WO2011135630A1 - ヒートポンプシステム - Google Patents

ヒートポンプシステム Download PDF

Info

Publication number
WO2011135630A1
WO2011135630A1 PCT/JP2010/003082 JP2010003082W WO2011135630A1 WO 2011135630 A1 WO2011135630 A1 WO 2011135630A1 JP 2010003082 W JP2010003082 W JP 2010003082W WO 2011135630 A1 WO2011135630 A1 WO 2011135630A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
bypass
compressor
aqueous medium
expansion valve
Prior art date
Application number
PCT/JP2010/003082
Other languages
English (en)
French (fr)
Inventor
本田雅裕
小田吉成
Original Assignee
ダイキン工業株式会社
ダイキン ヨーロッパ エヌ.ヴイ.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社, ダイキン ヨーロッパ エヌ.ヴイ. filed Critical ダイキン工業株式会社
Priority to EP10788220.1A priority Critical patent/EP2407735B1/en
Priority to JP2012512541A priority patent/JP5475874B2/ja
Priority to CN201080066427.1A priority patent/CN102869929B/zh
Priority to PCT/JP2010/003082 priority patent/WO2011135630A1/ja
Publication of WO2011135630A1 publication Critical patent/WO2011135630A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/006Compression machines, plants or systems with reversible cycle not otherwise provided for two pipes connecting the outdoor side to the indoor side with multiple indoor units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/031Sensor arrangements
    • F25B2313/0314Temperature sensors near the indoor heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/031Sensor arrangements
    • F25B2313/0315Temperature sensors near the outdoor heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/04Details of condensers
    • F25B2339/047Water-cooled condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/021Inverters therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/027Compressor control by controlling pressure
    • F25B2600/0271Compressor control by controlling pressure the discharge pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2509Economiser valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2513Expansion valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/193Pressures of the compressor
    • F25B2700/1931Discharge pressures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/193Pressures of the compressor
    • F25B2700/1933Suction pressures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2115Temperatures of a compressor or the drive means therefor
    • F25B2700/21151Temperatures of a compressor or the drive means therefor at the suction side of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2115Temperatures of a compressor or the drive means therefor
    • F25B2700/21152Temperatures of a compressor or the drive means therefor at the discharge side of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2116Temperatures of a condenser
    • F25B2700/21161Temperatures of a condenser of the fluid heated by the condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2116Temperatures of a condenser
    • F25B2700/21162Temperatures of a condenser of the refrigerant at the inlet of the condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2117Temperatures of an evaporator
    • F25B2700/21174Temperatures of an evaporator of the refrigerant at the inlet of the evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2117Temperatures of an evaporator
    • F25B2700/21175Temperatures of an evaporator of the refrigerant at the outlet of the evaporator
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • the present invention relates to a heat pump system.
  • the present invention is a portion between the outlet of the main refrigerant circuit and the main decompression mechanism of the main refrigerant circuit configured by connecting the variable capacity compressor, the radiator, the variable main decompression mechanism, and the evaporator.
  • the present invention relates to a heat pump system that performs liquid injection from a compressor to a suction side of a compressor.
  • Patent Document 1 Japanese Patent Laid-Open No. 2007-163099.
  • This air conditioner heat pump system
  • This air conditioner includes a variable capacity compressor, an indoor heat exchanger (heat radiator) that functions as a refrigerant radiator during heating operation, and a variable outdoor expansion valve (main decompression mechanism).
  • a refrigerant circuit configured by connecting an outdoor heat exchanger (evaporator) that functions as a refrigerant evaporator during heating operation.
  • bypass pipe is provided with a decompression mechanism (bypass decompression mechanism) for decompressing the refrigerant flowing through the bypass pipe, and the bypass pipe and the bypass decompression mechanism constitute a bypass circuit.
  • a decompression mechanism bypass decompression mechanism
  • bypass pipe and the bypass decompression mechanism constitute a bypass circuit.
  • the former method has a narrow limit range in principle, and it becomes difficult to cope with it under an operating condition where the compression ratio of the compressor is large.
  • the latter method has a wider limit range than the former method, and can easily cope with operating conditions in which the compression ratio of the compressor is large.
  • the flow rate (liquid injection flow rate) of the liquid refrigerant introduced to the suction side of the compressor through the bypass pipe increases, liquid compression or the like may occur, thereby impairing the reliability of the compressor.
  • the flow rate of refrigerant circulating in the refrigerant circuit refrigerant circulation amount
  • the bypass pressure-reducing mechanism is constituted by an electromagnetic on-off valve and a capillary tube
  • the electromagnetic on-off valve and The flow resistance of the capillary tube is selected.
  • the liquid injection flow rate becomes insufficient under an operating condition where the operating capacity of the compressor is large. This makes it impossible to increase the operating capacity of the compressor in order to ensure the reliability of the compressor under operating conditions where the compression ratio of the compressor is large, making it difficult to ensure the desired operating capacity. Become.
  • An object of the present invention is to provide a portion between a radiator outlet and a main decompression mechanism of a main refrigerant circuit configured by connecting a variable capacity compressor, a radiator, a variable main decompression mechanism, and an evaporator.
  • a heat pump system that performs liquid injection from the compressor to the suction side of the compressor, it is possible to obtain the desired operation capability while ensuring the reliability of the compressor even in an operation situation where the compression ratio of the compressor is large. is there.
  • the heat pump system has a main refrigerant circuit, a bypass circuit, and a control unit.
  • the main refrigerant circuit includes a variable capacity compressor that compresses the refrigerant, a radiator that radiates heat of the refrigerant compressed in the compressor, and a variable main pressure reduction mechanism that depressurizes the refrigerant radiated in the radiator.
  • An evaporator that evaporates the refrigerant decompressed in the main decompression mechanism is connected.
  • the bypass circuit includes a bypass pipe that connects a portion between the radiator outlet of the main refrigerant circuit and the main decompression mechanism and the suction side of the compressor, and a bypass decompression mechanism that decompresses the liquid refrigerant flowing through the bypass pipe.
  • the control unit controls the compressor, the main decompression mechanism, and the bypass decompression mechanism.
  • the bypass pressure reducing mechanism is variable.
  • the control unit performs liquid injection control for controlling the bypass pressure reducing mechanism so that the discharge temperature, which is the temperature of the refrigerant discharged from the compressor, reaches a predetermined target discharge temperature, and the upper limit opening of the bypass pressure reducing mechanism in the liquid injection control Is determined by the correlation value with the opening of the main pressure reducing mechanism.
  • the bypass pressure reducing mechanism is made variable, and liquid injection control is performed to control the bypass pressure reducing mechanism so that the discharge temperature becomes the target discharge temperature.
  • the opening degree of the pressure reducing mechanism is changed, and the liquid injection flow rate can be increased or decreased.
  • the problem that the liquid injection flow rate is insufficient is less likely to occur than in the case where the bypass pressure reducing mechanism is configured by an electromagnetic on-off valve and a capillary tube. This makes it easier to obtain a desired operating capacity even under operating conditions where the compression ratio of the compressor is large.
  • the liquid injection flow rate is determined mainly by the balance between the channel resistance on the bypass circuit side and the channel resistance on the main refrigerant circuit side.
  • the bypass pressure reducing mechanism should be controlled in consideration of the state of the main pressure reducing mechanism. If there is no restriction on the operation of the bypass pressure reducing mechanism, the opening of the bypass pressure reducing mechanism simply increases when the discharge temperature is higher than the target discharge temperature, regardless of the degree of opening of the main pressure reducing mechanism. It will be controlled as follows.
  • the liquid injection flow rate may increase significantly compared to the flow rate of the refrigerant flowing through the main refrigerant circuit and sucked into the compressor, and liquid compression may occur. There is. As described above, if the liquid injection control is performed without limiting the operation of the bypass pressure reducing mechanism, the state of the main pressure reducing mechanism is not taken into consideration, and it is difficult to ensure the reliability of the compressor.
  • the upper limit opening degree of the bypass pressure reducing mechanism in the liquid injection control is determined by the correlation value with the opening degree of the main pressure reducing mechanism, so that the operation of the bypass pressure reducing mechanism is controlled. Restrictions are provided in consideration of the state of the decompression mechanism.
  • the movable opening range of the bypass pressure reducing mechanism in the liquid injection control is determined according to the opening degree of the main pressure reducing mechanism, it contributes to the improvement of the controllability of the liquid injection control. As described above, in this heat pump system, it is possible to obtain a desired operation capability while ensuring the reliability of the compressor even under an operation situation where the compression ratio of the compressor is large.
  • a heat pump system is the heat pump system according to the first aspect, wherein the correlation value of the main circuit side reference pressure loss coefficient which is a reference value of the flow path resistance of the main pressure reducing mechanism, and the bypass pressure reducing mechanism It includes a pressure loss coefficient that is a coefficient determined by a bypass side reference pressure loss coefficient that is a reference value of the flow path resistance.
  • the upper limit opening of the bypass pressure reducing mechanism in the liquid injection control can be made more appropriate in consideration of the pressure loss characteristics on the main refrigerant circuit and bypass circuit side.
  • the heat pump system according to the third aspect is the heat pump system according to the second aspect, wherein the correlation value is an allowable dryness corresponding to an allowable limit of the dryness of the refrigerant sucked into the compressor, and the refrigerant at the outlet of the bypass pipe And a dryness coefficient which is a coefficient determined by a dryness degree of the main circuit side which is a dryness degree of the refrigerant at the outlet of the evaporator and a dryness degree of the refrigerant at the outlet of the evaporator.
  • the upper limit opening degree of the bypass pressure reducing mechanism in the liquid injection control is set in consideration of the dryness of the refrigerant sucked into the compressor obtained by the merge of the refrigerant flowing through the bypass circuit and the refrigerant flowing through the main refrigerant circuit. Can be even more appropriate.
  • a heat pump system is the heat pump system according to any one of the first to third aspects, wherein when the control unit changes the capacity of the compressor during the liquid injection control, the bypass pressure reducing mechanism is opened. The degree is changed to a predicted opening degree that is an opening degree that is predicted according to the degree of change in the capacity of the compressor.
  • the bypass pressure reducing mechanism is controlled so that the discharge temperature becomes the target discharge temperature. However, if the degree of change in the capacity of the compressor is large, it may take time until the discharge temperature reaches the target discharge temperature.
  • the opening degree of the bypass pressure reducing mechanism is estimated according to the degree of the capacity change of the compressor.
  • the predicted opening is changed.
  • the bypass pressure reducing mechanism is controlled according to the degree of change in the capacity of the compressor prior to the operation in which the bypass pressure reducing mechanism is controlled so that the discharge temperature becomes the target discharge temperature.
  • the opening is changed to the predicted opening. For this reason, the discharge temperature can be quickly reached the target discharge temperature, and the controllability of the liquid injection control can be improved.
  • a heat pump system is the heat exchanger according to any one of the first to fourth aspects, wherein the radiator heats the aqueous medium by radiating heat of the refrigerant compressed in the compressor.
  • the heat medium is connected to an aqueous medium circuit for utilizing the heat of the aqueous medium heated in the radiator.
  • a heat pump system that uses the heat of an aqueous medium heated in a radiator, a high-temperature aqueous medium may be required, and in this case, an operation situation in which the compression ratio of the compressor is large is likely to occur. For this reason, it tends to be difficult to obtain a desired operating capacity while ensuring the reliability of the compressor.
  • the bypass pressure reducing mechanism is made variable, and the liquid injection control is performed to control the bypass pressure reducing mechanism so that the discharge temperature becomes the target discharge temperature.
  • the upper limit opening degree of the bypass pressure reducing mechanism is determined by the correlation value with the opening degree of the main pressure reducing mechanism. For this reason, in this heat pump system, it is possible to obtain a desired operation capacity while ensuring the reliability of the compressor, despite the configuration in which the compressor is likely to be in an operation state in which the compression ratio is large.
  • FIG. 1 is a schematic configuration diagram of a heat pump system 1 according to an embodiment of the present invention.
  • the heat pump system 1 is an apparatus capable of performing an operation for heating an aqueous medium using a vapor compression heat pump cycle.
  • the heat pump system 1 can perform a heating operation and / or a hot water supply operation by heating an aqueous medium.
  • the heat pump system 1 mainly includes a heat source unit 2, a utilization unit 4, a liquid refrigerant communication tube 13, a gas refrigerant communication tube 14, an aqueous medium heating unit 7, a hot water storage unit 9, and aqueous medium communication tubes 15 and 16.
  • the heat source unit 2 and the utilization unit 4 comprise the refrigerant circuit 10 by being connected via the refrigerant
  • the use unit 4, the hot water storage unit 9, and the aqueous medium heating unit 7 are connected via the aqueous medium communication pipes 15 and 16, thereby forming an aqueous medium circuit 70.
  • the refrigerant circuit 10 contains HFC-410A, which is a kind of HFC refrigerant, as a refrigerant.
  • water as an aqueous medium circulates in the aqueous medium circuit 70.
  • the heat source unit 2 is installed outdoors, is connected to the utilization unit 4 via the refrigerant communication tubes 13 and 14, and constitutes a part of the refrigerant circuit 10.
  • the heat source unit 2 mainly includes a compressor 21, an oil separation mechanism 22, a switching mechanism 23, a heat source side heat exchanger 26, a heat source side expansion valve 28 as a main pressure reducing mechanism, a bypass pipe 31, and an accumulator 35. And a liquid side closing valve 33 and a gas side closing valve 34.
  • the compressor 21 is a mechanism that compresses the refrigerant.
  • a volumetric compression element such as a rotary type or a scroll type accommodated in a casing (not shown) is used by a compressor motor 21a also accommodated in the casing.
  • a driven hermetic compressor is employed.
  • the compressor motor 21a can change the rotation speed (namely, operating frequency) by an inverter device (not shown), and thereby the capacity of the compressor 21 can be changed.
  • the oil separation mechanism 22 is a mechanism for separating the refrigerating machine oil contained in the refrigerant discharged from the compressor 21 and returning it to the suction of the compressor 21.
  • the oil separation mechanism 22 mainly includes an oil separator 22a provided in the discharge pipe 21b of the compressor 21, and an oil return pipe 22b that connects the oil separator 22a and the suction pipe 21c of the compressor 21. Yes.
  • the oil separator 22 a is a device that separates refrigeration oil contained in the refrigerant discharged from the compressor 21.
  • the oil return pipe 22 b has a capillary tube, and is a refrigerant pipe that returns the refrigeration oil separated from the refrigerant in the oil separator 22 a to the suction pipe 21 c of the compressor 21.
  • the switching mechanism 23 can switch between a heat source side heat radiation operation state in which the heat source side heat exchanger 26 functions as a refrigerant radiator and a heat source side evaporation operation state in which the heat source side heat exchanger 26 functions as a refrigerant evaporator. It is a path switching valve.
  • the switching mechanism 23 includes a discharge pipe 21b, a suction pipe 21c, a first heat source side gas refrigerant pipe 24 connected to the gas side of the heat source side heat exchanger 26, and a second heat source connected to the gas side shut-off valve 34.
  • the side gas refrigerant pipe 25 is connected.
  • the switching mechanism 23 communicates the discharge pipe 21b with the first heat source side gas refrigerant pipe 24 and switches between the second heat source side gas refrigerant pipe 25 and the suction pipe 21c (corresponding to the heat source side heat radiation operation state, 1 (see the solid line of the switching mechanism 23). In addition, the switching mechanism 23 communicates the discharge pipe 21b and the second heat source side gas refrigerant pipe 25 and switches the first heat source side gas refrigerant pipe 24 and the suction pipe 21c (corresponding to the heat source side evaporation operation state). 1 (see the broken line of the switching mechanism 23 in FIG. 1).
  • the switching mechanism 23 is not limited to a four-way switching valve, and is configured to have a function of switching the direction of refrigerant flow as described above, for example, by using a combination of a plurality of solenoid valves. It may be what you did.
  • the heat source side heat exchanger 26 is a heat exchanger that functions as a refrigerant radiator or evaporator by exchanging heat between the refrigerant and the outdoor air, and a heat source side liquid refrigerant pipe 27 is connected to the liquid side thereof.
  • the first heat source side gas refrigerant pipe 24 is connected to the gas side.
  • Outdoor air that exchanges heat with refrigerant in the heat source side heat exchanger 26 is supplied by a heat source side fan 36 driven by a heat source side fan motor 37.
  • the heat source side fan motor 37 can vary its rotation speed (that is, operating frequency) by an inverter device (not shown), and thereby the air volume of the heat source side fan 36 can be varied.
  • the heat source side expansion valve 28 is an electric expansion valve that depressurizes the refrigerant flowing through the heat source side liquid refrigerant pipe 27, and is provided in the heat source side liquid refrigerant pipe 27.
  • the accumulator 35 is provided in the suction pipe 21c and is a container for temporarily storing the refrigerant circulating in the refrigerant circuit 10 before being sucked into the compressor 21 from the suction pipe 21c.
  • the liquid side closing valve 33 is a valve provided at a connection portion between the heat source side liquid refrigerant pipe 27 and the liquid refrigerant communication pipe 13.
