WO2012104892A1 - 空気調和装置 - Google Patents

空気調和装置 Download PDF

Info

Publication number
WO2012104892A1
WO2012104892A1 PCT/JP2011/000515 JP2011000515W WO2012104892A1 WO 2012104892 A1 WO2012104892 A1 WO 2012104892A1 JP 2011000515 W JP2011000515 W JP 2011000515W WO 2012104892 A1 WO2012104892 A1 WO 2012104892A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
heat medium
heat exchanger
heat
compressor
Prior art date
Application number
PCT/JP2011/000515
Other languages
English (en)
French (fr)
Inventor
山下 浩司
裕之 森本
亮宗 石村
若本 慎一
直史 竹中
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to US13/884,986 priority Critical patent/US9599378B2/en
Priority to AU2011358039A priority patent/AU2011358039B2/en
Priority to CN201180059462.5A priority patent/CN103261814B/zh
Priority to JP2012555550A priority patent/JPWO2012104892A1/ja
Priority to PCT/JP2011/000515 priority patent/WO2012104892A1/ja
Priority to EP11857679.2A priority patent/EP2672202B1/en
Publication of WO2012104892A1 publication Critical patent/WO2012104892A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B29/00Combined heating and refrigeration systems, e.g. operating alternately or simultaneously
    • F25B29/003Combined heating and refrigeration systems, e.g. operating alternately or simultaneously of the compression type system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/10Compression machines, plants or systems with non-reversible cycle with multi-stage compression
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0231Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units with simultaneous cooling and heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/0272Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using bridge circuits of one-way valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/02732Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using two three-way valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/02741Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using one four-way valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/12Inflammable refrigerants
    • F25B2400/121Inflammable refrigerants using R1234
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B25/00Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00
    • F25B25/005Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00 using primary and secondary systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2115Temperatures of a compressor or the drive means therefor
    • F25B2700/21152Temperatures of a compressor or the drive means therefor at the discharge side of the compressor

Definitions

  • the present invention relates to an air conditioner applied to, for example, a building multi air conditioner.
  • an air conditioner that includes a circuit that performs liquid injection from the high-pressure liquid pipe of the refrigeration cycle to the compressor and that can control the discharge temperature to the set temperature regardless of the operating state.
  • a circuit that performs liquid injection from the high-pressure liquid pipe of the refrigeration cycle to the compressor and that can control the discharge temperature to the set temperature regardless of the operating state.
  • Patent Document 1 In an air conditioner such as a multi air conditioner for buildings described in Patent Document 1, there is no problem when R410A or the like is used as a refrigerant, but heating at a low outside air temperature when R32 or the like is used. During operation, etc., there is a possibility that the discharge temperature of the compressor becomes too high and the refrigerant and refrigerating machine oil deteriorate. Moreover, although patent document 1 has description about the cooling-heating simultaneous operation, it does not describe at all about the method of lowering
  • a throttle device such as an electronic expansion valve for decompressing a refrigerant is usually installed in a repeater or an indoor unit away from the outdoor unit.
  • the present invention was made to address the above-described problems, and is an air conditioner that can reliably control the discharge temperature so as not to become too high, and can effectively suppress the deterioration of refrigerant and refrigerating machine oil. Is intended to provide.
  • An air conditioner according to the present invention is a refrigerant in which a low-pressure shell structure compressor, a refrigerant flow switching device, a first heat exchanger, a first expansion device, and a second heat exchanger are connected by piping.
  • a circulation circuit is configured, and by the action of the refrigerant flow switching device, a high-pressure refrigerant is caused to flow through the first heat exchanger so as to operate as a condenser, and a low-pressure refrigerant is partially or entirely included in the second heat exchanger.
  • Cooling operation to operate as an evaporator, and low pressure refrigerant to flow to the first heat exchanger to operate as an evaporator and high pressure refrigerant to flow to a part or all of the second heat exchanger to condense An air conditioner that can be switched between a heating operation that operates as a heater, the downstream side of the first heat exchanger during the cooling operation, and the downstream side of the compressor during the heating operation, At the upstream side of the compressor during cooling operation, A branch pipe connected to the upstream side portion of the first heat exchanger during the cell operation, an injection pipe connecting the branch pipe, and a compression chamber in the middle of compression in the compressor; and the cooling A second expansion device provided at a position upstream of the compressor during operation and upstream of the first heat exchanger during heating operation; and the first heat exchanger during cooling operation; Provided in the branch pipe between the first expansion device and between the pipe connecting between the compressor and the second heat exchanger and the connection portion between the injection pipe and in the heating operation.
  • the third throttle device and the second throttle device during the heating operation are adjusted to adjust the amount of the refrigerant flowing through the injection pipe, and the third throttle device is controlled during the cooling operation to control the injection.
  • the refrigerant injection pipe using the injection pipe can be controlled so that the discharge temperature of the refrigerant discharged from the compressor does not become too high regardless of the operation mode. Therefore, deterioration of the refrigerant and the refrigeration oil can be prevented, and safe operation can be continued.
  • FIG. 6 is a ph diagram showing state transition of the heat source side refrigerant when the air-conditioning apparatus according to Embodiment 1 of the present invention is in the heating only operation mode.
  • FIG. 1 is a schematic diagram illustrating an installation example of an air-conditioning apparatus according to Embodiment 1 of the present invention. Based on FIG. 1, the installation example of an air conditioning apparatus is demonstrated.
  • This air conditioner uses a refrigeration cycle (refrigerant circulation circuit A, heat medium circulation circuit B) that circulates refrigerant (heat source side refrigerant, heat medium) so that each indoor unit can be in the cooling mode or the heating mode as an operation mode. It can be freely selected.
  • refrigerant circulation circuit A, heat medium circulation circuit B that circulates refrigerant (heat source side refrigerant, heat medium) so that each indoor unit can be in the cooling mode or the heating mode as an operation mode. It can be freely selected.
  • refrigerant circulation circuit A heat medium circulation circuit B
  • refrigerant heat source side refrigerant, heat medium
  • the relationship of the size of each component may be different from the actual one.
  • the air-conditioning apparatus is interposed between one outdoor unit 1 that is a heat source unit, a plurality of indoor units 2, and the outdoor unit 1 and the indoor unit 2. And a heat medium relay unit 3.
  • the heat medium relay unit 3 performs heat exchange between the heat source side refrigerant and the heat medium.
  • the outdoor unit 1 and the heat medium relay unit 3 are connected by a refrigerant pipe 4 that conducts the heat source side refrigerant.
  • the heat medium relay unit 3 and the indoor unit 2 are connected by a pipe (heat medium pipe) 5 that conducts the heat medium.
  • the cold or warm heat generated by the outdoor unit 1 is delivered to the indoor unit 2 via the heat medium converter 3.
  • the outdoor unit 1 is usually disposed in an outdoor space 6 that is a space (for example, a rooftop) outside a building 9 such as a building, and supplies cold or hot energy to the indoor unit 2 via the heat medium converter 3. It is.
  • the indoor unit 2 is arranged at a position where cooling air or heating air can be supplied to the indoor space 7 that is a space (for example, a living room) inside the building 9, and the cooling air is supplied to the indoor space 7 that is the air-conditioning target space. Alternatively, heating air is supplied.
  • the heat medium relay unit 3 is configured as a separate housing from the outdoor unit 1 and the indoor unit 2 and is configured to be installed at a position different from the outdoor space 6 and the indoor space 7. Is connected to the refrigerant pipe 4 and the pipe 5, respectively, and transmits cold heat or hot heat supplied from the outdoor unit 1 to the indoor unit 2.
  • the outdoor unit 1 and the heat medium converter 3 use two refrigerant pipes 4, and the heat medium converter 3 and each indoor unit. 2 are connected to each other using two pipes 5.
  • each unit (outdoor unit 1, indoor unit 2, and heat medium converter 3) is connected using two pipes (refrigerant pipe 4, pipe 5). By doing so, construction is easy.
  • the heat medium converter 3 is installed in a space such as the back of the ceiling (hereinafter simply referred to as a space 8) that is inside the building 9 but is different from the indoor space 7.
  • the state is shown as an example.
  • the heat medium relay 3 can also be installed in a common space where there is an elevator or the like.
  • the indoor unit 2 is a ceiling cassette type
  • mold is shown as an example, it is not limited to this, It is directly or directly in the indoor space 7, such as a ceiling embedded type and a ceiling suspended type. Any type of air can be used as long as heating air or cooling air can be blown out by a duct or the like.
  • FIG. 1 shows an example in which the outdoor unit 1 is installed in the outdoor space 6, but the present invention is not limited to this.
  • the outdoor unit 1 may be installed in an enclosed space such as a machine room with a ventilation opening. If the exhaust heat can be exhausted outside the building 9 by an exhaust duct, the outdoor unit 1 may be installed inside the building 9. It may be installed or may be installed inside the building 9 using the water-cooled outdoor unit 1. No matter what place the outdoor unit 1 is installed, no particular problem occurs.
  • the heat medium converter 3 can also be installed in the vicinity of the outdoor unit 1. However, it should be noted that if the distance from the heat medium relay unit 3 to the indoor unit 2 is too long, the power for transporting the heat medium becomes considerably large, and the energy saving effect is diminished. Furthermore, the number of connected outdoor units 1, indoor units 2, and heat medium converters 3 is not limited to the number illustrated in FIG. 1, but a building 9 in which the air-conditioning apparatus according to the first embodiment is installed. The number of units may be determined according to.
  • the plurality of heat medium converters 3 When connecting a plurality of heat medium converters 3 to one outdoor unit 1, the plurality of heat medium converters 3 are scattered in a common space or a space such as a ceiling in a building. Can be installed. By doing so, an air-conditioning load can be covered with the heat exchanger between heat media in each heat medium converter 3.
  • the indoor unit 2 can be installed at a distance or height within the allowable transfer range of the heat medium transfer device in each heat medium converter 3 and can be arranged on the entire building such as a building. It becomes.
  • FIG. 2 is a schematic circuit configuration diagram showing an example of a circuit configuration of the air-conditioning apparatus (hereinafter referred to as the air-conditioning apparatus 100) according to Embodiment 1. Based on FIG. 2, the detailed structure of the air conditioning apparatus 100 is demonstrated. As shown in FIG. 2, the outdoor unit 1 and the heat medium relay unit 3 are connected to the refrigerant pipe 4 via the heat exchanger related to heat medium 15 a and the heat exchanger related to heat medium 15 b provided in the heat medium converter 3. Connected with. Moreover, the heat medium relay unit 3 and the indoor unit 2 are also connected by the pipe 5 via the heat exchanger related to heat medium 15a and the heat exchanger related to heat medium 15b. The refrigerant pipe 4 and the pipe 5 will be described in detail later.
  • Outdoor unit 1 In the outdoor unit 1, a compressor 10, a first refrigerant flow switching device 11 such as a four-way valve, a heat source side heat exchanger 12, and an accumulator 19 are connected and connected in series through a refrigerant pipe 4. Yes.
  • the outdoor unit 1 is also provided with a first connection pipe 4a, a second connection pipe 4b, a check valve 13a, a check valve 13b, a check valve 13c, and a check valve 13d. Regardless of the operation that the indoor unit 2 requires, heat is provided by providing the first connection pipe 4a, the second connection pipe 4b, the check valve 13a, the check valve 13b, the check valve 13c, and the check valve 13d.
  • the flow of the heat source side refrigerant flowing into the medium converter 3 can be in a certain direction.
  • the compressor 10 sucks the heat source side refrigerant and compresses the heat source side refrigerant to a high temperature and high pressure state.
  • the compressor 10 may be composed of an inverter compressor capable of capacity control.
  • the first refrigerant flow switching device 11 has a flow of the heat source side refrigerant during heating operation (in the heating only operation mode and heating main operation mode) and a cooling operation (in the cooling only operation mode and cooling main operation mode). The flow of the heat source side refrigerant is switched.
  • the heat source side heat exchanger 12 functions as an evaporator during heating operation, functions as a condenser (or radiator) during cooling operation, and exchanges heat between air supplied from a blower (not shown) and the heat source side refrigerant.
  • the heat source side refrigerant is converted into evaporative gas or condensed liquid.
  • the accumulator 19 is provided on the suction side of the compressor 10 and stores excess refrigerant due to a difference between the heating operation and the cooling operation, or excess refrigerant with respect to a transient change in operation.
  • the check valve 13d is provided in the refrigerant pipe 4 between the heat medium converter 3 and the first refrigerant flow switching device 11, and only in a predetermined direction (direction from the heat medium converter 3 to the outdoor unit 1).
  • the flow of the heat source side refrigerant is allowed.
  • the check valve 13 a is provided in the refrigerant pipe 4 between the heat source side heat exchanger 12 and the heat medium converter 3, and only on a heat source side in a predetermined direction (direction from the outdoor unit 1 to the heat medium converter 3).
  • the refrigerant flow is allowed.
  • the check valve 13b is provided in the first connection pipe 4a, and causes the heat source side refrigerant discharged from the compressor 10 to flow to the heat medium converter 3 during the heating operation.
  • the check valve 13 c is provided in the second connection pipe 4 b and causes the heat source side refrigerant returned from the heat medium relay unit 3 to flow to the suction side of the compressor 10 during the heating operation.
  • the first connection pipe 4a is a refrigerant pipe 4 between the first refrigerant flow switching device 11 and the check valve 13d, and a refrigerant between the check valve 13a and the heat medium relay unit 3.
  • the pipe 4 is connected.
  • the second connection pipe 4b includes a refrigerant pipe 4 between the check valve 13d and the heat medium relay unit 3, and a refrigerant pipe 4 between the heat source side heat exchanger 12 and the check valve 13a. Are connected to each other.
  • an upper limit value of the temperature is set.
  • This upper limit temperature is usually 120 ° C. Since the highest temperature in the refrigeration cycle is the refrigerant temperature (discharge temperature) on the discharge side of the compressor 10, control may be performed so that the discharge temperature does not exceed 120 ° C. However, when a refrigerant such as R410A is used, the discharge temperature rarely reaches 120 ° C. in normal operation. However, when R32 is used as a refrigerant, the discharge temperature increases physically, so that the discharge temperature is discharged to the refrigeration cycle. It is necessary to provide a means for lowering the temperature.
  • the outdoor unit 1 includes the branching portion 27a, the branching portion 27b, the backflow prevention device 20, the expansion device 14a, the expansion device 14b, the intermediate pressure detection device 32, the discharge refrigerant temperature detection device 37, the high pressure detection device 39, the injection pipe 4c, The branch pipe 4d and the control device 50 are provided.
  • the compressor 10 has a compression chamber in a hermetic container, the inside of the hermetic container has a low-pressure refrigerant pressure atmosphere, and has a low-pressure shell structure that sucks and compresses the low-pressure refrigerant in the hermetic container in the compression chamber. I am using it.
  • the branch pipe 4d includes a branch portion 27a provided on the downstream side of the check valve 13a and the check valve 13b, and a branch portion 27b provided on the upstream side of the check valve 13d and the check valve 13c. Connected.
  • the branch pipe 4d is provided with the backflow prevention device 20 and the expansion device 14b in order from the branch portion 27b side.
  • the injection pipe 4c connects the branch pipe 4d between the backflow prevention device 20 and the expansion device 14b and an injection port (not shown) of the compressor 10.
  • the injection port communicates with an opening formed in a part of the compression chamber of the compressor 10.
  • the injection pipe 4 c enables the refrigerant to be introduced (injected) from the outside of the sealed container of the compressor 10 into the compression chamber.
  • the branching portion 27a diverts the refrigerant that has passed through the check valve 13a or the check valve 13b into the refrigerant pipe 4 and the branch pipe 4d.
  • the branching portion 27b splits the refrigerant returned from the heat medium relay unit 3 into the branch pipe 4d and the refrigerant flowing through the check valve 13b or the check valve 13c.
  • the backflow prevention device 20 is provided in the branch pipe 4d and allows the refrigerant to flow only in a predetermined direction (direction from the branch portion 27b to the branch portion 27a).
  • the expansion device 14a is provided upstream of the check valve 13c in the second connection pipe 4b, and decompresses and expands the refrigerant flowing through the second connection pipe 4b.
  • the expansion device 14b is provided on the downstream side of the backflow prevention device 20 in the branch pipe 4d, and decompresses and expands the refrigerant flowing in the branch pipe 4d.
  • the intermediate pressure detection device 32 is provided upstream of the check valve 13d and the expansion device 14a and downstream of the branching portion 27b, and detects the pressure of the refrigerant flowing through the refrigerant pipe 4 at the installation position.
  • the discharge refrigerant temperature detection device 37 is provided on the discharge side of the compressor 10 and detects the temperature of the refrigerant discharged from the compressor 10.
  • the high pressure detector 39 is provided on the discharge side of the compressor 10 and detects the pressure of the refrigerant discharged from the compressor 10.
  • the control device 50 introduces the refrigerant into the compression chamber from the injection pipe 4c so as to reduce the temperature of the refrigerant discharged from the compressor 10 or the degree of superheat (discharge superheat) of the refrigerant discharged from the compressor 10. Is. That is, the control device 50 controls the expansion device 14a, the expansion device 14b, etc., so that the discharge temperature of the compressor 10 can be lowered and the operation can be performed safely.
  • the control device 50 is constituted by a microcomputer or the like, and performs control based on detection information from various detection devices and instructions from the remote controller.
  • the control device 50 includes the above-described actuators (the diaphragm device 14a and the diaphragm device 14b).
  • the driving frequency of the compressor 10 the rotation speed of the blower (not shown) (including ON / OFF), the switching of the first refrigerant flow switching device 11 and the like are controlled, and each operation mode described later is executed. It has become.
  • the discharge temperature of the compressor 10 is about 70 ° C. due to the physical properties of R410A.
  • the discharge temperature of the compressor 10 is about 86 ° C. due to the physical properties of R32. That is, when R32 is used as the refrigerant, the discharge temperature is increased by about 16 ° C. compared to when R410A is used.
  • the compressor 10 performs polytropic compression, which is an operation that is less efficient than adiabatic compression, so that the discharge temperature is further higher than the above value.
  • polytropic compression which is an operation that is less efficient than adiabatic compression, so that the discharge temperature is further higher than the above value.
  • R410A is used as a refrigerant, it frequently occurs that the operation is performed with the discharge temperature exceeding 100 ° C.
  • R32 is used as a refrigerant under the condition that the discharge temperature is higher than 104 ° C. in R410A, the discharge temperature limit of 120 ° C. is exceeded, so the discharge temperature needs to be lowered.
  • the compressor uses a high-pressure shell structure in which the suction refrigerant is directly sucked into the compression chamber and the refrigerant discharged from the compression chamber is discharged into a sealed container around the compression chamber,
  • the discharge temperature can be lowered by moistening the saturated state and sucking the two-phase refrigerant into the compression chamber.
  • a compressor having a low-pressure shell structure is used as the compressor 10
  • the suction refrigerant is moistened, the liquid refrigerant accumulates in the shell of the compressor 10 and the two-phase refrigerant is sucked into the compression chamber. None happen.
  • the compressor 10 when the compressor 10 having a low-pressure shell structure is used and an R32 refrigerant or the like whose discharge temperature is high is used, in order to lower the discharge temperature, the compressor 10 can be moved from the outside of the compressor 10 to the compression chamber in the middle of compression.
  • a method of injecting a low-temperature refrigerant and reducing the temperature of the refrigerant is conceivable. Therefore, the discharge temperature may be lowered by the method described above.
  • control of the injection amount to the compression chamber of the compressor 10 may be performed such that the discharge temperature is controlled to a target value, for example, 100 ° C., and the control target value is changed according to the outside air temperature.
  • the injection amount to the compression chamber of the compressor 10 may be controlled such that the injection is performed when the discharge temperature is likely to exceed a target value, for example, 110 ° C., and the injection is not performed when the discharge temperature is lower than the target value.
  • the amount of injection into the compression chamber of the compressor 10 is controlled so that the discharge temperature is within a target range, for example, 80 ° C. to 100 ° C., and the injection temperature is likely to exceed the upper limit of the target range. The amount may be increased and the injection amount may be reduced when the discharge temperature is likely to fall below the lower limit of the target range.
  • the injection amount into the compression chamber of the compressor 10 is controlled by using the high pressure detected by the high pressure detection device 39 and the discharge temperature detected by the discharge refrigerant temperature detection device 37.
  • the degree of heating may be calculated, the injection amount may be controlled so that the discharge superheat becomes a target value, for example, 30 ° C., and the control target value may be changed according to the outside air temperature.
  • the control of the injection amount into the compression chamber of the compressor 10 may be such that the injection is performed when the discharge superheat is likely to exceed a target value, for example, 40 ° C., and when it is lower than that, the injection may not be performed. .
  • the injection amount into the compression chamber of the compressor 10 is controlled so that the discharge superheat is within a target range, for example, 10 ° C. to 40 ° C., and the discharge superheat is likely to exceed the upper limit of the target range.
  • the injection amount may be increased, and the injection amount may be decreased when the discharge superheat is likely to fall below the lower limit of the target range.
  • the present invention is not limited to this.
  • the configuration of the first embodiment can lower the discharge temperature and achieve the same effect. In particular, if the refrigerant is 3 ° C. or higher than R410A, the effect is greater.
  • Figure 3 is a mass ratio of R32 when mixed refrigerant using (R32 and global warming is small
  • the discharge temperature is set in the same manner as described above.
  • the change of the discharge temperature with respect to the mass ratio of R32 in the trial calculation will be described.
  • the discharge temperature is about 70 ° C., which is substantially the same as that of R410A.
  • the discharge temperature is about 73 ° C., which is 3 ° C. higher than the discharge temperature of R410A. I know it will be.
  • the mixed refrigerant of R32 and HFO1234ze when the mixed refrigerant having a mass ratio of R32 of 43% or more is used, if the discharge temperature is lowered by injection, the effect is great.
  • the type of refrigerant in the mixed refrigerant is not limited to this, and even a mixed refrigerant containing a small amount of other refrigerant components has no significant effect on the discharge temperature and has the same effect.
  • it can be used in a mixed refrigerant containing a small amount of R32, HFO1234yf, and other refrigerants.
  • the calculation here is based on the assumption of adiabatic compression, and since actual compression is performed by polytropic compression, it is several tens of degrees higher than the temperature described here, for example, 20 ° C. This is a higher value.
  • Each indoor unit 2 is equipped with a use side heat exchanger 26.
  • the use side heat exchanger 26 is connected to the heat medium flow control device 25 and the second heat medium flow switching device 23 of the heat medium converter 3 by the pipe 5.
  • This use side heat exchanger 26 performs heat exchange between air supplied from a blower (not shown) and a heat medium, and generates heating air or cooling air to be supplied to the indoor space 7. is there.
  • FIG. 2 shows an example in which four indoor units 2 are connected to the heat medium relay unit 3, and are illustrated as an indoor unit 2a, an indoor unit 2b, an indoor unit 2c, and an indoor unit 2d from the bottom of the page. Show.
  • the use side heat exchanger 26 also uses the use side heat exchanger 26a, the use side heat exchanger 26b, the use side heat exchanger 26c, and the use side heat exchange from the lower side of the drawing. It is shown as a container 26d.
  • the number of connected indoor units 2 is not limited to four as shown in FIG.
  • the heat medium relay 3 includes two heat medium heat exchangers 15, two expansion devices 16, two switch devices 17, two second refrigerant flow switching devices 18, and two pumps 21. Four first heat medium flow switching devices 22, four second heat medium flow switching devices 23, and four heat medium flow control devices 25 are mounted.
  • the two heat exchangers between heat mediums 15 function as a condenser (heat radiator) or an evaporator, and heat is generated by the heat source side refrigerant and the heat medium. Exchange is performed, and the cold or warm heat generated in the outdoor unit 1 and stored in the heat source side refrigerant is transmitted to the heat medium.
  • the heat exchanger related to heat medium 15a is provided between the expansion device 16a and the second refrigerant flow switching device 18a in the refrigerant circuit A and serves to cool the heat medium in the cooling / heating mixed operation mode. is there.
  • the heat exchanger related to heat medium 15b is provided between the expansion device 16b and the second refrigerant flow switching device 18b in the refrigerant circuit A, and serves to heat the heat medium in the cooling / heating mixed operation mode. Is.
  • the two expansion devices 16 have functions as pressure reducing valves and expansion valves, and expand the heat source side refrigerant by reducing the pressure.
  • the expansion device 16a is provided on the upstream side of the heat exchanger related to heat medium 15a in the flow of the heat source side refrigerant during the cooling operation.
  • the expansion device 16b is provided on the upstream side of the heat exchanger related to heat medium 15b in the flow of the heat source side refrigerant during the cooling operation.
  • the two throttling devices 16 may be constituted by devices whose opening degree (opening area) can be variably controlled, for example, an electronic expansion valve.
  • the two opening / closing devices 17 are constituted by two-way valves or the like, and open / close the refrigerant pipe 4.
  • the opening / closing device 17a is provided in the refrigerant pipe 4 on the inlet side of the heat source side refrigerant.
  • the switchgear 17b is provided in a pipe (bypass pipe 24) connecting the refrigerant pipe 4 on the inlet side and outlet side of the heat source side refrigerant.
  • the opening / closing device 17 may be any device that can open and close the refrigerant pipe 4, and for example, an electronic expansion valve or the like that can variably control the opening degree may be used.
  • the two second refrigerant flow switching devices 18 are configured by four-way valves or the like, and the heat exchanger related to heat medium 15 according to the operation mode. Switches the flow of the heat-source-side refrigerant so as to act as a condenser or an evaporator.
  • the second refrigerant flow switching device 18a is provided on the downstream side of the heat exchanger related to heat medium 15a in the flow of the heat source side refrigerant during the cooling operation.
  • the second refrigerant flow switching device 18b is provided on the downstream side of the heat exchanger related to heat medium 15b in the flow of the heat source side refrigerant during the cooling only operation.
  • the two pumps 21 (pump 21a and pump 21b) circulate the heat medium that conducts the pipe 5 to the heat medium circuit B.
  • the pump 21 a is provided in the pipe 5 between the heat exchanger related to heat medium 15 a and the second heat medium flow switching device 23.
  • the pump 21 b is provided in the pipe 5 between the heat exchanger related to heat medium 15 b and the second heat medium flow switching device 23.
  • the two pumps 21 may be configured by, for example, pumps capable of capacity control, and the flow rate thereof may be adjusted depending on the load in the indoor unit 2.
  • the four first heat medium flow switching devices 22 are configured by three-way valves or the like, and switch the heat medium flow channels. Is.
  • the first heat medium flow switching device 22 is provided in a number (here, four) according to the number of indoor units 2 installed. In the first heat medium flow switching device 22, one of the three sides is in the heat exchanger 15a, one of the three is in the heat exchanger 15b, and one of the three is in the heat medium flow rate.
  • Each is connected to the adjusting device 25 and provided on the outlet side of the heat medium flow path of the use side heat exchanger 26.
  • the first heat medium flow switching device 22a, the first heat medium flow switching device 22b, the first heat medium flow switching device 22c, and the first heat medium flow from the lower side of the drawing. This is illustrated as a switching device 22d.
  • the switching of the heat medium flow path includes not only complete switching from one to the other but also partial switching from one to the other.
  • the four second heat medium flow switching devices 23 are configured by three-way valves or the like, and switch the flow path of the heat medium. Is.
  • the number of the second heat medium flow switching devices 23 is set according to the number of installed indoor units 2 (here, four).
  • the heat exchanger is connected to the exchanger 26 and provided on the inlet side of the heat medium flow path of the use side heat exchanger 26.
  • the second heat medium flow switching device 23a, the second heat medium flow switching device 23b, the second heat medium flow switching device 23c, and the second heat medium flow from the lower side of the drawing. This is illustrated as a switching device 23d.
  • the switching of the heat medium flow path includes not only complete switching from one to the other but also partial switching from one to the other.
  • the four heat medium flow control devices 25 are configured by a two-way valve or the like that can control the opening area, and controls the flow rate flowing through the pipe 5. is there.
  • the number of the heat medium flow control devices 25 is set according to the number of indoor units 2 installed (four in this case).
  • One of the heat medium flow control devices 25 is connected to the use side heat exchanger 26 and the other is connected to the first heat medium flow switching device 22, and is connected to the outlet side of the heat medium flow channel of the use side heat exchanger 26. Is provided.
  • the heat medium flow control device 25 adjusts the amount of the heat medium flowing into the indoor unit 2 according to the temperature of the heat medium flowing into the indoor unit 2 and the temperature of the heat medium flowing out, so that the optimum heat according to the indoor load is adjusted.
  • the medium amount can be provided to the indoor unit 2.
  • the heat medium flow rate adjustment device 25a, the heat medium flow rate adjustment device 25b, the heat medium flow rate adjustment device 25c, and the heat medium flow rate adjustment device 25d are illustrated from the lower side of the drawing.
  • the heat medium flow control device 25 may be provided on the inlet side of the heat medium flow path of the use side heat exchanger 26.
  • the heat medium flow control device 25 may be provided on the inlet side of the heat medium flow path of the use side heat exchanger 26 and between the second heat medium flow switching device 23 and the use side heat exchanger 26. Good.
  • the indoor unit 2 does not require a load such as stop or thermo OFF, the heat medium supply to the indoor unit 2 can be stopped by fully closing the heat medium flow control device 25.
  • the heat medium relay 3 is provided with various detection devices (two first temperature sensors 31, four second temperature sensors 34, four third temperature sensors 35, and two pressure sensors 36). Yes. Information (temperature information, pressure information) detected by these detection devices is sent to a control device (for example, the control device 50) that performs overall control of the operation of the air conditioner 100, and the drive frequency of the compressor 10 (not shown). It is used for control of the rotational speed of the blower, switching of the first refrigerant flow switching device 11, driving frequency of the pump 21, switching of the second refrigerant flow switching device 18, switching of the flow path of the heat medium, and the like. .
  • the state in which the control device 50 is mounted in the outdoor unit 1 is shown as an example, the present invention is not limited to this, and communication with the heat medium relay unit 3 or the indoor unit 2 or each unit is possible. You may make it mount.
  • the two first temperature sensors 31 are the heat medium flowing out from the heat exchanger related to heat medium 15, that is, the temperature of the heat medium at the outlet of the heat exchanger related to heat medium 15.
  • a thermistor may be used.
  • the first temperature sensor 31a is provided in the pipe 5 on the inlet side of the pump 21a.
  • the first temperature sensor 31b is provided in the pipe 5 on the inlet side of the pump 21b.
  • the four second temperature sensors 34 are provided between the first heat medium flow switching device 22 and the heat medium flow control device 25, and use side heat exchangers.
  • the temperature of the heat medium that has flowed out of the heater 26 is detected, and it may be constituted by a thermistor or the like.
  • the number of the second temperature sensors 34 (four here) according to the number of indoor units 2 installed is provided. In correspondence with the indoor unit 2, the second temperature sensor 34a, the second temperature sensor 34b, the second temperature sensor 34c, and the second temperature sensor 34d are illustrated from the lower side of the drawing.
  • the four third temperature sensors 35 are provided on the inlet side or the outlet side of the heat source side refrigerant of the heat exchanger related to heat medium 15, and the heat exchanger related to heat medium 15
  • the temperature of the heat source side refrigerant flowing into the heat source or the temperature of the heat source side refrigerant flowing out of the heat exchanger related to heat medium 15 is detected, and may be composed of a thermistor or the like.
  • the third temperature sensor 35a is provided between the heat exchanger related to heat medium 15a and the second refrigerant flow switching device 18a.
  • the third temperature sensor 35b is provided between the heat exchanger related to heat medium 15a and the expansion device 16a.
  • the third temperature sensor 35c is provided between the heat exchanger related to heat medium 15b and the second refrigerant flow switching device 18b.
  • the third temperature sensor 35d is provided between the heat exchanger related to heat medium 15b and the expansion device 16b.
  • the pressure sensor 36b is provided between the heat exchanger related to heat medium 15b and the expansion device 16b, and between the heat exchanger related to heat medium 15b and the expansion device 16b.
  • the pressure sensor 36a detects the pressure of the flowing heat source side refrigerant, and the pressure sensor 36a is located between the heat exchanger related to heat medium 15a and the second refrigerant flow switching device 18a, similarly to the installation position of the third temperature sensor 35a. It is provided and detects the pressure of the heat source side refrigerant flowing between the heat exchanger related to heat medium 15a and the second refrigerant flow switching device 18a.
  • control device for example, the control device 50 provided in the outdoor unit 1
  • the control device is configured by a microcomputer or the like, and drives and throttles the pump 21 based on detection information from various detection devices and instructions from a remote controller. 16 opening degree, opening and closing of switching device 17, switching of second refrigerant flow switching device 18, switching of first heat medium flow switching device 22, switching of second heat medium flow switching device 23, and heat medium
  • the opening degree of the flow rate adjusting device 25 is controlled, and each operation mode to be described later is executed.
  • the control device may be provided only in either the outdoor unit 1 or the heat medium relay unit 3.
  • the pipe 5 that conducts the heat medium is composed of one that is connected to the heat exchanger related to heat medium 15a and one that is connected to the heat exchanger related to heat medium 15b.
  • the pipe 5 is branched (here, four branches each) according to the number of indoor units 2 connected to the heat medium relay unit 3.
  • the pipe 5 is connected by a first heat medium flow switching device 22 and a second heat medium flow switching device 23.
  • the first heat medium flow switching device 22 and the second heat medium flow switching device 23 By controlling the first heat medium flow switching device 22 and the second heat medium flow switching device 23, the heat medium from the heat exchanger related to heat medium 15a flows into the use-side heat exchanger 26, or the heat medium Whether the heat medium from the intermediate heat exchanger 15b flows into the use side heat exchanger 26 is determined.
  • the refrigerant in the compressor 10 the first refrigerant flow switching device 11, the heat source side heat exchanger 12, the switching device 17, the second refrigerant flow switching device 18, and the heat exchanger related to heat medium 15a.
  • the flow path, the expansion device 16 and the accumulator 19 are connected by the refrigerant pipe 4 to constitute the refrigerant circulation circuit A.
  • the switching device 23 is connected by a pipe 5 to constitute a heat medium circulation circuit B. That is, a plurality of usage-side heat exchangers 26 are connected in parallel to each of the heat exchangers between heat media 15, and the heat medium circulation circuit B has a plurality of systems.
  • the outdoor unit 1 and the heat medium relay unit 3 are connected via the heat exchanger related to heat medium 15a and the heat exchanger related to heat medium 15b provided in the heat medium converter 3.
  • the heat medium relay unit 3 and the indoor unit 2 are also connected via the heat exchanger related to heat medium 15a and the heat exchanger related to heat medium 15b. That is, in the air conditioner 100, the heat source side refrigerant circulating in the refrigerant circuit A and the heat medium circulating in the heat medium circuit B exchange heat in the intermediate heat exchanger 15a and the intermediate heat exchanger 15b. It is like that.
  • the air conditioner 100 can perform a cooling operation or a heating operation in the indoor unit 2 based on an instruction from each indoor unit 2. That is, the air conditioner 100 can perform the same operation for all of the indoor units 2 and can perform different operations for each of the indoor units 2.
  • the operation mode executed by the air conditioner 100 includes a cooling only operation mode in which all the driven indoor units 2 execute a cooling operation, and a heating only operation in which all the driven indoor units 2 execute a heating operation.
  • each operation mode is demonstrated with the flow of a heat-source side refrigerant
  • FIG. 4 is a refrigerant circuit diagram illustrating a refrigerant flow when the air-conditioning apparatus 100 is in the cooling only operation mode.
  • the cooling only operation mode will be described by taking as an example a case where a cooling load is generated only in the use side heat exchanger 26a and the use side heat exchanger 26b.
  • the pipes represented by the thick lines indicate the pipes through which the refrigerant (heat source side refrigerant and heat medium) flows.
  • the flow direction of the heat source side refrigerant is indicated by solid line arrows
  • the flow direction of the heat medium is indicated by broken line arrows.
  • the first refrigerant flow switching device 11 is switched so that the heat source side refrigerant discharged from the compressor 10 flows into the heat source side heat exchanger 12.
  • the pump 21a and the pump 21b are driven, the heat medium flow control device 25a and the heat medium flow control device 25b are opened, and the heat medium flow control device 25c and the heat medium flow control device 25d are fully closed.
  • the heat medium circulates between the heat exchanger related to heat medium 15a and the heat exchanger related to heat medium 15b and the use side heat exchanger 26a and the use side heat exchanger 26b.
  • the low-temperature and low-pressure refrigerant is compressed by the compressor 10 and discharged as a high-temperature and high-pressure gas refrigerant.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 10 flows into the heat source side heat exchanger 12 via the first refrigerant flow switching device 11. Then, the heat source side heat exchanger 12 condenses and liquefies while radiating heat to the outdoor air, and becomes a high-pressure liquid refrigerant.
  • the high-pressure liquid refrigerant that has flowed out of the heat source side heat exchanger 12 passes through the check valve 13a, partly flows out of the outdoor unit 1 through the branching portion 27a, passes through the refrigerant pipe 4, and passes through the heat medium converter 3. Flow into.
  • the high-pressure liquid refrigerant that has flowed into the heat medium relay unit 3 is branched after passing through the opening / closing device 17a and is expanded by the expansion device 16a and the expansion device 16b to become a low-temperature low-pressure two-phase refrigerant.
  • This two-phase refrigerant flows into each of the heat exchanger related to heat medium 15a and the heat exchanger related to heat medium 15b acting as an evaporator, and absorbs heat from the heat medium circulating in the heat medium circulation circuit B. It becomes a low-temperature and low-pressure gas refrigerant while cooling.
  • the gas refrigerant flowing out of the heat exchanger related to heat medium 15a and the heat exchanger related to heat medium 15b flows out of the heat medium converter 3 via the second refrigerant flow switching device 18a and the second refrigerant flow switching device 18b.
  • the refrigerant flows into the outdoor unit 1 again through the refrigerant pipe 4.
  • the refrigerant that has flowed into the outdoor unit 1 is again sucked into the compressor 10 via the branch portion 27b, the check valve 13d, the first refrigerant flow switching device 11 and the accumulator 19.
  • the expansion device 16a has an opening degree (superheat) so that the superheat (superheat degree) obtained as a difference between the temperature detected by the third temperature sensor 35a and the temperature detected by the third temperature sensor 35b becomes constant. Opening area) is controlled. Similarly, the opening degree of the expansion device 16b is controlled so that the superheat obtained as the difference between the temperature detected by the third temperature sensor 35c and the temperature detected by the third temperature sensor 35d is constant.
  • the opening / closing device 17a is open and the opening / closing device 17b is closed.
  • FIG. 5 is a ph diagram (pressure-enthalpy diagram) showing the state transition of the heat source side refrigerant in the cooling only operation mode.
  • the vertical axis represents pressure and the horizontal axis represents enthalpy.
  • the low-temperature and low-pressure gas refrigerant sucked from the suction port of the compressor 10 is introduced into the sealed container, and the low-temperature and low-pressure gas refrigerant filled in the sealed container is sucked into the compression chamber (not shown). Is done.
  • the compression chamber has a smaller internal volume while being rotated by 0 to 360 degrees by a motor (not shown). The internal refrigerant sucked into the compression chamber is compressed and the pressure and temperature rise as the internal volume of the compression chamber decreases. When the rotation angle of the motor reaches a certain angle, an opening (formed in a part of the compression chamber) opens (the state at this time is point F in FIG. 5), and the inside of the compression chamber and the compressor Ten external injection pipes 4c communicate with each other.
  • the refrigerant compressed by the compressor 10 is condensed and liquefied by the heat source side heat exchanger 12 to become a high-pressure liquid refrigerant (point J in FIG. 5), and through the check valve 13a, The branch part 27a is reached.
  • This high-pressure liquid refrigerant is branched at the branching portion 27a, and a part of the refrigerant is decompressed by the expansion device 14b to form a low-temperature / medium-pressure two-phase refrigerant, and flows into the injection pipe 4c through the branch pipe 4d.
  • the refrigerant that has flowed into the injection pipe 4 c flows into the compression chamber from an opening provided in the compression chamber of the compressor 10.
  • the amount of injection into the compression chamber of the compressor 10 is adjusted by changing the opening of the expansion device 14b and changing the pressure of the refrigerant on the upstream side of the expansion device 14b.
  • the discharge temperature or discharge superheat is controlled.
  • the refrigerant in the flow path from the expansion device 14b of the branch pipe 4d to the backflow prevention device 20 is medium pressure refrigerant, and returns from the heat medium converter 3 to the outdoor unit 1 via the refrigerant pipe 4 to branch.
  • the refrigerant reaching the portion 27b is a low-pressure refrigerant.
  • the backflow prevention device 20 prevents the refrigerant flowing from the branch pipe 4d to the branch portion 27b, and the action of the backflow prevention device 20 prevents the medium pressure refrigerant from the branch pipe 4d from mixing with the low pressure refrigerant of the branch portion 27b. is doing.
  • the backflow prevention device 20 may be a check valve, or may be one that can switch opening and closing of a solenoid valve or the like, or one that can change opening and closing of a flow path by changing the opening area of an electronic expansion valve or the like.
  • the expansion device 14a since the refrigerant
  • the discharge temperature when the discharge temperature exceeds a certain value, for example, 110 ° C., it may be controlled to open by a certain opening, for example, 10 pulses, or the discharge temperature is set to a target value, for example, 100 ° C. You may control an opening degree so that it may become.
  • the expansion device 14b may be a capillary tube, and an amount of refrigerant corresponding to the pressure difference may be injected.
  • the flow of the heat medium in the heat medium circuit B will be described.
  • the cold heat of the heat source side refrigerant is transmitted to the heat medium in both the heat exchanger related to heat medium 15a and the heat exchanger related to heat medium 15b, and the cooled heat medium is piped 5 by the pump 21a and the pump 21b.
  • the inside will be allowed to flow.
  • the heat medium pressurized and discharged by the pump 21a and the pump 21b passes through the second heat medium flow switching device 23a and the second heat medium flow switching device 23b, and the use side heat exchanger 26a and the use side heat exchange. Flows into the vessel 26b.
  • the heat medium absorbs heat from the indoor air in the use side heat exchanger 26a and the use side heat exchanger 26b, thereby cooling the indoor space 7.
  • the heat medium flows out of the use-side heat exchanger 26a and the use-side heat exchanger 26b and flows into the heat medium flow control device 25a and the heat medium flow control device 25b.
  • the heat medium flow control device 25a and the heat medium flow control device 25b control the flow rate of the heat medium to a flow rate necessary to cover the air conditioning load required in the room, so that the use-side heat exchanger 26a. And it flows into the use side heat exchanger 26b.
  • the heat medium flowing out from the heat medium flow control device 25a and the heat medium flow control device 25b passes through the first heat medium flow switching device 22a and the first heat medium flow switching device 22b, and the heat exchanger related to heat medium 15a. And flows into the heat exchanger related to heat medium 15b, and is sucked into the pump 21a and the pump 21b again.
  • the heat medium is directed from the second heat medium flow switching device 23 to the first heat medium flow switching device 22 via the heat medium flow control device 25.
  • the air conditioning load required in the indoor space 7 includes the temperature detected by the first temperature sensor 31a, the temperature detected by the first temperature sensor 31b, and the temperature detected by the second temperature sensor 34. It is possible to cover by controlling so that the difference between the two is kept at the target value.
  • the outlet temperature of the heat exchanger related to heat medium 15 either the temperature of the first temperature sensor 31a or the first temperature sensor 31b may be used, or the average temperature thereof may be used.
  • the first heat medium flow switching device 22 and the second heat medium flow switching device 23 ensure a flow path that flows to both the heat exchanger related to heat medium 15a and the heat exchanger related to heat medium 15b.
  • the intermediate opening is set.
  • FIG. 6 is a refrigerant circuit diagram illustrating a refrigerant flow when the air-conditioning apparatus 100 is in the heating only operation mode.
  • the heating only operation mode will be described by taking as an example a case where a thermal load is generated only in the use side heat exchanger 26a and the use side heat exchanger 26b.
  • tube represented by the thick line has shown the piping through which a refrigerant
  • the flow direction of the heat source side refrigerant is indicated by solid line arrows, and the flow direction of the heat medium is indicated by broken line arrows.
  • the first refrigerant flow switching device 11 uses the heat source side refrigerant discharged from the compressor 10 without passing through the heat source side heat exchanger 12. It switches so that it may flow into converter 3.
  • the pump 21a and the pump 21b are driven, the heat medium flow control device 25a and the heat medium flow control device 25b are opened, and the heat medium flow control device 25c and the heat medium flow control device 25d are fully closed.
  • the heat medium circulates between the heat exchanger related to heat medium 15a and the heat exchanger related to heat medium 15b and the use side heat exchanger 26a and the use side heat exchanger 26b.
  • the low-temperature and low-pressure refrigerant is compressed by the compressor 10 and discharged as a high-temperature and high-pressure gas refrigerant.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 10 passes through the first refrigerant flow switching device 11, conducts through the first connection pipe 4 a, passes through the check valve 13 b and the branch portion 27 a, and then from the outdoor unit 1. leak.
  • the high-temperature and high-pressure gas refrigerant that has flowed out of the outdoor unit 1 flows into the heat medium relay unit 3 through the refrigerant pipe 4.
  • the high-temperature and high-pressure gas refrigerant that has flowed into the heat medium relay unit 3 is branched and passes through the second refrigerant flow switching device 18a and the second refrigerant flow switching device 18b, so that the heat exchanger related to heat medium 15a and the heat medium are heated. It flows into each of the heat exchangers 15b.
  • the high-temperature and high-pressure gas refrigerant that has flowed into the heat exchanger related to heat medium 15a and the heat exchanger related to heat medium 15b is condensed and liquefied while dissipating heat to the heat medium circulating in the heat medium circuit B, and becomes a high-pressure liquid refrigerant.
  • the liquid refrigerant that has flowed out of the heat exchanger related to heat medium 15a and the heat exchanger related to heat medium 15b is expanded by the expansion device 16a and the expansion device 16b and becomes a two-phase refrigerant of medium temperature and intermediate pressure.
  • the two-phase refrigerant flows out of the heat medium relay unit 3 through the opening / closing device 17b, and flows into the outdoor unit 1 through the refrigerant pipe 4 again.
  • a part of the refrigerant flowing into the outdoor unit 1 flows into the second connection pipe 4b via the branching portion 27b, passes through the expansion device 14a, is throttled by the expansion device 14a, and becomes a low-temperature and low-pressure two-phase refrigerant. It passes through the stop valve 13c and flows into the heat source side heat exchanger 12 acting as an evaporator.
  • the refrigerant flowing into the heat source side heat exchanger 12 absorbs heat from the outdoor air by the heat source side heat exchanger 12, and becomes a low-temperature and low-pressure gas refrigerant.
  • the low-temperature and low-pressure gas refrigerant flowing out from the heat source side heat exchanger 12 is again sucked into the compressor 10 via the first refrigerant flow switching device 11 and the accumulator 19.
  • the expansion device 16a has a constant subcool (degree of subcooling) obtained as a difference between a value obtained by converting the pressure detected by the pressure sensor 36 into a saturation temperature and a temperature detected by the third temperature sensor 35b.
  • the opening degree is controlled.
  • the expansion device 16b has an opening degree so that a subcool obtained as a difference between a value obtained by converting the pressure detected by the pressure sensor 36 into a saturation temperature and a temperature detected by the third temperature sensor 35d is constant. Be controlled.
  • the opening / closing device 17a is closed and the opening / closing device 17b is open.
  • the temperature at the intermediate position may be used instead of the pressure sensor 36, and the system can be configured at low cost.
  • FIG. 7 is a ph diagram (pressure-enthalpy diagram) showing the state transition of the heat source side refrigerant in the heating only operation mode.
  • the vertical axis represents pressure
  • the horizontal axis represents enthalpy.
  • the low-temperature and low-pressure gas refrigerant sucked from the suction port of the compressor 10 is introduced into the sealed container, and the low-temperature and low-pressure gas refrigerant filled in the sealed container is sucked into the compression chamber (not shown). Is done. While the compression chamber is rotated 0 to 360 degrees by a motor (not shown), the internal volume decreases. The internal refrigerant sucked into the compression chamber is compressed and the pressure and temperature rise as the internal volume of the compression chamber decreases. When the rotation angle of the motor becomes a certain angle, an opening (formed at a part of the compression chamber) opens (the state at this time is point F in FIG. 7), and the inside of the compression chamber and the compressor Ten external injection pipes 4c communicate with each other.
  • the pressure of the refrigerant upstream of the expansion device 14a is controlled to an intermediate pressure state (point J in FIG. 7).
  • Part of the two-phase refrigerant that has been brought into the intermediate pressure state by the expansion device 14a is branched by the branching portion 27b and flows into the branching pipe 4d.
  • This refrigerant flows into the injection pipe 4 c via the backflow prevention device 20 and flows into the compression chamber from the opening provided in the compression chamber of the compressor 10.
  • the discharge temperature of the refrigerant discharged from the compressor 10 is lowered (point I in FIG. 7).
  • the discharge temperature of the compressor 10 when such injection is not performed is point G in FIG. 7, and it can be seen that the discharge temperature is lowered from point G to point I by the injection.
  • the branching portion 27b Since the refrigerant in the two-phase state flows into the branching portion 27b, the branching portion 27b has a structure in which the branching portion 27b is divided in a state where the refrigerant flows from the bottom to the top in the vertical direction. By doing so, the two-phase refrigerant is evenly distributed.
  • the opening degree of the expansion device 14a is changed, the amount of injection into the compression chamber of the compressor 10 is adjusted, and the discharge temperature or discharge superheat of the compressor 10 is controlled.
  • the expansion device 14b is fully closed or has a small opening at which the refrigerant does not flow, and the high-pressure refrigerant in the branch portion 27a is mixed with the medium-pressure refrigerant that has passed through the backflow prevention device 20. Is preventing.
  • the expansion device 14a can change the opening area of an electronic expansion valve or the like. If an electronic expansion valve is used, the intermediate pressure upstream of the expansion device 14a can be controlled to an arbitrary pressure. For example, if the intermediate pressure detected by the intermediate pressure detection device 32 is controlled to be a constant value, the discharge temperature control by the expansion device 14a is stabilized. However, the expansion device 14a is not limited to this, and may be any device that can control the discharge temperature as a target.
  • an intermediate pressure may be formed.
  • the intermediate pressure detection device 32 may be a pressure sensor, or may calculate the intermediate pressure by calculation using a temperature sensor.
  • the heat of the heat source side refrigerant is transmitted to the heat medium in both the heat exchanger 15a and the heat exchanger 15b, and the heated heat medium is piped 5 by the pump 21a and the pump 21b.
  • the inside will be allowed to flow.
  • the heat medium pressurized and discharged by the pump 21a and the pump 21b passes through the second heat medium flow switching device 23a and the second heat medium flow switching device 23b, and the use side heat exchanger 26a and the use side heat exchange. Flows into the vessel 26b.
  • the heat medium radiates heat to the indoor air in the use side heat exchanger 26a and the use side heat exchanger 26b, thereby heating the indoor space 7.
  • the heat medium flows out of the use-side heat exchanger 26a and the use-side heat exchanger 26b and flows into the heat medium flow control device 25a and the heat medium flow control device 25b.
  • the heat medium flow control device 25a and the heat medium flow control device 25b control the flow rate of the heat medium to a flow rate necessary to cover the air conditioning load required in the room, so that the use-side heat exchanger 26a. And it flows into the use side heat exchanger 26b.
  • the heat medium flowing out from the heat medium flow control device 25a and the heat medium flow control device 25b passes through the first heat medium flow switching device 22a and the first heat medium flow switching device 22b, and the heat exchanger related to heat medium 15a. And flows into the heat exchanger related to heat medium 15b, and is sucked into the pump 21a and the pump 21b again.
  • the heat medium is directed from the second heat medium flow switching device 23 to the first heat medium flow switching device 22 via the heat medium flow control device 25.
  • the air conditioning load required in the indoor space 7 includes the temperature detected by the first temperature sensor 31a, the temperature detected by the first temperature sensor 31b, and the temperature detected by the second temperature sensor 34. It is possible to cover by controlling so that the difference between the two is kept at the target value.
  • the outlet temperature of the heat exchanger related to heat medium 15 either the temperature of the first temperature sensor 31a or the first temperature sensor 31b may be used, or the average temperature thereof may be used.
  • the first heat medium flow switching device 22 and the second heat medium flow switching device 23 ensure a flow path that flows to both the heat exchanger related to heat medium 15a and the heat exchanger related to heat medium 15b.
  • the intermediate opening is set.
  • the usage-side heat exchanger 26a should be controlled by the temperature difference between the inlet and the outlet, but the temperature of the heat medium on the inlet side of the usage-side heat exchanger 26 is detected by the first temperature sensor 31b. By using the first temperature sensor 31b, the number of temperature sensors can be reduced and the system can be configured at low cost.
  • what is necessary is just to control the opening degree of the heat medium flow control apparatus 25 according to the presence or absence of the heat load in the utilization side heat exchanger 26 similarly to the cooling only operation mode.
  • FIG. 8 is a refrigerant circuit diagram illustrating a refrigerant flow when the air-conditioning apparatus 100 is in the cooling main operation mode.
  • the cooling main operation mode will be described by taking as an example a case where a cooling load is generated in the use side heat exchanger 26a and a heating load is generated in the use side heat exchanger 26b.
  • a pipe represented by a thick line shows a pipe through which the refrigerant (heat source side refrigerant and heat medium) circulates.
  • the flow direction of the heat source side refrigerant is indicated by solid line arrows, and the flow direction of the heat medium is indicated by broken line arrows.
  • the first refrigerant flow switching device 11 is switched so that the heat source side refrigerant discharged from the compressor 10 flows into the heat source side heat exchanger 12.
  • the pump 21a and the pump 21b are driven, the heat medium flow control device 25a and the heat medium flow control device 25b are opened, and the heat medium flow control device 25c and the heat medium flow control device 25d are fully closed.
  • the heat medium is circulated between the heat exchanger related to heat medium 15a and the use side heat exchanger 26a, and between the heat exchanger related to heat medium 15b and the use side heat exchanger 26b.
  • the low-temperature and low-pressure refrigerant is compressed by the compressor 10 and discharged as a high-temperature and high-pressure gas refrigerant.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 10 flows into the heat source side heat exchanger 12 via the first refrigerant flow switching device 11. Then, the heat source side heat exchanger 12 condenses while radiating heat to the outdoor air, and becomes a two-phase refrigerant.
  • the two-phase refrigerant that has flowed out of the heat source side heat exchanger 12 passes through the check valve 13a, partly flows out of the outdoor unit 1 through the branching portion 27a, passes through the refrigerant pipe 4 and passes through the heat medium converter 3. Flow into.
  • the two-phase refrigerant that has flowed into the heat medium relay unit 3 flows into the heat exchanger related to heat medium 15b that acts as a condenser through the second refrigerant flow switching device 18b.
  • the two-phase refrigerant that has flowed into the heat exchanger related to heat medium 15b is condensed and liquefied while dissipating heat to the heat medium circulating in the heat medium circuit B, and becomes liquid refrigerant.
  • the liquid refrigerant flowing out of the heat exchanger related to heat medium 15b is expanded by the expansion device 16b and becomes a low-pressure two-phase refrigerant. This low-pressure two-phase refrigerant flows into the heat exchanger related to heat medium 15a acting as an evaporator via the expansion device 16a.
  • the low-pressure two-phase refrigerant that has flowed into the heat exchanger related to heat medium 15a absorbs heat from the heat medium circulating in the heat medium circuit B, and becomes a low-pressure gas refrigerant while cooling the heat medium.
  • the gas refrigerant flows out of the heat exchanger related to heat medium 15a, flows out of the heat medium converter 3 via the second refrigerant flow switching device 18a, and flows into the outdoor unit 1 again through the refrigerant pipe 4.
  • the refrigerant that has flowed into the outdoor unit 1 is again sucked into the compressor 10 via the branch portion 27b, the check valve 13d, the first refrigerant flow switching device 11 and the accumulator 19.
  • the opening degree of the expansion device 16b is controlled so that the superheat obtained as the difference between the temperature detected by the third temperature sensor 35a and the temperature detected by the third temperature sensor 35b becomes constant.
  • the expansion device 16a is fully open, the opening / closing device 17a is closed, and the opening / closing device 17b is closed.
  • the expansion device 16b controls the opening degree so that a subcool obtained as a difference between a value obtained by converting the pressure detected by the pressure sensor 36 into a saturation temperature and a temperature detected by the third temperature sensor 35d is constant. May be.
  • the expansion device 16b may be fully opened, and the superheat or subcool may be controlled by the expansion device 16a.
  • FIG. 9 is a ph diagram (pressure-enthalpy diagram) showing the state transition of the heat source side refrigerant in the cooling main operation mode.
  • the vertical axis represents pressure
  • the horizontal axis represents enthalpy.
  • the low-temperature and low-pressure gas refrigerant sucked from the suction port of the compressor 10 is introduced into the sealed container, and the low-temperature and low-pressure gas refrigerant filled in the sealed container is sucked into the compression chamber (not shown). Is done. While the compression chamber is rotated 0 to 360 degrees by a motor (not shown), the internal volume decreases. The internal refrigerant sucked into the compression chamber is compressed and the pressure and temperature rise as the internal volume of the compression chamber decreases. When the rotation angle of the motor becomes a certain angle, an opening (formed in a part of the compression chamber) opens (the state at this time is point F in FIG. 9), and the inside of the compression chamber and the compressor Ten external injection pipes 4c communicate with each other.
  • the refrigerant compressed by the compressor 10 is condensed in the heat source side heat exchanger 12 to become a high-pressure two-phase refrigerant (point J in FIG. 9), and through the check valve 13a, The branch part 27a is reached.
  • This high-pressure two-phase refrigerant is branched by the branching portion 27a, and a part of the refrigerant is decompressed by the expansion device 14b to form a low-temperature / medium-pressure two-phase refrigerant, and flows into the injection pipe 4c through the branch pipe 4d.
  • the refrigerant that has flowed into the injection pipe 4 c flows into the compression chamber from an opening provided in the compression chamber of the compressor 10.
  • the discharge temperature of the refrigerant discharged from the compressor 10 is lowered (point I in FIG. 9).
  • the discharge temperature of the compressor 10 when such injection is not performed is point G in FIG. 9, and it can be seen that the discharge temperature is decreased from point G to point I by the injection.
  • the branching portion 27a since the two-phase state refrigerant flows into the branching portion 27a, the branching portion 27a has a structure in which the branching portion 27a is divided in a state where the refrigerant flows from the bottom to the top in the vertical direction. By doing so, the two-phase refrigerant is evenly distributed.
  • the opening of the expansion device 14b is changed, and the pressure of the refrigerant on the upstream side of the expansion device 14b is changed, whereby the injection into the compression chamber of the compressor 10 is performed.
  • the amount is adjusted and the discharge temperature or discharge superheat of the compressor 10 is controlled.
  • the action of the backflow prevention device 20 prevents the medium pressure refrigerant of the branch pipe 4d from mixing with the low pressure refrigerant of the branch portion 27b.
  • the expansion device 14a may be set to an arbitrary opening degree.
  • the heat of the heat source side refrigerant is transmitted to the heat medium in the heat exchanger related to heat medium 15b, and the heated heat medium is caused to flow in the pipe 5 by the pump 21b.
  • the cold heat of the heat source side refrigerant is transmitted to the heat medium by the heat exchanger related to heat medium 15a, and the cooled heat medium is caused to flow in the pipe 5 by the pump 21a.
  • the heat medium pressurized and discharged by the pump 21a and the pump 21b passes through the second heat medium flow switching device 23a and the second heat medium flow switching device 23b, and the use side heat exchanger 26a and the use side heat exchange. Flows into the vessel 26b.
  • the heat medium radiates heat to the indoor air, thereby heating the indoor space 7.
  • the indoor space 7 is cooled by the heat medium absorbing heat from the indoor air.
  • the heat medium flow control device 25a and the heat medium flow control device 25b control the flow rate of the heat medium to a flow rate necessary to cover the air conditioning load required in the room, so that the use-side heat exchanger 26a. And it flows into the use side heat exchanger 26b.
  • the heat medium whose temperature has slightly decreased after passing through the use side heat exchanger 26b flows into the heat exchanger related to heat medium 15b through the heat medium flow control device 25b and the first heat medium flow switching device 22b, and again.
  • the heat medium whose temperature has slightly increased after passing through the use side heat exchanger 26a flows into the heat exchanger related to heat medium 15a through the heat medium flow control device 25a and the first heat medium flow switching device 22a, and again. It is sucked into the pump 21a.
  • the warm heat medium and the cold heat medium are not mixed by the action of the first heat medium flow switching device 22 and the second heat medium flow switching device 23, and the use side has a heat load and a heat load, respectively. It is introduced into the heat exchanger 26.
  • the first heat medium flow switching device 22 from the second heat medium flow switching device 23 via the heat medium flow control device 25 on both the heating side and the cooling side.
  • the heat medium is flowing in the direction to
  • the air conditioning load required in the indoor space 7 is the difference between the temperature detected by the first temperature sensor 31b on the heating side and the temperature detected by the second temperature sensor 34 on the heating side, This can be covered by controlling the difference between the temperature detected by the two temperature sensor 34 and the temperature detected by the first temperature sensor 31a so as to keep the target value.
  • FIG. 10 is a refrigerant circuit diagram illustrating a refrigerant flow when the air-conditioning apparatus 100 is in the heating main operation mode.
  • the heating main operation mode will be described by taking as an example a case where a heat load is generated in the use side heat exchanger 26a and a heat load is generated in the use side heat exchanger 26b.
  • tube represented by the thick line has shown the piping through which a refrigerant
  • the flow direction of the heat source side refrigerant is indicated by a solid line arrow, and the flow direction of the heat medium is indicated by a broken line arrow.
  • the first refrigerant flow switching device 11 uses the heat source side refrigerant discharged from the compressor 10 without passing through the heat source side heat exchanger 12. It switches so that it may flow into converter 3.
  • the pump 21a and the pump 21b are driven, the heat medium flow control device 25a and the heat medium flow control device 25b are opened, and the heat medium flow control device 25c and the heat medium flow control device 25d are fully closed.
  • the heat medium circulates between the heat exchanger related to heat medium 15a and the use-side heat exchanger 26b, and between the heat exchanger related to heat medium 15b and the use-side heat exchanger 26a.
  • the low-temperature and low-pressure refrigerant is compressed by the compressor 10 and discharged as a high-temperature and high-pressure gas refrigerant.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 10 passes through the first refrigerant flow switching device 11, conducts through the first connection pipe 4a, passes through the check valve 13b, and passes through the branch portion 27a to the outdoor. Out of machine 1.
  • the high-temperature and high-pressure gas refrigerant that has flowed out of the outdoor unit 1 flows into the heat medium relay unit 3 through the refrigerant pipe 4.
  • the high-temperature and high-pressure gas refrigerant that has flowed into the heat medium relay unit 3 flows into the heat exchanger related to heat medium 15b that acts as a condenser through the second refrigerant flow switching device 18b.
  • the gas refrigerant flowing into the heat exchanger related to heat medium 15b is condensed and liquefied while dissipating heat to the heat medium circulating in the heat medium circuit B, and becomes liquid refrigerant.
  • the liquid refrigerant that has flowed out of the heat exchanger related to heat medium 15b is expanded by the expansion device 16b and becomes a medium-pressure two-phase refrigerant.
  • This medium pressure two-phase refrigerant flows into the heat exchanger related to heat medium 15a acting as an evaporator via the expansion device 16a.
  • the medium-pressure two-phase refrigerant that has flowed into the heat exchanger related to heat medium 15a evaporates by absorbing heat from the heat medium circulating in the heat medium circuit B, thereby cooling the heat medium.
  • the medium pressure two-phase refrigerant flows out of the heat exchanger related to heat medium 15a, flows out of the heat medium converter 3 via the second refrigerant flow switching device 18a, passes through the refrigerant pipe 4 and returns to the outdoor unit 1 again. Inflow.
  • the expansion device 16b has an opening degree so that a subcool obtained as a difference between a value obtained by converting the pressure detected by the pressure sensor 36 into a saturation temperature and a temperature detected by the third temperature sensor 35b is constant. Be controlled.
  • the expansion device 16a is fully open, the opening / closing device 17a is closed, and the opening / closing device 17b is closed. Note that the expansion device 16b may be fully opened, and the subcooling may be controlled by the expansion device 16a.
  • FIG. 11 is a ph diagram (pressure-enthalpy diagram) showing the state transition of the heat source side refrigerant in the heating main operation mode.
  • the 11 axis indicates pressure
  • the horizontal axis indicates enthalpy.
  • the low-temperature and low-pressure gas refrigerant sucked from the suction port of the compressor 10 is introduced into the sealed container, and the low-temperature and low-pressure gas refrigerant filled in the sealed container is sucked into the compression chamber (not shown). Is done. While the compression chamber is rotated 0 to 360 degrees by a motor (not shown), the internal volume decreases. The internal refrigerant sucked into the compression chamber is compressed and the pressure and temperature rise as the internal volume of the compression chamber decreases. When the rotation angle of the motor reaches a certain angle, an opening (formed in a part of the compression chamber) opens (the state at this time is point F in FIG. 11), and the inside of the compression chamber and the compressor 10 external injection pipes 4c are communicated with each other.
  • the pressure of the refrigerant on the upstream side of the expansion device 14a is controlled to an intermediate pressure state (point J in FIG. 11).
  • Part of the two-phase refrigerant that has been brought into the intermediate pressure state by the expansion device 14a is branched by the branching portion 27b and flows into the branching pipe 4d.
  • This refrigerant flows into the injection pipe 4 c via the backflow prevention device 20 and flows into the compression chamber from the opening provided in the compression chamber of the compressor 10.
  • the discharge temperature of the refrigerant discharged from the compressor 10 decreases (point I in FIG. 11).
  • the discharge temperature of the compressor 10 when such injection is not performed is point G in FIG. 11, and it can be seen that the discharge temperature is lowered from point G to point I by the injection.
  • the branching portion 27b has a structure in which the refrigerant is diverted in a state where the refrigerant flows from the bottom to the top in the vertical direction.
  • the opening degree of the expansion device 14a is changed, the injection amount into the compression chamber of the compressor 10 is adjusted, and the discharge temperature or discharge superheat of the compressor 10 is adjusted. Control.
  • the expansion device 14b is fully closed or has a small opening at which the refrigerant does not flow, and the high-pressure refrigerant in the branch portion 27a is mixed with the medium-pressure refrigerant that has passed through the backflow prevention device 20. Is preventing. Further, the expansion device 14a may be controlled as described in the heating only operation mode. Furthermore, the configuration of the intermediate pressure detection device 32 and the configuration and control of the expansion device 14b may be the same as in the heating only operation mode.
  • the heat of the heat source side refrigerant is transmitted to the heat medium in the heat exchanger related to heat medium 15b, and the heated heat medium is caused to flow in the pipe 5 by the pump 21b.
  • the cold heat of the heat source side refrigerant is transmitted to the heat medium by the heat exchanger related to heat medium 15a, and the cooled heat medium is caused to flow in the pipe 5 by the pump 21a.
  • the heat medium pressurized and discharged by the pump 21a and the pump 21b passes through the second heat medium flow switching device 23a and the second heat medium flow switching device 23b, and the use side heat exchanger 26a and the use side heat exchange. Flows into the vessel 26b.
  • the heat medium absorbs heat from the indoor air, thereby cooling the indoor space 7. Moreover, in the use side heat exchanger 26a, the heat medium radiates heat to the indoor air, thereby heating the indoor space 7.
  • the heat medium flow control device 25a and the heat medium flow control device 25b control the flow rate of the heat medium to a flow rate necessary to cover the air conditioning load required in the room, so that the use-side heat exchanger 26a. And it flows into the use side heat exchanger 26b.
  • the heat medium whose temperature has slightly increased after passing through the use side heat exchanger 26b flows into the heat exchanger related to heat medium 15a through the heat medium flow control device 25b and the first heat medium flow switching device 22b, and again.
  • the heat medium whose temperature has slightly decreased after passing through the use side heat exchanger 26a flows into the heat exchanger related to heat medium 15b through the heat medium flow control device 25a and the first heat medium flow switching device 22a, and again. It is sucked into the pump 21b.
  • the warm heat medium and the cold heat medium are not mixed by the action of the first heat medium flow switching device 22 and the second heat medium flow switching device 23, and the use side has a heat load and a heat load, respectively. It is introduced into the heat exchanger 26.
  • the first heat medium flow switching device 22 from the second heat medium flow switching device 23 via the heat medium flow control device 25 on both the heating side and the cooling side.
  • the heat medium is flowing in the direction to
  • the air conditioning load required in the indoor space 7 is the difference between the temperature detected by the first temperature sensor 31b on the heating side and the temperature detected by the second temperature sensor 34 on the heating side, This can be covered by controlling the difference between the temperature detected by the two temperature sensor 34 and the temperature detected by the first temperature sensor 31a so as to keep the target value.
  • aperture device 14a or / and aperture device 14b The injection into the compression chamber of the compressor 10 in each operation mode is performed as described above. Therefore, the refrigerant in the two-phase state flows into the expansion device 14a in the heating only operation mode and the heating main operation mode. Further, liquid refrigerant flows into the expansion device 14b when in the cooling only operation mode, and refrigerant in a two-phase state flows when in the cooling main operation mode.
  • an electronic expansion valve When an electronic expansion valve is used as the expansion device, when a two-phase refrigerant flows into the expansion device, if the gas refrigerant and the liquid refrigerant flow separately, the gas flows and the liquid flows through the expansion unit. The situation may occur separately, and the pressure on the outlet side of the expansion device may not be stable. In particular, when the dryness of the refrigerant is small, the refrigerant is separated and the tendency is strong. Therefore, it is preferable to use a diaphragm having the structure shown in FIG. 12 as the diaphragm 14a and / or the diaphragm 14b. If it does so, even if a two-phase refrigerant
  • FIG. 12 is a diagram schematically showing a preferred configuration example of the diaphragm device 14a and / or the diaphragm device 14b (hereinafter, collectively referred to as the diaphragm device 14).
  • the throttle device 14 includes an inflow pipe 41, an outflow pipe 42, a throttle portion 43, a valve body 44, a motor 45, and a stirring device 46.
  • the stirring device 46 is installed in the inflow pipe 41.
  • the two-phase refrigerant that has flowed in from the inflow pipe 41 reaches the agitator 46, and the gas refrigerant and the liquid refrigerant are agitated almost uniformly by the action of the agitator 46.
  • the two-phase refrigerant in which the gas refrigerant and the liquid refrigerant are almost uniformly mixed by the action of the stirrer 46 reaches the throttle part 43, is throttled by the valve body 44 in the throttle part 43, is decompressed, and flows out from the outflow pipe 42. .
  • the position of the valve body 44 is controlled by the motor 45, and the throttle amount at the throttle unit 43 is controlled.
  • the stirring device 46 may be any device as long as it can create a state in which the gas refrigerant and the liquid refrigerant are almost uniformly mixed.
  • the stirrer 46 can be realized by using a foam metal.
  • the foam metal is a metal porous body having the same three-dimensional network structure as a resin foam such as sponge, and has the highest porosity (porosity) among the metal porous bodies (80% to 97%). %).
  • the refrigerant flow inside the piping (inflow pipe 41 and outflow pipe 42) of the expansion device 14 starts from a point having a structure that disturbs the flow when the inner diameter of the piping is D and the length of the piping is L. It has become clear in the field of fluid mechanics that when / D reaches a distance of 8 to 10, the influence of turbulence is eliminated and the flow returns to the original flow.
  • the agitation device 46 is installed at a position where L / D is 6 or less, the agitation The phase refrigerant can reach the throttle unit 43 while being stirred, and stable control is possible.
  • the air-conditioning apparatus 100 has several operation modes. In these operation modes, the heat source side refrigerant flows through the pipe 4 connecting the outdoor unit 1 and the heat medium relay unit 3.
  • a heat medium such as water or antifreeze flows through the pipe 5 connecting the heat medium converter 3 and the indoor unit 2.
  • the pressure sensor 36a is installed in a flow path between the heat exchanger related to heat medium 15a acting as the cooling side in the cooling / heating mixed operation and the second refrigerant flow switching device 18a, and the pressure sensor 36b is operated in the cooling / heating mixed operation.
  • the case where it is installed in the flow path between the heat exchanger 15b between the heat medium acting as the heating side and the expansion device 16b has been described.
  • the saturation temperature can be calculated with high accuracy.
  • the pressure sensor 36b may be installed in the flow path between the heat exchanger related to heat medium 15b and the expansion device 16b, and the calculation accuracy does not deteriorate so much. Further, although the evaporator has a relatively large pressure loss, the pressure sensor 36a is connected to the heat medium heat exchanger when the amount of pressure loss can be estimated or the heat medium heat exchanger with a small pressure loss is used. You may install in the flow path between 15a and the 2nd refrigerant flow switching device 18a.
  • the corresponding first heat medium flow switching device 22 and second heat medium flow switching device 23 are connected.
  • the intermediate opening degree is set so that the heat medium flows through both the heat exchanger related to heat medium 15a and the heat exchanger related to heat medium 15b. Accordingly, both the heat exchanger related to heat medium 15a and the heat exchanger related to heat medium 15b can be used for the heating operation or the cooling operation, so that the heat transfer area is increased, and an efficient heating operation or cooling operation is performed. Can be done.
  • the first heat medium flow switching device corresponding to the use side heat exchanger 26 performing the heating operation. 22 and the second heat medium flow switching device 23 are switched to flow paths connected to the heat exchanger related to heat medium 15b for heating, and the first heat medium corresponding to the use side heat exchanger 26 performing the cooling operation.
  • the flow path switching device 22 and the second heat medium flow path switching device 23 By switching the flow path switching device 22 and the second heat medium flow path switching device 23 to a flow path connected to the heat exchanger related to heat medium 15a for cooling, in each indoor unit 2, heating operation and cooling operation are performed. It can be done freely.
  • the first heat medium flow switching device 22 and the second heat medium flow switching device 23 described in the first embodiment can switch a three-way flow such as a three-way valve, or a two-way flow such as an on-off valve. What is necessary is just to switch a flow path, such as combining two things which perform opening and closing of.
  • the first heat medium can be obtained by combining two things, such as a stepping motor driven mixing valve, which can change the flow rate of the three-way flow path, and two things such as an electronic expansion valve, which can change the flow quantity of the two-way flow path.
  • the flow path switching device 22 and the second heat medium flow path switching device 23 may be used. In this case, it is possible to prevent water hammer due to sudden opening and closing of the flow path.
  • the heat medium flow control device 25 is a two-way valve has been described as an example, but with a bypass pipe that bypasses the use-side heat exchanger 26 as a control valve having a three-way flow path. You may make it install.
  • the heat medium flow control device 25 may be a stepping motor driven type that can control the flow rate flowing through the flow path, and may be a two-way valve or a one-way valve with one end closed. Further, as the heat medium flow control device 25, a device that opens and closes a two-way flow path such as an open / close valve may be used, and the average flow rate may be controlled by repeating ON / OFF.
  • coolant flow path switching device 18 was shown as if it were a four-way valve, it is not restricted to this, A two-way flow-path switching valve and a three-way flow-path switching valve are used similarly. You may comprise so that a refrigerant
  • the heat medium for example, brine (antifreeze), water, a mixture of brine and water, a mixture of water and an additive having a high anticorrosive effect, or the like can be used. Therefore, in the air conditioning apparatus 100, even if the heat medium leaks into the indoor space 7 through the indoor unit 2, it contributes to the improvement of safety because a highly safe heat medium is used. Become.
  • the air conditioner 100 includes the accumulator 19
  • the accumulator 19 may not be provided.
  • a heat blower is attached to the heat source side heat exchanger 12 and the use side heat exchangers 26a to 26d, and in many cases, condensation or evaporation is promoted by air blowing, but it is not limited to this.
  • the use side heat exchangers 26a to 26d those such as panel heaters using radiation can be used.
  • the heat source side heat exchanger 12 a water-cooled type in which heat is transferred by water or antifreeze liquid. Any material can be used as long as it can dissipate or absorb heat.
  • Embodiment 1 the case where there are four use-side heat exchangers 26a to 26d has been described as an example, but any number may be connected.
  • the case where there are two heat exchangers between heat exchangers 15a and 15b is described as an example, but the present invention is not limited to this, and the heat medium can be cooled or / and heated. Any number of installations may be provided.
  • the number of pumps 21a and 21b is not limited to one, and a plurality of small-capacity pumps may be connected in parallel.
  • the air-conditioning apparatus 100 uses the compressor regardless of the operation mode even when a refrigerant such as R32 that causes the discharge temperature of the compressor 10 to be high is used.
  • the refrigerant is injected into the compression chamber 10 in the middle of compression, and the discharge temperature can be controlled so as not to become too high. Therefore, according to the air conditioning apparatus 100, by efficiently controlling the discharge temperature of the compressor 10, it is possible to prevent deterioration of the refrigerant and the refrigeration equipment and continue safe operation.
  • FIG. 13 is a refrigerant circuit diagram illustrating a refrigerant flow in the defrosting operation mode of the air-conditioning apparatus according to Embodiment 1 of the present invention.
  • the refrigerant is compressed by the compressor 10, heated, discharged from the compressor 10, and flows into the heat source side heat exchanger 12 through the first refrigerant flow switching device 11. Then, heat is radiated by the heat source side heat exchanger 12 to melt the frost adhering to the surroundings.
  • the refrigerant that has flowed out of the heat source side heat exchanger 12 passes through the check valve 13a, reaches the branching portion 27a, and is divided by the branching portion 27a.
  • One refrigerant branched in the branch part 27 a flows out of the outdoor unit 1 and flows into the heat medium relay unit 3 through the refrigerant pipe 4.
  • the refrigerant flowing into the heat medium relay unit 3 flows out of the heat medium relay unit 3 through the open / close device 17a and the open switch device 17b, and again passes through the refrigerant pipe 4. It flows into the outdoor unit 1.
  • the refrigerant that has flowed into the outdoor unit 1 is again sucked into the compressor 10 via the branch portion 27b, the check valve 13d, the first refrigerant flow switching device 11 and the accumulator 19.
  • the expansion device 16a and the expansion device 16b are fully closed or have a small opening at which the refrigerant does not flow, so that the refrigerant does not flow into the heat exchanger related to heat medium 15a and the heat exchanger related to heat medium 15b. I have to.
  • the other refrigerant divided by the branch portion 27a flows into the branch pipe 4d, is injected into the compression chamber of the compressor 10 through the fully-open throttle device 14b and the injection pipe 4c, and passes through the accumulator 19. Then, it merges with the refrigerant sucked into the compressor 10 (one flow divided by the branching portion 27a).
  • the pump 21b is operated and the heat medium is circulated to the use side heat exchanger 26 (the use side heat exchanger 26a and the use side heat exchanger 26b) having a heating request.
  • the heating operation can be continued by the warm heat stored in the heat medium.
  • the pump 21a may be operated, or during the defrosting operation, the pump 21a and the pump 21b may be stopped to stop the heating operation.
  • the refrigerant is branched at the branching portion 27a, and a part of the refrigerant is transferred to the compression chamber of the compressor 10. Inject.
  • coolant flow rate circulated to the heat medium converter 3 away from the outdoor unit 1 can be reduced by the injection flow rate, the power of the compressor 10 can be reduced.
  • FIG. 14 is a diagram illustrating a configuration of an air-conditioning apparatus 100A according to Embodiment 2.
  • the outdoor unit 1 includes the expansion device 14a, the expansion device 14b, and the expansion device 14c. That is, in the first embodiment, the case where the backflow prevention device 20 is provided has been described as an example. However, in the second embodiment, the throttling device 14a is moved to the position of the backflow prevention device 20 in the first embodiment, and the implementation is performed. In the first embodiment, the aperture device 14c is provided at the position of the aperture device 14a.
  • the expansion device 14a and the expansion device 14b those which can continuously change the opening degree (opening area) of an electronic expansion valve or the like are used, and the expansion device 14c is a fixed throttle such as a capillary tube or an opening when opened.
  • a fixed opening area of the throttle part such as an open / close valve such as a solenoid valve with a small area.
  • the basic operation modes are a cooling only operation mode, a heating only operation mode, a cooling main operation mode, and a heating main operation mode, which are almost the same as the operations shown in the first embodiment, and the detailed description of the operations is here. Omitted.
  • the high pressure liquid refrigerant is diverted from the branch portion 27a, the opening degree of the expansion device 14b is controlled, and the refrigerant injected into the compression chamber of the compressor 10 through the branch pipe 4d and the injection pipe 4c. Is adjusted to control the discharge temperature of the compressor 10.
  • the expansion device 14a is fully closed or has a small opening at which the refrigerant does not flow.
  • the opening degree of the expansion device 14a is controlled, the flow rate of the refrigerant injected into the compression chamber of the compressor 10 through the branch pipe 4d and the injection pipe 4c is adjusted, and as a result, to the expansion device 14c. Since the flow rate of the flowing refrigerant also changes, the pressure of the refrigerant on the upstream side of the expansion device 14c also changes, and controls both the intermediate pressure and the discharge temperature. At this time, the expansion device 14b is fully closed or has a small opening at which the refrigerant does not flow.
  • the high-pressure two-phase refrigerant is divided from the branching portion 27a, the opening degree of the expansion device 14b is controlled, and injected into the compression chamber of the compressor 10 through the branching pipe 4d and the injection pipe 4c.
  • the flow rate of the refrigerant is adjusted, and the discharge temperature of the compressor 10 is controlled.
  • the expansion device 14a is fully closed or has a small opening at which the refrigerant does not flow.
  • the opening degree of the expansion device 14a is controlled, the flow rate of the refrigerant injected into the compression chamber of the compressor 10 through the branch pipe 4d and the injection pipe 4c is adjusted, and as a result, to the expansion device 14c. Since the flow rate of the flowing refrigerant also changes, the pressure of the refrigerant on the upstream side of the expansion device 14c also changes, and controls both the intermediate pressure and the discharge temperature. At this time, the expansion device 14b is fully closed or has a small opening at which the refrigerant does not flow.
  • the expansion device 14b is controlled, and the high-pressure refrigerant is divided to perform injection.
  • the expansion device 14a is controlled, the medium pressure refrigerant is divided, the injection is performed, and the discharge temperature is controlled. Take control. In this way, different expansion devices are controlled and the injection amount is controlled depending on whether the heat source side heat exchanger 12 acts as a condenser or the heat source side heat exchanger 12 acts as an evaporator.
  • the aperture device 14c having a fixed aperture area of the aperture portion such as a capillary tube has been described.
  • Such a configuration allows a low-cost system to be configured.
  • the same opening area can be used even when the expansion device 14c is a device that can continuously change the opening (opening area) of an electronic expansion valve or the like. There is no problem because it can be realized.
  • the expansion device 14a and the expansion device 14b it is also possible to use a device that can switch the opening area in stages, such as switching a plurality of capillary tubes.
  • Embodiment 3 FIG.
  • the compressor 10 the first refrigerant flow switching device 11, the heat source side heat exchanger 12, the expansion device 14a, the expansion device 14b, the switching device 17 and the backflow prevention device 20 (implementation)
  • the expansion device 14c is accommodated in the outdoor unit 1.
  • the use side heat exchanger 26 was accommodated in the indoor unit 2, and the heat exchanger related to heat medium 15 and the expansion device 16 were accommodated in the heat medium converter 3.
  • the outdoor unit 1 and the heat medium converter 3 are connected by a set of two pipes, the heat source side refrigerant is circulated between the outdoor unit 1 and the heat medium converter 3, and the indoor unit 2 and the heat medium
  • the medium converter 3 is connected to each other by a pair of pipes, the heat medium is circulated between the indoor unit 2 and the heat medium converter 3, and the heat source side refrigerant and
  • FIG. 15 is a schematic configuration diagram illustrating an example of a circuit configuration of the air-conditioning apparatus 100 according to Embodiment 3 of the present invention.
  • the compressor 10, the first refrigerant flow switching device 11, the heat source side heat exchanger 12, the expansion device 14a, the expansion device 14b, and the backflow prevention device 20 (or the expansion device 14c) are accommodated in the outdoor unit 1.
  • the load-side heat exchanger 26 and the expansion device 16 that serve as an evaporator or a condenser to exchange heat between the air in the air-conditioning target space and the refrigerant are accommodated in the indoor unit 2, and are separated from the outdoor unit 1 and the indoor unit 2.
  • a relay unit 3A serving as a formed relay unit is provided, the outdoor unit 1 and the relay unit 3A are connected by a set of two pipes, and the indoor unit 2 and the relay unit 3A are each set of two sets.
  • Direct expansion which can be connected by a pipe and circulates refrigerant between the outdoor unit 1 and the indoor unit 2 via the relay unit 3A to perform a cooling only operation, a heating only operation, a cooling main operation, and a heating main operation. It can also be applied to the system and has the same effect.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
  • Other Air-Conditioning Systems (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

 ヒートポンプ給湯装置100は、暖房運転時には第2絞り装置(絞り装置14a)を制御してインジェクション配管4cに流れる冷媒の量を調整し、冷房運転時には第3絞り装置(絞り装置14b)を制御してインジェクション配管4cに流れる冷媒の量を調整する。

Description

空気調和装置
 本発明は、たとえばビル用マルチエアコン等に適用される空気調和装置に関するものである。
 ビル用マルチエアコン等の空気調和装置において、室外機から中継器まで冷媒を循環させ、中継器から室内機まで水等の熱媒体を循環させることにより、室内機に水等の熱媒体を循環させながら、熱媒体の搬送動力を低減させ、冷房暖房混在運転を実現する空気調和装置が存在している(たとえば、特許文献1参照)。
 圧縮機の吐出温度を低下させるために、冷凍サイクルの高圧液管から圧縮機に液インジェクションをする回路を備え、運転状態によらず吐出温度を設定温度に制御できる空気調和装置も存在している(たとえば、特許文献2参照)。
 冷媒としてR32を用い、冷凍サイクルの高圧液管にある気液分離器の出口側から密閉容器内が吐出圧雰囲気の圧縮機(高圧シェル圧縮機)内にインジェクションをする空気調和装置も存在している(たとえば、特許文献3参照)。
WO10/049998号公報(第3頁、図1等) 特開2005-282972号公報(第4頁、図1等) 特開2009-127902号公報(第4頁、図1等)
 特許文献1に記載されているビル用マルチエアコンのような空気調和装置においては、冷媒として、R410A等を使用している場合には問題ないが、R32等を使用する場合における低外気温度の暖房運転時等には、圧縮機の吐出温度が高くなり過ぎ、冷媒や冷凍機油が劣化してしまうという可能性があった。また、特許文献1には冷房暖房同時運転についての記載はあるが、吐出温度を下げる方法については何ら記述されていない。なお、ビル用マルチエアコンにおいては、通常、冷媒を減圧する電子式膨張弁等の絞り装置が、室外機から離れた中継機または室内機に設置されている。
 特許文献2に記載されている空気調和装置においては、高圧液管からのインジェクション方法しか記載されておらず、冷凍サイクルの循環路を逆転させた場合(冷房、暖房の切り替え)等の対応ができないという課題があった。加えて、特許文献2に記載されている空気調和装置は、冷房暖房混在運転にも対応していない。
 特許文献3に記載の空気調和装置においては、複数の逆止弁を用いて冷房運転時も暖房運転時も高圧液管からインジェクション方法が開示されているが、電子式膨張弁等の絞り装置が室内機に設置されておらず、室外機に設置されている場合にしか適用できないという課題があった。なお、特許文献3に記載されている空気調和装置には、高圧シェル構造の圧縮機を使用していた。また、特許文献3に記載されている空気調和装置は、冷房暖房混在運転にも対応していない。
 本発明は、上記のよう課題に対応するためになされたもので、吐出温度が高くなり過ぎないように確実に制御し、冷媒及び冷凍機油の劣化を効果的に抑制することができる空気調和装置を提供することを目的とするものである。
 本発明に係る空気調和装置は、低圧シェル構造の圧縮機と、冷媒流路切替装置と、第1熱交換器と、第1絞り装置と、第2熱交換器と、を配管接続して冷媒循環回路を構成し、前記冷媒流路切替装置の作用により、前記第1熱交換器に高圧の冷媒を流して凝縮器として動作させかつ前記第2熱交換器の一部または全部に低圧の冷媒を流して蒸発器として動作させる冷房運転と、前記第1熱交換器に低圧の冷媒を流して蒸発器として動作させかつ前記第2熱交換器の一部または全部に高圧の冷媒を流して凝縮器として動作させる暖房運転と、が切り替え可能な空気調和装置であって、前記冷房運転時に前記第1熱交換器の下流側となり、前記暖房運転時に前記圧縮機の下流側となる部分と、前記冷房運転時に前記圧縮機の上流側となり、前記暖房運転時に前記第1熱交換器の上流側となる部分と、を接続した分岐配管と、前記分岐配管と、前記圧縮機における圧縮途中過程の圧縮室と、を接続するインジェクション配管と、前記冷房運転時では前記圧縮機の上流側となり、前記暖房運転時では前記第1熱交換器の上流側となる位置に設けられた第2絞り装置と、前記冷房運転時では前記第1熱交換器と前記第1絞り装置との間となり、前記第暖房運転時では前記圧縮機と前記第2熱交換器との間となる配管と前記インジェクション配管との接続部分との間における前記分岐配管に設けられた第3絞り装置と、前記暖房運転時には前記第2絞り装置を制御して前記インジェクション配管に流れる前記冷媒の量を調整し、前記冷房運転時には前記第3絞り装置を制御して前記インジェクション配管に流れる前記冷媒の量を調整する制御装置と、を備えたものである。
 本発明に係る空気調和装置によれば、インジェクション配管を利用した冷媒のインジェクション管により、運転モードによらず、圧縮機から吐出される冷媒の吐出温度が高くなりすぎないように制御することができるので、冷媒および冷凍機油の劣化を防ぎ、安全な運転を継続させることができる。
本発明の実施の形態1に係る空気調和装置の設置例を示す概略図である。 本発明の実施の形態1に係る空気調和装置の回路構成の一例を示す概略回路構成図である。 R32を含む混合冷媒を使用した場合のR32の質量比率と吐出温度との関係を示すグラフである。 本発明の実施の形態1に係る空気調和装置の全冷房運転モード時における冷媒の流れを示す冷媒回路図である。 本発明の実施の形態1に係る空気調和装置の全冷房運転モード時における熱源側冷媒の状態遷移を示すp―h線図である。 本発明の実施の形態1に係る空気調和装置の全暖房運転モード時における冷媒の流れを示す冷媒回路図である。 本発明の実施の形態1に係る空気調和装置の全暖房運転モード時における熱源側冷媒の状態遷移を示すp-h線図である。 本発明の実施の形態1に係る空気調和装置の冷房主体運転モード時における冷媒の流れを示す冷媒回路図である。 本発明の実施の形態1に係る空気調和装置の冷房主体運転モード時における熱源側冷媒の状態遷移を示すp―h線図である。 本発明の実施の形態1に係る空気調和装置の暖房主体運転モード時における冷媒の流れを示す冷媒回路図である。 本発明の実施の形態1に係る空気調和装置の暖房主体運転モード時における熱源側冷媒の状態遷移を示すp―h線図である。 絞り装置の好適な構成例を模式的に示した図である。 本発明の実施の形態1に係る空気調和装置の除霜運転モード時における冷媒の流れを示す冷媒回路図である。 本発明の実施の形態2に係る空気調和装置の回路構成の一例を示す概略回路構成図である。 本発明の実施の形態3に係る空気調和装置の回路構成の一例を示す概略回路構成図である。
 以下、図面に基づいて本発明の実施の形態について説明する。
実施の形態1.
 図1は、本発明の実施の形態1に係る空気調和装置の設置例を示す概略図である。図1に基づいて、空気調和装置の設置例について説明する。この空気調和装置は、冷媒(熱源側冷媒、熱媒体)を循環させる冷凍サイクル(冷媒循環回路A、熱媒体循環回路B)を利用することで各室内機が運転モードとして冷房モードあるいは暖房モードを自由に選択できるものである。なお、図1を含め、以下の図面では各構成部材の大きさの関係が実際のものとは異なる場合がある。
 図1においては、本実施の形態1に係る空気調和装置は、熱源機である1台の室外機1と、複数台の室内機2と、室外機1と室内機2との間に介在する熱媒体変換機3と、を有している。熱媒体変換機3は、熱源側冷媒と熱媒体とで熱交換を行なうものである。室外機1と熱媒体変換機3とは、熱源側冷媒を導通する冷媒配管4で接続されている。熱媒体変換機3と室内機2とは、熱媒体を導通する配管(熱媒体配管)5で接続されている。そして、室外機1で生成された冷熱あるいは温熱は、熱媒体変換機3を介して室内機2に配送されるようになっている。
 室外機1は、通常、ビル等の建物9の外の空間(たとえば、屋上等)である室外空間6に配置され、熱媒体変換機3を介して室内機2に冷熱又は温熱を供給するものである。室内機2は、建物9の内部の空間(たとえば、居室等)である室内空間7に冷房用空気あるいは暖房用空気を供給できる位置に配置され、空調対象空間となる室内空間7に冷房用空気あるいは暖房用空気を供給するものである。熱媒体変換機3は、室外機1及び室内機2とは別筐体として、室外空間6及び室内空間7とは別の位置に設置できるように構成されており、室外機1及び室内機2とは冷媒配管4及び配管5でそれぞれ接続され、室外機1から供給される冷熱あるいは温熱を室内機2に伝達するものである。
 図1に示すように、本実施の形態1に係る空気調和装置においては、室外機1と熱媒体変換機3とが2本の冷媒配管4を用いて、熱媒体変換機3と各室内機2とが2本の配管5を用いて、それぞれ接続されている。このように、本実施の形態1に係る空気調和装置では、2本の配管(冷媒配管4、配管5)を用いて各ユニット(室外機1、室内機2及び熱媒体変換機3)を接続することにより、施工が容易となっている。
 なお、図1においては、熱媒体変換機3が、建物9の内部ではあるが室内空間7とは別の空間である天井裏等の空間(以下、単に空間8と称する)に設置されている状態を例に示している。熱媒体変換機3は、その他、エレベーター等がある共用空間等に設置することも可能である。また、図1においては、室内機2が天井カセット型である場合を例に示してあるが、これに限定するものではなく、天井埋込型や天井吊下式等、室内空間7に直接またはダクト等により、暖房用空気あるいは冷房用空気を吹き出せるようになっていればどんな種類のものでもよい。
 図1においては、室外機1が室外空間6に設置されている場合を例に示しているが、これに限定するものではない。たとえば、室外機1は、換気口付の機械室等の囲まれた空間に設置してもよく、排気ダクトで廃熱を建物9の外に排気することができるのであれば建物9の内部に設置してもよく、あるいは、水冷式の室外機1を用いて建物9の内部に設置するようにしてもよい。どのような場所に室外機1を設置するとしても、特段の問題が発生することはない。
 また、熱媒体変換機3は、室外機1の近傍に設置することもできる。ただし、熱媒体変換機3から室内機2までの距離が長すぎると、熱媒体の搬送動力がかなり大きくなるため、省エネの効果は薄れることに留意が必要である。さらに、室外機1、室内機2及び熱媒体変換機3の接続台数を図1に図示してある台数に限定するものではなく、本実施の形態1に係る空気調和装置が設置される建物9に応じて台数を決定すればよい。
 1台の室外機1に対して複数台の熱媒体変換機3を接続する場合、その複数台の熱媒体変換機3をビル等の建物における共用スペースまたは天井裏等のスペースに点在して設置することができる。そうすることにより、各熱媒体変換機3内の熱媒体間熱交換器で空調負荷を賄うことができる。また、室内機2を、各熱媒体変換機3内における熱媒体搬送装置の搬送許容範囲内の距離または高さに設置することが可能であり、ビル等の建物全体へ対しての配置が可能となる。
 図2は、本実施の形態1に係る空気調和装置(以下、空気調和装置100と称する)の回路構成の一例を示す概略回路構成図である。図2に基づいて、空気調和装置100の詳しい構成について説明する。図2に示すように、室外機1と熱媒体変換機3とが、熱媒体変換機3に備えられている熱媒体間熱交換器15a及び熱媒体間熱交換器15bを介して冷媒配管4で接続されている。また、熱媒体変換機3と室内機2とも、熱媒体間熱交換器15a及び熱媒体間熱交換器15bを介して配管5で接続されている。なお、冷媒配管4及び配管5については後段で詳述するものとする。
[室外機1]
 室外機1には、圧縮機10と、四方弁等の第1冷媒流路切替装置11と、熱源側熱交換器12と、アキュムレーター19とが冷媒配管4で直列に接続されて搭載されている。また、室外機1には、第1接続配管4a、第2接続配管4b、逆止弁13a、逆止弁13b、逆止弁13c、及び、逆止弁13dが設けられている。第1接続配管4a、第2接続配管4b、逆止弁13a、逆止弁13b、逆止弁13c、及び、逆止弁13dを設けることで、室内機2の要求する運転に関わらず、熱媒体変換機3に流入させる熱源側冷媒の流れを一定方向にすることができる。
 圧縮機10は、熱源側冷媒を吸入し、その熱源側冷媒を圧縮して高温高圧の状態にするものであり、たとえば容量制御可能なインバータ圧縮機等で構成するとよい。第1冷媒流路切替装置11は、暖房運転時(全暖房運転モード時及び暖房主体運転モード時)における熱源側冷媒の流れと冷房運転時(全冷房運転モード時及び冷房主体運転モード時)における熱源側冷媒の流れとを切り替えるものである。熱源側熱交換器12は、暖房運転時には蒸発器として機能し、冷房運転時には凝縮器(または放熱器)として機能し、図示省略の送風機から供給される空気と熱源側冷媒との間で熱交換を行ない、その熱源側冷媒を蒸発ガス化又は凝縮液化するものである。アキュムレーター19は、圧縮機10の吸入側に設けられており、暖房運転時と冷房運転時の違いによる余剰冷媒、または過渡的な運転の変化に対する余剰冷媒を蓄えるものである。
 逆止弁13dは、熱媒体変換機3と第1冷媒流路切替装置11との間における冷媒配管4に設けられ、所定の方向(熱媒体変換機3から室外機1への方向)のみに熱源側冷媒の流れを許容するものである。逆止弁13aは、熱源側熱交換器12と熱媒体変換機3との間における冷媒配管4に設けられ、所定の方向(室外機1から熱媒体変換機3への方向)のみに熱源側冷媒の流れを許容するものである。逆止弁13bは、第1接続配管4aに設けられ、暖房運転時において圧縮機10から吐出された熱源側冷媒を熱媒体変換機3に流通させるものである。逆止弁13cは、第2接続配管4bに設けられ、暖房運転時において熱媒体変換機3から戻ってきた熱源側冷媒を圧縮機10の吸入側に流通させるものである。
 第1接続配管4aは、室外機1内において、第1冷媒流路切替装置11と逆止弁13dとの間における冷媒配管4と、逆止弁13aと熱媒体変換機3との間における冷媒配管4と、を接続するものである。第2接続配管4bは、室外機1内において、逆止弁13dと熱媒体変換機3との間における冷媒配管4と、熱源側熱交換器12と逆止弁13aとの間における冷媒配管4と、を接続するものである。
 ところで、冷凍サイクルにおいては、冷媒の温度が高くなると回路内を循環している冷媒及び冷凍機油が劣化するため、温度の上限値が設定されている。この上限温度は、通常120℃である。冷凍サイクル内で温度が最も高くなるのは、圧縮機10の吐出側の冷媒温度(吐出温度)であるため、吐出温度が120℃以上にならないように制御をすればよい。ただし、R410A等の冷媒を使用している場合は、通常運転において吐出温度が120℃に達することは少ないが、R32を冷媒として使用すると、物性的に吐出温度が高くなるため、冷凍サイクルに吐出温度を低下させる手段を備えておく必要がある。
 そこで、室外機1に、分岐部27a、分岐部27b、逆流防止装置20、絞り装置14a、絞り装置14b、中圧検出装置32、吐出冷媒温度検出装置37、高圧検出装置39、インジェクション配管4c、分岐配管4d、及び、制御装置50を備えるようにしている。また、圧縮機10としては、密閉容器内に圧縮室を有し、密閉容器内が低圧の冷媒圧雰囲気となり、圧縮室に密閉容器内の低圧冷媒を吸入して圧縮する低圧シェル構造のものを使用している。
 分岐配管4dは、逆止弁13aと逆止弁13bの下流側に設けられている分岐部27aと、逆止弁13dと逆止弁13cの上流側に設けられている分岐部27bと、を接続している。分岐配管4dには、逆流防止装置20及び絞り装置14bが、分岐部27b側から順に設けられている。インジェクション配管4cは、逆流防止装置20と絞り装置14bとの間における分岐配管4dと、圧縮機10の図示省略のインジェクションポートと、を接続している。このインジェクションポートは、圧縮機10の圧縮室の一部に形成されている開口部に連通するようになっている。つまり、インジェクション配管4cは、圧縮機10の密閉容器の外部から圧縮室の内部に冷媒を導入(注入)可能にするものである。
 分岐部27aは、逆止弁13a又は逆止弁13bを経由してきた冷媒を、冷媒配管4と分岐配管4dとに分流するものである。分岐部27bは、熱媒体変換機3から戻ってきた冷媒を、分岐配管4dと、逆止弁13b又は逆止弁13cに流れる冷媒と、に分流するものである。逆流防止装置20は、分岐配管4dに設けられ、所定の方向(分岐部27bから分岐部27aへの方向)のみに冷媒の流れを許容するものである。絞り装置14aは、第2接続配管4bにおける逆止弁13cの上流側に設けられ、第2接続配管4bを流れる冷媒を減圧して膨張させるものである。絞り装置14bは、分岐配管4dにおける逆流防止装置20の下流側に設けられ、分岐配管4dを流れる冷媒を減圧して膨張させるものである。
 中圧検出装置32は、逆止弁13dと絞り装置14aの上流側であって分岐部27bの下流側に設けられており、設置位置における冷媒配管4を流れる冷媒の圧力を検出するものである。吐出冷媒温度検出装置37は、圧縮機10の吐出側に設けられており、圧縮機10から吐出された冷媒の温度を検出するものである。高圧検出装置39は、圧縮機10の吐出側に設けられており、圧縮機10から吐出された冷媒の圧力を検出するものである。制御装置50は、冷媒をインジェクション配管4cから圧縮室に導入することにより圧縮機10から吐出される冷媒の温度または圧縮機10から吐出される冷媒の過熱度(吐出スーパーヒート)を低下させるようにものである。つまり、制御装置50で、絞り装置14a、絞り装置14b等を制御することにより、圧縮機10の吐出温度を低下させ、安全に運転させることができるようになっている。
 制御装置50が実行する具体的な制御動作については、後述の各運転モードの動作説明において説明を行なう。なお、制御装置50は、マイコン等で構成されており、各種検出装置での検出情報及びリモコンからの指示に基づいて、制御を行なうもので、上述のアクチュエーター(絞り装置14a、絞り装置14b)の制御の他に、圧縮機10の駆動周波数、図示省略の送風機の回転数(ON/OFF含む)、第1冷媒流路切替装置11の切り替え等を制御し、後述する各運転モードを実行するようになっている。
 冷媒としてR410Aを使用した場合とR32を使用した場合との吐出温度の差について、簡単に説明する。ここでは、冷凍サイクルの蒸発温度が0℃、凝縮温度が49℃、圧縮機吸入冷媒のスーパーヒート(過熱度)が0℃である場合を考える。
 冷媒としてR410Aを使用し、断熱圧縮(等エントロピー圧縮)がなされたものとすると、R410Aの物性より、圧縮機10の吐出温度は約70℃となる。一方、冷媒としてR32を使用し、断熱圧縮(等エントロピー圧縮)がなされたものとすると、R32の物性より、圧縮機10の吐出温度は約86℃となる。すなわち、冷媒としてR32を使用した場合は、R410Aを使用した場合に対して、約16℃、吐出温度が上昇することになる。
 実際の運転では、圧縮機10ではポリトロープ圧縮がなされ、断熱圧縮よりも効率の悪い運転になるため、上述の値よりも、更に吐出温度が高くなる。R410Aを冷媒として用いた場合において、吐出温度が100℃を超える状態で運転されることは頻繁に発生する。R410Aにおいて吐出温度が104℃を超える状態で運転されているような条件で、R32を冷媒として用いた場合、120℃の吐出温度限界を超えてしまうため、吐出温度を低下させる必要がある。
 圧縮機として、吸入冷媒が直接圧縮室に吸入され、圧縮室から吐出された冷媒が、圧縮室周囲の密閉容器内に吐出される高圧シェル構造のものを使用している場合は、吸入冷媒を飽和状態よりも湿らせ、二相状態の冷媒を圧縮室に吸入させることにより、吐出温度を低下させることができる。しかしながら、圧縮機10として低圧シェル構造のものを使用している場合は、吸入冷媒を湿らせても、圧縮機10のシェル内に液冷媒が溜まるだけで、圧縮室に二相冷媒が吸入されることはない。したがって、低圧シェル構造の圧縮機10を使用し、吐出温度が高くなるR32冷媒等を使用している場合に、吐出温度を低下させるためには、圧縮機10の外部から圧縮途中の圧縮室に低温の冷媒をインジェクションし、冷媒の温度を低下させる方法が考えられる。そこで、上述したような方法により、吐出温度を低下させるとよい。
 なお、圧縮機10の圧縮室へのインジェクション量の制御は、吐出温度を目標値、たとえば100℃になるように制御し、制御目標値を外気温度に応じて変化させるようにしてもよい。また、圧縮機10の圧縮室へのインジェクション量の制御は、吐出温度が目標値、たとえば110℃を超えそうな場合にインジェクションをし、それ以下である場合はインジェクションをしないようにしてもよい。さらに、圧縮機10の圧縮室へのインジェクション量の制御は、吐出温度が目標範囲内、たとえば80℃から100℃に収まるように制御し、吐出温度が目標範囲の上限を超えそうな場合にインジェクション量を増やし、吐出温度が目標範囲の下限を下回りそうな場合にインジェクション量を減らすようにしてもよい。
 またさらに、圧縮機10の圧縮室へのインジェクション量の制御は、高圧検出装置39にて検出した高圧と、吐出冷媒温度検出装置37にて検出した吐出温度とを用いて、吐出スーパーヒート(吐出加熱度)を算出し、この吐出スーパーヒートが目標値、たとえば30℃になるようにインジェクション量を制御し、制御目標値を外気温度に応じて変化させるようにしてもよい。また、圧縮機10の圧縮室へのインジェクション量の制御は、吐出スーパーヒートが目標値、たとえば40℃を超えそうな場合にインジェクションをし、それ以下である場合はインジェクションをしないようにしてもよい。
 さらに、圧縮機10の圧縮室へのインジェクション量の制御は、吐出スーパーヒートが目標範囲内、たとえば10℃から40℃、に収まるように制御し、吐出スーパーヒートが目標範囲の上限を超えそうな場合にインジェクション量を増やし、吐出スーパーヒートが目標範囲の下限を下回りそうな場合にインジェクション量を減らすようにしてもよい。
 なお、冷媒配管4内にR32が循環している場合について説明したが、これに限定するものではない。従来のR410A冷媒と、凝縮温度、蒸発温度、スーパーヒート(過熱度)、サブクール(過冷却度)、圧縮機効率が同一である時に、吐出温度がR410A冷媒よりも、高くなる冷媒であれば、どんな冷媒であっても、本実施の形態1の構成により、吐出温度を低下でき、同様の効果を奏する。特に、R410Aよりも、3℃以上高くなる冷媒であれば、より効果が大きい。
 図3は、混合冷媒(R32と地球温暖化係数が小さく化学式がCF3CF=CH2で表されるテトラフルオロプロペン系冷媒であるHFO1234yfとの混合冷媒)を使用した場合のR32の質量比率と吐出温度との関係を示すグラフである。図3に基づいて、この混合冷媒を用いた場合において、上述の説明と同様の方法で吐出温度を試算した場合の、R32の質量比率に対する吐出温度の変化について説明する。
 図3から、R32の質量比率が52%の時に、R410Aとほぼ同一の吐出温度である約70℃となり、R32の質量比率が62%の時に、R410Aの吐出温度よりも3℃高い約73℃になることが分かる。これより、R32とHFO1234yfとの混合冷媒においては、R32の質量比率が62%以上の混合冷媒を使用する場合に、インジェクションにより吐出温度を低下させるようにすると、効果が大きい。
 また、R32と地球温暖化係数が小さく化学式がCFCH=CHFで表されるテトラフルオロプロペン系冷媒であるHFO1234zeとの混合冷媒を用いた場合において、上述の説明と同様の方法で吐出温度を試算した場合のR32の質量比率に対する吐出温度の変化について説明する。この場合、R32の質量比率が34%の時に、R410Aとほぼ同一の吐出温度である約70℃となり、R32の質量比率が43%の時に、R410Aの吐出温度よりも3℃高い約73℃になることが分かっている。これより、R32とHFO1234zeとの混合冷媒においては、R32の質量比率が43%以上の混合冷媒を使用する場合に、インジェクションにより吐出温度を低下させるようにすると、効果が大きい。
 なお、これらの試算は、NIST(National Institute of Standards and Technology)が発売しているREFPROP Version 8.0を用いて行なった。また、混合冷媒における冷媒の種類はこれに限るものではなく、その他の冷媒成分を少量含んだ混合冷媒であっても、吐出温度には大きな影響がなく、同様の効果を奏する。たとえば、R32とHFO1234yfとその他の冷媒を少量含んだ混合冷媒等においても使用できる。なお、先に説明した通り、ここでの計算は、断熱圧縮を仮定した時のものであり、実際の圧縮はポリトロープ圧縮でなされるため、ここに記した温度より数十度以上、たとえば20℃以上高い値となる。
[室内機2]
 室内機2には、それぞれ利用側熱交換器26が搭載されている。この利用側熱交換器26は、配管5によって熱媒体変換機3の熱媒体流量調整装置25と第2熱媒体流路切替装置23に接続するようになっている。この利用側熱交換器26は、図示省略の送風機から供給される空気と熱媒体との間で熱交換を行ない、室内空間7に供給するための暖房用空気あるいは冷房用空気を生成するものである。
 この図2では、4台の室内機2が熱媒体変換機3に接続されている場合を例に示しており、紙面下から室内機2a、室内機2b、室内機2c、室内機2dとして図示している。また、室内機2a~室内機2dに応じて、利用側熱交換器26も、紙面下側から利用側熱交換器26a、利用側熱交換器26b、利用側熱交換器26c、利用側熱交換器26dとして図示している。なお、図1と同様に、室内機2の接続台数を図2に示す4台に限定するものではない。
[熱媒体変換機3]
 熱媒体変換機3には、2つの熱媒体間熱交換器15と、2つの絞り装置16と、2つの開閉装置17と、2つの第2冷媒流路切替装置18と、2つのポンプ21と、4つの第1熱媒体流路切替装置22と、4つの第2熱媒体流路切替装置23と、4つの熱媒体流量調整装置25と、が搭載されている。
 2つの熱媒体間熱交換器15(熱媒体間熱交換器15a、熱媒体間熱交換器15b)は、凝縮器(放熱器)又は蒸発器として機能し、熱源側冷媒と熱媒体とで熱交換を行ない、室外機1で生成され熱源側冷媒に貯えられた冷熱又は温熱を熱媒体に伝達するものである。熱媒体間熱交換器15aは、冷媒循環回路Aにおける絞り装置16aと第2冷媒流路切替装置18aとの間に設けられており、冷房暖房混在運転モード時において熱媒体の冷却に供するものである。また、熱媒体間熱交換器15bは、冷媒循環回路Aにおける絞り装置16bと第2冷媒流路切替装置18bとの間に設けられており、冷房暖房混在運転モード時において熱媒体の加熱に供するものである。
 2つの絞り装置16(絞り装置16a、絞り装置16b)は、減圧弁や膨張弁としての機能を有し、熱源側冷媒を減圧して膨張させるものである。絞り装置16aは、冷房運転時の熱源側冷媒の流れにおいて熱媒体間熱交換器15aの上流側に設けられている。絞り装置16bは、冷房運転時の熱源側冷媒の流れにおいて熱媒体間熱交換器15bの上流側に設けられている。2つの絞り装置16は、開度(開口面積)が可変に制御可能なもの、たとえば電子式膨張弁等で構成するとよい。
 2つの開閉装置17(開閉装置17a、開閉装置17b)は、二方弁等で構成されており、冷媒配管4を開閉するものである。開閉装置17aは、熱源側冷媒の入口側における冷媒配管4に設けられている。開閉装置17bは、熱源側冷媒の入口側と出口側の冷媒配管4を接続した配管(バイパス管24)に設けられている。なお、開閉装置17は、冷媒配管4を開閉可能なものであればよく、たとえば電子式膨張弁等の開度を可変に制御が可能なものを用いてもよい。
 2つの第2冷媒流路切替装置18(第2冷媒流路切替装置18a、第2冷媒流路切替装置18b)は、四方弁等で構成され、運転モードに応じて熱媒体間熱交換器15が凝縮器または蒸発器として作用するよう、熱源側冷媒の流れを切り替えるものである。第2冷媒流路切替装置18aは、冷房運転時の熱源側冷媒の流れにおいて熱媒体間熱交換器15aの下流側に設けられている。第2冷媒流路切替装置18bは、全冷房運転時の熱源側冷媒の流れにおいて熱媒体間熱交換器15bの下流側に設けられている。
 2つのポンプ21(ポンプ21a、ポンプ21b)は、配管5を導通する熱媒体を熱媒体循環回路Bに循環させるものである。ポンプ21aは、熱媒体間熱交換器15aと第2熱媒体流路切替装置23との間における配管5に設けられている。ポンプ21bは、熱媒体間熱交換器15bと第2熱媒体流路切替装置23との間における配管5に設けられている。2つのポンプ21は、たとえば容量制御可能なポンプ等で構成し、室内機2における負荷の大きさによってその流量を調整できるようにしておくとよい。
 4つの第1熱媒体流路切替装置22(第1熱媒体流路切替装置22a~第1熱媒体流路切替装置22d)は、三方弁等で構成されており、熱媒体の流路を切り替えるものである。第1熱媒体流路切替装置22は、室内機2の設置台数に応じた個数(ここでは4つ)が設けられるようになっている。第1熱媒体流路切替装置22は、三方のうちの一つが熱媒体間熱交換器15aに、三方のうちの一つが熱媒体間熱交換器15bに、三方のうちの一つが熱媒体流量調整装置25に、それぞれ接続され、利用側熱交換器26の熱媒体流路の出口側に設けられている。なお、室内機2に対応させて、紙面下側から第1熱媒体流路切替装置22a、第1熱媒体流路切替装置22b、第1熱媒体流路切替装置22c、第1熱媒体流路切替装置22dとして図示している。また、熱媒体流路の切替には、一方から他方への完全な切替だけでなく、一方から他方への部分的な切替も含んでいるものとする。
 4つの第2熱媒体流路切替装置23(第2熱媒体流路切替装置23a~第2熱媒体流路切替装置23d)は、三方弁等で構成されており、熱媒体の流路を切り替えるものである。第2熱媒体流路切替装置23は、室内機2の設置台数に応じた個数(ここでは4つ)が設けられるようになっている。第2熱媒体流路切替装置23は、三方のうちの一つが熱媒体間熱交換器15aに、三方のうちの一つが熱媒体間熱交換器15bに、三方のうちの一つが利用側熱交換器26に、それぞれ接続され、利用側熱交換器26の熱媒体流路の入口側に設けられている。なお、室内機2に対応させて、紙面下側から第2熱媒体流路切替装置23a、第2熱媒体流路切替装置23b、第2熱媒体流路切替装置23c、第2熱媒体流路切替装置23dとして図示している。また、熱媒体流路の切替には、一方から他方への完全な切替だけでなく、一方から他方への部分的な切替も含んでいるものとする。
 4つの熱媒体流量調整装置25(熱媒体流量調整装置25a~熱媒体流量調整装置25d)は、開口面積を制御できる二方弁等で構成されており、配管5に流れる流量を制御するものである。熱媒体流量調整装置25は、室内機2の設置台数に応じた個数(ここでは4つ)が設けられるようになっている。熱媒体流量調整装置25は、一方が利用側熱交換器26に、他方が第1熱媒体流路切替装置22に、それぞれ接続され、利用側熱交換器26の熱媒体流路の出口側に設けられている。すなわち、熱媒体流量調整装置25は、室内機2へ流入する熱媒体の温度及び流出する熱媒体の温度により室内機2へ流入する熱媒体の量を調整し、室内負荷に応じた最適な熱媒体量を室内機2に提供可能にするものである。
 なお、室内機2に対応させて、紙面下側から熱媒体流量調整装置25a、熱媒体流量調整装置25b、熱媒体流量調整装置25c、熱媒体流量調整装置25dとして図示している。また、熱媒体流量調整装置25を利用側熱交換器26の熱媒体流路の入口側に設けてもよい。さらに、熱媒体流量調整装置25を利用側熱交換器26の熱媒体流路の入口側であって、第2熱媒体流路切替装置23と利用側熱交換器26との間に設けてもよい。またさらに、室内機2において、停止やサーモOFF等の負荷を必要としていないときは、熱媒体流量調整装置25を全閉にすることにより、室内機2への熱媒体供給を止めることができる。
 また、熱媒体変換機3には、各種検出装置(2つの第1温度センサー31、4つの第2温度センサー34、4つの第3温度センサー35、及び、2つの圧力センサー36)が設けられている。これらの検出装置で検出された情報(温度情報、圧力情報)は、空気調和装置100の動作を統括制御する制御装置(たとえば制御装置50)に送られ、圧縮機10の駆動周波数、図示省略の送風機の回転数、第1冷媒流路切替装置11の切り替え、ポンプ21の駆動周波数、第2冷媒流路切替装置18の切り替え、熱媒体の流路の切替等の制御に利用されることになる。なお、制御装置50が室外機1内に搭載されている状態を例に示しているが、これに限定するものではなく、熱媒体変換機3又は室内機2、あるいは、各ユニットに通信可能に搭載するようにしてもよい。
 2つの第1温度センサー31(第1温度センサー31a、第1温度センサー31b)は、熱媒体間熱交換器15から流出した熱媒体、つまり熱媒体間熱交換器15の出口における熱媒体の温度を検出するものであり、たとえばサーミスター等で構成するとよい。第1温度センサー31aは、ポンプ21aの入口側における配管5に設けられている。第1温度センサー31bは、ポンプ21bの入口側における配管5に設けられている。
 4つの第2温度センサー34(第2温度センサー34a~第2温度センサー34d)は、第1熱媒体流路切替装置22と熱媒体流量調整装置25との間に設けられ、利用側熱交換器26から流出した熱媒体の温度を検出するものであり、サーミスター等で構成するとよい。第2温度センサー34は、室内機2の設置台数に応じた個数(ここでは4つ)が設けられるようになっている。なお、室内機2に対応させて、紙面下側から第2温度センサー34a、第2温度センサー34b、第2温度センサー34c、第2温度センサー34dとして図示している。
 4つの第3温度センサー35(第3温度センサー35a~第3温度センサー35d)は、熱媒体間熱交換器15の熱源側冷媒の入口側または出口側に設けられ、熱媒体間熱交換器15に流入する熱源側冷媒の温度または熱媒体間熱交換器15から流出した熱源側冷媒の温度を検出するものであり、サーミスター等で構成するとよい。第3温度センサー35aは、熱媒体間熱交換器15aと第2冷媒流路切替装置18aとの間に設けられている。第3温度センサー35bは、熱媒体間熱交換器15aと絞り装置16aとの間に設けられている。第3温度センサー35cは、熱媒体間熱交換器15bと第2冷媒流路切替装置18bとの間に設けられている。第3温度センサー35dは、熱媒体間熱交換器15bと絞り装置16bとの間に設けられている。
 圧力センサー36bは、第3温度センサー35dの設置位置と同様に、熱媒体間熱交換器15bと絞り装置16bとの間に設けられ、熱媒体間熱交換器15bと絞り装置16bとの間を流れる熱源側冷媒の圧力を検出するものであり、圧力センサー36aは、第3温度センサー35aの設置位置と同様に、熱媒体間熱交換器15aと第2冷媒流路切替装置18aとの間に設けられ、熱媒体間熱交換器15aと第2冷媒流路切替装置18aとの間を流れる熱源側冷媒の圧力を検出するものである。
 なお、制御装置(たとえば室外機1に備えられた制御装置50)は、マイコン等で構成されており、各種検出装置での検出情報及びリモコンからの指示に基づいて、ポンプ21の駆動、絞り装置16の開度、開閉装置17の開閉、第2冷媒流路切替装置18の切り替え、第1熱媒体流路切替装置22の切り替え、第2熱媒体流路切替装置23の切り替え、及び、熱媒体流量調整装置25の開度等を制御し、後述する各運転モードを実行するようになっている。なお、制御装置は、室外機1と熱媒体変換機3のいずれかのみに設けるようにしてもよい。
 熱媒体を導通する配管5は、熱媒体間熱交換器15aに接続されるものと、熱媒体間熱交換器15bに接続されるものと、で構成されている。配管5は、熱媒体変換機3に接続される室内機2の台数に応じて分岐(ここでは、各4分岐)されている。そして、配管5は、第1熱媒体流路切替装置22、及び、第2熱媒体流路切替装置23で接続されている。第1熱媒体流路切替装置22及び第2熱媒体流路切替装置23を制御することで、熱媒体間熱交換器15aからの熱媒体を利用側熱交換器26に流入させるか、熱媒体間熱交換器15bからの熱媒体を利用側熱交換器26に流入させるかが決定されるようになっている。
 そして、空気調和装置100では、圧縮機10、第1冷媒流路切替装置11、熱源側熱交換器12、開閉装置17、第2冷媒流路切替装置18、熱媒体間熱交換器15aの冷媒流路、絞り装置16、及び、アキュムレーター19を、冷媒配管4で接続して冷媒循環回路Aを構成している。また、熱媒体間熱交換器15aの熱媒体流路、ポンプ21、第1熱媒体流路切替装置22、熱媒体流量調整装置25、利用側熱交換器26、及び、第2熱媒体流路切替装置23を、配管5で接続して熱媒体循環回路Bを構成している。つまり、熱媒体間熱交換器15のそれぞれに複数台の利用側熱交換器26が並列に接続され、熱媒体循環回路Bを複数系統としているのである。
 よって、空気調和装置100では、室外機1と熱媒体変換機3とが、熱媒体変換機3に設けられている熱媒体間熱交換器15a及び熱媒体間熱交換器15bを介して接続され、熱媒体変換機3と室内機2とも、熱媒体間熱交換器15a及び熱媒体間熱交換器15bを介して接続されている。すなわち、空気調和装置100では、熱媒体間熱交換器15a及び熱媒体間熱交換器15bで冷媒循環回路Aを循環する熱源側冷媒と熱媒体循環回路Bを循環する熱媒体とが熱交換するようになっている。
[運転モード]
 空気調和装置100が実行する各運転モードについて説明する。この空気調和装置100は、各室内機2からの指示に基づいて、その室内機2で冷房運転あるいは暖房運転が可能になっている。つまり、空気調和装置100は、室内機2の全部で同一運転をすることができるとともに、室内機2のそれぞれで異なる運転をすることができるようになっている。
 空気調和装置100が実行する運転モードには、駆動している室内機2の全てが冷房運転を実行する全冷房運転モード、駆動している室内機2の全てが暖房運転を実行する全暖房運転モード、冷房暖房混在運転モードのうち暖房負荷よりも冷房負荷の方が大きい冷房主体運転モード、及び、冷房暖房混在運転モードのうち冷房負荷よりも暖房負荷の方が大きい暖房主体運転モードがある。以下に、各運転モードについて、熱源側冷媒及び熱媒体の流れとともに説明する。
[全冷房運転モード]
 図4は、空気調和装置100の全冷房運転モード時における冷媒の流れを示す冷媒回路図である。この図4では、利用側熱交換器26a及び利用側熱交換器26bでのみ冷熱負荷が発生している場合を例に全冷房運転モードについて説明する。なお、図4では、太線で表された配管が冷媒(熱源側冷媒及び熱媒体)の流れる配管を示している。また、図4では、熱源側冷媒の流れ方向を実線矢印で、熱媒体の流れ方向を破線矢印で示している。 
 図4に示す全冷房運転モードの場合、室外機1では、第1冷媒流路切替装置11を、圧縮機10から吐出された熱源側冷媒を熱源側熱交換器12へ流入させるように切り替える。熱媒体変換機3では、ポンプ21a及びポンプ21bを駆動させ、熱媒体流量調整装置25a及び熱媒体流量調整装置25bを開放し、熱媒体流量調整装置25c及び熱媒体流量調整装置25dを全閉とし、熱媒体間熱交換器15a及び熱媒体間熱交換器15bのそれぞれと利用側熱交換器26a及び利用側熱交換器26bとの間を熱媒体が循環するようにしている。
 まず始めに、冷媒循環回路Aにおける熱源側冷媒の流れについて説明する。
 低温低圧の冷媒が圧縮機10によって圧縮され、高温高圧のガス冷媒となって吐出される。圧縮機10から吐出された高温高圧のガス冷媒は、第1冷媒流路切替装置11を介して熱源側熱交換器12に流入する。そして、熱源側熱交換器12で室外空気に放熱しながら凝縮液化し、高圧液冷媒となる。熱源側熱交換器12から流出した高圧液冷媒は、逆止弁13aを通って、分岐部27aを介して、一部が室外機1から流出し、冷媒配管4を通って熱媒体変換機3に流入する。熱媒体変換機3に流入した高圧液冷媒は、開閉装置17aを経由した後に分岐されて絞り装置16a及び絞り装置16bで膨張させられて、低温低圧の二相冷媒となる。
 この二相冷媒は、蒸発器として作用する熱媒体間熱交換器15a及び熱媒体間熱交換器15bのそれぞれに流入し、熱媒体循環回路Bを循環する熱媒体から吸熱することで、熱媒体を冷却しながら、低温低圧のガス冷媒となる。熱媒体間熱交換器15a及び熱媒体間熱交換器15bから流出したガス冷媒は、第2冷媒流路切替装置18a及び第2冷媒流路切替装置18bを介して熱媒体変換機3から流出し、冷媒配管4を通って再び室外機1へ流入する。室外機1に流入した冷媒は、分岐部27bを介して、逆止弁13dを通って、第1冷媒流路切替装置11及びアキュムレーター19を介して、圧縮機10へ再度吸入される。
 このとき、絞り装置16aは、第3温度センサー35aで検出された温度と第3温度センサー35bで検出された温度との差として得られるスーパーヒート(過熱度)が一定になるように開度(開口面積)が制御される。同様に、絞り装置16bは、第3温度センサー35cで検出された温度と第3温度センサー35dで検出された温度との差として得られるスーパーヒートが一定になるように開度が制御される。また、開閉装置17aは開、開閉装置17bは閉となっている。
 熱源側冷媒がR32である場合、圧縮機10の吐出温度が高くなることがあるため、インジェクション回路を用いて、吐出温度を低下させる。このときの動作を図4及び図5を用いて説明する。図5は、全冷房運転モード時における熱源側冷媒の状態遷移を示すp―h線図(圧力-エンタルピ線図)である。図5では、縦軸が圧力を、横軸がエンタルピを、それぞれ示している。
 圧縮機10では、圧縮機10の吸入口から吸入された低温低圧のガス冷媒が密閉容器内に導入され、密閉容器内に満たされた低温低圧のガス冷媒が圧縮室(図示せず)に吸入される。圧縮室は、モータ(図示せず)により0~360度回転させられる間に内容積が小さくなって行く。圧縮室に吸入された内部の冷媒は、圧縮室の内容積が小さくなるに伴い圧縮されて圧力及び温度が上昇する。モータの回転角度が一定角度になった時に、開口部(圧縮室の一部に形成されている)が開口し(この時の状態は、図5の点F)、圧縮室の内部と圧縮機10の外部のインジェクション配管4cとが連通するようになっている。
 全冷房運転モードにおいては、圧縮機10で圧縮された冷媒は、熱源側熱交換器12にて凝縮液化されて高圧の液冷媒となり(図5の点J)、逆止弁13aを介して、分岐部27aに至る。この高圧液冷媒を、分岐部27aで分岐して、一部の冷媒を絞り装置14bによって減圧させて低温中圧の二相冷媒とし、分岐配管4dを介して、インジェクション配管4cに流入させる。インジェクション配管4cに流入した冷媒は、圧縮機10の圧縮室に設けられた開口部から圧縮室内に流入する。この際、圧縮機10の圧縮室内には、圧縮室の開口部での圧力損失(狭い流路を冷媒が流れかつ流れが急拡大及び急縮小されるために発生する圧力損失)により、少し圧力が下がった低温中圧の二相冷媒(図5の点K)となって流入し、圧縮室内では、中圧のガス冷媒(図5の点F)と低温中圧の二相冷媒(図5の点K)とが混合されて、冷媒の温度が下がる(図5の点H)。
 これにより、圧縮機10から吐出される冷媒の吐出温度が低下することになる(図5の点I)。このようなインジェクションを行なわない場合の圧縮機10の吐出温度は図5の点Gであり、インジェクションにより、吐出温度が点Gから点Iに低下していることが分かる。
 全冷房運転モードにおいては、絞り装置14bの開度を変化させ、絞り装置14bの上流側の冷媒の圧力を変化させることにより、圧縮機10の圧縮室へのインジェクション量を調整し、圧縮機10の吐出温度または吐出スーパーヒートを制御する。
 なお、この時、分岐配管4dの絞り装置14bから逆流防止装置20に至る流路の冷媒は中圧冷媒であり、熱媒体変換機3から冷媒配管4を経由して室外機1に戻り、分岐部27bに至る冷媒は低圧冷媒である。逆流防止装置20は、分岐配管4dから分岐部27bへ流れる冷媒を防ぐものであり、逆流防止装置20の作用により、分岐配管4dの中圧冷媒が分岐部27bの低圧冷媒と混合するのを防止している。
 なお、逆流防止装置20は、逆止弁でもよいし、電磁弁等の開閉を切り替えられるものや電子式膨張弁等の開口面積を変化させられ流路の開閉を切り替えられるものでもよい。また、絞り装置14aは、冷媒が流れないので、任意の開度に設定しておいてよい。さらに、絞り装置14bは、電子式膨張弁等の開口面積を変化させられるものとし、吐出冷媒温度検出装置37が検出する圧縮機10の吐出温度が高くなり過ぎないように開口面積が制御される。制御方法としては、吐出温度が一定値、たとえば110℃等を超えた時に、一定の開度分、たとえば10パルスずつ開くように制御してもよいし、吐出温度が目標値、たとえば100℃になるように開度を制御してもよい。また、絞り装置14bをキャピラリチューブとし、圧力差に応じた量の冷媒がインジェクションされるようにしてもよい。
 次に、熱媒体循環回路Bにおける熱媒体の流れについて説明する。
 全冷房運転モードでは、熱媒体間熱交換器15a及び熱媒体間熱交換器15bの双方で熱源側冷媒の冷熱が熱媒体に伝えられ、冷やされた熱媒体がポンプ21a及びポンプ21bによって配管5内を流動させられることになる。ポンプ21a及びポンプ21bで加圧されて流出した熱媒体は、第2熱媒体流路切替装置23a及び第2熱媒体流路切替装置23bを介して、利用側熱交換器26a及び利用側熱交換器26bに流入する。そして、熱媒体が利用側熱交換器26a及び利用側熱交換器26bで室内空気から吸熱することで、室内空間7の冷房を行なう。
 それから、熱媒体は、利用側熱交換器26a及び利用側熱交換器26bから流出して熱媒体流量調整装置25a及び熱媒体流量調整装置25bに流入する。このとき、熱媒体流量調整装置25a及び熱媒体流量調整装置25bの作用によって熱媒体の流量が室内にて必要とされる空調負荷を賄うのに必要な流量に制御されて利用側熱交換器26a及び利用側熱交換器26bに流入するようになっている。熱媒体流量調整装置25a及び熱媒体流量調整装置25bから流出した熱媒体は、第1熱媒体流路切替装置22a及び第1熱媒体流路切替装置22bを通って、熱媒体間熱交換器15a及び熱媒体間熱交換器15bへ流入し、再びポンプ21a及びポンプ21bへ吸い込まれる。
 なお、利用側熱交換器26の配管5内では、第2熱媒体流路切替装置23から熱媒体流量調整装置25を経由して第1熱媒体流路切替装置22へ至る向きに熱媒体が流れている。また、室内空間7にて必要とされる空調負荷は、第1温度センサー31aで検出された温度、あるいは、第1温度センサー31bで検出された温度と第2温度センサー34で検出された温度との差を目標値に保つように制御することにより、賄うことができる。熱媒体間熱交換器15の出口温度は、第1温度センサー31aまたは第1温度センサー31bのどちらの温度を使用してもよいし、これらの平均温度を使用してもよい。このとき、第1熱媒体流路切替装置22及び第2熱媒体流路切替装置23は、熱媒体間熱交換器15a及び熱媒体間熱交換器15bの双方へ流れる流路が確保されるように、中間的な開度にしている。
 全冷房運転モードを実行する際、熱負荷のない利用側熱交換器26(サーモオフを含む)へは熱媒体を流す必要がないため、熱媒体流量調整装置25により流路を閉じて、利用側熱交換器26へ熱媒体が流れないようにする。図4においては、利用側熱交換器26a及び利用側熱交換器26bにおいては熱負荷があるため熱媒体を流しているが、利用側熱交換器26c及び利用側熱交換器26dにおいては熱負荷がなく、対応する熱媒体流量調整装置25c及び熱媒体流量調整装置25dを全閉としている。そして、利用側熱交換器26cや利用側熱交換器26dから熱負荷の発生があった場合には、熱媒体流量調整装置25cや熱媒体流量調整装置25dを開放し、熱媒体を循環させればよい。
[全暖房運転モード]
 図6は、空気調和装置100の全暖房運転モード時における冷媒の流れを示す冷媒回路図である。この図6では、利用側熱交換器26a及び利用側熱交換器26bでのみ温熱負荷が発生している場合を例に全暖房運転モードについて説明する。なお、図6では、太線で表された配管が冷媒(熱源側冷媒及び熱媒体)の流れる配管を示している。また、図6では、熱源側冷媒の流れ方向を実線矢印で、熱媒体の流れ方向を破線矢印で示している。
 図6に示す全暖房運転モードの場合、室外機1では、第1冷媒流路切替装置11を、圧縮機10から吐出された熱源側冷媒を熱源側熱交換器12を経由させずに熱媒体変換機3へ流入させるように切り替える。熱媒体変換機3では、ポンプ21a及びポンプ21bを駆動させ、熱媒体流量調整装置25a及び熱媒体流量調整装置25bを開放し、熱媒体流量調整装置25c及び熱媒体流量調整装置25dを全閉とし、熱媒体間熱交換器15a及び熱媒体間熱交換器15bのそれぞれと利用側熱交換器26a及び利用側熱交換器26bとの間を熱媒体が循環するようにしている。
 まず始めに、冷媒循環回路Aにおける熱源側冷媒の流れについて説明する。
 低温低圧の冷媒が圧縮機10によって圧縮され、高温高圧のガス冷媒となって吐出される。圧縮機10から吐出された高温高圧のガス冷媒は、第1冷媒流路切替装置11を通り、第1接続配管4aを導通し、逆止弁13b、分岐部27aを通過し、室外機1から流出する。室外機1から流出した高温高圧のガス冷媒は、冷媒配管4を通って熱媒体変換機3に流入する。熱媒体変換機3に流入した高温高圧のガス冷媒は、分岐されて第2冷媒流路切替装置18a及び第2冷媒流路切替装置18bを通って、熱媒体間熱交換器15a及び熱媒体間熱交換器15bのそれぞれに流入する。
 熱媒体間熱交換器15a及び熱媒体間熱交換器15bに流入した高温高圧のガス冷媒は、熱媒体循環回路Bを循環する熱媒体に放熱しながら凝縮液化し、高圧の液冷媒となる。熱媒体間熱交換器15a及び熱媒体間熱交換器15bから流出した液冷媒は、絞り装置16a及び絞り装置16bで膨張させられて、中温中圧の二相冷媒となる。この二相冷媒は、開閉装置17bを通って、熱媒体変換機3から流出し、冷媒配管4を通って再び室外機1へ流入する。室外機1に流入した冷媒は、分岐部27bを介して、一部が第2接続配管4bに流れ込んで絞り装置14aを通り、絞り装置14aにより絞られて、低温低圧の二相冷媒となり、逆止弁13cを通過して、蒸発器として作用する熱源側熱交換器12に流入する。
 そして、熱源側熱交換器12に流入した冷媒は、熱源側熱交換器12で室外空気から吸熱して、低温低圧のガス冷媒となる。熱源側熱交換器12から流出した低温低圧のガス冷媒は、第1冷媒流路切替装置11及びアキュムレーター19を介して圧縮機10へ再度吸入される。
 このとき、絞り装置16aは、圧力センサー36で検出された圧力を飽和温度に換算した値と第3温度センサー35bで検出された温度との差として得られるサブクール(過冷却度)が一定になるように開度が制御される。同様に、絞り装置16bは、圧力センサー36で検出された圧力を飽和温度に換算した値と第3温度センサー35dで検出された温度との差として得られるサブクールが一定になるように開度が制御される。また、開閉装置17aは閉、開閉装置17bは開となっている。なお、熱媒体間熱交換器15の中間位置の温度が測定できる場合は、その中間位置での温度を圧力センサー36の代わりに用いてもよく、安価にシステムを構成できる。
 熱源側冷媒がR32である場合、圧縮機10の吐出温度が高くなることがあるため、インジェクション回路を用いて、吐出温度を低下させる。このときの動作を図6及び図7を用いて説明する。図7は、全暖房運転モード時における熱源側冷媒の状態遷移を示すp-h線図(圧力-エンタルピー線図)である。図7では、縦軸が圧力を、横軸がエンタルピを、それぞれ示している。
 圧縮機10では、圧縮機10の吸入口から吸入された低温低圧のガス冷媒が密閉容器内に導入され、密閉容器内に満たされた低温低圧のガス冷媒が圧縮室(図示せず)に吸入される。圧縮室は、モータ(図示せず)により0~360度回転させられる間に、内容積が小さくなって行く。圧縮室に吸入された内部の冷媒は、圧縮室の内容積が小さくなるに伴い圧縮されて圧力及び温度が上昇する。モータの回転角度が一定角度になった時に、開口部(圧縮室の一部に形成されている)が開口し(この時の状態は、図7の点F)、圧縮室の内部と圧縮機10の外部のインジェクション配管4cとが連通するようになっている。
 全暖房運転モードにおいては、熱媒体変換機3から冷媒配管4を経由して室外機1に戻ってくる冷媒は、分岐部27bを介し、一部が絞り装置14aに流れる。絞り装置14aの作用により、絞り装置14aの上流側の冷媒の圧力は中圧状態に制御される(図7の点J)。絞り装置14aによって中圧状態にされている二相冷媒の一部は、分岐部27bで分岐され、分岐配管4dに流れ込む。この冷媒は、逆流防止装置20を介して、インジェクション配管4cへ流れ、圧縮機10の圧縮室に設けられた開口部から圧縮室内に流入する。この際、圧縮機10の圧縮室内には、圧縮室の開口部での圧力損失(狭い流路を冷媒が流れかつ流れが急拡大及び急縮小されるために発生する圧力損失)により、少し圧力が下がった低温中圧の二相冷媒(図7の点K)となって流入し、圧縮室内では、中圧のガス冷媒(図7の点F)と低温中圧の二相冷媒(図7の点K)とが混合されて、冷媒の温度が下がる(図7の点H)。
 これにより、圧縮機10から吐出される冷媒の吐出温度が低下することになる(図7の点I)。このようなインジェクションを行なわない場合の圧縮機10の吐出温度は図7の点Gであり、インジェクションにより、吐出温度が点Gから点Iに低下していることが分かる。なお、分岐部27bには二相状態の冷媒が流れ込むので、均一に分配するために、分岐部27bは冷媒を鉛直方向の下から上に流した状態で分流させる構造とする。このようにすることで、二相冷媒が均一に分配される。
 全暖房運転モードにおいては、絞り装置14aの開度を変化させ、圧縮機10の圧縮室へのインジェクション量を調整し、圧縮機10の吐出温度または吐出スーパーヒートを制御する。
 なお、この時、絞り装置14bは全閉または冷媒が流れない小さい開度となっており、分岐部27aの高圧状態の冷媒が、逆流防止装置20を通ってきた中圧状態の冷媒と混合するのを防止している。
 また、絞り装置14aは、電子式膨張弁等の開口面積を変化させられるものが望ましく、電子式膨張弁を使用すれば、絞り装置14aの上流側の中圧を任意の圧力に制御できる。たとえば、中圧検出装置32で検出した中圧が一定値になるように制御すれば、絞り装置14aによる吐出温度の制御が安定する。しかし、絞り装置14aは、これに限るものではなく、吐出温度を目標に制御することができるものであればよい。制御性は少し悪化するが、絞り装置14aとしてたとえば小型の電磁弁等の開閉弁を組み合わせて開口面積を複数選択できるようにしてもよいし、絞り装置14aとしてキャピラリチューブを用いて冷媒の圧損に応じて中圧が形成されるようにしてもよい。また、中圧検出装置32は、圧力センサーでもよいし、温度センサーを用いて演算により中圧を演算するようにしてもよい。
 次に、熱媒体循環回路Bにおける熱媒体の流れについて説明する。
 全暖房運転モードでは、熱媒体間熱交換器15a及び熱媒体間熱交換器15bの双方で熱源側冷媒の温熱が熱媒体に伝えられ、暖められた熱媒体がポンプ21a及びポンプ21bによって配管5内を流動させられることになる。ポンプ21a及びポンプ21bで加圧されて流出した熱媒体は、第2熱媒体流路切替装置23a及び第2熱媒体流路切替装置23bを介して、利用側熱交換器26a及び利用側熱交換器26bに流入する。そして、熱媒体が利用側熱交換器26a及び利用側熱交換器26bで室内空気に放熱することで、室内空間7の暖房を行なう。
 それから、熱媒体は、利用側熱交換器26a及び利用側熱交換器26bから流出して熱媒体流量調整装置25a及び熱媒体流量調整装置25bに流入する。このとき、熱媒体流量調整装置25a及び熱媒体流量調整装置25bの作用によって熱媒体の流量が室内にて必要とされる空調負荷を賄うのに必要な流量に制御されて利用側熱交換器26a及び利用側熱交換器26bに流入するようになっている。熱媒体流量調整装置25a及び熱媒体流量調整装置25bから流出した熱媒体は、第1熱媒体流路切替装置22a及び第1熱媒体流路切替装置22bを通って、熱媒体間熱交換器15a及び熱媒体間熱交換器15bへ流入し、再びポンプ21a及びポンプ21bへ吸い込まれる。
 なお、利用側熱交換器26の配管5内では、第2熱媒体流路切替装置23から熱媒体流量調整装置25を経由して第1熱媒体流路切替装置22へ至る向きに熱媒体が流れている。また、室内空間7にて必要とされる空調負荷は、第1温度センサー31aで検出された温度、あるいは、第1温度センサー31bで検出された温度と第2温度センサー34で検出された温度との差を目標値に保つように制御することにより、賄うことができる。熱媒体間熱交換器15の出口温度は、第1温度センサー31aまたは第1温度センサー31bのどちらの温度を使用してもよいし、これらの平均温度を使用してもよい。
 このとき、第1熱媒体流路切替装置22及び第2熱媒体流路切替装置23は、熱媒体間熱交換器15a及び熱媒体間熱交換器15bの双方へ流れる流路が確保されるように、中間的な開度にしている。また、本来、利用側熱交換器26aは、その入口と出口の温度差で制御すべきであるが、利用側熱交換器26の入口側の熱媒体温度は、第1温度センサー31bで検出された温度とほとんど同じ温度であり、第1温度センサー31bを使用することにより温度センサーの数を減らすことができ、安価にシステムを構成できる。なお、全冷房運転モードと同様に、利用側熱交換器26での熱負荷の有無に応じて熱媒体流量調整装置25の開度を制御すればよい。
[冷房主体運転モード]
 図8は、空気調和装置100の冷房主体運転モード時における冷媒の流れを示す冷媒回路図である。この図8では、利用側熱交換器26aで冷熱負荷が発生し、利用側熱交換器26bで温熱負荷が発生している場合を例に冷房主体運転モードについて説明する。なお、図8では、太線で表された配管が冷媒(熱源側冷媒及び熱媒体)の循環する配管を示している。また、図8では、熱源側冷媒の流れ方向を実線矢印で、熱媒体の流れ方向を破線矢印で示している。
 図8に示す冷房主体運転モードの場合、室外機1では、第1冷媒流路切替装置11を、圧縮機10から吐出された熱源側冷媒を熱源側熱交換器12へ流入させるように切り替える。熱媒体変換機3では、ポンプ21a及びポンプ21bを駆動させ、熱媒体流量調整装置25a及び熱媒体流量調整装置25bを開放し、熱媒体流量調整装置25c及び熱媒体流量調整装置25dを全閉とし、熱媒体間熱交換器15aと利用側熱交換器26aとの間を、熱媒体間熱交換器15bと利用側熱交換器26bとの間を、それぞれ熱媒体が循環するようにしている。
 まず始めに、冷媒循環回路Aにおける熱源側冷媒の流れについて説明する。
 低温低圧の冷媒が圧縮機10によって圧縮され、高温高圧のガス冷媒となって吐出される。圧縮機10から吐出された高温高圧のガス冷媒は、第1冷媒流路切替装置11を介して熱源側熱交換器12に流入する。そして、熱源側熱交換器12で室外空気に放熱しながら凝縮し、二相冷媒となる。熱源側熱交換器12から流出した二相冷媒は、逆止弁13aを通って、分岐部27aを介して、一部が室外機1から流出し、冷媒配管4を通って熱媒体変換機3に流入する。熱媒体変換機3に流入した二相冷媒は、第2冷媒流路切替装置18bを通って凝縮器として作用する熱媒体間熱交換器15bに流入する。
 熱媒体間熱交換器15bに流入した二相冷媒は、熱媒体循環回路Bを循環する熱媒体に放熱しながら凝縮液化し、液冷媒となる。熱媒体間熱交換器15bから流出した液冷媒は、絞り装置16bで膨張させられて低圧二相冷媒となる。この低圧二相冷媒は、絞り装置16aを介して蒸発器として作用する熱媒体間熱交換器15aに流入する。熱媒体間熱交換器15aに流入した低圧二相冷媒は、熱媒体循環回路Bを循環する熱媒体から吸熱することで、熱媒体を冷却しながら、低圧のガス冷媒となる。このガス冷媒は、熱媒体間熱交換器15aから流出し、第2冷媒流路切替装置18aを介して熱媒体変換機3から流出し、冷媒配管4を通って再び室外機1へ流入する。室外機1に流入した冷媒は、分岐部27bを介して、逆止弁13dを通って、第1冷媒流路切替装置11及びアキュムレーター19を介して、圧縮機10へ再度吸入される。
 このとき、絞り装置16bは、第3温度センサー35aで検出された温度と第3温度センサー35bで検出された温度との差として得られるスーパーヒートが一定になるように開度が制御される。また、絞り装置16aは全開、開閉装置17aは閉、開閉装置17bは閉となっている。なお、絞り装置16bは、圧力センサー36で検出された圧力を飽和温度に換算した値と第3温度センサー35dで検出された温度との差として得られるサブクールが一定になるように開度を制御してもよい。また、絞り装置16bを全開とし、絞り装置16aでスーパーヒートまたはサブクールを制御するようにしてもよい。
 熱源側冷媒がR32である場合、圧縮機10の吐出温度が高くなることがあるため、インジェクション回路を用いて、吐出温度を低下させる。このときの動作を図8及び図9を用いて説明する。図9は、冷房主体運転モード時における熱源側冷媒の状態遷移を示すp―h線図(圧力-エンタルピ線図)である。図9では、縦軸が圧力を、横軸がエンタルピを、それぞれ示している。
 圧縮機10では、圧縮機10の吸入口から吸入された低温低圧のガス冷媒が密閉容器内に導入され、密閉容器内に満たされた低温低圧のガス冷媒が圧縮室(図示せず)に吸入される。圧縮室は、モータ(図示せず)により0~360度回転させられる間に、内容積が小さくなって行く。圧縮室に吸入された内部の冷媒は、圧縮室の内容積が小さくなるに伴い圧縮されて圧力及び温度が上昇する。モータの回転角度が一定角度になった時に、開口部(圧縮室の一部に形成されている)が開口し(この時の状態は、図9の点F)、圧縮室の内部と圧縮機10の外部のインジェクション配管4cとが連通するようになっている。
 冷房主体運転モードにおいては、圧縮機10で圧縮された冷媒は、熱源側熱交換器12にて凝縮されて高圧の二相冷媒となり(図9の点J)、逆止弁13aを介して、分岐部27aに至る。この高圧二相冷媒を、分岐部27aで分岐して、一部の冷媒を絞り装置14bによって減圧させて低温中圧の二相冷媒とし、分岐配管4dを介して、インジェクション配管4cに流入させる。インジェクション配管4cに流入した冷媒は、圧縮機10の圧縮室に設けられた開口部から圧縮室内に流入する。この際、圧縮機10の圧縮室内には、圧縮室のインジェクションポート(図示せず)のポート圧損(狭い流路を冷媒が通るために発生する圧力損失)により、少し圧力が下がった低温中圧の二相冷媒(図9の点K)となって流入し、圧縮室内では、中圧のガス冷媒(図9の点F)と低温中圧の二相冷媒(図9の点K)とが混合されて、冷媒の温度が下がる(図9の点H)。
 これにより、圧縮機10から吐出される冷媒の吐出温度が低下することになる(図9の点I)。このようなインジェクションを行なわない場合の圧縮機10の吐出温度は図9の点Gであり、インジェクションにより、吐出温度が点Gから点Iに低下していることが分かる。なお、分岐部27aには二相状態の冷媒が流れ込むため、均一に分配するために、分岐部27aは冷媒を鉛直方向の下から上に流した状態で分流させる構造とする。このようにすることで、二相冷媒が均一に分配される。
 冷房主体運転モードにおいては、全冷房運転モードと同様に、絞り装置14bの開度を変化させ、絞り装置14bの上流側の冷媒の圧力を変化させることにより、圧縮機10の圧縮室へのインジェクション量を調整し、圧縮機10の吐出温度または吐出スーパーヒートを制御する。なお、全冷房運転モードと同様に、逆流防止装置20の作用により分岐配管4dの中圧冷媒が分岐部27bの低圧冷媒と混合するのを防止している。また、絞り装置14aは、冷媒が流れないので、任意の開度に設定しておいてよい。
 次に、熱媒体循環回路Bにおける熱媒体の流れについて説明する。
 冷房主体運転モードでは、熱媒体間熱交換器15bで熱源側冷媒の温熱が熱媒体に伝えられ、暖められた熱媒体がポンプ21bによって配管5内を流動させられることになる。また、冷房主体運転モードでは、熱媒体間熱交換器15aで熱源側冷媒の冷熱が熱媒体に伝えられ、冷やされた熱媒体がポンプ21aによって配管5内を流動させられることになる。ポンプ21a及びポンプ21bで加圧されて流出した熱媒体は、第2熱媒体流路切替装置23a及び第2熱媒体流路切替装置23bを介して、利用側熱交換器26a及び利用側熱交換器26bに流入する。
 利用側熱交換器26bでは熱媒体が室内空気に放熱することで、室内空間7の暖房を行なう。また、利用側熱交換器26aでは熱媒体が室内空気から吸熱することで、室内空間7の冷房を行なう。このとき、熱媒体流量調整装置25a及び熱媒体流量調整装置25bの作用によって熱媒体の流量が室内にて必要とされる空調負荷を賄うのに必要な流量に制御されて利用側熱交換器26a及び利用側熱交換器26bに流入するようになっている。利用側熱交換器26bを通過し若干温度が低下した熱媒体は、熱媒体流量調整装置25b及び第1熱媒体流路切替装置22bを通って、熱媒体間熱交換器15bへ流入し、再びポンプ21bへ吸い込まれる。利用側熱交換器26aを通過し若干温度が上昇した熱媒体は、熱媒体流量調整装置25a及び第1熱媒体流路切替装置22aを通って、熱媒体間熱交換器15aへ流入し、再びポンプ21aへ吸い込まれる。
 この間、暖かい熱媒体と冷たい熱媒体とは、第1熱媒体流路切替装置22及び第2熱媒体流路切替装置23の作用により、混合することなく、それぞれ温熱負荷、冷熱負荷がある利用側熱交換器26へ導入される。なお、利用側熱交換器26の配管5内では、暖房側、冷房側ともに、第2熱媒体流路切替装置23から熱媒体流量調整装置25を経由して第1熱媒体流路切替装置22へ至る向きに熱媒体が流れている。また、室内空間7にて必要とされる空調負荷は、暖房側においては第1温度センサー31bで検出された温度と第2温度センサー34で検出された温度との差を、冷房側においては第2温度センサー34で検出された温度と第1温度センサー31aで検出された温度との差を目標値に保つように制御することにより、賄うことができる。
 なお、全冷房運転モード及び全暖房運転モードと同様に、利用側熱交換器26での熱負荷の有無に応じて熱媒体流量調整装置25の開度を制御すればよい。
[暖房主体運転モード]
 図10は、空気調和装置100の暖房主体運転モード時における冷媒の流れを示す冷媒回路図である。この図10では、利用側熱交換器26aで温熱負荷が発生し、利用側熱交換器26bで冷熱負荷が発生している場合を例に暖房主体運転モードについて説明する。なお、図10では、太線で表された配管が冷媒(熱源側冷媒及び熱媒体)の循環する配管を示している。また、図10では、熱源側冷媒の流れ方向を実線矢印で、熱媒体の流れ方向を破線矢印で示している。
 図10に示す暖房主体運転モードの場合、室外機1では、第1冷媒流路切替装置11を、圧縮機10から吐出された熱源側冷媒を熱源側熱交換器12を経由させずに熱媒体変換機3へ流入させるように切り替える。熱媒体変換機3では、ポンプ21a及びポンプ21bを駆動させ、熱媒体流量調整装置25a及び熱媒体流量調整装置25bを開放し、熱媒体流量調整装置25c及び熱媒体流量調整装置25dを全閉とし、熱媒体間熱交換器15aと利用側熱交換器26bとの間を、熱媒体間熱交換器15bと利用側熱交換器26aとの間を、それぞれ熱媒体が循環するようにしている。
 まず始めに、冷媒循環回路Aにおける熱源側冷媒の流れについて説明する。
 低温低圧の冷媒が圧縮機10によって圧縮され、高温高圧のガス冷媒となって吐出される。圧縮機10から吐出された高温高圧のガス冷媒は、第1冷媒流路切替装置11を通り、第1接続配管4aを導通し、逆止弁13bを通過し、分岐部27aを介して、室外機1から流出する。室外機1から流出した高温高圧のガス冷媒は、冷媒配管4を通って熱媒体変換機3に流入する。熱媒体変換機3に流入した高温高圧のガス冷媒は、第2冷媒流路切替装置18bを通って凝縮器として作用する熱媒体間熱交換器15bに流入する。
 熱媒体間熱交換器15bに流入したガス冷媒は、熱媒体循環回路Bを循環する熱媒体に放熱しながら凝縮液化し、液冷媒となる。熱媒体間熱交換器15bから流出した液冷媒は、絞り装置16bで膨張させられて中圧二相冷媒となる。この中圧二相冷媒は、絞り装置16aを介して蒸発器として作用する熱媒体間熱交換器15aに流入する。熱媒体間熱交換器15aに流入した中圧二相冷媒は、熱媒体循環回路Bを循環する熱媒体から吸熱することで蒸発し、熱媒体を冷却する。この中圧二相冷媒は、熱媒体間熱交換器15aから流出し、第2冷媒流路切替装置18aを介して熱媒体変換機3から流出し、冷媒配管4を通って再び室外機1へ流入する。
 室外機1に流入した冷媒は、分岐部27bを介して、一部が第2接続配管4bに流れ込んで絞り装置14aを通り、絞り装置14aにより絞られて、低温低圧の二相冷媒となり、逆止弁13cを通って、蒸発器として作用する熱源側熱交換器12に流入する。そして、熱源側熱交換器12に流入した冷媒は、熱源側熱交換器12で室外空気から吸熱して、低温低圧のガス冷媒となる。熱源側熱交換器12から流出した低温低圧のガス冷媒は、第1冷媒流路切替装置11及びアキュムレーター19を介して圧縮機10へ再度吸入される。
 このとき、絞り装置16bは、圧力センサー36で検出された圧力を飽和温度に換算した値と第3温度センサー35bで検出された温度との差として得られるサブクールが一定になるように開度が制御される。また、絞り装置16aは全開、開閉装置17aは閉、開閉装置17bは閉となっている。なお、絞り装置16bを全開とし、絞り装置16aでサブクールを制御するようにしてもよい。
 熱源側冷媒がR32である場合、圧縮機10の吐出温度が高くなることがあるため、インジェクション回路を用いて、吐出温度を低下させる。このときの動作を図10及び図11を用いて説明する。図11は、暖房主体運転モード時における熱源側冷媒の状態遷移を示すp―h線図(圧力-エンタルピ線図)である。図9では、11軸が圧力を、横軸がエンタルピを、それぞれ示している。
 圧縮機10では、圧縮機10の吸入口から吸入された低温低圧のガス冷媒が密閉容器内に導入され、密閉容器内に満たされた低温低圧のガス冷媒が圧縮室(図示せず)に吸入される。圧縮室は、モータ(図示せず)により0~360度回転させられる間に、内容積が小さくなって行く。圧縮室に吸入された内部の冷媒は、圧縮室の内容積が小さくなるに伴い圧縮されて圧力及び温度が上昇する。モータの回転角度が一定角度になった時に、開口部(圧縮室の一部に形成されている)が開口し(この時の状態は、図11の点F)、圧縮室の内部と圧縮機10の外部のインジェクション配管4cとを連通するようになっている。
 暖房主体運転モードにおいては、熱媒体変換機3から冷媒配管4を経由して室外機1に戻ってくる冷媒は、分岐部27bを介し、一部が絞り装置14aに流れる。絞り装置14aの作用により、絞り装置14aの上流側の冷媒の圧力は中圧状態に制御される(図11の点J)。絞り装置14aによって中圧状態にされている二相冷媒の一部は、分岐部27bで分岐され、分岐配管4dに流れ込む。この冷媒は、逆流防止装置20を介して、インジェクション配管4cへ流れ、圧縮機10の圧縮室に設けられた開口部から圧縮室内に流入する。この際、圧縮機10の圧縮室内には、圧縮室の開口部での圧力損失(狭い流路を冷媒が流れかつ流れが急拡大及び急縮小されるために発生する圧力損失)により、少し圧力が下がった低温中圧の二相冷媒(図11の点K)となって流入し、圧縮室内では、中圧のガス冷媒(図11の点F)と低温中圧の二相冷媒(図11の点K)とが混合されて、冷媒の温度が下がる(図11の点H)。
 これにより、圧縮機10から吐出される冷媒の吐出温度が低下することになる(図11の点I)。このようなインジェクションを行なわない場合の圧縮機10の吐出温度は図11の点Gであり、インジェクションにより、吐出温度が点Gから点Iに低下していることが分かる。なお、全暖房運転モードで説明したように、分岐部27bは冷媒を鉛直方向の下から上に流した状態で分流させる構造とする。
 暖房主体運転モードにおいては、全暖房運転モードと同様に、絞り装置14aの開度を変化させ、圧縮機10の圧縮室へのインジェクション量を調整し、圧縮機10の吐出温度または吐出スーパーヒートを制御する。
 なお、この時、絞り装置14bは全閉または冷媒が流れない小さい開度となっており、分岐部27aの高圧状態の冷媒が、逆流防止装置20を通ってきた中圧状態の冷媒と混合するのを防止している。また、絞り装置14aは、全暖房運転モードで説明したように制御するとよい。さらに、中圧検出装置32の構成、絞り装置14bの構成及び制御についても、全暖房運転モードと同様にするとよい。
 次に、熱媒体循環回路Bにおける熱媒体の流れについて説明する。
 暖房主体運転モードでは、熱媒体間熱交換器15bで熱源側冷媒の温熱が熱媒体に伝えられ、暖められた熱媒体がポンプ21bによって配管5内を流動させられることになる。また、暖房主体運転モードでは、熱媒体間熱交換器15aで熱源側冷媒の冷熱が熱媒体に伝えられ、冷やされた熱媒体がポンプ21aによって配管5内を流動させられることになる。ポンプ21a及びポンプ21bで加圧されて流出した熱媒体は、第2熱媒体流路切替装置23a及び第2熱媒体流路切替装置23bを介して、利用側熱交換器26a及び利用側熱交換器26bに流入する。
 利用側熱交換器26bでは熱媒体が室内空気から吸熱することで、室内空間7の冷房を行なう。また、利用側熱交換器26aでは熱媒体が室内空気に放熱することで、室内空間7の暖房を行なう。このとき、熱媒体流量調整装置25a及び熱媒体流量調整装置25bの作用によって熱媒体の流量が室内にて必要とされる空調負荷を賄うのに必要な流量に制御されて利用側熱交換器26a及び利用側熱交換器26bに流入するようになっている。利用側熱交換器26bを通過し若干温度が上昇した熱媒体は、熱媒体流量調整装置25b及び第1熱媒体流路切替装置22bを通って、熱媒体間熱交換器15aに流入し、再びポンプ21aへ吸い込まれる。利用側熱交換器26aを通過し若干温度が低下した熱媒体は、熱媒体流量調整装置25a及び第1熱媒体流路切替装置22aを通って、熱媒体間熱交換器15bへ流入し、再びポンプ21bへ吸い込まれる。
 この間、暖かい熱媒体と冷たい熱媒体とは、第1熱媒体流路切替装置22及び第2熱媒体流路切替装置23の作用により、混合することなく、それぞれ温熱負荷、冷熱負荷がある利用側熱交換器26へ導入される。なお、利用側熱交換器26の配管5内では、暖房側、冷房側ともに、第2熱媒体流路切替装置23から熱媒体流量調整装置25を経由して第1熱媒体流路切替装置22へ至る向きに熱媒体が流れている。また、室内空間7にて必要とされる空調負荷は、暖房側においては第1温度センサー31bで検出された温度と第2温度センサー34で検出された温度との差を、冷房側においては第2温度センサー34で検出された温度と第1温度センサー31aで検出された温度との差を目標値に保つように制御することにより、賄うことができる。
 なお、全冷房運転モード、全暖房運転モード及び冷房主体運転モードと同様に、利用側熱交換器26での熱負荷の有無に応じて熱媒体流量調整装置25の開度を制御すればよい。
[絞り装置14aまたは/及び絞り装置14b]
 各運転モードにおける圧縮機10の圧縮室へのインジェクションは以上のように行なわれる。よって、絞り装置14aには、全暖房運転モード及び暖房主体運転モードの時に二相状態の冷媒が流れ込む。また、絞り装置14bには、全冷房運転モードの時に液冷媒が流れ込み、冷房主体運転モードの時に二相状態の冷媒が流れ込む。
 絞り装置として電子式膨張弁を使用した場合、絞り装置に二相状態の冷媒が流入すると、ガス冷媒と液冷媒とが分離して流れていると、絞り部にガスが流れる状態と液が流れる状態とが別々に発生して、絞り装置の出口側の圧力が安定しないことがある。特に冷媒の乾き度が小さい場合に、冷媒の分離が発生し、その傾向が強い。そこで、絞り装置14aまたは/及び絞り装置14bとして、図12に示すような構造のものを使用するとよい。そうすれば、絞り装置に二相冷媒が流入しても、安定した制御が可能になる。
 図12は、絞り装置14aまたは/及び絞り装置14b(以下、絞り装置14とまとめて説明するものとする)の好適な構成例を模式的に示した図である。図12において、絞り装置14は、流入管41、流出管42、絞り部43、弁体44、モータ45、及び、攪拌装置46から構成されている。そして、攪拌装置46は、流入管41内に装置されている。
 流入管41から流入した二相冷媒は、攪拌装置46に至り、攪拌装置46の作用で、ガス冷媒と液冷媒とが攪拌されてほぼ均一に混ざり合う。攪拌装置46の作用でガス冷媒と液冷媒がほぼ均一に混ざり合った二相冷媒は、絞り部43に至り、絞り部43において弁体44によって絞られて、減圧され、流出管42から流出する。この際、モータ45によって弁体44の位置が制御され、絞り部43での絞り量が制御される。
 攪拌装置46は、ガス冷媒と液冷媒とがほぼ均一に混ざり合っている状態を作れるものであれば、どんなものでもよい。たとえば、発泡金属を使用することで攪拌装置46を実現できる。発泡金属とは、スポンジ等の樹脂発泡体と同じ三次元網目状構造を持つ金属多孔質体のことであり、金属多孔質体の中で気孔率(空隙率)が最も大きい(80%~97%)ものである。この発泡金属を通して、二相冷媒を流通させると、三次元的な網目状構造の影響で、冷媒中のガスが微細化され、攪拌されて、液と均一に混ざり合う効果がある。
 なお、絞り装置14の配管(流入管41及び流出管42)内部における冷媒の流れは、配管の内径をD、配管の長さをLとした場合に、流れを乱す構造を持った箇所からL/Dが8~10になる距離にまで達すると、乱れの影響がなくなり元通りの流れになることが、流体力学の分野で明らかになっている。そこで、絞り装置14の流入管41の内径をD、攪拌装置46から絞り部43までの長さをLとし、L/Dが6以下となる位置に、攪拌装置46を設置すると、攪拌した二相冷媒が、攪拌された状態のまま、絞り部43に到達することができ、安定した制御が可能となる。
[冷媒配管4]
 以上説明したように、本実施の形態1に係る空気調和装置100は、幾つかの運転モードを具備している。これらの運転モードにおいては、室外機1と熱媒体変換機3とを接続する配管4には熱源側冷媒が流れている。
[配管5]
 本実施の形態1に係る空気調和装置100が実行する幾つかの運転モードにおいては、熱媒体変換機3と室内機2を接続する配管5には水や不凍液等の熱媒体が流れている。
 なお、圧力センサー36aは、冷暖混在運転において冷房側として作用する熱媒体間熱交換器15aと第2冷媒流路切替装置18aとの間の流路に設置し、圧力センサー36bは、冷暖混在運転において暖房側として作用する熱媒体間熱交換器15bと絞り装置16bとの間の流路に設置した場合について説明を行なった。このような位置に設置すると、熱媒体間熱交換器15a及び熱媒体間熱交換器15bにおいて圧力損失があった場合でも、精度良く、飽和温度を演算することができる。ただし、凝縮側は圧力損失が小さいため、圧力センサー36bを熱媒体間熱交換器15bと絞り装置16bとの間の流路に設置してもよく、演算精度がそれ程悪くなることもない。また、蒸発器は比較的圧力損失が大きいが、圧力損失の量が推測可能あるいは圧力損失の少ない熱媒体間熱交換器を使用している場合等は、圧力センサー36aを熱媒体間熱交換器15aと第2冷媒流路切替装置18aとの間の流路に設置してもよい。
 空気調和装置100では、利用側熱交換器26にて暖房負荷または冷房負荷のみが発生している場合は、対応する第1熱媒体流路切替装置22及び第2熱媒体流路切替装置23を中間の開度にし、熱媒体間熱交換器15a及び熱媒体間熱交換器15bの双方に熱媒体が流れるようにしている。これにより、熱媒体間熱交換器15a及び熱媒体間熱交換器15bの双方を暖房運転または冷房運転に使用することができるため、伝熱面積が大きくなり、効率のよい暖房運転または冷房運転を行なうことができる。
 また、利用側熱交換器26にて暖房負荷と冷房負荷とが混在して発生している場合は、暖房運転を行なっている利用側熱交換器26に対応する第1熱媒体流路切替装置22及び第2熱媒体流路切替装置23を加熱用の熱媒体間熱交換器15bに接続される流路へ切り替え、冷房運転を行なっている利用側熱交換器26に対応する第1熱媒体流路切替装置22及び第2熱媒体流路切替装置23を冷却用の熱媒体間熱交換器15aに接続される流路へ切り替えることにより、各室内機2にて、暖房運転、冷房運転を自由に行なうことができる。
 なお、実施の形態1で説明した第1熱媒体流路切替装置22及び第2熱媒体流路切替装置23は、三方弁等の三方流路を切り替えられるもの、開閉弁等の二方流路の開閉を行なうものを2つ組み合わせる等、流路を切り替えられるものであればよい。また、ステッピングモーター駆動式の混合弁等の三方流路の流量を変化させられるもの、電子式膨張弁等の2方流路の流量を変化させられるものを2つ組み合わせる等して第1熱媒体流路切替装置22及び第2熱媒体流路切替装置23として用いてもよい。この場合は、流路の突然の開閉によるウォーターハンマーを防ぐこともできる。さらに、実施の形態1では、熱媒体流量調整装置25が二方弁である場合を例に説明を行なったが、三方流路を持つ制御弁とし利用側熱交換器26をバイパスするバイパス管と共に設置するようにしてもよい。
 また、熱媒体流量調整装置25は、ステッピングモーター駆動式で流路を流れる流量を制御できるものを使用するとよく、二方弁でも三方弁の一端を閉止したものでもよい。また、熱媒体流量調整装置25として、開閉弁等の二方流路の開閉を行うものを用い、ON/OFFを繰り返して平均的な流量を制御するようにしてもよい。
 また、第2冷媒流路切替装置18が四方弁であるかのように示したが、これに限るものではなく、二方流路切替弁や三方流路切替弁を複数個用い、同じように冷媒が流れるように構成してもよい。
 また、利用側熱交換器26と熱媒体流量調整装置25とが1つしか接続されていない場合でも同様のことが成り立つのは言うまでもなく、更に熱媒体間熱交換器15及び絞り装置16として、同じ動きをするものが複数個設置されていても、当然問題ない。さらに、熱媒体流量調整装置25は、熱媒体変換機3に内蔵されている場合を例に説明したが、これに限るものではなく、室内機2に内蔵されていてもよく、熱媒体変換機3と室内機2とは別体に構成されていてもよい。
 熱媒体としては、たとえばブライン(不凍液)や水、ブラインと水の混合液、水と防食効果が高い添加剤の混合液等を用いることができる。したがって、空気調和装置100においては、熱媒体が室内機2を介して室内空間7に漏洩したとしても、熱媒体に安全性の高いものを使用しているため安全性の向上に寄与することになる。
 本実施の形態1では、空気調和装置100にアキュムレーター19を含めている場合を例に説明したが、アキュムレーター19を設けなくてもよい。また、一般的に、熱源側熱交換器12及び利用側熱交換器26a~26dには、送風機が取り付けられており、送風により凝縮あるいは蒸発を促進させる場合が多いが、これに限るものではなく、たとえば利用側熱交換器26a~26dとしては放射を利用したパネルヒータのようなものも用いることができるし、熱源側熱交換器12としては、水や不凍液により熱を移動させる水冷式のタイプのものも用いることができ、放熱あるいは吸熱をできる構造のものであればどんなものでも用いることができる。
 実施の形態1では、利用側熱交換器26a~26dが4つである場合を例に説明を行ったが、幾つ接続してもよい。また、熱媒体間熱交換器15a、熱媒体間熱交換器15bが2つである場合を例に説明を行ったが、当然、これに限るものではなく、熱媒体を冷却または/及び加熱できるように構成すれば、幾つ設置してもよい。さらに、ポンプ21a、ポンプ21bはそれぞれ一つとは限らず、複数の小容量のポンプを並列に並べて接続してもよい。
 以上のように、本実施の形態1に係る空気調和装置100は、圧縮機10の吐出温度が高くなってしまうR32等のような冷媒を使用した場合においても、運転モードによらず、圧縮機10の圧縮途中の圧縮室に冷媒をインジェクションし、吐出温度が高くなりすぎないように制御することを可能にしている。したがって、空気調和装置100によれば、圧縮機10の吐出温度を効率的に制御することによって、冷媒および冷熱機器の劣化を防ぎ、安全な運転を継続させることができる。
次に、除霜運転について説明する。
 全暖房運転モードおよび暖房主体運転モードにおいて、熱源側熱交換器12の周囲の空気温度が低い場合、熱源側熱交換器12の配管の内部に氷点下の低温低圧の冷媒が流れるため、熱源側熱交換器12の周囲に着霜が起きる。熱源側熱交換器12に着霜が起きると、霜層が熱抵抗となり、かつ、熱源側熱交換器12の周囲の空気が流動する流路が狭くなり空気が流れ難くなるため、冷媒と空気との熱交換が阻害され、機器の暖房能力および運転効率が低下する。そこで、熱源側熱交換器12の着霜が増加した場合、熱源側熱交換器12の周囲の霜を融かす除霜運転を行なう。
 本実施の形態1における除霜運転について、図13に基づいて説明する。
 図13は、本発明の実施の形態1に係る空気調和装置の除霜運転モード時における冷媒の流れを示す冷媒回路図である。
冷媒は圧縮機10によって圧縮され、加熱されて、圧縮機10から吐出され、第1冷媒流路切替装置11を介して熱源側熱交換器12に流入する。そして、熱源側熱交換器12で放熱し、周囲に付着した霜を融かす。熱源側熱交換器12から流出した冷媒は、逆止弁13aを通って、分岐部27aに至り、分岐部27aで分流される。
 分岐部27aで分流された一方の冷媒は、室外機1から流出し、冷媒配管4を通って熱媒体変換機3に流入する。熱媒体変換機3に流入した冷媒は、開状態となっている開閉装置17aおよび開状態となっている開閉装置17bを介して、熱媒体変換機3から流出し、冷媒配管4を通って再び室外機1へ流入する。室外機1に流入した冷媒は、分岐部27bを介して、逆止弁13dを通って、第1冷媒流路切替装置11およびアキュムレーター19を介して、圧縮機10へ再度吸入される。この際、絞り装置16aおよび絞り装置16bは、全閉または冷媒が流れない小さい開度となっており、熱媒体間熱交換器15aおよび熱媒体間熱交換器15bには、冷媒が流れないようにしている。
 また、分岐部27aで分流された他方の冷媒は、分岐配管4dに流入し、全開状態の絞り装置14bおよびインジェクション配管4cを介して、圧縮機10の圧縮室にインジェクションされ、アキュムレーター19を通って圧縮機10に吸入された冷媒(分岐部27aで分流された一方の流れ)と合流する。
 なお、図13においては、ポンプ21bを動作させて、熱媒体を、暖房要求のある利用側熱交換器26(利用側熱交換器26aおよび利用側熱交換器26b)に、循環させている。このようにすることにより、除霜運転中においても、熱媒体に蓄えられた温熱により、暖房運転を継続することができる。また、全暖房運転後の除霜においては、ポンプ21aも動作させるようにしてもよいし、除霜運転中は、ポンプ21aおよびポンプ21bを停止し、暖房運転を停止するようにしてもよい。
 以上のように、除霜運転においては、熱源側熱交換器12の周囲に付着した霜を融かしながら、分岐部27aで冷媒を分岐させ、一部の冷媒を圧縮機10の圧縮室にインジェクションする。このようにすることにより、圧縮機10の余熱を直接冷媒に伝え易く、効率のよい除霜運転が行なえる。また、室外機1から離れた熱媒体変換機3に循環させる冷媒流量をインジェクション流量分減らすことができるため、圧縮機10の動力を低減させることができる。
実施の形態2.
 図14は、実施の形態2に係る空気調和装置100Aの構成を表す図である。本実施の形態2に係る空気調和装置100Aにおいては、絞り装置14a、絞り装置14b、絞り装置14cを室外機1に備えている。つまり、実施の形態1では、逆流防止装置20を備えた場合を例に説明したが、実施の形態2では、実施の形態1での逆流防止装置20の位置に絞り装置14aを移動し、実施の形態1での絞り装置14aの位置に絞り装置14cを設けている。絞り装置14a及び絞り装置14bは、電子式膨張弁等の開度(開口面積)を連続的に変化させられるものを使用し、絞り装置14cはキャピラリチューブ等の固定絞りのものや開時の開口面積が小さい電磁弁等の開閉弁等の絞り部の開口面積が固定されているものを使用する。基本的な運転モードは、全冷房運転モード、全暖房運転モード、冷房主体運転モード及び暖房主体運転モードであり、実施の形態1に示した動作とほぼ同様であり、ここでは細かい動作の記載は省略する。
 全冷房運転モードにおいては、分岐部27aから高圧液冷媒を分流し、絞り装置14bの開度を制御して、分岐配管4d及びインジェクション配管4cを介して、圧縮機10の圧縮室にインジェクションする冷媒の流量を調整し、圧縮機10の吐出温度を制御する。このとき、絞り装置14aは全閉または冷媒が流れない小さい開度としておく。
 全暖房運転モードにおいては、絞り装置14aの開度を制御し、分岐配管4d及びインジェクション配管4cを介して圧縮機10の圧縮室にインジェクションする冷媒の流量を調整し、結果的に絞り装置14cへ流れる冷媒の流量も変化するため、絞り装置14cの上流側の冷媒の圧力も変化し、中圧と吐出温度の両方を制御する。このとき、絞り装置14bは全閉または冷媒が流れない小さい開度としておく。
 冷房主体運転モードにおいては、分岐部27aから高圧二相冷媒を分流し、絞り装置14bの開度を制御して、分岐配管4d及びインジェクション配管4cを介して、圧縮機10の圧縮室にインジェクションする冷媒の流量を調整し、圧縮機10の吐出温度を制御する。このとき、絞り装置14aは全閉または冷媒が流れない小さい開度としておく。
 暖房主体運転モードにおいては、絞り装置14aの開度を制御し、分岐配管4d及びインジェクション配管4cを介して圧縮機10の圧縮室にインジェクションする冷媒の流量を調整し、結果的に絞り装置14cへ流れる冷媒の流量も変化するため、絞り装置14cの上流側の冷媒の圧力も変化し、中圧と吐出温度の両方を制御する。このとき、絞り装置14bは全閉または冷媒が流れない小さい開度としておく。
 以上のように、熱源側熱交換器12を凝縮器として作用させる全冷房運転モード時及び冷房主体運転モード時は、絞り装置14bを制御して、高圧冷媒を分流して、インジェクションを行なう。また、熱源側熱交換器12を蒸発器として作用させる全暖房運転モード時及び暖房主体運転モード時は、絞り装置14aを制御して、中圧冷媒を分流して、インジェクションを行ない、吐出温度の制御を行なう。このように、熱源側熱交換器12を凝縮器として作用させる場合と、熱源側熱交換器12を蒸発器として作用させる場合とで、異なる絞り装置を制御し、インジェクション量を制御する。
 なお、ここでは、絞り装置14cとして、キャピラリチューブ等の絞り部の開口面積が固定されているものを使用する場合について説明を行った。このような構成にすると安価にシステムを構成できるが、当然、絞り装置14cとして、電子式膨張弁等の開度(開口面積)を連続的に変化させられるものを用いても、同様の開口面積を実現できるため問題ない。また、絞り装置14a及び絞り装置14bに関しても、複数のキャピラリチューブを切り替えられるようにする等、段階的に開口面積を切り替えられるようなものを使用しても構わない。
実施の形態3.
 実施の形態1及び実施の形態2では、圧縮機10、第1冷媒流路切替装置11、熱源側熱交換器12、絞り装置14a、絞り装置14b、開閉装置17および逆流防止装置20(実施の形態2では絞り装置14c)を室外機1に収容した。さらに、利用側熱交換器26を室内機2に収容し、熱媒体間熱交換器15および絞り装置16を熱媒体変換機3に収容した。そして、室外機1と熱媒体変換機3との間を2本一組の配管で接続し、室外機1と熱媒体変換機3との間で熱源側冷媒を循環させ、室内機2と熱媒体変換機3との間をそれぞれ2本一組の配管で接続し、室内機2と熱媒体変換機3との間で熱媒体を循環させ、熱媒体間熱交換器15で熱源側冷媒と熱媒体とを熱交換させるシステムを例に説明を行なったが、本発明の範囲はこれに限るものではない。
 そこで、実施の形態3では、図15に基づいて別の冷媒回路構成について説明する。
 図15は、本発明の実施の形態3に係る空気調和装置100の回路構成の一例を示す概略構成図である。
例えば、圧縮機10、第1冷媒流路切替装置11、熱源側熱交換器12、絞り装置14a、絞り装置14bおよび逆流防止装置20(又は絞り装置14c)を室外機1に収容する。また、蒸発器または凝縮器となり空調対象空間の空気と冷媒とを熱交換させる負荷側熱交換器26および絞り装置16を室内機2に収容し、室外機1および室内機2とは別体に形成された中継ユニットとなる中継機3Aを備え、室外機1と中継機3Aとの間を2本一組の配管で接続し、室内機2と中継機3Aとの間をそれぞれ2本一組の配管で接続し、中継機3Aを介して室外機1と室内機2との間で冷媒を循環させ、全冷房運転、全暖房運転、冷房主体運転、暖房主体運転を行なうことができる直膨システムにも適用することができ、同様の効果を奏する。
 1 室外機、2 室内機、2a 室内機、2b 室内機、2c 室内機、2d 室内機、3 熱媒体変換機、3A 中継機、4 冷媒配管、4a 第1接続配管、4b 第2接続配管、4c インジェクション配管、4d 分岐配管、5 配管、6 室外空間、7 室内空間、8 空間、9 建物、10 圧縮機、11 第1冷媒流路切替装置、12 熱源側熱交換器(第1熱交換器)、13a 逆止弁、13b 逆止弁、13c 逆止弁、13d 逆止弁、14 絞り装置、14a 絞り装置(第2絞り装置)、14b 絞り装置(第3絞り装置)、14c 絞り装置(第4絞り装置)、15 熱媒体間熱交換器(第2熱交換器)、15a 熱媒体間熱交換器、15b 熱媒体間熱交換器、16 絞り装置、16a 絞り装置(第1絞り装置)、16b 絞り装置(第1絞り装置)、17 開閉装置、17a 開閉装置、17b 開閉装置、18 第2冷媒流路切替装置、18a 第2冷媒流路切替装置、18b 第2冷媒流路切替装置、19 アキュムレーター、24 バイパス管、20 逆流防止装置、21 ポンプ、21a ポンプ、21b ポンプ、22 第1熱媒体流路切替装置、22a 第1熱媒体流路切替装置、22b 第1熱媒体流路切替装置、22c 第1熱媒体流路切替装置、22d 第1熱媒体流路切替装置、23 第2熱媒体流路切替装置、23a 第2熱媒体流路切替装置、23b 第2熱媒体流路切替装置、23c 第2熱媒体流路切替装置、23d 第2熱媒体流路切替装置、25 熱媒体流量調整装置、25a 熱媒体流量調整装置、25b 熱媒体流量調整装置、25c 熱媒体流量調整装置、25d 熱媒体流量調整装置、26 利用側熱交換器、26a 利用側熱交換器、26b 利用側熱交換器、26c 利用側熱交換器、26d 利用側熱交換器、27a 分岐部(第1冷媒分岐部)、27b 分岐部(第2冷媒分岐部)、31 第1温度センサー、31a 第1温度センサー、31b 第1温度センサー、32 中圧検出装置、34 第2温度センサー、34a 第2温度センサー、34b 第2温度センサー、34c 第2温度センサー、34d 第2温度センサー、35 第3温度センサー、35a 第3温度センサー、35b 第3温度センサー、35c 第3温度センサー、35d 第3温度センサー、36 圧力センサー、36a 圧力センサー、36b 圧力センサー、37 吐出冷媒温度検出装置、39 高圧検出装置、41 流入管、42 流出管、43 絞り部、44 弁体、45 モータ、46 攪拌装置、50 制御装置、100 空気調和装置、100A 空気調和装置、100B 空気調和装置、A 冷媒循環回路、B 熱媒体循環回路。

