JP2009186054A - 冷凍サイクル装置 - Google Patents

冷凍サイクル装置 Download PDF

Info

Publication number
JP2009186054A
JP2009186054A JP2008023897A JP2008023897A JP2009186054A JP 2009186054 A JP2009186054 A JP 2009186054A JP 2008023897 A JP2008023897 A JP 2008023897A JP 2008023897 A JP2008023897 A JP 2008023897A JP 2009186054 A JP2009186054 A JP 2009186054A
Authority
JP
Japan
Prior art keywords
compressor
oil
cycle apparatus
heat exchanger
refrigeration cycle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008023897A
Other languages
English (en)
Other versions
JP4964160B2 (ja
Inventor
Takashi Okazaki
多佳志 岡崎
Suguru Hatomura
傑 鳩村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2008023897A priority Critical patent/JP4964160B2/ja
Publication of JP2009186054A publication Critical patent/JP2009186054A/ja
Application granted granted Critical
Publication of JP4964160B2 publication Critical patent/JP4964160B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

【課題】第1圧縮機と第2圧縮機のそれぞれに冷凍機油を確実に供給することができ、性能と信頼性の高い冷凍サイクル装置を提供する。
【解決手段】膨張機5aおよび膨張機5aの回収動力で駆動される第2圧縮機5bを用いる冷凍サイクル装置において、第1圧縮機1の出口部に油分離器60を設け、分離された油を第2圧縮機5bの吸入部へ戻す構造として第2圧縮機5bへ確実に給油し、また、冷凍サイクル内の油循環率を低減させる。
【選択図】図1