  • the gas side shut-off valve 34 is a valve provided at a connection portion between the second heat source side gas refrigerant pipe 25 and the gas refrigerant communication pipe 14.
  • the bypass pipe 31 includes a compressor between a portion of the heat source side liquid refrigerant pipe 27 between the liquid side closing valve 33 and the heat source side expansion valve 28 and the suction side of the compressor 21 (here, from the outlet of the accumulator 35 of the suction pipe 21c).
  • 21 is a refrigerant pipe connecting the portion until 21 inhalation).
  • the bypass pipe 31 is provided with a bypass expansion valve 32 as a bypass pressure reducing mechanism.
  • the bypass expansion valve 32 is an electric expansion valve, and depressurizes the liquid refrigerant flowing through the bypass pipe 31.
  • the heat source unit 2 is provided with various sensors. Specifically, the heat source unit 2 includes a suction pressure sensor 41, a discharge pressure sensor 42, a suction temperature sensor 43, a discharge temperature sensor 44, a heat source side heat exchange gas side temperature sensor 45, and a heat source side heat exchange.
  • a liquid temperature sensor 46 is provided.
  • the suction pressure sensor 41 is a pressure sensor that detects a suction pressure Ps that is a refrigerant pressure in the suction of the compressor 21.
  • the discharge pressure sensor 42 is a pressure sensor that detects a discharge pressure Pd that is the pressure of the refrigerant in the discharge of the compressor 21.
  • the suction temperature sensor 43 is a temperature sensor that detects a suction temperature Ts that is the temperature of the refrigerant in the suction of the compressor 21.
  • the discharge temperature sensor 44 is a temperature sensor that detects a discharge temperature Td that is the temperature of the refrigerant in the discharge of the compressor 21.
  • the heat source side heat exchange gas side temperature sensor 45 is a temperature sensor that detects a heat source side heat exchange gas side temperature Thg that is the temperature of the refrigerant on the gas side of the heat source side heat exchanger 26.
  • the heat source side heat exchange liquid side temperature sensor 46 is a temperature sensor that detects the heat source side heat exchange liquid side temperature Thl that is the temperature of the refrigerant on the liquid side of the heat source side heat exchanger 26.
  • the heat source unit 2 includes a heat source side control unit 39 that controls the operation of each unit constituting the heat source unit 2.
  • the heat source side control unit 39 includes a microcomputer and a memory for controlling the heat source unit 2, and exchanges control signals and the like with a use side control unit 69 of the use unit 4 described later. Can be done.
  • the liquid refrigerant communication tube 13 is connected to the heat source side liquid refrigerant tube 27 via the liquid side closing valve 33.
  • the liquid refrigerant communication tube 13 functions as a refrigerant radiator when the switching mechanism 23 is in the heat source side heat radiation operation state. This is a refrigerant pipe capable of leading the refrigerant out of the heat source unit 2 from the outlet of the heat source side heat exchanger 26.
  • the liquid refrigerant communication tube 13 is a refrigerant tube capable of introducing the refrigerant from the heat source unit 2 outside the heat source unit 2 to the inlet of the heat source side heat exchanger 26 that functions as a refrigerant evaporator when the switching mechanism 23 is in the heat source side evaporation operation state. But there is. -Gas refrigerant communication tube-
  • the gas refrigerant communication pipe 14 is connected to the second heat source side gas refrigerant pipe 25 via a gas side closing valve 34.
  • the gas refrigerant communication tube 14 is a refrigerant tube capable of introducing the refrigerant from outside the heat source unit 2 to the intake of the compressor 21 when the switching mechanism 23 is in the heat source side heat radiation operation state.
  • the gas refrigerant communication pipe 14 is also a refrigerant pipe capable of leading the refrigerant out of the heat source unit 2 from the discharge of the compressor 21 when the switching mechanism 23 is in the heat source side evaporation operation state.
  • the utilization unit 4 is installed indoors, is connected to the heat source unit 2 via the refrigerant communication tubes 13 and 14, and constitutes a part of the refrigerant circuit 10.
  • the utilization unit 4 is connected to the hot water storage unit 9 and the aqueous medium heating unit 7 via the aqueous medium communication pipes 15 and 16 and constitutes a part of the aqueous medium circuit 70.
  • the usage unit 4 mainly includes a usage-side heat exchanger 41 and a circulation pump 43.
  • the use-side heat exchanger 41 is a heat exchanger that functions as a radiator radiator by performing heat exchange between the refrigerant and the aqueous medium.
  • a use side liquid refrigerant tube 45 is connected to the liquid side of the flow path through which the refrigerant of the use side heat exchanger 41 flows, and the gas side of the flow path through which the refrigerant of the use side heat exchanger 41 flows is connected to the use side.
  • a gas refrigerant pipe 54 is connected.
  • a use side water inlet pipe 47 is connected to the inlet side of the flow path through which the aqueous medium of the use side heat exchanger 41 flows, and the outlet side of the flow path through which the aqueous medium of the use side heat exchanger 41 flows. Is connected to the use side water outlet pipe 48.
  • the liquid refrigerant communication tube 13 is connected to the use side liquid refrigerant tube 45, and the gas refrigerant communication tube 14 is connected to the use side gas refrigerant tube 54.
  • the aqueous medium communication pipe 15 is connected to the use side water inlet pipe 47, and the aqueous medium communication pipe 16 is connected to the use side water outlet pipe 48.
  • the circulation pump 43 is a mechanism for boosting the aqueous medium.
  • a pump in which a centrifugal or positive displacement pump element (not shown) is driven by a circulation pump motor 44 is employed.
  • the circulation pump 43 is provided in the use side water outlet pipe 48.
  • the circulation pump motor 44 can vary its rotation speed (that is, operating frequency) by an inverter device (not shown), and thereby the capacity of the circulation pump 43 can be varied.
  • the utilization unit 4 is provided with various sensors.
  • the use unit 4 includes a use side heat exchange temperature sensor 50 that detects a use side heat exchange liquid side temperature Tul, which is a temperature of the refrigerant on the liquid side of the use side heat exchanger 41, and a use side heat exchange.
  • An aqueous medium outlet temperature sensor 51 that detects an aqueous medium inlet temperature Twr that is the temperature of the aqueous medium at the inlet of the vessel 41 and an aqueous medium outlet temperature Twl that is the temperature of the aqueous medium at the outlet of the use side heat exchanger 41 are detected.
  • An aqueous medium outlet temperature sensor 52 is provided.
  • the usage unit 4 includes a usage-side control unit 69 that controls the operation of each unit constituting the usage unit 4.
  • the usage-side control unit 69 includes a microcomputer and a memory for controlling the usage unit 4.
  • the usage-side control unit 69 can exchange control signals and the like with a remote controller (not shown), and exchange control signals and the like with the heat source side control unit 39 of the heat source unit 2.
  • the refrigerant circuit 10 is configured by connecting the heat source unit 2 and the utilization unit 4 via the refrigerant communication tubes 13 and 14.
  • the refrigerant circuit 10 includes a bypass circuit 30 including a bypass pipe 31 and a bypass expansion valve 32, and a main refrigerant circuit 20 including a portion excluding the bypass circuit 30.
  • the hot water storage unit 9 is installed indoors and connected to the utilization unit 4 via the aqueous medium communication pipes 15 and 16 and constitutes a part of the aqueous medium circuit 70.
  • the hot water storage unit 9 mainly includes a hot water storage tank 91 and a heat exchange coil 92.
  • the hot water storage tank 91 is a container for storing water as an aqueous medium supplied for hot water supply, and a hot water supply pipe 93 is connected to the upper part of the hot water storage tank 93 for sending hot water to a faucet or a shower.
  • a water supply pipe 94 for replenishing the aqueous medium consumed by the hot water supply pipe 93 is connected to the lower part thereof.
  • the heat exchange coil 92 is provided in the hot water storage tank 91, and heats the aqueous medium in the hot water storage tank 91 by exchanging heat between the aqueous medium circulating in the aqueous medium circuit 70 and the aqueous medium in the hot water storage tank 91.
  • the water medium communication pipe 16 is connected to the inlet, and the water medium communication pipe 15 is connected to the outlet.
  • the hot water storage unit 9 can heat the aqueous medium in the hot water storage tank 91 by the aqueous medium circulating in the aqueous medium circuit 70 heated in the utilization unit 4 and store it as hot water.
  • the hot water storage unit 9 a type of hot water storage unit in which an aqueous medium heated by heat exchange with the aqueous medium heated in the usage unit 4 is stored in a hot water storage tank is used.
  • a type of hot water storage unit that stores the aqueous medium in a hot water storage tank may be adopted.
  • the hot water storage unit 9 is configured as a separate unit from the usage unit 4 a, but the hot water storage unit 9 may be built in the usage unit 4.
  • the hot water storage unit 9 is provided with various sensors. Specifically, the hot water storage unit 9 is provided with a hot water storage temperature sensor 95 for detecting the hot water storage temperature Twh, which is the temperature of the aqueous medium stored in the hot water storage tank 91.
  • the aqueous medium heating unit 7 is installed indoors.
  • the aqueous medium heating unit 7 is connected to the utilization unit 4 via the aqueous medium communication pipes 15 and 16 and constitutes a part of the aqueous medium circuit 70.
  • the aqueous medium heating unit 7 mainly has a heat exchange panel 71 and constitutes a radiator, a floor cooling / heating panel, and the like.
  • the heat exchange panel 71 is provided near an indoor wall, and in the case of a floor heating panel, the heat exchange panel 71 is provided below the indoor floor.
  • the heat exchange panel 71 is a heat exchanger that functions as a radiator of an aqueous medium that circulates in the aqueous medium circuit 70.
  • the aqueous medium communication pipe 16 is connected to an inlet of the heat exchange panel 71, and an aqueous medium is connected to an outlet of the heat exchanger panel 71.
  • a communication pipe 15 is connected.
  • the aqueous medium communication pipe 15 is connected to the outlet of the heat exchange coil 92 of the hot water storage unit 9 and the outlet of the heat exchange panel 71 of the aqueous medium cooling / heating unit 7.
  • the aqueous medium communication pipe 16 is connected to the inlet of the heat exchange coil 92 of the hot water storage unit 9 and the inlet of the heat exchange panel 71 of the aqueous medium cooling / heating unit 7. Whether the aqueous medium circulating in the aqueous medium circuit 70 is supplied to both the hot water storage unit 9 and the aqueous medium heating unit 7 or one of the hot water storage unit 9 and the aqueous medium heating unit 7 An aqueous medium switching mechanism 161 capable of switching is provided.
  • the aqueous medium switching mechanism 161 is a three-way valve. As described above, the aqueous medium circuit 70 is configured by connecting the use unit 4, the hot water storage unit 9, and the aqueous medium heating unit 7 via the aqueous medium communication pipes 15 and 16. The aqueous medium circuit 70 uses the heat of the aqueous medium heated in the use-side heat exchanger 41 that functions as a radiator for the refrigerant compressed in the compressor 21.
  • the use side control unit 69 and the heat source side control unit 39 are connected via a transmission line or the like, so that a control unit 1a that performs operation control of the heat pump system 1 is configured, and performs the following operations and various controls. It is like that.
  • the operation of the heat pump system 1 includes a heating operation mode in which only the heating operation using the aqueous medium heating unit 7 is performed, a hot water supply operation mode in which only the hot water supply operation using the hot water storage unit 9 is performed, the aqueous medium heating unit 7 and the hot water storage unit.
  • There is a hot water supply / heating operation mode in which a heating operation and a hot water supply operation using 9 are performed simultaneously.
  • the switching mechanism 23 is switched to the heat source side heat radiation operation state (the state indicated by the broken line of the switching mechanism 23 in FIG. 1). .
  • the aqueous medium switching mechanism 161 is switched to a state in which the aqueous medium is supplied to the aqueous medium heating unit 7.
  • the refrigerant circuit 10 in such a state, the low-pressure refrigerant in the refrigeration cycle is sucked into the compressor 21 through the suction pipe 21c, compressed to the high pressure in the refrigeration cycle, and then discharged to the discharge pipe 21b.
  • the high-pressure refrigerant discharged to the discharge pipe 21b is separated from the refrigerating machine oil in the oil separator 22a.
  • the refrigerating machine oil separated from the refrigerant in the oil separator 22a is returned to the suction pipe 21c through the oil return pipe 22b.
  • the high-pressure refrigerant from which the refrigerating machine oil has been separated is sent from the heat source unit 2 to the gas refrigerant communication pipe 14 through the switching mechanism 23, the second heat source side gas refrigerant pipe 25, and the gas side shut-off valve 34.
  • the high-pressure refrigerant sent to the gas refrigerant communication tube 14 is sent to the usage unit 4.
  • the high-pressure refrigerant sent to the usage unit 4 is sent to the usage-side heat exchanger 41 through the usage-side gas refrigerant tube 54.
  • the high-pressure refrigerant sent to the use side heat exchanger 41 radiates heat by exchanging heat with the aqueous medium circulating in the aqueous medium circuit 70 by the circulation pump 43 in the use side heat exchanger 41.
  • the high-pressure refrigerant radiated in the usage-side heat exchanger 41 is sent from the usage unit 4 to the liquid refrigerant communication tube 13 through the usage-side liquid refrigerant tube 45.
  • the refrigerant sent to the liquid refrigerant communication tube 13 is sent to the heat source unit 2.
  • the refrigerant sent to the heat source unit 2 is sent to the heat source side liquid refrigerant pipe 27 through the liquid side closing valve 33.
  • the refrigerant sent to the heat source side liquid refrigerant pipe 27 is branched into two at a portion between the liquid side closing valve 33 and the heat source side expansion valve 28 of the heat source side liquid refrigerant pipe 27, one of which is the heat source side expansion.
  • the other is sent to the valve 28 and the other is sent to the bypass pipe 31.
  • the refrigerant sent to the heat source side expansion valve 28 is depressurized by the heat source side expansion valve 28 to be in a low-pressure gas-liquid two-phase state and sent to the heat source side heat exchanger 26.
  • the low-pressure refrigerant sent to the heat source side heat exchanger 26 evaporates by exchanging heat with the outdoor air supplied by the heat source side fan 36 in the heat source side heat exchanger 26.
  • the low-pressure refrigerant evaporated in the heat source side heat exchanger 26 is sent to the heat source side accumulator 35 through the first heat source side gas refrigerant pipe 24 and the switching mechanism 23.
  • the low-pressure refrigerant sent to the heat source side accumulator 35 is again sucked into the compressor 21 through the suction pipe 21c.
  • the refrigerant sent to the bypass pipe 31 is decompressed by the bypass expansion valve 32 to be in a low-pressure gas-liquid two-phase state. Then, the low-pressure refrigerant decompressed in the bypass expansion valve 32 joins the low-pressure refrigerant sent to the heat source side accumulator 35 through the heat source side expansion valve 28 and the heat source side heat exchanger 26 in the suction pipe 21c, and is compressed. Inhaled by the machine 21.
  • a part of the refrigerant flowing through the main refrigerant circuit 20 is branched into the bypass circuit 30 at a portion between the liquid side closing valve 33 and the heat source side expansion valve 28, and the heat source side expansion valve 28 and the heat source
  • the operation (liquid injection) of returning to the compressor 21 together with the refrigerant returning to the suction side of the compressor 21 through the side heat exchanger 26 is performed.
  • the aqueous medium circulating in the aqueous medium circuit 70 is heated by the heat radiation of the refrigerant in the use side heat exchanger 41.
  • the aqueous medium heated in the usage-side heat exchanger 41 is sucked into the circulation pump 43 through the usage-side water outlet pipe 48, and after being pressurized, is sent from the usage unit 4 to the aqueous medium communication pipe 16.
  • the aqueous medium sent to the aqueous medium communication pipe 16 is sent to the aqueous medium heating unit 7 through the aqueous medium switching mechanism 161.
  • the aqueous medium sent to the aqueous medium heating unit 7 dissipates heat in the heat exchange panel 71, thereby heating the indoor wall or the like or heating the indoor floor. In this manner, the operation in the heating operation mode in which only the heating operation using the aqueous medium heating unit 7 is performed is performed.
  • the switching mechanism 23 is switched to the heat source side heat radiation operation state (the state indicated by the broken line of the switching mechanism 23 in FIG. 1).
  • the aqueous medium switching mechanism 161 is switched to a state in which the aqueous medium is supplied to the hot water storage unit 9. And in the refrigerant circuit 10 of such a state, operation
  • the aqueous medium sent from the usage unit 4 to the aqueous medium communication pipe 16 is sent to the hot water storage unit 9 through the aqueous medium switching mechanism 161.
  • the aqueous medium sent to the hot water storage unit 9 exchanges heat with the aqueous medium in the hot water storage tank 91 in the heat exchange coil 92 to radiate heat, thereby heating the aqueous medium in the hot water storage tank 91.
  • the operation in the hot water supply operation mode in which only the hot water supply operation using the hot water storage unit 9 is performed is performed.
  • the switching mechanism 23 is in the heat source side heat radiation operation state (indicated by the broken line of the switching mechanism 23 in FIG. 1). (Switched state).
  • the aqueous medium switching mechanism 161 is switched to a state in which the aqueous medium is supplied to the aqueous medium heating unit 7 and the hot water storage unit 9. And in the refrigerant circuit 10 of such a state, operation
  • the aqueous medium sent from the usage unit 4 to the aqueous medium communication pipe 16 is sent to the aqueous medium heating unit 7 and the hot water storage unit 9 through the aqueous medium switching mechanism 161.
  • the aqueous medium sent to the aqueous medium heating unit 7 dissipates heat in the heat exchange panel 71, thereby heating the indoor wall or the like or heating the indoor floor.
  • the aqueous medium sent to the hot water storage unit 9 performs heat exchange with the aqueous medium in the hot water storage tank 91 in the heat exchange coil 92 to dissipate heat, thereby heating the aqueous medium in the hot water storage tank 91. In this manner, the operation in the hot water supply / heating operation mode in which the heating operation and the hot water supply operation using the aqueous medium heating unit 7 and the hot water storage unit 9 are performed simultaneously is performed.
  • the refrigerant circulating in the refrigerant circuit 10 radiates heat in the use side heat exchanger 41, whereby the aqueous medium circulating in the aqueous medium circuit 70 is heated.
  • the compressor 21 has a variable capacity, and the controller 1 a sets the saturation temperature (that is, the discharge saturation temperature Tc) corresponding to the refrigerant pressure in the discharge of the compressor 21 to the refrigerant of the refrigeration cycle.
  • the capacity control of the compressor 21 is performed so that the discharge saturation temperature Tc becomes a predetermined target discharge saturation temperature Tcs.
  • the discharge saturation temperature Tc is a value obtained by converting the discharge pressure Pd into a saturation temperature. More specifically, when the discharge saturation temperature Tc is lower than the target discharge saturation temperature Tcs, the control unit 1a increases the rotation speed (that is, the operating frequency) of the compressor 21 to increase the compressor 21 When the operation capacity is controlled to be large and the discharge saturation temperature Tc is higher than the target discharge saturation temperature Tcs, the operation capacity of the compressor 21 is reduced by reducing the rotation speed (that is, the operation frequency) of the compressor 21. Is controlled to be small.
  • the control unit 1a sets a predetermined target aqueous medium outlet temperature Twls, which is a target value of the aqueous medium temperature at the outlet of the use side heat exchanger 41, and sets the target discharge saturation temperature Tcs to the target aqueous medium outlet temperature. It is set as a value that can be varied by Twls.
  • the control unit 1a sets the target discharge saturation temperature Tcs to 65 ° C., or the target aqueous medium outlet temperature
  • the target discharge saturation temperature Tcs increases as the target aqueous medium outlet temperature Twls is set higher, such as setting the target discharge saturation temperature Tcs to 30 ° C.
  • the function is set within the set range of the target aqueous medium outlet temperature Twls so that the temperature becomes slightly higher than the target aqueous medium outlet temperature Twls.
  • the target discharge saturation temperature Tcs is appropriately set according to the target aqueous medium outlet temperature Twls, a desired target aqueous medium outlet temperature Tws can be easily obtained, and the target aqueous medium outlet temperature Even when Tws is changed, control with good responsiveness can be performed.
  • the refrigerant circulating in the refrigerant circuit 10 is decompressed by the heat source side expansion valve 28 to be in a low-pressure gas-liquid two-phase state, and then evaporated in the heat source side heat exchanger 26. It is like that.
  • the heat source side expansion valve 28 as the main pressure reducing mechanism is made variable, and the control unit 1 a has a predetermined degree of outlet superheat SHh that is the degree of superheat of the refrigerant at the outlet of the heat source side heat exchanger 26.
  • the heat source side expansion valve 28 is controlled so as to achieve the target outlet superheat degree SHhs.
  • the outlet refrigerant superheat degree SHh is obtained by converting the suction pressure Ps into a saturation temperature corresponding to the refrigerant pressure in the suction of the compressor 21 (that is, the suction saturation temperature Te) and sucking from the use side heat exchange liquid side temperature Tul. It is obtained by subtracting the saturation temperature Te.
  • a temperature sensor for detecting the refrigerant temperature corresponding to the suction saturation temperature Te is provided in the use side heat exchanger 41, and the refrigerant temperature is subtracted from the use side heat exchange liquid side temperature Tul. May be used to obtain the outlet refrigerant superheat degree SHh. More specifically, when the outlet superheat degree SHh is smaller than the target outlet superheat degree SHhs, the control unit 1a performs control so that the opening degree OPe of the heat source side expansion valve 28 becomes small, and the outlet superheat degree SHh is reduced. When the target outlet superheat degree SHhs is larger, the opening degree OPe of the heat source side expansion valve 28 is controlled to be larger.
  • the bypass circuit 30 is provided as described above to bypass Liquid injection for introducing the liquid refrigerant flowing through the bypass pipe 31 constituting the circuit 30 to the suction side of the compressor 21 is performed. That is, in the heat pump system 1, the bypass expansion valve 32 as a bypass pressure reducing mechanism is made variable, and the control unit 1a performs liquid injection control for controlling the bypass expansion valve 32 so that the discharge temperature Td becomes the target discharge temperature Tds. Like to do.
  • the controller 1a reduces the opening OPi of the bypass expansion valve 32 to reduce the bypass circuit 30 side (that is, the bypass pipe 31 and Control is performed so that the flow rate (liquid injection flow rate Gi) of the liquid refrigerant on the suction side of the compressor 21 through the bypass expansion valve 32 is reduced (see steps S15 and S17 in FIG. 3), and the discharge temperature Td is
  • the liquid injection flow rate Gi is controlled to increase by increasing the opening OPi of the bypass expansion valve 32 (see steps S14 and S16 in FIG. 3).
  • the opening OPi of the bypass expansion valve 32 is changed according to the operating capacity of the compressor 21, and the liquid injection flow rate Gi can be increased or decreased.
  • the problem that the liquid injection flow rate Gi is insufficient is less likely to occur than in the case where the bypass expansion mechanism is configured by an electromagnetic on-off valve and a capillary tube.
  • the target aqueous medium outlet temperature Twls is set to a high temperature (for example, 60 ° C.)
  • the target discharge saturation temperature Tcs is also set to a high temperature (for example, 65 ° C.).
  • a desired driving ability can be obtained.
  • the liquid injection flow rate Gi is determined mainly by the balance between the channel resistance on the bypass circuit 30 side and the channel resistance on the main refrigerant circuit 20 side.
  • the balance between the channel resistance on the bypass circuit 30 side and the channel resistance on the main refrigerant circuit 20 side mainly depends on the difference between the channel resistance of the bypass decompression mechanism and the channel resistance of the main decompression mechanism. Yes.
  • the bypass expansion valve 32 should be controlled in consideration of the state of the heat source side expansion valve 28. If there is no restriction on the operation of the bypass expansion valve 32, the bypass expansion valve 32 can be used regardless of the degree of opening OPe of the heat source side expansion valve 28 when the discharge temperature Td is higher than the target discharge temperature Tds.
  • the opening degree OPi is simply controlled to be large.
  • the liquid injection flow rate Gi compared to the flow rate of refrigerant (main circuit side flow rate Ge) flowing through the main refrigerant circuit 20 side and sucked into the compressor 21. May greatly increase and liquid compression or the like may occur.
  • the liquid injection control is performed without limiting the operation of the bypass expansion valve 32, the state of the bypass expansion valve 32 is not taken into consideration, and it is difficult to ensure the reliability of the compressor 21.
  • the control unit 1a uses the correlation value between the upper limit opening OPix of the bypass expansion valve 32 as the bypass pressure reducing mechanism in the liquid injection control and the opening OPe of the heat source side expansion valve 28 as the main pressure reducing mechanism. By determining, the restriction of the operation of the bypass expansion valve 32 in consideration of the state of the heat source side expansion valve 28 is provided.
  • the liquid injection control including the determination of the upper limit opening OPix of the bypass expansion valve 32 will be described with reference to FIGS.
  • the capacity control of the compressor 21 is performed so that the discharge saturation temperature Tc becomes the target discharge saturation temperature Tcs, and the outlet superheat degree SHh becomes the target outlet superheat degree SHhs.
  • the opening degree control of the heat source side expansion valve 28 is performed.
  • the control unit 1a sets the bypass expansion valve 32 to an initial state of a fully closed state where the opening degree OPi is 0%, for example (step S1).
  • the opening OPi of the bypass expansion valve 32 is 0% in the fully closed state and 100% in the fully opened state.
  • the opening degree OPe of the heat source side expansion valve 28 is set to 0% in the fully closed state and 100% in the fully open state.
  • the controller 1a determines whether or not the operation state of the heat pump system 1 satisfies a condition for performing liquid injection control in steps S2, S3, S4, and S5. Specifically, the controller 1a determines whether or not the compressor 21 is operating in step S2.
  • control part 1a determines whether it is heating operation mode, hot water supply operation mode, or hot water supply heating operation mode in step S3. By these steps S2 and S3, it is determined whether or not the operation of the heat pump system 1 is being performed. Moreover, the control part 1a determines whether the opening degree OPe of the heat source side expansion valve 28 is larger than the minimum opening degree OPem in step S4. Furthermore, the control part 1a determines whether the discharge superheat degree SHC of the compressor 21 is larger than the minimum discharge superheat degree SHCm in step S5.
  • the minimum opening degree OPem means the minimum opening degree of the heat source side expansion valve 28 that can be assumed during normal operation such as the heating operation mode, the hot water supply operation mode, or the hot water supply heating operation mode.
  • the discharge superheat degree SHC is obtained by subtracting the discharge saturation temperature Tc from the discharge temperature Td.
  • the minimum discharge superheat degree SHCm means the minimum discharge superheat degree which can be assumed at the time of normal operation like heating operation mode, hot water supply operation mode, or hot water supply heating operation mode.
  • the controller 1a first determines whether or not the bypass expansion valve 32 is in an initial state (here, the opening degree OPi is 0%) (step S11). Here, if it is immediately after the start of operation, since the bypass expansion valve 32 is in the initial state, the process proceeds to step S12. In step S12, the control unit 1a sets the opening OPi of the bypass expansion valve 32 to the liquid injection start opening OPii, thereby starting liquid injection for introducing the liquid refrigerant flowing through the bypass pipe 31 to the suction side of the compressor 21. To do.
  • the liquid injection start opening OPii is about several to 10%, and preparations are made immediately before shifting to the liquid injection control process of steps S13 to S18.
  • the time for which the opening OPi of the bypass expansion valve 32 is set to the liquid injection start opening OPii is, for example, about several tens of seconds to several minutes. For this reason, when the liquid injection control process of steps S13 to S18 is already performed, not immediately after the start of operation, the process proceeds to the process of step S13 without performing the process of step S12.
  • control unit 1a determines the upper limit opening OPix of the bypass expansion valve 32 in the liquid injection control (Step S13).
  • the upper limit opening OPix of the bypass expansion valve 32 is determined by a correlation value with the opening OPe of the heat source side expansion valve 28, and this will be described in detail.
  • Ke and Ki are the main circuit side reference pressure loss coefficient which is the reference value of the flow path resistance of the heat source side expansion valve 28 and the bypass side reference pressure loss coefficient which is the reference value of the flow path resistance of the bypass expansion valve 32, respectively.
  • OPes and OPis are the opening degree of the heat source side expansion valve 28 at the main circuit side reference pressure loss coefficient Ke and the opening degree of the bypass expansion valve 32 at the bypass side reference pressure loss coefficient Ki, respectively.
  • OPix ⁇ ⁇ ⁇ ⁇ OPe Formula G
  • is a dryness coefficient determined by the allowable dryness Xsa, the bypass-side dryness Xi, and the main circuit-side dryness Xe, as shown in Formula F.
  • is a pressure loss coefficient determined by the main circuit side reference pressure loss coefficient Ke and the bypass side reference pressure loss coefficient Ki, as shown in Formula F.
  • the upper limit opening OPix of the bypass expansion valve 32 is determined by the correlation value with the opening OPe of the heat source side expansion valve 28.
  • the correlation value includes a dryness coefficient ⁇ and a pressure loss coefficient ⁇ .
  • the dryness coefficient ⁇ is the allowable dryness Xsa determined from the operating characteristics of the compressor 21, the main circuit-side dryness Xe and the bypass-side dryness Xi assumed in the standard operation state of the refrigerant circuit 10. Is calculated from However, the main circuit side dryness Xe and the bypass side dryness Xi are determined from the measured values of the discharge pressure Pd, the suction pressure Ps, the use side heat exchange liquid side temperature Tul, the suction temperature Ts, and the heat source side heat exchange liquid side temperature Thl.
  • the bypass side reference pressure loss coefficient Ki is calculated.
  • the reference value is not limited to the fully opened state, but may be a value in another opening state.
  • control part 1a determines maximum opening degree OPix of the bypass expansion valve 32 from opening degree OPe of the heat source side expansion valve 28 using said Formula G in step S13.
  • the movable opening range of the bypass expansion valve 32 in the liquid injection control is limited to the maximum opening OPix or less.
  • the control unit 1a determines whether or not the discharge temperature Td is lower than the target discharge temperature Tds, and whether or not the discharge temperature Td is higher than the target discharge temperature Tds.
  • the opening degree OPi of the bypass expansion valve 32 is, as described above, the upper limit opening degree OPix determined by the correlation value with the opening degree OPe of the heat source side expansion valve 28 as the upper limit of the movable opening degree range. .
  • the opening change width ⁇ OPi of the bypass expansion valve 32 is obtained from the deviation between the discharge temperature Td and the target discharge temperature Tds. Then, when the discharge temperature Td is lower than the target discharge temperature Tds, the opening degree change width ⁇ OPi is set so that the discharge temperature Td is reduced so that the liquid injection flow rate Gi is reduced as soon as possible in consideration of concerns such as liquid compression. A value larger than the opening change width ⁇ OPi when the temperature is higher than the target discharge temperature Tds is set.
  • the opening OPi of the bypass expansion valve 32 when the discharge temperature Td is higher than the target discharge temperature Tds, even if the opening OPi of the bypass expansion valve 32 is controlled to be large, the opening OPe of the heat source side expansion valve 28 Can be opened only to the upper limit opening OPix determined by the correlation value. For this reason, liquid compression or the like is unlikely to occur, and the reliability of the compressor 21 is easily secured.
  • the movable opening range of the bypass expansion valve 32 in the liquid injection control is determined according to the opening OPe of the heat source side expansion valve 28, it contributes to the improvement of the controllability of the liquid injection control. .
  • the operating capacity of the compressor 21 is controlled, and the heat source side expansion valve 28 is controlled, so that the change in the opening degree OPe of the heat source side expansion valve 28 is controlled.
  • the operation of the bypass expansion valve 32 is appropriately restricted, which contributes to ensuring the reliability of the compressor 21 and improving the controllability of the liquid injection control. .
  • a desired operation capability can be obtained while ensuring the reliability of the compressor 21 even under an operation situation in which the compression ratio of the compressor 21 is large.
  • the heat pump system 1 is configured to use the heat of the aqueous medium heated in the use-side heat exchanger 41 as a radiator, a high-temperature (for example, 60 ° C.) aqueous medium is necessary as described above.
  • a high-temperature (for example, 60 ° C.) aqueous medium is necessary as described above.
  • the compressor 21 tends to be in an operating state in which the compression ratio of the compressor 21 is large, it is possible to obtain a desired operating capacity while ensuring the reliability of the compressor in spite of such a configuration. Can do.
  • the pressure loss coefficient ⁇ is included in the correlation value between the upper limit opening OPix of the bypass expansion valve 32 and the opening OPe of the heat source side expansion valve 28 in the liquid injection control. For this reason, in the heat pump system 1, the upper limit opening OPix of the bypass expansion valve 32 in the liquid injection control can be made more appropriate in consideration of the pressure loss characteristics on the main refrigerant circuit 20 and bypass circuit 30 side. Yes.
  • the dryness coefficient ⁇ is included in the correlation value between the upper limit opening OPix of the bypass expansion valve 32 and the opening OPe of the heat source side expansion valve 28 in the liquid injection control. .
  • the bypass expansion in the liquid injection control is performed in consideration of the dryness of the refrigerant sucked into the compressor 21 obtained by the merge of the refrigerant flowing through the bypass circuit 30 and the refrigerant flowing through the main refrigerant circuit 20.
  • the upper limit opening OPix of the valve 32 can be made more appropriate.
  • a bypass expansion valve as a bypass pressure reducing mechanism is set so that the discharge temperature Td becomes the target discharge temperature Tds. 32 is controlled (steps S11 to S18 in FIG. 3).
  • the control unit 1a determines whether or not the capacity change of the compressor 21 has occurred in step S21. Next, when it is determined in step S21 that the capacity change of the compressor 21 has occurred, the control unit 1a determines in step S22 whether the predictive control permission condition is satisfied.
  • the predictive control allowable condition is a condition for determining whether it is clear to increase the liquid injection flow rate Gi or decrease the liquid injection flow rate Gi in accordance with the capacity change of the compressor 21. . That is, when the capacity change direction of the compressor 21 is a direction in which the operating capacity is increased (for example, a direction in which the operating frequency of the compressor 21 is increased), and the discharge temperature Td is not too lower than the target discharge temperature Tds. (For example, when the discharge temperature Td is higher than Tdsm, which is a temperature slightly lower than the target discharge temperature Tds), there is little concern about liquid compression or the like even if the liquid injection flow rate Gi is increased quickly. Can allow predictive control of the bypass expansion valve 32.
  • the direction of capacity change of the compressor 21 is a direction of decreasing the operating capacity (for example, a direction of decreasing the operating frequency of the compressor 21), and the discharge temperature Td is not too higher than the target discharge temperature Tds.
  • Tdsx which is a temperature slightly higher than the target discharge temperature Tds
  • the control unit 1a changes the opening OPi of the bypass expansion valve 32 to the predicted opening OPif in step S23, and liquid injection.
  • the predicted opening OPif is a value obtained based on the operating frequency Ftb before the capacity change of the compressor 21 and the operating frequency Ftb after the capacity change, and is expressed by the following equation.
  • OPif (Fta / Ftb) ⁇ n
  • n is a multiplier. Note that the predicted opening OPif is not limited to that obtained using the above equation, and may be any one that can be obtained according to the degree of change in the capacity of the compressor 21.
  • the use unit and the hot water storage unit are separate units, but the use unit and the hot water storage unit may be integrated.
  • the heat source unit and the utilization unit are separate units, but the heat source unit and the utilization unit may be integrated.
  • the above heat pump system is configured to use the heat of the aqueous medium heated in the use side heat exchanger as a refrigerant radiator, but is not limited thereto, for example, if high-temperature air is required, Even if it is the structure which utilizes the heat of the air heated in the utilization side heat exchanger as a heat radiator of a refrigerant
  • the present invention compresses from the portion between the outlet of the main refrigerant circuit and the main decompression mechanism of the main refrigerant circuit configured by connecting the variable capacity compressor, the radiator, the variable main decompression mechanism, and the evaporator. It can be widely applied to heat pump systems that perform liquid injection on the suction side of the machine.