Claims (15)

  1.  低圧シェル構造の圧縮機と、冷媒流路切替装置と、第1熱交換器と、第1絞り装置と、第2熱交換器と、を配管接続して冷媒循環回路を構成し、
     前記冷媒流路切替装置の作用により、
     前記第1熱交換器に高圧の冷媒を流して凝縮器として動作させかつ前記第2熱交換器の一部または全部に低圧の冷媒を流して蒸発器として動作させる冷房運転と、
     前記第1熱交換器に低圧の冷媒を流して蒸発器として動作させかつ前記第2熱交換器の一部または全部に高圧の冷媒を流して凝縮器として動作させる暖房運転と、が切り替え可能な空気調和装置であって、
    前記圧縮機における圧縮途中過程の圧縮室の一部に開口部を設け、前記圧縮機の外部から前記開口部を介して前記圧縮室の内部に前記冷媒を導入するインジェクション配管と、
     第2絞り装置と、
    第3絞り装置と、
     前記暖房運転時には前記第2絞り装置を制御して前記インジェクション配管に流れる前記冷媒の量を調整し、前記冷房運転時には前記第3絞り装置を制御して前記インジェクション配管に流れる前記冷媒の流量を調整する制御装置と、を備えた
    ことを特徴とする空気調和装置。
  2.  前記冷房運転時に前記第1熱交換器の下流側となり、前記暖房運転時に前記圧縮機の下流側となる第1冷媒分岐部と、前記冷房運転時に前記圧縮機の上流側となり、前記暖房運転時に前記第1熱交換器の上流側となる第2冷媒分岐部と、を接続した分岐配管を設け、
     前記インジェクション配管は、
     前記分岐配管と、前記圧縮機における圧縮途中過程の圧縮室と、を接続したものであり、
     前記第2絞り装置は、
    前記冷房運転時には前記冷媒が流れない流路であって前記暖房運転時には前記第2分岐部から前記第1熱交換器に流れる前記冷媒の流路となる位置に設けられ、
    前記第3絞り装置は、
     前記第1冷媒分岐部と前記圧縮機の前記開口部との間に設けられ、
     前記分岐配管と前記インジェクション配管との接続部分と前記第2冷媒分岐部との間に逆流防止装置を備えた
     請求項1に記載の空気調和装置。
  3.  前記冷房運転時に前記第1熱交換器の下流側となり、前記暖房運転時に前記圧縮機の下流側となる第1冷媒分岐部と、前記冷房運転時に前記圧縮機の上流側となり、前記暖房運転時に前記第1熱交換器の上流側となる第2冷媒分岐部と、を接続した分岐配管を設け、
     前記インジェクション配管は、
     前記分岐配管と、前記圧縮機における圧縮途中過程の圧縮室と、を接続したものであり、
     前記第2絞り装置は、
    前記第2冷媒分岐部と前記圧縮機の前記開口部との間に設けられ、
    前記第3絞り装置は、
     前記第1冷媒分岐部と前記圧縮機の前記開口部との間に設けられ、
     前記冷房運転時には前記冷媒が流れない流路であって前記暖房運転時には前記第2分岐部から前記第1熱交換器に流れる前記冷媒の流路となる位置に第4絞り装置を備えた
    請求項1に記載の空気調和装置。
  4.  前記冷媒循環回路を循環させる冷媒として、
     R32、
     R32及びHFO1234yfを含みR32の質量比率が62%以上である混合冷媒、 または、
     R32およびHFO1234zeを含みR32の質量比率が43%以上である混合冷媒を使用する
     請求項1~3のいずれか一項に記載の空気調和装置。
  5.  前記第1冷媒分岐部及び前記第2冷媒分岐部は、
     鉛直方向の下から上に向かって冷媒が流れる構造としている
     請求項2~4のいずれか一項に記載の空気調和装置。
  6.  前記第2絞り装置および前記第3絞り装置のうち少なくとも1つは、
     開口面積を連続的に変化させられるものであり、二相冷媒を攪拌する攪拌装置を冷媒の流入管に備えている
     請求項1~5のいずれかに一項に記載の空気調和装置。
  7.  前記第2絞り装置および前記第3絞り装置のうち少なくとも1つは、
     その絞り部と前記攪拌装置との距離を、前記流入管の内径の6倍以下としている
     請求項6に記載の空気調和装置。
  8.  前記攪拌装置は、
     気孔率(空隙率)が80%以上の多孔質金属である
     請求項6または7に記載の空気調和装置。
  9.  前記圧縮機、前記冷媒流路切替装置、及び、前記第1熱交換器を室外機に収容し、
     前記第1絞り装置、及び、前記第2熱交換器を熱媒体変換機に収容し、
     前記室外機と前記熱媒体変換機とを、2本の冷媒配管で接続し、
     前記2本の冷媒配管の一方に高圧の液冷媒を流し、他方に低圧のガス冷媒を流し、前記高圧の液冷媒を前記第1分岐部で分流させて前記インジェクション配管に流入させる全冷房運転モードと、
     前記2本の冷媒配管の一方に高圧のガス冷媒を流し、他方に中圧の二相冷媒を流し、前記中圧の二相冷媒を前記第2分岐部で分流させて前記インジェクション配管に流入させる全暖房運転モードと、を備えた
     請求項2~8のいずれかに記載の空気調和装置。
  10.  前記第1絞り装置、及び、前記第2熱交換器を空調対象空間を空調可能な位置に設置される室内機に収容し、
     前記圧縮機、前記冷媒流路切替装置、前記第1熱交換器、前記第2絞り装置、前記第3絞り装置、及び、前記逆流防止装置を室外または機械室に設置される室外機に収容し、
     前記室外機と前記室内機とは別体に形成され、前記室外機と前記室内機とを接続する中継器を設け、
     前記室外機と前記中継器との間を2本一組の配管で接続し、前記室内機と前記中継器との間を2本一組の配管で接続し、
    前記2本の冷媒配管の一方に高圧の液冷媒を流し、他方に低圧のガス冷媒を流し、前記
    高圧の液冷媒を前記第1分岐部で分流させて前記インジェクション配管に流入させる全冷房運転モードと、
     前記2本の冷媒配管の一方に高圧のガス冷媒を流し、他方に中圧の二相冷媒を流し、前記中圧の二相冷媒を前記第2分岐部で分流させて前記インジェクション配管に流入させる全暖房運転モードと、を備えた
     請求項2~8のいずれか一項に記載の空気調和装置。
  11.  前記2本の冷媒配管の一方に高圧の二相冷媒を流し、他方に低圧のガス冷媒を流し、前記高圧の二相冷媒を前記第1分岐部で分流させて前記インジェクション配管に流入させる冷房主体運転モードと、
     前記2本の冷媒配管の一方に高圧のガス冷媒を流し、他方に中圧の二相冷媒を流し、前記中圧の二相冷媒を前記第2分岐部で分流させて前記インジェクション配管に流入させる暖房主体運転モードと、を備えた
     請求項9又は10に記載の空気調和装置。
  12.  前記制御装置は、
    前記暖房運転時には、前記圧縮機の吐出冷媒に係る状態量を目標値に近づけるように、または、目標値を超えないように、または、目標範囲に収まるように、前記第2絞り装置を制御し、
    前記冷房運転時には、前記圧縮機の吐出冷媒に係る状態量を目標値に近づけるように、または、目標値を超えないように、または、目標範囲に収まるように、前記第3絞り装置を制御して、前記圧縮機の圧縮室にインジェクションされる冷媒の流量を調整している
     請求項1~11のいずれか一項に記載の空気調和装置。
  13.  前記圧縮機の吐出温度を検出可能な吐出温度検出装置を備え、
    前記制御装置は、
    前記暖房運転時には、前記吐出温度を目標値に近づけるように、または、目標温度を超えないように、または、目標範囲に収まるように、前記第2絞り装置を制御し、
    前記冷房運転時には、前記吐出温度を目標値に近づけるように、または、目標温度を超えないように、または、目標範囲に収まるように、前記第3絞り装置を制御して、前記圧縮機の圧縮室にインジェクションされる冷媒の流量を調整している
     請求項1~11のいずれか一項に記載の空気調和装置。
  14.  前記圧縮機の吐出温度を検出可能な吐出温度検出装置及び前記圧縮機の高圧を検出可能な高圧検出装置を備え、
     前記制御装置は、
     前記暖房運転時には、前記吐出温度及び前記高圧から算出した吐出過熱度が目標値に近づけるように、または、目標過熱度を超えないように、または、目標範囲に収まるように、前記第2絞り装置を制御し、
     前記冷房運転時には、前記吐出温度及び前記高圧から算出した吐出過熱度が目標値に近づくように、または、目標過熱度を超えないように、または、目標範囲に収まるように前記第3絞り装置を制御する
     請求項12に記載の空気調和装置。
  15.  空調対象空間を空調可能な位置に設置され、前記空調対象空間の空気と熱交換をする利用側熱交換器を収容する室内機を備え、
     前記室内機と前記熱媒体変換機とを冷媒とは異なる熱媒体を循環させる2本1組の熱媒体配管で接続し、
     前記第2熱交換器において前記冷媒と前記熱媒体とを熱交換させる
     請求項9、請求項9に従属する請求項12~14のいずれか一項に記載の空気調和装置。
PCT/JP2011/000515 2011-01-31 2011-01-31 空気調和装置 WO2012104892A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US13/884,986 US9599378B2 (en) 2011-01-31 2011-01-31 Air-conditioning apparatus
AU2011358039A AU2011358039B2 (en) 2011-01-31 2011-01-31 Air-conditioning apparatus
CN201180059462.5A CN103261814B (zh) 2011-01-31 2011-01-31 空调装置
JP2012555550A JPWO2012104892A1 (ja) 2011-01-31 2011-01-31 空気調和装置
PCT/JP2011/000515 WO2012104892A1 (ja) 2011-01-31 2011-01-31 空気調和装置
EP11857679.2A EP2672202B1 (en) 2011-01-31 2011-01-31 Air-conditioning device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/000515 WO2012104892A1 (ja) 2011-01-31 2011-01-31 空気調和装置

Publications (1)

Publication Number Publication Date
WO2012104892A1 true WO2012104892A1 (ja) 2012-08-09

Family

ID=46602148

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/000515 WO2012104892A1 (ja) 2011-01-31 2011-01-31 空気調和装置

Country Status (6)

Country Link
US (1) US9599378B2 (ja)
EP (1) EP2672202B1 (ja)
JP (1) JPWO2012104892A1 (ja)
CN (1) CN103261814B (ja)
AU (1) AU2011358039B2 (ja)
WO (1) WO2012104892A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014119222A (ja) * 2012-12-18 2014-06-30 Daikin Ind Ltd 冷凍装置
WO2015046464A1 (ja) * 2013-09-27 2015-04-02 京セラ株式会社 冷暖房装置
JP2015087020A (ja) * 2013-10-28 2015-05-07 三菱電機株式会社 冷凍サイクル装置
US20150168037A1 (en) * 2012-09-07 2015-06-18 Mitsubishi Electric Corporation Air-conditioning apparatus
JP6012757B2 (ja) * 2012-11-21 2016-10-25 三菱電機株式会社 空気調和装置
WO2016181529A1 (ja) * 2015-05-13 2016-11-17 三菱電機株式会社 冷凍サイクル装置
JP2023504878A (ja) * 2019-12-09 2023-02-07 杭州三花研究院有限公司 制御方法及び制御システム

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012101677A1 (ja) * 2011-01-27 2012-08-02 三菱電機株式会社 空気調和装置
KR20160055583A (ko) * 2014-11-10 2016-05-18 삼성전자주식회사 히트 펌프
US20170191718A1 (en) * 2016-01-06 2017-07-06 Johnson Controls Technology Company Vapor compression system
CN106766326B (zh) * 2016-11-24 2019-04-30 广东美的暖通设备有限公司 多联机系统及其的制冷中压节流元件的控制方法
KR20210096522A (ko) * 2020-01-28 2021-08-05 엘지전자 주식회사 공기 조화 장치

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001317820A (ja) * 2000-05-08 2001-11-16 Hitachi Ltd 冷凍サイクル装置
JP2002107002A (ja) * 2000-09-29 2002-04-10 Mitsubishi Electric Corp 冷凍装置
JP2003314930A (ja) * 2002-04-19 2003-11-06 Daikin Ind Ltd 多室型空気調和機
JP2005282972A (ja) 2004-03-30 2005-10-13 Hitachi Ltd 冷凍装置
JP2007263443A (ja) * 2006-03-28 2007-10-11 Mitsubishi Electric Corp 空気調和装置
JP2009127902A (ja) 2007-11-21 2009-06-11 Mitsubishi Electric Corp 冷凍装置及び圧縮機
JP2009270822A (ja) * 2009-08-21 2009-11-19 Mitsubishi Electric Corp ヒートポンプ装置及びヒートポンプ装置の室外機
WO2009154149A1 (ja) * 2008-06-16 2009-12-23 三菱電機株式会社 非共沸混合冷媒及び冷凍サイクル装置
JP2010096360A (ja) * 2008-10-14 2010-04-30 Daikin Ind Ltd 空気調和装置
WO2010049998A1 (ja) 2008-10-29 2010-05-06 三菱電機株式会社 空気調和装置及び中継装置
JP2010276239A (ja) * 2009-05-27 2010-12-09 Mitsubishi Electric Corp 冷凍空気調和装置

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4742694A (en) * 1987-04-17 1988-05-10 Nippondenso Co., Ltd. Refrigerant apparatus
US5237833A (en) * 1991-01-10 1993-08-24 Mitsubishi Denki Kabushiki Kaisha Air-conditioning system
JPH07146032A (ja) * 1993-11-26 1995-06-06 Matsushita Seiko Co Ltd 膨張弁
JP3277665B2 (ja) * 1993-12-29 2002-04-22 ダイキン工業株式会社 空気調和機
US5680898A (en) * 1994-08-02 1997-10-28 Store Heat And Produce Energy, Inc. Heat pump and air conditioning system incorporating thermal storage
JPH11325655A (ja) * 1998-05-14 1999-11-26 Matsushita Seiko Co Ltd 消音器および空気調和機
JP4123829B2 (ja) * 2002-05-28 2008-07-23 三菱電機株式会社 冷凍サイクル装置
JP2004218964A (ja) * 2003-01-16 2004-08-05 Matsushita Electric Ind Co Ltd 冷凍装置
US7000423B2 (en) * 2003-10-24 2006-02-21 Carrier Corporation Dual economizer heat exchangers for heat pump
JP4613526B2 (ja) * 2004-06-23 2011-01-19 株式会社デンソー 超臨界式ヒートポンプサイクル装置
JP4670329B2 (ja) * 2004-11-29 2011-04-13 三菱電機株式会社 冷凍空調装置、冷凍空調装置の運転制御方法、冷凍空調装置の冷媒量制御方法
JP2009052752A (ja) * 2005-12-19 2009-03-12 Panasonic Corp 冷凍サイクル装置
JP4812606B2 (ja) 2006-11-30 2011-11-09 三菱電機株式会社 空気調和装置
JP5239427B2 (ja) 2008-03-18 2013-07-17 ダイキン工業株式会社 空気調和装置の更新方法
JP5407173B2 (ja) 2008-05-08 2014-02-05 ダイキン工業株式会社 冷凍装置

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001317820A (ja) * 2000-05-08 2001-11-16 Hitachi Ltd 冷凍サイクル装置
JP2002107002A (ja) * 2000-09-29 2002-04-10 Mitsubishi Electric Corp 冷凍装置
JP2003314930A (ja) * 2002-04-19 2003-11-06 Daikin Ind Ltd 多室型空気調和機
JP2005282972A (ja) 2004-03-30 2005-10-13 Hitachi Ltd 冷凍装置
JP2007263443A (ja) * 2006-03-28 2007-10-11 Mitsubishi Electric Corp 空気調和装置
JP2009127902A (ja) 2007-11-21 2009-06-11 Mitsubishi Electric Corp 冷凍装置及び圧縮機
WO2009154149A1 (ja) * 2008-06-16 2009-12-23 三菱電機株式会社 非共沸混合冷媒及び冷凍サイクル装置
JP2010096360A (ja) * 2008-10-14 2010-04-30 Daikin Ind Ltd 空気調和装置
WO2010049998A1 (ja) 2008-10-29 2010-05-06 三菱電機株式会社 空気調和装置及び中継装置
JP2010276239A (ja) * 2009-05-27 2010-12-09 Mitsubishi Electric Corp 冷凍空気調和装置
JP2009270822A (ja) * 2009-08-21 2009-11-19 Mitsubishi Electric Corp ヒートポンプ装置及びヒートポンプ装置の室外機

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150168037A1 (en) * 2012-09-07 2015-06-18 Mitsubishi Electric Corporation Air-conditioning apparatus
US9903625B2 (en) * 2012-09-07 2018-02-27 Mitsubishi Electric Corporation Air-conditioning apparatus
JPWO2014080464A1 (ja) * 2012-11-21 2017-01-05 三菱電機株式会社 空気調和装置
JP6012757B2 (ja) * 2012-11-21 2016-10-25 三菱電機株式会社 空気調和装置
JP2014119222A (ja) * 2012-12-18 2014-06-30 Daikin Ind Ltd 冷凍装置
JPWO2015046464A1 (ja) * 2013-09-27 2017-03-09 京セラ株式会社 冷暖房装置
WO2015046464A1 (ja) * 2013-09-27 2015-04-02 京セラ株式会社 冷暖房装置
US9917312B2 (en) 2013-09-27 2018-03-13 Kyocera Corporation Cooling and heating device
JP2015087020A (ja) * 2013-10-28 2015-05-07 三菱電機株式会社 冷凍サイクル装置
WO2016181529A1 (ja) * 2015-05-13 2016-11-17 三菱電機株式会社 冷凍サイクル装置
CN107532823A (zh) * 2015-05-13 2018-01-02 三菱电机株式会社 制冷循环装置
JPWO2016181529A1 (ja) * 2015-05-13 2018-01-11 三菱電機株式会社 冷凍サイクル装置
US10247459B2 (en) 2015-05-13 2019-04-02 Mitsubishi Electric Corporation Refrigeration cycle apparatus
JP2023504878A (ja) * 2019-12-09 2023-02-07 杭州三花研究院有限公司 制御方法及び制御システム
JP7483007B2 (ja) 2019-12-09 2024-05-14 杭州三花研究院有限公司 制御方法及び制御システム

Also Published As

Publication number Publication date
EP2672202B1 (en) 2021-04-14
EP2672202A1 (en) 2013-12-11
CN103261814A (zh) 2013-08-21
AU2011358039A1 (en) 2013-06-20
EP2672202A4 (en) 2014-10-08
US20130239602A1 (en) 2013-09-19
JPWO2012104892A1 (ja) 2014-07-03
CN103261814B (zh) 2016-05-11
AU2011358039B2 (en) 2015-01-22
US9599378B2 (en) 2017-03-21

Similar Documents

Publication Publication Date Title
JP5657030B2 (ja) 空気調和装置
JP5642278B2 (ja) 空気調和装置
JP5774121B2 (ja) 空気調和装置
JP5730335B2 (ja) 空気調和装置
JP5752148B2 (ja) 空気調和装置
WO2012104892A1 (ja) 空気調和装置
JP5818885B2 (ja) 空気調和装置
JP5784117B2 (ja) 空気調和装置
JP5595521B2 (ja) ヒートポンプ装置
JP6095764B2 (ja) 空気調和装置
WO2012070083A1 (ja) 空気調和装置
WO2013069043A1 (ja) 空気調和装置
WO2011048679A1 (ja) 空気調和装置
WO2011099074A1 (ja) 冷凍サイクル装置
JPWO2014083681A1 (ja) 空気調和装置
WO2014083679A1 (ja) 空気調和装置、その設計方法
WO2014083652A1 (ja) 空気調和装置
WO2011099056A1 (ja) 空気調和装置
JP5885753B2 (ja) 空気調和装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180059462.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11857679

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13884986

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2012555550

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2011857679

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2011358039

Country of ref document: AU

Date of ref document: 20110131

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE