WO2007023599A1 - 冷凍空調装置 - Google Patents

冷凍空調装置 Download PDF

Info

Publication number
WO2007023599A1
WO2007023599A1 PCT/JP2006/310326 JP2006310326W WO2007023599A1 WO 2007023599 A1 WO2007023599 A1 WO 2007023599A1 JP 2006310326 W JP2006310326 W JP 2006310326W WO 2007023599 A1 WO2007023599 A1 WO 2007023599A1
Authority
WO
WIPO (PCT)
Prior art keywords
compression mechanism
sealed container
sub
pressure
refrigerant
Prior art date
Application number
PCT/JP2006/310326
Other languages
English (en)
French (fr)
Inventor
Shin Sekiya
Masayuki Kakuda
Toshihide Koda
Masahiro Sugihara
Original Assignee
Mitsubishi Electric Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corporation filed Critical Mitsubishi Electric Corporation
Priority to JP2007532021A priority Critical patent/JP4516127B2/ja
Priority to EP06756532.5A priority patent/EP1939547B1/en
Priority to ES06756532T priority patent/ES2423902T3/es
Priority to US11/912,903 priority patent/US8109116B2/en
Publication of WO2007023599A1 publication Critical patent/WO2007023599A1/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B31/00Compressor arrangements
    • F25B31/002Lubrication
    • F25B31/004Lubrication oil recirculating arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C1/00Rotary-piston machines or engines
    • F01C1/02Rotary-piston machines or engines of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • F01C1/0207Rotary-piston machines or engines of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form
    • F01C1/0215Rotary-piston machines or engines of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form where only one member is moving
    • F01C1/0223Rotary-piston machines or engines of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form where only one member is moving with symmetrical double wraps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C11/00Combinations of two or more machines or engines, each being of rotary-piston or oscillating-piston type
    • F01C11/002Combinations of two or more machines or engines, each being of rotary-piston or oscillating-piston type of similar working principle
    • F01C11/004Combinations of two or more machines or engines, each being of rotary-piston or oscillating-piston type of similar working principle and of complementary function, e.g. internal combustion engine with supercharger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C21/00Component parts, details or accessories not provided for in groups F01C1/00 - F01C20/00
    • F01C21/04Lubrication
    • F01C21/045Control systems for the circulation of the lubricant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/008Hermetic pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/10Compression machines, plants or systems with non-reversible cycle with multi-stage compression
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/06Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point using expanders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/04Compression machines, plants or systems with non-reversible cycle with compressor of rotary type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • F25B2309/061Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/14Power generation using energy from the expansion of the refrigerant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/01Geometry problems, e.g. for reducing size

Definitions

  • the present invention relates to a refrigeration air-conditioning apparatus that is used in an air conditioner or a refrigerator and includes two or more sealed containers that house a compression mechanism, and particularly relates to an oil leveling mechanism between sealed containers.
  • COP Coefficient of Performance
  • a main compressor that compresses refrigerant and an expansion that expands refrigerant
  • an expander equipped with a sub-compression mechanism that converts the expansion energy in the mechanism and the expansion mechanism into mechanic energy and operates it.
  • the main compressor and the expander should not be short of lubricating oil. It is necessary to adjust the height of the surface.
  • a refrigerating and air-conditioning apparatus having a first compressor and a second compressor and provided with an oil equalizing pipe communicating the bottom of the first compressor and the bottom of the second compressor is also provided.
  • Patent Document 2 and Patent Document 3 For example, see Patent Document 2 and Patent Document 3).
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2004-325019 (Page 8, FIG. 8 and FIG. 9)
  • Patent Document 2 Japanese Patent Laid-Open No. 7-103594 (pages 3 to 4, Fig. 1)
  • Patent Document 3 JP-A-6-109337 (Page 3, Figure 1)
  • the present invention has been made to solve the above-described problems, and does not provide structural restrictions in the main compression mechanism, and also includes the first sealed container and the secondary compression housing the main compression mechanism. To obtain a refrigeration air conditioner that can adjust the oil level of the lubricating oil in the first and second sealed containers without adjusting the installation height of each second sealed container that houses the mechanism With the goal.
  • the refrigeration air conditioner of the present invention includes a main compression mechanism that compresses the refrigerant, a radiator that cools the compressed refrigerant, an expansion mechanism that expands the refrigerant flowing out of the radiator and recovers power, and A sub-compression mechanism that is arranged on the discharge side or suction side of the compression mechanism and compresses the refrigerant with the power recovered by the expansion mechanism, an evaporator that evaporates the refrigerant expanded by the expansion mechanism, a main compressor mechanism and lubricating oil
  • a first sealed container that contains a suction pressure atmosphere inside, a second sealed container that houses an expansion mechanism, a sub-compression mechanism, and lubricating oil; a bottom of the first sealed container, and a second sealed container; A first oil leveling pipe connected to the bottom, and a second oil leveling pipe connected to the suction side of the main compression mechanism at a position higher than the required minimum oil level height on the side surface of the second sealed container.
  • the space in the sealed container is isolated from the expansion mechanism and
  • the refrigeration air-conditioning apparatus of the present invention includes a main compression mechanism that compresses the refrigerant, a sub-compression mechanism that is disposed on the discharge side or the suction side of the main compression mechanism and compresses the refrigerant, and cools the compressed refrigerant Radiator, expansion valve that expands the refrigerant that flows out of the radiator, evaporator that evaporates the refrigerant expanded by the expansion valve, main compression mechanism and lubricating oil are housed inside, and the inside becomes a suction pressure atmosphere 1st airtight container and 2nd airtightness containing secondary compression mechanism and lubricant
  • a second oil leveling pipe connected to the suction side, and the space in the second sealed container is isolated from the sub-compression mechanism, and the pressure in the second sealed container does not depend on the
  • each of the first sealed container that accommodates the main compression mechanism and the second sealed container that houses the sub-compression mechanism is provided without any structural restrictions in the main compression mechanism. It is possible to provide a refrigeration air conditioner capable of adjusting the oil level of the lubricating oil in the first closed container and the second closed container without adjusting the height.
  • FIG. 1 is a block diagram showing a configuration of a refrigeration air conditioner according to Embodiment 1 of the present invention.
  • FIG. 2 is a longitudinal sectional view showing a configuration of an expander according to Embodiment 1 of the present invention.
  • FIG. 3 is a transverse sectional view of an expansion mechanism of the expander according to Embodiment 1 of the present invention.
  • FIG. 4 is a plan view showing a sub-compression mechanism of the expander according to Embodiment 1 of the present invention.
  • FIG. 5 is a sectional view for explaining a contact seal function of a general chip seal.
  • FIG. 6 is a block diagram showing a configuration of a refrigeration air conditioner according to Embodiment 2 of the present invention.
  • FIG. 7 is a block diagram showing a configuration of a refrigeration air conditioner according to Embodiment 3 of the present invention.
  • FIG. 8 is a block diagram showing a configuration of a refrigeration air conditioner according to Embodiment 4 of the present invention. Explanation of symbols
  • FIG. 1 is a block diagram showing a configuration of a refrigeration air conditioner according to Embodiment 1 of the present invention.
  • the arrows in the figure indicate the direction in which the refrigerant flows.
  • the same reference numerals are the same or equivalent, and this is common throughout the entire specification.
  • the form of the constituent elements appearing in the entire specification is merely an example and is not limited to these descriptions.
  • a refrigerant whose high pressure side is supercritical such as carbon dioxide and carbon dioxide
  • an expander 1 includes an expansion mechanism 2 that recovers power by expanding a refrigerant, and a sub-compression mechanism 3 that is driven by the power recovered by the expansion mechanism 2 and compresses the refrigerant.
  • the expansion mechanism 2 and the sub-compression mechanism 3 are integrally stored in a second hermetic container 4 in which a lubricating oil 9 for lubricating the sliding portion is stored at the bottom.
  • the main compressor 5 includes a main compression mechanism 7 that is driven by the electric mechanism 6 and compresses the refrigerant.
  • the electric mechanism 6 and the main compression mechanism 7 have a lubricating oil 9 for lubricating the sliding portion at the bottom. It is housed in the first sealed container 8 that has been stored. As shown in FIG.
  • the installation height of the second sealed container 4 is higher than the installation height of the first sealed container 8.
  • the installation height of the airtight containers 4 and 8 refers to the height position of the surface of the bottom plate of the airtight containers 4 and 8 in contact with the lubricating oil 9.
  • the sub compression mechanism 3 is disposed on the discharge side of the main compression mechanism 7.
  • the discharge side of the main compression mechanism 7 and the suction side of the sub compression mechanism 3 are the main compressor discharge pipe 18 and the sub compressor. It is connected via the suction pipe 19.
  • the discharge side of the sub-compression mechanism 3 and the inlet side of the radiator 11 that cools the refrigerant are connected via a sub-compressor discharge pipe 20.
  • the outlet side of radiator 11 The suction side of the expansion mechanism 2 is connected via a radiator outlet pipe 25 and an expander suction pipe 15, and a second expansion valve 14 is provided in the middle of the expander suction pipe 15.
  • the outlet side of the radiator 11 and the inlet side of the evaporator 12 that heats the refrigerant are connected via a bypass pipe 26 and an evaporator inflow pipe 27.
  • 1 expansion valve 13 is provided.
  • the discharge side of the expansion mechanism 2 and the inlet side of the evaporator 12 are connected via an expander discharge pipe 16 and an evaporator inflow pipe 27.
  • the expander suction pipe 15 and the bypass pipe 26 are connected to the radiator outlet pipe 25 at the branch point 28, and the bypass pipe 26 and the expander discharge pipe 16 are connected to the evaporator inlet pipe 27 at the junction 29.
  • the outlet side of the evaporator 12 and the suction side of the main compression mechanism 7 are connected via a main compressor suction pipe 17 and a first sealed container 8.
  • the pressure in the second sealed container 4 is increased in the expansion mechanism 2. It does not depend on the pressure and pressure in the subcompressor mechanism 3. Further, the pressure in the first sealed container 8 becomes the suction pressure because the main compressor suction pipe 17 is connected to the first sealed container 8.
  • the bottom of the second sealed container 4 and the bottom of the first sealed container 8 are connected by a first oil equalizing pipe 21, and the first oil equalizing pipe 21 includes a second sealed container 4
  • a check valve 23 is also provided to prevent the lubricating oil 9 from flowing into the first sealed container 8.
  • the height A indicated by a dotted line is the minimum oil level of the lubricating oil 9 necessary for lubricating the bearing and the sliding portion.
  • this height A will be referred to as the “required minimum oil level”.
  • a position higher than the required minimum oil level A on the side surface of the second hermetic container 4 and the main compressor suction pipe 17 on the suction side of the main compression mechanism 7 are connected by a second oil equalizing pipe 22. .
  • the refrigerant that has flowed into the expander suction pipe 15 is decompressed by the second expansion valve 14 so as to be operated at an appropriate compression ratio in the expansion mechanism 2, and then from the expander suction pipe 15 to the expansion mechanism 2. Guided and inflated.
  • the refrigerant expanded by the expansion mechanism 2 is discharged into the expander discharge pipe 16 in a low-temperature, low-pressure gas-liquid two-phase state.
  • the refrigerant flowing into the bypass pipe 26 is expanded and depressurized to a low pressure by the first expansion valve 13 in order to adjust the flow rate when the operating condition of the refrigeration air conditioner changes.
  • the refrigerant expanded and depressurized by the first expansion valve 13 merges with the refrigerant discharged to the expander discharge pipe 16 at the merge point 29, and flows into the evaporator 12 through the evaporator inflow pipe 27.
  • the refrigerant flowing into the evaporator 12 absorbs heat and vaporizes, and then flows into the first sealed container 8 again through the main compressor suction pipe 17.
  • the pressure on the suction side of the main compression mechanism 7 and the pressure on the discharge side of the expansion mechanism 2 are referred to as low pressure, and the pressure on the suction side of the expansion mechanism 2 and the pressure on the discharge side of the sub compression mechanism 3 are referred to as high pressure.
  • the pressure on the discharge side of the main compression mechanism 7 and the suction side of the sub compression mechanism 3 is referred to as an intermediate pressure.
  • p ⁇ is the density of the gaseous refrigerant.
  • the pressure P in the second hermetic container 4 is the pressure in the expansion mechanism 2 and the pressure in the sub-compression mechanism 3 b.
  • the pressure does not depend on the force, and the second sealed container 4 and the main compressor suction pipe 17 are connected. Therefore, it is always lower than the pressure P in the first closed container 8 by ⁇ . Therefore, ga a 2
  • the pressure difference ⁇ ⁇ between the oil level position in the second sealed container 4 and the oil level position in the first sealed container 8 is overcome, and the first oil equalizing pipe 21 is
  • the lubricating oil 9 flows from the first airtight container 8 to the second airtight container 4 and pushes up the oil level in the second airtight container 4.
  • the lubricating oil 9 flows out to the main compressor suction pipe 17 through the second oil leveling pipe 22.
  • the lubricating oil 9 that has flowed out to the main compressor suction pipe 17 flows into the first sealed container 8 and the amount of oil in the first sealed container 8 increases, so that the oil in the respective sealed containers 4 and 8 increases.
  • the oil level is adjusted.
  • the lubricating oil 9 tends to flow into the first closed container 8 also in the second closed container 4 side force.
  • the check valve 23 prevents the lubricating oil 9 from flowing into the second sealed container 4 and the side force of the second sealed container 4 to the first sealed container 8, reducing the oil level in the second sealed container 4. It will be kept.
  • the first oil equalizing pipe 21 connecting the bottom of the first sealed container 8 and the bottom of the second sealed container 4 and The second closed container 4 is provided with a second oil leveling pipe 22 which is connected to the suction side of the main compression mechanism 7 at a position higher than the required minimum oil level ⁇ on the side of the second closed container 4, and the inside of the first closed container 8 is inhaled.
  • the space in the second sealed container 4 is isolated from the expansion mechanism 2 and the sub-compression mechanism 3, and the pressure in the second sealed container 4 is the pressure in the expansion mechanism 2 and the sub-compression mechanism 3 It does not depend on the internal pressure.
  • the magnitude of the flow velocity V of the gas refrigerant in the main compressor suction pipe 17 and the height difference H between the oil level position in the second sealed container 4 and the oil level position in the first sealed container 8 are large. It is possible to automatically adjust the oil level in each closed container 4, 8 it can. Therefore, it is possible to prevent a decrease in reliability due to seizure or abnormal wear of the sliding portions of the main compressor 5 and the expander 1.
  • FIG. 2 is a longitudinal sectional view showing the configuration of the scroll expander according to Embodiment 1 of the present invention.
  • an expansion mechanism 2 is installed below the second sealed container 4, and a sub-compression mechanism 3 is installed above the expansion mechanism 2.
  • the expansion mechanism 2 includes a first fixed scroll 51 having spiral teeth 51c formed on a base plate 51a and a first orbiting scroll 52 having spiral teeth 52c formed on a base plate 52a.
  • the spiral teeth 51c of the fixed scroll 51 and the spiral teeth 52c of the first orbiting scroll 52 are arranged to engage with each other.
  • the sub-compression mechanism 3 is composed of the second fixed scroll 61 having the spiral teeth 61c formed on the base plate 61a and the second orbiting scroll 62 having the spiral teeth 62c formed on the base plate 62a.
  • the spiral teeth 61c of the second fixed scroll 61 and the spiral teeth 62c of the second orbiting scroll 62 are arranged to engage with each other.
  • the shaft 78 is rotatably supported at both ends by bearings 51b and 61b formed at the center of each of the first fixed scroll 51 and the second fixed scroll 61.
  • the first orbiting scroll 52 and the second orbiting scroll 62 are pivotally supported by a crank portion 78a fitted to a shaft 78 with eccentric bearing portions 52b and 62b formed at the center of each of them.
  • Lubricating oil 9 is stored at the bottom of the second sealed container 4, and the lubricating oil 9 is sent upward in the shaft 78 by a well-known centrifugal pump 76 provided at the lower end of the shaft 78. Lubricate the bearing portions 51b and 61b and the eccentric bearing portions 52b and 62b.
  • the minimum required oil level height A is the lower end of the shaft 78 and is the minimum oil level height of the lubricating oil 9 necessary for lubricating the bearing portions 51b and 61b and the eccentric bearing portions 52b and 62b.
  • An expander suction pipe 15 that sucks refrigerant and an expander discharge pipe 16 that discharges the expanded refrigerant are installed on the outer periphery of the expansion mechanism 2 and on the side surface of the second hermetic container 4.
  • the sub-pressure for sucking the refrigerant is added on the upper surface of the second hermetic container 4 above the sub-compression mechanism 3.
  • a compressor suction pipe 19 is installed, and a sub-compressor discharge pipe 20 for discharging the compressed refrigerant is installed on the outer periphery of the sub-compression mechanism 3 and on the side surface of the second hermetic container 4.
  • a first oil leveling pipe 21 for communicating with the bottom of the first sealed container 8 is connected to the bottom of the second sealed container 4, and the side of the second sealed container 4 is connected to the side of the second sealed container 4. Is connected to a main compressor suction pipe 17 at a position higher than the required minimum oil level height A, and a second oil leveling pipe 22 is connected.
  • the spiral teeth 61c of the second fixed scroll 61 and the second swing scroll 61c are arranged at the tips of the spiral teeth 61c, 62c of the second fixed scroll 61 and the second swing scroll 62, respectively.
  • a tip seal 71 that partitions the sub-compression chamber 3a formed by the spiral teeth 62c of the dynamic scroll 62 is mounted.
  • the second orbiting scroll 62 and the second fixed scroll 61 are sealed on the surface of the second orbiting scroll 62 facing the second fixed scroll 61 and on the outer periphery of the eccentric bearing portion 62b.
  • An inner peripheral seal 72a as a seal member is provided.
  • the second orbiting scroll 62 and the second fixed scroll 61 are placed on the outer surface of the spiral tooth 6 lc on the surface of the second fixed scroll 61 facing the second orbiting scroll 62.
  • An outer peripheral seal 73a which is a seal member to be sealed, is provided.
  • the first rocking scroll 52 is a surface facing the first fixed scroll 51 and on the outer periphery of the eccentric bearing portion 52b.
  • An inner peripheral seal 72b which is a seal member for sealing the sliding scroll 52 and the first fixed scroll 51, is provided. Further, a seal that seals the first swing scroll 52 and the first fixed scroll 51 on the outer surface of the spiral tooth 51c on the surface of the first fixed scroll 51 facing the first swing scroll 52.
  • An outer peripheral seal 73b as a member is provided. Further, the outer peripheral portion of the base plate 51a of the first fixed scroll 51 and the outer peripheral portion of the base plate 52a of the first swing scroll 52 are configured to come into contact with each other! RU
  • the first orbiting scroll 52 and the second orbiting scroll 62 are integrated by a coupling element such as a pin, and rotation is regulated by an Oldham ring 77 provided in the sub-compression mechanism 3. .
  • balance weights 79a and 79b are attached to both ends of the shaft 78 in order to cancel the centrifugal force generated by the swinging motion of the swing scrolls 52 and 62.
  • the first orbiting scroll 52 and the second orbiting scroll 62 share the base plates 52a and 62a. It can be formed in one piece!
  • the expander suction pipe 15 Power is generated by the expansion of the sucked high-pressure refrigerant.
  • the refrigerant expanded and depressurized in the expansion chamber 2a is discharged to the outside of the second hermetic container 4 with a force of 16 times from the expander discharge pipe.
  • the power generated by the expansion mechanism 2 compresses and boosts the refrigerant sucked from the sub compressor suction pipe 19 in the sub compression chamber 3a of the sub compression mechanism 3.
  • the refrigerant whose pressure has been increased in the sub compression chamber 3a is discharged from the sub compressor discharge pipe 20 to the outside of the second sealed container 4.
  • the expansion mechanism 2 is responsible for the expansion process from high pressure to low pressure
  • the sub-compression mechanism 3 is responsible for the compression process from intermediate pressure to high pressure.
  • a high pressure acts on both the central expansion chamber 2a and the central subcompression chamber 3a
  • the outer expansion chamber 2a has a low pressure and the outer subcompression chamber 3a.
  • the intermediate pressure acts.
  • the space in the secondary compression chamber 3a and the second sealed container 4 is separated by the inner peripheral seal 72a and the outer peripheral seal 73a, and the space in the expansion chamber 2a and the second sealed container 4 is separated from the inner periphery.
  • the seal 72b and the outer peripheral seal 73b are separated.
  • FIG. 3 is a CC cross-sectional view of the expansion mechanism of the expander according to Embodiment 1 of the present invention shown in FIG.
  • a thick part 52d is provided at the inner end of the spiral tooth 52c of the first orbiting scroll 52, and an eccentric bearing part 52b into which the crank part 78a is inserted is provided in the thick part 52d. Is formed through.
  • An inner peripheral seal groove 52g is formed on the outer periphery of the eccentric bearing 52b on the thick portion 52d of the first swing scroll 52, and the inner peripheral seal 72b is attached to the inner peripheral seal groove 52g. Yes.
  • an outer peripheral seal groove 5 lg is formed on the base plate 51a of the first fixed scroll 51 and on the outer periphery of the spiral tooth 51c, and an outer peripheral seal 73b is attached.
  • the base plate 51a of the first fixed scroll 51 is provided with a suction port 51d for sucking refrigerant and a discharge port 51e for discharging refrigerant.
  • the suction port 51d has a substantially long hole shape to secure an opening area, and is connected to the expander suction pipe 15. Further, in order to reduce the area where the suction port 5 Id is closed during the swinging motion, a cutout portion 52e is provided in the thick portion 52d.
  • the discharge port 51e is opened at a position where it does not interfere with the outer end of the spiral tooth 52c of the first swing scroll 52, and is connected to the expander discharge pipe 16.
  • FIG. 4 is a plan view showing a sub-compression mechanism of the expander according to Embodiment 1 of the present invention.
  • FIG. 4 (a) is a plan view of a second fixed scroll
  • FIG. 4 (b) is a plan view.
  • FIG. 10 is a plan view of a second orbiting scroll.
  • the spiral teeth 61c and 62c of the sub-compression mechanism 3 have the same winding direction as the expansion mechanism 2, and the second orbiting scroll 62 and the first orbiting scroll 52 are back-to-back integrated. When swinging with, it can be compressed on the one hand and expanded on the other hand.
  • a thick portion 62d is provided at the inner end of the spiral tooth 62c of the second orbiting scroll 62, and the second orbiting scroll 62 has a second portion similar to the first orbiting scroll 52 of the expansion mechanism 2.
  • An eccentric bearing portion 62b into which the crank portion 78a is inserted penetrates the thick portion 62d of the orbiting scroll 62.
  • the base plate 61a of the second fixed scroll 61 is opened with a suction port 61d for sucking refrigerant and a discharge port 61e for discharging refrigerant.
  • the discharge port 61e has a substantially elongated hole shape and is connected to the sub compressor discharge pipe 20 in order to secure an opening area.
  • the notch 62e is provided in the thick part 62d.
  • the suction port 6 Id is opened at a position that does not interfere with the outer end portion of the spiral tooth 62 c of the second swing scroll 62, and is connected to the sub-compressor suction pipe 19.
  • Tip seal grooves 6 If and 62f for mounting the tip seal 71 are formed on the tip surfaces of the spiral teeth 61c and 62c.
  • An inner peripheral seal groove 62g for mounting the inner peripheral seal 72a is formed on the thick portion 62d of the second orbiting scroll 62 and on the outer periphery of the eccentric bearing portion 62b.
  • An outer peripheral seal groove 61g for mounting the outer peripheral seal 73a is formed on the base plate 61a of the second fixed scroll 61 and on the outer periphery of the spiral tooth 61c.
  • FIG. 5 is an enlarged cross-sectional view around the tip seal in order to explain the contact seal function of the tip seal.
  • the tip seal 71 is pressed from the left side and the lower side on the high-pressure side as indicated by arrows by the differential pressure between the sub compression chambers 3a on both sides to be partitioned. For this reason, the tip seal 71 is pressed against the right wall and the upper base plate 6 la in the tip seal groove 62f provided for mounting the tip seal 71, so that the second swing scroll 62 And second The contact seal with the fixed scroll 61 is performed.
  • the contact sealing action of the inner peripheral seals 72a and 72b and the outer peripheral seals 73a and 73b is the same as the contact sealing action of the tip seal 71.
  • inner peripheral seals 72 a and 72 b that are seal members are provided on the inner peripheral portion of the first swing scroll 52 and the inner peripheral portion of the second swing scroll 62.
  • outer peripheral seals 73a and 73b, which are seal members, are provided on the outer peripheral portion of the first fixed scroll 51 and the outer peripheral portion of the second fixed scroll 61. Therefore, the space of the second sealed container 4 is isolated from the expansion mechanism 2 and the sub-compression mechanism 3, and the pressure in the second sealed container 4 is the pressure in the expansion mechanism 2 and the sub-compression mechanism 3.
  • the oil level can be adjusted stably because it does not depend on the internal pressure.
  • Inner peripheral seals 72a and 72b, which are seal members, may be provided on the inner peripheral portion of the first fixed scroll 51 and the inner peripheral portion of the second fixed scroll 61.
  • Peripheral seals 73a and 73b, which are seal members may be provided on the outer peripheral portion of the first and second swing scrolls 62.
  • a scroll-type expander is shown as the expander 1 used in the refrigeration air conditioner.
  • the pressure in the second sealed container 4 is increased in the expansion mechanism 2.
  • any system may be used, for example, a multi-vane system or a rotary system expander.
  • any force system using the centrifugal pump 76 as a pump for supplying the lubricating oil 9 to the bearing and the sliding portion may be used.
  • a trochoid pump or the like may be used.
  • a positive displacement pump may be used.
  • the pump suction port height is the required minimum oil level.
  • the installation height of the second sealed container 4 is the same as that of the first sealed container 8.
  • the configuration of the refrigeration air conditioner when it is higher than the height is shown.
  • the configuration of the refrigeration air conditioner when the installation height of the second sealed container 4 is lower than the installation height of the first sealed container 8 is shown.
  • FIG. 6 is a block diagram showing a configuration of the refrigeration air conditioner according to Embodiment 2 of the present invention.
  • the refrigeration air conditioner shown in Embodiment 2 of the present invention is such that the installation height of the second hermetic container 4 is lower than the installation height of the first hermetic container 8, and
  • the first oil equalizing pipe 21 is different from the refrigerating and air-conditioning apparatus shown in Embodiment 1 in that the check valve 23 is not provided and the electromagnetic valve 24 is provided.
  • Other configurations are the same as those of the refrigeration air-conditioning apparatus shown in the first embodiment.
  • the lubricating oil 9 flowing out to the main compressor suction pipe 17 flows into the first sealed container 8, and the amount of oil in the first sealed container 8 increases, so that The oil level at is adjusted. For this reason, the check valve 23 is not necessary for the first suction pipe 21.
  • the height difference H prevents the lubricating oil 9 from moving from the first sealed container 8 to the second sealed container 4 through the first oil equalizing pipe 21.
  • the electromagnetic valve 24 provided in the first oil equalizing pipe 21 is closed.
  • the solenoid valve 24 is open.
  • the first oil equalizing pipe 21 connecting the bottom portion of the first sealed container 8 and the bottom portion of the second sealed container 4 and The second
  • a second oil leveling pipe 22 that is connected to the suction side of the main compression mechanism 7 and a position higher than the required minimum oil level height A on the side of the sealed container 4, and the inside of the first sealed container 8 is in the suction pressure atmosphere. Therefore, the space in the second sealed container 4 is isolated from the expansion mechanism 2 and the sub-compression mechanism 3, and the pressure in the second sealed container 4 is equal to the pressure in the expansion mechanism 2 and the pressure in the sub-compression mechanism 3. Do not depend.
  • the magnitude of the flow velocity V of the gas refrigerant in the main compressor suction pipe 17 and the height difference H between the oil level position in the second sealed container 4 and the oil level position in the first sealed container 8 are large. It is possible to automatically adjust the oil level in each closed container 4, 8 regardless of the height. Therefore, it is possible to prevent a decrease in reliability due to seizure or abnormal wear of the sliding portions of the main compressor 5 and the expander 1.
  • Embodiment 2 of the present invention the case of the refrigeration air conditioner in which the installation height of the second sealed container 4 is lower than the installation height of the first sealed container 8 is shown.
  • Embodiment 1 and Embodiment 2 in the refrigeration air-conditioning apparatus according to the present invention, the bottom of first sealed container 8 and the bottom of second sealed container 4 are connected. 1 oil leveling pipe 21 and a second oil leveling pipe 22 which is connected to the suction side of main compression mechanism 7 at a position higher than the required minimum oil level height A on the side surface of second hermetic container 4.
  • the inside of the hermetic container 8 is the suction pressure atmosphere, the space in the second hermetic container 4 is isolated from the expansion mechanism 2 and the sub-compression mechanism 3, and the pressure in the second hermetic container 4 is increased in the expansion mechanism 2.
  • the oil level in each of the closed containers 4 and 8 is not related to the installation height of the first closed container 8 and the second closed container 4. Can be adjusted automatically. Therefore, it is possible to prevent a decrease in reliability due to seizure or abnormal wear of the sliding portions of the main compressor 5 and the expander 1.
  • Embodiment 1 and Embodiment 2 the refrigeration air conditioner in which the sub compression mechanism 3 is arranged on the discharge side of the main compression mechanism 7 is shown.
  • Embodiment 3 of the present invention shows a refrigeration air conditioner in which the sub compression mechanism 3 is arranged on the suction side of the main compression mechanism 7.
  • FIG. 7 is a block diagram showing a configuration of a refrigeration air conditioner according to Embodiment 3 of the present invention.
  • the sub-compression mechanism 3 is disposed on the suction side of the main compression mechanism 7, and the discharge side of the sub-compression mechanism 3 and the suction side of the main compression mechanism 7 are sub-compressor discharge pipes 20
  • the main compressor suction pipe 17 and the first sealed container 8 are connected to each other. Further, the discharge side of the main compression mechanism 7 and the inlet side of the radiator 11 are connected via a main compressor discharge pipe 18. On the other hand, the outlet side of the evaporator 12 and the suction side of the sub compression mechanism 3 are connected via a sub compressor suction pipe 19.
  • the installation height of the second sealed container 4 is lower than the installation height of the first sealed container 8.
  • Other configurations are the same as those of the refrigeration air conditioner shown in the second embodiment.
  • the refrigerant that has flowed into the expander suction pipe 15 is decompressed by the second expansion valve 14 so as to be operated at an appropriate compression ratio in the expansion mechanism 2, and then from the expander suction pipe 15 to the expansion mechanism 2. Guided and inflated.
  • the refrigerant expanded by the expansion mechanism 2 is discharged into the expander discharge pipe 16 in a low-temperature, low-pressure gas-liquid two-phase state.
  • the refrigerant flowing into the bypass pipe 26 is expanded and depressurized to a low pressure by the first expansion valve 13 in order to adjust the flow rate when the operating condition of the refrigeration air conditioner changes.
  • the refrigerant expanded and depressurized by the first expansion valve 13 merges with the refrigerant discharged to the expander discharge pipe 16 at the merge point 29, and flows into the evaporator 12 through the evaporator inflow pipe 27.
  • the refrigerant flowing into the evaporator 12 absorbs heat and vaporizes, and then sucks the sub compressor. It is sucked into the auxiliary compression mechanism 3 through the inlet pipe 19.
  • the refrigerant sucked into the sub compression mechanism 3 is discharged to the sub compressor discharge pipe 20 at an intermediate pressure.
  • the refrigerant discharged to the sub-compressor discharge pipe 20 passes through the main compressor suction pipe 17 and flows into the first sealed container 8 and is sucked into the main compression mechanism 7 again.
  • the pressure on the suction side of the sub-compression mechanism 3 and the pressure on the discharge side of the expansion mechanism 2 are referred to as low pressure, and the pressure on the suction side of the expansion mechanism 2 and the pressure on the discharge side of the main compression mechanism 7 are referred to as high pressure.
  • the pressure on the discharge side of the sub-compression mechanism 3 and the pressure on the suction side of the main compression mechanism 7 are referred to as intermediate pressure.
  • the pressure P in the first sealed container 8 is an intermediate pressure, but the pressure P in the second sealed container 4 is the pressure in the expansion mechanism 2 and a b
  • the pressure difference ⁇ ⁇ is determined by the first and second embodiments.
  • the first oil equalizing pipe 21 connecting the bottom of the first sealed container 8 and the bottom of the second sealed container 4 and The second closed vessel 4 is provided with a second oil leveling pipe 22 which is connected to the suction side of the main compression mechanism 7 at a position higher than the minimum required oil level A on the side surface of the second closed vessel 4, and the inside of the first closed vessel 8 is inhaled.
  • the space in the second sealed container 4 is isolated from the expansion mechanism 2 and the sub-compression mechanism 3, and the pressure in the second sealed container 4 is the pressure in the expansion mechanism 2 and the sub-compression mechanism 3 It does not depend on the internal pressure.
  • the magnitude of the flow velocity V of the gas refrigerant in the main compressor suction pipe 17 and the height difference H between the oil level position in the second sealed container 4 and the oil level position in the first sealed container 8 are large. It is possible to automatically adjust the oil level in each closed container 4, 8 regardless of the height. Therefore, it is possible to prevent a decrease in reliability due to seizure or abnormal wear of the sliding portions of the main compressor 5 and the expander 1. [0073] In the above description, the case where the installation height of the second sealed container 4 is lower than the installation height of the first sealed container 8 is shown, but the installation height of the second sealed container 4 is the first height.
  • the lubricating oil 9 operates in the same manner, and the same effect can be obtained.
  • the installation height of the second sealed container 4 is higher than the installation height of the first sealed container 8, the lubricating oil 9 operates in the same manner as in the first embodiment, and the refrigeration air conditioning system shown in the first embodiment. The same effect as the device can be obtained.
  • the refrigeration / air conditioning apparatus is configured to connect the bottom of the first sealed container 8 and the bottom of the second sealed container 4 to each other.
  • 1 oil leveling pipe 21 and a second oil leveling pipe 22 connecting the suction side of the main compression mechanism 7 and a position higher than the required minimum oil level height A on the side of the second airtight container 4
  • the inside of the container 8 is a suction pressure atmosphere
  • the space in the second sealed container 4 is isolated from the expansion mechanism 2 and the sub-compression mechanism 3
  • the pressure in the second sealed container 4 is the pressure in the expansion mechanism 2. And does not depend on the pressure in the auxiliary compression mechanism 3.
  • Embodiments 1 to 3 the configuration of the refrigerating and air-conditioning apparatus in which the expansion mechanism 2 and the sub-compression mechanism 3 are housed in the second sealed container 4 is shown.
  • a configuration of a refrigeration air conditioner in which a secondary compression mechanism 3 driven by an electric mechanism 6 is housed in a second hermetic container 4 is shown.
  • FIG. 8 is a block diagram showing a configuration of a refrigeration air conditioner according to Embodiment 4 of the present invention.
  • the sub-compressor 81 includes the sub-compression mechanism 3 that is driven by the electric mechanism 82 and compresses the refrigerant.
  • the electric mechanism 82 and the sub-compression mechanism 3 are provided with lubricating oil 9 at the bottom.
  • the stored second sealed container 4 is integrally stored.
  • the main compressor 5 includes a main compression mechanism 7 that is driven by the electric mechanism 6 and compresses the refrigerant.
  • the electric mechanism 6 and the main compression mechanism 7 include a first hermetic seal in which lubricating oil 9 is stored at the bottom. Included in container 8 . As shown in FIG. 8, the installation height of the second sealed container 4 is higher than the installation height of the first sealed container 8.
  • the sub-compression mechanism 3 is disposed on the discharge side of the main compression mechanism 7.
  • the discharge side of the main compression mechanism 7 and the suction side of the sub-compression mechanism 3 are the main compressor discharge pipe 18 and the sub compressor. It is connected via the suction pipe 19.
  • the discharge side of the sub compressor 3 and the inlet side of the radiator 11 that cools the refrigerant are connected via a sub compressor discharge pipe 20.
  • the outlet side of the radiator 11 and the inlet side of the evaporator 12 are connected via a radiator outlet pipe 25.
  • a first expansion valve 13 for expanding the refrigerant is installed in the middle of the radiator outlet pipe 25.
  • the outlet side of the evaporator 12 and the suction side of the main compression mechanism 7 are connected via a main compressor suction pipe 17 and a first sealed container 8.
  • the pressure in the second hermetic container 4 does not depend on the pressure in the sub-compression mechanism 3.
  • the pressure in the first sealed container 8 is the suction pressure because the main compressor suction pipe 17 is connected to the first sealed container 8.
  • the bottom of the second sealed container 4 and the bottom of the first sealed container 8 are connected by a first oil equalizing pipe 21, and the first oil equalizing pipe 21 includes a second sealed container 4
  • a check valve 23 is also provided to prevent the lubricating oil 9 from flowing into the first sealed container 8.
  • a position higher than the required minimum oil level A on the side surface of the second hermetic container 4 and the main compressor suction pipe 17 on the suction side of the main compression mechanism 7 are connected by a second oil equalizing pipe 22. Has been.
  • the refrigerant that has flowed into the radiator outlet pipe 25 is expanded by the first expansion valve 13. It becomes a low-temperature, low-pressure gas-liquid two-phase state and flows into the evaporator 12.
  • the refrigerant flowing into the evaporator 12 absorbs heat and vaporizes, and then flows again into the first sealed container 8 through the main compressor suction pipe 17.
  • the pressure on the suction side of the main compression mechanism 7 is referred to as low pressure
  • the pressure on the discharge side of the sub compression mechanism 3 is referred to as high pressure
  • the suction side of the sub compression mechanism 3 on the discharge side of the main compression mechanism 7 The pressure on the side is called the intermediate pressure.
  • the operation of the lubricating oil 9 in the second sealed container 4 and the first sealed container 8 is the same as that of the refrigeration air conditioner shown in the first embodiment.
  • the oil level in the closed containers 4 and 8 is automatically adjusted.
  • the first oil equalizing pipe 21 connecting the bottom of the first sealed container 8 and the bottom of the second sealed container 4 and The second closed vessel 4 is provided with a second oil leveling pipe 22 which is connected to the suction side of the main compression mechanism 7 at a position higher than the minimum required oil level A on the side surface of the second closed vessel 4, and the inside of the first closed vessel 8 is inhaled.
  • the pressure atmosphere is such that the space in the second sealed container 4 is isolated from the sub-compression mechanism 3, and the pressure in the second sealed container 4 does not depend on the pressure in the sub-compression mechanism 3.
  • the magnitude of the flow velocity V of the gas refrigerant in the main compressor suction pipe 17 and the height difference H between the oil level position in the second sealed container 4 and the oil level position in the first sealed container 8 It is possible to automatically adjust the oil level in each sealed container 4 and 8 regardless of the condition. Accordingly, it is possible to prevent a decrease in reliability due to seizure or abnormal wear of each sliding portion of each sliding portion of the main compressor 5 and the sub compressor 81.
  • Embodiment 4 the case where the installation height of the second sealed container 4 is higher than the installation height of the first sealed container 8 is shown. However, the installation height of the second sealed container 4 is shown. Even when the installation height of the first sealed container 8 is lower than the installation height of the first sealed container 8 or when the installation height of the second sealed container 4 is the same as the installation height of the first sealed container 8, the same effect as described above can be obtained.
  • the installation height of the second sealed container 4 is lower than the installation height of the first sealed container 8, or the installation height of the second sealed container 4 is the same as the installation height of the first sealed container 8. In some cases, check valve 23 is not required.
  • the first oil equalizing pipe 21 is provided with the electromagnetic valve 24, and the refrigeration Air conditioner When the valve is stopped, the solenoid valve 24 should be closed. Since the first oil leveling pipe 21 is provided with an electromagnetic valve 24, when the refrigeration air conditioner stops, the first oil leveling pipe 21 passes through the first oil leveling pipe 21 due to the height difference H, so that It is possible to prevent the lubricating oil 9 from moving to the sealed container 4.
  • the fourth embodiment the case where the sub compression mechanism 3 is arranged on the discharge side with respect to the main compression mechanism 7 is shown, but the sub compression mechanism 3 is arranged on the suction side of the main compression mechanism 7. Even in this case, the same effect as described above can be obtained.
  • the main compression mechanism 7 and the sub compression mechanism 3 are connected in series. However, the main compression mechanism 7 and the sub compression mechanism 3 are connected in parallel. In this case, the same effect as above can be obtained.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)
  • Compressor (AREA)
  • Rotary Pumps (AREA)

Abstract

 主圧縮機構7において構造上の制約を設けることなく、また第1の密閉容器8および第2の密閉容器4のそれぞれの設置高さを調整することなく、第1の密閉容器8および第2の密閉容器4の潤滑油9の油面の高さを調整できる冷凍空調装置を得る。  この発明の冷凍空調装置は、主圧縮機構7および潤滑油9を収納し第1の密閉容器8の底部と膨張機構2、副圧縮機構3および潤滑油9を収納する第2の密閉容器4の底部とを連結した第1の均油管21および第2の密閉容器4の側面の必要最低油面高さAより高い位置と主圧縮機構7の吸入側とを連結した第2の均油管22を備え、第1の密閉容器8の内部は吸入圧力雰囲気であり、第2の密閉容器4内の空間は膨張機構2および副圧縮機構3と隔離され、第2の密閉容器4内の圧力は、膨張機構2内の圧力および副圧縮機構3内の圧力に依存しない。

Description

明 細 書
冷凍空調装置
技術分野
[0001] 本発明は、空気調和装置または冷凍機に使用され、圧縮機構を収容する密閉容 器を 2つ以上備えた冷凍空調装置に関し、特に密閉容器間の均油機構に関するも のである。
背景技術
[0002] 空気調和装置または冷凍機等で用いられる冷凍空調装置にお!、ては、 COP (Coe fficient of Performance)を改善するために、冷媒を圧縮する主圧縮機と、冷媒 を膨張させる膨張機構および膨張機構での膨張エネルギを機械工ネルギに変換し 稼動させる副圧縮機構を備えた膨張機とを有するものがある。このような冷凍空調装 置においては、主圧縮機および膨張機の各摺動部の焼付や異常摩耗による信頼性 低下を防ぐために、主圧縮機および膨張機において、潤滑油が不足しないように油 面の高さを調整する必要がある。
[0003] このため、従来の冷凍空調装置においては、主圧縮機の密閉容器内圧力を吸入 圧力に保つようにし、主圧縮機構への吸入パイプが密閉容器内に設けられ、その開 口部が密閉容器内に貯留された潤滑油の油面の上方に位置されるとともに、開口部 よりも下方で主圧縮機密閉容器における適正油面の上限位置に油回収小孔が形成 されているものがある(例えば、特許文献 1参照)。
[0004] また、第一の圧縮機と第二の圧縮機とを有し、第一の圧縮機の底部と第二の圧縮 機の底部とを連通する均油管を設けている冷凍空調装置もある (例えば、特許文献 2 および特許文献 3参照)。
[0005] 特許文献 1 :特開 2004— 325019号公報(第 8頁、図 8および図 9)
特許文献 2:特開平 7— 103594号公報 (第 3頁〜第 4頁、図 1)
特許文献 3 :特開平 6— 109337号公報 (第 3頁、図 1)
発明の開示
発明が解決しょうとする課題 [0006] しかしながら、特許文献 1の冷凍空調装置においては、主圧縮機用の密閉容器内 に主圧縮機構への吸入パイプを設ける必要があり、当該吸入パイプの位置について も制約がある。
[0007] また、特許文献 2および特許文献 3の冷凍空調装置においては、 2つの圧縮機の 設置高さを同じにしなければ、潤滑油の油面の高さの調整ができないという問題があ る。
[0008] この発明は、上述のような問題を解決するためになされたものであり、主圧縮機構 において構造上の制約を設けることなぐまた主圧縮機構を収容する第 1の密閉容器 および副圧縮機構を収容する第 2の密閉容器のそれぞれの設置高さを調整すること なぐ第 1の密閉容器および第 2の密閉容器の潤滑油の油面の高さを調整できる冷 凍空調装置を得ることを目的とする。
課題を解決するための手段
[0009] この発明の冷凍空調装置は、冷媒を圧縮する主圧縮機構と、圧縮された冷媒を冷 却する放熱器と、放熱器から流出した冷媒を膨張させ動力を回収する膨張機構と、 主圧縮機構の吐出側または吸込側に配置され膨張機構で回収した動力で冷媒を圧 縮する副圧縮機構と、膨張機構で膨張された冷媒を蒸発させる蒸発器と、主圧縮機 構および潤滑油を収納し内部が吸入圧力雰囲気となる第 1の密閉容器と、膨張機構 、副圧縮機構および潤滑油を収納する第 2の密閉容器と、第 1の密閉容器の底部お よび第 2の密閉容器の底部を連結した第 1の均油管と、第 2の密閉容器の側面の必 要最低油面高さより高い位置および主圧縮機構の吸入側を連結した第 2の均油管と を備え、第 2の密閉容器内の空間は、膨張機構および副圧縮機構と隔離され、第 2 の密閉容器内の圧力は、膨張機構内の圧力および副圧縮機構内の圧力に依存しな い。
[0010] また、この発明の冷凍空調装置は、冷媒を圧縮する主圧縮機構と、主圧縮機構の 吐出側または吸込側に配置され冷媒を圧縮する副圧縮機構と、圧縮された冷媒を冷 却する放熱器と、放熱器から流出した冷媒を膨張させる膨張弁と、膨張弁で膨張さ れた冷媒を蒸発させる蒸発器と、主圧縮機構および潤滑油を収納し内部が吸入圧 力雰囲気となる第 1の密閉容器と、副圧縮機構および潤滑油を収納する第 2の密閉 容器と、第 1の密閉容器の底部および第 2の密閉容器の底部を連結した第 1の均油 管と、第 2の密閉容器の側面の必要最低油面高さより高い位置および主圧縮機構の 吸入側を連結した第 2の均油管とを備え、第 2の密閉容器内の空間は、副圧縮機構 と隔離され、第 2の密閉容器内の圧力は、副圧縮機構内の圧力に依存しない。
発明の効果
[0011] この発明によれば、主圧縮機構において構造上の制約を設けることなぐまた主圧 縮機構を収容する第 1の密閉容器および副圧縮機構を収容する第 2の密閉容器の それぞれの設置高さを調整することなぐ第 1の密閉容器および第 2の密閉容器にお ける潤滑油の油面の高さを調整できる冷凍空調装置を提供できる。
図面の簡単な説明
[0012] [図 1]この発明の実施の形態 1による冷凍空調装置の構成を示すブロック図である。
[図 2]この発明の実施の形態 1による膨張機の構成を示す縦断面図である。
[図 3]この発明の実施の形態 1による膨張機の膨張機構の横断面図である。
[図 4]この発明の実施の形態 1による膨張機の副圧縮機構を示す平面図である。
[図 5]—般的なチップシールの接触シール機能を説明するため断面図である。
[図 6]この発明の実施の形態 2による冷凍空調装置の構成を示すブロック図である。
[図 7]この発明の実施の形態 3による冷凍空調装置の構成を示すブロック図である。
[図 8]この発明の実施の形態 4による冷凍空調装置の構成を示すブロック図である。 符号の説明
[0013] 1 膨張機、 2 膨張機構、 2a 膨張室、 3 副圧縮機構、 3a 副圧縮室、 4 第 2の 密閉容器、 5 主圧縮機、 6 電動機構、 7 主圧縮機構、 8 第 1の密閉容器、 9 潤 滑油、 11 放熱器、 12 蒸発器、 13 第 1の膨張弁、 14 第 2の膨張弁、 15 膨張 機吸入管、 16 膨張機吐出管、 17 主圧縮機吸入管、 18 主圧縮機吐出管、 19 副圧縮機吸入管、 20 副圧縮機吐出管、 21 第 1の均油管、 22 第 2の均油管、 23 逆止弁、 24 電磁弁、 25 放熱器流出管、 26 バイパス管、 27 蒸発器流入管、 2 8 分流点、 29 合流点、 51 第 1の固定スクロール、 51a 台板、 51b 軸受部、 51 c 渦巻歯、 51d 吸入ポート、 51e 吐出ポート、 51g 外周シール溝、 52 第 1の摇 動スクロール、 52a 台板、 52b 偏心軸受部、 52c 渦巻歯、 52d 肉厚部、 52e 切 り欠き部、 52g 内周シール溝、 61 第 2の固定スクロール、 61a 台板、 61b 軸受 部、 61c 渦巻歯、 6 Id 吸入ポート、 61e 吐出ポート、 6 If チップシール搆、 61g 外周シール溝、 62 第 2の揺動スクロール、 62a 台板、 62b 偏心軸受部、 62c 渦巻歯、 62d 肉厚部、 62e 切り欠き部、 62f チップシール溝、 62g 内周シール 溝、 71 チップシール、 72a 内周シール、 72b 内周シール、 73a 外周シール、 7 3b 外周シール、 76 遠心ポンプ、 77 オルダムリング、 78 軸、 78a クランク部、 7 9a ノ ランスウェイト、 79b バランスウェイト、 81 副圧縮機、 82 電動機構。
発明を実施するための最良の形態
[0014] 実施の形態 1.
図 1は、この発明の実施の形態 1による冷凍空調装置の構成を示すブロック図であ る。図中の矢印は、冷媒の流れる方向を示している。図において、同一の符号を付し たものは、同一またはこれに相当するものであり、このことは明細書の全文において 共通することである。さらに、明細書全文に表れている構成要素の形態は、あくまで 例示であってこれらの記載に限定されるものではない。なお、この発明の実施の形態 1では、二酸ィ匕炭素のような高圧側が超臨界となる冷媒を用いることを想定している。
[0015] 図 1において、膨張機 1は、冷媒を膨張させて動力を回収する膨張機構 2と、膨張 機構 2で回収した動力で駆動され冷媒を圧縮する副圧縮機構 3とを備えており、膨張 機構 2と副圧縮機構 3とは、摺動部を潤滑するための潤滑油 9を底部に貯溜した第 2 の密閉容器 4内に一体となって収納されている。主圧縮機 5は、電動機構 6によって 駆動され冷媒を圧縮する主圧縮機構 7を備えており、電動機構 6と主圧縮機構 7とは 、摺動部を潤滑するための潤滑油 9を底部に貯溜した第 1の密閉容器 8内に一体と なって収納されている。図 1に示すように、第 2の密閉容器 4の設置高さは、第 1の密 閉容器 8の設置高さよりも高い。ここで、密閉容器 4, 8の設置高さとは、密閉容器 4, 8の底板の潤滑油 9と接する面の高さ位置を指す。
[0016] 副圧縮機構 3は、主圧縮機構 7の吐出側に配置されており、主圧縮機構 7の吐出側 と副圧縮機構 3の吸入側とは、主圧縮機吐出管 18および副圧縮機吸入管 19を介し て接続されている。また、副圧縮機構 3の吐出側と冷媒を冷却する放熱器 11の入口 側とは、副圧縮機吐出管 20を介して接続されている。さらに、放熱器 11の出口側と 膨張機構 2の吸入側とは、放熱器流出管 25および膨張機吸入管 15を介して接続さ れており、膨張機吸入管 15の途中に第 2の膨張弁 14が設けられている。
[0017] 一方、放熱器 11の出口側と冷媒を加熱する蒸発器 12の入口側とは、バイパス管 2 6および蒸発器流入管 27を介して接続されており、バイパス管 26の途中に第 1の膨 張弁 13が設けられている。また、膨張機構 2の吐出側と蒸発器 12の入口側とは、膨 張機吐出管 16および蒸発器流入管 27を介して接続されている。膨張機吸入管 15 およびバイパス管 26は、分流点 28で放熱器流出管 25と接続されており、バイパス管 26および膨張機吐出管 16は、合流点 29で蒸発器流入管 27と接続されている。蒸 発器 12の出口側と主圧縮機構 7の吸入側とは、主圧縮機吸入管 17および第 1の密 閉容器 8を介して接続されて 、る。
[0018] ここで、第 2の密閉容器 4内の空間は、膨張機構 2および副圧縮機構 3とは隔離さ れているので、第 2の密閉容器 4内の圧力は、膨張機構 2内の圧力および副圧縮機 構 3内の圧力に依存しない。また、第 1の密閉容器 8内の圧力は、主圧縮機吸入管 1 7が第 1の密閉容器 8に接続されているので、吸入圧力となる。
[0019] 第 2の密閉容器 4の底部と第 1の密閉容器 8の底部とは、第 1の均油管 21によって 連結されており、第 1の均油管 21には、第 2の密閉容器 4力も第 1の密閉容器 8への 潤滑油 9の流出を防止するための逆止弁 23が設けられている。図 1において、点線 で示した高さ Aは、軸受および摺動部の潤滑に必要な潤滑油 9の最低限の油面高さ である。以下、この高さ Aを「必要最低油面高さ」と言う。第 2の密閉容器 4の側面の必 要最低油面高さ Aより高い位置と主圧縮機構 7の吸入側である主圧縮機吸入管 17と は、第 2の均油管 22によって連結されている。
[0020] 以下に、この発明の実施の形態 1に示す冷凍空調装置の動作について、図 1を用 いて説明する。
[0021] 電動機構 6によって主圧縮機構 7が駆動されると、低温'低圧のガス状の冷媒が主 圧縮機吸入管 17から、第 1の密閉容器 8内に吸入される。第 1の密閉容器 8内力も主 圧縮機構 7に吸入された冷媒は、圧縮されて中間圧となり、主圧縮機吐出管 18から 吐出される。主圧縮機吐出管 18から副圧縮機吸入管 19に流入した中間圧の冷媒は 、副圧縮機構 3でさらに圧縮され、高温'高圧となり、副圧縮機吐出管 20から吐出さ れる。副圧縮機吐出管 20に吐出した冷媒は、放熱器 11で放熱した後、放熱器流出 管 25に流出する。放熱器流出管 25に流出した冷媒の一部は、分流点 28で膨張機 吸入管 15に流入し、残りは、分流点 28でバイノス管 26に流入する。
[0022] 膨張機吸入管 15に流入した冷媒は、膨張機構 2において適正な圧縮比で運転さ れるように第 2の膨張弁 14で減圧された後、膨張機吸入管 15から膨張機構 2へ導か れ、膨張される。膨張機構 2で膨張された冷媒は、低温'低圧の気液二相状態となつ て、膨張機吐出管 16に吐出される。一方、バイパス管 26に流入した冷媒は、冷凍空 調装置の運転条件が変化した場合の流量を調整するために、第 1の膨張弁 13によ つて、低圧まで膨張 '減圧される。第 1の膨張弁 13で膨張 '減圧された冷媒は、合流 点 29で膨張機吐出管 16に吐出した冷媒と合流し、蒸発器流入管 27を通って、蒸発 器 12に流入する。蒸発器 12に流入した冷媒は、吸熱して気化した後、主圧縮機吸 入管 17を通って再び第 1の密閉容器 8内に流入する。
[0023] ここで、主圧縮機構 7の吸入側の圧力および膨張機構 2の吐出側の圧力を低圧と 称し、膨張機構 2の吸入側の圧力および副圧縮機構 3の吐出側の圧力を高圧と称し 、主圧縮機構 7の吐出側であって副圧縮機構 3の吸入側の圧力を中間圧と称する。
[0024] 次に、以上の動作における第 2の密閉容器 4内および第 1の密閉容器 8内の潤滑 油 9の動作について、図 1を用いて説明する。図 1において、第 2の均油管 22および 第 2の密閉容器 4内の油面位置と第 1の密閉容器 8内の油面位置との高低差を Hと すると、高低差 Hによって発生する圧力差 Δ Ρは(1)式で与えられる。
^\ = P。 g H (1)
ここで、 p は潤滑油 9の密度、 gは重力加速度である。
[0025] 一方、第 2の均油管 22と主圧縮機吸入管 17との接続位置 Bにおける、主圧縮機吸 入管 17内のガス状の冷媒の流速を Vとすると、ガス状の冷媒の流速 Vによって発生 する動圧 Δ Ρは、(2)式で与えられる。
2
AP2 = pr V 12 (2)
ここで、 p ^まガス状の冷媒の密度である。
[0026] 第 2の密閉容器 4内の圧力 Pは、膨張機構 2内の圧力および副圧縮機構 3内の圧 b
力に依存しない圧力であり、第 2の密閉容器 4と主圧縮機吸入管 17とが接続されて いるので、常に第 1の密閉容器 8内の圧力 Pよりも Δ Ρだけ低くなる。したがって、ガ a 2
ス冷媒の流速 Vによって発生する動圧 Δ Ρは、(3)式でも与えられる。
2
^ = Pa - Pb (3)
[0027] 主圧縮機吸入管 17におけるガス状の冷媒の流速 Vが大きぐ Δ Ρ > Δ Ρとなる場
2 1 合には、第 2の密閉容器 4内の油面位置と第 1の密閉容器 8内の油面位置との高低 差 Ηによる圧力差 Δ Ρに打ち勝って、第 1の均油管 21を通って第 1の密閉容器 8か ら第 2の密閉容器 4に潤滑油 9が流れ、第 2の密閉容器 4内の油面を押し上げる。第 2 の密閉容器 4内の油面が上昇して第 2の均油管 22の高さまで達すると、第 2の均油 管 22を通って潤滑油 9が主圧縮機吸入管 17に流出する。主圧縮機吸入管 17に流 出した潤滑油 9は、第 1の密閉容器 8内に流れ込み、第 1の密閉容器 8内の油量が増 カロして、それぞれの密閉容器 4, 8内における油面の高さが調整される。
[0028] 逆に、主圧縮機吸入管 17におけるガス状の冷媒の流速 Vが小さぐ Δ Ρく Δ Ρと
2 1 なる場合には、第 2の密閉容器 4側力も第 1の密閉容器 8へ潤滑油 9が流れようとする 。し力しながら、逆止弁 23によって、潤滑油 9は第 2の密閉容器 4側力も第 1の密閉容 器 8へ流れず、第 2の密閉容器 4内における油面の高さは低下せず保持されたままと なる。
[0029] また、第 2の密閉容器 4の設置高さが高ぐ第 2の密閉容器 4内の油面位置と第 1の 密閉容器 8内の油面位置との高低差 Ηが大きい場合でも上述の作用によって、それ ぞれの密閉容器 4, 8内における油面の高さは調整される。
[0030] 以上のように、この発明の実施の形態 1による冷凍空調装置においては、第 1の密 閉容器 8の底部および第 2の密閉容器 4の底部を連結した第 1の均油管 21と、第 2の 密閉容器 4の側面の必要最低油面高さ Αより高い位置および主圧縮機構 7の吸入側 を連結した第 2の均油管 22を備え、第 1の密閉容器 8の内部は吸入圧力雰囲気であ り、第 2の密閉容器 4内の空間は膨張機構 2および副圧縮機構 3と隔離され、第 2の 密閉容器 4内の圧力は、膨張機構 2内の圧力および副圧縮機構 3内の圧力に依存し ない。このため、主圧縮機吸入管 17におけるガス冷媒の流速 Vの大きさや、第 2の密 閉容器 4内の油面位置と第 1の密閉容器 8内の油面位置との高低差 Hの大きさに関 係なぐそれぞれの密閉容器 4, 8内における油面の高さを、自動的に調整することが できる。したがって、主圧縮機 5および膨張機 1の各摺動部の焼付や異常摩耗による 信頼性低下を防ぐことができる。
[0031] 次に、この発明の実施の形態 1に用いる膨張機構 2と膨張機構 2で回収した動力で 駆動され冷媒を圧縮する副圧縮機構 3とを備えた膨張機 1として、スクロール方式の 膨張機を例に取り、その構造および動作を説明する。
[0032] 図 2は、この発明の実施の形態 1によるスクロール方式の膨張機の構成を示す縦断 面図である。
[0033] 図 2において、第 2の密閉容器 4内の下方には、膨張機構 2が設置されており、膨 張機構 2の上方には、副圧縮機構 3が設置されている。膨張機構 2は、台板 51a上に 渦巻歯 51 cを形成した第 1の固定スクロール 51と、台板 52a上に渦巻歯 52cを形成し た第 1の揺動スクロール 52とから成り、第 1の固定スクロール 51の渦巻歯 51cと第 1の 揺動スクロール 52の渦巻歯 52cとは、咬合するように配置されている。また、副圧縮 機構 3は、台板 61a上に渦巻歯 61cを形成した第 2の固定スクロール 61と、台板 62a 上に渦巻歯 62cを形成した第 2の揺動スクロール 62と力 成り、第 2の固定スクロー ル 61の渦巻歯 61cと第 2の揺動スクロール 62の渦巻歯 62cとは、咬合するように配 置されている。
[0034] 軸 78は、第 1の固定スクロール 51および第 2の固定スクロール 61それぞれの中央 に形成された軸受部 51b, 61bによって、回転自由に両持ち支持されている。第 1の 揺動スクロール 52と第 2の揺動スクロール 62とは、それぞれの中央に形成された偏 心軸受部 52b, 62bを軸 78に嵌合されたクランク部 78aによって貫通支持され、揺動 運動できるようになつている。第 2の密閉容器 4の底部には、潤滑油 9が貯溜されてお り、軸 78の下端に設けられた周知の遠心ポンプ 76によって、潤滑油 9は軸 78内を上 方に送られ、軸受部 51b, 61bおよび偏心軸受部 52b, 62bを潤滑する。必要最低 油面高さ Aは、軸 78の下端であり、軸受部 51b, 61bおよび偏心軸受部 52b, 62bの 潤滑に必要な潤滑油 9の最低限の油面高さである。
[0035] 膨張機構 2の外周であって第 2の密閉容器 4の側面には、冷媒を吸入する膨張機 吸入管 15および膨張した冷媒を吐出する膨張機吐出管 16が設置されている。一方 、副圧縮機構 3の上方であって第 2の密閉容器 4の上面には、冷媒を吸入する副圧 縮機吸入管 19が設置されており、副圧縮機構 3の外周であって第 2の密閉容器 4の 側面には、圧縮した冷媒を吐出する副圧縮機吐出管 20が設置されている。
[0036] また、第 2の密閉容器 4の底部には、第 1の密閉容器 8の底部と連通させるための 第 1の均油管 21が接続されており、第 2の密閉容器 4の側面には、必要最低油面高 さ Aより高い位置に主圧縮機吸入管 17と連通させるための第 2の均油管 22が接続さ れている。
[0037] 副圧縮機構 3においては、第 2の固定スクロール 61および第 2の揺動スクロール 62 それぞれの渦巻歯 61c, 62cの先端に、第 2の固定スクロール 61の渦巻歯 61cと第 2 の揺動スクロール 62の渦巻歯 62cとで形成される副圧縮室 3aを仕切るチップシール 71が装着されている。また、第 2の揺動スクロール 62の第 2の固定スクロール 61に対 向する面であって偏心軸受部 62bの外周に、第 2の揺動スクロール 62と第 2の固定 スクロール 61とをシールするシール部材である内周シール 72aが設けられている。さ らに、第 2の固定スクロール 61における第 2の揺動スクロール 62に対向する面であつ て渦巻歯 6 lcの外周に、第 2の揺動スクロール 62と第 2の固定スクロール 61とをシー ルするシール部材である外周シール 73aが設けられている。
[0038] 一方、膨張機構 2においては、副圧縮機構 3と同様に、第 1の揺動スクロール 52の 第 1の固定スクロール 51に対向する面であって偏心軸受部 52bの外周に、第 1の摇 動スクロール 52と第 1の固定スクロール 51とをシールするシール部材である内周シ ール 72bが設けられている。さらに、第 1の固定スクロール 51における第 1の揺動スク ロール 52に対向する面であって渦巻歯 51cの外周に、第 1の揺動スクロール 52と第 1の固定スクロール 51とをシールするシール部材である外周シール 73bが設けられ ている。また、第 1の固定スクロール 51の台板 51aの外周部と第 1の揺動スクロール 5 2の台板 52aの外周部とは、接触するように構成されて!、る。
[0039] 第 1の揺動スクロール 52と第 2の揺動スクロール 62とは、ピンなどの結合要素によ つて一体化され、副圧縮機構 3に設けたオルダムリング 77によって、自転を規正され る。また、揺動スクロール 52, 62が揺動運動することによって発生する遠心力を相殺 するために、軸 78の両端には、バランスウェイト 79a, 79bが取り付けられている。な お、第 1の揺動スクロール 52と第 2の揺動スクロール 62とは、台板 52a, 62aを共用し た形で一体に形成されてもよ!ヽ。
[0040] 膨張機構 2においては、第 1の固定スクロール 51の渦巻歯 51cと第 1の摇動スクロ ール 52の渦巻歯 52cとで形成される膨張室 2a内で、膨張機吸入管 15から吸入した 高圧の冷媒が膨張することによって動力が発生する。膨張室 2a内で膨張減圧した冷 媒は、膨張機吐出管 16力ゝら第 2の密閉容器 4外へ吐出される。膨張機構 2で発生し た動力によって、副圧縮機構 3の副圧縮室 3a内で、副圧縮機吸入管 19から吸入し た冷媒が圧縮昇圧される。副圧縮室 3a内で圧縮昇圧された冷媒は、副圧縮機吐出 管 20から第 2の密閉容器 4外へ吐出される。
[0041] 膨張機構 2は、高圧力も低圧までの膨張過程を担い、副圧縮機構 3は、中間圧から 高圧までの圧縮過程を担う。このため、揺動スクロール 52, 62においては、中央の膨 張室 2aおよび中央の副圧縮室 3aの双方に高圧が作用し、外周の膨張室 2aには低 圧、外周の副圧縮室 3aには中間圧が作用する。副圧縮室 3aと第 2の密閉容器 4内 の空間とは、内周シール 72aと外周シール 73aとで隔離されており、膨張室 2aと第 2 の密閉容器 4内の空間とは、内周シール 72bと外周シール 73bとで隔離されている。
[0042] 図 3は、図 2に示すこの発明の実施の形態 1による膨張機の膨張機構の C C断面 図である。
[0043] 第 1の揺動スクロール 52の渦巻歯 52cの内端部には、肉厚部 52dが設けられてお り、肉厚部 52dには、クランク部 78aが挿入される偏心軸受部 52bが貫通して形成さ れている。第 1の揺動スクロール 52の肉厚部 52d上であって偏心軸受部 52bの外周 には、内周シール溝 52gが形成されており、内周シール溝 52gに内周シール 72bが 装着されている。また、第 1の固定スクロール 51の台板 51a上であって渦巻歯 51cの 外周には、外周シール溝 5 lgが形成されており、外周シール 73bが装着されている。
[0044] 第 1の固定スクロール 51の台板 51aには、冷媒を吸入するための吸入ポート 51dと 冷媒を吐出するための吐出ポート 51eとが開けられている。吸入ポート 51dは、開口 面積を確保するために、略長穴の形状であり、膨張機吸入管 15に連結している。ま た、揺動運動中に吸入ポート 5 Idが閉塞される面積を低減するために、肉厚部 52d に切り欠き部 52eを設けている。吐出ポート 51eは、第 1の揺動スクロール 52の渦巻 歯 52cの外端部と干渉しない位置に開けられており、膨張機吐出管 16に連結してい る。
[0045] 図 4は、この発明の実施の形態 1による膨張機の副圧縮機構を示す平面図であり、 図 4 (a)は、第 2の固定スクロールの平面図、図 4 (b)は、第 2の揺動スクロールの平 面図である。
[0046] 図 4に示すように、副圧縮機構 3の渦巻歯 61c, 62cは、膨張機構 2と同じ巻き方向 で、第 2の揺動スクロール 62が第 1の揺動スクロール 52と背面合わせ一体で揺動運 動したときに、一方で圧縮、他方で膨張できるようになつている。
[0047] 第 2の揺動スクロール 62の渦巻歯 62cの内端部には、肉厚部 62dが設けられてお り、膨張機構 2の第 1の揺動スクロール 52と同様に、第 2の揺動スクロール 62の肉厚 部 62dには、クランク部 78aが挿入される偏心軸受部 62bが貫通して形成されて 、る 。また、第 2の固定スクロール 61の台板 61aには、冷媒を吸入するための吸入ポート 61dと冷媒を吐出するための吐出ポート 61eとが開けられている。吐出ポート 61eは、 開口面積を確保するために、略長穴の形状であり、副圧縮機吐出管 20に連結され ている。また、揺動運動中に吐出ポート 6 leが閉塞される面積を低減するために、肉 厚部 62dに切り欠き部 62eを設けている。吸入ポート 6 Idは、第 2の揺動スクロール 6 2の渦巻歯 62cの外端部と干渉しない位置に開けられており、副圧縮機吸入管 19に 連結されている。
[0048] 渦巻歯 61c, 62cの先端面には、チップシール 71を装着するためのチップシール 溝 6 If, 62fが形成されている。第 2の揺動スクロール 62の肉厚部 62d上であって偏 心軸受部 62bの外周には、内周シール 72aを装着するための内周シール溝 62gが 形成されている。また、第 2の固定スクロール 61の台板 61a上であって渦巻歯 61cの 外周には、外周シール 73aを装着するための外周シール溝 61gが形成されている。
[0049] 図 5は、チップシールの接触シール機能を説明するためにチップシール周辺を拡 大した断面図である。
[0050] 図 5において、チップシール 71は、仕切られる両側の副圧縮室 3aの差圧によって、 矢印で示すように高圧側である左方および下方から押圧される。このため、チップシ ール 71は、チップシール 71を装着するために設けられたチップシール溝 62f内で、 右方の壁および上方の台板 6 laに押付けられて、第 2の揺動スクロール 62と第 2の 固定スクロール 61との間の接触シールを行う。内周シール 72a, 72bおよび外周シ ール 73a, 73bの接触シール作用も、チップシール 71の接触シール作用と同様であ る。
[0051] 以上のスクロール方式の膨張機においては、第 1の揺動スクロール 52の内周部お よび第 2の揺動スクロール 62の内周部にシール部材である内周シール 72a, 72bを 設けるとともに、第 1の固定スクロール 51の外周部および第 2の固定スクロール 61の 外周部にシール部材である外周シール 73a, 73bを設けている。そのため、第 2の密 閉容器 4の空間は、膨張機構 2および副圧縮機構 3とは隔離されており、第 2の密閉 容器 4内の圧力は、膨張機構 2内の圧力および副圧縮機構 3内の圧力に依存しない ので、安定して油面の高さの調整を行うことができる。
[0052] この実施の形態 1においては、第 1の揺動スクロール 52の内周部および第 2の揺動 スクロール 62の内周部にシール部材である内周シール 72a, 72bを設けた力 第 1 の固定スクロール 51の内周部および第 2の固定スクロール 61の内周部にシール部 材である内周シール 72a, 72bを設けてもよい。また、この実施の形態 1においては、 第 1の固定スクロール 51の外周部および第 2の固定スクロール 61の外周部にシール 部材である外周シール 73a, 73bを設けた力 第 1の揺動スクロール 52の外周部およ び第 2の揺動スクロール 62の外周部にシール部材である外周シール 73a, 73bを設 けてもよい。
[0053] さらに、この実施の形態 1においては、冷凍空調装置に用いられる膨張機 1として、 スクロール式の膨張機を示したが、第 2の密閉容器 4内の圧力が、膨張機構 2内の圧 力および副圧縮機構 3内の圧力に依存しな 、構成となって 、れば、方式はどのよう なものでもよく、例えば、マルチべーン方式やロータリ方式の膨張機でもよい。
[0054] また、この実施の形態 1においては、潤滑油 9を軸受および摺動部に供給するボン プとして遠心ポンプ 76を用いた力 方式はどのようなものでもよぐ例えば、トロコイド ポンプなどの容積型ポンプでもよい。容積型ポンプを用いた場合、ポンプの吸込口 の高さが必要最低油面高さとなる。
[0055] 実施の形態 2.
実施の形態 1においては、第 2の密閉容器 4の設置高さが第 1の密閉容器 8の設置 高さよりも高い場合の冷凍空調装置の構成を示した。この発明の実施の形態 2にお いては、第 2の密閉容器 4の設置高さが第 1の密閉容器 8の設置高さよりも低い場合 の冷凍空調装置の構成を示す。
[0056] 図 6は、この発明の実施の形態 2による冷凍空調装置の構成を示すブロック図であ る。
[0057] この発明の実施の形態 2に示す冷凍空調装置は、図 6に示すように、第 2の密閉容 器 4の設置高さが第 1の密閉容器 8の設置高さより低い点、および第 1の均油管 21に 逆止弁 23が設けられておらず、電磁弁 24が設けられている点で実施の形態 1に示 す冷凍空調装置と異なっている。その他の構成は、実施の形態 1に示す冷凍空調装 置と同一である。
[0058] 実施の形態 2における第 2の密閉容器 4および第 1の密閉容器 8内の潤滑油 9の動 作を図 6にて説明する。図 6において、第 2の密閉容器 4の設置高さが第 1の密閉容 器 8の設置高さより低いので、第 2の密閉容器 4内の油面位置と第 1の密閉容器 8内 の油面位置との高低差 Hによって発生する圧力差 Δ Ρは、第 1の密閉容器 8内の油 面位置を押し下げることになる。また、式 (2)で与えられる圧力差 Δ Ρ
2も第 1の密閉容 器 8内の油面位置を押し下げる力を発生するので、主圧縮機吸入管 17におけるガス 冷媒の流速 Vに関係なぐ第 2の均油管 22を通って潤滑油 9が主圧縮機吸入管 17 に流出する。
[0059] 主圧縮機吸入管 17に流出した潤滑油 9は、第 1の密閉容器 8内に流れ込み、第 1 の密閉容器 8内の油量が増加して、それぞれの密閉容器 4, 8内における油面の高さ が調整される。このため、第 1の吸入管 21に逆止弁 23は不要である。ここで、冷凍空 調装置が停止した場合に、高低差 Hによって、第 1の均油管 21を通って第 1の密閉 容器 8から第 2の密閉容器 4に潤滑油 9が移動するのを防止する必要がある。このた め、冷凍空調装置が停止しているときには、第 1の均油管 21に設けられた電磁弁 24 を閉じるようにしている。なお、冷凍空調装置が運転しているときには電磁弁 24は、 開いている。
[0060] 以上のように、この発明の実施の形態 2による冷凍空調装置においては、第 1の密 閉容器 8の底部および第 2の密閉容器 4の底部を連結した第 1の均油管 21と、第 2の 密閉容器 4の側面の必要最低油面高さ Aより高い位置および主圧縮機構 7の吸入側 を連結した第 2の均油管 22を備え、第 1の密閉容器 8の内部は吸入圧力雰囲気であ り、第 2の密閉容器 4内の空間は膨張機構 2および副圧縮機構 3と隔離され、第 2の 密閉容器 4内の圧力は、膨張機構 2内の圧力および副圧縮機構 3内の圧力に依存し ない。このため、主圧縮機吸入管 17におけるガス冷媒の流速 Vの大きさや、第 2の密 閉容器 4内の油面位置と第 1の密閉容器 8内の油面位置との高低差 Hの大きさに関 係なぐそれぞれの密閉容器 4, 8内における油面の高さを、自動的に調整することが できる。したがって、主圧縮機 5および膨張機 1の各摺動部の焼付や異常摩耗による 信頼性低下を防ぐことができる。
[0061] この発明の実施の形態 2においては、第 2の密閉容器 4の設置高さが第 1の密閉容 器 8の設置高さより低い冷凍空調装置の場合を示したが、第 2の密閉容器 4の設置高 さが第 1の密閉容器 8の設置高さと同じ冷凍空調装置の場合でも同様である。なお、 第 2の密閉容器 4の設置高さが第 1の密閉容器 8の設置高さと同じ場合には、電磁弁 24は不要である。
[0062] 実施の形態 1および実施の形態 2に示すように、この発明に係る冷凍空調装置にお いては、第 1の密閉容器 8の底部および第 2の密閉容器 4の底部を連結した第 1の均 油管 21と、第 2の密閉容器 4の側面の必要最低油面高さ Aより高い位置および主圧 縮機構 7の吸入側を連結した第 2の均油管 22を備え、第 1の密閉容器 8の内部は吸 入圧力雰囲気であり、第 2の密閉容器 4内の空間は膨張機構 2および副圧縮機構 3 と隔離され、第 2の密閉容器 4内の圧力は、膨張機構 2内の圧力および副圧縮機構 3 内の圧力に依存しないので、第 1の密閉容器 8および第 2の密閉容器 4の設置高さに 関係なぐそれぞれの密閉容器 4, 8内における油面の高さを、自動的に調整するこ とができる。したがって、主圧縮機 5および膨張機 1の各摺動部の焼付や異常摩耗に よる信頼性低下を防ぐことができる。
[0063] 実施の形態 3.
実施の形態 1および実施の形態 2においては、副圧縮機構 3を主圧縮機構 7の吐 出側に配置した冷凍空調装置を示した。この発明の実施の形態 3においては、副圧 縮機構 3を主圧縮機構 7の吸入側に配置した冷凍空調装置を示す。 [0064] 図 7は、この発明の実施の形態 3による冷凍空調装置の構成を示すブロック図であ る。
[0065] 図 7において、副圧縮機構 3は、主圧縮機構 7の吸入側に配置されており、副圧縮 機構 3の吐出側と主圧縮機構 7の吸入側とは、副圧縮機吐出管 20、主圧縮機吸入 管 17および第 1の密閉容器 8を介して接続されている。また、主圧縮機構 7の吐出側 と放熱器 11の入口側とは、主圧縮機吐出管 18を介して接続されている。一方、蒸発 器 12の出口側と副圧縮機構 3の吸入側とは、副圧縮機吸入管 19を介して接続され ている。ここで、図 7に示すように、第 2の密閉容器 4の設置高さは、第 1の密閉容器 8 の設置高さよりも低い。その他の構成は、実施の形態 2に示す冷凍空調装置と同一 である。
[0066] 以下に、この発明の実施の形態 3に示す冷凍空調装置の動作について、図 7を用 いて説明する。
[0067] 電動機構 6によって主圧縮機構 7が駆動されると、副圧縮機構 3で昇圧された中間 圧のガス状の冷媒が主圧縮機吸入管 17から第 1の密閉容器 8内に流入し、第 1の密 閉容器 8内が中間圧力雰囲気になった後、主圧縮機構 7に吸入される。主圧縮機構 7でさらに圧縮されて高温、高圧の冷媒となったガス状の冷媒は、主圧縮機吐出管 1 8に吐出される。主圧縮機吐出管 18に吐出されたガス状の冷媒は、放熱器 11で放 熱した後、放熱器流出管 25に流出する。放熱器流出管 25に流出した冷媒の一部は 、分流点 28で膨張機吸入管 15に流入し、残りは、分流点 28でバイパス管 26に流入 する。
[0068] 膨張機吸入管 15に流入した冷媒は、膨張機構 2において適正な圧縮比で運転さ れるように第 2の膨張弁 14で減圧された後、膨張機吸入管 15から膨張機構 2へ導か れ、膨張される。膨張機構 2で膨張された冷媒は、低温'低圧の気液二相状態となつ て、膨張機吐出管 16に吐出される。一方、バイパス管 26に流入した冷媒は、冷凍空 調装置の運転条件が変化した場合の流量を調整するために、第 1の膨張弁 13によ つて、低圧まで膨張 '減圧される。第 1の膨張弁 13で膨張 '減圧された冷媒は、合流 点 29で膨張機吐出管 16に吐出した冷媒と合流し、蒸発器流入管 27を通って、蒸発 器 12に流入する。蒸発器 12に流入した冷媒は、吸熱して気化した後、副圧縮機吸 入管 19を通って副圧縮機構 3に吸入される。副圧縮機構 3に吸入された冷媒は、中 間圧となって、副圧縮機吐出管 20に吐出される。副圧縮機吐出管 20に吐出された 冷媒は、主圧縮機吸入管 17を通り、第 1の密閉容器 8内に流入し、再び主圧縮機構 7に吸入される。
[0069] ここで、副圧縮機構 3の吸入側の圧力および膨張機構 2の吐出側の圧力を低圧と 称し、膨張機構 2の吸入側の圧力および主圧縮機構 7の吐出側の圧力を高圧と称し 、副圧縮機構 3の吐出側の圧力であって主圧縮機構 7の吸入側の圧力を中間圧と称 する。
[0070] 次に、以上の動作における第 2の密閉容器 4および第 1の密閉容器 8内の潤滑油 9 の動作について、図 7を用いて説明する。図 7において、第 1の密閉容器 8内の圧力 Pは、中間圧となるが、第 2の密閉容器 4内の圧力 Pは、膨張機構 2内の圧力および a b
副圧縮機構 3内の圧力とは独立しているので、圧力差 Δ Ρは、実施の形態 1および 2
2
と同様に、式(2)で与えられる。
[0071] したがって、実施の形態 2に示す冷凍空調装置と同じぐ潤滑油 9は、第 2の均油管 22を通って第 2の密閉容器 4力ゝら主圧縮機吸入管 17に流出することになる。主圧縮 機吸入管 17に流出した潤滑油 9は、第 1の密閉容器 8内に流れ込み、第 1の密閉容 器 8内の油量が増加して、それぞれの密閉容器内の油面が調整される。
[0072] 以上のように、この発明の実施の形態 3による冷凍空調装置においては、第 1の密 閉容器 8の底部および第 2の密閉容器 4の底部を連結した第 1の均油管 21と、第 2の 密閉容器 4の側面の必要最低油面高さ Aより高い位置および主圧縮機構 7の吸入側 を連結した第 2の均油管 22を備え、第 1の密閉容器 8の内部は吸入圧力雰囲気であ り、第 2の密閉容器 4内の空間は膨張機構 2および副圧縮機構 3と隔離され、第 2の 密閉容器 4内の圧力は、膨張機構 2内の圧力および副圧縮機構 3内の圧力に依存し ない。このため、主圧縮機吸入管 17におけるガス冷媒の流速 Vの大きさや、第 2の密 閉容器 4内の油面位置と第 1の密閉容器 8内の油面位置との高低差 Hの大きさに関 係なぐそれぞれの密閉容器 4, 8内における油面の高さを、自動的に調整することが できる。したがって、主圧縮機 5および膨張機 1の各摺動部の焼付や異常摩耗による 信頼性低下を防ぐことができる。 [0073] なお、上記では第 2の密閉容器 4の設置高さが第 1の密閉容器 8の設置高さより低 い場合を示したが、第 2の密閉容器 4の設置高さが第 1の密閉容器 8の設置高さと同 じ場合も潤滑油 9は同様の動作となり、同様の効果を得ることができる。また、第 2の 密閉容器 4の設置高さが第 1の密閉容器 8の設置高さより高い場合には、潤滑油 9は 実施の形態 1と同様の動作となり、実施の形態 1に示す冷凍空調装置と同様の効果 を得ることができる。
[0074] したがって、実施の形態 1から実施の形態 3に示すように、この発明に係る冷凍空 調装置は、第 1の密閉容器 8の底部および第 2の密閉容器 4の底部を連結した第 1の 均油管 21と、第 2の密閉容器 4の側面の必要最低油面高さ Aより高い位置および主 圧縮機構 7の吸入側を連結した第 2の均油管 22を備え、第 1の密閉容器 8の内部は 吸入圧力雰囲気であり、第 2の密閉容器 4内の空間は膨張機構 2および副圧縮機構 3と隔離され、第 2の密閉容器 4内の圧力は、膨張機構 2内の圧力および副圧縮機構 3内の圧力に依存しない。そのため、副圧縮機構 3が主圧縮機構 7の吐出側に配置 される場合でも吸入側に配置される場合でも、それぞれの密閉容器 4, 8内における 油面の高さを、自動的に調整することができる。したがって、主圧縮機 5および膨張 機 1の各摺動部の焼付や異常摩耗による信頼性低下を防ぐことができる。
[0075] 実施の形態 4.
実施の形態 1から 3においては、第 2の密閉容器 4内に膨張機構 2と副圧縮機構 3と を収納した冷凍空調装置の構成を示した。実施の形態 4においては、第 2の密閉容 器 4内に電動機構 6によって駆動される副圧縮機構 3を収納した冷凍空調装置の構 成を示す。
[0076] 図 8は、この発明の実施の形態 4による冷凍空調装置の構成を示すブロック図であ る。
[0077] 図 8において、副圧縮機 81は、電動機構 82によって駆動され冷媒を圧縮する副圧 縮機構 3を備えており、電動機構 82と副圧縮機構 3とは、底部に潤滑油 9を貯溜した 第 2の密閉容器 4内に一体となって収納されている。主圧縮機 5は、電動機構 6によ つて駆動され冷媒を圧縮する主圧縮機構 7を備えており、電動機構 6と主圧縮機構 7 とは、底部に潤滑油 9を貯溜した第 1の密閉容器 8内に一体となって収納されている 。図 8に示すように、第 2の密閉容器 4の設置高さは、第 1の密閉容器 8の設置高さよ りも高い。
[0078] 副圧縮機構 3は、主圧縮機構 7の吐出側に配置されており、主圧縮機構 7の吐出側 と副圧縮機構 3の吸入側とは、主圧縮機吐出管 18および副圧縮機吸入管 19を介し て接続されている。また、副圧縮機 3の吐出側と冷媒を冷却する放熱器 11の入口側 とは、副圧縮機吐出管 20を介して接続されている。さらに、放熱器 11の出口側と蒸 発器 12の入口側とは、放熱器流出管 25を介して接続されている。放熱器流出管 25 の途中には、冷媒を膨張させる第 1の膨張弁 13が設置されている。蒸発器 12の出口 側と主圧縮機構 7の吸入側とは、主圧縮機吸入管 17および第 1の密閉容器 8を介し て接続されている。
[0079] ここで、第 2の密閉容器 4内の空間は、副圧縮機構 3とは隔離されているので、第 2 の密閉容器 4内の圧力は、副圧縮機構 3内の圧力に依存しない。また、第 1の密閉容 器 8内の圧力は、主圧縮機吸入管 17が第 1の密閉容器 8に接続されているので、吸 入圧力となる。
[0080] 第 2の密閉容器 4の底部と第 1の密閉容器 8の底部とは、第 1の均油管 21によって 連結されており、第 1の均油管 21には、第 2の密閉容器 4力も第 1の密閉容器 8への 潤滑油 9の流出を防止するための逆止弁 23が設けられている。また、第 2の密閉容 器 4の側面の必要最低油面高さ Aより高い位置と主圧縮機構 7の吸入側である主圧 縮機吸入管 17とは、第 2の均油管 22によって連結されている。
[0081] 以下に、この発明の実施の形態 4に示す冷凍空調装置の動作について、図 8を用 いて説明する。
[0082] 電動機構 6によって主圧縮機構 7が駆動されると、低温'低圧のガス状の冷媒が主 圧縮機吸入管 17から、第 1の密閉容器 8内に吸入される。第 1の密閉容器 8内力も主 圧縮機構 7に吸入された冷媒は、圧縮されて中間圧となり、主圧縮機吐出管 18から 吐出される。主圧縮機吐出管 18から副圧縮機吸入管 19に流入した中間圧の冷媒は 、副圧縮機構 3でさらに圧縮され、高温'高圧となり、副圧縮機吐出管 20から吐出さ れる。副圧縮機吐出管 20に吐出した冷媒は、放熱器 11で放熱した後、放熱器流出 管 25に流出する。放熱器流出管 25に流出した冷媒は、第 1の膨張弁 13で膨張され 、低温'低圧の気液二相状態となって、蒸発器 12に流入する。蒸発器 12に流入した 冷媒は、吸熱して気化した後、主圧縮機吸入管 17を通って再び第 1の密閉容器 8内 に流入する。
[0083] ここで、主圧縮機構 7の吸入側の圧力を低圧と称し、副圧縮機構 3の吐出側の圧力 を高圧と称し、主圧縮機構 7の吐出側であって副圧縮機構 3の吸入側の圧力を中間 圧と称する。
[0084] 以上の動作における、第 2の密閉容器 4および第 1の密閉容器 8内の潤滑油 9の動 作については、実施の形態 1に示す冷凍空調装置の場合と同様であり、それぞれの 密閉容器 4, 8内の油面が自動的に調整される。
[0085] 以上のように、この発明の実施の形態 4による冷凍空調装置においては、第 1の密 閉容器 8の底部および第 2の密閉容器 4の底部を連結した第 1の均油管 21と、第 2の 密閉容器 4の側面の必要最低油面高さ Aより高い位置および主圧縮機構 7の吸入側 を連結した第 2の均油管 22を備え、第 1の密閉容器 8の内部は吸入圧力雰囲気であ り、第 2の密閉容器 4内の空間は副圧縮機構 3と隔離され、第 2の密閉容器 4内の圧 力は、副圧縮機構 3内の圧力に依存しない。このため、主圧縮機吸入管 17における ガス冷媒の流速 Vの大きさや、第 2の密閉容器 4内の油面位置と第 1の密閉容器 8内 の油面位置との高低差 Hの大きさに関係なぐそれぞれの密閉容器 4, 8内における 油面の高さを、自動的に調整することができる。したがって、主圧縮機 5および副圧 縮機 81の各摺動部の各摺動部の焼付や異常摩耗による信頼性低下を防ぐことがで きる。
[0086] この実施の形態 4においては、第 2の密閉容器 4の設置高さが第 1の密閉容器 8の 設置高さよりも高い場合を示したが、第 2の密閉容器 4の設置高さが第 1の密閉容器 8の設置高さより低い場合、または第 2の密閉容器 4の設置高さが第 1の密閉容器 8 の設置高さと同じ場合においても、上記と同様の効果が得られる。なお、第 2の密閉 容器 4の設置高さが第 1の密閉容器 8の設置高さより低い場合、または第 2の密閉容 器 4の設置高さが第 1の密閉容器 8の設置高さと同じ場合には、逆止弁 23は不要で ある。第 2の密閉容器 4の設置高さが第 1の密閉容器 8の設置高さより低い場合には 、実施の形態 2の場合と同様に、第 1の均油管 21に電磁弁 24を設け、冷凍空調装置 が停止しているときには、電磁弁 24を閉じるようにするとよい。第 1の均油管 21に電 磁弁 24を設けているので、冷凍空調装置が停止したときに、高低差 Hによって、第 1 の均油管 21を通って第 1の密閉容器 8から第 2の密閉容器 4に潤滑油 9が移動する のを防止できる。
さらに、この実施の形態 4においては、副圧縮機構 3が主圧縮機構 7に対して吐出 側に配置された場合について示したが、副圧縮機構 3が主圧縮機構 7の吸入側に配 置された場合でも、上記と同様の効果が得られる。また、この発明の実施の形態 4に おいては、主圧縮機構 7と副圧縮機構 3とを直列に連結した場合について示したが、 主圧縮機構 7と副圧縮機構 3とを並列に連結した場合についても、上記と同様の効 果が得られる。

Claims

請求の範囲
[1] 冷媒を圧縮する主圧縮機構と、
圧縮された冷媒を冷却する放熱器と、
前記放熱器力 流出した冷媒を膨張させ動力を回収する膨張機構と、
前記主圧縮機構の吐出側または吸入側に配置され前記膨張機構で回収した動力で 冷媒を圧縮する副圧縮機構と、
前記膨張機構で膨張された冷媒を蒸発させる蒸発器と、
前記主圧縮機構および潤滑油を収納し内部が吸入圧力雰囲気となる第 1の密閉容 器と、
前記膨張機構、前記副圧縮機構および潤滑油を収納する第 2の密閉容器と、 前記第 1の密閉容器の底部および前記第 2の密閉容器の底部を連結した第 1の均油 管と、前記第 2の密閉容器の側面の必要最低油面高さより高い位置および前記主圧 縮機構の吸入側を連結した第 2の均油管とを備え、
前記第 2の密閉容器内の空間は、前記膨張機構および前記副圧縮機構と隔離され 前記第 2の密閉容器内の圧力は、前記膨張機構内の圧力および前記副圧縮機構内 の圧力に依存しな!、ことを特徴とする冷凍空調装置。
[2] 冷媒を圧縮する主圧縮機構と、
前記主圧縮機構の吐出側または吸入側に配置され冷媒を圧縮する副圧縮機構と、 圧縮された冷媒を冷却する放熱器と、
前記放熱器力 流出した冷媒を膨張させる膨張弁と、
前記膨張弁で膨張された冷媒を蒸発させる蒸発器と、
前記主圧縮機構および潤滑油を収納し内部が吸入圧力雰囲気となる第 1の密閉容 器と、
前記副圧縮機構および潤滑油を収納する第 2の密閉容器と、
前記第 1の密閉容器の底部および前記第 2の密閉容器の底部を連結した第 1の均油 管と、前記第 2の密閉容器の側面の必要最低油面高さより高い位置および主圧縮機 構の吸入側を連結した第 2の均油管とを備え、 前記第 2の密閉容器内の空間は、前記副圧縮機構と隔離され、
前記第 2の密閉容器内の圧力は、前記副圧縮機構内の圧力に依存しな 、ことを特 徴とする冷凍空調装置。
[3] 第 2の密閉容器の設置高さは、第 1の密閉容器の設置高さよりも高ぐ
第 1の均油管に逆止弁を設けたことを特徴とする請求項 1または 2記載の冷凍空調装 置。
[4] 第 2の密閉容器の設置高さは、第 1の密閉容器の設置高さよりも低ぐ
第 1の均油管に電磁弁を設けたことを特徴とする請求項 1または 2記載の冷凍空調装 置。
[5] 膨張機構は、第 1の揺動スクロールおよび第 1の固定スクロールを有し、副圧縮機構 は、第 2の揺動スクロールおよび第 2の固定スクロールを有し、
前記第 1の揺動スクロールまたは前記第 1の固定スクロールの 、ずれか一方の内周 部および外周部ならびに前記第 2の揺動スクロールまたは前記第 2の固定スクロール のいずれか一方の内周部および外周部のそれぞれにシール部材を設けたことを特 徴とする請求項 1記載の冷凍空調装置。
PCT/JP2006/310326 2005-08-26 2006-05-24 冷凍空調装置 WO2007023599A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2007532021A JP4516127B2 (ja) 2005-08-26 2006-05-24 冷凍空調装置
EP06756532.5A EP1939547B1 (en) 2005-08-26 2006-05-24 Refrigerating air conditioner
ES06756532T ES2423902T3 (es) 2005-08-26 2006-05-24 Acondicionador de aire de refrigeración
US11/912,903 US8109116B2 (en) 2005-08-26 2006-05-24 Dual compressor air conditioning system with oil level regulation

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005245892 2005-08-26
JP2005-245892 2005-08-26

Publications (1)

Publication Number Publication Date
WO2007023599A1 true WO2007023599A1 (ja) 2007-03-01

Family

ID=37771352

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/310326 WO2007023599A1 (ja) 2005-08-26 2006-05-24 冷凍空調装置

Country Status (6)

Country Link
US (1) US8109116B2 (ja)
EP (1) EP1939547B1 (ja)
JP (1) JP4516127B2 (ja)
CN (1) CN100570238C (ja)
ES (1) ES2423902T3 (ja)
WO (1) WO2007023599A1 (ja)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007285675A (ja) * 2006-04-20 2007-11-01 Daikin Ind Ltd 冷凍装置
JP2009186054A (ja) * 2008-02-04 2009-08-20 Mitsubishi Electric Corp 冷凍サイクル装置
JP2009228927A (ja) * 2008-03-19 2009-10-08 Daikin Ind Ltd 冷凍装置
EP2154330A1 (en) * 2007-05-16 2010-02-17 Panasonic Corporation Refrigeration cycle device and fluid machine used therefor
EP2163838A1 (en) * 2007-05-25 2010-03-17 Mitsubishi Electric Corporation Refrigeration cycle device
US20100101268A1 (en) * 2007-03-08 2010-04-29 Katsumi Sakitani Refrigeration system
WO2010122812A1 (ja) * 2009-04-24 2010-10-28 パナソニック株式会社 冷凍サイクル装置
WO2011083510A1 (ja) * 2010-01-07 2011-07-14 三菱電機株式会社 冷凍サイクル装置及びそれに搭載される膨張機
US20120017636A1 (en) * 2009-05-29 2012-01-26 Panasonic Corporation Refrigeration cycle apparatus
EP2439466A1 (en) * 2009-06-02 2012-04-11 Mitsubishi Electric Corporation Refrigerating cycle device
WO2012104934A1 (ja) * 2011-02-04 2012-08-09 三菱電機株式会社 スクロール膨張機及びこのスクロール膨張機を備えた冷凍サイクル装置
JP2012167926A (ja) * 2012-06-12 2012-09-06 Daikin Industries Ltd 冷凍装置
JP2014145556A (ja) * 2013-01-30 2014-08-14 Mitsubishi Heavy Ind Ltd 2段圧縮装置およびそれを用いた冷凍・空調装置
WO2015104822A1 (ja) * 2014-01-09 2015-07-16 三菱電機株式会社 冷凍サイクル装置
WO2015104823A1 (ja) * 2014-01-09 2015-07-16 三菱電機株式会社 冷凍サイクル装置

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4816220B2 (ja) * 2006-04-20 2011-11-16 ダイキン工業株式会社 冷凍装置
DE102007029523A1 (de) * 2007-06-25 2009-01-02 Obrist Engineering Gmbh Kraft/Arbeitsmaschine und Expander-Wärmeübertrager-Einheit
CN101779039B (zh) * 2008-05-23 2013-01-16 松下电器产业株式会社 流体机械及制冷循环装置
EP2202384A4 (en) * 2008-05-23 2013-12-11 Panasonic Corp FLUID MACHINE AND REFRIGERATION CYCLE DEVICE
WO2010073586A1 (ja) * 2008-12-22 2010-07-01 パナソニック株式会社 冷凍サイクル装置
WO2011017450A2 (en) * 2009-08-04 2011-02-10 Sol Xorce, Llc. Heat pump with integral solar collector
FR2968731B1 (fr) * 2010-12-13 2015-02-27 Danfoss Commercial Compressors Systeme thermodynamique equipe d'une pluralite de compresseurs
US8863533B2 (en) 2011-06-08 2014-10-21 Lg Electronics Inc. Refrigerating cycle apparatus and method for operating the same
KR101940488B1 (ko) * 2012-05-10 2019-01-21 엘지전자 주식회사 냉동사이클 장치 및 이 냉동사이클 장치의 운전방법
CN105008824B (zh) * 2013-02-26 2017-10-24 艾默生环境优化技术有限公司 包括高压侧压缩机和低压侧压缩机的系统
WO2016201623A1 (zh) * 2015-06-16 2016-12-22 广东美芝制冷设备有限公司 制冷循环装置
CN104930738B (zh) * 2015-06-16 2018-06-22 广东美芝制冷设备有限公司 制冷循环装置
US10710745B2 (en) * 2016-09-08 2020-07-14 Voltaire Incorporated Engine driven air compressor system for a mobile aviation support cart
JP7469668B2 (ja) * 2020-09-30 2024-04-17 ダイキン工業株式会社 冷凍装置および圧縮装置
JP6970363B1 (ja) * 2020-09-30 2021-11-24 ダイキン工業株式会社 圧縮装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0478472U (ja) * 1990-11-14 1992-07-08
JPH04371759A (ja) * 1991-06-21 1992-12-24 Hitachi Ltd 二段圧縮二段膨張式の冷凍サイクル
JPH06109337A (ja) 1992-09-28 1994-04-19 Mitsubishi Heavy Ind Ltd 空気調和機の冷媒回路
JPH07103594A (ja) 1993-10-12 1995-04-18 Matsushita Refrig Co Ltd 多室型空気調和機
JPH07260263A (ja) * 1994-03-17 1995-10-13 Sanyo Electric Co Ltd 二段圧縮冷凍装置
JPH07301465A (ja) * 1994-05-02 1995-11-14 Mitsubishi Heavy Ind Ltd 二段圧縮式冷凍装置
JP2003279176A (ja) * 2002-03-25 2003-10-02 Sanyo Electric Co Ltd 空気調和装置
JP2004325019A (ja) 2003-04-28 2004-11-18 Hitachi Ltd 膨張機を備えた冷凍装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2663164A (en) * 1951-11-02 1953-12-22 Gen Electric Parallel compressor arrangement in refrigerating system
JPS6158465U (ja) * 1984-09-20 1986-04-19
US5236311A (en) * 1992-01-09 1993-08-17 Tecumseh Products Company Compressor device for controlling oil level in two-stage high dome compressor
WO1996000872A1 (fr) * 1994-06-29 1996-01-11 Daikin Industries, Ltd. Controleur de commande de repartition d'huile d'un appareil de conditionnement d'air
CN1188218A (zh) * 1996-10-28 1998-07-22 松下冷机株式会社 用于多个压缩机的油位均衡系统
JP3848098B2 (ja) * 2001-05-01 2006-11-22 株式会社日立製作所 空気調和機
US6948916B2 (en) * 2001-10-29 2005-09-27 Global Energy Group, Inc. Piping layout for multiple compressor system
US6658866B2 (en) * 2002-02-13 2003-12-09 Carrier Corporation Scroll expressor
JP2004251528A (ja) * 2003-02-20 2004-09-09 Mitsubishi Electric Corp 冷凍空調装置
CN2612905Y (zh) * 2003-03-21 2004-04-21 广东美的集团股份有限公司 一种多台压缩机并联的新型空调器
JP3946191B2 (ja) * 2003-12-24 2007-07-18 三星電子株式会社 冷凍装置及び冷凍装置の制御方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0478472U (ja) * 1990-11-14 1992-07-08
JPH04371759A (ja) * 1991-06-21 1992-12-24 Hitachi Ltd 二段圧縮二段膨張式の冷凍サイクル
JPH06109337A (ja) 1992-09-28 1994-04-19 Mitsubishi Heavy Ind Ltd 空気調和機の冷媒回路
JPH07103594A (ja) 1993-10-12 1995-04-18 Matsushita Refrig Co Ltd 多室型空気調和機
JPH07260263A (ja) * 1994-03-17 1995-10-13 Sanyo Electric Co Ltd 二段圧縮冷凍装置
JPH07301465A (ja) * 1994-05-02 1995-11-14 Mitsubishi Heavy Ind Ltd 二段圧縮式冷凍装置
JP2003279176A (ja) * 2002-03-25 2003-10-02 Sanyo Electric Co Ltd 空気調和装置
JP2004325019A (ja) 2003-04-28 2004-11-18 Hitachi Ltd 膨張機を備えた冷凍装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1939547A4 *

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007123085A1 (ja) * 2006-04-20 2007-11-01 Daikin Industries, Ltd. 冷凍装置
JP2007285675A (ja) * 2006-04-20 2007-11-01 Daikin Ind Ltd 冷凍装置
US7918096B2 (en) 2006-04-20 2011-04-05 Daikin Industries, Ltd. Refrigeration system
US20100101268A1 (en) * 2007-03-08 2010-04-29 Katsumi Sakitani Refrigeration system
EP2154330A4 (en) * 2007-05-16 2012-11-21 Panasonic Corp COLD PROCESSING DEVICE AND FLOW MACHINE USED THEREFOR
EP2154330A1 (en) * 2007-05-16 2010-02-17 Panasonic Corporation Refrigeration cycle device and fluid machine used therefor
US9086230B2 (en) 2007-05-25 2015-07-21 Mitsubishi Electric Corporation Refrigeration cycle device
EP2163838A1 (en) * 2007-05-25 2010-03-17 Mitsubishi Electric Corporation Refrigeration cycle device
EP2163838A4 (en) * 2007-05-25 2013-11-06 Mitsubishi Electric Corp COOLING CIRCUIT DEVICE
JP2009186054A (ja) * 2008-02-04 2009-08-20 Mitsubishi Electric Corp 冷凍サイクル装置
JP2009228927A (ja) * 2008-03-19 2009-10-08 Daikin Ind Ltd 冷凍装置
WO2010122812A1 (ja) * 2009-04-24 2010-10-28 パナソニック株式会社 冷凍サイクル装置
JPWO2010122812A1 (ja) * 2009-04-24 2012-10-25 パナソニック株式会社 冷凍サイクル装置
US20120017636A1 (en) * 2009-05-29 2012-01-26 Panasonic Corporation Refrigeration cycle apparatus
US8511112B2 (en) 2009-06-02 2013-08-20 Mitsubishi Electric Corporation Refrigeration cycle apparatus
EP2439466A4 (en) * 2009-06-02 2012-10-17 Mitsubishi Electric Corp CHILLING DEVICE
EP2439466A1 (en) * 2009-06-02 2012-04-11 Mitsubishi Electric Corporation Refrigerating cycle device
JPWO2011083510A1 (ja) * 2010-01-07 2013-05-13 三菱電機株式会社 冷凍サイクル装置及びそれに搭載される膨張機
WO2011083510A1 (ja) * 2010-01-07 2011-07-14 三菱電機株式会社 冷凍サイクル装置及びそれに搭載される膨張機
WO2012104934A1 (ja) * 2011-02-04 2012-08-09 三菱電機株式会社 スクロール膨張機及びこのスクロール膨張機を備えた冷凍サイクル装置
JP2012167926A (ja) * 2012-06-12 2012-09-06 Daikin Industries Ltd 冷凍装置
JP2014145556A (ja) * 2013-01-30 2014-08-14 Mitsubishi Heavy Ind Ltd 2段圧縮装置およびそれを用いた冷凍・空調装置
WO2015104822A1 (ja) * 2014-01-09 2015-07-16 三菱電機株式会社 冷凍サイクル装置
WO2015104823A1 (ja) * 2014-01-09 2015-07-16 三菱電機株式会社 冷凍サイクル装置
JPWO2015104823A1 (ja) * 2014-01-09 2017-03-23 三菱電機株式会社 冷凍サイクル装置
JPWO2015104822A1 (ja) * 2014-01-09 2017-03-23 三菱電機株式会社 冷凍サイクル装置

Also Published As

Publication number Publication date
US8109116B2 (en) 2012-02-07
EP1939547A4 (en) 2012-07-04
EP1939547B1 (en) 2013-05-01
EP1939547A1 (en) 2008-07-02
CN100570238C (zh) 2009-12-16
CN101180505A (zh) 2008-05-14
ES2423902T3 (es) 2013-09-25
JP4516127B2 (ja) 2010-08-04
JPWO2007023599A1 (ja) 2009-02-26
US20090064709A1 (en) 2009-03-12

Similar Documents

Publication Publication Date Title
JP4516127B2 (ja) 冷凍空調装置
US7438539B2 (en) Hermetic type scroll compressor and refrigerating and air-conditioning apparatus
US7914267B2 (en) Multistage compressor for a CO2 cycle that includes a rotary compressing mechanism and a scroll compressing mechanism
KR880002907Y1 (ko) 스크롤 압축기
JP4584306B2 (ja) スクロール膨張機
JP2008101559A (ja) スクロール圧縮機およびそれを用いた冷凍サイクル
WO2006067843A1 (ja) スクロール圧縮機
JP4607221B2 (ja) スクロール膨張機
US8690555B2 (en) Two-stage rotary expander, expander-compressor unit, and refrigeration cycle apparatus
KR100725893B1 (ko) 스크롤형 유체기계
JP4991255B2 (ja) 冷凍サイクル装置
JP4930314B2 (ja) 容積型膨張機、膨張機一体型圧縮機、および冷凍サイクル装置
JP4384368B2 (ja) 密閉型回転圧縮機及び冷凍・空調装置
WO2022149184A1 (ja) 二段スクロール圧縮機
JP7486149B2 (ja) スクロール圧縮機
JP4929051B2 (ja) 密閉形スクロール圧縮機及び冷凍空調装置
JP2685281B2 (ja) ロータリー圧縮機
JP2005201563A (ja) ヒートポンプシステム
JPH109180A (ja) 密閉スクロール圧縮機
JP2010043556A (ja) 膨張機ユニット及びそれを備えた冷凍サイクル装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680018047.4

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2007532021

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 11912903

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2006756532

Country of ref document: EP