媒温度の予測方法について説明したが、この予測方法を、図12の制御における中圧に対して適用してもよい。すなわち、三点予測により中圧検出装置32の検出結果を予測し、図12のステップB2において、中圧検出装置32の予測値と、ステップB2の中圧目標値PMmとに基づいて、絞り装置14aの開度変更量ΔLEVaを算出してもよいということである。
(起動制御の詳細説明)
図15は、実施の形態1に係る空気調和装置100の起動制御の動作を表すフローチャートである。図15を参照して、圧縮機10の吐出冷媒温度が過渡的に上昇する場合に実施される絞り装置14bの起動制御について詳しく説明する。
<ステップD0>
制御装置50は、絞り装置14aの起動制御に移行する。
<ステップD1>
制御装置50は、圧縮機10の吐出冷媒温度の目標値Tdmの設定を行う。
起動制御における吐出冷媒温度の目標値Tdmは、定常制御の吐出冷媒温度の目標値Tdmよりも低い値に設定され、たとえば90℃などに設定される。なお、定常時の吐出冷媒温度の目標値を100〜110℃の間の値に設定するものとすると、起動制御における吐出冷媒温度の目標値は、これよりも低い値である、80℃〜100℃の間の値に設定するとよい。
<ステップD2>
制御装置50は、予め設定されているステップD1の吐出冷媒温度の目標値Tdmと、圧縮機10の吐出冷媒温度の現在値Td0とに基づいて、絞り装置14bの開度変更量ΔLEVbを算出する。
なお、絞り装置14bの開度変更量ΔLEVbは、上述したステップC2と同様に、式(3)を利用する。
また、本ステップD2においても、ステップC2で述べたように、吐出冷媒温度に係る目標過熱度と、吐出冷媒温度に係る吐出過熱度の現在値とに基づいて開度変更量ΔLEVbを算出してもよい。
<ステップD3>
制御装置50は、上述の式(4)にあるように、算出した絞り装置14bの開度変更量ΔLEVbと、前回出力した絞り装置14bの開度LEVb*との和を算出する。当該和の値が、絞り装置14bの開度LEVbに対応する。
<ステップD4>
制御装置50は、絞り装置14bの開度を、ステップD3で算出した絞り装置14bの開度LEVbとなるように調整する。
確かに圧縮機10を起動した直後のような場合には、吐出冷媒温度Tdmが安定しておらず、吐出冷媒温度検出装置37の検出結果(ステップD1の現在値Td0)が低めの値となる。しかし、ステップD1では、吐出冷媒温度の目標値Tdmが、定常制御の吐出冷媒温度の目標値Tdmよりも低い値に設定されている。すなわち、現在値Td0が、吐出冷媒温度の目標値Tdmを容易に上回りやすくなっている。
このため、圧縮機10を起動した直後であり、ステップD3の開度LEVb*の値が全閉に対応する第1の値であっても、ステップD2の開度変更量ΔLEVbの値が開度を大きくする第2の値となる。つまり、ステップD3で第1の値と第2の値の和をとると開度を大きくする値がステップD4に出力されることとなる。
このように、起動制御では、吐出冷媒温度Tdmの設定値を、定常制御よりも低くすることで、絞り装置14bの開度を定常制御よりも大きくなりやすくする。
<ステップD5>
制御装置50は、後述する図16の終了条件を満たしているかの判定を行う。
終了条件を満たしている場合には、ステップD6に進む。
終了条件を満たしていない場合には、ステップD2に戻り、絞り装置14bの開度制御を継続する。
<ステップD6>
制御装置50は、絞り装置14aの定常制御を終了する。
図16は、実施の形態1に係る空気調和装置100の起動制御で用いる終了判定フラグの状態を表すグラフである。図16を参照して起動制御の終了条件(図11のステップA4に対応)について説明する。まず、起動制御の終了判定を行うために起動制御の終了判定フラグflagAの定義を図16を用いて説明する。
起動制御の終了判定フラグflagAの定義を以下に説明する。
まず、起動時や霜取終了時等に終了判定フラグflagA=0とする。
また、終了判定フラグflagA=0の時に圧縮機10の吐出冷媒温度Tdが吐出冷媒温度の目標値Tdm以上となった場合は終了判定フラグflagA=1とする(図16の点A)。
さらに、終了判定フラグflagA=1の時に圧縮機10の吐出冷媒温度Tdが吐出冷媒温度の目標値Tdm+α以上となった場合は、終了判定フラグflagA=2とする(図16の点B)。
ここで、αは吐出冷媒温度がオーバーシュートしたかどうかを判定する閾値であり、たとえば5℃と設定するとよい。
なお、本起動制御は、以下に示す二つの条件のうちどちらか一方を満たした場合に終了するものとする。
(1)一つ目の条件は、終了判定フラグflagA=2かつTd<Tdm+βとなった場合(図16のパターン1)である。
(2)二つ目の条件は、終了判定フラグflagA=1かつflagA=1となってから予め設定される時間Tを経過した場合(図16のパターン2)である。
ここで、βは、一旦吐出冷媒温度の目標値+αをオーバーシュートした吐出冷媒温度が下がったかどうかを判定する閾値である。このβは、前述の閾値αよりも小さい値として設定する必要があり、たとえば3℃と設定するとよい。
また、予め設定される時間Tは、起動制御を実施している状態において圧縮機10の吐出冷媒温度が高くなる運転状態であるかどうかを判定する際に利用される時間であり、たとえば7分などと設定するとよい。そして、制御装置50は、時間Tが経過後も圧縮機10の吐出冷媒温度が低い場合に、圧縮機10の吐出冷媒温度が安定していると判定する。
起動制御が終了条件を満たした場合、起動制御を終了し定常制御に移行する。
以上のような制御を行うことにより、起動等の圧縮機10の吐出冷媒温度が低い値から高い値へ大きく変化する場合でも、適切な吐出冷媒温度に制御することができ、信頼性の高い空気調和装置を得ることができる。
なお、起動制御時の吐出冷媒温度の目標値Tdmが90℃の場合を例に説明を行ったが、それに限定されるものではない。
圧縮機10の吐出冷媒温度の上限が120℃程度であると仮定したとき、制御装置50は、吐出冷媒温度が、たとえば110℃になると圧縮機10を停止または減速させるように設定される。すなわち、冷媒温度が120℃程度に至ると圧縮機10の損傷等の可能性が高くなることから、圧縮機10の保護のため、その手前の110℃で圧縮機10を停止または減速させるということである。
ここで、吐出冷媒温度の目標値Tdmを吐出冷媒温度の目標値を105℃と設定していると、5℃以上吐出冷媒温度Tdmがオーバーシュートすると圧縮機10の保護に入り、圧縮機10が停止または減速してしまう。このため、吐出冷媒温度の目標値Tdmは、105℃よりも低い温度に設定するとよい。このように、圧縮機10の保護のために停止または減速させる温度(110℃)と、吐出冷媒温度の目標値Tdm(105℃)との間に、5℃より大きい間隔を持たせることで、空気調和装置100は、圧縮機保護制御をより有効的に利用することができるようになる。
そこで、5℃の2倍である10℃の吐出冷媒温度のオーバーシュートまで許容できる95℃を起動制御時の吐出冷媒温度の目標値Tdmとしてもよい。また、吐出冷媒温度の目標値Tdmを90℃として、さらに余裕を持たせてもよい。
しかし、吐出冷媒温度の目標値をTdmを80℃よりも低い温度にすることは、吐出冷媒温度を低くする分、多くの液又は二相冷媒を圧縮機10にインジェクションする必要があることを意味している。すなわち、絞り装置14bが開き過ぎて、圧縮機10へ過大な液又は二相冷媒の流入が発生するという問題が生じることになる。
そこで、吐出冷媒温度の目標値Tdmは、起動制御時に生じる圧縮機10の吐出冷媒温度のオーバーシュートによって圧縮機10が吐出冷媒温度の保護動作に入らず、かつ、絞り装置14bが開いてインジェクションされる温度(たとえば、90℃や95℃程度)に設定するとよい。
また、起動制御を開始する時の絞り装置14aの開度について、定常状態における開度よりも大きい値(全開等)に設定しておくと速く制御目標値に到達することができ、制御性を向上させることができる。また、起動制御を開始する時の絞り装置14bの開度について、定常状態における開度よりも小さい値(全閉等)として設定しておくと速く制御目標値に到達することができ、制御性を向上させることができる。
絞り装置14bの起動制御及び定常制御において、圧縮機10の吐出冷媒温度の予測値を演算する方法について三点予測を例に説明したが、予測の方法を三点予測に限定するものではなく、その他の予測方法によって吐出冷媒温度の予測値を演算しても良い。
