WO2012032680A1 - 冷凍サイクル装置 - Google Patents

冷凍サイクル装置 Download PDF

Info

Publication number
WO2012032680A1
WO2012032680A1 PCT/JP2011/001238 JP2011001238W WO2012032680A1 WO 2012032680 A1 WO2012032680 A1 WO 2012032680A1 JP 2011001238 W JP2011001238 W JP 2011001238W WO 2012032680 A1 WO2012032680 A1 WO 2012032680A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
heat storage
heat exchanger
storage material
compressor
Prior art date
Application number
PCT/JP2011/001238
Other languages
English (en)
French (fr)
Inventor
杉尾 孝
栗須谷 広治
十倉 聡
廣和 加守田
憲昭 山本
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to CN201180001938.XA priority Critical patent/CN102523754B/zh
Priority to KR1020117025692A priority patent/KR101726008B1/ko
Publication of WO2012032680A1 publication Critical patent/WO2012032680A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B47/00Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass
    • F25B47/02Defrosting cycles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B47/00Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass
    • F25B47/02Defrosting cycles
    • F25B47/022Defrosting cycles hot gas defrosting
    • F25B47/025Defrosting cycles hot gas defrosting by reversing the cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D20/0034Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using liquid heat storage material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/24Storage receiver heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Definitions

  • the present invention relates to a compressor, an indoor heat exchanger, an expansion valve, and an outdoor heat exchanger connected via a refrigerant pipe, a heat storage material that stores heat generated by the compressor, and heat and refrigerant stored in the heat storage material.
  • the present invention relates to a refrigeration cycle apparatus including a heat storage device having a heat storage heat exchanger that exchanges heat with the heat storage device.
  • Patent Document 1 a heat storage tank is provided in the compressor provided in the outdoor unit, and what is defrosted using the waste heat of the compressor stored in the heat storage tank during heating operation has been proposed (for example, Patent Document 1).
  • FIG. 6 shows an example of a refrigeration cycle apparatus that employs such a defrosting method.
  • the compressor 100, the four-way valve 102, the outdoor heat exchanger 104, the capillary tube 106, the indoor unit provided in the outdoor unit are shown. Is connected to the indoor heat exchanger 108 provided by the refrigerant pipe, the first bypass circuit 110 for bypassing the capillary tube 106, and the discharge side of the compressor 100 to the indoor heat exchanger 108 via the four-way valve 102.
  • a second bypass circuit 112 is provided in which one end is connected to the connecting pipe and the other end is connected to the pipe extending from the capillary tube 106 to the outdoor heat exchanger 104.
  • the first bypass circuit 110 is provided with a two-way valve 114, a check valve 116, and a heat storage heat exchanger 118, and the second bypass circuit 112 is provided with a two-way valve 120 and a check valve 122. Yes.
  • a heat storage tank 124 is provided around the compressor 100, and the heat storage tank 124 is filled with a latent heat storage material 126 for exchanging heat with the heat storage heat exchanger 118.
  • An accumulator 128 for separating the liquid-phase refrigerant and the gas-phase refrigerant is provided at the suction port of the compressor 100.
  • the two two-way valves 114 and 120 are controlled to open, a part of the refrigerant discharged from the compressor 100 flows to the second bypass circuit 112, and the remaining refrigerant is the four-way valve. 102 and the indoor heat exchanger 108.
  • a small amount of refrigerant flows to the outdoor heat exchanger 104 through the capillary tube 106, while the remaining most of the refrigerant passes through the first bypass circuit.
  • the heat storage heat exchanger 118 flows into the heat storage heat exchanger 118 through the two-way valve 114, takes heat from the heat storage material 126, passes through the check valve 116, and then merges with the refrigerant that has passed through the capillary tube 106 to the outdoor. It flows to the heat exchanger 104. After that, it merges with the refrigerant flowing through the second bypass circuit 112 at the inlet of the outdoor heat exchanger 104, defrosts using the heat of the refrigerant, passes through the four-way valve 102, and then passes through the accumulator 128. And sucked into the compressor 100.
  • the hot gas discharged from the compressor 100 during defrosting is guided to the outdoor heat exchanger 104 and the pressure of the refrigerant flowing into the outdoor heat exchanger 104 Therefore, the defrosting ability can be increased, and the defrosting can be completed in a very short time.
  • outdoor heat exchange is performed between the refrigerant discharged from the compressor 100 and the refrigerant that has taken away the heat accumulated in the heat storage material 126 when passing through the heat storage heat exchanger 118.
  • the defrosting operation of the outdoor heat exchanger 104 is performed by being supplied to the cooler 104. Therefore, in a case where sufficient heat is not accumulated in the heat storage material 126, there may be a case where the defrosting operation of the outdoor heat exchanger 104 cannot be performed.
  • an object of the present invention is to provide a refrigeration cycle apparatus capable of reliably performing the defrosting operation of the outdoor heat exchanger in order to solve the above problems.
  • a refrigeration cycle apparatus of the present invention accumulates heat generated by a compressor, an indoor heat exchanger, an expansion valve and an outdoor heat exchanger connected via a refrigerant pipe.
  • a refrigeration cycle device comprising a heat storage material and a heat storage device having a heat storage heat exchanger that exchanges heat between the heat stored in the heat storage material and the refrigerant, wherein the heat storage device heats the heat storage material auxiliary
  • An auxiliary heating device using electricity is further provided.
  • the refrigeration cycle apparatus of the present invention includes a compressor, an indoor heat exchanger connected to the compressor, an expansion valve connected to the indoor heat exchanger, an outdoor heat exchanger connected to the expansion valve, A refrigeration cycle apparatus in which an outdoor heat exchanger and a compressor are connected to each other, arranged so as to surround the compressor, and a heat storage material for storing heat generated by the compressor, and stored in the heat storage material.
  • a heat storage device having a heat storage heat exchanger that exchanges heat with heat is further provided, and during the defrosting operation of the outdoor heat exchanger, the refrigerant discharged from the compressor is guided to the outdoor heat exchanger and is passed through the indoor heat exchanger.
  • the apparatus further includes an auxiliary heating device using electricity for auxiliary heating of the heat storage material. It is.
  • the heat storage device since the heat storage device includes an auxiliary heating device that uses electricity to supplementarily heat the heat storage material, the defrosting operation is performed only with the waste heat received from the compressor.
  • the auxiliary heat device can provide the heat storage material with insufficient heat. Therefore, in the refrigeration cycle apparatus, the defrosting operation of the outdoor heat exchanger can be reliably performed.
  • the first invention relates to a compressor, an indoor heat exchanger, an expansion valve and an outdoor heat exchanger connected via a refrigerant pipe, a heat storage material for storing heat generated by the compressor, and heat stored in the heat storage material.
  • a heat storage device having a heat storage heat exchanger for exchanging heat between the refrigerant and the refrigerant, wherein the heat storage device further includes an auxiliary heating device using electricity for auxiliary heating of the heat storage material ing.
  • the auxiliary heating device can supply the heat storage material with the insufficient heat.
  • the defrosting operation of the outdoor heat exchanger can be reliably performed.
  • a second invention includes a compressor, an indoor heat exchanger connected to the compressor, an expansion valve connected to the indoor heat exchanger, and an outdoor heat exchanger connected to the expansion valve.
  • a refrigeration cycle apparatus in which a heat exchanger and a compressor are connected, and is arranged so as to surround the compressor, and heat is generated by a heat storage material that stores heat generated by the compressor and heat stored in the heat storage material.
  • a heat storage device having a heat storage heat exchanger that performs the exchange is further provided, and during the defrosting operation of the outdoor heat exchanger, the refrigerant discharged from the compressor is guided to the outdoor heat exchanger and the heat storage heat exchange is performed via the indoor heat exchanger.
  • the refrigerant after passing through the outdoor heat exchanger and the refrigerant heat-exchanged with the heat storage material in the heat storage heat exchanger are joined together and guided to the suction side of the compressor. It further includes an auxiliary heating device using electricity for auxiliary heating of the material.
  • the auxiliary heating device can supply the heat storage material with the insufficient heat.
  • the defrosting operation of the outdoor heat exchanger can be reliably performed.
  • the heat storage device further includes a heat storage tank for storing the liquid as a heat storage material.
  • the amount of heat required for the defrosting operation can be accumulated and a reliable defrosting operation can be performed.
  • the metal material is used as the heat storage material, boiling caused by heating the liquid when the liquid is used as the heat storage material Such a phenomenon does not occur, and heat can be accumulated using a large temperature difference by utilizing the temperature resistance characteristic of the metal, so that the apparatus can be miniaturized.
  • a refrigerant in which heat accumulated in the heat storage material is heat-exchanged via the heat storage heat exchanger is used as the outdoor heat.
  • the controller further includes a controller that starts the defrosting operation of the outdoor heat exchanger by circulating the heat exchanger, and a heat storage material temperature sensor that detects a temperature of the heat storage material, and the controller includes the heat storage material temperature sensor. Based on the detected temperature, heating of the heat storage material by the auxiliary heating device is started before the defrosting operation is started.
  • the controller determines whether or not the heat storage amount for the defrosting operation is insufficient based on the temperature of the heat storage material detected by the heat storage material temperature sensor, and the auxiliary heating device The heating operation can be performed as necessary, and the heat storage material can be efficiently heated for the defrosting operation.
  • FIG. 1 shows a configuration of an air conditioner including a refrigeration cycle apparatus according to Embodiment 1 of the present invention.
  • the air conditioner includes an outdoor unit 2 and an indoor unit 4 that are connected to each other by refrigerant piping. It is configured.
  • a compressor 6, a four-way valve 8, a strainer 10, an expansion valve 12, and an outdoor heat exchanger 14 are provided inside the outdoor unit 2.
  • a heat exchanger 16 is provided, and these are connected to each other via a refrigerant pipe to constitute a refrigeration cycle.
  • the compressor 6 and the indoor heat exchanger 16 are connected via a first pipe 18 provided with a four-way valve 8, and the indoor heat exchanger 16 and the expansion valve 12 are provided with a strainer 10.
  • the second pipe 20 is connected.
  • the expansion valve 12 and the outdoor heat exchanger 14 are connected via a third pipe 22, and the outdoor heat exchanger 14 and the compressor 6 are connected via a fourth pipe 24.
  • a four-way valve 8 is disposed in the middle of the fourth pipe 24, and an accumulator 26 for separating the liquid-phase refrigerant and the gas-phase refrigerant is provided in the fourth pipe 24 on the refrigerant suction side of the compressor 6. ing.
  • the compressor 6 and the third pipe 22 are connected via a fifth pipe 28, and the first solenoid valve 30 is provided in the fifth pipe 28.
  • a heat storage tank 32 is provided around the compressor 6, and a heat storage heat exchanger 34 is provided inside the heat storage tank 32, and a heat storage material (for example, liquid is exchanged) for heat exchange with the heat storage heat exchanger 34.
  • a heat storage material for example, liquid is exchanged
  • an ethylene glycol aqueous solution is used as an example.
  • the heat storage device 50 includes an electric heater 52 as an auxiliary heating device for heating the heat storage material 36.
  • the electric heater 52 is disposed inside the heat storage tank 32 so as to be immersed in the heat storage material 36 accommodated in the heat storage tank 32.
  • the electric heater 52 is an auxiliary heating device for supplementing the amount of heat stored in the heat storage material 36 that is insufficient for the amount of heat stored necessary for the defrosting operation, and the refrigeration cycle.
  • the capacity of the electric heater 52 may be set so as to compensate for the shortage of the heat storage amount in consideration of the installation / operating environment of the apparatus (for example, installation in a cold region).
  • the heat storage tank 32 is provided with a heat storage material temperature sensor 46 that detects the temperature of the heat storage material 36.
  • the second pipe 20 and the heat storage heat exchanger 34 are connected via a sixth pipe 38, the heat storage heat exchanger 34 and the fourth pipe 24 are connected via a seventh pipe 40, and the sixth pipe 38. Is provided with a second electromagnetic valve 42.
  • an air blower fan (not shown), upper and lower blades (not shown), and left and right blades (not shown) are provided inside the indoor unit 4, and indoor heat exchange is performed.
  • the unit 16 exchanges heat between the indoor air sucked into the interior of the indoor unit 4 by the blower fan and the refrigerant flowing through the interior of the indoor heat exchanger 16, and blows out the air heated by heat exchange into the room during heating.
  • air cooled by heat exchange is blown into the room during cooling.
  • the upper and lower blades change the direction of air blown from the indoor unit 4 up and down as necessary, and the left and right blades change the direction of air blown from the indoor unit 4 to right and left as needed.
  • the compressor 6, the blower fan, the upper and lower blades, the left and right blades, the four-way valve 8, the expansion valve 12, the electromagnetic valves 30, 42 and the like are electrically connected to a controller 48 (for example, a microcomputer).
  • the operation or operation of the left and right blades, the four-way valve 8 and the expansion valve 12 is controlled based on a control signal from the controller 48, and the two electromagnetic valves 30 and 42 are opened and closed based on the control signal from the controller 48.
  • the temperature of the heat storage material 36 detected by the heat storage material temperature sensor 46 can be input to the controller 48, and the electric heater 52 is electrically connected to the controller 48, and the operation or operation of the electric heater 52 is performed. Control is performed based on a control signal from the controller 48.
  • the refrigerant discharged from the discharge port of the compressor 6 passes from the four-way valve 8 to the indoor heat exchanger 16 through the first pipe 18.
  • the refrigerant condensed by exchanging heat with the indoor air in the indoor heat exchanger 16 passes through the second pipe 20 through the indoor heat exchanger 16, expands through the strainer 10 that prevents foreign matter from entering the expansion valve 12.
  • To valve 12. The refrigerant decompressed by the expansion valve 12 reaches the outdoor heat exchanger 14 through the third pipe 22, and the refrigerant evaporated by exchanging heat with the outdoor air in the outdoor heat exchanger 14 is the fourth pipe 24 and the four-way valve 8. And returns to the suction port of the compressor 6 through the accumulator 26.
  • the fifth pipe 28 branched from the compressor 6 discharge port of the first pipe 18 and the four-way valve 8 is connected to the expansion valve 12 of the third pipe 22 and the outdoor heat exchanger 14 via the first electromagnetic valve 30. I am joining in between.
  • the heat storage tank 32 in which the heat storage material 36 and the heat storage heat exchanger 34 are housed is disposed so as to be in contact with and surround the compressor 6, and the heat generated in the compressor 6 is accumulated in the heat storage material 36, and the second The sixth pipe 38 branched from the pipe 20 between the indoor heat exchanger 16 and the strainer 10 reaches the inlet of the heat storage heat exchanger 34 via the second electromagnetic valve 42 and exits from the outlet of the heat storage heat exchanger 34.
  • the seventh pipe 40 joins between the four-way valve 8 and the accumulator 26 in the fourth pipe 24.
  • the strainer 10 is disposed between the diversion portion of the second pipe 20 and the sixth pipe 38 and the expansion valve 12, but the indoor heat exchanger 16 and the sixth pipe 38 in the second pipe 20 Even if it arrange
  • FIG. 2 schematically showing the operation during normal heating and the flow of the refrigerant of the air conditioner shown in FIG.
  • the first electromagnetic valve 30 and the second electromagnetic valve 42 are controlled to be closed, and the refrigerant discharged from the discharge port of the compressor 6 as described above passes through the first pipe 18 and the four-way valve 8.
  • the indoor heat exchanger 16 The refrigerant condensed by exchanging heat with the indoor air in the indoor heat exchanger 16 exits the indoor heat exchanger 16, passes through the second pipe 20, reaches the expansion valve 12, and the refrigerant decompressed by the expansion valve 12 is the third refrigerant. It reaches the outdoor heat exchanger 14 through the pipe 22.
  • the refrigerant evaporated by exchanging heat with outdoor air in the outdoor heat exchanger 14 returns from the four-way valve 8 to the suction port of the compressor 6 through the fourth pipe 24.
  • the heat generated in the compressor 6 is accumulated in the heat storage material 36 housed in the heat storage tank 32 from the outer wall of the compressor 6 through the outer wall of the heat storage tank 32.
  • FIG. 3 schematically showing the flow of refrigerant.
  • the solid line arrows indicate the flow of the refrigerant used for heating
  • the broken line arrows indicate the flow of the refrigerant used for defrosting.
  • the air conditioner according to the present invention is provided with a temperature sensor 44 that detects the piping temperature of the outdoor heat exchanger 14, and the evaporation temperature is lower than that during non-frosting. When this is detected by the temperature sensor 44, an instruction from the normal heating operation to the defrosting / heating operation is output from the controller 48.
  • the first electromagnetic valve 30 and the second electromagnetic valve 42 are controlled to open, and in addition to the refrigerant flow during the normal heating operation described above, the first solenoid valve 30 and the second electromagnetic valve 42 are discharged from the discharge port of the compressor 6. After a part of the vapor-phase refrigerant passes through the fifth pipe 28 and the first electromagnetic valve 30 and merges with the refrigerant passing through the third pipe 22, the outdoor heat exchanger 14 is heated, condensed, and converted into a liquid phase. Through the fourth pipe 24, the four-way valve 8 and the accumulator 26 are returned to the suction port of the compressor 6.
  • a part of the liquid-phase refrigerant that is divided between the indoor heat exchanger 16 and the strainer 10 in the second pipe 20 passes through the sixth pipe 38 and the second electromagnetic valve 42, and then is stored in the heat storage material 36 in the heat storage heat exchanger 34. From the accumulator 26 and returns to the suction port of the compressor 6 through the seventh pipe 40 and the refrigerant that passes through the fourth pipe 24.
  • the refrigerant returning to the accumulator 26 includes the liquid phase refrigerant returning from the outdoor heat exchanger 14. By mixing this with the high-temperature gas phase refrigerant returning from the heat storage heat exchanger 34, The evaporation of the phase refrigerant is promoted, and the liquid phase refrigerant does not return to the compressor 6 through the accumulator 26, so that the reliability of the compressor 6 can be improved.
  • the temperature of the outdoor heat exchanger 14 that has become below freezing due to the attachment of frost at the start of defrosting and heating is heated by the gas-phase refrigerant discharged from the discharge port of the compressor 6, and the frost is melted near zero degrees.
  • the temperature of the outdoor heat exchanger 14 begins to rise again.
  • the temperature sensor 44 detects the temperature rise of the outdoor heat exchanger 14, it is determined that the defrosting is completed, and an instruction from the defrosting / heating operation to the normal heating operation is output from the controller 48.
  • step S1 of the flowchart of FIG. 4 it is determined by the controller 48 whether it is necessary to perform the defrosting operation (defrosting / heating operation) of the outdoor heat exchanger 14. Specifically, when the piping temperature (evaporation temperature) of the outdoor heat exchanger 14 is detected by the temperature sensor 44 and the detected temperature falls below a preset predetermined temperature, the controller 48 performs the defrosting / heating operation. It is judged that implementation of is necessary.
  • step S2 the heat storage amount of the heat storage material 36 of the heat storage device 50 is insufficient for the heat amount necessary for performing the defrosting operation. It is judged by the controller 48 whether it is not. Specifically, the temperature of the heat storage material 36 is detected by the heat storage material temperature sensor 46, and the amount of heat (heat storage amount) accumulated in the heat storage material 36 is calculated by the controller 48 based on this detected temperature.
  • controller 48 information on the amount of heat necessary for carrying out the defrosting operation is stored, and the amount of heat stored and the amount of heat necessary for carrying out the defrosting operation are compared to calculate the insufficient amount of heat, The heating temperature of the heat storage material 36 for supplementing the shortage of heat is set.
  • controller 48 compares the detected temperature of the heat storage material 36 with a preset temperature at which the amount of heat necessary for performing the defrosting operation can be secured, instead of calculating the amount of heat in this way. By doing so, you may make it determine the heating temperature of the thermal storage material 36.
  • step S2 When it is determined in step S2 that the heat storage amount of the heat storage material 36 is insufficient, the heating operation of the heat storage material 36 by the electric heater 52 is performed in step S3. During the heating operation, the temperature of the heat storage material 36 is detected by the heat storage material temperature sensor 46, and the heating operation by the electric heater 52 is continued until the heating temperature (set temperature) set by the controller 48 is reached. (Step S4).
  • step S4 the defrosting / heating operation is started in step S5, and the heat accumulated in the heat storage material 36 is being used.
  • the outdoor heat exchanger 14 is defrosted by the gas-phase refrigerant discharged from the discharge port of the compressor 6.
  • the heater 52 is stopped when the defrosting / heating operation is started, but the heater 52 may be operated when further heating of the heat storage material 36 is necessary.
  • step S2 If it is determined in step S2 that the amount of heat necessary for performing the defrosting operation is accumulated in the heat storage material 36, the defrosting / defrosting in step S5 is performed without performing the heating operation of the electric heater 52. Heating operation is performed.
  • the defrosting operation is performed only with the waste heat received from the compressor 6.
  • the heat storage material 36 can be provided with insufficient heat by the operation of the electric heater 52. Therefore, in the refrigeration cycle apparatus, the defrosting operation of the outdoor heat exchanger can be reliably performed.
  • Such a heating operation of the heat storage material 36 by the electric heater 52 is performed only when the controller 48 determines whether or not the heat storage amount of the heat storage material 36 is insufficient immediately before starting the defrosting operation and is insufficient. Done. Therefore, efficient use of energy can be achieved.
  • FIG. 5 shows a configuration of an air conditioner including the refrigeration cycle apparatus according to Embodiment 2 of the present invention. Only differences from the first embodiment will be described below. In FIG. 5, the controller 48 is not shown.
  • a metal material for example, aluminum
  • electricity for heating the metal material heat storage material 136 is used.
  • a heater 52 is provided.
  • the liquid near the electric heater 52 may boil by heating, and the heat storage material 36 is evaporated and accommodated by boiling. The amount can be reduced.
  • a metal material as the heat storage material 136 as in the second embodiment, the problem of liquid boiling does not occur.
  • the specific heat of a metal material such as aluminum is smaller than that of a liquid such as water
  • the heating temperature by the electric heater 52 can be set higher due to the temperature resistance characteristic of the metal material. Therefore, the temperature difference of the heat storage material 136 can be set large, and thereby the necessary heat storage amount can be ensured. Moreover, the size of the heat storage material 136 can be reduced by setting a large temperature difference in this way. Further, when a metal material is used as the heat storage material 136, a heat storage tank is not necessary, and therefore further downsizing can be achieved.
  • the heat storage tank 32 that stores liquid as the heat storage material 36 it is preferable to use a highly airtight tank in order to suppress a reduction in the amount of liquid stored due to evaporation of the liquid by heating of the electric heater 52.
  • a material for forming the heat storage tank 32 a resin material and a metal material are conceivable.
  • a metal material from the viewpoint of ensuring airtightness.
  • the electric heater 52 should just be the arrangement
  • a heating device using electricity other than the electric heater may be employed, for example, a heating device using electromagnetic induction may be employed.
  • the refrigeration cycle apparatus of the present invention which supplements the heat storage amount that is deficient by supplementarily heating the heat storage material, is not limited to the refrigeration cycle as shown in FIG.
  • the present invention can also be applied to an apparatus using a refrigeration cycle. For example, you may apply the structure of this invention of heating a heat storage material auxiliary with respect to the conventional refrigeration cycle apparatus shown in FIG.
  • the refrigeration cycle apparatus can supplement the shortage of heat accumulated in the heat storage material, the defrosting operation can be performed reliably, so that the air conditioner, refrigerator, water heater, heat pump Useful for type washing machines.

Abstract

 冷凍サイクル装置が、冷媒配管を介して接続された圧縮機6、室内熱交換器16、膨張弁12および室外熱交換器14と、圧縮機6で発生した熱を蓄積する蓄熱材36および蓄熱材36に蓄積された熱と冷媒との間で熱交換を行う蓄熱熱交換器34を有する蓄熱装置50とを備える冷凍サイクル装置において、蓄熱装置50が、蓄熱材36を補助的に加熱する電気を用いた補助加熱装置52を備えることで、室外熱交換器の除霜運転を確実に行うことができる。

Description

冷凍サイクル装置
 本発明は、冷媒配管を介して接続された圧縮機、室内熱交換器、膨張弁および室外熱交換器と、圧縮機で発生した熱を蓄積する蓄熱材および蓄熱材に蓄積された熱と冷媒との間で熱交換を行う蓄熱熱交換器を有する蓄熱装置とを備える冷凍サイクル装置に関する。
 従来、ヒートポンプ式空気調和機による暖房運転時、室外熱交換器に着霜した場合には、暖房サイクルから冷房サイクルに四方弁を切り替えて除霜を行っている。この除霜方式では、室内ファンは停止するものの、室内機から冷気が徐々に放出されることから暖房感が失われるという欠点がある。
 そこで、室外機に設けられた圧縮機に蓄熱槽を設け、暖房運転中に蓄熱槽に蓄えられた圧縮機の廃熱を利用して除霜するようにしたものが提案されている(例えば、特許文献1参照)。
 図6は、このような除霜方式を採用した冷凍サイクル装置の一例を示しており、室外機に設けられた圧縮機100と四方弁102と室外熱交換器104とキャピラリチューブ106と、室内機に設けられた室内熱交換器108とを冷媒配管で接続するとともに、キャピラリチューブ106をバイパスする第1バイパス回路110と、圧縮機100の吐出側から四方弁102を介して室内熱交換器108へ至る配管に一端を接続し他端をキャピラリチューブ106から室外熱交換器104へ至る配管に接続した第2バイパス回路112が設けられている。また、第1バイパス回路110には、二方弁114と逆止弁116と蓄熱熱交換器118が設けられ、第2バイパス回路112には、二方弁120と逆止弁122が設けられている。
 さらに、圧縮機100の周囲には蓄熱槽124が設けられており、蓄熱槽124の内部には、蓄熱熱交換器118と熱交換するための潜熱蓄熱材126が充填されている。圧縮機100の吸入口には、液相冷媒と気相冷媒を分離するためのアキュームレータ128が設けられている。
 この冷凍サイクルにおいて、除霜運転時には、二つの二方弁114,120が開制御され、圧縮機100から吐出された冷媒の一部は第2バイパス回路112へと流れ、残りの冷媒は四方弁102と室内熱交換器108へと流れる。また、室内熱交換器108を流れた冷媒は暖房に利用された後、わずかの冷媒がキャピラリチューブ106を通って室外熱交換器104へと流れる一方、残りの大部分の冷媒は第1バイパス回路110へ流入し、二方弁114を通って蓄熱熱交換器118へと流れて蓄熱材126より熱を奪い、逆止弁116を通った後、キャピラリチューブ106を通過した冷媒と合流して室外熱交換器104へと流れる。その後、室外熱交換器104の入口で第2バイパス回路112を流れてきた冷媒と合流し、冷媒が持つ熱を利用して除霜を行い、さらに四方弁102を通過した後、アキュームレータ128を通って圧縮機100に吸入される。
 この冷凍サイクル装置においては、第2バイパス回路112を設けることで、除霜時に圧縮機100から吐出されたホットガスを室外熱交換器104に導くとともに、室外熱交換器104に流入する冷媒の圧力を高く保つことができるので、除霜能力を高めることができ、極めて短時間に除霜を完了することができる。
特開平3-31666号公報
 特許文献1に記載の冷凍サイクル装置においては、圧縮機100から吐出された冷媒と、蓄熱熱交換器118を通過する際に蓄熱材126に蓄積された熱を奪った冷媒とが、室外熱交換器104に供給されることにより、室外熱交換器104の除霜運転が行われる。そのため、蓄熱材126に十分な熱が蓄積されていないような場合にあっては、室外熱交換器104の確実な除霜運転を行うことができない場合が生じ得る。
 従って、本発明の目的は、上記問題を解決することにあって、室外熱交換器の除霜運転を確実に行うことが可能な冷凍サイクル装置を提供することにある。
 上記目的を達成するために、本発明の冷凍サイクル装置は、冷媒配管を介して接続された圧縮機、室内熱交換器、膨張弁および室外熱交換器と、圧縮機で発生した熱を蓄積する蓄熱材および蓄熱材に蓄積された熱と冷媒との間で熱交換を行う蓄熱熱交換器を有する蓄熱装置とを備える冷凍サイクル装置であって、蓄熱装置は、蓄熱材を補助的に加熱する電気を用いた補助加熱装置をさらに備えたものである。
 また、本発明の冷凍サイクル装置は、圧縮機と、圧縮機に接続された室内熱交換器と、室内熱交換器と接続された膨張弁と、膨張弁と接続された室外熱交換器と、を備え、室外熱交換器と圧縮機とが接続された冷凍サイクル装置であって、圧縮機を囲むように配置され、圧縮機で発生した熱を蓄熱する蓄熱材と、蓄熱材に蓄熱された熱とで熱交換を行う蓄熱熱交換器を有する蓄熱装置をさらに備え、室外熱交換器の除霜運転時には、圧縮機の吐出冷媒が室外熱交換器に導かれるとともに、室内熱交換器を介して蓄熱熱交換器に導かれ、室外熱交換器を通った後の冷媒と、蓄熱熱交換器で蓄熱材と熱交換された冷媒と、が合流して圧縮機の吸入側に導かれ、蓄熱装置は、蓄熱材を補助的に加熱する電気を用いた補助加熱装置をさらに備えたものである。
 本発明の冷凍サイクル装置によれば、蓄熱材を補助的に加熱する電気を用いた補助加熱装置を蓄熱装置が備えているため、圧縮機から受け取る廃熱だけでは除霜運転を実施するために必要な蓄熱量が不足するような場合に、補助加熱装置により不足分の熱を蓄熱材に与えることができる。したがって、冷凍サイクル装置において、室外熱交換器の除霜運転を確実に行うことができる。
本発明の実施の形態1に係る冷凍サイクル装置を備えた空気調和機の構成を示す図 図1の空気調和機の通常暖房時の動作及び冷媒の流れを示す模式図 図1の空気調和機の除霜・暖房時の動作及び冷媒の流れを示す模式図 図1の空気調和機の除霜・暖房運転を開始する手順を示すフローチャート 本発明の実施の形態2に係る冷凍サイクル装置を備えた空気調和機の構成を示す図 従来の冷凍サイクル装置の構成を示す模式図
 第1の発明は、冷媒配管を介して接続された圧縮機、室内熱交換器、膨張弁および室外熱交換器と、圧縮機で発生した熱を蓄積する蓄熱材および蓄熱材に蓄積された熱と冷媒との間で熱交換を行う蓄熱熱交換器を有する蓄熱装置とを備える冷凍サイクル装置であって、蓄熱装置は、蓄熱材を補助的に加熱する電気を用いた補助加熱装置をさらに備えている。
 この構成によれば、圧縮機から受け取る廃熱だけでは除霜運転を実施するために必要な蓄熱量が不足するような場合に、補助加熱装置により不足分の熱を蓄熱材に与えることができ、冷凍サイクル装置において、室外熱交換器の除霜運転を確実に行うことができる。
 第2の発明は、圧縮機と、圧縮機に接続された室内熱交換器と、室内熱交換器と接続された膨張弁と、膨張弁と接続された室外熱交換器と、を備え、室外熱交換器と圧縮機とが接続された冷凍サイクル装置であって、圧縮機を囲むように配置され、圧縮機で発生した熱を蓄熱する蓄熱材と、蓄熱材に蓄熱された熱とで熱交換を行う蓄熱熱交換器を有する蓄熱装置をさらに備え、室外熱交換器の除霜運転時には、圧縮機の吐出冷媒が室外熱交換器に導かれるとともに、室内熱交換器を介して蓄熱熱交換器に導かれ、室外熱交換器を通った後の冷媒と、蓄熱熱交換器で蓄熱材と熱交換された冷媒と、が合流して圧縮機の吸入側に導かれ、蓄熱装置は、蓄熱材を補助的に加熱する電気を用いた補助加熱装置をさらに備えている。
 この構成によれば、圧縮機から受け取る廃熱だけでは除霜運転を実施するために必要な蓄熱量が不足するような場合に、補助加熱装置により不足分の熱を蓄熱材に与えることができ、冷凍サイクル装置において、室外熱交換器の除霜運転を確実に行うことができる。
 第3の発明は、第1または第2の発明の冷凍サイクル装置において、蓄熱装置は、液体を蓄熱材として収容する蓄熱槽をさらに備えるようにしたので、金属等に対して比熱の大きな液体を用いて除霜運転に必要な量の熱を蓄積して、確実な除霜運転を行うことができる。
 第4の発明は、第1または第2の発明の冷凍サイクル装置の蓄熱装置において、蓄熱材として金属材料が用いられるようにしたので、液体を蓄熱材として用いた場合に液体の加熱により生じる沸騰などの現象が発生することがなく、また、金属が有する耐温特性を利用して大きな温度差を用いた熱の蓄積が可能となり、装置の小型化が図れる。
 第5の発明は、第1から第4のいずれか1つの発明の冷凍サイクル装置において、前記蓄熱材に蓄積された熱が前記蓄熱熱交換器を介して熱交換された冷媒を、前記室外熱交換器に循環させることで、前記室外熱交換器の除霜運転を開始させるコントローラと、前記蓄熱材の温度を検出する蓄熱材温度センサとをさらに備え、前記コントローラは、前記蓄熱材温度センサが検出した温度に基づいて、前記除霜運転を開始する前に前記補助加熱装置による前記蓄熱材の加熱を開始させている。
 この構成によれば、除霜運転が必要な場合に、蓄熱材温度センサにより検出された蓄熱材の温度により除霜運転のための蓄熱量の不足の有無をコントローラが判断して、補助加熱装置の加熱運転を必要に応じて行うことができ、除霜運転のための蓄熱材の効率的な加熱を行える。
 本発明の記述を続ける前に、添付図面において同じ部品については同じ参照符号を付している。以下、本発明の実施の形態について、図面を参照しながら説明する。
 (実施の形態1)
 図1は、本発明の実施の形態1に係る冷凍サイクル装置を備えた空気調和機の構成を示しており、空気調和機は、冷媒配管で互いに接続された室外機2と室内機4とで構成されている。
 図1に示されるように、室外機2の内部には、圧縮機6と四方弁8とストレーナ10と膨張弁12と室外熱交換器14とが設けられ、室内機4の内部には、室内熱交換器16が設けられ、これらは冷媒配管を介して互いに接続されることで冷凍サイクルを構成している。
 さらに詳述すると、圧縮機6と室内熱交換器16は、四方弁8が設けられた第1配管18を介して接続され、室内熱交換器16と膨張弁12は、ストレーナ10が設けられた第2配管20を介して接続されている。また、膨張弁12と室外熱交換器14は第3配管22を介して接続され、室外熱交換器14と圧縮機6は第4配管24を介して接続されている。
 第4配管24の中間部には四方弁8が配置されており、圧縮機6の冷媒吸入側における第4配管24には、液相冷媒と気相冷媒を分離するためのアキュームレータ26が設けられている。また、圧縮機6と第3配管22は、第5配管28を介して接続されており、第5配管28には第1電磁弁30が設けられている。
 圧縮機6の周囲には蓄熱槽32が設けられ、蓄熱槽32の内部には、蓄熱熱交換器34が設けられるとともに、蓄熱熱交換器34と熱交換するための蓄熱材(例えば、液体が用いられ、一例としてエチレングリコール水溶液が用いられている。)36が充填されており、蓄熱槽32と蓄熱熱交換器34と蓄熱材36とで蓄熱装置50を構成している。
 さらに、蓄熱装置50は、蓄熱材36を加熱するための補助加熱装置として電気ヒータ52を備えている。電気ヒータ52は、蓄熱槽32に収容されている蓄熱材36に浸積されるように、蓄熱槽32の内部に配置されている。後述するように、この電気ヒータ52は、蓄熱材36に蓄積されている熱量が、除霜運転に必要な蓄熱量に不足している分を補うための補助的な加熱装置であり、冷凍サイクル装置の設置・運転環境(例えば、寒冷地設置等)などを考慮して蓄熱量の不足分を補えるように電気ヒータ52の容量を設定すれば良い。また、蓄熱槽32には、蓄熱材36の温度を検出する蓄熱材温度センサ46が設けられている。
 また、第2配管20と蓄熱熱交換器34は第6配管38を介して接続され、蓄熱熱交換器34と第4配管24は第7配管40を介して接続されており、第6配管38には第2電磁弁42が設けられている。
 室内機4の内部には、室内熱交換器16に加えて、送風ファン(図示せず)と上下羽根(図示せず)と左右羽根(図示せず)とが設けられており、室内熱交換器16は、送風ファンにより室内機4の内部に吸い込まれた室内空気と、室内熱交換器16の内部を流れる冷媒との熱交換を行い、暖房時には熱交換により暖められた空気を室内に吹き出す一方、冷房時には熱交換により冷却された空気を室内に吹き出す。上下羽根は、室内機4から吹き出される空気の方向を必要に応じて上下に変更し、左右羽根は、室内機4から吹き出される空気の方向を必要に応じて左右に変更する。
 圧縮機6、送風ファン、上下羽根、左右羽根、四方弁8、膨張弁12、電磁弁30,42等はコントローラ48(例えばマイコン)に電気的に接続され、圧縮機6、送風ファン、上下羽根、左右羽根、四方弁8、膨張弁12の運転あるいは動作は、コントローラ48からの制御信号に基づいて制御されるとともに、二つの電磁弁30、42はコントローラ48からの制御信号に基づいて開閉される。さらに、蓄熱材温度センサ46により検出された蓄熱材36の温度は、コントローラ48に入力可能とされているとともに、電気ヒータ52はコントローラ48に電気的に接続され、電気ヒータ52の運転あるいは動作は、コントローラ48からの制御信号に基づいて制御される。
 上記構成の本実施の形態1に係る冷凍サイクル装置において、各部品の相互の接続関係と機能について暖房運転時を例にとり冷媒の流れとともに説明する。
 圧縮機6の吐出口から吐出された冷媒は、第1配管18を通って四方弁8から室内熱交換器16へと至る。室内熱交換器16で室内空気と熱交換して凝縮した冷媒は、室内熱交換器16を出て第2配管20を通り、膨張弁12への異物侵入を防止するストレーナ10を通って、膨張弁12に至る。膨張弁12で減圧した冷媒は、第3配管22を通って室外熱交換器14に至り、室外熱交換器14で室外空気と熱交換して蒸発した冷媒は、第4配管24と四方弁8とアキュームレータ26を通って圧縮機6の吸入口へと戻る。
 また、第1配管18の圧縮機6吐出口と四方弁8の間から分岐した第5配管28は、第1電磁弁30を介して第3配管22の膨張弁12と室外熱交換器14の間に合流している。
 さらに、内部に蓄熱材36と蓄熱熱交換器34を収納した蓄熱槽32は、圧縮機6に接して取り囲むように配置され、圧縮機6で発生した熱を蓄熱材36に蓄積し、第2配管20から室内熱交換器16とストレーナ10の間で分岐した第6配管38は、第2電磁弁42を経て蓄熱熱交換器34の入口へと至り、蓄熱熱交換器34の出口から出た第7配管40は、第4配管24における四方弁8とアキュームレータ26の間に合流する。
 なお、図1では、ストレーナ10を、第2配管20における第6配管38との分流部分と膨張弁12の間に配置したが、第2配管20における室内熱交換器16と第6配管38との分流部分の間に配置しても、膨張弁12への異物侵入を防止するという機能は保持することができる。
 ただし、ストレーナ10には圧力損失があり、前者の配置にした方が、第2配管20における第6配管38との分流部分において、冷媒が第6配管38側に流れやすくなり、第6配管38から蓄熱熱交換器34を通って第7配管40に至るバイパス配管系の循環量が増加する。その結果、蓄熱材36の温度が高く蓄熱熱交換器34の熱交換能力が非常に大きい場合においても、蓄熱熱交換器34の循環量が多いため、蓄熱熱交換器34の後半部で過熱度が高くなって熱交換できなくなる現象が起こりにくくなり、蓄熱熱交換器34の熱交換量が十分発揮されて、除霜能力も十分に発揮されるという利点がある。
 次に、図1に示される空気調和機の通常暖房時の動作及び冷媒の流れを模式的に示す図2を参照しながら通常暖房時の動作を説明する。
 通常暖房運転時、第1電磁弁30と第2電磁弁42は閉制御されており、上述したように圧縮機6の吐出口から吐出された冷媒は、第1配管18を通って四方弁8から室内熱交換器16に至る。室内熱交換器16で室内空気と熱交換して凝縮した冷媒は、室内熱交換器16を出て、第2配管20を通り膨張弁12に至り、膨張弁12で減圧した冷媒は、第3配管22を通って室外熱交換器14に至る。室外熱交換器14で室外空気と熱交換して蒸発した冷媒は、第4配管24を通って四方弁8から圧縮機6の吸入口へと戻る。
 また、圧縮機6で発生した熱は、圧縮機6の外壁から蓄熱槽32の外壁を介して蓄熱槽32の内部に収容された蓄熱材36に蓄積される。
 次に、図1に示される空気調和機の除霜・暖房時の動作及び冷媒の流れを模式的に示す図3を参照しながら除霜・暖房時の動作を説明する。図中、実線矢印は暖房に供する冷媒の流れを示しており、破線矢印は除霜に供する冷媒の流れを示している。
 上述した通常暖房運転中に室外熱交換器14に着霜し、着霜した霜が成長すると、室外熱交換器14の通風抵抗が増加して風量が減少し、室外熱交換器14内の蒸発温度が低下する。本発明に係る空気調和機には、図3に示されるように、室外熱交換器14の配管温度を検出する温度センサ44が設けられており、非着霜時に比べて、蒸発温度が低下したことを温度センサ44で検出すると、通常暖房運転から除霜・暖房運転への指示がコントローラ48から出力される。
 通常暖房運転から除霜・暖房運転に移行すると、第1電磁弁30と第2電磁弁42は開制御され、上述した通常暖房運転時の冷媒の流れに加え、圧縮機6の吐出口から出た気相冷媒の一部は第5配管28と第1電磁弁30を通り、第3配管22を通る冷媒に合流して、室外熱交換器14を加熱し、凝縮して液相化した後、第4配管24を通って四方弁8とアキュームレータ26を介して圧縮機6の吸入口へと戻る。
 また、第2配管20における室内熱交換器16とストレーナ10の間で分流した液相冷媒の一部は、第6配管38と第2電磁弁42を経て、蓄熱熱交換器34で蓄熱材36から吸熱し蒸発、気相化して、第7配管40を通って第4配管24を通る冷媒に合流し、アキュームレータ26から圧縮機6の吸入口へと戻る。
 アキュームレータ26に戻る冷媒には、室外熱交換器14から戻ってくる液相冷媒が含まれているが、これに蓄熱熱交換器34から戻ってくる高温の気相冷媒を混合することで、液相冷媒の蒸発が促され、アキュームレータ26を通過して液相冷媒が圧縮機6に戻ることがなくなり、圧縮機6の信頼性の向上を図ることができる。
 除霜・暖房開始時に霜の付着により氷点下となった室外熱交換器14の温度は、圧縮機6の吐出口から出た気相冷媒によって加熱されて、零度付近で霜が融解し、霜の融解が終わると、室外熱交換器14の温度は再び上昇し始める。この室外熱交換器14の温度上昇を温度センサ44で検出すると、除霜が完了したと判断し、除霜・暖房運転から通常暖房運転への指示がコントローラ48から出力される。
 次に、除霜・暖房運転を開始する際における電気ヒータ52による蓄熱材36の補助的な加熱運転について、図4に示すフローチャートを用いて説明する。なお、図4のフローチャートにおけるそれぞれのステップは、冷凍サイクル装置の各構成部がコントローラ48により制御されて動作することにより実施される。
 まず、図4のフローチャートのステップS1において、室外熱交換器14の除霜運転(除霜・暖房運転)を実施する必要があるかどうかが、コントローラ48により判断される。具体的には、室外熱交換器14の配管温度(蒸発温度)が温度センサ44により検出されて、この検出温度が予め設定された所定温度より低下した場合に、コントローラ48が除霜・暖房運転の実施が必要と判断する。
 ステップS1において、除霜・暖房運転の実施が必要と判断された場合には、ステップS2において、蓄熱装置50の蓄熱材36の蓄熱量が、除霜運転を行うための必要な熱量に不足していないかどうかが、コントローラ48により判断される。具体的には、蓄熱材36の温度が蓄熱材温度センサ46により検出されて、この検出温度に基づいて、蓄熱材36に蓄積されている熱量(蓄熱量)がコントローラ48により算出される。また、コントローラ48では、除霜運転の実施に必要な熱量の情報が記憶されており、蓄熱量と除霜運転の実施に必要な熱量とが比較されて、不足する熱量が算出されるとともに、不足する熱量を補うための蓄熱材36の加熱温度が設定される。
 なお、コントローラ48では、このように熱量を算出するような場合に代えて、検出された蓄熱材36の温度を、除霜運転を行うために必要な熱量が確保できる予め設定された温度と比較することにより、蓄熱材36の加熱温度を決定するようにしても良い。
 ステップS2において、蓄熱材36の蓄熱量が不足していると判断された場合には、ステップS3にて電気ヒータ52による蓄熱材36の加熱運転が行われる。この加熱運転の実施中に、蓄熱材温度センサ46により蓄熱材36の温度が検出され、コントローラ48にて設定された加熱温度(設定温度)に到達するまで、電気ヒータ52による加熱運転が継続される(ステップS4)。
 その後、ステップS4にて、蓄熱材36の温度が設定温度に到達したことが確認されると、ステップS5にて除霜・暖房運転が開始され、蓄熱材36に蓄積された熱が利用されながら圧縮機6の吐出口から吐出される気相冷媒により室外熱交換器14の除霜が行われる。なお、除霜・暖房運転を開始する際には、加熱ヒータ52は停止されるが、さらなる蓄熱材36の加熱が必要な場合には加熱ヒータ52を運転しても良い。
 なお、ステップS2において、除霜運転を行うために必要な熱量が蓄熱材36に蓄積されていると判断された場合には、電気ヒータ52の加熱運転を行うことなく、ステップS5の除霜・暖房運転が行われる。
 このように実施の形態1の冷凍サイクル装置によれば、蓄熱材36を補助的に加熱する電気ヒータ52を蓄熱装置50が備えているため、圧縮機6から受け取る廃熱だけでは除霜運転を実施するために必要な蓄熱量が不足するような場合に、電気ヒータ52の運転により不足分の熱を蓄熱材36に与えることができる。したがって、冷凍サイクル装置において、室外熱交換器の除霜運転を確実に行うことができる。
 また、このような電気ヒータ52による蓄熱材36の加熱運転は、除霜運転を開始する直前に蓄熱材36の蓄熱量の不足の有無をコントローラ48が判断して、不足している場合のみに行われる。したがって、エネルギの効率的な利用を図ることができる。
 (実施の形態2)
 図5は、本発明の実施の形態2に係る冷凍サイクル装置を備えた空気調和機の構成を示している。以下に実施の形態1との相違点についてのみ説明する。なお、図5では、コントローラ48の図示を省略している。
 図5に示すように、実施の形態2に係る冷凍サイクル装置では、蓄熱装置150の蓄熱材136として金属材料(例えば、アルミニウム)が用いられており、この金属材料の蓄熱材136を加熱する電気ヒータ52が備えられている。
 例えば、実施の形態1のように、蓄熱材36として液体が用いられるような場合には、電気ヒータ52の近傍の液体が加熱により沸騰する場合があり、沸騰により蓄熱材36が蒸発して収容量が減少する可能性がある。これに対して、実施の形態2のように、蓄熱材136として金属材料を用いることにより、液体の沸騰という問題が生じることはない。
 また、アルミニウムなどの金属材料では、その比熱が水などの液体に比して小さいが、金属材料が有する耐温特性により電気ヒータ52による加熱温度を高めに設定することが可能である。そのため、蓄熱材136の温度差を大きく設定することができ、これにより必要な蓄熱量を確保することができる。また、このように温度差を大きく設定することで、蓄熱材136の大きさを小型化することもできる。さらに、蓄熱材136として金属材料を用いた場合には、蓄熱槽が不要となることからも、さらなる小型化を図ることができる。
  なお、本発明は上述の実施の形態に限定されるものではなく、以下のようにその他種々の態様で実施できる。
 例えば、蓄熱材36として液体を収容する蓄熱槽32は、電気ヒータ52の加熱による液体の蒸発により液体の収容量が低減することを抑制するために、密閉性の高いものを用いることが好ましい。蓄熱槽32の形成材料としては、樹脂材料および金属材料が考えられるが、密閉性の確保という観点からは金属材料を用いることが好ましい。
 また、電気ヒータ52は、蓄熱材36、136を直接的あるいは間接的に加熱できるような配置であれば良く、例えば、電気ヒータ52により蓄熱槽32を加熱して、間接的に蓄熱材36を加熱するようにしても良い。
 補助加熱装置としては、電気ヒータ以外の電気を用いた加熱装置を採用しても良く、例えば、電磁誘導を用いた加熱装置を採用しても良い。
 蓄熱材を補助的に加熱して不足する蓄熱量を補うという本発明の冷凍サイクル装置は、図1に示すような冷凍サイクルのみに限られず、蓄熱装置を用いて除霜運転を行うその他様々な冷凍サイクルを用いた装置にも適用できる。例えば、図6に示す従来の冷凍サイクル装置に対して、蓄熱材を補助的に加熱するという本発明の構成を適用しても良い。
 また、冷媒配管を直接加熱するようなヒータを設置して、冷媒を加熱することで、蓄熱材の蓄熱量の不足を補うようにすることもできる。また、このような冷媒の補助的な加熱は、蓄熱材の加熱と併用することもできる。
 なお、上記様々な実施形態のうちの任意の実施形態を適宜組み合わせることにより、それぞれの有する効果を奏するようにすることができる。
 本発明は、添付図面を参照しながら好ましい実施の形態に関連して充分に記載されているが、この技術の熟練した人々にとっては種々の変形や修正は明白である。そのような変形や修正は、添付した請求の範囲による本発明の範囲から外れない限りにおいて、その中に含まれると理解されるべきである。
 本発明に係る冷凍サイクル装置は、蓄熱材に蓄積された熱の不足を補助的に補うことができるため、除霜運転を確実に行うことができるので、空気調和機、冷蔵庫、給湯器、ヒートポンプ式洗濯機等に有用である。
 2 室外機、 4 室内機、 6 圧縮機、 8 四方弁、 
10 ストレーナ、 12 膨張弁、 14 室外熱交換器、 
16 室内熱交換器、 18 第1配管、 20 第2配管、 
22 第3配管、 24 第4配管、 26 アキュームレータ、
28 第5配管、 30 第1電磁弁、 32 蓄熱槽、
34 蓄熱熱交換器、 36,136 蓄熱材、 38 第6配管、
40 第7配管、 42 第2電磁弁、 44 温度センサ、
46 蓄熱材温度センサ、 48 コントローラ、
50,150 蓄熱装置、 52 電気ヒータ。

Claims (5)

  1.  冷媒配管を介して接続された圧縮機、室内熱交換器、膨張弁および室外熱交換器と、前記圧縮機で発生した熱を蓄積する蓄熱材および前記蓄熱材に蓄積された熱と冷媒との間で熱交換を行う蓄熱熱交換器を有する蓄熱装置とを備える冷凍サイクル装置であって、
     前記蓄熱装置は、前記蓄熱材を補助的に加熱する電気を用いた補助加熱装置をさらに備える、冷凍サイクル装置。
  2.  圧縮機と、前記圧縮機に接続された室内熱交換器と、前記室内熱交換器と接続された膨張弁と、前記膨張弁と接続された室外熱交換器と、を備え、前記室外熱交換器と前記圧縮機とが接続された冷凍サイクル装置であって、
     前記圧縮機を囲むように配置され、前記圧縮機で発生した熱を蓄熱する蓄熱材と、前記蓄熱材に蓄熱された熱とで熱交換を行う蓄熱熱交換器を有する蓄熱装置をさらに備え、
     前記室外熱交換器の除霜運転時には、前記圧縮機の吐出冷媒が前記室外熱交換器に導かれるとともに、前記室内熱交換器を介して前記蓄熱熱交換器に導かれ、前記室外熱交換器を通った後の冷媒と、前記蓄熱熱交換器で前記蓄熱材と熱交換された冷媒と、が合流して前記圧縮機の吸入側に導かれ、
     前記蓄熱装置は、前記蓄熱材を補助的に加熱する電気を用いた補助加熱装置をさらに備える、冷凍サイクル装置。
  3.  前記蓄熱装置は、液体を前記蓄熱材として収容する蓄熱槽をさらに備える、請求項1または2に記載の冷凍サイクル装置。
  4.  前記蓄熱装置において、前記蓄熱材として金属材料が用いられる、請求項1または2に記載の冷凍サイクル装置。
  5.  前記蓄熱材に蓄積された熱が前記蓄熱熱交換器を介して熱交換された冷媒を、前記室外熱交換器に循環させることで、前記室外熱交換器の除霜運転を開始させるコントローラと、
     前記蓄熱材の温度を検出する蓄熱材温度センサとをさらに備え、
     前記コントローラは、前記蓄熱材温度センサが検出した温度に基づいて、前記除霜運転を開始する前に前記補助加熱装置による前記蓄熱材の加熱を開始させる、請求項1から4のいずれか1つに記載の冷凍サイクル装置。
PCT/JP2011/001238 2010-09-09 2011-03-03 冷凍サイクル装置 WO2012032680A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201180001938.XA CN102523754B (zh) 2010-09-09 2011-03-03 制冷循环装置
KR1020117025692A KR101726008B1 (ko) 2010-09-09 2011-03-03 냉동 사이클 장치

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010202488A JP5238001B2 (ja) 2010-09-09 2010-09-09 冷凍サイクル装置
JP2010-202488 2010-09-09

Publications (1)

Publication Number Publication Date
WO2012032680A1 true WO2012032680A1 (ja) 2012-03-15

Family

ID=45810294

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/001238 WO2012032680A1 (ja) 2010-09-09 2011-03-03 冷凍サイクル装置

Country Status (4)

Country Link
JP (1) JP5238001B2 (ja)
KR (1) KR101726008B1 (ja)
CN (1) CN102523754B (ja)
WO (1) WO2012032680A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103423927A (zh) * 2012-05-15 2013-12-04 约克广州空调冷冻设备有限公司 用于空气源热泵系统的除霜方法
JP2014211283A (ja) * 2013-04-19 2014-11-13 株式会社東芝 冷凍サイクル装置

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6031673B2 (ja) * 2012-06-19 2016-11-24 パナソニックIpマネジメント株式会社 冷凍サイクル装置およびそれを備えた空気調和機
CN103807997B (zh) * 2012-11-14 2016-05-04 珠海格力电器股份有限公司 空调系统及其控制方法
JP6286675B2 (ja) * 2015-02-20 2018-03-07 パナソニックIpマネジメント株式会社 空気調和機
CN106500213B (zh) * 2016-10-31 2022-06-03 广东美的制冷设备有限公司 一种空气调节系统、空调器及空气调节方法
CN106440458B (zh) * 2016-10-31 2022-05-27 广东美的制冷设备有限公司 一种空气调节系统、空调器及空气调节方法
CN106705305B (zh) * 2017-01-10 2020-06-26 美的集团武汉制冷设备有限公司 空调器及空调器用蓄热组件工作状态的检测方法
CN106705304A (zh) * 2017-01-10 2017-05-24 美的集团武汉制冷设备有限公司 空调器及空调器的化霜控制方法
CN106642595A (zh) * 2017-01-10 2017-05-10 美的集团武汉制冷设备有限公司 空调器及空调器的化霜控制方法
CN106705303B (zh) * 2017-01-10 2019-05-14 美的集团武汉制冷设备有限公司 化霜控制方法、化霜控制系统和空调器
CN106765778B (zh) * 2017-01-10 2019-09-27 美的集团武汉制冷设备有限公司 空调器及空调器的化霜控制方法
CN106705379A (zh) * 2017-01-10 2017-05-24 美的集团武汉制冷设备有限公司 化霜控制方法、化霜控制系统和空调器
CN106594937A (zh) * 2017-01-10 2017-04-26 美的集团武汉制冷设备有限公司 空调器、化霜控制方法和化霜控制系统
CN106765983A (zh) * 2017-01-10 2017-05-31 美的集团武汉制冷设备有限公司 化霜控制方法、化霜控制系统和空调器
CN106839286B (zh) * 2017-01-10 2019-08-23 美的集团武汉制冷设备有限公司 化霜控制方法、化霜控制系统和空调器
CN106885406B (zh) * 2017-04-17 2023-09-05 珠海格力电器股份有限公司 空调控制方法、装置和系统
CN110701821A (zh) * 2019-10-25 2020-01-17 广东美的制冷设备有限公司 空调器及其控制方法、控制装置和计算机可读存储介质
CN111503823A (zh) * 2020-04-29 2020-08-07 广东美的制冷设备有限公司 空调系统的控制方法和空调系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60245968A (ja) * 1984-05-18 1985-12-05 松下電器産業株式会社 空気調和機
JPH01306785A (ja) * 1988-06-03 1989-12-11 Daikin Ind Ltd 空気調和機
JPH0331666A (ja) * 1989-06-28 1991-02-12 Matsushita Electric Ind Co Ltd ヒートポンプ式空気調和機

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0331666Y2 (ja) 1985-12-05 1991-07-04
JP2748960B2 (ja) * 1989-08-31 1998-05-13 松下冷機株式会社 蓄熱空調システム
JPH04270876A (ja) * 1991-02-27 1992-09-28 Matsushita Electric Ind Co Ltd ヒートポンプ式空気調和機の除霜制御装置
JP2000291985A (ja) * 1999-04-07 2000-10-20 Daikin Ind Ltd 空気調和装置
JP2002061967A (ja) * 2000-08-17 2002-02-28 Matsushita Refrig Co Ltd 空気調和機

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60245968A (ja) * 1984-05-18 1985-12-05 松下電器産業株式会社 空気調和機
JPH01306785A (ja) * 1988-06-03 1989-12-11 Daikin Ind Ltd 空気調和機
JPH0331666A (ja) * 1989-06-28 1991-02-12 Matsushita Electric Ind Co Ltd ヒートポンプ式空気調和機

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103423927A (zh) * 2012-05-15 2013-12-04 约克广州空调冷冻设备有限公司 用于空气源热泵系统的除霜方法
CN103423927B (zh) * 2012-05-15 2016-05-11 约克广州空调冷冻设备有限公司 用于空气源热泵系统的除霜方法
JP2014211283A (ja) * 2013-04-19 2014-11-13 株式会社東芝 冷凍サイクル装置

Also Published As

Publication number Publication date
KR20130066477A (ko) 2013-06-20
CN102523754B (zh) 2015-08-26
JP5238001B2 (ja) 2013-07-17
CN102523754A (zh) 2012-06-27
JP2012057879A (ja) 2012-03-22
KR101726008B1 (ko) 2017-04-11

Similar Documents

Publication Publication Date Title
JP5238001B2 (ja) 冷凍サイクル装置
JP5615561B2 (ja) 冷凍サイクル装置
US20190154322A1 (en) Refrigeration cycle apparatus
JP5210364B2 (ja) 空気調和機
JP2013104623A (ja) 冷凍サイクル装置およびそれを備えた空気調和機
WO2011108237A1 (ja) 冷凍サイクル装置
WO2012042692A1 (ja) 冷凍サイクル装置
WO2013065233A1 (ja) 冷凍サイクル装置およびそれを備えた空気調和機
JP5445570B2 (ja) 空気調和機
JP4666111B1 (ja) 冷凍サイクル装置
EP2918921B1 (en) Hot water generator
JP5948606B2 (ja) 冷凍サイクル装置
JP5927500B2 (ja) 冷凍サイクル装置およびそれを備えた空気調和機
JP5287821B2 (ja) 空気調和機
JP5927502B2 (ja) 冷凍サイクル装置およびそれを備えた空気調和機
WO2011108019A1 (ja) 冷凍サイクル装置
JP2012037130A (ja) 冷凍サイクル装置
JP2014031930A (ja) 冷凍サイクル装置
JP2012083065A (ja) 空気調和機
JP2012077938A (ja) 冷凍サイクル装置
JP2013104586A (ja) 冷凍サイクル装置およびそれを備えた空気調和機
US20230304709A1 (en) Refrigeration cycle system
JP2004301400A (ja) 氷蓄熱式空気調和装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180001938.X

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 20117025692

Country of ref document: KR

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11823166

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11823166

Country of ref document: EP

Kind code of ref document: A1