Abstract

 ヒートポンプシステム(1)は、可変容量式の圧縮機(21)と利用側熱交換器(41)と可変式の熱源側膨張弁(28)と熱源側熱交換器(26)とを接続して構成される主冷媒回路(20)の利用側熱交換器(41)の出口から熱源側膨張弁(28)までの間の部分から圧縮機(21)の吸入側とを接続するバイパス回路(30)を有する。バイパス回路(30)は、バイパス管(31)と、バイパス管(31)を流れる液冷媒の減圧を行うバイパス膨張弁(32)とを有する。バイパス膨張弁(32)は、可変式である。制御部(1a)は、圧縮機(21)の吐出温度(Td)が目標吐出温度(Tds)になるようにバイパス膨張弁(32)を制御する液インジェクション制御を行い、液インジェクション制御におけるバイパス膨張弁(32)の上限開度(OPix)を熱源側膨張弁(28)の開度(OPe)との相関値によって決定する。

Description

ヒートポンプシステム
 本発明は、ヒートポンプシステムに関する。本発明は、特に、可変容量式の圧縮機と放熱器と可変式の主減圧機構と蒸発器とを接続して構成される主冷媒回路の放熱器の出口から主減圧機構までの間の部分から圧縮機の吸入側へ液インジェクションを行うヒートポンプシステムに関する。
 従来より、特許文献1(特開2007-163099号公報)に示す空気調和装置がある。この空気調和装置(ヒートポンプシステム)は、可変容量式の圧縮機と、暖房運転時に冷媒の放熱器として機能する室内熱交換器(放熱器)と、可変式の室外膨張弁(主減圧機構)と、暖房運転時に冷媒の蒸発器として機能する室外熱交換器(蒸発器)とを接続して構成される冷媒回路を有している。
 上記従来のヒートポンプシステムでは、圧縮機の保護や運転効率の低下防止等の観点から、圧縮機から吐出された冷媒の温度である吐出温度が過度に上昇することを抑える必要がある。
 この要求を実現するために、蒸発器の出口における冷媒が飽和状態になるように主減圧機構を制御することが考えられる。また、冷媒回路の放熱器の出口から主減圧機構までの間の部分と圧縮機の吸入側とを接続するバイパス管を設けて、バイパス管を流れる液冷媒を圧縮機の吸入側に導入する液インジェクションを行うことが考えられる。ここで、バイパス管には、バイパス管を流れる冷媒を減圧する減圧機構(バイパス減圧機構)が設けられており、バイパス管及びバイパス減圧機構がバイパス回路を構成している。
 しかし、前者の手法は、原理的に限界範囲が狭く、圧縮機の圧縮比が大きい運転状況下では対応が困難になる。
 これに対して、後者の手法は、前者の手法に比べて限界範囲が広く、圧縮機の圧縮比が大きい運転状況下にも対応しやすい。しかし、バイパス管を通じて圧縮機の吸入側に導入される液冷媒の流量(液インジェクション流量)が増加すると、液圧縮等が生じることで圧縮機の信頼性を損なうおそれがある。特に、可変容量式の圧縮機を使用する場合には、圧縮機の運転容量が小さい運転状況下、すなわち、冷媒回路内を循環する冷媒の流量(冷媒循環量)が減少した運転状況下において、液圧縮等が生じやすい。このため、バイパス減圧機構を電磁開閉弁及びキャピラリチューブによって構成する場合には、圧縮機の運転容量が小さい運転状況、すなわち、冷媒循環量が減少した運転状況に適合するように、電磁開閉弁及びキャピラリチューブの流路抵抗を選定することになる。そうすると、圧縮機の運転容量が大きい運転状況下において、液インジェクション流量が不足することになる。これにより、圧縮機の圧縮比が大きい運転状況下では、圧縮機の信頼性を確保するために、圧縮機の運転容量を大きくすることができなくなり、所望の運転能力を確保することが困難になる。
 本発明の課題は、可変容量式の圧縮機と放熱器と可変式の主減圧機構と蒸発器とを接続して構成される主冷媒回路の放熱器の出口から主減圧機構までの間の部分から圧縮機の吸入側へ液インジェクションを行うヒートポンプシステムにおいて、圧縮機の圧縮比が大きい運転状況下においても、圧縮機の信頼性を確保しつつ、所望の運転能力が得られるようにすることにある。
 第1の観点にかかるヒートポンプシステムは、主冷媒回路と、バイパス回路と、制御部とを有している。主冷媒回路は、冷媒の圧縮を行う可変容量式の圧縮機と、圧縮機において圧縮された冷媒の放熱を行う放熱器と、放熱器において放熱した冷媒の減圧を行う可変式の主減圧機構と、主減圧機構において減圧された冷媒を蒸発させる蒸発器とを接続して構成されている。バイパス回路は、主冷媒回路の放熱器の出口から主減圧機構までの間の部分と圧縮機の吸入側とを接続するバイパス管と、バイパス管を流れる液冷媒の減圧を行うバイパス減圧機構とを有している。制御部は、圧縮機、主減圧機構及びバイパス減圧機構の制御を行う。そして、バイパス減圧機構は、可変式である。制御部は、圧縮機から吐出された冷媒の温度である吐出温度が所定の目標吐出温度になるようにバイパス減圧機構を制御する液インジェクション制御を行い、液インジェクション制御におけるバイパス減圧機構の上限開度を主減圧機構の開度との相関値によって決定する。
 このヒートポンプシステムでは、バイパス減圧機構を可変式にして、吐出温度が目標吐出温度になるようにバイパス減圧機構を制御する液インジェクション制御を行うようにしているため、圧縮機の運転容量に応じてバイパス減圧機構の開度が変更され、液インジェクション流量を増減することができる。このため、このヒートポンプシステムでは、バイパス減圧機構を電磁開閉弁及びキャピラリチューブによって構成する場合に比べて、液インジェクション流量が不足するという問題が生じにくくなる。これにより、圧縮機の圧縮比が大きい運転状況下においても、所望の運転能力が得られやすくなる。
 しかし、液インジェクション流量は、主として、バイパス回路側の流路抵抗と主冷媒回路側の流路抵抗とのバランスによって定まるものである。ここで、バイパス回路側の流路抵抗と主冷媒回路側の流路抵抗とのバランスは、主として、バイパス減圧機構の流路抵抗と主減圧機構の流路抵抗との違いに依存している。このため、バイパス減圧機構は、主減圧機構の状態を考慮して制御されるべきである。仮に、バイパス減圧機構の動作に制約を設けなければ、バイパス減圧機構は、吐出温度が目標吐出温度よりも高い場合に、主減圧機構の開度の大小にかかわらず、単純に開度が大きくなるように制御されることになる。例えば、主減圧機構の開度が小さい場合には、主冷媒回路側を流れて圧縮機に吸入される冷媒の流量に比べて、液インジェクション流量が大きく増加してしまい、液圧縮等が生じるおそれがある。このように、バイパス減圧機構の動作に制約を設けずに液インジェクション制御を行うだけでは、主減圧機構の状態が考慮されず、圧縮機の信頼性を確保しにくい。
 そこで、このヒートポンプシステムでは、上記のように、液インジェクション制御におけるバイパス減圧機構の上限開度を主減圧機構の開度との相関値によって決定することによって、バイパス減圧機構の動作に対して、主減圧機構の状態を考慮した制約を設けるようにしている。
 これにより、このヒートポンプシステムでは、吐出温度が目標吐出温度よりも高い場合に、バイパス減圧機構の開度が大きくなるように制御されても、主減圧機構の開度との相関値によって決定される上限開度までしか開けることができなくなる。このため、液圧縮等が生じにくくなり、圧縮機の信頼性を確保しやすくなる。また、液インジェクション制御におけるバイパス減圧機構の可動開度範囲が主減圧機構の開度に応じて決定されることになるため、液インジェクション制御の制御性の向上にも寄与する。
 以上のように、このヒートポンプシステムでは、圧縮機の圧縮比が大きい運転状況下においても、圧縮機の信頼性を確保しつつ、所望の運転能力を得ることができる。
 第2の観点にかかるヒートポンプシステムは、第1の観点にかかるヒートポンプシステムにおいて、相関値が、主減圧機構の流路抵抗の基準値である主回路側基準圧力損失係数、及び、バイパス減圧機構の流路抵抗の基準値であるバイパス側基準圧力損失係数によって決定される係数である圧損係数を含んでいる。
 このヒートポンプシステムでは、主冷媒回路及びバイパス回路側の圧損特性を考慮して、液インジェクション制御におけるバイパス減圧機構の上限開度を、さらに適切なものとすることができる。
 第3の観点にかかるヒートポンプシステムは、第2の観点にかかるヒートポンプシステムにおいて、相関値が、圧縮機に吸入される冷媒の乾き度の許容限度に相当する許容乾き度、バイパス管の出口における冷媒の乾き度であるバイパス側乾き度、及び、蒸発器の出口における冷媒の乾き度である主回路側乾き度によって決定される係数である乾き度係数を含んでいる。
 このヒートポンプシステムでは、バイパス回路を流れる冷媒と主冷媒回路を流れる冷媒との合流によって得られる圧縮機に吸入される冷媒の乾き度を考慮して、液インジェクション制御におけるバイパス減圧機構の上限開度を、さらに適切なものとすることができる。
 第4の観点にかかるヒートポンプシステムは、第1~第3の観点のいずれかにかかるヒートポンプシステムにおいて、制御部が、液インジェクション制御時において圧縮機の容量を変化させる場合に、バイパス減圧機構の開度を、圧縮機の容量変化の程度に応じて予測される開度である予測開度に変更する。
 液インジェクション制御時において、圧縮機の容量変化が生じて吐出温度が目標吐出温度からずれると、吐出温度が目標吐出温度になるようにバイパス減圧機構が制御される。
 しかし、圧縮機の容量変化の程度が大きいと、吐出温度が目標吐出温度になるまでに時間がかかるおそれがある。
 そこで、このヒートポンプシステムでは、上記のように、液インジェクション制御時において圧縮機の容量を変化させる場合に、バイパス減圧機構の開度を、圧縮機の容量変化の程度に応じて予測される開度である予測開度に変更するようにしている。
 これにより、このヒートポンプシステムでは、液インジェクション制御時において、吐出温度が目標吐出温度になるようにバイパス減圧機構が制御される動作に先だって、圧縮機の容量変化の程度に応じて、バイパス減圧機構の開度が予測開度に変更される。このため、吐出温度を目標吐出温度に早く到達させることができ、液インジェクション制御の制御性を向上することができる。
 第5の観点にかかるヒートポンプシステムは、第1~第4の観点のいずれかにかかるヒートポンプシステムにおいて、放熱器が、圧縮機において圧縮された冷媒の放熱によって水媒体を加熱する熱交換器であり、放熱器において加熱された水媒体の熱を利用するための水媒体回路に接続されている。
 放熱器において加熱された水媒体の熱を利用するヒートポンプシステムでは、高温の水媒体が必要とされる場合があり、この場合には、圧縮機の圧縮比が大きい運転状況になりやすい。このため、圧縮機の信頼性を確保しつつ、所望の運転能力を得ることが困難になりがちである。
 しかし、このヒートポンプシステムでは、上記のように、バイパス減圧機構を可変式にして、吐出温度が目標吐出温度になるようにバイパス減圧機構を制御する液インジェクション制御を行っており、しかも、液インジェクション制御におけるバイパス減圧機構の上限開度を主減圧機構の開度との相関値によって決定するようにしている。このため、このヒートポンプシステムでは、圧縮機の圧縮比が大きい運転状況になりやすい構成であるにもかかわらず、圧縮機の信頼性を確保しつつ、所望の運転能力を得ることができる。
本発明の一実施形態にかかるヒートポンプシステムの概略構成図である。 液インジェクション制御への移行を示すフローチャートである。 液インジェクション制御を示すフローチャートである。 バイパス膨張弁の予測制御を示すフローチャートである。
 以下、本発明にかかるヒートポンプシステムの実施形態について、図面に基づいて説明する。
 <構成>
 -全体-
 図1は、本発明の一実施形態にかかるヒートポンプシステム1の概略構成図である。ヒートポンプシステム1は、蒸気圧縮式のヒートポンプサイクルを利用して水媒体を加熱する運転等を行うことが可能な装置である。ここでは、ヒートポンプシステム1は、水媒体の加熱によって暖房運転及び/又は給湯運転を行うことが可能である。
 ヒートポンプシステム1は、主として、熱源ユニット2と、利用ユニット4と、液冷媒連絡管13と、ガス冷媒連絡管14と、水媒体暖房ユニット7と、貯湯ユニット9と、水媒体連絡管15、16とを有している。そして、熱源ユニット2と利用ユニット4とは、冷媒連絡管13、14を介して接続されることによって、冷媒回路10を構成している。利用ユニット4と貯湯ユニット9と水媒体暖房ユニット7とが水媒体連絡管15、16を介して接続されることによって、水媒体回路70を構成している。冷媒回路10には、HFC系冷媒の一種であるHFC-410Aが冷媒として封入されている。また、水媒体回路70には、水媒体としての水が循環するようになっている。
 -熱源ユニット-
 熱源ユニット2は、屋外に設置されており、冷媒連絡管13、14を介して利用ユニット4に接続されており、冷媒回路10の一部を構成している。
 熱源ユニット2は、主として、圧縮機21と、油分離機構22と、切換機構23と、熱源側熱交換器26と、主減圧機構としての熱源側膨張弁28と、バイパス管31と、アキュムレータ35と、液側閉鎖弁33と、ガス側閉鎖弁34とを有している。
 圧縮機21は、冷媒を圧縮する機構である。ここでは、圧縮機21として、ケーシング(図示せず)内に収容されたロータリ式やスクロール式等の容積式の圧縮要素(図示せず)が、同じくケーシング内に収容された圧縮機モータ21aによって駆動される密閉式圧縮機が採用されている。圧縮機モータ21aは、インバータ装置(図示せず)によって、その回転数(すなわち、運転周波数)を可変でき、これにより、圧縮機21の容量を可変できるようになっている。
 油分離機構22は、圧縮機21から吐出された冷媒中に含まれる冷凍機油を分離して圧縮機21の吸入に戻すための機構である。油分離機構22は、主として、圧縮機21の吐出管21bに設けられた油分離器22aと、油分離器22aと圧縮機21の吸入管21cとを接続する油戻し管22bとを有している。油分離器22aは、圧縮機21から吐出された冷媒中に含まれる冷凍機油を分離する機器である。油戻し管22bは、キャピラリチューブを有しており、油分離器22aにおいて冷媒から分離された冷凍機油を圧縮機21の吸入管21cに戻す冷媒管である。