また、本実施の形態における室外機1において、図17に示すように分岐部27aの設置位置を熱源側熱交換器12と逆止弁13aとを繋ぐ冷媒配管4上に限定することにより、開閉装置24を逆流防止装置24Bに置き換えることができ、安価に空気調和装置100を構成することができる。なお、空気調和装置100は、図20の回路構成においても、図2の回路構成のものと同一の効果を奏することができることは言うまでもない。
[実施の形態1に係る空気調和装置100の有する効果]
実施の形態1に係る空気調和装置100は、定常制御及び起動制御を実施して絞り装置14bの開度を調整することで、絞り装置14aの中圧制御で生成された中圧冷媒を、適宜、吸入インジェクション配管4cに供給することができる。このため、運転モードによらないで、圧縮機10の吐出冷媒温度Tdmを低下させて動作の安定性を向上させ、信頼性の高い空気調和装置100を得ることができる。
実施の形態2.
図18は、実施の形態2に係る空気調和装置の起動制御の動作を表すフローチャートである。なお、本実施の形態2については、実施の形態1と異なる部分を中心に説明する。
実施の形態2の冷凍サイクルの構成及び各運転モードにおける冷媒と熱媒体の流れは実施の形態1と同じであるため説明を省略する。
実施の形態1と異なるのは、起動制御における絞り装置14bの制御方法である。すなわち、制御装置50は、実施の形態1の図11のステップA3に対応する図15の制御の代わりに、図18に示す制御を実施する。なお、中圧制御及び定常制御については、実施の形態1と同様である。
[起動制御方法2]
図18を参照して、圧縮機10の吐出冷媒温度が過渡的に上昇する場合に実施される絞り装置14bの起動制御の方法2について詳しく説明する。
<ステップE0>
制御装置50は、絞り装置14bの起動制御に移行する。
<ステップE1>
制御装置50は、圧縮機10の吐出冷媒温度が予め設定された温度T2(たとえば、80℃)以上であるか否かを判定する。
温度T2以上であると判定した場合には、ステップE2に進む。
温度T2以上でないと判定した場合には、ステップE12に進む。
<ステップE2>
制御装置50は、圧縮機10の吐出冷媒温度の目標値Tdmの設定を行う。
起動制御における吐出冷媒温度の目標値Tdmは、たとえば90℃などに設定される。
<ステップE3>
制御装置50は、圧縮機10の吐出冷媒温度に関して三点予測が可能であるかどうかを式(6)より判定する。
式(6)の条件を満たし、三点予測が可能であると判定した場合には、ステップE5に進む。
式(6)の条件を満たさず、三点予測をできないと判定した場合には、ステップE4に進む。
<ステップE4>
制御装置50は、ステップE3の次の制御タイミングである本ステップE4において、再度、圧縮機10の吐出冷媒温度に関して三点予測が可能であるかどうかの判定を行う。
三点予測が可能であると判定した場合には、ステップE5に進む。
三点予測をできないと判定した場合には、ステップE13に進む。
<ステップE5>
制御装置50は、圧縮機10の吐出冷媒温度が到達すると考えられる予測値を、三点予測及び式(8)を利用して算出する。なお、ここでいう予測値とは、吐出冷媒温度が一次遅れ特性で変化している時、そのままの状態で到達する終点値Tde(図14参照)のことである。
Figure 0006012757
<ステップE6>
制御装置50は、予め設定されているステップE2の吐出冷媒温度の目標値Tdmと、ステップE5の予測値Tdeとに基づいて、絞り装置14bの開度変更量ΔLEVbを算出する。
なお、本ステップE6の絞り装置14bの開度変更量ΔLEVbの算出には、式(9)を利用する。なお、制御ゲインGbは、絞り装置14bの仕様によって決まる値である。
(数9)
ΔLEVb=Gb×(Tdm−Tde)…(9)
<ステップE7>
制御装置50は、上述の式(4)にあるように、算出した絞り装置14bの開度変更量ΔLEVbと、前回出力した絞り装置14bの開度LEVb*との和を算出する。当該和の値が、絞り装置14bの開度LEVbに対応する。
<ステップE8>
制御装置50は、絞り装置14bの開度を出力した制御回数が、予め設定される回数N(たとえば、N=3)未満かどうか判定する。
N未満である場合には、ステップE6に戻る。
N未満でない、すなわちN以上である場合には、ステップE9に進む。
<ステップE9>
制御装置50は、ステップE7の絞り装置14bの開度出力がN回目である場合に、タイマーをスタートさせる。
なお、本ステップE9において、開度出力がN+1回目以上である場合には、タイマーが既にスタートしているため、特に、制御を実施せず、ステップE10に進む。
<ステップE10>
制御装置50は、タイマーが予め設定される時間Te(たとえば、15分)経過するまで絞り装置14bの開度を固定する。
<ステップE11>
制御装置50は、タイマーが時間Teを経過したとき、図17の起動制御を終了して、定常制御に移行する。
また、制御装置50は、タイマーが所定時間Te時間経過する前に、圧縮機10の吐出冷媒温度Td0が吐出冷媒温度の目標値Tdmを超えてしまった場合は、即時に、起動制御を終了し定時制御に移行する。
<ステップE12>
制御装置50は、起動制御開始後、予め設定される時間Toが経過するまで絞り装置14bの開度を全閉状態で固定し、時間Toが経過後にステップE13に進む。
<ステップE13>
制御装置50は、絞り装置14bの起動制御を終了する。
なお、ステップE8において絞り装置14bの開度をN回に分けて制御しているのは、絞り装置14bの開度が大きく変化して、システムが不安定になるのを防ぐためである。ここでは3回に分けて出力しているが、それに限定されるものではなく、システムが不安定にならないようであれば、分けないで計算された開度をそのまま出力しても良い。
[実施の形態2に係る空気調和装置の有する効果]
実施の形態2に係る空気調和装置は、上述のような起動制御を実施し、実施の形態1に係る空気調和装置100と同様の効果を奏する。
実施の形態3.
図19は、実施の形態3に係る空気調和装置100の起動制御の動作を表すフローチャートである。なお、本実施の形態3については、実施の形態1、2と異なる部分を中心に説明する。
実施の形態3の冷凍サイクルの構成及び各運転モードにおける冷媒と熱媒体の流れは実施の形態1と同じであるため説明を省略する。実施の形態1と異なるのは、起動制御における絞り装置14bの制御方法である。すなわち、制御装置50は、実施の形態1の図11のステップA3に対応する図15の制御の代わりに、図19に示す制御を実施する。なお、中圧制御及び定常制御については、実施の形態1と同様である。
[起動制御方法3]
図19を参照して、圧縮機10の吐出冷媒温度が過渡的に上昇する場合に実施される絞り装置14bの起動制御の方法3について詳しく説明する。
<ステップF0>
制御装置50は、絞り装置14bの起動制御に移行する。
<ステップF1>
制御装置50は、圧縮機10の吐出冷媒温度が予め設定された温度T2(たとえば、80℃)以上であるか否かを判定する。
温度T2以上であると判定した場合には、ステップF2に進む。
温度T2以上でないと判定した場合には、ステップF7に進む。
<ステップF2>
制御装置50は、圧縮機10の吐出冷媒温度の目標値Tdmの設定を行う。
起動制御における吐出冷媒温度の目標値Tdmは、たとえば90℃などに設定される。
<ステップF3>
制御装置50は、圧縮機10の吐出冷媒温度が到達すると考えられる予測値を、三点予測及び式(8)を利用して算出する。なお、ここでいう予測値とは、吐出冷媒温度が一次遅れ特性で変化している時、そのままの状態で到達する終点値Tde(図14参照)のことである。
もし、式(8)より三点予測ができない場合には、式(8)による圧縮機10の吐出冷媒温度の終点値Tdeの代わりに、式(10)によって計算される値を圧縮機10の吐出冷媒温度の終点値Tdeとして用いる。
(数10)
Tde=Td0+(Td0−Td1)…(10)
<ステップF4>
制御装置50は、予め設定されているステップF2の吐出冷媒温度の目標値Tdmと、ステップF3の予測値Tdeとに基づいて、絞り装置14bの開度変更量ΔLEVbを算出する。
なお、本ステップF4の絞り装置14bの開度変更量ΔLEVbの算出には、式(9)を利用する。
<ステップF5>
制御装置50は、上述の式(4)にあるように、算出した絞り装置14bの開度変更量ΔLEVbと、前回出力した絞り装置14bの開度LEVb*との和を算出する。当該和の値が、絞り装置14bの開度LEVbに対応する。
<ステップF6>
制御装置50は、圧縮機10の吐出冷媒温度の目標値Tdmと、圧縮機10の吐出冷媒温度の現在値Td0との差の絶対値が、予め設定される温度差ΔT(たとえば、3℃)以上であるか否かを判定する。
温度差ΔT以上である場合には、ステップF3に戻り、起動制御を継続させる。
温度差ΔT以上でない、すなわち、温度差ΔT未満である場合には、ステップF8に進む。
<ステップF7>
制御装置50は、起動制御開始後、予め設定される時間Toが経過するまで絞り装置14bの開度を全閉状態で固定し、時間Toが経過後にステップE813に進む。
<ステップF8>
制御装置50は、絞り装置14bの起動制御を終了する。
[実施の形態3に係る空気調和装置100の有する効果]
実施の形態3に係る空気調和装置100は、上述のような起動制御を実施し、実施の形態1、2に係る空気調和装置100と同様の効果を奏する。
実施の形態4.
図20は、実施の形態4に係る空気調和装置100の圧縮機10に吸入される冷媒の乾き度を求める演算フローチャートである。なお、本実施の形態4については、実施の形態1〜3と異なる部分を中心に説明する。
圧縮機10として、密閉容器内に圧縮室を有し、密閉容器内が低圧の冷媒圧雰囲気となり、圧縮室に密閉容器内の低圧冷媒を吸入して圧縮する低圧シェル構造の圧縮機を使用することを考える。
なお、本実施の形態4では、圧縮機10について低圧シェル構造のスクロール型の圧縮機を例に説明する。吸入インジェクションによって圧縮機10の吸入側に液又は二相冷媒をバイパスさせると、低圧シェル型圧縮機では圧縮機10に吸入された冷媒は密閉容器(=シェル)によって加熱された後、圧縮室に吸い込まれる。したがって、多少の圧縮機10への液冷媒の流入が起きてもシェルで加熱されてガス化するため、圧縮室に液冷媒が吸い込まれることはない。
しかし、吐出冷媒温度の目標値をTdm低く設定しすぎて絞り装置14bが開きすぎることや運転状態等によっては、圧縮機10へ過大な液媒の流入が生じ、シェルの加熱では十分にガス化できず、圧縮室に吸入される冷媒に液冷媒が混じる可能性がある。
圧縮室に吸入される冷媒に液冷媒が混じると次のような不具合がある。
(1)圧縮機10のシェルによる加熱ではガス化できないほどの過度な液冷媒が吸入されると、圧縮室内で非圧縮性の液冷媒を圧縮する液圧縮が起こり、圧縮室を構成するスクロール部分が破損する可能性がある。
(2)シェル下部に過度の液冷媒が溜まるとシェル下部に貯留されている冷凍機油の濃度が下がり、圧縮機10の摺動部位への潤滑が十分にできなくなり、圧縮機10の摺動部位の磨耗や破損に至る可能性がある。
そこで、圧縮機10へ過度の液冷媒の流入が生じた場合に絞り装置14bの開度を小さくすることで液冷媒のインジェクション流量を減らし、圧縮機10を保護する必要がある。
実施の形態4では、圧縮機10へ過度の液冷媒の流入があるか否かの判定は、圧縮機10へ流入する冷媒の乾き度Xs(−)の算出値に基づいて行われる。そこで、以下に、乾き度Xsの算出方法について全暖房運転モード時を例として説明する。
なお、(−)は、単位がなく、無次元であることを示している。
<ステップG0>
制御装置50は、乾き度Xsの算出制御に移行する。
<ステップG1>
制御装置50は、中圧検出装置32によって中圧PM(MPa)を検出し、吸入圧力検出装置60によって圧縮機10に吸入される冷媒の圧力Ps(MPa)を検出する。
<ステップG2>
制御装置50は、絞り装置14a及び絞り装置14bの現在の開度LEVa及びLEVbを読み込む。なお、絞り装置14bの開度制御については、実施の形態1〜3と同様である。
<ステップG3>
制御装置50は、吸入される冷媒の圧力Ps(MPa)に基づいてアキュムレータ19から流出する冷媒のエンタルピH1(kJ/kg)を計算し、中圧PM(MPa)に基づいて絞り装置14bを通過する冷媒のエンタルピH2(kJ/kg)を計算する。
なお、このエンタルピH1及びエンタルピH2(kJ/kg)の詳細な算出方法については、後述する。
<ステップG4>
制御装置50は、ステップG3で読み込んだ絞り装置14a及び絞り装置14bの開度を利用して、圧縮機10に吸入される冷媒のエンタルピH3(kJ/kg)を算出する。
なお、このエンタルピH3の詳細な算出方法については、後述する。
<ステップG5>
制御装置50は、ステップG4で算出したエンタルピH1(kJ/kg)、H2(kJ/kg)及びH3(kJ/kg)と、後述の式(19)に基づいて圧縮機10に吸入される冷媒の乾き度Xs(−)を算出する。
<ステップG6>
制御装置50は、乾き度Xsの算出制御を終了する。
引き続き、ステップG4におけるエンタルピH3の算出方法について詳細に説明する。
アキュムレータ19から流出する冷媒流量G1(kg/h)及び絞り装置14bを通過する冷媒流量G2(kg/h)は、絞り装置14aのCv値と絞り装置14bのCv値によって決定される。ここで用いるCv値とは、絞り装置の容量を表すものとして一般的に用いられているものである。
Cv値を用いることによって、アキュムレータ19から流出する冷媒流量G1(kg/h)及び絞り装置14bを通過する冷媒流量G2(kg/h)は、絞り装置14a通過後の圧力が圧縮機10に吸入される冷媒の圧力と等しいと仮定すると、それぞれ式(11)及び式(12)の形で表される。
ここで、CvaとCvbは、それぞれ絞り装置14a及び絞り装置14bのCv値であり、Ps(MPa)は圧縮機10の吸入圧力(吸入圧力検出装置60による検出値)である。
Figure 0006012757
Figure 0006012757
電子式膨張弁のCv値が電子式膨張弁の出力パルスにほぼ比例して変化するため、式(11)及び式(12)は、絞り装置14aの開度をLEVa(−)とし、絞り装置14bの開度をLEVb(−)と表すと、それぞれ式(13)及び式(14)のように表すことができる。
Figure 0006012757
Figure 0006012757
次に、アキュムレータ19から流出する冷媒の流量とエンタルピをそれぞれG1(kg/h)とH1(kJ/kg)とし、絞り装置14bを通過する冷媒の流量とエンタルピをそれぞれG2(kg/h)とH2(kJ/kg)とし、圧縮機10に吸入される冷媒の流量とエンタルピをそれぞれG3(kg/h)とH3(kJ/kg)とすると、エネルギ保存則より式(15)が得られる。
(数15)
G1×H1+G2×H2=(G1+G2)×H3…(15)
式(15)に式(13)と式(14)を代入し、式を変形することによって、圧縮機10に吸入される冷媒のエンタルピH3(kJ/kg)が式(16)の形で表される。
Figure 0006012757
式(16)おいて、絞り装置14aと絞り装置14bの開度は既知であるため、アキュムレータ19から流出する冷媒のエンタルピH1と絞り装置14bを通過する冷媒のエンタルピH2が分かれば、圧縮機10に吸入される冷媒のエンタルピH3(kJ/kg)を計算することができる。
ここで、アキュムレータ19から流出する冷媒のエンタルピH1(kJ/kg)を飽和ガスエンタルピと仮定し、絞り装置14bを通過する冷媒のエンタルピH2(kJ/kg)を飽和液エンタルピと仮定する。
すると、吸入圧力検出装置60による検出値Ps(MPa)によって、アキュムレータから流出する冷媒のエンタルピH1(kJ/kg)と、絞り装置14bを通過する冷媒のエンタルピH2(kJ/kg)を以下に示す式(17)と式(18)より計算することができる。具体的な方法として、あらかじめ計算しておいた圧力とエンタルピの関係を表すテーブルを制御装置50に記憶しておき、テーブルを参照するような方法などがある。
(数17)
H1=HG(Ps)…(17)
(数18)
H2=HL(Ps)…(18)
以上より、制御装置50は、ステップG4では、式(11)〜(18)より、エンタルピH1(kJ/kg)、H2(kJ/kg)及びH3(kJ/kg)を算出することができる。そして、制御装置50は、この算出結果と、後段のステップであるステップG5の式(19)とに基づいて乾き度Xsを算出することができる。
(数19)
Xs=(H3−H2)/(H1−H2)…(19)
次に、ステップG6以降の制御装置50の動作について説明する。
制御装置50は、圧縮機10に吸入される冷媒の乾き度Xsを算出し、圧縮機10に吸入される冷媒の乾き度Xsが予め設定される値よりも小さくなった場合には、圧縮機10に流入する液冷媒の量が過度であると判定する。
すなわち、式(19)によって計算された圧縮機10の吸入される冷媒の乾き度Xsが、圧縮機10の保護のために予め設定される値よりも小さくなった場合には、圧縮機10へ流入する液冷媒の量が過大であると判定し、絞り装置14bの開度を小さくするような(たとえば、開度を全閉とする)保護制御を行うということである。
さらに、図20に示す乾き度Xsによる絞り装置14bの開度制御に他に、次に述べるような圧縮機シェル温度検出装置61を利用した制御を実施すると、さらに確実に圧縮機10の破損を防ぐことができるので、それについて説明する。
圧縮機10に過度の液又は二相冷媒の流入が発生する場合、前述の圧縮機10に吸入される冷媒の乾き度Xsによる保護だけではなく、圧縮機10のシェル下部に設けた圧縮機シェル温度検出装置61の検出値Tcompを用いた保護をバックアップ動作として導入すると、より確実に圧縮機10の破損を防ぐことができる。
この場合、圧縮機シェル温度検出装置61の検出値Tcompから吸入圧力検出装置60の検出圧力より計算した飽和温度Tsatを引いた式(20)で計算される圧縮機10のシェル下部におけるスーパーヒート(シェル下スーパーヒート)SHcompがあらかじめ設定した値(たとえば、10℃)よりも小さくなった場合には、圧縮機10に過度の液又は二相冷媒の流入が発生していると判定し、圧縮機10の運転を停止または減速させる保護動作を行うようにするとよい。
(数20)
SHcomp=Tcomp−Tsat…(20)
圧縮機10の底部に貯留されている冷凍機油は、圧縮機10のモータが回転する際にモータのシャフトに刻まれた溝或いは穴を伝って吸い上げられスクロール部に供給されているため、圧縮機10に過度の液冷媒の吸入が発生すると、圧縮機10の底部に貯留されている冷凍機油が液冷媒によって希釈され、冷凍機油の濃度が減少することで冷凍機油の粘度が小さくなる。
冷凍機油の粘度が粘度限界よりも小さくなると、摺動部位での油膜厚さが薄くなり摺動部位が磨耗したり、焼付けを生じたり圧縮機の損傷を招く。
図21にR410A冷媒とエステル系粘度グレード30の冷凍機油の混合粘度の挙動を示す。図21の横軸が冷媒と冷凍機油の混合物の温度、縦軸が液冷媒と冷凍機油の混合物の粘度であり、潤滑不足が生じるときの粘度が図21に示す粘度限界に相当している。
図21では、蒸発温度が−20℃の場合、冷媒と冷凍機油の温度が−10℃で限界粘度となっており、蒸発温度が−10℃の場合、冷媒と冷凍機油の温度が0℃で限界粘度となっている。どちらの状態においても、冷媒と冷凍機油の温度から蒸発温度を引いた温度差が10℃となっていることから、圧縮機10のシェル下スーパーヒートが10℃となるときに冷凍機油の粘度が限界粘度となることがわかる。
したがって、この場合は、圧縮機10のシェル下スーパーヒートが10℃よりも小さくなった場合に保護動作を開始するようにするとよい。しかし、冷凍機油の種類や粘度グレードによって、冷媒との混合割合や混合後の粘度が異なるため、圧縮機10のシェル下スーパーヒートによる保護動作を開始する値は、10℃に限定するものではなく、それらの組み合わせにより適切な値を使用する。
図21では、R410A冷媒とエステル系粘度グレード30の冷凍機油の混合粘度の挙動を示したが、冷媒や冷凍機油の種類はこれに限定するものではなく、エーテル系やその他の種類の冷凍機油でも良く、粘度グレードも30以外の値でも問題はない。その他の冷媒や冷凍機油を使用する場合は、冷媒や冷凍機油の物性の変化に応じて限界粘度や圧縮機10のシェル下スーパーヒートによる保護動作の開始温度を変更すればよい。
試験結果より一般的な低圧シェル圧縮機において、圧縮機10の回転速度が大きい運転状態では、圧縮機10の吸入冷媒乾き度Xsを0.90以上とするとシェル下スーパーヒートを10℃以上確保することができることが判明しており、式(19)で演算される圧縮機10に吸入される冷媒の乾き度Xsを0.90より大きい値で運転すると圧縮機10を保護することができる。すなわち、圧縮機10に、乾き度Xsが0.9以上、かつ、0.99以下の湿り冷媒を吸入させることにより、圧縮機10の破損を防ぎながら、圧縮機10の吐出冷媒温度を制御することができる。なお、圧縮機10のモータの発熱量は、圧縮負荷や回転速度により変わるため、圧縮負荷や回転速度に応じて、液冷媒の量が過度であると判定する値を適宜変更してよい。
なお、本実施の形態では、圧縮機10が低圧シェル型の圧縮機である場合について説明を行った。圧縮機10の密閉容器内が高圧の冷媒雰囲気となる高圧シェル型の圧縮機においては、圧縮機10に吸入された冷媒は圧縮室に流入し、圧縮・加圧後、圧縮機シェル内に吐出し、圧縮機10から流出する。高圧シェル圧縮機において、吸入冷媒の乾き度Xsが小さくなり、冷媒液成分が増えすぎると、圧縮機構が破壊する可能性がある。この圧縮機構が破壊してしまう乾き度の限界は、低圧シェル圧縮機において低圧シェル圧縮機における下部の油粘度低下よりも小さいが、圧縮機10に吸入される冷媒の乾き度Xsを0.9以上、かつ、0.99以下にすれば、高圧シェル圧縮機においても、確実に安全に使用することができる。
[実施の形態4に係る空気調和装置の有する効果]
実施の形態4に係る空気調和装置は、過度の液冷媒が圧縮機10に供給されることを抑制し、圧縮室を構成するスクロール部分が破損してしまうことを防止することができる。
実施の形態4に係る空気調和装置は、過度の液冷媒が圧縮機10に供給されることを抑制するので、シェル下部に過度の液冷媒が溜まることを抑制することができる。このため、冷凍機油の濃度の低下を抑制し、圧縮機10の摺動部位の磨耗の抑制、及び破損の防止を実現することができる。
本実施の形態1〜4に係る空気調和装置は、圧縮機10の吸入側へ冷媒をインジェクションすることができるため、動作の安定性が低減してしまうことを抑制することができる。
また、本実施の形態1〜4に係る空気調和装置は、全暖房運転モード、全冷房運転モード、暖房主体運転モード、及び冷房主体運転モードにおいて、インジェクションすることができる。すなわち、本実施の形態1〜4に係る空気調和装置は、たとえば冷房運転から暖房運転や冷暖房混在運転などに切り替えるなどをして、冷媒の流れを変更しても、インジェクションすることができるものである。
さらに、本実施の形態1〜4に係る空気調和装置は、室外機1及び熱媒体変換機3における冷媒回路における改良が加えられることでインジェクションを可能としたものである。すなわち、本実施の形態1〜4に係る空気調和装置は、室内機2に逆止弁などを設けるなどといった構成でなくとも、インジェクションすることが可能となっており、その分汎用性を向上させたものとなっている。
本実施の形態1〜4に係る空気調和装置では、利用側熱交換器26にて暖房負荷又は冷房負荷のみが発生している場合は、対応する第1熱媒体流路切替装置22及び第2熱媒体流路切替装置23を中間の開度にし、熱媒体間熱交換器15a及び熱媒体間熱交換器15bの双方に熱媒体が流れるようにしている。これにより、熱媒体間熱交換器15a及び熱媒体間熱交換器15bの双方を暖房運転又は冷房運転に使用することができるため、伝熱面積が大きくなり、効率のよい暖房運転又は冷房運転を行なうことができる。
また、利用側熱交換器26にて暖房負荷と冷房負荷とが混在して発生している場合は、暖房運転を行なっている利用側熱交換器26に対応する第1熱媒体流路切替装置22及び第2熱媒体流路切替装置23を加熱用の熱媒体間熱交換器15bに接続される流路へ切り替え、冷房運転を行なっている利用側熱交換器26に対応する第1熱媒体流路切替装置22及び第2熱媒体流路切替装置23を冷却用の熱媒体間熱交換器15aに接続される流路へ切り替えることにより、各室内機2にて、暖房運転、冷房運転を自由に行なうことができる。
なお、第1熱媒体流路切替装置22及び第2熱媒体流路切替装置23は、三方弁などの三方流路を切り替えられるもの、開閉弁などの二方流路の開閉を行なうものを2つ組み合わせるなど、流路を切り替えられるものであればよい。また、ステッピングモータ駆動式の混合弁などの三方流路の流量を変化させられるもの、電子式膨張弁などの2方流路の流量を変化させられるものを2つ組み合わせるなどして第1熱媒体流路切替装置22及び第2熱媒体流路切替装置23として用いてもよい。この場合は、流路の突然の開閉によるウォーターハンマーを防ぐこともできる。さらに、実施の形態では、熱媒体流量調整装置25が二方弁である場合を例に説明を行なったが、三方流路を持つ制御弁とし利用側熱交換器26をバイパスするバイパス管と共に設置するようにしてもよい。
また、絞り装置14a及び絞り装置14bは、電子式膨張弁などの開口面積を変化させられるものの他、小型の電磁弁などの開閉弁、キャピラリチューブ、小型の逆止弁などを使用してもよく、中圧を形成できればどのようなものでもよい。
また、熱媒体流量調整装置25は、ステッピングモータ駆動式で流路を流れる流量を制御できるものを使用するとよく、二方弁でも三方弁の一端を閉止したものでもよい。また、熱媒体流量調整装置25として、開閉弁などの二方流路の開閉を行うものを用い、ON/OFFを繰り返して平均的な流量を制御するようにしてもよい。
また、第2冷媒流路切替装置18が四方弁であるかのように示したが、これに限るものではなく、二方流路切替弁や三方流路切替弁を複数個用い、同じように冷媒が流れるように構成してもよい。
また、利用側熱交換器26と熱媒体流量調整装置25とが1つしか接続されていない場合でも同様のことが成り立つのは言うまでもなく、更に熱媒体間熱交換器15及び絞り装置16として、同じ動きをするものが複数個設置されていても、当然問題ない。さらに、熱媒体流量調整装置25は、熱媒体変換機3に内蔵されている場合を例に説明したが、これに限るものではなく、室内機2に内蔵されていてもよく、熱媒体変換機3と室内機2とは別体に構成されていてもよい。
熱媒体としては、たとえばブライン(不凍液)や水、ブラインと水の混合液、水と防食効果が高い添加剤の混合液などを用いることができる。したがって、本実施の形態1〜4に係る空気調和装置においては、熱媒体が室内機2を介して室内空間7に漏洩したとしても、熱媒体に安全性の高いものを使用しているため安全性の向上に寄与することになる。
冷媒としては、R32などの吐出冷媒温度が高くなる冷媒を使用する時に吸入インジェクションの効果が大きく、R32の他、R32と地球温暖化係数が小さいテトラフルオロプロペン系冷媒であり化学式がCF3CF=CH2で表されるHFO1234yfや化学式がCF3CH=CHFで表されるHFO1234zeとの混合冷媒(非共沸混合冷媒)を使用してもよい。
冷媒としてR32を使用した場合は、R410Aを使用した場合に対して、同一運転状態において、吐出冷媒温度が約20℃上昇するため、吐出冷媒温度を低下させて使用する必要があり、吸入インジェクションの効果が大きい。R410Aに対して、吐出冷媒温度が少しでも高くなる冷媒を使用する場合には、吸入インジェクションにより吐出温度を低下させる必要があり、R32とHFO1234yfとの混合冷媒においては、R32の質量比率が62%(62質量%)以上である場合に、R410A冷媒を使用した場合よりも吐出冷媒温度が3℃以上高くなり、吸入インジェクションにより、吐出冷媒温度を低下させるようにすると、効果が大きい。
また、R32とHFO1234zeとの混合冷媒においては、R32の質量比率が43%(43質量%)以上である場合に、R410A冷媒を使用した場合よりも吐出冷媒温度が3℃以上高くなり、吸入インジェクションにより、吐出冷媒温度を低下させるようにすると、効果が大きい。
また、混合冷媒における冷媒種はこれに限るものではなく、その他の冷媒成分を少量含んだ混合冷媒であっても、吐出冷媒温度には大きな影響がなく、同様の効果を奏する。例えば、R32とHFO1234yfとその他の冷媒を少量含んだ混合冷媒などにおいても使用できる。
また、一般的に、熱源側熱交換器12及び利用側熱交換器26a〜26dには、送風機が取り付けられており、送風により凝縮或いは蒸発を促進させる場合が多いが、これに限るものではなく、例えば利用側熱交換器26a〜26dとしては放射を利用したパネルヒータのようなものも用いることができるし、熱源側熱交換器12としては、水や不凍液により熱を移動させる水冷式のタイプのものも用いることができ、放熱或いは吸熱をできる構造のものであればどんなものでも用いることができる。
また、ここでは、利用側熱交換器26a〜26dが4つである場合を例に説明を行ったが、幾つ接続してもよい。
また、熱媒体間熱交換器15a、15bが2つである場合を例に説明を行ったが、当然、これに限るものではなく、熱媒体を冷却又は/及び加熱できるように構成すれば、幾つ設置してもよい。
また、ポンプ21a、21bはそれぞれ一つとは限らず、複数の小容量のポンプを並列に並べてもよい。
また、本実施の形態では、以下のような構成例を説明した。すなわち、圧縮機10、四方弁(第1冷媒流路切替装置)11、熱源側熱交換器12、絞り装置14a、絞り装置14b、開閉装置24及び逆流防止装置20を室外機1に収容している。また、利用側熱交換器26を室内機2に収容し、熱媒体間熱交換器15及び絞り装置16を熱媒体変換機3に収容している。さらに、室外機1と熱媒体変換機3との間を2本一組の配管で接続し、室外機1と熱媒体変換機3との間で冷媒を循環させ、室内機2と熱媒体変換機3との間をそれぞれ2本一組の配管で接続し、室内機2と熱媒体変換機3との間で熱媒体を循環させ、熱媒体間熱交換器15で冷媒と熱媒体とを熱交換させるシステムを例に説明を行った。しかし、本実施の形態1〜4に係る空気調和装置は、それに限るものではない。
たとえば、圧縮機10、四方弁(第1冷媒流路切替装置)11、熱源側熱交換器12、絞り装置14a、絞り装置14b、開閉装置24及び逆流防止装置20を室外機1に収容し、空調対象空間の空気と冷媒とを熱交換させる負荷側熱交換器及び絞り装置16を室内機2に収容し、室外機1及び室内機2とは別体に形成された中継器を備え、室外機1と中継器との間を2本一組の配管で接続し、室内機2と中継器との間をそれぞれ2本一組の配管で接続し、中継機を介して室外機1と室内機2との間で冷媒を循環させ、全冷房運転、全暖房運転、冷房主体運転、暖房主体運転を行うことができる直膨システムにも適用することができ、同様の効果を奏する。
また、本実施の形態では、以下のような構成例を説明した。すなわち、圧縮機10、四方弁(第1冷媒流路切替装置)11、熱源側熱交換器12、絞り装置14a、絞り装置14bを室外機1に収容している。また、利用側熱交換器26を室内機2に収容している。さらに、熱媒体間熱交換器15及び絞り装置16を熱媒体変換機3に収容し、室外機1と熱媒体変換機3との間を2本一組の配管で接続し、室外機1と熱媒体変換機3との間で冷媒を循環させ、室内機2と熱媒体変換機3との間をそれぞれ2本一組の配管で接続し、室内機2と熱媒体変換機3との間で熱媒体を循環させ、熱媒体間熱交換器15で冷媒と熱媒体とを熱交換させるシステムを例に説明を行った。しかし、本実施の形態1〜4に係る空気調和装置は、それに限るものではない。
たとえば、圧縮機10、四方弁(第1冷媒流路切替装置)11、熱源側熱交換器12、絞り装置14a、絞り装置14bを室外機1に収容し、空調対象空間の空気と冷媒とを熱交換させる負荷側熱交換器及び絞り装置16を室内機2に収容し、室外機1に対し、複数の室内機を2本一組の配管で接続し、室外機1と室内機2との間で冷媒を循環させ、冷房運転、暖房運転を行うことができる直膨システムにも適用することができ、同様の効果を奏する。
また、ここでは、冷房主体運転や暖房主体運転といった冷暖混在運転が可能な空気調和装置を例に説明を行ったが、これに限るものではなく、冷房暖房混在運転ができない、全冷房運転と全暖房運転とを切り替えて使用する空気調和装置にも、適用することができ、同様の効果を奏する。また、冷暖房混在運転ができないものの中には、熱媒体間熱交換器が1つだけのものも含まれる。
1 室外機(熱源機)、2 室内機、2a〜2d 室内機、3 熱媒体変換機、4 冷媒配管、4a 第1接続配管、4b 第2接続配管、4c 吸入インジェクション配管、4d 分岐配管、5 配管、6 室外空間、7 室内空間、8 空間、9 建物、10 圧縮機、11 第1冷媒流路切替装置(四方弁)、12 熱源側熱交換器(第一の熱交換器)、13a〜13d 逆止弁、14 絞り装置、14a 絞り装置(第二の絞り装置)、14b 絞り装置(第三の絞り装置)、15 熱媒体間熱交換器(第二の熱交換器)、15a、15b 熱媒体間熱交換器(第二の熱交換器)、16 絞り装置、16a、16b 絞り装置(第一の絞り装置)、17 開閉装置、17a、17b 開閉装置、18 第2冷媒流路切替装置、18a、18b 第2冷媒流路切替装置、19 アキュムレータ、20 逆流防止装置(第二の導通装置)、21 ポンプ、21a、21b ポンプ、22 第1熱媒体流路切替装置、22a〜22d 第1熱媒体流路切替装置、23 第2熱媒体流路切替装置、23a〜23d 第2熱媒体流路切替装置、24 開閉装置(第一の導通装置)、24B 逆流防止装置、25 熱媒体流量調整装置、25a〜25d 熱媒体流量調整装置、26 利用側熱交換器、26a〜26d 利用側熱交換器、27a 分岐部(第一の分岐部)、27b 分岐部(第二の分岐部)、31 第1温度センサ、31a、31b 第1温度センサ、32 中圧検出装置、33 分岐冷媒温度検出装置、34 第2温度センサ、34a〜34d 第2温度センサ、35 第3温度センサ、35a〜35d 第3温度センサ、36 圧力センサ、37 吐出冷媒温度検出装置、38 吸入冷媒温度検出装置、39 高圧検出装置、50 制御装置、60 吸入圧力検出装置、61 圧縮機シェル温度検出装置、100 空気調和装置、A 冷媒循環回路、B 熱媒体循環回路。

Claims (13)

  1. 圧縮機、冷媒流路切替装置、熱源側熱交換器、第1の絞り装置及び熱媒体間熱交換器を有し、これらが冷媒配管を介して接続され、冷媒循環回路を構成し空気調和装置において、
    暖房運転時における熱源側熱交換器の上流側であって前記第1の絞り装置の下流側に設けられた第2の絞り装置と、
    前記圧縮機の上流側に設けられた余剰冷媒を貯留するためのアキュムレータと、
    一方が暖房運転時における前記第2の絞り装置の上流側に接続され、他方が前記圧縮機の吸入側と前記アキュムレータとの間の流路に接続された吸入インジェクション配管と、
    前記吸入インジェクション配管に設けられた第3の絞り装置と、
    前記圧縮機の吐出冷媒温度を検出する吐出冷媒温度検出装置と、
    前記圧縮機の吸入冷媒温度を検出する吸入圧力検出装置と、
    前記暖房運転時における前記第2の絞り装置の上流側であって前記第1の絞り装置又は前記熱媒体間熱交換器の下流側の冷媒圧力又は冷媒飽和温度を検出する中圧検出装置と、
    前記中圧検出装置の検出結果に基づいて前記第2の絞り装置の開度を制御するとともに、前記吐出冷媒温度検出装置、前記中圧検出装置及び前記吸入圧力検出装置の検出結果に基づいて前記第3の絞り装置の開度を制御する制御装置と、
    を有し、
    前記冷媒配管の内部には、
    冷媒として、R410Aよりも吐出冷媒温度が高温になる冷媒を循環させ、
    前記制御装置は、
    前記第2の絞り装置の開度、前記第3の絞り装置の開度、前記中圧検出装置及び前記吸入圧力検出装置の検出結果に基づいて前記圧縮機に吸入される冷媒の乾き度を算出し、
    前記吐出冷媒温度検出装置の検出結果に基づく第1の開度で前記第3の絞り装置を制御しているときに、前記乾き度が予め定められた値より小さくなると、前記第3の絞り装置の開度を前記第1の開度よりも小さい第2の開度にし、前記圧縮機に、前記乾き度が0.9以上0.99以下となる冷媒を吸入させる
    ことを特徴とする空気調和装置。
  2. 冷媒として、R32またはR32を62質量%以上含む混合冷媒を循環させる
    ことを特徴とする請求項1に記載の空気調和装置。
  3. 記制御装置は、
    暖房運転時において、中圧の目標値と、前記中圧検出装置の検出結果又は予測値との偏差に基づいて前記第2の絞り装置の開度を制御する中圧制御を実施し、
    暖房運転時における吐出冷媒温度の目標値又は吐出冷媒温度に係る目標値と、
    前記吐出冷媒温度検出装置の検出値である吐出冷媒温度、当該吐出冷媒温度を用いて演算された吐出冷媒温度に係る値、前記吐出冷媒温度に係る予測値、又は前記吐出冷媒温度を用いて演算された前記吐出冷媒温度に係る値の予測値と、
    の偏差に基づいて前記第3の絞り装置の開度を制御する吐出温度制御を実施し、前記圧縮機に、前記乾き度が0.9以上0.99以下となる冷媒を吸入させる
    ことを特徴とする請求項1又は2に記載の空気調和装置。
  4. 前記圧縮機から吐出される冷媒の圧力を検出する高圧検出装置を有し、
    前記制御装置は、
    前記吐出冷媒温度検出装置及び前記高圧検出装置の検出結果に基づいて前記圧縮機から吐出される冷媒の過熱度を算出し、この過熱度を前記吐出冷媒温度に係る目標値として設定する
    ことを特徴とする請求項3に記載の空気調和装置。
  5. 前記制御装置は、
    冷房運転時において前記第2の絞り装置の開度を固定開度とする
    ことを特徴とする請求項1〜4のいずれか一項に記載の空気調和装置。
  6. 前記制御装置は、
    冷房運転時において、前記圧縮機に、乾き度が0.9以上0.99以下となる冷媒を吸入させる
    ことを特徴とする請求項1〜5のいずれか一項に記載の空気調和装置。
  7. 前記制御装置は、
    前記圧縮機の吐出冷媒温度の目標値を100℃から110℃の間の値とし、前記圧縮機の前記吐出冷媒温度を前記吐出冷媒温度の目標値に近づけるように制御する
    ことを特徴とする請求項1〜5のいずれか一項に記載の空気調和装置。
  8. 前記制御装置は、定常時の制御と異なる起動制御を有し、前記起動制御は、前記圧縮機が起動された後、所定の終了条件が満たされるまでの間、実施されるものであり、
    前記起動制御の間の吐出冷媒温度の目標値を80℃から100℃の間の値とし、前記圧縮機の前記吐出冷媒温度を前記吐出冷媒温度の目標値に近づけるように制御する
    ことを特徴とする請求項1〜5、7のいずれか一項に記載の空気調和装置。
  9. 前記制御装置は、
    前記圧縮機の前記吐出冷媒温度が、起動制御の間の吐出冷媒温度の目標値に十分近づいたことを判断した場合に、前記起動制御を終了する
    ことを特徴とする請求項8に記載の空気調和装置。
  10. 前記圧縮機は、密閉容器内に圧縮室を有し、前記密閉容器内が低圧の冷媒圧雰囲気となり、前記圧縮室に前記密閉容器内の低圧冷媒を吸入して圧縮する低圧シェル構造の圧縮機であり、
    前記密閉容器の下側の温度を検出するシェル下温度検出装置を有し、
    前記制御装置は、
    前記シェル下温度検出装置の検出結果又は前記シェル下温度検出装置の検出結果から演算された値が、予め設定される値を下回った場合に前記圧縮機を停止させる、または前記圧縮機を減速させる
    ことを特徴とする請求項1〜5のいずれか一項に記載の空気調和装置。
  11. 冷房運転時において前記熱源側熱交換器から前記第1の絞り装置へ冷媒が流れる場合の冷媒流路から冷媒を分流させる第1の冷媒分岐部と、
    暖房運転時において前記第1の絞り装置から前記熱源側熱交換器へ冷媒が流れる場合の冷媒流路から冷媒を分流させる第2の冷媒分岐部と、
    前記第1の冷媒分岐部と前記第2の冷媒分岐部とを接続し、その配管上に前記吸入インジェクション配管が接続された分岐配管と、
    前記第1の冷媒分岐部と、前記分岐配管と前記吸入インジェクション配管との接続部との間に設置された第1の導通装置と、
    前記第2の冷媒分岐部と、前記接続部との間に設置された第2の導通装置とを備えた
    ことを特徴とする請求項1〜10のいずれか一項に記載の空気調和装置。
  12. 前記制御装置は、
    前記冷媒流路切替装置を切り替えて、前記熱源側熱交換器に高圧の冷媒を流して凝縮器として動作させ、かつ、前記熱媒体間熱交換器の一部又は全てに低圧の冷媒を流して蒸発器として動作させる冷房運転を実行し、
    前記冷房運転時、前記冷媒は前記第2の絞り装置を通らずに、前記冷媒循環回路を循環し、前記高圧の冷媒を前記第1の導通装置及び前記第3の絞り装置及び前記吸入インジェクション配管を介して前記圧縮機の吸入側に導入す
    ことを特徴とする請求項11に記載の空気調和装置。
  13. 前記第1の冷媒分岐部は、
    前記冷房運転と前記暖房運転の場合に、それぞれ異なる方向から冷媒が流入する位置に配置され、
    前記第2の冷媒分岐部は、
    前記冷房運転と前記暖房運転の場合に、同一の方向から冷媒が流入する位置に配置され、
    前記第1の導通装置は、
    前記第1の冷媒分岐部から前記吸入インジェクション配管へ流れる方向にのみ冷媒を導通させる逆流防止装置であり、
    前記第2の導通装置は、
    前記第2の冷媒分岐部から前記吸入インジェクション配管へ流れる方向にのみ冷媒を導通させる逆流防止装置である
    ことを特徴とする請求項11又は12に記載の空気調和装置。
JP2014548363A 2012-11-21 2012-11-21 空気調和装置 Active JP6012757B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/080136 WO2014080464A1 (ja) 2012-11-21 2012-11-21 空気調和装置

Publications (2)

Publication Number Publication Date
JP6012757B2 true JP6012757B2 (ja) 2016-10-25
JPWO2014080464A1 JPWO2014080464A1 (ja) 2017-01-05

Family

ID=50775669

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014548363A Active JP6012757B2 (ja) 2012-11-21 2012-11-21 空気調和装置

Country Status (5)

Country Link
US (1) US10393419B2 (ja)
EP (1) EP2924366B1 (ja)
JP (1) JP6012757B2 (ja)
CN (1) CN104797893B (ja)
WO (1) WO2014080464A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111237982A (zh) * 2020-01-14 2020-06-05 广东美的暖通设备有限公司 空调器及其控制方法、装置以及电子设备、存储介质

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014097439A1 (ja) * 2012-12-20 2014-06-26 三菱電機株式会社 空気調和装置
JP6271195B2 (ja) * 2013-09-18 2018-01-31 サンデンホールディングス株式会社 車両用空気調和装置
US10451324B2 (en) * 2014-05-30 2019-10-22 Mitsubishi Electric Corporation Air-conditioning apparatus
KR101637745B1 (ko) * 2014-11-25 2016-07-07 현대자동차주식회사 열해를 방지하는 에어가이드를 구비한 라디에이터
US10876778B2 (en) 2016-04-07 2020-12-29 Emilie Elie Kfourt Aswad Refrigeration system control and protection device
JP6456880B2 (ja) * 2016-07-11 2019-01-23 日立ジョンソンコントロールズ空調株式会社 冷媒切替集合ユニット
JP6559361B2 (ja) * 2016-09-06 2019-08-14 三菱電機株式会社 冷凍サイクル装置
WO2018131555A1 (ja) * 2017-01-16 2018-07-19 日本電気株式会社 バルブ制御装置、冷却装置、バルブ制御方法およびプログラム記憶媒体
WO2019064441A1 (ja) * 2017-09-28 2019-04-04 三菱電機株式会社 空気調和装置
US20190186769A1 (en) * 2017-12-18 2019-06-20 Heatcraft Refrigeration Products Llc Cooling system
JP6949253B2 (ja) * 2018-12-06 2021-10-13 三菱電機株式会社 冷凍サイクル装置
CN111306033A (zh) * 2018-12-11 2020-06-19 广东美芝精密制造有限公司 双级压缩机及制冷装置
CN109855252B (zh) * 2019-02-14 2022-02-22 青岛海尔空调电子有限公司 多联机空调系统的冷媒控制方法
CN111692703B (zh) * 2019-03-15 2023-04-25 开利公司 空气调节系统的故障检测方法
KR20200118968A (ko) * 2019-04-09 2020-10-19 엘지전자 주식회사 공기 조화 장치
WO2020213130A1 (ja) * 2019-04-18 2020-10-22 三菱電機株式会社 空気調和装置の制御装置、室外機、中継機、熱源機及び空気調和装置
JP7209585B2 (ja) * 2019-05-29 2023-01-20 三菱電機株式会社 冷暖房装置および冷暖房装置の制御方法
US11143421B2 (en) * 2019-05-31 2021-10-12 Rheem Manufacturing Company Sequential hot gas reheat system in an air conditioning unit
JP2020197328A (ja) * 2019-05-31 2020-12-10 シャープ株式会社 空気調和機
US20230076358A1 (en) * 2021-09-09 2023-03-09 Haier Us Appliance Solutions, Inc. Indoor garden center environmental control system
CN114608181B (zh) * 2022-03-21 2023-12-26 青岛海尔空调电子有限公司 电子膨胀阀的控制方法、装置、介质及空气源热泵机组

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001221526A (ja) * 2000-02-04 2001-08-17 Mitsubishi Electric Corp 冷凍空調装置
JP2005147437A (ja) * 2003-11-12 2005-06-09 Matsushita Electric Ind Co Ltd ヒートポンプ装置
JP2007255730A (ja) * 2006-03-20 2007-10-04 Mitsubishi Electric Corp 空気調和機
JP2009162388A (ja) * 2007-12-28 2009-07-23 Mitsubishi Electric Corp 冷凍空調装置、冷凍空調装置の室外機および冷凍空調装置の制御装置
JP2010038503A (ja) * 2008-08-08 2010-02-18 Fujitsu General Ltd 冷凍サイクル装置
WO2010109832A1 (ja) * 2009-03-26 2010-09-30 三菱電機株式会社 冷凍機
JP2010271011A (ja) * 2009-05-25 2010-12-02 Mitsubishi Electric Corp 空気調和機
WO2011052055A1 (ja) * 2009-10-29 2011-05-05 三菱電機株式会社 空気調和装置
WO2011052050A1 (ja) * 2009-10-28 2011-05-05 三菱電機株式会社 空気調和装置
WO2012042573A1 (ja) * 2010-09-30 2012-04-05 三菱電機株式会社 空気調和装置
WO2012104891A1 (ja) * 2011-01-31 2012-08-09 三菱電機株式会社 空気調和装置
WO2012104893A1 (ja) * 2011-01-31 2012-08-09 三菱電機株式会社 空気調和装置
WO2012104892A1 (ja) * 2011-01-31 2012-08-09 三菱電機株式会社 空気調和装置
WO2012104890A1 (ja) * 2011-01-31 2012-08-09 三菱電機株式会社 空気調和装置
JP2012251706A (ja) * 2011-06-02 2012-12-20 Mitsubishi Electric Corp 冷凍サイクル装置
WO2014080463A1 (ja) * 2012-11-21 2014-05-30 三菱電機株式会社 空気調和装置
JP5642278B2 (ja) * 2011-06-29 2014-12-17 三菱電機株式会社 空気調和装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07260262A (ja) 1994-03-17 1995-10-13 Sanyo Electric Co Ltd 冷凍装置
JP3080558B2 (ja) 1995-02-03 2000-08-28 株式会社日立製作所 寒冷地向けヒートポンプ空調機
JP4200532B2 (ja) * 1997-12-25 2008-12-24 三菱電機株式会社 冷凍装置
JP2004218964A (ja) * 2003-01-16 2004-08-05 Matsushita Electric Ind Co Ltd 冷凍装置
JP2006078087A (ja) * 2004-09-09 2006-03-23 Daikin Ind Ltd 冷凍装置
JP4670329B2 (ja) * 2004-11-29 2011-04-13 三菱電機株式会社 冷凍空調装置、冷凍空調装置の運転制御方法、冷凍空調装置の冷媒量制御方法
JP2008248865A (ja) * 2007-03-30 2008-10-16 Fujitsu General Ltd インジェクション対応2段圧縮ロータリ圧縮機およびヒートポンプシステム
US20110110791A1 (en) * 2008-07-25 2011-05-12 Carrier Corporation Continuous compressor envelope protection
JP5506185B2 (ja) 2008-12-15 2014-05-28 三菱電機株式会社 空気調和装置
CN102378880B (zh) * 2009-04-01 2014-03-19 三菱电机株式会社 空气调节装置
JP5484930B2 (ja) * 2010-01-25 2014-05-07 三菱重工業株式会社 空気調和機
WO2011135630A1 (ja) * 2010-04-30 2011-11-03 ダイキン工業株式会社 ヒートポンプシステム

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001221526A (ja) * 2000-02-04 2001-08-17 Mitsubishi Electric Corp 冷凍空調装置
JP2005147437A (ja) * 2003-11-12 2005-06-09 Matsushita Electric Ind Co Ltd ヒートポンプ装置
JP2007255730A (ja) * 2006-03-20 2007-10-04 Mitsubishi Electric Corp 空気調和機
JP2009162388A (ja) * 2007-12-28 2009-07-23 Mitsubishi Electric Corp 冷凍空調装置、冷凍空調装置の室外機および冷凍空調装置の制御装置
JP2010038503A (ja) * 2008-08-08 2010-02-18 Fujitsu General Ltd 冷凍サイクル装置
WO2010109832A1 (ja) * 2009-03-26 2010-09-30 三菱電機株式会社 冷凍機
JP2010271011A (ja) * 2009-05-25 2010-12-02 Mitsubishi Electric Corp 空気調和機
WO2011052050A1 (ja) * 2009-10-28 2011-05-05 三菱電機株式会社 空気調和装置
WO2011052055A1 (ja) * 2009-10-29 2011-05-05 三菱電機株式会社 空気調和装置
WO2012042573A1 (ja) * 2010-09-30 2012-04-05 三菱電機株式会社 空気調和装置
WO2012104891A1 (ja) * 2011-01-31 2012-08-09 三菱電機株式会社 空気調和装置
WO2012104893A1 (ja) * 2011-01-31 2012-08-09 三菱電機株式会社 空気調和装置
WO2012104892A1 (ja) * 2011-01-31 2012-08-09 三菱電機株式会社 空気調和装置
WO2012104890A1 (ja) * 2011-01-31 2012-08-09 三菱電機株式会社 空気調和装置
JP2012251706A (ja) * 2011-06-02 2012-12-20 Mitsubishi Electric Corp 冷凍サイクル装置
JP5642278B2 (ja) * 2011-06-29 2014-12-17 三菱電機株式会社 空気調和装置
WO2014080463A1 (ja) * 2012-11-21 2014-05-30 三菱電機株式会社 空気調和装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111237982A (zh) * 2020-01-14 2020-06-05 广东美的暖通设备有限公司 空调器及其控制方法、装置以及电子设备、存储介质
CN111237982B (zh) * 2020-01-14 2021-11-05 广东美的暖通设备有限公司 空调器及其控制方法、装置以及电子设备、存储介质

Also Published As

Publication number Publication date
US20150300714A1 (en) 2015-10-22
EP2924366B1 (en) 2020-06-17
EP2924366A4 (en) 2016-08-31
EP2924366A1 (en) 2015-09-30
CN104797893B (zh) 2016-08-24
WO2014080464A1 (ja) 2014-05-30
JPWO2014080464A1 (ja) 2017-01-05
US10393419B2 (en) 2019-08-27
CN104797893A (zh) 2015-07-22

Similar Documents

Publication Publication Date Title
JP6012757B2 (ja) 空気調和装置
JP6012756B2 (ja) 空気調和装置
JP5752148B2 (ja) 空気調和装置
JP5992089B2 (ja) 空気調和装置
JP5855312B2 (ja) 空気調和装置
JP5784117B2 (ja) 空気調和装置
JP5818885B2 (ja) 空気調和装置
JP5774121B2 (ja) 空気調和装置
JP6095764B2 (ja) 空気調和装置
WO2013069043A1 (ja) 空気調和装置
JP6000373B2 (ja) 空気調和装置
JP5689079B2 (ja) 冷凍サイクル装置
WO2012104892A1 (ja) 空気調和装置
JP6038382B2 (ja) 空気調和装置
JP5312606B2 (ja) 空気調和装置
JP5955409B2 (ja) 空気調和装置
JP6017048B2 (ja) 空気調和装置
JP6017049B2 (ja) 空気調和装置
JP6062030B2 (ja) 空気調和装置
JPWO2020208805A1 (ja) 空気調和装置
JP5885753B2 (ja) 空気調和装置

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160823

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160920

R150 Certificate of patent or registration of utility model

Ref document number: 6012757

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250