Description

本発明は、膨張機を使用する冷凍サイクル装置に関するものであり、特に膨張機および膨張機の回収動力で駆動する圧縮機へ給油を行う冷凍サイクル装置に関するものである。
以下、作動流体の膨張エネルギを機械エネルギに変換して利用し、COP向上を図る従来例について説明する。従来例では、作動流体の膨張エネルギを機械エネルギに変換する膨張機とこの膨張機で駆動される副圧縮機を一つの密閉容器に収納する。この容器内に主圧縮機から吐出した冷媒の一部を分岐させて流入させ、密閉容器内を吐出圧力と同一の高圧に保っている。
これにより、潤滑油の粘度を低下させるとともに、膨張機及び副圧縮機の摺動部に差圧によって十分な量の潤滑油を供給でき、シール性能も向上できる。さらに、密閉容器は液冷媒を溜めるレシーバタンクとしても兼用されるというものであった(例えば、特許文献1参照)。
特開2004−325018号公報(請求項2、図1等)
このような従来の冷凍サイクル装置においては、膨張機と膨張機により駆動される副圧縮機とが主圧縮機の低段側に配置される2段圧縮の回路構成に関するものであるため、副圧縮機が高段側に配置される回路構成における副圧縮機への給油方法については考慮されていなかった。また、2段圧縮回路で中間冷却を行う場合、低段側の圧縮機から吐出された冷凍機油が中間冷却器へ滞留し、中間冷却器の伝熱性能が低下するという問題があった。特に、COでは油循環率に対する伝熱性能の低下が大きく、冷凍サイクルの効率(COP)が大幅に低下するという課題があった。
また、高段側の圧縮機から吐出される冷凍機油を分離する手段がなく、主放熱器内の油循環率が高くなり、性能が低下するという課題があった。
本発明は上記のような従来の冷凍サイクル装置の課題を解決するためになされたもので、膨張機を用いる冷凍サイクル装置において、油分離器および油戻し回路を適正に配置することで冷凍サイクル内の油循環率を低減し、高効率運転を実現することを目的とする。
この発明に係わる冷凍サイクル装置は、第1圧縮機と、前記第1圧縮機の出口部に設けられる第1油分離器と、膨張機と、前記膨張機の回収動力で駆動される第2圧縮機と、負荷側熱交換器と、第1熱源側熱交換器と、第2熱源側熱交換器とを備えた冷凍サイクル装置において、前記第1圧縮機と前記第2圧縮機とが直列に接続されるとともに、前記第1圧縮機と前記第2圧縮機との間に前記第2熱源側熱交換器が接続され、前記第1油分離器で分離された冷凍機油が前記第2圧縮機へ供給されるようにしたことを特徴とするものである。
また、この発明に係わる冷凍サイクル装置は、第1圧縮機と、前記第1圧縮機の出口部に設けられた第1油分離器と、膨張機と、前記膨張機の回収動力で駆動される第2圧縮機と、前記第2圧縮機の出口部に設けられた第2油分離器と、負荷側熱交換器と、第1熱源側熱交換器と、第2熱源側熱交換器とを備えた冷凍サイクル装置において、前記第1圧縮機と前記第2圧縮機とが直列に接続されるとともに、前記第1圧縮機と前記第2圧縮機との間に前記第2熱源側熱交換器が接続され、前記第1油分離器あるいは前記第2油分離器で分離された冷凍機油が、前記第1圧縮機または前記第2圧縮機の吸入部に供給されることを特徴とするものである。
また、この発明に係わる冷凍サイクル装置は、第1圧縮機と、前記第1圧縮機の出口部に設けられた第1油分離器と、膨張機と、膨張機の回収動力で駆動する第2圧縮機と、蒸発器と、第1放熱器と、第2放熱器とを備えた冷凍サイクル装置において、前記第2圧縮機と前記第1圧縮機とが直列に接続されるとともに、前記第1圧縮機と前記第2圧縮機との間に前記第2放熱器が接続され、前記第1油分離器で分離された冷凍機油が前記第2圧縮機へ供給されるようにしたことを特徴とするものである。
本発明によれば、膨張機および膨張機の回収動力で駆動される第2圧縮機を用いる冷凍サイクル装置において、油分離器を適正配置することで第2圧縮機へ確実に給油し、信頼性の高い冷凍サイクル装置を提供することができる。
実施の形態1.
以下、本発明の実施の形態1による冷凍サイクル装置について説明する。図1は、本発明の実施形態1に係る冷凍サイクル装置を示す模式図である。
図において、本実施の形態に係る冷凍サイクル装置は、第1熱源側熱交換器である第1室外熱交換器3a、第2熱源側熱交換器である第2室外熱交換器3bを内蔵する室外ユニット100、負荷側熱交換器である室内熱交換器9a、9bを内蔵する室内ユニット200a、200b、室外ユニット100と室内ユニット200a、200bとを接続するガス配管51および液配管52により構成されている。この冷媒回路の内部には冷媒として例えば臨界温度(約31℃)以上で超臨界状態となる二酸化炭素が封入されている。
室外ユニット100内には、冷媒ガスを圧縮するための第1圧縮機1、第1圧縮機1の出口部に設けられた第1油分離器60、室内ユニット200a、200bの運転モードに応じて冷媒が流れる方向を切換える冷媒流路切換え手段である四方弁2および四方弁4、運転モードに応じて放熱器または蒸発器となる第1室外熱交換器3aおよび第2室外熱交換器3b、膨張機5aと第2圧縮機5bが一体に構成された膨張機ユニット5、膨張機ユニット5のシェル側面に設けられた排油口61、排油口61から排出された油を第1圧縮機1の吸入部へ戻す減圧手段である毛細管62、外気を強制的に第1室外熱交換器3a、第2室外熱交換器3bの外表面に送風するための図示しない送風機が収納され、室外に設置される。
また、第1室外熱交換器3aが四方弁2と四方弁4の間に配置され、第2室外熱交換器3bが冷房運転時の第1圧縮機1と第2圧縮機5bの間に配置されている。膨張機ユニット5の内部には、膨張機5aと第2圧縮機5bが配置され、それらは同軸で連結されており、内部圧力は第2圧縮機5bの吐出圧力とほぼ同じ高圧に保持されている。膨張機ユニット5は、例えば膨張機5aと第2圧縮機5bが両方ともスクロール型の膨張機と圧縮機で構成されており、膨張機と圧縮機のスラスト方向荷重が両面で相殺される構造を有する。第2圧縮機5bにはバイパス流路が設けられ、バイパス流路中に開閉弁である逆止弁53が設けられている。膨張機5aと第2圧縮機5bの冷媒循環流量と動力を一致させるため、膨張機5aの上流部には直列に開閉弁6(以下、予膨張弁6と呼ぶ)、並列に開閉弁7(以下、バイパス弁7と呼ぶ)が設けられている。また、第1室外熱交換器3aと第2室外熱交換器3bの一端は、開閉弁である電磁弁54を介して、他端は開閉弁である電磁弁55を介して接続されている。また、第1圧縮機1出口から第2室外熱交換器3bへ至る配管には開閉弁である電磁弁57が設けられ、第2室外熱交換器3bから第2圧縮機5bへ至る配管には開閉弁である電磁弁58が設けられ、第2室外熱交換器3bのバイパス流路には開閉弁である電磁弁56が設けられている。
室内ユニット200a、200bには、負荷側熱交換器である室内熱交換器9a、9b、室内熱交換器9a、9bへの冷媒流量を調節する開度変更可能な電子膨張弁8a、8b、室内空気を強制的に室内熱交換器9a、9bの外表面に送風するための図示しない送風機およびそれらを接続するための配管が内蔵されている。室内熱交換器9a、9bの一端は、ガス配管51に接続され、他端は電子膨張弁8a、8bを介して液配管52に接続されている。なお、本実施の形態では、室内ユニット200a、200bを2台としているが、1台あるいは3台以上としても良いことは言うまでもない。
上記のように構成された冷凍サイクル装置について運転動作を説明する。まず、冷房運転を行う場合を図1および図2に基づいて説明する。図2は、図1の冷媒回路中に示した記号A〜Hにおける冷媒状態をP−h線図上に示したものである。冷房運転では、室外ユニット100内部の四方弁2は第1口2aと第2口2bが連通し、第3口2cと第4口2dが連通するように設定され、四方弁4は第1口4aと第4口4dが連通し、第2口4bと第3口4cが連通するように設定される(図1中実線)。また、予膨張弁6は全開、バイパス弁7は全閉され、電子膨張弁8a、8bは全開される。電磁弁56は閉止、電磁弁57、58は開放される。この場合、基本的な減圧機能は膨張機5aで実現し、室内熱交換器9a、9bの出口部に予め設定された適切な過熱度(例えば、5〜10℃)が得られるように、電子膨張弁8a、8bが調節される。
このとき、第1圧縮機1から吐出された高温高圧のガス冷媒は、第1油分離器60に流入し、圧縮機からガス冷媒に同伴されて流出した冷凍機油は、第1油分離器60内で分離される。第1油分離器60で分離された油は、第2圧縮機の吸入部に供給され、第2圧縮機へ給油される。第2圧縮機5bへ給油された油は、膨張機ユニット5の側面に設けられた排油口61から第1圧縮機の吸入部に減圧手段である毛細管62を介して返油される。第1油分離器60を通過した冷媒(状態A)は、電磁弁56が閉止されているので、電磁弁57を通過し、第2室外熱交換器3bである程度放熱して冷却され(状態B)、第2圧縮機5bに流入する。このとき、第1室外熱交換器3aと第2室外熱交換器3bの間を接続する電磁弁54、55は閉止される。電磁弁58を通過して膨張機5aで駆動される第2圧縮機5bに流入した冷媒は、膨張機で回収された動力に釣合う分だけ圧縮される。このとき、第2圧縮機5bのバイパス流路に設けられた逆止弁53は、圧力差の生じない起動時には開放状態となるが、膨張機5aが動作して第2圧縮機5bが駆動すると、第2圧縮機の高低圧力差により閉止される。第2圧縮機5bから吐出された冷媒は、四方弁2の第1口2aから第2口2bを通って(状態C)、第1室外熱交換器3aで被加熱媒体である空気に放熱し(状態D)、四方弁4の第2口4bから第3口4cを経て予膨張弁6へ流入する。予膨張弁6で膨張機5aの入口密度を調節された冷媒(状態E)は、膨張機5aで減圧され、四方弁4の第1口4aから第4口4dを通って、液配管52を通過する(状態F)。このとき、膨張機5aのバイパス弁7は、第2圧縮機5bを通過する冷媒流量、回収動力が釣合うように制御される。その後、冷媒は室内ユニット200a、200b内の減圧手段8a、8bで少し減圧され(状態G)、室内熱交換器9a、9bで空調対象空間の熱負荷を処理した後、ガス配管51に流入し、四方弁2の第4口2dから第3口2cを通って、第1圧縮機1に流入する(状態H)。このとき、室内熱交換器9aあるいは室内熱交換器9bのどちらか一方の出口部が設定過熱度(例えば、5〜10℃)とならない場合、減圧手段8a、8bは、室内熱交換器9a、9bの出口過熱度が同一となるように調整される。
つぎに、暖房運転について図1および図3に基づいて説明する。本実施の形態では、暖房運転時にも膨張機を利用する例を示すが、暖房運転時は膨張機5aの入口部と第2圧縮機5bの入口部の密度比が大きくなるため、冷房運転時と同一の容積比では、冷媒循環流量と回収動力をバランスさせるための動力回収ロスが大きくなる。従って、必要に応じて四方弁4を廃止し、暖房運転時は膨張機ユニット5を利用しない回路構成としても良い。
本実施の形態における暖房運転では、室外ユニット100内部の四方弁2は第1口2aと第4口2dが連通し、第2口2bと第3口2cが連通するように設定され、四方弁4は第1口4aと第2口4bが連通し、第3口4cと第4口4dが連通するように設定される(点線)。また、電磁弁54、55は開放状態、電磁弁57、58は閉止状態となる。この場合、室内ユニット200a、200b内の電子膨張弁8a、8bは全開、基本的な減圧機能は膨張機5aで実現される。減圧量が不足する場合は室内熱交換器9a、9bの両方の出口部に予め設定された適切な過冷却度(例えば、5〜15℃)が得られるように、電子膨張弁8a、8bが調節される。ここで、二酸化炭素の場合の過冷却度とは、仮想飽和温度(例えば、臨界点におけるエンタルピーと動作圧力で定まる温度)と、室内熱交換器9a、9bの出口温度との差を示している。
このとき、第1圧縮機1で圧縮され高温高圧の超臨界状態となった冷媒(状態A)は、第1油分離器60に流入し、ガス冷媒に同伴されて流出した冷凍機油は第1油分離器60内で分離される。第1油分離器60で分離された油は、第2圧縮機5bの吸入部に供給され、第2圧縮機5bへの給油が行われる。第2圧縮機へ給油された油は、膨張機ユニット5の側面に設けられた排油口61から第1圧縮機の吸入部に減圧手段である毛細管62を介して返油される。第1油分離器60を通過した冷媒は、電磁弁57、58が閉止しているので、電磁弁56を通過して圧力が僅かに低下し(状態B)、第2圧縮機5bでさらに圧縮された後、四方弁2の第1口2aから第4口2d、ガス配管51を経て室内ユニット200a、200bに流入する。室内ユニット200a、200bに流入した高温高圧の冷媒は、室内熱交換器9a、9bに流入して図示しない室内空気に放熱して室内を暖房すると共に自らは温度が低下する(状態G)。この中温高圧の冷媒は、電子膨張弁8a、8bを通過し(状態F)、液配管52に流入する。液配管52に流入した冷媒は、四方弁4の第4口4d、第3口4cを通過し、予膨張弁6に流入する。予膨張弁6を流出した冷媒(状態E)は、膨張機5aに流入し、四方弁4の第1口4a、第2口4bを通過し(状態D)、電磁弁54、55が開放状態となっているので、第1および第2室外熱交換器3a、3bに流入する。その後、第1および第2室外熱交換器3a、3bで蒸発したガス冷媒(状態C)は、四方弁2の第2口2bから第3口2cを経て第1圧縮機1の吸入部(状態H)へ戻る。
本実施の形態では、冷媒回路に四方弁2および開閉弁54、55、56、57、58が設けられ、冷房運転時には第1熱源側熱交換器を高圧で、第2熱源側熱交換器を中間圧力で動作させ、暖房運転時には第1熱源側熱交換器および第2熱源側熱交換器ともに低圧として動作させることで、冷房および暖房の両運転で第2熱源側熱交換器を利用することができ、効率の高い冷凍サイクル装置を得ることができる。
ここで、膨張機ユニット5の詳細構造について図4に示す。図4は、膨張機5a、第2圧縮機5bともにスクロール構造を採用した膨張機ユニットであり、膨張機5aは膨張機用固定スクロール351と膨張機用揺動スクロール352とから構成され、第2圧縮機5bは第2圧縮機用固定スクロール361と第2圧縮機用揺動スクロール362から構成されている。これらのスクロールの中心部には軸308が貫通しており、軸308の両端部にはバランスウェイト309a、309bが設けられ、軸308は膨張機用軸受け部351b、第2圧縮機用軸受け部361bで支持されている。また、膨張機5aの揺動スクロール352の背面と第2圧縮機5bの揺動スクロール362の背面とが背面合わせ構造となっている。その他、必要部品であるオルダムリング307、クランク部308bが設けられ、これらは全て密閉容器310内に収納されている。
このような構造を有する膨張機ユニット5において、膨張機と第2圧縮機の容積比(以下、膨圧容積比)を大きく(例えば、2.3以上に)設計すると、同一歯高では第2圧縮機5bからのスラスト荷重に対して膨張機5a側からのスラスト荷重が小さくなり、両面でスラスト荷重を相殺させることができないため、第2圧縮機5bと膨張機5aを一体化した膨張機ユニット5の構成が難しくなる。また、第2圧縮機5b側のスラスト荷重を減らすために第2圧縮機5b側を極端に歯高の高い渦巻とすることもできるが、強度的な問題が発生する。従って、膨張機5a、第2圧縮機5bともにスクロール構造を有する膨張機ユニットでは、膨張圧縮容積比を例えば2.3以下の範囲に設定することで、性能面だけでなく、構造面でも信頼性の高い膨張機ユニットを構成することができる。
つぎに、膨張機5aの制御方法について説明する。本実施の形態では、膨張機5aの入口部に膨張機5aと直列に設けた予膨張弁6と、膨張機5aをバイパスするように設けたバイパス弁7を用い、膨張機5aを通過する流量および回収した動力と第2圧縮機5bを通過する流量および動力が一致するように膨張機5aを制御する。また、第2圧縮機をバイパスするバイパス流路を設け、バイパス流路中に開閉弁を設けたので、第2圧縮機が動作しない起動時でも冷媒回路内に確実に冷媒を流すことができる。
つぎに、放熱器(ガスクーラー)内の油循環率と熱伝達率の関係について説明する。図5は、油循環率と熱伝達率の関係を示している。横軸の油循環率の単位は重量%である。油循環率が0.3%付近から熱伝達率が急激に低下し、油循環率1%の熱伝達率は、油循環率0.1%のそれに比べ1/2以下となる。従って、放熱器内の油循環率を低減することで熱伝達率は向上し、冷凍サイクルの運転効率を向上させることができる。本実施の形態では、第1圧縮機の出口部に設置された第1油分離器60で第1圧縮機から吐出される油を分離し、第2室外熱交換器3b内の油循環率を低減させることができるため、第2室外熱交換器3bを効率良く使用することができ、効率の高い冷凍サイクル装置を提供することができる。ここで、第1油分離器60の油分離効率は一般に低いものでも90%程度有り、第1圧縮機から吐出される冷媒中の油循環率2%程度を油循環率0.2%程度まで低減することが可能である。
また、本実施の形態では、第2圧縮機5bの出口部には第1油分離器60を設けていないが、一般に第2圧縮機5bの昇圧仕事は第1圧縮機1の昇圧仕事に比べて小さく、油吐出量も小さくなる。従って、第2圧縮機5bの出口部に油分離器を設けていない場合でも第1室外熱交換器3aの油循環率を低く抑えることができ、高効率な冷凍サイクル装置を提供することができる。
また、第1油分離器60で分離された油が第2圧縮機5bの吸入部へ戻り、第2圧縮機5bへ吸い込まれるため、膨張機ユニット5へ確実に給油することができ、信頼性の高い冷凍サイクル装置を提供することができる。また、第2圧縮機5bの胴部に排油口61が設けられ、第2圧縮機5b内の冷凍機油が第1圧縮機1の吸入部へ返油されるようにしたので、第1圧縮機へも確実に返油できる。
なお、本実施の形態では、四方弁4を用いて冷房運転、暖房運転ともに膨張機を使用する例を示したが、冷房運転時のみ膨張機5aを使用する構成としても良い。その場合、四方弁4の第2口4bと第3口4c、第1口4aと第4口4dがそれぞれ配管で接続されて四方弁4が不要となる。このとき、冷房運転時は膨張機5aを用いて動力回収する冷媒回路を、暖房運転時は膨張機5aのバイパス弁を用いて動力回収しない冷媒回路を構成する。
また、本実施の形態では、膨張機5aの例として図4に示す構造を示したが、これに限るものではなく、膨張機5a内部の膨張機構出入口部をバイパスする流路中にリリーフ弁を設け、膨張機5a前後の圧力差が所定値以上となる場合にリリーフ弁が開放される構成としても良い。この場合、所定の圧力差以上では、リリーフ弁が開放状態となるため圧力差に応じて膨張機を通過する冷媒循環量が自動的に調整され、膨張機5aの外部に設けた電子膨張弁は不要となる。
以上より、第1圧縮機1の出口部に設置された第1油分離器60で分離された油が、第2圧縮機5bへ確実に給油されるため、信頼性の高い冷凍サイクル装置を提供することができる。また、第2圧縮機5bの胴部に排油口が設けられ、第2圧縮機5b内の冷凍機油が第1圧縮機1の吸入部へ返油されるようにしたので、第1圧縮機の信頼性を高めることができる。また、第1圧縮機から吐出される冷凍機油が中間冷却器である第2室外熱交換器3bへ流入するのを防止できるので高効率な冷凍サイクル装置を得ることができる。
また、第2圧縮機5bをバイパスするバイパス流路を設け、バイパス流路中に開閉弁である逆止弁53を設けたので、第2圧縮機5bが動作しない起動時でも冷媒流量を確実に流すことができる。また、四方弁および開閉弁54、55、56、57、58が設けられ、冷房運転時には第1熱源側熱交換器を高圧で、第2熱源側熱交換器を中間圧力で動作させ、暖房運転時には第1熱源側熱交換器および第2熱源側熱交換器ともに低圧として動作させることで、冷房および暖房の両運転で第2熱源側熱交換器を利用することができ、効率の高い冷凍サイクル装置を得ることができる。膨張機および第2圧縮機がどちらもスクロール型の背面を合わせた一体型構成であるため、コンパクトな膨張機ユニット5を構成することができる。さらに、冷媒として膨張動力回収効果の大きい二酸化炭素を用いたので、第2室外熱交換器3bに相当する中間冷却器や第1室外熱交換器3aに相当する放熱器での油循環率の低減効果が大きくなる。
実施の形態2.
以下、本発明の実施の形態2による冷凍サイクル装置について説明する。図6は、本発明の実施形態2に係る冷凍サイクル装置を示す模式図であり、実施の形態1と異なるのは、第2圧縮機5bの出口部にも第2油分離器63を設け、第2油分離器63で分離した油を減圧手段である毛細管64を介して第2圧縮機5bの吸入部に戻した点である。その他の構成は実施の形態1と同様であるため、詳細な説明を省略する。
つぎに冷房運転時の動作について説明する。第1室外熱交換器3aと第2室外熱交換器3bの間に設置された電磁弁54、55および電磁弁56は閉止され、電磁弁57、58は開放される。このとき、第1圧縮機1から吐出された高温高圧のガス冷媒は、第1油分離器60に流入し、ガス冷媒に同伴されて流出した冷凍機油は第1油分離器60内で分離される。第1油分離器60で分離された油は、第2圧縮機5bの吸入部に供給され、第2圧縮機5bへの給油が行われる。第2圧縮機5bへ給油された油は、膨張機ユニット5の側面に設けられた排油口61から第1圧縮機の吸入部に減圧手段である毛細管62を介して返油される。第1油分離器60を通過した冷媒は、電磁弁56が閉止されているので、電磁弁57を通過し、第2室外熱交換器3bである程度放熱して冷却され、電磁弁58を通過して第2圧縮機5bに流入する。第2圧縮機5bに流入した冷媒は、膨張機5aで回収された動力に釣合う分だけ圧縮される。第2圧縮機5bから吐出された冷媒は、第2油分離器63に流入し、ガス冷媒に同伴されて流出した冷凍機油は第2油分離器63内でさらに分離される。第2油分離器63で分離された油は、減圧手段である毛細管64を介して第2圧縮機5bの吸入部に供給され、第2圧縮機5bへの給油が行われる。第2油分離器63を通過した冷媒は、四方弁2の第1口2aから第2口2bを通って、第1室外熱交換器3aで被加熱媒体である空気に放熱し、四方弁4の第2口4bから第3口4cを経て予膨張弁6へ流入する。予膨張弁6通過後から第1圧縮機1の吸入までの冷媒流れは実施の形態1と同様であるため詳細な説明を省略し、暖房時の運転動作についても同様に説明を省略する。
本実施の形態では、実施の形態1の効果に加え、第2圧縮機5bから吐出される冷凍機油を第2油分離器63でさらに分離して第2圧縮機5bへ供給するため、第2圧縮機5bへ確実に給油できる。また、放熱器である第1室外熱交換器3aへ冷凍機油が流入するのを確実に防止でき、高効率な冷凍サイクル装置を得ることができる。本実施の形態では、第2油分離器63からの戻し配管を第1油分離器60の戻し配管と合流させ、第2圧縮機5bの吸入部に接続する構成としたが、第1圧縮機1の吸入部に接続する構成としても良い。
以上より、本実施の形態では、実施の形態1の効果に加え、第2圧縮機5bから吐出される冷凍機油を第2油分離器63で分離し、第2圧縮機5bへ確実に戻すとともに、冷凍機油が中間冷却器だけでなく放熱器へ流入するのも防止でき、高効率な冷凍サイクル装置を得ることができる。
実施の形態3.
以下、本発明の実施の形態3による冷凍サイクル装置について説明する。図7は、本発明の実施形態3に係る冷凍サイクル装置を示す模式図であり、実施の形態1および実施の形態2と異なるのは、第1油分離器60および第2油分離器63で分離した冷凍機油を第1圧縮機1および第2圧縮機5bの吸入部にそれぞれ戻すとともに、第1圧縮機1の吸入部へは膨張機ユニット5のシェル側面部に設けた排油口61から冷凍機油を戻す構成とした点である。その他の構成は実施の形態1と同様であるため、詳細な説明を省略する。
つぎに冷房運転時の動作について説明する。第1室外熱交換器3aと第2室外熱交換器3bの間に設置された電磁弁54、55および電磁弁56は閉止され、電磁弁57、58は開放される。このとき、第1圧縮機1から吐出された高温高圧のガス冷媒は、第1油分離器60に流入し、ガス冷媒に同伴されて流出した冷凍機油は第1油分離器60内で分離される。第1油分離器60で分離された油は、減圧手段である毛細管62を介して第1圧縮機1の吸入部に戻り、第1圧縮機へ再給油される。第1油分離器60を通過した冷媒は、電磁弁56が閉止されているので、電磁弁57を通過し、第2室外熱交換器3bである程度放熱して冷却され、電磁弁58を通って第2圧縮機5bに流入する。電磁弁58を通過して膨張機5aで駆動される第2圧縮機5bに流入した冷媒は、膨張機で回収された動力に釣合う分だけ圧縮される。第2圧縮機5bから吐出された冷媒は、第2の油分離器63に流入し、ガス冷媒に同伴されて流出した冷凍機油は第2油分離器63内で分離される。油分離器63で分離された油は、減圧手段である毛細管64を介して第2圧縮機5bの吸入部に戻り、第2圧縮機5bへ再給油される。第2圧縮機5bへ給油された油は、膨張機ユニット5の側面に設けられた排油口61から第1圧縮機5bの吸入部に減圧手段である毛細管65を介して返油される。第2油分離器63を通過した冷媒は、四方弁2の第1口2aから第2口2bを通って、第1室外熱交換器3aで被加熱媒体である空気に放熱し、四方弁4の第2口4bから第3口4cを経て予膨張弁6へ流入する。予膨張弁6通過後から第1圧縮機1の吸入までの冷媒流れは実施の形態1と同様であるため詳細な説明を省略し、暖房時の運転動作についても同様に説明を省略する。
ここで、第1油分離器60と第2油分離器63の油分離効率の関係について述べる。第1油分離器60出口部の油循環率をGro1(%)、第2油分離器63出口部の油循環率をGro2(%)とすると、第2圧縮機5bの油面が低下しない条件は、冷凍機油の流入流量が流出流量よりも大きいことであるから、排油口61から毛細管65を介して返油される流量を0とした場合でも、Gro2≦Gro1が成立する必要がある。例えば、第1圧縮機1出口部の油循環率と第2圧縮機出口部の油循環率が等しい場合、Gro2≦Gro1が成立するためには、第1圧縮機の出口部に設けた第1油分離器60の油分離効率を、第2圧縮機の出口部に設けた第2油分離器63の油分離効率よりも低くする必要がある。第1油分離器60の油分離効率を第2油分離器63の油分離効率よりも高くすると、第2圧縮機5b内の油面が低下し、油枯渇に至る可能性が生じる。本実施の形態では、第1油分離器60の油分離効率よりも第2油分離器63の油分離効率が高くなるように構成しているので、膨張機ユニット5の油面が低下せず、信頼性の高い冷凍サイクル装置を提供することができる。
以上より、本実施の形態では、実施の形態1の効果に加え、第2油分離器63を設けたので第2圧縮機5bから吐出される冷凍機油が放熱器である第1室外熱交換器3aへ流入するのを防止でき、高効率な冷凍サイクル装置を得ることができる。また、第1油分離器60の油分離効率よりも第2油分離器63の油分離効率が高くなるように第1および第2の油分離器を構成しているので、第2圧縮機5b内の油面が低下せず、信頼性の高い冷凍サイクル装置を提供することができる。
実施の形態4.
以下、本発明の実施の形態4による冷凍サイクル装置について説明する。図8は、本発明の実施形態4に係る冷凍サイクル装置を示す模式図である。実施の形態1とは異なり、第1および第2室外熱交換器3a、3bが水熱交換器(以下、放熱器と呼ぶ)となり、室内熱交換器9が室外熱交換器(以下、蒸発器と呼ぶ)となる給湯器の例を示している。実施の形態1との具体的な構成の違いは、四方弁2、4が無いこと、第1室外熱交換器3a及び第2室外熱交換器3bが水と冷媒との熱交換器に変更され、放熱器として動作する点、室内熱交換器が室外熱交換器に変更され、蒸発器として動作する点である。また、実施の形態3と同様に、第2油分離器63を設け、第1油分離器60および第2油分離器63で分離した油を第1圧縮機1および第2圧縮機5bの吸入部にそれぞれ戻し、膨張機ユニット5のシェル側面部に設けた排油口61から第1圧縮機1の吸入部へ戻している。その他の構成は実施の形態1と同様であるため、詳細な説明を省略する。
給湯時の運転動作について説明する。予膨張弁6は開放され、バイパス弁7は閉止される。このとき、第1圧縮機1から吐出された高温高圧のガス冷媒は、第1油分離器60に流入し、ガス冷媒に同伴されて流出した冷凍機油は第1油分離器60内で分離される。第1油分離器60で分離された油は、減圧手段である毛細管62を介して第1圧縮機1の吸入部に戻り、第1圧縮機へ再給油される。第1油分離器60を通過した冷媒は、第2放熱器3bである程度放熱して冷却され、第2圧縮機5bに流入する。第2圧縮機5bに流入した冷媒は、膨張機で回収された動力に釣合う分だけ圧縮される。第2圧縮機5bから吐出された冷媒は、第2の油分離器63に流入し、ガス冷媒に同伴されて流出した冷凍機油は第2油分離器63内で分離される。油分離器63で分離された油は、減圧手段である毛細管64を介して第2圧縮機5bの吸入部に戻り、第2圧縮機5bへ再給油が行われる。第2圧縮機5bへ給油された油は、膨張機ユニット5の側面に設けられた排油口61から第1圧縮機5bの吸入部に減圧手段である毛細管65を介して返油される。第2油分離器63を通過した冷媒は、第1放熱器3aで被加熱媒体である水に放熱し、バイパス弁7が閉止されているので、予膨張弁6へ流入する。予膨張弁6で膨張機5aの入口密度を調節された冷媒は、膨張機5aで減圧され、液配管52を通過する。液配管52を通過した冷媒は、蒸発器9で空気から採熱して自らは蒸発し、ガス配管51を通過して第1圧縮機1へ戻る。
このような動作によって、第1放熱器3aおよび第2放熱器3bで水が冷媒からの熱を受けて加熱され、高温水が供給される。このとき、第1放熱器3aおよび第2放熱器3bを流れる水回路(図8には図示せず)は、直列や並列など、どのような構成であっても良く、第1油分離器60および第2油分離器63の油分離効果は、同様に発揮される。
以上より、本実施の形態では、実施の形態1の効果に加え、第1圧縮機1および第2圧縮機5bから吐出される冷凍機油が第1および第2放熱器へ流入するのを防止でき、高効率な冷凍サイクル装置を得ることができるという効果がある。
本発明の実施の形態1に係る冷凍サイクル装置の構成を示す図である。 本発明の実施の形態1に係るP−h線図上での冷房運転の動作を示す図である。 本発明の実施の形態1に係るP−h線図上での暖房運転の動作を示す図である。 本発明の実施の形態1に係る膨張機の断面を示す図である。 本発明の実施の形態1に係る油循環率に対する熱伝達率の関係を示す図である。 本発明の実施の形態2に係る冷凍サイクル装置の構成を示す図である。 本発明の実施の形態3に係る冷凍サイクル装置の構成を示す図である。 本発明の実施の形態4に係る冷凍サイクル装置の構成を示す図である。
符号の説明
1 第1圧縮機、2、4 四方弁、3a、3b 室外熱交換器(放熱器)、5 膨張機ユニット、5a 膨張機、5b 第2圧縮機、6、7、8a、8b 電子膨張弁、9 室内熱交換器(蒸発器)、9a、9b 室内熱交換器、51 ガス配管、52 液配管、53 逆止弁、54、55、56、57、58 電磁弁、61 排油口、60、63 油分離器、62、64、65 毛細管、100 室外ユニット、200a、200b 室内ユニット、307 オルダムリング、308 軸、308b クランク部、309a、309b バランスウェイト、310 密閉容器、312 第2圧縮機吸入管、313 膨張機吸入管、314 第2圧縮機吐出管、315 膨張機吐出管、351 膨張機用固定スクロール、351b 膨張機軸受け部、352 膨張機用揺動スクロール、361 第2圧縮機用固定スクロール、361b 第2圧縮機軸受け部、362 第2圧縮機用揺動スクロール。

Claims (18)

  1. 第1圧縮機と、前記第1圧縮機の出口部に設けられる第1油分離器と、膨張機と、前記膨張機の回収動力で駆動される第2圧縮機と、負荷側熱交換器と、第1熱源側熱交換器とを備えた冷凍サイクル装置において、
    前記第1圧縮機と前記第2圧縮機とが直列に接続されるとともに、前記第1油分離器で分離された冷凍機油が前記第2圧縮機へ供給されるようにしたことを特徴とする冷凍サイクル装置。
  2. 前記第1圧縮機と前記第2圧縮機との間に第2熱源側熱交換器が接続されていることを特徴とする請求項1に記載の冷凍サイクル装置。
  3. 前記第2圧縮機の胴部に排油口が設けられ、前記第2圧縮機内の冷凍機油が前記第1圧縮機または前記第2圧縮機の吸入部へ返油されるようにしたことを特徴とする請求項1あるいは2に記載の冷凍サイクル装置。
  4. 前記第2圧縮機の排油口と前記第1圧縮機または前記第2圧縮機の吸入部との間に減圧手段が設けられていることを特徴とする請求項1〜3のいずれか一項に記載の冷凍サイクル装置。
  5. 前記第2圧縮機の出口部に第2油分離器が設けられ、前記第2油分離器で分離された油を第1または第2圧縮機の吸入部へ供給することを特徴とする請求項1〜4のいずれか一項に記載の冷凍サイクル装置。
  6. 第1圧縮機と、前記第1圧縮機の出口部に設けられた第1油分離器と、膨張機と、前記膨張機の回収動力で駆動される第2圧縮機と、前記第2圧縮機の出口部に設けられた第2油分離器と、負荷側熱交換器と、第1熱源側熱交換器とを備えた冷凍サイクル装置において、
    前記第1圧縮機と前記第2圧縮機とが直列に接続されるとともに、前記第1油分離器あるいは前記第2油分離器で分離された冷凍機油が、前記第1圧縮機または前記第2圧縮機の吸入部に供給されることを特徴とする冷凍サイクル装置。
  7. 前記第1圧縮機と前記第2圧縮機との間に第2熱源側熱交換器が接続されていることを特徴とする請求項6に記載の冷凍サイクル装置。
  8. 前記第1油分離器の油分離効率よりも前記第2油分離器の油分離効率が高くなるように前記第1および第2油分離器が構成されていることを特徴とする請求項6あるいは7に記載の冷凍サイクル装置。
  9. 前記第2圧縮機の胴部に排油口が設けられ、前記第2圧縮機内の冷凍機油が前記第1圧縮機または前記第2圧縮機の吸入部へ給油されるようにしたことを特徴とする請求項6〜8のいずれか一項に記載の冷凍サイクル装置。
  10. 前記第2圧縮機の排油口と前記第1圧縮機または前記第2圧縮機の吸入配管との間に減圧手段が設けられていることを特徴とする請求項6〜9のいずれか一項に記載の冷凍サイクル装置。
  11. 四方弁が設けられ、冷却運転時には第1熱源側熱交換器を高圧で、第2熱源側熱交換器を中間圧力で動作させ、加熱運転時には第1熱源側熱交換器および第2熱源側熱交換器ともに低圧として動作させ、冷却、加熱運転ともに第2熱源側熱交換器を用いることを特徴とする請求項1〜10のいずれか一項に記載の冷凍サイクル装置。
  12. 前記第2熱源側熱交換器の出入口がそれぞれ2つに分岐され、入口側の一端が第1圧縮機の吐出部へ、入口側の他端が第1熱源側熱交換器の液管側へ、出口側の一端が第2圧縮機の吸入部へ、出口側の他端が第1熱源側熱交換器のガス管側へ、それぞれ接続されるようにしたことを特徴とする請求項11に記載の冷凍サイクル装置。
  13. 前記第2熱源側熱交換器の2つに分岐された出口および入口のそれぞれに開閉弁を設けたことを特徴とする請求項12に記載の冷凍サイクル装置。
  14. 第1圧縮機と、前記第1圧縮機の出口部に設けられた第1油分離器と、膨張機と、膨張機の回収動力で駆動する第2圧縮機と、蒸発器と、第1放熱器とを備えた冷凍サイクル装置において、
    前記第2圧縮機と前記第1圧縮機とが直列に接続されるとともに、前記第1油分離器で分離された冷凍機油が前記第2圧縮機へ供給されるようにしたことを特徴とする冷凍サイクル装置。
  15. 前記第1圧縮機と前記第2圧縮機との間に第2放熱器が接続されていることを特徴とする請求項14に記載の冷凍サイクル装置。
  16. 前記第2圧縮機をバイパスするバイパス流路を設け、バイパス流路中に開閉弁を設けたことを特徴とする請求項1〜15のいずれか一項に記載の冷凍サイクル装置。
  17. 前記膨張機および第2圧縮機がどちらもスクロール型の一体型構成であることを特徴とする請求項1〜16いずれか一項に記載の冷凍サイクル装置。
  18. 冷媒として二酸化炭素を用いることを特徴とする請求項1〜17のいずれか一項に記載の冷凍サイクル装置。
JP2008023897A 2008-02-04 2008-02-04 冷凍サイクル装置 Active JP4964160B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008023897A JP4964160B2 (ja) 2008-02-04 2008-02-04 冷凍サイクル装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008023897A JP4964160B2 (ja) 2008-02-04 2008-02-04 冷凍サイクル装置

Publications (2)

Publication Number Publication Date
JP2009186054A true JP2009186054A (ja) 2009-08-20
JP4964160B2 JP4964160B2 (ja) 2012-06-27

Family

ID=41069480

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008023897A Active JP4964160B2 (ja) 2008-02-04 2008-02-04 冷凍サイクル装置

Country Status (1)

Country Link
JP (1) JP4964160B2 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011099074A1 (ja) * 2010-02-12 2011-08-18 三菱電機株式会社 冷凍サイクル装置
JP2015117919A (ja) * 2013-12-20 2015-06-25 三菱重工業株式会社 ヒートポンプシステム、及び、ヒートポンプ式給湯器
JP2016031183A (ja) * 2014-07-29 2016-03-07 パナソニックIpマネジメント株式会社 二段圧縮式冷凍装置
CN115264979A (zh) * 2022-08-02 2022-11-01 百尔制冷(无锡)有限公司 一种增压型二氧化碳制冷系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6158465A (ja) * 1984-08-30 1986-03-25 Matsushita Electric Ind Co Ltd ゲ−トタ−ンオフサイリスタインバ−タの保護回路
JP2004279014A (ja) * 2003-03-19 2004-10-07 Mayekawa Mfg Co Ltd Co2冷凍サイクル
JP2006275495A (ja) * 2005-03-30 2006-10-12 Sanyo Electric Co Ltd 冷凍装置及び冷蔵庫
WO2007023599A1 (ja) * 2005-08-26 2007-03-01 Mitsubishi Electric Corporation 冷凍空調装置
JP2007115096A (ja) * 2005-10-21 2007-05-10 Fuji Electric Retail Systems Co Ltd 冷却装置および自動販売機
JP2007192508A (ja) * 2006-01-20 2007-08-02 Mitsubishi Electric Corp スクロール膨張機
JP2007255889A (ja) * 2007-05-24 2007-10-04 Mitsubishi Electric Corp 冷凍空調装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6158465A (ja) * 1984-08-30 1986-03-25 Matsushita Electric Ind Co Ltd ゲ−トタ−ンオフサイリスタインバ−タの保護回路
JP2004279014A (ja) * 2003-03-19 2004-10-07 Mayekawa Mfg Co Ltd Co2冷凍サイクル
JP2006275495A (ja) * 2005-03-30 2006-10-12 Sanyo Electric Co Ltd 冷凍装置及び冷蔵庫
WO2007023599A1 (ja) * 2005-08-26 2007-03-01 Mitsubishi Electric Corporation 冷凍空調装置
JP2007115096A (ja) * 2005-10-21 2007-05-10 Fuji Electric Retail Systems Co Ltd 冷却装置および自動販売機
JP2007192508A (ja) * 2006-01-20 2007-08-02 Mitsubishi Electric Corp スクロール膨張機
JP2007255889A (ja) * 2007-05-24 2007-10-04 Mitsubishi Electric Corp 冷凍空調装置

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011099074A1 (ja) * 2010-02-12 2011-08-18 三菱電機株式会社 冷凍サイクル装置
JPWO2011099074A1 (ja) * 2010-02-12 2013-06-13 三菱電機株式会社 冷凍サイクル装置
US8959940B2 (en) 2010-02-12 2015-02-24 Mitsubishi Electric Corporation Refrigeration cycle apparatus
JP5689079B2 (ja) * 2010-02-12 2015-03-25 三菱電機株式会社 冷凍サイクル装置
EP2535667A4 (en) * 2010-02-12 2016-11-09 Mitsubishi Electric Corp REFRIGERATION CIRCUIT DEVICE
JP2015117919A (ja) * 2013-12-20 2015-06-25 三菱重工業株式会社 ヒートポンプシステム、及び、ヒートポンプ式給湯器
JP2016031183A (ja) * 2014-07-29 2016-03-07 パナソニックIpマネジメント株式会社 二段圧縮式冷凍装置
CN115264979A (zh) * 2022-08-02 2022-11-01 百尔制冷(无锡)有限公司 一种增压型二氧化碳制冷系统

Also Published As

Publication number Publication date
JP4964160B2 (ja) 2012-06-27

Similar Documents

Publication Publication Date Title
JP4813599B2 (ja) 冷凍サイクル装置
JP5984914B2 (ja) 空気調和装置
JP4569708B2 (ja) 冷凍装置
EP2765369B1 (en) Refrigeration cycle device
JP5502459B2 (ja) 冷凍装置
JP2008190377A (ja) 多段圧縮機
EP2551613B1 (en) Refrigeration cycle apparatus and method for operating same
JP5484889B2 (ja) 冷凍装置
JP5484890B2 (ja) 冷凍装置
JP5496645B2 (ja) 冷凍装置
JP4906963B2 (ja) 冷凍サイクル装置
JP4964160B2 (ja) 冷凍サイクル装置
JP5523817B2 (ja) 冷凍装置
JP2013155972A (ja) 冷凍装置
JP2011133206A (ja) 冷凍装置
JP5502460B2 (ja) 冷凍装置
JP5127849B2 (ja) 冷凍サイクル装置
JP2011133208A (ja) 冷凍装置
JP2005300031A (ja) 冷凍サイクル装置およびその制御方法
JP2006125790A (ja) 空気調和装置
JP2011137556A (ja) 冷凍装置
JP6150907B2 (ja) 冷凍サイクル装置
JP2012107862A (ja) 冷凍サイクル装置

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101124

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101125

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110712

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110912

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120228

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120327

R150 Certificate of patent or registration of utility model

Ref document number: 4964160

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150406

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250