 切換機構23は、熱源側熱交換器26を冷媒の放熱器として機能させる熱源側放熱運転状態と熱源側熱交換器26を冷媒の蒸発器として機能させる熱源側蒸発運転状態とを切り換え可能な四路切換弁である。切換機構23は、吐出管21bと、吸入管21cと、熱源側熱交換器26のガス側に接続された第1熱源側ガス冷媒管24と、ガス側閉鎖弁34に接続された第2熱源側ガス冷媒管25とに接続されている。切換機構23は、吐出管21bと第1熱源側ガス冷媒管24とを連通させるとともに、第2熱源側ガス冷媒管25と吸入管21cとを連通させる切り換え(熱源側放熱運転状態に対応、図1の切換機構23の実線を参照)を行うことが可能である。また、切換機構23は、吐出管21bと第2熱源側ガス冷媒管25とを連通させるとともに、第1熱源側ガス冷媒管24と吸入管21cとを連通させる切り換え(熱源側蒸発運転状態に対応、図1の切換機構23の破線を参照)を行うことが可能である。尚、切換機構23は、四路切換弁に限定されるものではなく、例えば、複数の電磁弁を組み合わせて使用する等によって、上記と同様の冷媒の流れの方向を切り換える機能を有するように構成したものであってもよい。
 熱源側熱交換器26は、冷媒と室外空気との熱交換を行うことで冷媒の放熱器又は蒸発器として機能する熱交換器であり、その液側に熱源側液冷媒管27が接続されており、そのガス側に第1熱源側ガス冷媒管24が接続されている。熱源側熱交換器26において冷媒と熱交換を行う室外空気は、熱源側ファンモータ37によって駆動される熱源側ファン36によって供給されるようになっている。熱源側ファンモータ37は、インバータ装置(図示せず)によって、その回転数(すなわち、運転周波数)を可変でき、これにより、熱源側ファン36の風量を可変できるようになっている。
 熱源側膨張弁28は、熱源側液冷媒管27を流れる冷媒の減圧を行う電動膨張弁であり、熱源側液冷媒管27に設けられている。
 アキュムレータ35は、吸入管21cに設けられており、冷媒回路10を循環する冷媒を吸入管21cから圧縮機21に吸入される前に一時的に溜めるための容器である。
 液側閉鎖弁33は、熱源側液冷媒管27と液冷媒連絡管13との接続部に設けられた弁である。ガス側閉鎖弁34は、第2熱源側ガス冷媒管25とガス冷媒連絡管14との接続部に設けられた弁である。
 バイパス管31は、熱源側液冷媒管27の液側閉鎖弁33から熱源側膨張弁28までの間の部分と圧縮機21の吸入側(ここでは、吸入管21cのアキュムレータ35の出口から圧縮機21の吸入までの間の部分)とを接続する冷媒管である。そして、バイパス管31には、バイパス減圧機構としてのバイパス膨張弁32が設けられている。このバイパス膨張弁32は、電動膨張弁からなり、バイパス管31を流れる液冷媒の減圧を行う。
 また、熱源ユニット2には、各種のセンサが設けられている。具体的には、熱源ユニット2には、吸入圧力センサ41と、吐出圧力センサ42と、吸入温度センサ43と、吐出温度センサ44と、熱源側熱交ガス側温度センサ45と、熱源側熱交液側温度センサ46とが設けられている。吸入圧力センサ41は、圧縮機21の吸入における冷媒の圧力である吸入圧力Psを検出する圧力センサである。吐出圧力センサ42は、圧縮機21の吐出における冷媒の圧力である吐出圧力Pdを検出する圧力センサである。吸入温度センサ43は、圧縮機21の吸入における冷媒の温度である吸入温度Tsを検出する温度センサである。吐出温度センサ44は、圧縮機21の吐出における冷媒の温度である吐出温度Tdを検出する温度センサである。熱源側熱交ガス側温度センサ45は、熱源側熱交換器26のガス側における冷媒の温度である熱源側熱交ガス側温度Thgを検出する温度センサである。熱源側熱交液側温度センサ46は、熱源側熱交換器26の液側における冷媒の温度である熱源側熱交液側温度Thlを検出する温度センサである。また、熱源ユニット2は、熱源ユニット2を構成する各部の動作を制御する熱源側制御部39を有している。そして、熱源側制御部39は、熱源ユニット2の制御を行うためのマイクロコンピュータやメモリ等を有しており、後述の利用ユニット4の利用側制御部69との間で制御信号等のやりとりを行うことができるようになっている。
 -液冷媒連絡管-
 液冷媒連絡管13は、液側閉鎖弁33を介して熱源側液冷媒管27に接続されている、液冷媒連絡管13は、切換機構23が熱源側放熱運転状態において冷媒の放熱器として機能する熱源側熱交換器26の出口から熱源ユニット2外に冷媒を導出することが可能な冷媒管である。また、液冷媒連絡管13は、切換機構23が熱源側蒸発運転状態において熱源ユニット2外から冷媒の蒸発器として機能する熱源側熱交換器26の入口に冷媒を導入することが可能な冷媒管でもある。
 -ガス冷媒連絡管-
 ガス冷媒連絡管14は、ガス側閉鎖弁34を介して第2熱源側ガス冷媒管25に接続されている。ガス冷媒連絡管14は、切換機構23が熱源側放熱運転状態において熱源ユニット2外から圧縮機21の吸入に冷媒を導入することが可能な冷媒管である。また、ガス冷媒連絡管14は、切換機構23が熱源側蒸発運転状態において圧縮機21の吐出から熱源ユニット2外に冷媒を導出することが可能な冷媒管でもある。
 -利用ユニット-
 利用ユニット4は、屋内に設置されており、冷媒連絡管13、14を介して熱源ユニット2に接続されており、冷媒回路10の一部を構成している。また、利用ユニット4は、水媒体連絡管15、16を介して貯湯ユニット9及び水媒体暖房ユニット7に接続されており、水媒体回路70の一部を構成している。
 利用ユニット4は、主として、利用側熱交換器41と、循環ポンプ43とを有している。
 利用側熱交換器41は、冷媒と水媒体との熱交換を行うことで冷媒の放熱器として機能する熱交換器である。利用側熱交換器41の冷媒が流れる流路の液側には、利用側液冷媒管45が接続されており、利用側熱交換器41の冷媒が流れる流路のガス側には、利用側ガス冷媒管54が接続されている。また、利用側熱交換器41の水媒体が流れる流路の入口側には、利用側水入口管47が接続されており、利用側熱交換器41の水媒体が流れる流路の出口側には、利用側水出口管48が接続されている。利用側液冷媒管45には、液冷媒連絡管13が接続されており、利用側ガス冷媒管54には、ガス冷媒連絡管14が接続されている。また、利用側水入口管47には、水媒体連絡管15が接続されており、利用側水出口管48には、水媒体連絡管16が接続されている。
 循環ポンプ43は、水媒体の昇圧を行う機構であり、ここでは、遠心式や容積式のポンプ要素(図示せず)が循環ポンプモータ44によって駆動されるポンプが採用されている。循環ポンプ43は、利用側水出口管48に設けられている。循環ポンプモータ44は、インバータ装置(図示せず)によって、その回転数(すなわち、運転周波数)を可変でき、これにより、循環ポンプ43の容量を可変できるようになっている。
 また、利用ユニット4には、各種のセンサが設けられている。具体的には、利用ユニット4には、利用側熱交換器41の液側における冷媒の温度である利用側熱交液側温度Tulを検出する利用側熱交温度センサ50と、利用側熱交換器41の入口における水媒体の温度である水媒体入口温度Twrを検出する水媒体出口温度センサ51と、利用側熱交換器41の出口における水媒体の温度である水媒体出口温度Twlを検出する水媒体出口温度センサ52とが設けられている。また、利用ユニット4は、利用ユニット4を構成する各部の動作を制御する利用側制御部69を有している。そして、利用側制御部69は、利用ユニット4の制御を行うためのマイクロコンピュータやメモリ等を有している。利用側制御部69は、リモコン(図示せず)との間で制御信号等のやりとりを行ったり、熱源ユニット2の熱源側制御部39との間で制御信号等のやりとりを行うことができるようになっている。
 以上のように、熱源ユニット2と利用ユニット4とが冷媒連絡管13、14を介して接続されることによって、冷媒回路10が構成されている。冷媒回路10は、バイパス管31及びバイパス膨張弁32からなるバイパス回路30と、バイパス回路30を除いた部分からなる主冷媒回路20とから構成されている。
 -貯湯ユニット-
 貯湯ユニット9は、屋内に設置されており、水媒体連絡管15、16を介して利用ユニット4に接続されており、水媒体回路70の一部を構成している。
 貯湯ユニット9は、主として、貯湯タンク91と、熱交換コイル92とを有している。
 貯湯タンク91は、給湯に供される水媒体としての水を溜める容器であり、その上部には、蛇口やシャワー等に温水となった水媒体を送るための給湯管93が接続されており、その下部には、給湯管93によって消費された水媒体の補充を行うための給水管94が接続されている。
 熱交換コイル92は、貯湯タンク91内に設けられており、水媒体回路70を循環する水媒体と貯湯タンク91内の水媒体との熱交換を行うことで貯湯タンク91内の水媒体の加熱器として機能する熱交換器であり、その入口には、水媒体連絡管16が接続されており、その出口には、水媒体連絡管15が接続されている。
 これにより、貯湯ユニット9は、利用ユニット4において加熱された水媒体回路70を循環する水媒体によって貯湯タンク91内の水媒体を加熱して温水として溜めることが可能になっている。尚、ここでは、貯湯ユニット9として、利用ユニット4において加熱された水媒体との熱交換によって加熱された水媒体を貯湯タンクに溜める型式の貯湯ユニットを採用しているが、利用ユニット4において加熱された水媒体を貯湯タンクに溜める型式の貯湯ユニットを採用してもよい。また、ここでは、貯湯ユニット9が利用ユニット4aとは別ユニットとして構成されているが、貯湯ユニット9が利用ユニット4に内蔵されていてもよい。
 また、貯湯ユニット9には、各種のセンサが設けられている。具体的には、貯湯ユニット9には、貯湯タンク91に溜められる水媒体の温度である貯湯温度Twhを検出するための貯湯温度センサ95が設けられている。
 -水媒体暖房ユニット-
 水媒体暖房ユニット7は、屋内に設置されている。水媒体暖房ユニット7は、水媒体連絡管15、16を介して利用ユニット4に接続されており、水媒体回路70の一部を構成している。
 水媒体暖房ユニット7は、主として、熱交換パネル71を有しており、ラジエータや床冷暖房パネル等を構成している。
 熱交換パネル71は、ラジエータの場合には、室内の壁際等に設けられ、床暖房パネルの場合には、室内の床下等に設けられている。熱交換パネル71は、水媒体回路70を循環する水媒体の放熱器として機能する熱交換器であり、その入口には、水媒体連絡管16が接続されており、その出口には、水媒体連絡管15が接続されている。
 -水媒体連絡管-
 水媒体連絡管15は、貯湯ユニット9の熱交換コイル92の出口及び水媒体冷暖房ユニット7の熱交換パネル71の出口に接続されている。水媒体連絡管16は、貯湯ユニット9の熱交換コイル92の入口及び水媒体冷暖房ユニット7の熱交換パネル71の入口に接続されている。水媒体連絡管16には、水媒体回路70を循環する水媒体を貯湯ユニット9及び水媒体暖房ユニット7の両方、又は、貯湯ユニット9及び水媒体暖房ユニット7のいずれか一方に供給するかの切り換えを行うことが可能な水媒体切換機構161が設けられている。この水媒体切換機構161は、三方弁からなる。
 以上のように、利用ユニット4と貯湯ユニット9と水媒体暖房ユニット7とが水媒体連絡管15、16を介して接続されることによって、水媒体回路70が構成されている。水媒体回路70は、圧縮機21において圧縮された冷媒の放熱器として機能する利用側熱交換器41において加熱された水媒体の熱を利用する。
 -制御部-
 利用側制御部69と熱源側制御部39とが伝送線等を介して接続されることによって、ヒートポンプシステム1の運転制御を行う制御部1aが構成されており、以下の運転や各種制御を行うようになっている。
 <動作>
 次に、ヒートポンプシステム1の動作について説明する。
 ヒートポンプシステム1の運転としては、水媒体暖房ユニット7を用いた暖房運転のみを行う暖房運転モードと、貯湯ユニット9を用いた給湯運転のみを行う給湯運転モードと、水媒体暖房ユニット7及び貯湯ユニット9を用いた暖房運転及び給湯運転を同時に行う給湯暖房運転モードとがある。
 -暖房運転モード-
 水媒体暖房ユニット7を用いた暖房運転のみを行う場合には、冷媒回路10においては、切換機構23が熱源側放熱運転状態(図1の切換機構23の破線で示された状態)に切り換えられる。また、水媒体回路70においては、水媒体切換機構161が水媒体暖房ユニット7に水媒体を供給する状態に切り換えられる。
 このような状態の冷媒回路10において、冷凍サイクルにおける低圧の冷媒は、吸入管21cを通じて、圧縮機21に吸入され、冷凍サイクルにおける高圧まで圧縮された後に、吐出管21bに吐出される。吐出管21bに吐出された高圧の冷媒は、油分離器22aにおいて冷凍機油が分離される。油分離器22aにおいて冷媒から分離された冷凍機油は、油戻し管22bを通じて、吸入管21cに戻される。冷凍機油が分離された高圧の冷媒は、切換機構23、第2熱源側ガス冷媒管25及びガス側閉鎖弁34を通じて、熱源ユニット2からガス冷媒連絡管14に送られる。
 ガス冷媒連絡管14に送られた高圧の冷媒は、利用ユニット4に送られる。利用ユニット4に送られた高圧の冷媒は、利用側ガス冷媒管54を通じて、利用側熱交換器41に送られる。利用側熱交換器41に送られた高圧の冷媒は、利用側熱交換器41において、循環ポンプ43によって水媒体回路70を循環する水媒体と熱交換を行って放熱する。利用側熱交換器41において放熱した高圧の冷媒は、利用側液冷媒管45を通じて、利用ユニット4から液冷媒連絡管13に送られる。
 液冷媒連絡管13に送られた冷媒は、熱源ユニット2に送られる。熱源ユニット2に送られた冷媒は、液側閉鎖弁33を通じて、熱源側液冷媒管27に送られる。熱源側液冷媒管27に送られた冷媒は、熱源側液冷媒管27の液側閉鎖弁33と熱源側膨張弁28との間の部分において2つに分岐されて、その一方が熱源側膨張弁28に送られ、その他方がバイパス管31に送られる。熱源側膨張弁28に送られた冷媒は、熱源側膨張弁28において減圧されて、低圧の気液二相状態になり、熱源側熱交換器26に送られる。熱源側熱交換器26に送られた低圧の冷媒は、熱源側熱交換器26において、熱源側ファン36によって供給される室外空気と熱交換を行って蒸発する。熱源側熱交換器26において蒸発した低圧の冷媒は、第1熱源側ガス冷媒管24及び切換機構23を通じて、熱源側アキュムレータ35に送られる。そして、熱源側アキュムレータ35に送られた低圧の冷媒は、吸入管21cを通じて、再び、圧縮機21に吸入される。また、バイパス管31に送られた冷媒は、バイパス膨張弁32によって減圧されて、低圧の気液二相状態になる。そして、バイパス膨張弁32において減圧された低圧の冷媒は、吸入管21cにおいて、熱源側膨張弁28及び熱源側熱交換器26を通じて熱源側アキュムレータ35に送られた低圧の冷媒に合流して、圧縮機21に吸入される。このように、ここでは、主冷媒回路20を流れる冷媒の一部を、液側閉鎖弁33と熱源側膨張弁28との間の部分においてバイパス回路30に分岐し、熱源側膨張弁28及び熱源側熱交換器26を通じて圧縮機21の吸入側に戻る冷媒とともに圧縮機21に戻す動作(液インジェクション)が行われる。
 一方、水媒体回路70においては、利用側熱交換器41における冷媒の放熱によって水媒体回路70を循環する水媒体が加熱される。利用側熱交換器41において加熱された水媒体は、利用側水出口管48を通じて、循環ポンプ43に吸入され、昇圧された後に、利用ユニット4から水媒体連絡管16に送られる。水媒体連絡管16に送られた水媒体は、水媒体切換機構161を通じて、水媒体暖房ユニット7に送られる。水媒体暖房ユニット7に送られた水媒体は、熱交換パネル71において放熱し、これにより、室内の壁際等を加熱したり室内の床を加熱する。
 このようにして、水媒体暖房ユニット7を用いた暖房運転のみを行う暖房運転モードにおける動作が行われる。
 -給湯運転モード-
 貯湯ユニット9を用いた給湯運転のみを行う場合には、冷媒回路10においては、切換機構23が熱源側放熱運転状態(図1の切換機構23の破線で示された状態)に切り換えられる。また、水媒体回路70においては、水媒体切換機構161が貯湯ユニット9に水媒体を供給する状態に切り換えられる。
 そして、このような状態の冷媒回路10においては、上記の暖房運転と同様の動作が行われる。
 一方、水媒体回路70においては、利用ユニット4から水媒体連絡管16に送られた水媒体は、水媒体切換機構161を通じて、貯湯ユニット9に送られる。貯湯ユニット9に送られた水媒体は、熱交換コイル92において貯湯タンク91内の水媒体と熱交換を行って放熱し、これにより、貯湯タンク91内の水媒体を加熱する。
 このようにして、貯湯ユニット9を用いた給湯運転のみを行う給湯運転モードにおける動作が行われる。
 -給湯暖房運転モード-
 水媒体暖房ユニット7及び貯湯ユニット9を用いた暖房運転及び給湯運転を同時に行う場合には、冷媒回路10においては、切換機構23が熱源側放熱運転状態(図1の切換機構23の破線で示された状態)に切り換えられる。また、水媒体回路70においては、水媒体切換機構161が水媒体暖房ユニット7及び貯湯ユニット9に水媒体を供給する状態に切り換えられる。
 そして、このような状態の冷媒回路10においては、上記の暖房運転と同様の動作が行われる。
 一方、水媒体回路70においては、利用ユニット4から水媒体連絡管16に送られた水媒体は、水媒体切換機構161を通じて、水媒体暖房ユニット7及び貯湯ユニット9に送られる。水媒体暖房ユニット7に送られた水媒体は、熱交換パネル71において放熱し、これにより、室内の壁際等を加熱したり室内の床を加熱する。また、貯湯ユニット9に送られた水媒体は、熱交換コイル92において貯湯タンク91内の水媒体と熱交換を行って放熱し、これにより、貯湯タンク91内の水媒体を加熱する。
 このようにして、水媒体暖房ユニット7及び貯湯ユニット9を用いた暖房運転及び給湯運転を同時に行う給湯暖房運転モードにおける動作が行われる。
 -圧縮機の制御-
 ヒートポンプシステム1では、上記のように、冷媒回路10を循環する冷媒が利用側熱交換器41において放熱することによって、水媒体回路70を循環する水媒体が加熱されるようになっている。このとき、利用側熱交換器41において、安定的に高温の水媒体を得るためには、冷凍サイクルにおける高圧が安定するように制御することが好ましい。
 そこで、ヒートポンプシステム1では、圧縮機21を容量可変式にして、制御部1aが、圧縮機21の吐出における冷媒の圧力に相当する飽和温度(すなわち、吐出飽和温度Tc)を冷凍サイクルの冷媒の圧力の代表値として用いて、吐出飽和温度Tcが所定の目標吐出飽和温度Tcsになるように圧縮機21の容量制御を行うようにしている。ここで、吐出飽和温度Tcは、吐出圧力Pdを飽和温度に換算した値である。より具体的には、制御部1aは、吐出飽和温度Tcが目標吐出飽和温度Tcsよりも小さい場合には、圧縮機21の回転数(すなわち、運転周波数)を大きくすることで、圧縮機21の運転容量が大きくなるように制御し、吐出飽和温度Tcが目標吐出飽和温度Tcsよりも大きい場合には、圧縮機21の回転数(すなわち、運転周波数)を小さくすることで圧縮機21の運転容量が小さくなるように制御する。
 これにより、ヒートポンプシステム1では、冷凍サイクルにおける高圧が安定するため、安定的に高温の水媒体を得ることができる。
 また、このとき、所望の温度の水媒体を得るためには、目標吐出飽和温度Tcsを適切に設定することが好ましい。
 そこで、制御部1aは、利用側熱交換器41の出口における水媒体の温度の目標値である所定の目標水媒体出口温度Twlsを設定しておき、目標吐出飽和温度Tcsを目標水媒体出口温度Twlsによって可変される値として設定するようにしている。より具体的には、制御部1aは、例えば、目標水媒体出口温度Twlsが60℃に設定される場合には、目標吐出飽和温度Tcsを65℃に設定したり、また、目標水媒体出口温度Twlsが25℃に設定される場合には、目標吐出飽和温度Tcsを30℃に設定する等のように、目標水媒体出口温度Twlsが高い温度に設定されるにつれて目標吐出飽和温度Tcsも高い温度になるように、かつ、目標水媒体出口温度Twlsよりも少し高い温度になるように、目標水媒体出口温度Twlsの設定範囲内で関数化して設定している。
 これにより、ヒートポンプシステム1では、目標水媒体出口温度Twlsに応じて目標吐出飽和温度Tcsが適切に設定されるため、所望の目標水媒体出口温度Twsが得られやすく、また、目標水媒体出口温度Twsが変更された場合であっても、応答性のよい制御を行うことができる。
 -熱源側膨張弁の制御-
 ヒートポンプシステム1では、上記のように、冷媒回路10を循環する冷媒が、熱源側膨張弁28において減圧されて、低圧の気液二相状態になり、その後、熱源側熱交換器26において蒸発するようになっている。このとき、圧縮機21に吸入される冷媒の状態を安定させるためには、冷媒の蒸発器として機能する熱源側熱交換器26の出口における冷媒の状態が安定するように制御することが好ましい。
 そこで、ヒートポンプシステム1では、主減圧機構としての熱源側膨張弁28を可変式にして、制御部1aが、熱源側熱交換器26の出口における冷媒の過熱度である出口過熱度SHhが所定の目標出口過熱度SHhsになるように熱源側膨張弁28を制御するようにしている。ここで、出口冷媒過熱度SHhは、吸入圧力Psを圧縮機21の吸入における冷媒の圧力に相当する飽和温度(すなわち、吸入飽和温度Te)に換算し、利用側熱交液側温度Tulから吸入飽和温度Teを差し引くことによって得られる。尚、ここでは採用していないが、利用側熱交換器41に吸入飽和温度Teに相当する冷媒温度を検出する温度センサを設けて、利用側熱交液側温度Tulからこの冷媒温度を差し引くことによって出口冷媒過熱度SHhを得るようにしてもよい。より具体的には、制御部1aは、出口過熱度SHhが目標出口過熱度SHhsよりも小さい場合には、熱源側膨張弁28の開度OPeが小さくなるように制御し、出口過熱度SHhが目標出口過熱度SHhsよりも大きい場合には、熱源側膨張弁28の開度OPeが大きくなるように制御する。
 これにより、ヒートポンプシステム1では、熱源側熱交換器26の出口における冷媒の状態が安定するため、圧縮機21に吸入される冷媒の状態を安定させることができる。
 -液インジェクション制御-
 ヒートポンプシステム1では、圧縮機21の保護や運転効率の低下防止等の観点から、吐出温度Tdが過度に上昇することを抑える必要があるため、上記のように、バイパス回路30を設けて、バイパス回路30を構成するバイパス管31を流れる液冷媒を圧縮機21の吸入側に導入する液インジェクションを行うようにしている。
 すなわち、ヒートポンプシステム1では、バイパス減圧機構としてのバイパス膨張弁32を可変式にして、制御部1aが、吐出温度Tdが目標吐出温度Tdsになるようにバイパス膨張弁32を制御する液インジェクション制御を行うようにしている。より具体的には、制御部1aは、吐出温度Tdが目標吐出温度Tdsよりも小さい場合には、バイパス膨張弁32の開度OPiを小さくすることでバイパス回路30側(すなわち、バイパス管31及びバイパス膨張弁32を通じて圧縮機21の吸入側に導入される側)の液冷媒の流量(液インジェクション流量Gi)が小さくなるように制御し(図3のステップS15、S17参照)、吐出温度Tdが目標吐出温度Tdsよりも大きい場合には、バイパス膨張弁32の開度OPiを大きくすることで液インジェクション流量Giが大きくなるように制御する(図3のステップS14、S16参照)。
 これにより、ヒートポンプシステム1では、圧縮機21の運転容量に応じてバイパス膨張弁32の開度OPiが変更され、液インジェクション流量Giを増減することができる。このため、ヒートポンプシステム1では、バイパス膨張機構を電磁開閉弁及びキャピラリチューブによって構成する場合に比べて、液インジェクション流量Giが不足するという問題が生じにくくなる。これにより、目標水媒体出口温度Twlsが高温(例えば、60℃)に設定された場合には、目標吐出飽和温度Tcsも高温(例えば、65℃)に設定されることになるため、圧縮機21の圧縮比が大きい運転状況になるが、このような運転状況下においても、所望の運転能力を得ることができる。
 しかし、液インジェクション流量Giは、主として、バイパス回路30側の流路抵抗と主冷媒回路20側の流路抵抗とのバランスによって定まるものである。ここで、バイパス回路30側の流路抵抗と主冷媒回路20側の流路抵抗とのバランスは、主として、バイパス減圧機構の流路抵抗と主減圧機構の流路抵抗との違いに依存している。このため、バイパス膨張弁32は、熱源側膨張弁28の状態を考慮して制御されるべきである。仮に、バイパス膨張弁32の動作に制約を設けなければ、バイパス膨張弁32は、吐出温度Tdが目標吐出温度Tdsよりも高い場合に、熱源側膨張弁28の開度OPeの大小にかかわらず、単純に開度OPiが大きくなるように制御されることになる。例えば、熱源側膨張弁28の開度OPeが小さい場合には、主冷媒回路20側を流れて圧縮機21に吸入される冷媒の流量(主回路側流量Ge)に比べて、液インジェクション流量Giが大きく増加してしまい、液圧縮等が生じるおそれがある。このように、バイパス膨張弁32の動作に制約を設けずに液インジェクション制御を行うだけでは、バイパス膨張弁32の状態が考慮されず、圧縮機21の信頼性を確保しにくい。
 そこで、ヒートポンプシステム1では、制御部1aが、液インジェクション制御におけるバイパス減圧機構としてのバイパス膨張弁32の上限開度OPixを主減圧機構としての熱源側膨張弁28の開度OPeとの相関値によって決定することによって、バイパス膨張弁32の動作に対して、熱源側膨張弁28の状態を考慮した制約を設けるようにしている。
 以下、バイパス膨張弁32の上限開度OPixの決定も含めた液インジェクション制御について、図2及び図3を用いて説明する。尚、ここでは、上記のように、吐出飽和温度Tcが目標吐出飽和温度Tcsになるように圧縮機21の容量制御が行われており、また、出口過熱度SHhが目標出口過熱度SHhsになるように熱源側膨張弁28の開度制御が行われているものとする。
 まず、制御部1aは、液インジェクション制御を行わない場合、バイパス膨張弁32を、例えば、開度OPiが0%の全閉状態の初期状態にする(ステップS1)。ここで、バイパス膨張弁32の開度OPiは、全閉状態を0%とし、全開状態を100%とする。また、熱源側膨張弁28の開度OPeも、バイパス膨張弁32と同様に、全閉状態を0%とし、全開状態を100%とする。
 次に、制御部1aは、ステップS2、S3、S4、S5において、ヒートポンプシステム1の運転状態が液インジェクション制御を行う条件を満たしているかどうかを判定する。具体的には、制御部1aは、ステップS2において、圧縮機21が運転中であるかどうかを判定する。また、制御部1aは、ステップS3において、暖房運転モード、給湯運転モード、又は、給湯暖房運転モードであるかどうかを判定する。これらのステップS2、S3によって、ヒートポンプシステム1の運転が行われているかどうかが判定される。また、制御部1aは、ステップS4において、熱源側膨張弁28の開度OPeが最小開度OPemより大きいかどうかを判定する。さらに、制御部1aは、ステップS5において、圧縮機21の吐出過熱度SHCが最小吐出過熱度SHCmより大きいかどうかを判定する。ここで、最小開度OPemは、暖房運転モード、給湯運転モード、又は、給湯暖房運転モードのような通常の運転時において想定し得る熱源側膨張弁28の最小の開度を意味している。また、吐出過熱度SHCは、吐出温度Tdから吐出飽和温度Tcを差し引くことによって得られる。そして、最小吐出過熱度SHCmは、暖房運転モード、給湯運転モード、又は、給湯暖房運転モードのような通常の運転時において想定し得る最小の吐出過熱度を意味している。これらのステップS4、S5によって、ヒートポンプシステム1の運転が運転開始時や運転停止時等の過渡的又は不規則な運転でないかどうかが判定される。そして、ステップS2~S5を満たすものと判定された場合には、ヒートポンプシステム1の運転がなされており、かつ、運転開始時や運転停止時等の過渡的な運転や不規則な運転でないものとして、ステップS6の液インジェクション制御に処理に移行する。これにより、液インジェクション制御は、運転開始時や運転停止時の過渡的な運転や不規則な運転を除いた、暖房運転モード、給湯運転モード、又は、給湯暖房運転モードにおける運転中に行われることになる。
 液インジェクション制御において、制御部1aは、まず、バイパス膨張弁32が初期状態(ここでは、開度OPiが0%)であるかどうかを判定する(ステップS11)。ここで、運転開始直後であれば、バイパス膨張弁32が初期状態であるため、ステップS12の処理に移行する。制御部1aは、ステップS12において、バイパス膨張弁32の開度OPiを液インジェクション開始開度OPiiにすることで、バイパス管31を流れる液冷媒を圧縮機21の吸入側に導入する液インジェクションを開始する。ここで、液インジェクション開始開度OPiiは、数%から10%程度の開度であり、これによって、ステップS13~S18の液インジェクション制御の処理へ移行する直前の準備がなされる。また、バイパス膨張弁32の開度OPiを液インジェクション開始開度OPiiにする時間は、例えば、数十秒から数分程度である。このため、運転開始直後ではなく既にステップS13~S18の液インジェクション制御の処理が行われている場合には、ステップS12の処理を行わずに、ステップS13の処理に移行することになる。
 次に、制御部1aは、液インジェクション制御におけるバイパス膨張弁32の上限開度OPixを決定する(ステップS13)。ここで、バイパス膨張弁32の上限開度OPixは、熱源側膨張弁28の開度OPeとの相関値によって決定されるものであるが、この点について詳細に説明する。
 まず、熱源側熱交換器26の出口における冷媒の乾き度である主回路側乾き度をXeとし、バイパス管32の出口における冷媒の乾き度であるバイパス側乾き度をXiとすると、主冷媒回路20側を流れて圧縮機21に吸入される冷媒とバイパス回路30側を流れて圧縮機21に吸入される冷媒とが合流した後の冷媒(すなわち、液インジェクションを行っている際に圧縮機21に吸入される冷媒)の乾き度をXsとする。すると、乾き度Xsは、次式で表される。
   Xs=(Xe×Ge+Xi×Gi)/(Ge+Gi)      ・・・式A
 一方、バイパス回路30側の流路抵抗をCViとし、主冷媒回路20側の流路抵抗をCVeとすると、液インジェクション流量Gi及び主回路側流量Geは、それぞれ、CVi及びCVeに比例し、圧力損失や液冷媒の密度は、バイパス回路30側及び主冷媒回路20側で共通するため、式Aは、次式で表される。
   Xs=(Xe×CVe+Xi×CVi)/(CVe+CVi)  ・・・式B
 そして、液圧縮等の圧縮機21の保護という観点から決定される乾き度Xsの許容限度に相当する許容乾き度をXsaとすると、式Bは、次式で表される。
   Xsa≦(Xe×CVe+Xi×CVi)/(CVe+CVi) ・・・式C
 さらに、式Cを変形すると、以下のようになる。
   CVi≦(Xe-Xsa)/(Xsa-Xi)×CVe     ・・・式D
 一方、熱源側膨張弁28及びバイパス膨張弁32の弁特性がリニアであると仮定すると、熱源側膨張弁28の流路抵抗及びバイパス膨張弁32の流路抵抗がそれぞれ主冷媒回路20側の流路抵抗CVe及びバイパス回路30側の流路抵抗CViが大半を占めるため、式Dは、次式で表される。
   (Ki×OPi/OPis)≦(Xe-Xsa)/(Xsa-Xi)
×(Ke×OPe/OPes)                   ・・・式E
ここで、Ke及びKiは、それぞれ熱源側膨張弁28の流路抵抗の基準値である主回路側基準圧力損失係数及びバイパス膨張弁32の流路抵抗の基準値であるバイパス側基準圧力損失係数である。OPes及びOPisは、それぞれ主回路側基準圧力損失係数Keにおける熱源側膨張弁28の開度及びバイパス側基準圧力損失係数Kiにおけるバイパス膨張弁32の開度である。
 そして、式Eを変形すると、以下のようになる。
   OPi≦(Xe-Xsa)/(Xsa-Xi)
×(Ke×OPis)/(Ki×OPes)×OPe         ・・・式F
すなわち、バイパス膨張弁32の開度OPiは、熱源側膨張弁28の開度OPeとの相関式である式Fを満たす開度範囲内に収まるように液インジェクション制御を行うことが好ましいことになる。そうすると、式Fにおけるバイパス膨張弁32の開度OPiを上限開度OPixとすると、式Fは、次式で表される。
   OPix=β×γ×OPe                  ・・・式G
ここで、βは、式Fに示すように、許容乾き度Xsa、バイパス側乾き度Xi、及び、主回路側乾き度Xeによって決定される乾き度係数である。γは、式Fに示すように、主回路側基準圧力損失係数Ke、及び、バイパス側基準圧力損失係数Kiによって決定される圧損係数である。尚、熱源側膨張弁28及びバイパス膨張弁32の弁特性がリニアでない場合には、式Eにおける(Ki×OPi/OPis)及び(Ke×OPe/OPes)が異なるものとなる(これに応じて、式F、Gも異なるものとなる)が、上限開度OPixの考え方は、上記と同様である。
 このように、バイパス膨張弁32の上限開度OPixは、熱源側膨張弁28の開度OPeとの相関値によって決定されている。そして、この相関値には、乾き度係数βと圧損係数γとが含まれている。ここで、乾き度係数βは、圧縮機21の運転特性等から決定される許容乾き度Xsa、冷媒回路10の標準的な運転状態において想定される主回路側乾き度Xe及びバイパス側乾き度Xiから算出される。但し、主回路側乾き度Xe及びバイパス側乾き度Xiについては、吐出圧力Pdや吸入圧力Ps、利用側熱交液側温度Tul、吸入温度Ts、熱源側熱交液側温度Thlの測定値から得るようにしてもよい。また、圧損係数γは、全開状態(すなわち、OPe=100%、及び、OPi=100%)における熱源側膨張弁28及びバイパス膨張弁32の圧力損失係数を、それぞれ主回路側基準圧力損失係数Ke及びバイパス側基準圧力損失係数Kiとして算出される。但し、基準値は、全開状態に限らず、他の開度状態におけるものであってもよい。
 そして、制御部1aは、ステップS13において、上記の式Gを用いて熱源側膨張弁28の開度OPeからバイパス膨張弁32の最大開度OPixを決定する。これにより、液インジェクション制御におけるバイパス膨張弁32の可動開度範囲が最大開度OPix以下に制限されることになる。
 次に、制御部1aは、ステップS14、S15において、吐出温度Tdが目標吐出温度Tdsよりも小さいかどうか、また、吐出温度Tdが目標吐出温度Tdsよりも大きいかどうかを判定する。そして、吐出温度Tdが目標吐出温度Tdsよりも小さい場合には、制御部1aは、バイパス膨張弁32の開度OPiを小さくすることで(すなわち、OPi=OPi-ΔOPi)、液インジェクション流量Giが小さくなるように制御する(ステップS16)。また、吐出温度Tdが目標吐出温度Tdsよりも大きい場合には、バイパス膨張弁32の開度OPiを大きくすることで(すなわち、OPi=OPi+ΔOPi)、液インジェクション流量Giが大きくなるように制御する(ステップS17)。さらに、吐出温度Tdが目標吐出温度Tdsである場合には、バイパス膨張弁32の開度OPiを維持することで(すなわち、OPi=OPi)、液インジェクション流量Giが維持されるように制御する(ステップS18)。そして、ステップS16、S17、S18の処理を行った後に、ステップS2の処理に戻り、ステップS2~S5の液インジェクション制御を行う運転条件を満たす限り、ステップS6(すなわち、ステップS11~S18)の処理が繰り返される。ここで、バイパス膨張弁32の開度OPiは、上記のように、熱源側膨張弁28の開度OPeとの相関値によって決定される上限開度OPixが可動開度範囲の上限となっている。また、バイパス膨張弁32の開度変更幅ΔOPiは、吐出温度Tdと目標吐出温度Tdsとの偏差から得られる。そして、開度変更幅ΔOPiは、吐出温度Tdが目標吐出温度Tdsよりも小さい場合には、液圧縮等の懸念を考慮して、できるだけ早く液インジェクション流量Giが小さくなるように、吐出温度Tdが目標吐出温度Tdsよりも大きい場合の開度変更幅ΔOPiよりも大きな値に設定される。
 これにより、ヒートポンプシステム1では、吐出温度Tdが目標吐出温度Tdsよりも高い場合に、バイパス膨張弁32の開度OPiが大きくなるように制御されても、熱源側膨張弁28の開度OPeとの相関値によって決定される上限開度OPixまでしか開けることができなくなる。このため、液圧縮等が生じにくくなり、圧縮機21の信頼性を確保しやすくなる。また、液インジェクション制御におけるバイパス膨張弁32の可動開度範囲が熱源側膨張弁28の開度OPeに応じて決定されることになるため、液インジェクション制御の制御性の向上にも寄与している。特に、ヒートポンプシステム1では、上記のように、圧縮機21の運転容量が制御されており、また、熱源側膨張弁28が制御されていることから、熱源側膨張弁28の開度OPeの変化が大きいが、このような構成であるにもかかわらず、バイパス膨張弁32の動作を適切に制約して、圧縮機21の信頼性の確保や液インジェクション制御の制御性の向上に寄与している。
 以上のように、ヒートポンプシステム1では、圧縮機21の圧縮比が大きい運転状況下においても、圧縮機21の信頼性を確保しつつ、所望の運転能力を得ることができるようになっている。特に、ヒートポンプシステム1は、放熱器としての利用側熱交換器41において加熱された水媒体の熱を利用する構成であるため、上記のように、高温(例えば、60℃)の水媒体が必要とされる場合があり、圧縮機21の圧縮比が大きい運転状況になりやすいが、このような構成であるにもかかわらず、圧縮機の信頼性を確保しつつ、所望の運転能力を得ることができる。
 また、ヒートポンプシステム1では、上記のように、液インジェクション制御におけるバイパス膨張弁32の上限開度OPixと熱源側膨張弁28の開度OPeとの相関値に、圧損係数γが含まれている。このため、ヒートポンプシステム1では、主冷媒回路20及びバイパス回路30側の圧損特性を考慮して、液インジェクション制御におけるバイパス膨張弁32の上限開度OPixを、さらに適切なものとすることができている。
 さらに、ヒートポンプシステム1では、上記のように、液インジェクション制御におけるバイパス膨張弁32の上限開度OPixと熱源側膨張弁28の開度OPeとの相関値に、乾き度係数βが含まれている。このため、ヒートポンプシステム1では、バイパス回路30を流れる冷媒と主冷媒回路20を流れる冷媒との合流によって得られる圧縮機21に吸入される冷媒の乾き度を考慮して、液インジェクション制御におけるバイパス膨張弁32の上限開度OPixを、さらに適切なものとすることができている。
 -バイパス膨張弁の予測制御-
 上記の液インジェクション制御時においては、圧縮機21の容量変化が生じて吐出温度Tdが目標吐出温度Tdsからずれると、吐出温度Tdが目標吐出温度Tdsになるようにバイパス減圧機構としてのバイパス膨張弁32が制御される(図3のステップS11~S18)。
 しかし、圧縮機21の容量変化の程度が大きいと、吐出温度Tdが目標吐出温度Tdになるまでに時間がかかるおそれがある。
 そこで、図4に示すように、液インジェクション制御時において圧縮機21の容量を変化させる場合に、バイパス膨張弁32の開度OPiを、圧縮機21の容量変化の程度に応じて予測される開度である予測開度OPifに変更するようにしてもよい。
 より具体的には、制御部1aは、ステップS21において、圧縮機21の容量変更が生じたかどうかを判定する。
 次に、ステップS21において圧縮機21の容量変更が生じたと判定された場合には、制御部1aは、ステップS22において、予測制御許容条件を満たすかどうかを判定する。ここで、予測制御許容条件は、圧縮機21の容量変更に応じて、液インジェクション流量Giを大きくすること、又は、液インジェクション流量Giを小さくすることが明らかであるかどうかを判定する条件である。すなわち、圧縮機21の容量変更の方向が運転容量を大きくする方向(例えば、圧縮機21の運転周波数を大きくする方向)であり、かつ、吐出温度Tdが目標吐出温度Tdsよりも小さすぎない場合(例えば、吐出温度Tdが目標吐出温度Tdsよりも少し小さい温度であるTdsmよりも高い場合)には、液インジェクション流量Giを早く大きくしても、液圧縮等の懸念が少ないため、この場合には、バイパス膨張弁32の予測制御を許容することができる。また、圧縮機21の容量変更の方向が運転容量を小さくする方向(例えば、圧縮機21の運転周波数を小さくする方向)であり、かつ、吐出温度Tdが目標吐出温度Tdsよりも大きすぎない場合(例えば、吐出温度Tdが目標吐出温度Tdsよりも少し大きい温度であるTdsxよりも高い場合)には、液インジェクション流量Giを早く小さくしても、過熱圧縮等の懸念が少ないため、この場合には、バイパス膨張弁32の予測制御を許容することができる。
 次に、ステップS22において予測制御許容条件を満たすものと判定された場合には、制御部1aは、ステップS23において、バイパス膨張弁32の開度OPiを予測開度OPifに変更して、液インジェクション制御を続行する。ここで、予測開度OPifは、圧縮機21の容量変化前の運転周波数Ftb、及び、容量変化後の運転周波数Ftbに基づいて得られる値であり、次式で表される。
   OPif=(Fta/Ftb)^n
ここで、nは、乗数である。尚、予測開度OPifは、上式を用いて得られるものに限定されず、圧縮機21の容量変化の程度に応じて得られるものであればよい。
 これにより、ヒートポンプシステム1では、液インジェクション制御時において、吐出温度Tdが目標吐出温度Tdsになるようにバイパス膨張弁32が制御される動作に先だって、圧縮機21の容量変化の程度に応じて、バイパス膨張弁32の開度OPiが予測開度OPifに変更されることになる。このため、吐出温度Tdを目標吐出温度Tdsに早く到達させることができ、液インジェクション制御の制御性を向上することができる。
 <他の実施形態>
 以上、本発明の実施形態について図面に基づいて説明したが、具体的な構成は、これらの実施形態に限られるものではなく、発明の要旨を逸脱しない範囲で変更可能である。
 -A-
 上記のヒートポンプシステムでは、冷媒として、HFC-410Aが使用されているが、これに限定されず、他の冷媒を使用してもよい。
 -B-
 上記のヒートポンプシステムでは、水媒体の利用先として、水媒体暖房ユニットと貯湯ユニットとが設けられているが、いずれか一方のみでもよいし、また、他の利用先が設けられていてもよい。
 -C-
 上記のヒートポンプシステムでは、利用ユニットと貯湯ユニットとが別体のユニットとなっているが、利用ユニットと貯湯ユニットとが一体のユニットになっていてもよい。
 -D-
 上記のヒートポンプシステムでは、熱源ユニットと利用ユニットとが別体のユニットとなっているが、熱源ユニットと利用ユニットとが一体のユニットになっていてもよい。
 -E-
 上記のヒートポンプシステムでは、1つの熱源ユニットに1つの利用ユニットが接続されているが、1つの熱源ユニットに複数の利用ユニットが接続されていてもよい。
 -F-
 上記のヒートポンプシステムでは、冷媒の放熱器としての利用側熱交換器において加熱された水媒体の熱を利用する構成であるが、これに限定されず、例えば、高温の空気が必要であれば、冷媒の放熱器としての利用側熱交換器において加熱された空気の熱を利用する構成であっても適用可能である。
 本発明は、可変容量式の圧縮機と放熱器と可変式の主減圧機構と蒸発器とを接続して構成される主冷媒回路の放熱器の出口から主減圧機構までの間の部分から圧縮機の吸入側へ液インジェクションを行うヒートポンプシステムに広く適用可能である。
 1 ヒートポンプシステム
 1a 制御部
 2 熱源ユニット
 20 主冷媒回路
 21 圧縮機
 26 熱源側熱交換器(蒸発器)
 28 熱源側膨張弁(主減圧機構)
 30 バイパス回路
 31 バイパス管
 32 バイパス膨張弁
 41 利用側熱交換器(放熱器)
 70 水媒体回路
 Ke 主回路側基準圧力損失係数
 Ki バイパス側基準圧力損失係数
 OPe 熱源側膨張弁の開度(主減圧機構の開度)
 OPif 予測開度
 OPix 上限開度
 Td 吐出温度
 Tds 目標吐出温度
 Xe 主回路側乾き度
 Xi バイパス側乾き度
 Xsa 許容乾き度
 β 乾き度係数
 γ 圧損係数
特開2007-163099号公報

Claims (5)

  1.  冷媒の圧縮を行う可変容量式の圧縮機(21)と、前記圧縮機において圧縮された冷媒の放熱を行う放熱器(41)と、前記放熱器において放熱した冷媒の減圧を行う可変式の主減圧機構(28)と、前記主減圧機構において減圧された冷媒を蒸発させる蒸発器(26)とを接続して構成される主冷媒回路(20)と、
     前記主冷媒回路の前記放熱器の出口から前記主減圧機構までの間の部分と前記圧縮機の吸入側とを接続するバイパス管(31)と、前記バイパス管を流れる液冷媒の減圧を行うバイパス減圧機構(32)とを有するバイパス回路(30)と、
     前記圧縮機、前記主減圧機構及び前記バイパス減圧機構の制御を行う制御部(1a)とを備え、
     前記バイパス減圧機構は、可変式であり、
     前記制御部は、前記圧縮機から吐出された冷媒の温度である吐出温度(Td)が所定の目標吐出温度(Tds)になるように前記バイパス減圧機構を制御する液インジェクション制御を行い、前記液インジェクション制御における前記バイパス減圧機構の上限開度(OPix)を前記主減圧機構の開度(OPe)との相関値によって決定する、
    ヒートポンプシステム(1)。
  2.  前記相関値は、前記主減圧機構(28)の流路抵抗の基準値である主回路側基準圧力損失係数(Ke)、及び、前記バイパス減圧機構(32)の流路抵抗の基準値であるバイパス側基準圧力損失係数(Ki)によって決定される係数である圧損係数(γ)を含んでいる、請求項1に記載のヒートポンプシステム(1)。
  3.  前記相関値は、前記圧縮機(21)に吸入される冷媒の乾き度の許容限度に相当する許容乾き度(Xsa)、前記バイパス管(31)の出口における冷媒の乾き度であるバイパス側乾き度(Xi)、及び、前記蒸発器(26)の出口における冷媒の乾き度である主回路側乾き度(Xe)によって決定される係数である乾き度係数(β)を含んでいる、請求項2に記載のヒートポンプシステム(1)。
  4.  前記制御部(1a)は、前記液インジェクション制御時において前記圧縮機(21)の容量を変化させる場合に、前記バイパス減圧機構(32)の開度を、前記圧縮機の容量変化の程度に応じて予測される開度である予測開度(OPif)に変更する、請求項1~3のいずれかに記載のヒートポンプシステム(1)。
  5.  前記放熱器(41)は、前記圧縮機(21)において圧縮された冷媒の放熱によって水媒体を加熱する熱交換器であり、前記放熱器において加熱された水媒体の熱を利用するための水媒体回路(70)に接続されている、請求項1~4のいずれかに記載のヒートポンプシステム(1)。
PCT/JP2010/003082 2010-04-30 2010-04-30 ヒートポンプシステム WO2011135630A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP10788220.1A EP2407735B1 (en) 2010-04-30 2010-04-30 Heat pump system
JP2012512541A JP5475874B2 (ja) 2010-04-30 2010-04-30 ヒートポンプシステム
CN201080066427.1A CN102869929B (zh) 2010-04-30 2010-04-30 热泵系统
PCT/JP2010/003082 WO2011135630A1 (ja) 2010-04-30 2010-04-30 ヒートポンプシステム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/003082 WO2011135630A1 (ja) 2010-04-30 2010-04-30 ヒートポンプシステム

Publications (1)

Publication Number Publication Date
WO2011135630A1 true WO2011135630A1 (ja) 2011-11-03

Family

ID=44860979

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/003082 WO2011135630A1 (ja) 2010-04-30 2010-04-30 ヒートポンプシステム

Country Status (4)

Country Link
EP (1) EP2407735B1 (ja)
JP (1) JP5475874B2 (ja)
CN (1) CN102869929B (ja)
WO (1) WO2011135630A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102865689A (zh) * 2012-09-21 2013-01-09 南京都乐制冷设备有限公司 排气温度可调的制冷装置
EP2789933A4 (en) * 2011-12-06 2015-07-22 Mitsubishi Electric Corp HEAT PUMP HEATING / HOT WATER SUPPLY HEATING SYSTEM
US20150247661A1 (en) * 2012-11-21 2015-09-03 Mitsubishi Electric Corporation Air-conditioning apparatus
US20150300714A1 (en) * 2012-11-21 2015-10-22 Mitsubishi Electric Corporation Air-conditioning apparatus
JP2017009260A (ja) * 2015-06-26 2017-01-12 株式会社富士通ゼネラル 空気調和装置
WO2023106020A1 (ja) * 2021-12-06 2023-06-15 株式会社デンソー ヒートポンプサイクル装置

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014105891A (ja) * 2012-11-26 2014-06-09 Panasonic Corp 冷凍サイクル装置及びそれを備えた温水生成装置
JP6091614B2 (ja) * 2013-06-20 2017-03-08 三菱電機株式会社 ヒートポンプ装置
CN104567161B (zh) * 2014-12-29 2017-05-17 广东芬尼克兹节能设备有限公司 一种稳定的电子膨胀阀控制方法
JP7117945B2 (ja) * 2018-08-30 2022-08-15 サンデン株式会社 車両空調装置用ヒートポンプシステム

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1194370A (ja) * 1997-09-18 1999-04-09 Daikin Ind Ltd 冷凍装置
JP2000274859A (ja) * 1999-03-18 2000-10-06 Daikin Ind Ltd 冷凍装置
JP2001012786A (ja) * 1999-06-30 2001-01-19 Hitachi Ltd ヒートポンプ式空気調和機
JP2005282972A (ja) * 2004-03-30 2005-10-13 Hitachi Ltd 冷凍装置
JP2007163099A (ja) 2005-12-16 2007-06-28 Daikin Ind Ltd 空気調和装置
JP2007232225A (ja) * 2006-02-27 2007-09-13 Sanyo Electric Co Ltd 冷凍サイクル装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3757967B2 (ja) * 2003-08-25 2006-03-22 ダイキン工業株式会社 冷凍装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1194370A (ja) * 1997-09-18 1999-04-09 Daikin Ind Ltd 冷凍装置
JP2000274859A (ja) * 1999-03-18 2000-10-06 Daikin Ind Ltd 冷凍装置
JP2001012786A (ja) * 1999-06-30 2001-01-19 Hitachi Ltd ヒートポンプ式空気調和機
JP2005282972A (ja) * 2004-03-30 2005-10-13 Hitachi Ltd 冷凍装置
JP2007163099A (ja) 2005-12-16 2007-06-28 Daikin Ind Ltd 空気調和装置
JP2007232225A (ja) * 2006-02-27 2007-09-13 Sanyo Electric Co Ltd 冷凍サイクル装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2407735A4 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2789933A4 (en) * 2011-12-06 2015-07-22 Mitsubishi Electric Corp HEAT PUMP HEATING / HOT WATER SUPPLY HEATING SYSTEM
CN102865689A (zh) * 2012-09-21 2013-01-09 南京都乐制冷设备有限公司 排气温度可调的制冷装置
US20150247661A1 (en) * 2012-11-21 2015-09-03 Mitsubishi Electric Corporation Air-conditioning apparatus
US20150300714A1 (en) * 2012-11-21 2015-10-22 Mitsubishi Electric Corporation Air-conditioning apparatus
US10107537B2 (en) * 2012-11-21 2018-10-23 Mitsubishi Electric Corporation Air-conditioning apparatus
US10393419B2 (en) * 2012-11-21 2019-08-27 Mitsubishi Electric Corporation Air-conditioning apparatus
JP2017009260A (ja) * 2015-06-26 2017-01-12 株式会社富士通ゼネラル 空気調和装置
WO2023106020A1 (ja) * 2021-12-06 2023-06-15 株式会社デンソー ヒートポンプサイクル装置

Also Published As

Publication number Publication date
EP2407735A4 (en) 2012-11-21
EP2407735B1 (en) 2016-07-20
JP5475874B2 (ja) 2014-04-16
EP2407735A1 (en) 2012-01-18
CN102869929A (zh) 2013-01-09
CN102869929B (zh) 2015-01-28
JPWO2011135630A1 (ja) 2013-07-18

Similar Documents

Publication Publication Date Title
JP5475874B2 (ja) ヒートポンプシステム
US8950202B2 (en) Heat pump system
JP5200996B2 (ja) ヒートポンプシステム
JP5711448B2 (ja) ヒートポンプシステム
JP5806940B2 (ja) ヒートポンプシステム
JP5627606B2 (ja) ヒートポンプシステム
WO2010098072A1 (ja) ヒートポンプシステム
US20130000340A1 (en) Refrigeration cycle apparatus
JP5400177B2 (ja) ヒートポンプシステム
WO2012032680A1 (ja) 冷凍サイクル装置
JP2010196953A (ja) ヒートポンプシステム
KR20110132393A (ko) 히트 펌프 시스템
JP5428381B2 (ja) ヒートポンプシステム
JP6057871B2 (ja) ヒートポンプシステム、及び、ヒートポンプ式給湯器
US20220205671A1 (en) Air conditioner
JP2010084975A (ja) 暖房装置
JP4779609B2 (ja) 冷凍装置
JP5913402B2 (ja) ヒートポンプシステム
JP2010084974A (ja) 暖房装置
KR20100062079A (ko) 냉난방 겸용 인젝션 타입 공기조화기 및 그 공기조화기의 인젝션 모드 절환방법
JP2010084973A (ja) 暖房給湯装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080066427.1

Country of ref document: CN

REEP Request for entry into the european phase

Ref document number: 2010788220

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010788220

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10788220

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012512541

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE