JP5689079B2 - 冷凍サイクル装置 - Google Patents

冷凍サイクル装置 Download PDF

Info

Publication number
JP5689079B2
JP5689079B2 JP2011553647A JP2011553647A JP5689079B2 JP 5689079 B2 JP5689079 B2 JP 5689079B2 JP 2011553647 A JP2011553647 A JP 2011553647A JP 2011553647 A JP2011553647 A JP 2011553647A JP 5689079 B2 JP5689079 B2 JP 5689079B2
Authority
JP
Japan
Prior art keywords
refrigerant
heat
heat medium
heat exchanger
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011553647A
Other languages
English (en)
Other versions
JPWO2011099074A1 (ja
Inventor
山下 浩司
浩司 山下
裕之 森本
裕之 森本
傑 鳩村
傑 鳩村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Publication of JPWO2011099074A1 publication Critical patent/JPWO2011099074A1/ja
Application granted granted Critical
Publication of JP5689079B2 publication Critical patent/JP5689079B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B25/00Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00
    • F25B25/005Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00 using primary and secondary systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • F25B2309/061Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0231Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units with simultaneous cooling and heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/0272Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using bridge circuits of one-way valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/02732Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using two three-way valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/02741Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using one four-way valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/031Sensor arrangements
    • F25B2313/0312Pressure sensors near the indoor heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/031Sensor arrangements
    • F25B2313/0314Temperature sensors near the indoor heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/031Sensor arrangements
    • F25B2313/0315Temperature sensors near the outdoor heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/19Calculation of parameters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/025Compressor control by controlling speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/13Pump speed control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/17Control issues by controlling the pressure of the condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2513Expansion valves
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Description

本発明は、たとえばビル用マルチエアコン等に適用される冷凍サイクル装置、特に、高圧側が冷媒の臨界圧力を超える圧力となる冷凍サイクル装置に関するものである。
従来から、ビル用マルチエアコンなどの冷凍サイクル装置の一種である空気調和装置においては、たとえば室外に配置した熱源機である室外機と室内に配置した室内機との間に冷媒を循環させることによって冷房運転又は暖房運転を実行するようになっている。具体的には、冷媒が放熱して加熱された空気あるいは冷媒が吸熱して冷却された空気により空調対象空間の冷房または暖房を行なっていた。このような空気調和装置に使用される冷媒としては、従来はHFC(ハイドロフルオロカーボン)系冷媒が多く使われており、これらの冷媒は圧力が臨界圧力よりも低い、亜臨界領域にて運転されていた。しかし、近年は、二酸化炭素(CO2)等の自然冷媒を使うものも提案されており、二酸化炭素等においては、臨界温度が低いため、高圧側のガスクーラー内の冷媒圧力が臨界圧力を超える超臨界状態で冷凍サイクル運転が行われる。
このような高圧側が超臨界状態となった状態で冷凍サイクル運転が行われる空気調和装置においては、高圧側のガスク−ラー内の冷媒圧力における冷媒の定圧比熱が最大となる冷媒温度を擬似凝縮温度として、この擬似凝縮温度とガスクーラー出口における冷媒温度との温度差である擬似過冷却度が所定の温度範囲内になるように、構成機器の制御を行っていた(例えば、特許文献1参照)。
特許第4245044号公報(第6頁、図3等)
従来のビル用マルチエアコンなどの空気調和装置では、冷媒が亜臨界状態で運転されていたため、絞り装置の開度制御に用いる凝縮器内の代表点と、圧縮機の回転数または/および凝縮器に付属の熱媒体送出装置の回転数の制御に用いる凝縮器内の代表点の定義点を、同じ値(凝縮温度)に設定し、制御を行っていた。しかし、超臨界状態では、凝縮温度が存在せず、何らかの値を代表点とする必要があったが、一定の熱交換能力を確保しながら、COPを高く維持する代表点の決め方が確立されていなかった。
特許文献1に記載されているような空気調和装置においては、定圧比熱が最大の点でサブクールを制御することが記されているが、絞り装置の開度制御に用いる凝縮器内の代表点と、圧縮機の回転数または/および凝縮器に付属の熱媒体送出装置の回転数の制御に用いる凝縮器内の代表点の定義点について、どのように取り扱うかについては示されておらず、明確になっていなかった。
本発明は、上記の課題を解決するためになされたもので、ガスクーラーにて一定の熱交換量を確保しながらCOPの高い運転を行い、省エネルギー化を図ることができる冷凍サイクル装置を得るものである。
本発明に係る冷凍サイクル装置は、圧縮機と、第1熱交換器と、絞り装置と、第2熱交換器とを配管接続し、超臨界状態に遷移する冷媒を循環させる冷媒循環回路を備え、前記第1熱交換器または前記第2熱交換器の一方に、超臨界状態の前記冷媒を流通させてガスクーラーとして動作させ、前記第1熱交換器または前記第2熱交換器の他方に、低圧二相状態の前記冷媒を流通させて蒸発器として動作させる冷凍サイクル装置において、回転駆動して、前記ガスクーラー内の前記冷媒と熱交換させる熱媒体の流量を変化させる熱媒体送出装置と、前記ガスクーラーの出口側から前記蒸発器に至る流路の何れかの位置に設けられ、前記ガスクーラーの出口側の前記冷媒の温度を検出する出口温度センサーとを備え、前記ガスクーラー出口の過冷却度の制御では、前記ガスクーラー内での冷媒圧力において、前記冷媒のエンタルピーが臨界点のエンタルピーとほぼ同じとなる第1代表点の冷媒温度と、前記出口温度センサーの検出温度との温度差に応じて、前記絞り装置の開度を制御し、前記ガスクーラー出口の過冷却度の制御と同時に行われる、前記ガスクーラーの加熱能力を高く維持するための制御では、前記ガスクーラー内での冷媒圧力において、前記冷媒の定圧比熱が最大となる温度である第2代表点の温度が目標値となるように、前記圧縮機の回転数および前記熱媒体送出装置の回転数の少なくとも一方を制御するものである。
この発明は、ガスクーラー内での冷媒圧力において所定のエンタルピーとなる第1代表点の冷媒温度と、出口温度センサーの検出温度との温度差に応じて、絞り装置の開度を制御し、ガスクーラー内での冷媒圧力において第1代表点と異なる温度である第2代表点の温度に応じて、圧縮機の回転数または/および前記熱媒体送出装置の回転数を制御する。
このため、必要な熱交換量を維持しながらCOPを高く維持することができ、省エネルギー化を図ることができる。
本発明の実施の形態に係る空気調和装置の設置例を示す概略図である。 本発明の実施の形態に係る空気調和装置の回路構成の一例を示す概略回路構成図である。 本発明の実施の形態に係る空気調和装置の全冷房運転モード時における冷媒の流れを示す冷媒回路図である。 本発明の実施の形態に係る空気調和装置の全暖房運転モード時における冷媒の流れを示す冷媒回路図である。 本発明の実施の形態に係る空気調和装置の冷房主体運転モード時における冷媒の流れを示す冷媒回路図である。 本発明の実施の形態に係る空気調和装置の暖房主体運転モード時における冷媒の流れを示す冷媒回路図である。 本発明の実施の形態に係る冷凍サイクルの動作を示すP−h線図である。
以下、本発明の冷凍サイクル装置を空気調和装置に適用した実施の形態について、図面に基づいて説明する。
図1は、本発明の実施の形態に係る空気調和装置の設置例を示す概略図である。図1に基づいて、空気調和装置の設置例について説明する。この空気調和装置は、冷媒(熱源側冷媒、熱媒体)を循環させる冷凍サイクル(冷媒循環回路A、熱媒体循環回路B)を利用することで各室内機が運転モードとして冷房モードあるいは暖房モードを自由に選択できるものである。なお、図1を含め、以下の図面では各構成部材の大きさの関係が実際のものとは異なる場合がある。
図1においては、実施の形態に係る空気調和装置は、熱源機である1台の室外機1と、複数台の室内機2と、室外機1と室内機2との間に介在する熱媒体変換機3と、を有している。熱媒体変換機3は、熱源側冷媒と熱媒体とで熱交換を行なうものである。室外機1と熱媒体変換機3とは、熱源側冷媒を導通する冷媒配管4で接続されている。熱媒体変換機3と室内機2とは、熱媒体を導通する配管(熱媒体配管)5で接続されている。そして、室外機1で生成された冷熱あるいは温熱は、熱媒体変換機3を介して室内機2に配送されるようになっている。
室外機1は、通常、ビル等の建物9の外の空間(たとえば、屋上等)である室外空間6に配置され、熱媒体変換機3を介して室内機2に冷熱又は温熱を供給するものである。室内機2は、建物9の内部の空間(たとえば、居室等)である室内空間7に冷房用空気あるいは暖房用空気を供給できる位置に配置され、空調対象空間となる室内空間7に冷房用空気あるいは暖房用空気を供給するものである。熱媒体変換機3は、室外機1及び室内機2とは別筐体として、室外空間6及び室内空間7とは別の位置に設置できるように構成されており、室外機1及び室内機2とは冷媒配管4及び配管5でそれぞれ接続され、室外機1から供給される冷熱あるいは温熱を室内機2に伝達するものである。
図1に示すように、実施の形態に係る空気調和装置においては、室外機1と熱媒体変換機3とが2本の冷媒配管4を用いて、熱媒体変換機3と各室内機2とが2本の配管5を用いて、それぞれ接続されている。このように、実施の形態に係る空気調和装置では、2本の配管(冷媒配管4、配管5)を用いて各ユニット(室外機1、室内機2及び熱媒体変換機3)を接続することにより、施工が容易となっている。
なお、図1においては、熱媒体変換機3が、建物9の内部ではあるが室内空間7とは別の空間である天井裏等の空間(以下、単に空間8と称する)に設置されている状態を例に示している。熱媒体変換機3は、その他、エレベーター等がある共用空間等に設置することも可能である。また、図1においては、室内機2が天井カセット型である場合を例に示してあるが、これに限定するものではなく、天井埋込型や天井吊下式等、室内空間7に直接またはダクト等により、暖房用空気あるいは冷房用空気を吹き出せるようになっていればどんな種類のものでもよい。
図1においては、室外機1が室外空間6に設置されている場合を例に示しているが、これに限定するものではない。たとえば、室外機1は、換気口付の機械室等の囲まれた空間に設置してもよく、排気ダクトで廃熱を建物9の外に排気することができるのであれば建物9の内部に設置してもよく、あるいは、水冷式の室外機1を用いる場合にも建物9の内部に設置するようにしてもよい。このような場所に室外機1を設置するとしても、特段の問題が発生することはない。
また、熱媒体変換機3は、室外機1の近傍に設置することもできる。ただし、熱媒体変換機3から室内機2までの距離が長すぎると、熱媒体の搬送動力がかなり大きくなるため、省エネの効果は薄れることに留意が必要である。さらに、室外機1、室内機2及び熱媒体変換機3の接続台数を図1に図示してある台数に限定するものではなく、本実施の形態に係る空気調和装置が設置される建物9に応じて台数を決定すればよい。
図2は、実施の形態に係る空気調和装置(以下、空気調和装置100と称する)の回路構成の一例を示す概略回路構成図である。図2に基づいて、空気調和装置100の詳しい構成について説明する。図2に示すように、室外機1と熱媒体変換機3とが、熱媒体変換機3に備えられている熱媒体間熱交換器15a及び熱媒体間熱交換器15bを介して冷媒配管4で接続されている。また、熱媒体変換機3と室内機2とも、熱媒体間熱交換器15a及び熱媒体間熱交換器15bを介して配管5で接続されている。
[室外機1]
室外機1には、圧縮機10と、四方弁等の第1冷媒流路切替装置11と、熱源側熱交換器12と、アキュムレーター19とが冷媒配管4で直列に接続されて搭載されている。また、室外機1には、第1接続配管4a、第2接続配管4b、逆止弁13a、逆止弁13b、逆止弁13c、及び、逆止弁13dが設けられている。第1接続配管4a、第2接続配管4b、逆止弁13a、逆止弁13b、逆止弁13c、及び、逆止弁13dを設けることで、室内機2の要求する運転に関わらず、熱媒体変換機3に流入させる熱源側冷媒の流れを一定方向にすることができる。
圧縮機10は、熱源側冷媒を吸入し、その熱源側冷媒を圧縮して高温・高圧の状態にするものであり、たとえば容量制御可能なインバータ圧縮機等で構成するとよい。第1冷媒流路切替装置11は、暖房運転時(全暖房運転モード時及び暖房主体運転モード時)における熱源側冷媒の流れと冷房運転時(全冷房運転モード時及び冷房主体運転モード時)における熱源側冷媒の流れとを切り替えるものである。第1熱交換器としての熱源側熱交換器12は、暖房運転時には蒸発器として機能し、冷房運転時にはガスクーラーとして機能し、図示省略のファン等の送風機(熱媒体送出装置)から供給される熱媒体としての空気と熱源側冷媒との間で熱交換を行ない、その熱源側冷媒を蒸発ガス化又は冷却するものである。アキュムレーター19は、圧縮機10の吸入側に設けられており、過剰な冷媒を貯留するものである。
逆止弁13dは、熱媒体変換機3と第1冷媒流路切替装置11との間における冷媒配管4に設けられ、所定の方向(熱媒体変換機3から室外機1への方向)のみに熱源側冷媒の流れを許容するものである。逆止弁13aは、熱源側熱交換器12と熱媒体変換機3との間における冷媒配管4に設けられ、所定の方向(室外機1から熱媒体変換機3への方向)のみに熱源側冷媒の流れを許容するものである。逆止弁13bは、第1接続配管4aに設けられ、暖房運転時において圧縮機10から吐出された熱源側冷媒を熱媒体変換機3に流通させるものである。逆止弁13cは、第2接続配管4bに設けられ、暖房運転時において熱媒体変換機3から戻ってきた熱源側冷媒を圧縮機10の吸入側に流通させるものである。
第1接続配管4aは、室外機1内において、第1冷媒流路切替装置11と逆止弁13dとの間における冷媒配管4と、逆止弁13aと熱媒体変換機3との間における冷媒配管4と、を接続するものである。第2接続配管4bは、室外機1内において、逆止弁13dと熱媒体変換機3との間における冷媒配管4と、熱源側熱交換器12と逆止弁13aとの間における冷媒配管4と、を接続するものである。なお、図2では、第1接続配管4a、第2接続配管4b、逆止弁13a、逆止弁13b、逆止弁13c、及び、逆止弁13dを設けた場合を例に示しているが、これに限定するものではなく、循環方向が同じになる別の装置であってもよい。
[室内機2]
室内機2には、それぞれ利用側熱交換器26が搭載されている。この利用側熱交換器26は、配管5によって熱媒体変換機3の熱媒体流量調整装置25と第2熱媒体流路切替装置23に接続するようになっている。この利用側熱交換器26は、図示省略のファン等の送風機から供給される空気と熱媒体との間で熱交換を行ない、室内空間7に供給するための暖房用空気あるいは冷房用空気を生成するものである。
この図2では、4台の室内機2が熱媒体変換機3に接続されている場合を例に示しており、紙面下から室内機2a、室内機2b、室内機2c、室内機2dとして図示している。また、室内機2a〜室内機2dに応じて、利用側熱交換器26も、紙面下側から利用側熱交換器26a、利用側熱交換器26b、利用側熱交換器26c、利用側熱交換器26dとして図示している。なお、図1と同様に、室内機2の接続台数を図2に示す4台に限定するものではない。
[熱媒体変換機3]
熱媒体変換機3には、第2熱交換器としての2つの熱媒体間熱交換器15と、2つの絞り装置16と、2つの開閉装置17と、2つの第2冷媒流路切替装置18と、熱媒体送出装置としての2つのポンプ21と、4つの第1熱媒体流路切替装置22と、4つの第2熱媒体流路切替装置23と、4つの熱媒体流量調整装置25と、が搭載されている。
2つの熱媒体間熱交換器15(熱媒体間熱交換器15a、熱媒体間熱交換器15b)は、ガスクーラー又は蒸発器として機能し、熱源側冷媒と熱媒体とで熱交換を行ない、室外機1で生成され熱源側冷媒に貯えられた冷熱又は温熱を熱媒体に伝達するものである。熱媒体間熱交換器15aは、冷媒循環回路Aにおける絞り装置16aと第2冷媒流路切替装置18aとの間に設けられており、全暖房運転モード時において熱媒体の加熱に供し、全冷房運転モード時、冷房主体運転モード時及び暖房主体運転モード時において熱媒体の冷却に供するものである。また、熱媒体間熱交換器15bは、冷媒循環回路Aにおける絞り装置16bと第2冷媒流路切替装置18bとの間に設けられており、全暖房運転モード時、冷房主体運転モード時及び暖房主体運転モード時において熱媒体の加熱に供し、全冷房運転モード時において熱媒体の冷却に供するものである。
2つの絞り装置16(絞り装置16a、絞り装置16b)は、減圧弁や膨張弁としての機能を有し、熱源側冷媒を減圧して膨張させるものである。絞り装置16aは、冷房運転時の熱源側冷媒の流れにおいて熱媒体間熱交換器15aの上流側に設けられている。絞り装置16bは、冷房運転時の熱源側冷媒の流れにおいて熱媒体間熱交換器15bの上流側に設けられている。2つの絞り装置16は、開度が可変に制御可能なもの、たとえば電子式膨張弁等で構成するとよい。
2つの開閉装置17(開閉装置17a(第3冷媒流路切替装置)、開閉装置17b)は、二方弁等で構成されており、冷媒配管4を開閉するものである。開閉装置17aは、熱源側冷媒の入口側における冷媒配管4(1)に設けられている。開閉装置17bは、熱源側冷媒の入口側の冷媒配管4(2)と出口側の冷媒配管4(1)とを接続した配管に設けられている。2つの第2冷媒流路切替装置18(第2冷媒流路切替装置18a、第2冷媒流路切替装置18b)は、四方弁等で構成され、運転モードに応じて熱源側冷媒の流れを切り替えるものである。第2冷媒流路切替装置18aは、冷房運転時の熱源側冷媒の流れにおいて熱媒体間熱交換器15aの下流側に設けられている。第2冷媒流路切替装置18bは、全冷房運転時の熱源側冷媒の流れにおいて熱媒体間熱交換器15bの下流側に設けられている。
熱媒体間熱交換器バイパス配管4dは、熱源側冷媒の入口側の冷媒配管4(2)を開閉装置17aの上流側で分岐し、冷媒配管4(2)と2つの第2冷媒流路切替装置18を接続する。開閉装置17aが開のとき、室外機1からの熱源側冷媒が絞り装置16に至る流路が形成される。また、開閉装置17aが閉のとき、室外機1からの熱源側冷媒が第2冷媒流路切替装置18に至る流路が形成される。2つの第2冷媒流路切替装置18をそれぞれ切り替えることにより、室外機1からの熱源側冷媒が熱媒体間熱交換器15に流入する流路と、熱媒体間熱交換器15からの熱源側冷媒が室外機1に流出する流路とが切り替えられる。
2つのポンプ21(ポンプ21a、ポンプ21b)は、配管5を導通する熱媒体を循環させるものである。ポンプ21aは、熱媒体間熱交換器15aと第2熱媒体流路切替装置23との間における配管5に設けられている。ポンプ21bは、熱媒体間熱交換器15bと第2熱媒体流路切替装置23との間における配管5に設けられている。2つのポンプ21は、たとえば容量制御可能なポンプ等で構成するとよい。なお、ポンプ21aを、熱媒体間熱交換器15aと第1熱媒体流路切替装置22との間における配管5に設けてもよい。また、ポンプ21bを、熱媒体間熱交換器15bと第1熱媒体流路切替装置22との間における配管5に設けてもよい。
4つの第1熱媒体流路切替装置22(第1熱媒体流路切替装置22a〜第1熱媒体流路切替装置22d)は、三方弁等で構成されており、熱媒体の流路を切り替えるものである。第1熱媒体流路切替装置22は、室内機2の設置台数に応じた個数(ここでは4つ)が設けられるようになっている。第1熱媒体流路切替装置22は、三方のうちの一つが熱媒体間熱交換器15aに、三方のうちの一つが熱媒体間熱交換器15bに、三方のうちの一つが熱媒体流量調整装置25に、それぞれ接続され、利用側熱交換器26の熱媒体流路の出口側に設けられている。なお、室内機2に対応させて、紙面下側から第1熱媒体流路切替装置22a、第1熱媒体流路切替装置22b、第1熱媒体流路切替装置22c、第1熱媒体流路切替装置22dとして図示している。
4つの第2熱媒体流路切替装置23(第2熱媒体流路切替装置23a〜第2熱媒体流路切替装置23d)は、三方弁等で構成されており、熱媒体の流路を切り替えるものである。第2熱媒体流路切替装置23は、室内機2の設置台数に応じた個数(ここでは4つ)が設けられるようになっている。第2熱媒体流路切替装置23は、三方のうちの一つが熱媒体間熱交換器15aに、三方のうちの一つが熱媒体間熱交換器15bに、三方のうちの一つが利用側熱交換器26に、それぞれ接続され、利用側熱交換器26の熱媒体流路の入口側に設けられている。なお、室内機2に対応させて、紙面下側から第2熱媒体流路切替装置23a、第2熱媒体流路切替装置23b、第2熱媒体流路切替装置23c、第2熱媒体流路切替装置23dとして図示している。
4つの熱媒体流量調整装置25(熱媒体流量調整装置25a〜熱媒体流量調整装置25d)は、たとえばステッピングモーターを用いた二方弁等で構成されており、熱媒体流路となる配管5の開度を変更可能にし、熱媒体の流量を調整するものである。熱媒体流量調整装置25は、室内機2の設置台数に応じた個数(ここでは4つ)が設けられるようになっている。熱媒体流量調整装置25は、一方が利用側熱交換器26に、他方が第1熱媒体流路切替装置22に、それぞれ接続され、利用側熱交換器26の熱媒体流路の出口側に設けられている。なお、室内機2に対応させて、紙面下側から熱媒体流量調整装置25a、熱媒体流量調整装置25b、熱媒体流量調整装置25c、熱媒体流量調整装置25dとして図示している。
なお、本実施の形態では、熱媒体流量調整装置25は利用側熱交換器26の出口側(下流側)に設ける場合を説明するが、これに限らず、一方を利用側熱交換器26に、他方が第2熱媒体流路切替装置23に接続し、利用側熱交換器26の入口側(上流側)に設けるようにしてもよい。
また、熱媒体変換機3には、各種検出手段(2つの第1温度センサー31、4つの第2温度センサー34、4つの第3温度センサー35、及び、圧力センサー36)が設けられている。これらの検出手段で検出された情報(温度情報、圧力情報)は、空気調和装置100の動作を統括制御する制御装置(図示省略)に送られ、圧縮機10の駆動周波数、図示省略の送風機の回転数、第1冷媒流路切替装置11の切り替え、ポンプ21の駆動周波数、第2冷媒流路切替装置18の切り替え、熱媒体の流路の切替等の制御に利用されることになる。
2つの第1温度センサー31(第1温度センサー31a、第1温度センサー31b)は、熱媒体間熱交換器15から流出した熱媒体、つまり熱媒体間熱交換器15の出口における熱媒体の温度を検出するものであり、たとえばサーミスター等で構成するとよい。第1温度センサー31aは、ポンプ21aの入口側における配管5に設けられている。第1温度センサー31bは、ポンプ21bの入口側における配管5に設けられている。
4つの第2温度センサー34(第2温度センサー34a〜第2温度センサー34d)は、第1熱媒体流路切替装置22と熱媒体流量調整装置25との間に設けられ、利用側熱交換器26から流出した熱媒体の温度を検出するものであり、サーミスター等で構成するとよい。第2温度センサー34は、室内機2の設置台数に応じた個数(ここでは4つ)が設けられるようになっている。なお、室内機2に対応させて、紙面下側から第2温度センサー34a、第2温度センサー34b、第2温度センサー34c、第2温度センサー34dとして図示している。
4つの第3温度センサー35(第3温度センサー35a〜第3温度センサー35d)は、熱媒体間熱交換器15の熱源側冷媒の入口側または出口側に設けられ、熱媒体間熱交換器15に流入する熱源側冷媒の温度または熱媒体間熱交換器15から流出した熱源側冷媒の温度を検出するものであり、サーミスター等で構成するとよい。第3温度センサー35aは、熱媒体間熱交換器15aと第2冷媒流路切替装置18aとの間に設けられている。第3温度センサー35bは、熱媒体間熱交換器15aと絞り装置16aとの間に設けられている。第3温度センサー35cは、熱媒体間熱交換器15bと第2冷媒流路切替装置18bとの間に設けられている。第3温度センサー35dは、熱媒体間熱交換器15bと絞り装置16bとの間に設けられている。
圧力センサー36は、第3温度センサー35dの設置位置と同様に、熱媒体間熱交換器15bと絞り装置16bとの間に設けられ、熱媒体間熱交換器15bと絞り装置16bとの間を流れる熱源側冷媒の圧力を検出するものである。
さらに、室外機1には第4温度センサー37が設けられている第4温度センサー37は、四方弁11と熱源側熱交換器12との間に設けられ、熱源側熱交換器12に流入する熱源冷媒の温度を検出するものであり、サーミスター等で構成するとよい。
また、図示省略の制御装置は、マイコン等で構成されており、各種検出手段での検出情報及びリモコンからの指示に基づいて、圧縮機10の駆動周波数、送風機の回転数(ON/OFF含む)、第1冷媒流路切替装置11の切り替え、ポンプ21の駆動、絞り装置16の開度、開閉装置17の開閉、第2冷媒流路切替装置18の切り替え、第1熱媒体流路切替装置22の切り替え、第2熱媒体流路切替装置23の切り替え、及び、熱媒体流量調整装置25の駆動等を制御し、後述する各運転モードを実行するようになっている。なお、制御装置は、ユニット毎に設けてもよく、室外機1または熱媒体変換機3に設けてもよい。
熱媒体を導通する配管5は、熱媒体間熱交換器15aに接続されるものと、熱媒体間熱交換器15bに接続されるものと、で構成されている。配管5は、熱媒体変換機3に接続される室内機2の台数に応じて分岐(ここでは、各4分岐)されている。そして、配管5は、第1熱媒体流路切替装置22、及び、第2熱媒体流路切替装置23で接続されている。第1熱媒体流路切替装置22及び第2熱媒体流路切替装置23を制御することで、熱媒体間熱交換器15aからの熱媒体を利用側熱交換器26に流入させるか、熱媒体間熱交換器15bからの熱媒体を利用側熱交換器26に流入させるかが決定されるようになっている。
そして、空気調和装置100では、圧縮機10、第1冷媒流路切替装置11、熱源側熱交換器12、開閉装置17、第2冷媒流路切替装置18、熱媒体間熱交換器15aの冷媒流路、絞り装置16、及び、アキュムレーター19を、冷媒配管4で接続して冷媒循環回路Aを構成している。また、熱媒体間熱交換器15aの熱媒体流路、ポンプ21、第1熱媒体流路切替装置22、熱媒体流量調整装置25、利用側熱交換器26、及び、第2熱媒体流路切替装置23を、配管5で接続して熱媒体循環回路Bを構成している。つまり、熱媒体間熱交換器15のそれぞれに複数台の利用側熱交換器26が並列に接続され、熱媒体循環回路Bを複数系統としているのである。
よって、空気調和装置100では、室外機1と熱媒体変換機3とが、熱媒体変換機3に設けられている熱媒体間熱交換器15a及び熱媒体間熱交換器15bを介して接続され、熱媒体変換機3と室内機2とも、熱媒体間熱交換器15a及び熱媒体間熱交換器15bを介して接続されている。すなわち、空気調和装置100では、熱媒体間熱交換器15a及び熱媒体間熱交換器15bで冷媒循環回路Aを循環する熱源側冷媒と熱媒体循環回路Bを循環する熱媒体とが熱交換するようになっている。
熱媒体としては、熱媒体循環回路Bの循環により気体と液体との二相変化をしない単相の液を用いる。たとえば水や不凍液等を用いる。
熱源側冷媒としては、圧縮機の吐出側での冷媒状態が超臨界状態となる冷媒を用いる。たとえば、二酸化炭素、二酸化炭素とジエチルエーテルとの混合冷媒等の超臨界状態に遷移する冷媒を使用する。
空気調和装置100が実行する各運転モードについて説明する。この空気調和装置100は、各室内機2からの指示に基づいて、その室内機2で冷房運転あるいは暖房運転が可能になっている。つまり、空気調和装置100は、室内機2の全部で同一運転をすることができるとともに、室内機2のそれぞれで異なる運転をすることができるようになっている。
空気調和装置100が実行する運転モードには、駆動している室内機2の全てが冷房運転を実行する全冷房運転モード、駆動している室内機2の全てが暖房運転を実行する全暖房運転モード、冷房負荷の方が大きい冷房暖房混在運転モードとしての冷房主体運転モード、及び、暖房負荷の方が大きい冷房暖房混在運転モードとしての暖房主体運転モードがある。以下に、各運転モードについて、図7に示すP−h線図を参照しつつ、熱源側冷媒及び熱媒体の流れとともに説明する。
[全冷房運転モード]
図3は、空気調和装置100の全冷房運転モード時における冷媒の流れを示す冷媒回路図である。この図3では、利用側熱交換器26a及び利用側熱交換器26bでのみ冷熱負荷が発生している場合を例に全冷房運転モードについて説明する。なお、図3では、太線で表された配管が冷媒(熱源側冷媒及び熱媒体)の流れる配管を示している。また、図3では、熱源側冷媒の流れ方向を実線矢印で、熱媒体の流れ方向を破線矢印で示している。また、図7は、冷凍サイクルの動作を示すP−h線図である。
図3に示す全冷房運転モードの場合、室外機1では、第1冷媒流路切替装置11を、圧縮機10から吐出された熱源側冷媒を熱源側熱交換器12へ流入させるように切り替える。熱媒体変換機3では、ポンプ21a及びポンプ21bを駆動させ、熱媒体流量調整装置25a及び熱媒体流量調整装置25bを開放し、熱媒体流量調整装置25c及び熱媒体流量調整装置25dを全閉とし、熱媒体間熱交換器15a及び熱媒体間熱交換器15bのそれぞれと利用側熱交換器26a及び利用側熱交換器26bとの間を熱媒体が循環するようにしている。
まず始めに、冷媒循環回路Aにおける熱源側冷媒の流れについて説明する。
低温・低圧の冷媒(図7の点A)が圧縮機10によって圧縮され、高温・高圧の超臨界状態の冷媒となって吐出される(図7の点B)。圧縮機10から吐出された高温・高圧の超臨界状態の冷媒は、第1冷媒流路切替装置11を介して熱源側熱交換器12に流入する。そして、熱源側熱交換器12がガスクーラーとして動作して室外空気に放熱しながら冷却され、中温・高圧の超臨界状態の冷媒(図7の点C)となる。ガスクーラー内の冷媒は臨界点よりも上の超臨界状態であるため、冷媒はガスでも液でもない超臨界状態の冷媒のまま、温度が変化する。熱源側熱交換器12から流出した中温・高圧の超臨界状態の冷媒は、逆止弁13aを通って室外機1から流出し、冷媒配管4を通って熱媒体変換機3に流入する。熱媒体変換機3に流入した中温・高圧の超臨界状態の冷媒は、開閉装置17aを経由した後に分岐されて絞り装置16a及び絞り装置16bで膨張させられて、低温・低圧の二相冷媒(図7の点D)となる。
この二相冷媒は、蒸発器として作用する熱媒体間熱交換器15a及び熱媒体間熱交換器15bのそれぞれに流入し、熱媒体循環回路Bを循環する熱媒体から吸熱することで、熱媒体を冷却しながら、低温・低圧のガス冷媒(図7の点A)となる。熱媒体間熱交換器15a及び熱媒体間熱交換器15bから流出したガス冷媒は、第2冷媒流路切替装置18a及び第2冷媒流路切替装置18bを介して熱媒体変換機3から流出し、冷媒配管4を通って再び室外機1へ流入する。室外機1に流入した冷媒は、逆止弁13dを通って、第1冷媒流路切替装置11及びアキュムレーター19を介して、圧縮機10へ再度吸入される。
このとき、絞り装置16aは、第3温度センサー35aで検出された温度と第3温度センサー35bで検出された温度との差として得られるスーパーヒート(過熱度)が一定になるように開度が制御される。同様に、絞り装置16bは、第3温度センサー35cで検出された温度と第3温度センサー35dで検出された温度との差として得られるスーパーヒートが一定になるように開度が制御される。また、開閉装置17aは開、開閉装置17bは閉となっている。
また、このとき、入口温度センサーとしての第4温度センサー37で検出されたガスクーラー入口温度Tciと、出口温度センサーとしての第3温度センサー35aまたは35cで検出されたガスクーラー出口温度Tcoとを用いて擬似凝縮温度を求め、この擬似凝縮温度が目標値になるように圧縮機10の回転数または/および熱媒体送出装置としての熱源側熱交換器12付属の送風機の回転数を制御する。擬似凝縮温度についての詳細は、後で説明する。
次に、熱媒体循環回路Bにおける熱媒体の流れについて説明する。
全冷房運転モードでは、熱媒体間熱交換器15a及び熱媒体間熱交換器15bの双方で熱源側冷媒の冷熱が熱媒体に伝えられ、冷やされた熱媒体がポンプ21a及びポンプ21bによって配管5内を流動させられることになる。ポンプ21a及びポンプ21bで加圧されて流出した熱媒体は、第2熱媒体流路切替装置23a及び第2熱媒体流路切替装置23bを介して、利用側熱交換器26a及び利用側熱交換器26bに流入する。そして、熱媒体が利用側熱交換器26a及び利用側熱交換器26bで室内空気から吸熱することで、室内空間7の冷房を行なう。
それから、熱媒体は、利用側熱交換器26a及び利用側熱交換器26bから流出して熱媒体流量調整装置25a及び熱媒体流量調整装置25bに流入する。このとき、熱媒体流量調整装置25a及び熱媒体流量調整装置25bの作用によって熱媒体の流量が室内にて必要とされる空調負荷を賄うのに必要な流量に制御されて利用側熱交換器26a及び利用側熱交換器26bに流入するようになっている。熱媒体流量調整装置25a及び熱媒体流量調整装置25bから流出した熱媒体は、第1熱媒体流路切替装置22a及び第1熱媒体流路切替装置22bを通って、熱媒体間熱交換器15a及び熱媒体間熱交換器15bへ流入し、再びポンプ21a及びポンプ21bへ吸い込まれる。
なお、利用側熱交換器26の配管5内では、第2熱媒体流路切替装置23から熱媒体流量調整装置25を経由して第1熱媒体流路切替装置22へ至る向きに熱媒体が流れている。また、室内空間7にて必要とされる空調負荷は、第1温度センサー31aで検出された温度、あるいは、第1温度センサー31bで検出された温度と第2温度センサー34で検出された温度との差を目標値に保つように熱媒体流量調整装置25を制御することにより、賄うことができる。熱媒体間熱交換器15の出口温度は、第1温度センサー31aまたは第1温度センサー31bのどちらの温度を使用してもよいし、これらの平均温度を使用してもよい。このとき、第1熱媒体流路切替装置22及び第2熱媒体流路切替装置23は、熱媒体間熱交換器15a及び熱媒体間熱交換器15bの双方へ流れる流路が確保されるように、中間的な開度にしている。
全冷房運転モードを実行する際、熱負荷のない利用側熱交換器26(サーモオフを含む)へは熱媒体を流す必要がないため、熱媒体流量調整装置25により流路を閉じて、利用側熱交換器26へ熱媒体が流れないようにする。図3においては、利用側熱交換器26a及び利用側熱交換器26bにおいては熱負荷があるため熱媒体を流しているが、利用側熱交換器26c及び利用側熱交換器26dにおいては熱負荷がなく、対応する熱媒体流量調整装置25c及び熱媒体流量調整装置25dを全閉としている。そして、利用側熱交換器26cや利用側熱交換器26dから熱負荷の発生があった場合には、熱媒体流量調整装置25cや熱媒体流量調整装置25dを開放し、熱媒体を循環させればよい。
[全暖房運転モード]
図4は、空気調和装置100の全暖房運転モード時における冷媒の流れを示す冷媒回路図である。この図4では、利用側熱交換器26a及び利用側熱交換器26bでのみ温熱負荷が発生している場合を例に全暖房運転モードについて説明する。なお、図4では、太線で表された配管が冷媒(熱源側冷媒及び熱媒体)の流れる配管を示している。また、図4では、熱源側冷媒の流れ方向を実線矢印で、熱媒体の流れ方向を破線矢印で示している。
図4に示す全暖房運転モードの場合、室外機1では、第1冷媒流路切替装置11を、圧縮機10から吐出された熱源側冷媒を熱源側熱交換器12を経由させずに熱媒体変換機3へ流入させるように切り替える。熱媒体変換機3では、ポンプ21a及びポンプ21bを駆動させ、熱媒体流量調整装置25a及び熱媒体流量調整装置25bを開放し、熱媒体流量調整装置25c及び熱媒体流量調整装置25dを全閉とし、熱媒体間熱交換器15a及び熱媒体間熱交換器15bのそれぞれと利用側熱交換器26a及び利用側熱交換器26bとの間を熱媒体が循環するようにしている。
まず始めに、冷媒循環回路Aにおける熱源側冷媒の流れについて説明する。
低温・低圧の冷媒(図7の点A)が圧縮機10によって圧縮され、高温・高圧の超臨界状態の冷媒(図7の点B)となって吐出される。圧縮機10から吐出された高温・高圧の超臨界状態の冷媒は、第1冷媒流路切替装置11を通り、第1接続配管4aを導通し、逆止弁13bを通過し、室外機1から流出する。室外機1から流出した高温・高圧の超臨界状態の冷媒は、冷媒配管4を通って熱媒体変換機3に流入する。熱媒体変換機3に流入した高温・高圧の超臨界状態の冷媒は、熱媒体間熱交換器バイパス配管4dを通った後、分岐されて第2冷媒流路切替装置18a及び第2冷媒流路切替装置18bを通って、熱媒体間熱交換器15a及び熱媒体間熱交換器15bのそれぞれに流入する。
熱媒体間熱交換器15a及び熱媒体間熱交換器15bに流入した高温・高圧の超臨界状態の冷媒は、熱媒体間熱交換器15a及び熱媒体間熱交換器15bがガスクーラーとして動作して、熱媒体循環回路Bを循環する熱媒体に放熱しながら冷却され、中温・高圧の超臨界状態の冷媒(図7の点C)となる。ガスクーラー内の冷媒は臨界点よりも上の超臨界状態であるため、冷媒はガスでも液でもない超臨界状態の冷媒のまま、温度が変化する。熱媒体間熱交換器15a及び熱媒体間熱交換器15bから流出した中温・高圧の超臨界状態の冷媒は、絞り装置16a及び絞り装置16bで膨張させられて、低温・低圧の二相冷媒(図7の点D)となる。この二相冷媒は、開閉装置17bを通って、熱媒体変換機3から流出し、冷媒配管4を通って再び室外機1へ流入する。室外機1に流入した冷媒は、第2接続配管4bを導通し、逆止弁13cを通過して、蒸発器として作用する熱源側熱交換器12に流入する。
そして、熱源側熱交換器12に流入した冷媒は、熱源側熱交換器12で室外空気から吸熱して、低温・低圧のガス冷媒(図7の点A)となる。熱源側熱交換器12から流出した低温・低圧のガス冷媒は、第1冷媒流路切替装置11及びアキュムレーター19を介して圧縮機10へ再度吸入される。
このとき、絞り装置16aは、圧力センサー36で検出された圧力を擬似飽和温度に換算した値(図7のTcc)と第3温度センサー35bで検出された温度(図7のTco)との差として得られるサブクール(過冷却度、図7のSC)が一定になるように開度が制御される。ガスクーラー内においては、冷媒が超臨界状態のため、冷媒は二相状態にはならないため、飽和温度は存在せず、それに変わって、各圧力毎に擬似飽和温度というものを定義し、それを飽和温度の代わりに使用する。この擬似飽和温度についての詳細は、後で説明する。同様に、絞り装置16bは、圧力センサー36で検出された圧力を擬似飽和温度に換算した値と第3温度センサー35dで検出された温度との差として得られるサブクールが一定になるように開度が制御される。また、開閉装置17aは閉、開閉装置17bは開となっている。なお、熱媒体間熱交換器15の中間位置の温度が測定できる場合は、その中間位置での温度を圧力センサー36の代わりに用いてもよく、安価にシステムを構成できる。
また、このとき、入口温度センサーとしての第3温度センサー35aまたは35cで検出されたガスクーラー入口温度Tciと、出口温度センサーとしての第3温度センサー35bまたは35cで検出されたガスクーラー出口温度Tcoとを用いて擬似凝縮温度を求め、この擬似凝縮温度が目標値になるように圧縮機10の回転数または/および熱媒体送出装置としてのポンプ21a、21bの回転数や熱媒体流量調整装置25の開度を制御する。擬似凝縮温度についての詳細は、後で説明する。
次に、熱媒体循環回路Bにおける熱媒体の流れについて説明する。
全暖房運転モードでは、熱媒体間熱交換器15a及び熱媒体間熱交換器15bの双方で熱源側冷媒の温熱が熱媒体に伝えられ、暖められた熱媒体がポンプ21a及びポンプ21bによって配管5内を流動させられることになる。ポンプ21a及びポンプ21bで加圧されて流出した熱媒体は、第2熱媒体流路切替装置23a及び第2熱媒体流路切替装置23bを介して、利用側熱交換器26a及び利用側熱交換器26bに流入する。そして、熱媒体が利用側熱交換器26a及び利用側熱交換器26bで室内空気に放熱することで、室内空間7の暖房を行なう。
それから、熱媒体は、利用側熱交換器26a及び利用側熱交換器26bから流出して熱媒体流量調整装置25a及び熱媒体流量調整装置25bに流入する。このとき、熱媒体流量調整装置25a及び熱媒体流量調整装置25bの作用によって熱媒体の流量が室内にて必要とされる空調負荷を賄うのに必要な流量に制御されて利用側熱交換器26a及び利用側熱交換器26bに流入するようになっている。熱媒体流量調整装置25a及び熱媒体流量調整装置25bから流出した熱媒体は、第1熱媒体流路切替装置22a及び第1熱媒体流路切替装置22bを通って、熱媒体間熱交換器15a及び熱媒体間熱交換器15bへ流入し、再びポンプ21a及びポンプ21bへ吸い込まれる。
なお、利用側熱交換器26の配管5内では、第2熱媒体流路切替装置23から熱媒体流量調整装置25を経由して第1熱媒体流路切替装置22へ至る向きに熱媒体が流れている。また、室内空間7にて必要とされる空調負荷は、第1温度センサー31aで検出された温度、あるいは、第1温度センサー31bで検出された温度と第2温度センサー34で検出された温度との差を目標値に保つように制御することにより、賄うことができる。熱媒体間熱交換器15の出口温度は、第1温度センサー31aまたは第1温度センサー31bのどちらの温度を使用してもよいし、これらの平均温度を使用してもよい。
このとき、第1熱媒体流路切替装置22及び第2熱媒体流路切替装置23は、熱媒体間熱交換器15a及び熱媒体間熱交換器15bの双方へ流れる流路が確保されるように、中間的な開度にしている。また、本来、利用側熱交換器26aは、その入口と出口の温度差で制御すべきであるが、利用側熱交換器26の入口側の熱媒体温度は、第1温度センサー31bで検出された温度とほとんど同じ温度であり、第1温度センサー31bを使用することにより温度センサーの数を減らすことができ、安価にシステムを構成できる。
全暖房運転モードを実行する際、熱負荷のない利用側熱交換器26(サーモオフを含む)へは熱媒体を流す必要がないため、熱媒体流量調整装置25により流路を閉じて、利用側熱交換器26へ熱媒体が流れないようにする。図4においては、利用側熱交換器26a及び利用側熱交換器26bにおいては熱負荷があるため熱媒体を流しているが、利用側熱交換器26c及び利用側熱交換器26dにおいては熱負荷がなく、対応する熱媒体流量調整装置25c及び熱媒体流量調整装置25dを全閉としている。そして、利用側熱交換器26cや利用側熱交換器26dから熱負荷の発生があった場合には、熱媒体流量調整装置25cや熱媒体流量調整装置25dを開放し、熱媒体を循環させればよい。
[冷房主体運転モード]
図5は、空気調和装置100の冷房主体運転モード時における冷媒の流れを示す冷媒回路図である。この図5では、利用側熱交換器26aで冷熱負荷が発生し、利用側熱交換器26bで温熱負荷が発生している場合を例に冷房主体運転モードについて説明する。なお、図5では、太線で表された配管が冷媒(熱源側冷媒及び熱媒体)の循環する配管を示している。また、図5では、熱源側冷媒の流れ方向を実線矢印で、熱媒体の流れ方向を破線矢印で示している。
図5に示す冷房主体運転モードの場合、室外機1では、第1冷媒流路切替装置11を、圧縮機10から吐出された熱源側冷媒を熱源側熱交換器12へ流入させるように切り替える。熱媒体変換機3では、ポンプ21a及びポンプ21bを駆動させ、熱媒体流量調整装置25a及び熱媒体流量調整装置25bを開放し、熱媒体流量調整装置25c及び熱媒体流量調整装置25dを全閉とし、熱媒体間熱交換器15aと利用側熱交換器26aとの間を、熱媒体間熱交換器15bと利用側熱交換器26bとの間を、それぞれ熱媒体が循環するようにしている。
まず始めに、冷媒循環回路Aにおける熱源側冷媒の流れについて説明する。
低温・低圧の冷媒(図7の点A)が圧縮機10によって圧縮され、高温・高圧の超臨界状態の冷媒(図7の点B)となって吐出される。圧縮機10から吐出された高温・高圧の超臨界状態の冷媒は、第1冷媒流路切替装置11を介して熱源側熱交換器12に流入する。そして、熱源側熱交換器12がガスクーラーとして動作して、室外空気に放熱しながら冷却されて、熱源側熱交換器12から流出し、逆止弁13aを通って室外機1から流出し、冷媒配管4を通って熱媒体変換機3に流入する。熱媒体変換機3に流入した高温・高圧の超臨界状態の冷媒は、熱媒体間熱交換器バイパス配管4dを介し、第2冷媒流路切替装置18bを通ってガスクーラーとして動作する熱媒体間熱交換器15bに流入する。
熱媒体間熱交換器15bに流入した高温・高圧の超臨界状態の冷媒は、熱媒体循環回路Bを循環する熱媒体に放熱しながら冷却され、中温・高圧の超臨界状態の冷媒(図7の点C)となる。熱媒体間熱交換器15bから流出した中温・高圧の超臨界状態の冷媒は、絞り装置16bで膨張させられて低圧二相冷媒(図7の点D)となる。この低圧二相冷媒は、絞り装置16aを介して蒸発器として作用する熱媒体間熱交換器15aに流入する。熱媒体間熱交換器15aに流入した低圧二相冷媒は、熱媒体循環回路Bを循環する熱媒体から吸熱することで、熱媒体を冷却しながら、低圧のガス冷媒(図7の点A)となる。このガス冷媒は、熱媒体間熱交換器15aから流出し、第2冷媒流路切替装置18aを介して熱媒体変換機3から流出し、冷媒配管4を通って再び室外機1へ流入する。室外機1に流入した冷媒は、逆止弁13dを通って、第1冷媒流路切替装置11及びアキュムレーター19を介して、圧縮機10へ再度吸入される。
このとき、絞り装置16bは、第3温度センサー35aで検出された温度と第3温度センサー35bで検出された温度との差として得られるスーパーヒートが一定になるように開度が制御される。また、絞り装置16aは全開、開閉装置17aは閉、開閉装置17bは閉となっている。なお、絞り装置16bは、圧力センサー36で検出された圧力を擬似飽和温度に換算した値(図7のTcc)と第3温度センサー35dで検出された温度(図7のTco)との差として得られるサブクール(図7のSC)が一定になるように開度を制御してもよい。また、絞り装置16bを全開とし、絞り装置16aでスーパーヒートまたはサブクールを制御するようにしてもよい。
また、このとき、入口温度センサーとしての第4温度センサー37で検出されたガスクーラー入口温度Tciと、出口温度センサーとしての第3温度センサー35dで検出されたガスクーラー出口温度Tcoとを用いて擬似凝縮温度を求め、この擬似凝縮温度が目標値になるように圧縮機10の回転数または/および熱媒体送出装置としての熱源側熱交換器12付属の送風機の回転数やポンプ21bの回転数を制御する。擬似凝縮温度についての詳細は、後で説明する。
次に、熱媒体循環回路Bにおける熱媒体の流れについて説明する。
冷房主体運転モードでは、熱媒体間熱交換器15bで熱源側冷媒の温熱が熱媒体に伝えられ、暖められた熱媒体がポンプ21bによって配管5内を流動させられることになる。また、冷房主体運転モードでは、熱媒体間熱交換器15aで熱源側冷媒の冷熱が熱媒体に伝えられ、冷やされた熱媒体がポンプ21aによって配管5内を流動させられることになる。ポンプ21a及びポンプ21bで加圧されて流出した熱媒体は、第2熱媒体流路切替装置23a及び第2熱媒体流路切替装置23bを介して、利用側熱交換器26a及び利用側熱交換器26bに流入する。
利用側熱交換器26bでは熱媒体が室内空気に放熱することで、室内空間7の暖房を行なう。また、利用側熱交換器26aでは熱媒体が室内空気から吸熱することで、室内空間7の冷房を行なう。このとき、熱媒体流量調整装置25a及び熱媒体流量調整装置25bの作用によって熱媒体の流量が室内にて必要とされる空調負荷を賄うのに必要な流量に制御されて利用側熱交換器26a及び利用側熱交換器26bに流入するようになっている。利用側熱交換器26bを通過し若干温度が低下した熱媒体は、熱媒体流量調整装置25b及び第1熱媒体流路切替装置22bを通って、熱媒体間熱交換器15bへ流入し、再びポンプ21bへ吸い込まれる。利用側熱交換器26aを通過し若干温度が上昇した熱媒体は、熱媒体流量調整装置25a及び第1熱媒体流路切替装置22aを通って、熱媒体間熱交換器15aへ流入し、再びポンプ21aへ吸い込まれる。
この間、暖かい熱媒体と冷たい熱媒体とは、第1熱媒体流路切替装置22及び第2熱媒体流路切替装置23の作用により、混合することなく、それぞれ温熱負荷、冷熱負荷がある利用側熱交換器26へ導入される。なお、利用側熱交換器26の配管5内では、暖房側、冷房側ともに、第2熱媒体流路切替装置23から熱媒体流量調整装置25を経由して第1熱媒体流路切替装置22へ至る向きに熱媒体が流れている。また、室内空間7にて必要とされる空調負荷は、暖房側においては第1温度センサー31bで検出された温度と第2温度センサー34で検出された温度との差を、冷房側においては第2温度センサー34で検出された温度と第1温度センサー31aで検出された温度との差を目標値に保つように制御することにより、賄うことができる。
冷房主体運転モードを実行する際、熱負荷のない利用側熱交換器26(サーモオフを含む)へは熱媒体を流す必要がないため、熱媒体流量調整装置25により流路を閉じて、利用側熱交換器26へ熱媒体が流れないようにする。図5においては、利用側熱交換器26a及び利用側熱交換器26bにおいては熱負荷があるため熱媒体を流しているが、利用側熱交換器26c及び利用側熱交換器26dにおいては熱負荷がなく、対応する熱媒体流量調整装置25c及び熱媒体流量調整装置25dを全閉としている。そして、利用側熱交換器26cや利用側熱交換器26dから熱負荷の発生があった場合には、熱媒体流量調整装置25cや熱媒体流量調整装置25dを開放し、熱媒体を循環させればよい。
[暖房主体運転モード]
図6は、空気調和装置100の暖房主体運転モード時における冷媒の流れを示す冷媒回路図である。この図6では、利用側熱交換器26aで温熱負荷が発生し、利用側熱交換器26bで冷熱負荷が発生している場合を例に暖房主体運転モードについて説明する。なお、図6では、太線で表された配管が冷媒(熱源側冷媒及び熱媒体)の循環する配管を示している。また、図6では、熱源側冷媒の流れ方向を実線矢印で、熱媒体の流れ方向を破線矢印で示している。
図6に示す暖房主体運転モードの場合、室外機1では、第1冷媒流路切替装置11を、圧縮機10から吐出された熱源側冷媒を熱源側熱交換器12を経由させずに熱媒体変換機3へ流入させるように切り替える。熱媒体変換機3では、ポンプ21a及びポンプ21bを駆動させ、熱媒体流量調整装置25a及び熱媒体流量調整装置25bを開放し、熱媒体流量調整装置25c及び熱媒体流量調整装置25dを全閉とし、熱媒体間熱交換器15a及び熱媒体間熱交換器15bのそれぞれと利用側熱交換器26a及び利用側熱交換器26bとの間を熱媒体が循環するようにしている。
まず始めに、冷媒循環回路Aにおける熱源側冷媒の流れについて説明する。
低温・低圧の冷媒(図7の点A)が圧縮機10によって圧縮され、高温・高圧の超臨界状態の冷媒(図7の点B)となって吐出される。圧縮機10から吐出された高温・高圧の超臨界状態の冷媒は、第1冷媒流路切替装置11を通り、第1接続配管4aを導通し、逆止弁13bを通過し、室外機1から流出する。室外機1から流出した高温・高圧の超臨界状態の冷媒は、冷媒配管4を通って熱媒体変換機3に流入する。熱媒体変換機3に流入した高温・高圧の超臨界状態の冷媒は、熱媒体間熱交換器バイパス配管4dを介し、第2冷媒流路切替装置18bを通ってガスクーラーとして動作する熱媒体間熱交換器15bに流入する。
熱媒体間熱交換器15bに流入した高温・高圧の超臨界状態の冷媒は、熱媒体循環回路Bを循環する熱媒体に放熱しながら冷却されて、中温・高圧の超臨界状態の冷媒(図7の点C)となる。熱媒体間熱交換器15bから流出した中温・高圧の超臨界状態の冷媒は、絞り装置16bで膨張させられて低圧二相冷媒(図7の点D)となる。この低圧二相冷媒は、絞り装置16aを介して蒸発器として作用する熱媒体間熱交換器15aに流入する。熱媒体間熱交換器15aに流入した低圧二相冷媒は、熱媒体循環回路Bを循環する熱媒体から吸熱することで蒸発し、熱媒体を冷却する。この低圧二相冷媒は、熱媒体間熱交換器15aから流出し、第2冷媒流路切替装置18aを介して熱媒体変換機3から流出し、冷媒配管4を通って再び室外機1へ流入する。
室外機1に流入した冷媒は、逆止弁13cを通って、蒸発器として作用する熱源側熱交換器12に流入する。そして、熱源側熱交換器12に流入した冷媒は、熱源側熱交換器12で室外空気から吸熱して、低温・低圧のガス冷媒(図7の点A)となる。熱源側熱交換器12から流出した低温・低圧のガス冷媒は、第1冷媒流路切替装置11及びアキュムレーター19を介して圧縮機10へ再度吸入される。
このとき、絞り装置16bは、圧力センサー36で検出された圧力を擬似飽和温度に換算した値(図7のTcc)と第3温度センサー35bで検出された温度(図7のTco)との差として得られるサブクール(図7のSC)が一定になるように開度が制御される。ガスクーラー内においては、冷媒が超臨界状態のため、冷媒は二相状態にはならないため、飽和温度は存在せず、それに変わって、各圧力毎に擬似飽和温度を定義し、それを飽和温度の代わりに使用する。この擬似飽和温度についての詳細は、後で説明する。また、絞り装置16aは全開、開閉装置17aは閉、開閉装置17bは閉となっている。なお、絞り装置16bを全開とし、絞り装置16aでサブクールを制御するようにしてもよい。
また、このとき、入口温度センサーとしての第3温度センサー35cで検出されたガスクーラー入口温度Tciと、出口温度センサーとしての第3温度センサー35dで検出されたガスクーラー出口温度Tcoとを用いて擬似凝縮温度を求め、この擬似凝縮温度が目標値になるように圧縮機10の回転数または/および熱媒体送出装置としてのポンプ21aの回転数や熱媒体流量調整装置25の開度を制御する。擬似凝縮温度についての詳細は、後で説明する。
次に、熱媒体循環回路Bにおける熱媒体の流れについて説明する。
暖房主体運転モードでは、熱媒体間熱交換器15bで熱源側冷媒の温熱が熱媒体に伝えられ、暖められた熱媒体がポンプ21bによって配管5内を流動させられることになる。また、暖房主体運転モードでは、熱媒体間熱交換器15aで熱源側冷媒の冷熱が熱媒体に伝えられ、冷やされた熱媒体がポンプ21aによって配管5内を流動させられることになる。ポンプ21a及びポンプ21bで加圧されて流出した熱媒体は、第2熱媒体流路切替装置23a及び第2熱媒体流路切替装置23bを介して、利用側熱交換器26a及び利用側熱交換器26bに流入する。
利用側熱交換器26bでは熱媒体が室内空気から吸熱することで、室内空間7の冷房を行なう。また、利用側熱交換器26aでは熱媒体が室内空気に放熱することで、室内空間7の暖房を行なう。このとき、熱媒体流量調整装置25a及び熱媒体流量調整装置25bの作用によって熱媒体の流量が室内にて必要とされる空調負荷を賄うのに必要な流量に制御されて利用側熱交換器26a及び利用側熱交換器26bに流入するようになっている。利用側熱交換器26bを通過し若干温度が上昇した熱媒体は、熱媒体流量調整装置25b及び第1熱媒体流路切替装置22bを通って、熱媒体間熱交換器15aに流入し、再びポンプ21aへ吸い込まれる。利用側熱交換器26aを通過し若干温度が低下した熱媒体は、熱媒体流量調整装置25a及び第1熱媒体流路切替装置22aを通って、熱媒体間熱交換器15bへ流入し、再びポンプ21bへ吸い込まれる。
この間、暖かい熱媒体と冷たい熱媒体とは、第1熱媒体流路切替装置22及び第2熱媒体流路切替装置23の作用により、混合することなく、それぞれ温熱負荷、冷熱負荷がある利用側熱交換器26へ導入される。なお、利用側熱交換器26の配管5内では、暖房側、冷房側ともに、第2熱媒体流路切替装置23から熱媒体流量調整装置25を経由して第1熱媒体流路切替装置22へ至る向きに熱媒体が流れている。また、室内空間7にて必要とされる空調負荷は、暖房側においては第1温度センサー31bで検出された温度と第2温度センサー34で検出された温度との差を、冷房側においては第2温度センサー34で検出された温度と第1温度センサー31aで検出された温度との差を目標値に保つように制御することにより、賄うことができる。
暖房主体運転モードを実行する際、熱負荷のない利用側熱交換器26(サーモオフを含む)へは熱媒体を流す必要がないため、熱媒体流量調整装置25により流路を閉じて、利用側熱交換器26へ熱媒体が流れないようにする。図6においては、利用側熱交換器26a及び利用側熱交換器26bにおいては熱負荷があるため熱媒体を流しているが、利用側熱交換器26c及び利用側熱交換器26dにおいては熱負荷がなく、対応する熱媒体流量調整装置25c及び熱媒体流量調整装置25dを全閉としている。そして、利用側熱交換器26cや利用側熱交換器26dから熱負荷の発生があった場合には、熱媒体流量調整装置25cや熱媒体流量調整装置25dを開放し、熱媒体を循環させればよい。
[超臨界状態での代表点]
擬似飽和温度および擬似凝縮温度について、図7の二酸化炭素のP−h線図(圧力−エンタルピー線図)を基に説明する。圧力が臨界圧力よりも低い場合は、亜臨界状態となり、冷媒はエンタルピーによりガス、二相、液と相変化を起こす。亜臨界状態で、ガス冷媒が冷却される、すなわち、エンタルピーが小さくなる、過程を考える。ガス冷媒は、冷却されて温度が低下し、飽和ガス線に至り、その後二相状態となる。冷媒が二相状態の場合、等圧力状態においては、エンタルピーが変化しても、冷媒の温度は変化せず、液の割合が増加する。そして、飽和液線に至って、液状態となり、エンタルピーの低下に従い、液冷媒の温度が低下する。熱交換器内の冷媒が亜臨界状態の場合は、二相状態が大半の領域を占め、凝縮器内においては、この二相状態の冷媒の温度である凝縮温度を、熱交換器出口のサブクール(過冷却度)を制御するための代表温度とする。すなわち、凝縮温度と凝縮器出口冷媒温度との温度差をサブクールとし、これが目標値になるように、絞り装置の開度を調整し、凝縮器を熱交換性能(COP)が高い状態に制御する。熱交換器内の液冷媒量が増加し過ぎると、加熱能力は増加するが、圧縮機の入力も増えるため、COPが悪化し、熱交換器内の液冷媒量が小さ過ぎると、凝縮器での熱交換量が低下すると共に、蒸発器での熱交換量も低下するため、熱交換能力を維持するために圧縮機の回転数が増加し、COPが悪化する。すなわち、熱交換器内の凝縮温度を最適値に制御することにより、COPを高く維持することができる。例えば、(1)式のように、サブクールの目標値(SCM)と現在のサブクール(SC)との偏差に、係数kSCを乗じて、絞り装置の開度の変化量(ΔN)を決めて、絞り装置の制御を行う。
ΔN=kSC×(SCM−SC) (1)
また、熱交換器として、規定の加熱能力を維持するため、熱交換器内の代表温度を一定の温度に維持する必要がある。圧力は冷媒の種類によって異なるが、熱交換器内の温度を一定に保っておけば、熱交換器の周囲の流体、例えば空気、との温度差を確保し、十分な熱交換能力を維持することができる。この場合も、亜臨界状態においては、熱交換器内の大半を占める二相状態の冷媒の温度である凝縮温度をその代表温度とし、凝縮温度が目標値に至るように制御を行えばよい。例えば、(2)式のように、現在の凝縮温度(TC)と凝縮温度の目標値(TCM)との偏差に、係数kTCを乗じて、圧縮機の回転数の変化量(ΔF)を決めて、圧縮機の回転数制御を行う。
ΔF=kTC×(TC−TCM) (2)
なお、凝縮温度の制御は、圧縮機の回転数を制御して行ってもよいし、凝縮器に付属の送風機等の熱媒体送出装置の回転数を制御して行ってもよいし、圧縮機の回転数の制御と凝縮器付属の送風機の回転数の制御との組み合わせで行ってもよいし、その他の方法によっても構わない。また、制御量の演算方法は上述の方法によらなくても、どんな演算方法によって制御を行ってもよい。
すなわち、亜臨界状態においては、COPを高い状態に制御するためのサブクール制御に用いる熱交換器内の代表温度と、加熱能力を高い値に維持するため圧縮機または/および送風機の回転数制御に用いる熱交換器内の代表温度の双方に、凝縮温度を用いる。
それに対し、圧力が臨界圧力よりも高い場合は、超臨界状態となり、ガスでも液でもない、超臨界冷媒となる。図7に示すように、超臨界冷媒においては、エンタルピーが低下しても、相変化はせず、飽和ガス線の真上(臨界圧力より高い圧力)で、徐々に温度が低下していく。そして、臨界点の真上(図7のE点)を通過し、更に温度が低下して、飽和液線の真上(図7のC点)に至る。すなわち、超臨界状態においては、等圧力状態であっても、ガスクーラーとして動作する熱源側熱交換器12または熱媒体間熱交換器15(以下「ガスクーラー」という)内で、冷媒の温度が常に変化しており、亜臨界状態にて熱交換器内の大半を占める凝縮温度のような代表点が簡単には決まらない。そこで、以下のようにして、ガスクーラーの代表点を決定する。
サブクールの制御においては、ガスクーラー内の冷媒圧力において、熱源側冷媒の臨界点のエンタルピーhcと同じエンタルピーとなる点(点E)、すなわち臨界点の真上の点、をサブクール制御のための代表点(第1代表点)とする。この第1代表点の温度を擬似飽和温度(Tcc)と定義する。そして、サブクールは(3)式のように、第1代表点(点E)の擬似飽和温度(Tcc)とガスクーラー出口温度Tcoとの温度差をサブクール(SC)とする。そして、(1)式に基づき、サブクールが目標温度になるように絞り装置16を制御する。
SC=(Tcc−Tco) (3)
このように、臨界点の真上の点をサブクール制御のための代表点として制御を行うことにより、ガスクーラーの出口から等エンタルピー変化で減圧された点(点D)である蒸発器の入口乾き度を、適度な小さい値に制御することができるため、蒸発器での熱交換量も十分確保でき、システムとしてのCOPを高く維持することができ、省エネになる。
一方、ガスクーラー内の冷媒は、入口(点B)のエンタルピーであるhciから出口(点C)のエンタルピーであるhcoまで変化し、ガスクーラー内の熱交換量(Qc)は、(3)式のように、ガスクーラー内の冷媒のエンタルピー変化量(hci−hco)に冷媒の質量流量(Gr)を乗じた値で求まる。
Qc=Gr×(hci−hco) (4)
さて、臨界点の真上の点(点E)のエンタルピーhcは、ガスクーラー内においては、出口エンタルピーhcoに近い値であり、入口エンタルピーhciとはかなり離れた値であり、ガスクーラーの熱交換量を確保するための代表点とはなり得ない。ガスクーラー内の熱伝達率が一定であれば、入口エンタルピーhciと出口エンタルピーhcoの中間のエンタルピーの点を代表点とすればよい。しかし、エンタルピーを演算するのは、多大な計算量が必要なため、簡易的に、ガスクーラー入口温度Tciとガスクーラー出口温度Tcoの平均温度を、代表温度Tc(第2代表点)とする。この代表温度Tcを擬似凝縮温度と定義する。
Tc=(Tci+Tco)/2 (5)
このように、第1代表点を用いて、絞り装置16を制御してガスクーラーのサブクールを制御する。また、第2代表点を用いて、圧縮機10または/およびガスクーラーに付属の送風機等の熱媒体送出装置を制御し、ガスクーラーの熱交換量を高く維持するための制御をする。このように、第1代表点(擬似飽和温度)と、第2代表点(擬似凝縮温度)とを異なる値に設定する。このため、熱交換量を高く維持しながらCOPも高く維持することができ、省エネルギー化を図ることができる。
なお、超臨界状態において、定圧比熱が最大となる点を結んだ線を、図7に二点鎖線で示してあり、その温度をTpcとする。定圧比熱が最大の点は、熱交換器内で、冷媒が同じエンタルピー変化をするのに最も大きな熱量を必要とする点であり、この定圧比熱が最大となる点(図7のF点)を、ガスクーラーの高圧を維持するための第2代表点(擬似凝縮温度)とするようにしてもよい。なお、この第2代表点は、圧力センサー36で検出された圧力を用いて、使用する熱源側冷媒に応じた演算により求めるようにしてもよい。
また、定圧比熱が最大となる点は、P−h線図上で、凝縮器の入口側よりも出口側に近い位置にあるため、凝縮器入口温度Tciと凝縮器出口温度Tcoを用い、重み付け平均温度を計算し、これを第2代表点(擬似凝縮温度)としてもよい。例えば、(6)式のように、凝縮器入口温度Tciに重み付け係数αを乗じ、凝縮器出口温度Tcoに重み付け係数(1−α)を乗じ、代表温度Tcを計算する。この場合のαは0.5よりも小さい値、例えば0.3等、に設定するとよい。
Tc={α×Tci+(1−α)Tco}/2 (6)
また、熱源側熱交換器12または熱媒体間熱交換器15内の冷媒が、超臨界状態にあるか亜臨界状態にあるかによって、熱交換器内の代表点の定義の仕方を変える必要がある。超臨界状態においては、上述のような決め方をし、亜臨界状態においては、凝縮機内での圧力において二相状態となる冷媒の飽和温度(凝縮温度)を、サブクールを制御するための代表点として用いる。また、この凝縮温度と同一またはほぼ同じ温度を、高圧を制御するための代表点として用いる。
[冷媒配管4]
以上説明したように、本実施の形態に係る空気調和装置100は、幾つかの運転モードを具備している。これらの運転モードにおいては、室外機1と熱媒体変換機3とを接続する冷媒配管4には熱源側冷媒が流れている。
[配管5]
本実施の形態に係る空気調和装置100が実行する幾つかの運転モードにおいては、熱媒体変換機3と室内機2を接続する配管5には水や不凍液等の熱媒体が流れている。
本実施の形態の空気調和装置100では、利用側熱交換器26にて暖房負荷または冷房負荷のみが発生している場合は、対応する第1熱媒体流路切替装置22及び第2熱媒体流路切替装置23を中間の開度にし、熱媒体間熱交換器15a及び熱媒体間熱交換器15bの双方に熱媒体が流れるようにしている。これにより、熱媒体間熱交換器15a及び熱媒体間熱交換器15bの双方を暖房運転または冷房運転に使用することができるため、伝熱面積が大きくなり、効率のよい暖房運転または冷房運転を行なうことができる。
また、利用側熱交換器26にて暖房負荷と冷房負荷とが混在して発生している場合は、暖房運転を行なっている利用側熱交換器26に対応する第1熱媒体流路切替装置22及び第2熱媒体流路切替装置23を加熱用の熱媒体間熱交換器15bに接続される流路へ切り替え、冷房運転を行なっている利用側熱交換器26に対応する第1熱媒体流路切替装置22及び第2熱媒体流路切替装置23を冷却用の熱媒体間熱交換器15aに接続される流路へ切り替えることにより、各室内機2にて、暖房運転、冷房運転を自由に行なうことができる。
なお、実施の形態で説明した第1熱媒体流路切替装置22及び第2熱媒体流路切替装置23は、三方弁等の三方流路を切り替えられるもの、開閉弁等の二方流路の開閉を行なうものを2つ組み合わせる等、流路を切り替えられるものであればよい。また、ステッピングモーター駆動式の混合弁等の三方流路の流量を変化させられるもの、電子式膨張弁等の二方流路の流量を変化させられるものを2つ組み合わせる等して第1熱媒体流路切替装置22及び第2熱媒体流路切替装置23として用いてもよい。この場合は、流路の突然の開閉によるウォーターハンマーを防ぐこともできる。さらに、実施の形態では、熱媒体流量調整装置25がステッピングモーター駆動式の二方弁である場合を例に説明を行なったが、三方流路を持つ制御弁とし利用側熱交換器26をバイパスするバイパス管と共に設置するようにしてもよい。
また、熱媒体流量調整装置25は、ステッピングモーター駆動式で流路を流れる流量を制御できるものを使用してもよいし、二方弁でも、三方弁の一端を閉止したものでもよい。また、熱媒体流量調整装置25として、開閉弁等の二方流路の開閉を行なうものを用い、ON/OFFを繰り返して平均的な流量を制御するようにしてもよい。
また、第2冷媒流路切替装置18が四方弁である場合を説明したが、これに限るものではなく、二方流路切替弁や三方流路切替弁を複数個用い、同じように冷媒が流れるように構成してもよい。
本実施の形態に係る空気調和装置100は、冷房暖房混在運転ができるものとして説明をしてきたが、これに限定するものではない。熱媒体間熱交換器15及び絞り装置16がそれぞれ1つで、それらに複数の利用側熱交換器26と熱媒体流量調整装置25が並列に接続され、冷房運転か暖房運転のいずれかしか行なえない構成であっても同様の効果を奏する。
また、利用側熱交換器26と熱媒体流量調整装置25とが1つしか接続されていない場合でも同様のことが成り立つのは言うまでもなく、更に熱媒体間熱交換器15及び絞り装置16として、同じ動きをするものが複数個設置されていても、当然問題ない。さらに、熱媒体流量調整装置25は、熱媒体変換機3に内蔵されている場合を例に説明したが、これに限るものではなく、室内機2に内蔵されていてもよく、熱媒体変換機3と室内機2とは別体に構成されていてもよい。
熱源側冷媒としては、二酸化炭素、二酸化炭素とジエチルエーテルとの混合冷媒等の超臨界状態に遷移する冷媒が使用できるが、その他の超臨界状態に遷移する冷媒を用いても、同様の効果を奏する。
熱媒体としては、たとえばブライン(不凍液)や水、ブラインと水の混合液、水と防食効果が高い添加剤の混合液等を用いることができる。したがって、空気調和装置100においては、熱媒体が室内機2を介して室内空間7に漏洩したとしても、熱媒体に安全性の高いものを使用しているため安全性の向上に寄与することになる。
また、一般的に、熱源側熱交換器12および利用側熱交換器26には、送風機が取り付けられており、送風により凝縮あるいは蒸発を促進させる場合が多いが、これに限るものではない。たとえば、利用側熱交換器26としては放射を利用したパネルヒーターのようなものを用いることもできるし、熱源側熱交換器12としては、水や不凍液により熱を移動させる水冷式のタイプのものを用いることもできる。つまり、熱源側熱交換器12及び利用側熱交換器26としては、放熱あるいは吸熱をできる構造のものであれば種類を問わず、用いることができる。また、利用側熱交換器26の個数を特に限定するものではない。
また、実施の形態では、熱媒体間熱交換器15が2つある場合を例に説明したが、当然、これに限るものではない。熱媒体を冷却または/及び加熱できるように構成すれば、熱媒体間熱交換器15をいくつ設置してもよい。
また、ポンプ21a及びポンプ21bは、それぞれ一つとは限らず、複数の小容量のポンプを並列に並べて使用してもよい。
また、ここでの説明は、熱源側熱交換器12の内部には冷媒を流し、利用側熱交換器26の内部には水等の熱媒体を流し、熱源側熱交換器12と利用側熱交換器26との途中の流路で冷媒と水等の熱媒体とを熱交換させる空気調和装置を例に説明を行ったが、これに限るものではなく、熱源側熱交換器12から利用側熱交換器26とを配管接続し、熱源側熱交換器12から利用側熱交換器26の間に冷媒を循環させる完全直膨タイプの空気調和装置であってもよく、同様の効果を奏する。
また、空気調和装置に限らず、ショーケースやユニットクーラと接続し、食品等を冷却する冷凍装置においても、同様のことが言え、同様の効果を奏する。
1 室外機、1B 室外機、2 室内機、2a 室内機、2b 室内機、2c 室内機、2d 室内機、3 熱媒体変換機、4 冷媒配管、4a 第1接続配管、4b 第2接続配管、4d 熱媒体間熱交換器バイパス配管、5 配管、6 室外空間、7 室内空間、8 空間、9 建物、10 圧縮機、11 第1冷媒流路切替装置、12 熱源側熱交換器、13a 逆止弁、13b 逆止弁、13c 逆止弁、13d 逆止弁、15 熱媒体間熱交換器、15a 熱媒体間熱交換器、15b 熱媒体間熱交換器、16 絞り装置、16a 絞り装置、16b 絞り装置、16c 絞り装置、17 開閉装置、17a 開閉装置、17b 開閉装置、18 第2冷媒流路切替装置、18a 第2冷媒流路切替装置、18b 第2冷媒流路切替装置、19 アキュムレーター、21 ポンプ、21a ポンプ、21b ポンプ、22 第1熱媒体流路切替装置、22a 第1熱媒体流路切替装置、22b 第1熱媒体流路切替装置、22c 第1熱媒体流路切替装置、22d 第1熱媒体流路切替装置、23 第2熱媒体流路切替装置、23a 第2熱媒体流路切替装置、23b 第2熱媒体流路切替装置、23c 第2熱媒体流路切替装置、23d 第2熱媒体流路切替装置、25 熱媒体流量調整装置、25a 熱媒体流量調整装置、25b 熱媒体流量調整装置、25c 熱媒体流量調整装置、25d 熱媒体流量調整装置、26 利用側熱交換器、26a 利用側熱交換器、26b 利用側熱交換器、26c 利用側熱交換器、26d 利用側熱交換器、31 第1温度センサー、31a 第1温度センサー、31b 第1温度センサー、34 第2温度センサー、34a 第2温度センサー、34b 第2温度センサー、34c 第2温度センサー、34d 第2温度センサー、35 第3温度センサー、35a 第3温度センサー、35b 第3温度センサー、35c 第3温度センサー、35d 第3温度センサー、36 圧力センサー、37 第4温度センサー、100 空気調和装置、A 冷媒循環回路、B 熱媒体循環回路。

Claims (13)

  1. 圧縮機と、第1熱交換器と、絞り装置と、第2熱交換器とを配管接続し、超臨界状態に遷移する冷媒を循環させる冷媒循環回路を備え、
    前記第1熱交換器または前記第2熱交換器の一方に、超臨界状態の前記冷媒を流通させてガスクーラーとして動作させ、
    前記第1熱交換器または前記第2熱交換器の他方に、低圧二相状態の前記冷媒を流通させて蒸発器として動作させる冷凍サイクル装置において、
    回転駆動して、前記ガスクーラー内の前記冷媒と熱交換させる熱媒体の流量を変化させる熱媒体送出装置と、
    前記ガスクーラーの出口側から前記蒸発器に至る流路の何れかの位置に設けられ、前記ガスクーラーの出口側の前記冷媒の温度を検出する出口温度センサーと
    を備え、
    前記ガスクーラー出口の過冷却度の制御では、
    前記ガスクーラー内での冷媒圧力において、前記冷媒のエンタルピーが臨界点のエンタルピーとほぼ同じとなる第1代表点の冷媒温度と、前記出口温度センサーの検出温度との温度差に応じて、前記絞り装置の開度を制御し、
    前記ガスクーラー出口の過冷却度の制御と同時に行われる、前記ガスクーラーの加熱能力を高く維持するための制御では、
    前記ガスクーラー内での冷媒圧力において、前記冷媒の定圧比熱が最大となる温度である第2代表点の温度が目標値となるように、前記圧縮機の回転数および前記熱媒体送出装置の回転数の少なくとも一方を制御する
    ことを特徴とする冷凍サイクル装置。
  2. 前記第2代表点は、
    前記第1代表点より高い温度である
    ことを特徴とする請求項1記載の冷凍サイクル装置。
  3. 前記圧縮機の出口側から前記絞り装置に至る流路の何れかの位置に設けられ、前記冷媒の高圧側の圧力を検知する圧力センサーを備え、
    前記第1代表点は、
    前記圧力センサーの検出圧力を用いて求められるものである
    ことを特徴とする請求項1または2記載の冷凍サイクル装置。
  4. 圧縮機と、第1熱交換器と、絞り装置と、第2熱交換器とを配管接続し、超臨界状態に遷移する冷媒を循環させる冷媒循環回路を備え、
    前記第1熱交換器または前記第2熱交換器の一方に、超臨界状態の前記冷媒を流通させてガスクーラーとして動作させ、
    前記第1熱交換器または前記第2熱交換器の他方に、低圧二相状態の前記冷媒を流通させて蒸発器として動作させる冷凍サイクル装置において、
    回転駆動して、前記ガスクーラー内の前記冷媒と熱交換させる熱媒体の流量を変化させる熱媒体送出装置と、
    前記ガスクーラーの出口側から前記蒸発器に至る流路の何れかの位置に設けられ、前記ガスクーラーの出口側の前記冷媒の温度を検出する出口温度センサーと、
    前記圧縮機の出口側から前記ガスクーラーに至る流路の何れかの位置に設けられ、前記ガスクーラーの入口側の前記冷媒の温度を検出する入口温度センサーと、
    を備え、
    前記ガスクーラー内での冷媒圧力において、前記冷媒のエンタルピーが臨界点のエンタルピーとほぼ同じとなる第1代表点の冷媒温度と、前記出口温度センサーの検出温度との温度差に応じて、前記絞り装置の開度を制御し、
    前記ガスクーラー内での冷媒圧力において前記第1代表点と異なる温度であり、前記出口温度センサーの検出温度と前記入口温度センサーの検出温度との平均温度、または、前記出口温度センサーの検出温度と前記入口温度センサーの検出温度とに所定の重み付け係数を乗じて求められる重み付け平均温度、である第2代表点の温度に応じて、前記圧縮機の回転数および前記熱媒体送出装置の回転数の少なくとも一方を制御する
    ことを特徴とする冷凍サイクル装置。
  5. 前記圧縮機の出口側から前記絞り装置に至る流路の何れかの位置に設けられ、前記冷媒の高圧側の圧力を検知する圧力センサーを備え、
    前記第2代表点は、
    前記圧力センサーの検出圧力を用いて求められるものである
    ことを特徴とする請求項1〜3の何れかに記載の冷凍サイクル装置。
  6. 前記第1熱交換器または前記第2熱交換器に、圧力が臨界圧力よりも高い超臨界状態の前記冷媒を流通させてガスクーラーとして動作させる場合、前記第1代表点の冷媒温度と前記出口温度センサーの検出温度との温度差に応じて、前記絞り装置の開度を制御し、前記第2代表点の温度に応じて、前記圧縮機の回転数および前記熱媒体送出装置の回転数の少なくとも一方を制御し、
    前記第1熱交換器または前記第2熱交換器に、圧力が臨界圧力よりも低い亜臨界状態の前記冷媒を流通させて凝縮器として動作させる場合、前記凝縮器内の冷媒の温度である凝縮温度と前記出口温度センサーの検出温度との温度差に応じて、前記絞り装置の開度を制御し、前記凝縮温度に応じて、前記圧縮機の回転数および前記熱媒体送出装置の回転数の少なくとも一方を制御する
    ことを特徴とする請求項1〜の何れかに記載の冷凍サイクル装置。
  7. 前記第1熱交換器または前記第2熱交換器に、圧力が臨界圧力よりも低い亜臨界状態の前記冷媒を流通させて凝縮器として動作させる場合、
    前記第2代表点は、
    前記凝縮器内での冷媒圧力において、二相状態となる前記冷媒の飽和温度であり、
    前記第1代表点は、
    前記第2代表点の温度とほぼ同じ温度である
    ことを特徴とする請求項1〜の何れかに記載の冷凍サイクル装置。
  8. 前記圧縮機の出口側から前記第1熱交換器に至る流路と、前記圧縮機の出口側から前記第2熱交換器に至る流路とを切り替える第1冷媒流路切替装置を備え、
    前記第1熱交換器は、室外機に収容され、
    前記第1冷媒流路切替装置を切り替えて、
    前記第1熱交換器に超臨界状態の前記冷媒を流通させてガスクーラーとして動作させ、前記第2熱交換器に低圧二相状態の前記冷媒を流通させて蒸発器として動作させる冷房運転と、
    前記第2熱交換器に超臨界状態の前記冷媒を流通させてガスクーラーとして動作させ、前記第1熱交換器に低圧二相状態の前記冷媒を流通させて蒸発器として動作させる暖房運転と、を切り替える
    ことを特徴とする請求項1〜の何れかに記載の冷凍サイクル装置。
  9. 前記第1熱交換器は、室外機に収容され、前記熱媒体としての空気と前記冷媒とを熱交換し、
    前記第2熱交換器は、1または複数設けられ、空調対象空間に設置される1または複数の室内機に収容され、前記熱媒体としての前記空調対象空間内の空気と前記冷媒とを熱交換する
    ことを特徴とする請求項1〜の何れかに記載の冷凍サイクル装置。
  10. 複数の利用側熱交換器を備え、
    前記熱媒体送出装置、前記利用側熱交換器、及び、複数の前記第2熱交換器が接続されて熱媒体を循環させる熱媒体循環回路が形成され、
    前記第1熱交換器は、室外機に収容され、空気と前記冷媒とを熱交換し、
    前記複数の第2熱交換器は、前記熱媒体と前記冷媒とを熱交換し、
    前記利用側熱交換器は、空調対象空間に設置される1または複数の室内機に収容され、前記熱媒体と前記空調対象空間内の空気とを熱交換する
    ことを特徴とする請求項1〜の何れかに記載の冷凍サイクル装置。
  11. 前記第2熱交換器に流入または流出する前記冷媒の流路を切り替える第2冷媒流路切替装置と、
    前記複数の利用側熱交換器の出口側にそれぞれ設けられ、該利用側熱交換器の出口側と前記第2熱交換器との間の流路を切り替える第1熱媒体流路切替装置と、
    前記複数の利用側熱交換器の入口側にそれぞれ設けられ、該利用側熱交換器の入口側と前記第2熱交換器との間の流路を切り替える第2熱媒体流路切替装置と、
    前記利用側熱交換器と前記第1熱媒体流路切替装置との間、または、前記利用側熱交換器と前記第2熱媒体流路切替装置との間に設けられ、該利用側熱交換器を循環する前記熱媒体の流量を調整する熱媒体流量調整装置と、
    を備えたことを特徴とする請求項10記載の冷凍サイクル装置。
  12. 前記複数の第2熱交換器の全てに前記圧縮機から吐出された高温・高圧の前記冷媒を流して前記熱媒体を加熱する全暖房運転モードと、
    前記複数の第2熱交換器の全てに低温・低圧の前記冷媒を流して前記熱媒体を冷却する全冷房運転モードと、
    前記複数の第2熱交換器の一部に前記圧縮機から吐出された高温・高圧の前記冷媒を流して前記熱媒体を加熱し、前記複数の第2熱交換器の他の一部に低温・低圧の前記冷媒を流して前記熱媒体を冷却する冷房暖房混在運転モードと
    を実行可能である
    ことを特徴とする請求項10または11記載の冷凍サイクル装置。
  13. 前記圧縮機、前記第1冷媒流路切替装置、および前記第1熱交換器は、室外機に収容され、
    少なくとも前記絞り装置、前記第2熱交換器、および前記第2冷媒流路切替装置は、熱媒体変換機に収容され、
    前記室外機、前記熱媒体変換機および前記室内機のそれぞれは、別体に形成され、互いに離れた場所に設置できる
    ことを特徴とする請求項11または12記載の冷凍サイクル装置。
JP2011553647A 2010-02-12 2010-02-12 冷凍サイクル装置 Expired - Fee Related JP5689079B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/000863 WO2011099074A1 (ja) 2010-02-12 2010-02-12 冷凍サイクル装置

Publications (2)

Publication Number Publication Date
JPWO2011099074A1 JPWO2011099074A1 (ja) 2013-06-13
JP5689079B2 true JP5689079B2 (ja) 2015-03-25

Family

ID=44367387

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011553647A Expired - Fee Related JP5689079B2 (ja) 2010-02-12 2010-02-12 冷凍サイクル装置

Country Status (4)

Country Link
US (1) US8959940B2 (ja)
EP (1) EP2535667B1 (ja)
JP (1) JP5689079B2 (ja)
WO (1) WO2011099074A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018003099A1 (ja) * 2016-06-30 2018-01-04 三菱電機株式会社 冷却装置

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012056533A1 (ja) * 2010-10-27 2012-05-03 株式会社 テクノミライ 空調制御システム及びプログラム
WO2014083680A1 (ja) * 2012-11-30 2014-06-05 三菱電機株式会社 空気調和装置
JP5721875B1 (ja) * 2014-02-24 2015-05-20 伸和コントロールズ株式会社 チラー装置
JP5841281B1 (ja) * 2015-06-15 2016-01-13 伸和コントロールズ株式会社 プラズマ処理装置用チラー装置
WO2017070211A1 (en) 2015-10-21 2017-04-27 Liebert Corporation Cooling systems for small equipment rooms and methods of cooling small equipment rooms
JP6053907B1 (ja) * 2015-12-21 2016-12-27 伸和コントロールズ株式会社 チラー装置
CN107328042A (zh) * 2017-08-31 2017-11-07 广东美的制冷设备有限公司 空调器及其能效计算方法
KR102508040B1 (ko) * 2020-05-20 2023-03-08 시바우라 메카트로닉스 가부시끼가이샤 냉각 장치, 기판 처리 장치, 냉각 방법, 및 기판 처리 방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007049372A1 (ja) * 2005-10-25 2007-05-03 Mitsubishi Electric Corporation 空気調和装置、空気調和装置の冷媒充填方法、空気調和装置の冷媒充填状態判定方法、並びに空気調和装置の冷媒充填・配管洗浄方法
JP2008145066A (ja) * 2006-12-12 2008-06-26 Daikin Ind Ltd 冷凍装置
JP2009133547A (ja) * 2007-11-30 2009-06-18 Mitsubishi Electric Corp 冷凍サイクル装置
JP2009186054A (ja) * 2008-02-04 2009-08-20 Mitsubishi Electric Corp 冷凍サイクル装置
WO2009133644A1 (ja) * 2008-04-30 2009-11-05 三菱電機株式会社 空気調和装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3900669B2 (ja) * 1998-04-16 2007-04-04 株式会社豊田自動織機 制御弁及び可変容量型圧縮機
US6505476B1 (en) * 1999-10-28 2003-01-14 Denso Corporation Refrigerant cycle system with super-critical refrigerant pressure
JP3737381B2 (ja) * 2000-06-05 2006-01-18 株式会社デンソー 給湯装置
JP2006220407A (ja) * 2005-01-13 2006-08-24 Denso Corp 冷凍サイクル用膨張弁
CN100520225C (zh) * 2005-02-18 2009-07-29 卡里尔公司 用于控制断续超临界运行制冷回路中的高压的方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007049372A1 (ja) * 2005-10-25 2007-05-03 Mitsubishi Electric Corporation 空気調和装置、空気調和装置の冷媒充填方法、空気調和装置の冷媒充填状態判定方法、並びに空気調和装置の冷媒充填・配管洗浄方法
JP2008145066A (ja) * 2006-12-12 2008-06-26 Daikin Ind Ltd 冷凍装置
JP2009133547A (ja) * 2007-11-30 2009-06-18 Mitsubishi Electric Corp 冷凍サイクル装置
JP2009186054A (ja) * 2008-02-04 2009-08-20 Mitsubishi Electric Corp 冷凍サイクル装置
WO2009133644A1 (ja) * 2008-04-30 2009-11-05 三菱電機株式会社 空気調和装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018003099A1 (ja) * 2016-06-30 2018-01-04 三菱電機株式会社 冷却装置

Also Published As

Publication number Publication date
EP2535667A1 (en) 2012-12-19
EP2535667B1 (en) 2018-09-26
WO2011099074A1 (ja) 2011-08-18
US20120297804A1 (en) 2012-11-29
EP2535667A4 (en) 2016-11-09
JPWO2011099074A1 (ja) 2013-06-13
US8959940B2 (en) 2015-02-24

Similar Documents

Publication Publication Date Title
JP5689079B2 (ja) 冷凍サイクル装置
JP5752148B2 (ja) 空気調和装置
JP5642278B2 (ja) 空気調和装置
JP5279919B2 (ja) 空気調和装置
JP5784117B2 (ja) 空気調和装置
JP5595521B2 (ja) ヒートポンプ装置
JP5905110B2 (ja) 空気調和装置
WO2013008278A1 (ja) 空気調和装置
JP5984960B2 (ja) 空気調和装置
JP5959716B2 (ja) 空気調和装置
JP5420057B2 (ja) 空気調和装置
JPWO2012032580A1 (ja) 空気調和装置
JP5312606B2 (ja) 空気調和装置
JP6120943B2 (ja) 空気調和装置
JP5972397B2 (ja) 空気調和装置、その設計方法
JPWO2014083678A1 (ja) 空気調和装置
JP5312616B2 (ja) 空気調和装置
JPWO2011052050A1 (ja) 空気調和装置
JP5791717B2 (ja) 空気調和装置
WO2011030420A1 (ja) 空気調和装置

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130604

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130716

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131022

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131120

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20131225

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20140228

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150127

R150 Certificate of patent or registration of utility model

Ref document number: 5689079

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees