WO2011087073A1 - シリコーンレジン組成物およびシリコーンレジン組成物を用いた保護被覆工法 - Google Patents

シリコーンレジン組成物およびシリコーンレジン組成物を用いた保護被覆工法 Download PDF

Info

Publication number
WO2011087073A1
WO2011087073A1 PCT/JP2011/050503 JP2011050503W WO2011087073A1 WO 2011087073 A1 WO2011087073 A1 WO 2011087073A1 JP 2011050503 W JP2011050503 W JP 2011050503W WO 2011087073 A1 WO2011087073 A1 WO 2011087073A1
Authority
WO
WIPO (PCT)
Prior art keywords
silicone resin
resin composition
water
group
calcium
Prior art date
Application number
PCT/JP2011/050503
Other languages
English (en)
French (fr)
Inventor
博之 五箇
真男 井内
智彦 金沢
芳人 大沢
義人 古山
明成 板垣
Original Assignee
日本ジッコウ株式会社
日鐵セメント株式会社
信越化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ジッコウ株式会社, 日鐵セメント株式会社, 信越化学工業株式会社 filed Critical 日本ジッコウ株式会社
Priority to KR1020127018823A priority Critical patent/KR101787129B1/ko
Priority to JP2011550010A priority patent/JP5710503B2/ja
Priority to CN201180006437.0A priority patent/CN102712811B/zh
Publication of WO2011087073A1 publication Critical patent/WO2011087073A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/02Emulsion paints including aerosols
    • C09D5/022Emulsions, e.g. oil in water
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic

Definitions

  • the present invention relates to a silicone resin composition, and more particularly to a silicone resin composition that is cured at room temperature without heating and has excellent film properties and a protective coating method using the silicone resin composition.
  • Protective coating for protecting concrete, steel plate, and the like from corrosive substances and use environments is generally performed by applying a composition for protective coating on the surface of a material to form a coating.
  • a composition used for these protective coatings a composition composed of an organic synthetic resin as disclosed in Patent Document 1 is often used.
  • an inorganic silicone resin composition as shown in Patent Document 2 is also used in consideration of adhesion to a material to be protectively coated, durability of a formed film, weather resistance, and the like. .
  • Patent Document 3 an aqueous type silicone resin composition not using an organic solvent as shown in Patent Document 3 is often used.
  • Patent Document 1 uses an organic synthetic resin, when used for concrete which is an inorganic material, it is not necessarily compatible in terms of adhesion and the like. I can't say that. Therefore, there has been a problem that the film is swollen or peeled off. Moreover, the composition of patent document 1 is a film in which the film is formed by the carbon bond. Accordingly, there is a problem that the concrete protective coating that requires a service life of about 10 years is not necessarily sufficient in terms of durability and weather resistance.
  • composition described in Patent Document 2 is an inorganic silicone resin composition, it is excellent in adhesion to concrete, which is an inorganic material, and the above-mentioned film bulges or peels off. This has the advantage of preventing the problem.
  • composition described in Patent Document 2 uses an organic solvent as a solvent, there is a problem that the organic solvent is released into the atmosphere at the time of film formation, thereby polluting the atmospheric environment.
  • the composition described in Patent Document 3 is a silicone resin that uses water as a solvent, it has the advantage of preventing the above-described problem of contaminating the air environment.
  • the composition described in Patent Document 3 needs to be heated when forming a film, it takes time to form the film, and there is a problem in terms of workability when used for protective coatings such as concrete. was there. This problem was particularly noticeable when working outdoors in winter.
  • the present invention has been made in view of the above-described conventional problems, and forms a film at room temperature without heating while using water as a solvent.
  • An object of the present invention is to provide a silicone resin composition having sufficient film properties and a protective coating method using the silicone resin composition.
  • the silicone resin composition of the present invention comprises a compound containing at least one element selected from calcium, magnesium and aluminum, and a moisture curable silicone resin.
  • the silicone resin composition of the present invention is characterized in that the compound containing at least one element selected from calcium, magnesium and aluminum is derived from steel slag, alumina cement or a mixture thereof.
  • the silicone resin composition of the present invention is characterized by containing a compound containing at least one element selected from calcium, magnesium, and aluminum, a silicone resin, and water.
  • the silicone resin composition of the present invention is characterized in that the compound containing at least one element selected from calcium, magnesium and aluminum is derived from steel slag, alumina cement or a mixture thereof.
  • the silicone resin composition of the present invention is characterized in that the silicone resin is an aqueous emulsion or an aqueous dispersion.
  • the silicone resin has an average composition formula: [RSiO 3/2 ] m [R 2 SiO] n (R is the same or different monovalent organic group having 1 to 20 carbon atoms, m + n is 1.0.).
  • the silicone resin contains (A) an average composition formula: [RSiO 3/2 ] m [R 2 SiO] n (R is the same or different monovalent organic group having 1 to 20 carbon atoms). And m + n is 1.0.), (B) an emulsifier, and (C) water, an aqueous emulsion or aqueous dispersion. .
  • the silicone resin contains (A) an average composition formula: [RSiO 3/2 ] m [R 2 SiO] n (R is the same or different monovalent organic group having 1 to 20 carbon atoms). Wherein m + n is 1.0), (B) an emulsifier, (C) water, and (D) a water miscibility having an SP value of 8.0 to 11.0. It is an aqueous emulsion or aqueous dispersion containing an organic solvent.
  • the protective coating method using the silicone resin composition of the present invention is characterized by using the silicone resin composition of the present invention.
  • the silicone resin composition of the present invention comprises a silicone resin or a moisture curable silicone resin, a compound containing at least one element selected from calcium, magnesium, and aluminum that serves as a curing catalyst for these resins, and water or moisture. Is necessary, and by being composed of these components, the film is cured at room temperature without heating to form a film.
  • a silicone alkoxy oligomer which is a relatively low molecular silicone resin whose molecular ends are blocked with alkoxysilyl groups, which will be described later, is preferably used.
  • the blending amount of each component is not particularly limited as long as the physical properties of the film according to the use environment are expressed, but when the resin component is a moisture curable silicone resin, the moisture curable type is used from the viewpoint of workability.
  • the silicone resin is 50 to 100 parts by weight
  • the compound containing at least one element selected from calcium, magnesium and aluminum is 50 to 200 parts by weight
  • water is 200 parts by weight or less.
  • the resin component is a silicone resin
  • the resin component is a silicone resin
  • 50 to 100 parts by weight of the silicone resin and 1 to 100 parts by weight of a compound containing at least one element selected from calcium, magnesium and aluminum are used.
  • the water is preferably 200 parts by weight or less.
  • inorganic balloons such as silica sand, porcelain powder, glass powder, and shirasu balloon may be used as necessary.
  • the compound containing at least one element selected from calcium, magnesium and aluminum used in the present invention may be a single compound, or calcium aluminate present in steel slag, alumina cement or a mixture thereof described later. It may be in the form of a complex with another compound, such as a group.
  • the compound itself or a trace amount of metal ions eluted from the compound into water serves as a catalyst to cure the silicone resin and form a film.
  • the compounding ratio of the compound containing at least one element selected from calcium, magnesium and aluminum used in the present invention is a moisture curable silicone resin when the resin component is a moisture curable silicone resin.
  • 50 to 200 parts by weight is preferably blended with respect to 50 to 100 parts by weight.
  • 1 to 100 parts by weight is blended with respect to 50 to 100 parts by weight of the silicone resin. Is preferred. This is because if the blending amount is less than the above range, it takes a long time to cure, and if it exceeds the above range, the curing becomes too fast, which may cause problems in workability.
  • the compound containing at least one element selected from calcium, magnesium, and aluminum used in the present invention is a material that is vulnerable to acidic substances such as concrete
  • the pH of water when metal ions are eluted in water is preferably 9 to 13, more preferably 10.5 to 11.5. This is because if the pH is less than 9, the curing takes a long time, and if it exceeds 13, the curing becomes too fast, which may cause problems in terms of workability.
  • the compound containing at least one element selected from the above-mentioned calcium, magnesium, and aluminum when a single compound such as calcium carbonate is used as the compound containing at least one element selected from the above-mentioned calcium, magnesium, and aluminum, the blending amount with respect to the resin component becomes small. As a result, the compound is localized and distributed in the composition. In rare cases, unevenness occurs in the curing, and it may be difficult to obtain a good film. Therefore, in order to disperse uniformly in the composition to moderate the curing and make it easy to obtain a good film, the compound containing at least one element selected from the above-mentioned calcium, magnesium, and aluminum is described later. It is preferable to use what is in the state of a composite with other compounds, such as calcium aluminates contained in steel slag, alumina cement or a mixture thereof.
  • the steel slag used in the present invention is recovered as a by-product during metal refining, and is classified into blast furnace slag and steelmaking slag. Blast furnace slag is further classified into slowly cooled slag and granulated slag.
  • the composition of steel slag is mainly composed of calcium oxide and silicon dioxide, and other components such as aluminum oxide, magnesium oxide, iron, manganese, and sulfur are combined with other compounds such as simple substances or calcium aluminates. It is included as a state of things.
  • blast furnace slag when using steel slag, it is preferable to use blast furnace slag from the viewpoint of workability. This is because steelmaking slag may be difficult to use from the viewpoint of workability because the curing of the silicone resin composition becomes too fast depending on the grade used.
  • the alumina cement used in the present invention is a cement produced from bauxite and limestone, and is mainly composed of lime aluminate.
  • the steel slag and alumina cement used in the present invention if the compound containing at least one element selected from the above-mentioned calcium, magnesium, and aluminum is contained, both are mixed. It may be.
  • the physical properties of the steel slag and alumina cement used in the present invention are not particularly limited as long as they have a compound containing at least one element selected from calcium, magnesium, and aluminum.
  • the Blaine specific surface area is preferably in the range of 3000 to 10000 cm 2 / g. In problem arises of deterioration of workability when Blaine specific surface area of 3000 cm 2 / g less, deterioration of the workability in the case of more than 10000 cm 2 / g, because there is a possibility that the pot life shortening problems is there.
  • the amount of water in the silicone resin composition of the present invention is not particularly limited, and is appropriately determined from the viewpoint of the solubility and workability of a compound containing at least one element selected from calcium, magnesium, and aluminum. be able to.
  • a moisture curable silicone resin is used as the resin component, water in the air contributes to curing, so that water as a raw material can be not particularly blended.
  • a silicone alkoxy oligomer is preferably used as the moisture curable silicone resin used in the present invention. More specifically, the following general formula (1) R 1 a Si (OR 2 ) 4-a (1) (Wherein R 1 is the same or different unsubstituted or substituted monovalent hydrocarbon group having 1 to 10 carbon atoms, R 2 is an alkyl group having 1 to 3 carbon atoms, an acyl group having 2 or 3 carbon atoms, or 1 or 2 or more of a partial (co) hydrolysis condensate of a silane compound represented by an alkoxyalkyl group having 3 to 5 carbon atoms, a being any number of 0, 1, and 2)
  • a silicone alkoxy oligomer comprising a mixture of the above is suitably used as a moisture curable silicone resin.
  • R 1 in the general formula (1) is the same or different unsubstituted or substituted monovalent hydrocarbon group having 1 to 10 carbon atoms, specifically, methyl group, ethyl group, propyl group, butyl Group, hexyl group, octyl group, decyl group and other alkyl groups, cyclohexyl group and other cycloalkyl groups, vinyl group, allyl group and other alkenyl groups, phenyl group and tolyl group and other aryl groups, or hydrogen atoms of these groups A chloromethyl group, a chloropropyl group, a trifluoropropyl group, etc., part or all of which is substituted with a halogen atom, a cyanoethyl group substituted with a cyano group, a glycidoxypropyl group substituted with an epoxy group, an epoxycyclohexylethyl group, etc.
  • R 2 is an alkyl group having 1 to 3 carbon atoms, an acyl group having 2 or 3 carbon atoms, or an alkoxyalkyl group having 3 to 5 carbon atoms, as described above.
  • R 1 in the general formula (1) is a methyl group, an ethyl group, or a propyl group.
  • Group, vinyl group and phenyl group are preferred, and methyl group and phenyl group are more preferred.
  • R 2 is preferably an alkyl group selected from a methyl group and an ethyl group from the same viewpoint.
  • a in the general formula (1) is any number of 0, 1, and 2, but the curability of the silicone resin composition, the surface hardness of the cured film, the crack resistance, and the adhesion to the substrate.
  • the proportion of the hydrolyzed condensate is preferably 0 to 60 mol% in the moisture curable silicone resin.
  • silane compound used as a raw material of the moisture curable silicone resin used in the present invention tetramethoxysilane, tetraethoxysilane, tetraisopropoxysilane, methyltrimethoxysilane, methyltriethoxysilane, Methyltriisopropoxysilane, methyltriacetoxysilane, methyltris (methoxyethoxy) silane, methyltris (methoxypropoxy) silane, ethyltrimethoxysilane, ethyltriethoxysilane, ethyltriisopropoxysilane, propyltrimethoxysilane, propyltriethoxysilane , Propyltriisopropoxysilane, butyltrimethoxysilane, butyltriethoxysilane, hexyltrimethoxysilane, hexyltrimethyl
  • the silicone alkoxy oligomer used as the moisture curable silicone resin used in the present invention is a partial (co) hydrolysis condensate of the silane compound as described above, and in particular, a dimer ( 2 moles of water are allowed to act on 2 moles of silane compound to remove 2 moles of alcohol to form disiloxane units) to 100-mer, more preferably 2 to 50-mer. More preferably, it is a 2-30 mer. It is also possible to use a partial cohydrolysis condensate using two or more silane compounds as raw materials.
  • the moisture curable silicone resin of the present invention may use the above partial (co) hydrolysis condensate alone, or two or more types of partial (co) hydrolysis condensates having different structures. It is also possible. Furthermore, it is also possible to use a part of the raw material silane compound or a curing catalyst typified by organometallic compounds such as titanates and organoaluminum compounds.
  • the viscosity of the moisture curable silicone resin used in the present invention is preferably 1 to 5,000 mm 2 / s at 25 ° C., more preferably 3 to 1,000 mm 2 / s.
  • the silicone resin used in the present invention has a siloxane bond and is cured by a compound containing at least one element selected from the above-mentioned calcium, magnesium, and aluminum, or metal ions eluted from these compounds. If there is no particular limitation.
  • the silicone resin used in the present invention may be a water-soluble type, but from the viewpoint of the water-repellent performance of the silicone resin composition, an organosilicone compound is used as an emulsifier, water, a water-miscible organic solvent, etc. It is preferable to use an emulsion type or dispersion type emulsion emulsified and dispersed by the method described above.
  • the average particle size is preferably 1,000 nm or less, particularly preferably 800 nm or less from the viewpoint of storage stability. This is because when it exceeds 1,000 nm, there is a possibility that the problem of separation with time may occur.
  • the nonvolatile content (solid content) of the silicone resin is preferably 5 to 80% by mass from the viewpoint of handleability. Further, it is preferably 10 to 70% by mass.
  • the non-volatile content is less than 5% by mass, the viscosity of the silicone resin composition becomes too low, causing a problem of deterioration of moldability, and when it exceeds 80% by mass, the viscosity of the silicone resin becomes too high, causing a problem of deterioration of workability. This is because there is a risk of occurrence.
  • Organicsilicone compound when an emulsion type or dispersion type silicone resin is used, the average composition formula is [RSiO 3/2 ] m [R 2 SiO] n (R is the same or different carbon from the viewpoint of film properties. It is preferable to use a monovalent organic group having a number of 1 to 20 and an organosilicone compound represented by m + n of 1.0.
  • R is the same or different monovalent organic group having 1 to 20 carbon atoms, specifically, methyl, ethyl, propyl, butyl, pentyl, hexyl, heptyl, octyl, nonyl, decyl, dodecyl, tetradecyl.
  • alkyl groups such as hexadecyl, octadecyl, cyclopentyl, cyclohexyl and cycloheptyl, aryl groups such as phenyl, tolyl and naphthyl, and alkenyl groups such as vinyl and allyl.
  • a part (one or more) of hydrogen atoms is substituted with a reactive group such as an epoxy group, a mercapto group, a methacryl group, an acrylic group, a carboxyl group, an amino group, or a keto group.
  • a reactive group such as an epoxy group, a mercapto group, a methacryl group, an acrylic group, a carboxyl group, an amino group, or a keto group.
  • Examples of the organic group substituted with a reactive group include 3-glycidoxypropyl, 2- (3,4-epoxycyclohexyl) ethyl, 3-mercaptopropyl, 3-methacryloxypropyl, 3-acryloxypropyl, 3- Aminopropyl, N- (2-aminoethyl) -3-aminopropyl, N-phenyl-3-aminopropyl, 3-ureidopropyl, 3-chloropropyl, 10-carboxydecyl, 2-carboxyethyl, 3- (2 -Hydroxyethoxy) propyl, -C 2 H 4 -CHO, -C 3 H 6 -SC 2 H 4 -CONH-C (CH 3 ) 2 -CH 2 COCH 3 and the like.
  • the molar ratio (m) of [RSiO 3/2 ] units in the organosilicone compound is preferably in the range of 0.2 to 1.0, more preferably 0.3 to 1. in terms of the hardness and durability of the coating.
  • the range is 0, and more preferably in the range of 0.4 to 1.0. If it is less than 0.2, the film hardness becomes soft and the durability may be lowered.
  • the molar ratio (n) of [R 2 SiO] units in the organosilicone compound is preferably in the range of 0 to 0.8, more preferably 0 to 0.7, from the viewpoint of the hardness and durability of the coating. And more preferably in the range of 0 to 0.6. If it is larger than 0.8, the coating hardness becomes soft and the durability may be lowered.
  • the organosilicone compound can be produced by a known method such as a method of hydrolyzing and condensing a corresponding unit of chlorosilane or alkoxysilane.
  • the organosilicone compounds produced by these known methods contain a small amount of a hydroxyl group as a terminal group and optionally an alkoxy group. Then, the hydroxyl group or alkoxy group is heated by dehydration condensation or dealcoholization condensation using a compound containing at least one element selected from calcium, magnesium and aluminum as described above or a metal ion eluted from these compounds as a catalyst. Without curing, it hardens at room temperature and becomes a film.
  • the amount of hydroxyl group is 0.1 to 10% by mass
  • the amount of alkoxy group is 0.1 to 10% by mass
  • the total amount of hydroxyl group and alkoxy group is 0.1 to 15% by mass.
  • the alkoxy group preferably has 1 to 6 carbon atoms from the viewpoint of reactivity.
  • an emulsifier for the organosilicone compound, an emulsifier, water, and a water-miscible organic solvent can be used as necessary.
  • emulsifier when using an emulsifier, water, and a water-miscible organic solvent for the organosilicone compound, prepare a water-miscible organic solvent solution of the organosilicone compound in advance from the viewpoint of stability when it becomes an emulsion or dispersion.
  • emulsifier and water are then mixed and stirred to produce an emulsified dispersion.
  • the emulsifier is not particularly limited as long as the organosilicone compound can be emulsified and dispersed in water.
  • these emulsifiers include nonionic surfactants such as polyoxyethylene alkyl ethers, polyoxyethylene propylene alkyl ethers, polyoxyethylene alkyl phenyl ethers, polyoxyethylene fatty acid esters, alkyl sulfates, and alkylbenzene sulfonates.
  • Anionic surfactants such as alkyl sulfosuccinates, alkyl phosphates, polyoxyethylene alkyl ether sulfates, polyoxyethylene alkyl phenyl ether sulfates, and cationic surfactants such as quaternary ammonium salts and alkylamine acetates Agents, amphoteric surfactants such as alkylbetaines and alkylimidazolines. Moreover, these emulsifiers can be used individually or in combination of 2 or more types.
  • nonionic surfactants such as polyoxyethylene alkyl ether, polyoxyethylene propylene alkyl ether, and polyoxyethylene alkyl phenyl ether are preferable as the emulsifier from the viewpoint of stability.
  • nonionic surfactants include polyoxyethylene octyl ether, polyoxyethylene nonyl ether, polyoxyethylene decyl ether, polyoxyethylene propylene decyl ether, polyoxyethylene lauryl ether, polyoxyethylene propylene lauryl.
  • Ether polyoxyethylene tridecyl ether, polyoxyethylene propylene tridecyl ether, polyoxyethylene myristyl ether, polyoxyethylene cetyl ether, polyoxyethylene stearyl ether, polyoxyethylene octyl phenyl ether, polyoxyethylene nonyl phenyl ether, poly Examples thereof include oxyethylene styrenated phenyl ether.
  • the amount of the emulsifier added is preferably 1 to 50 parts by weight, more preferably 2 to 30 parts by weight with respect to 100 parts by weight of the organosilicone compound from the viewpoint of emulsification, film hardness, and adhesion. More preferably, it is 3 to 20 parts by mass. This is because if the amount of the emulsifier added is less than 1 part by mass, emulsification is difficult, and if it exceeds 50 parts by mass, the hardness and strength of the coating and the adhesion to the substrate may be reduced.
  • the water-miscible organic solvent is used for imparting fluidity when emulsifying the organosilicone compound or adjusting the viscosity of the organosilicone compound.
  • the SP value (solubility parameter) is 8 It is preferably from 0 to 11.0 and miscible with water.
  • the SP value is a solubility parameter and is a characteristic value called a solubility coefficient, which is a measure of mixing between liquids proposed by Hildebrand.
  • the SP value is preferably 8.0 to 11.0, more preferably 8.5 to 10.5, from the viewpoint of the solubility of the organosilicone compound and the stability of the emulsion when emulsified. This is because if the SP value is less than 8.0, the organosilicone compound cannot be dissolved uniformly, and if it is greater than 11.0, the stability of the emulsion may be reduced when emulsified. .
  • the organic solvent needs to be miscible with water, and if it is not miscible with water, the stability of the emulsion when emulsified is lowered.
  • water miscibility the solubility in 100 g of water at 20 ° C. needs to be 1 g or more, and preferably 2 g or more.
  • water-miscible organic solvents include alcohol compounds, ketone compounds, ester compounds, and ether compounds.
  • cellosolve propyl cellosolve, butyl cellosolve, propylene glycol monomethyl ether, propylene glycol monomethyl ether acetate, propylene glycol monobutyl ether, dipropylene glycol monomethyl ether, methyl carbitol, carbitol, propyl carbitol, butyl carbitol, cellosolve Examples thereof include acetate, butyl cellosolve acetate, propylene glycol monomethyl ether acetate, carbitol acetate, butyl carbitol acetate, 2,2,4-trimethyl-1,3-pentadiol monoisobutyrate.
  • butyl cellosolve acetate propylene glycol monomethyl ether acetate, dipropylene glycol monomethyl ether, and 2,2,4-trimethyl-1,3-pentadiol monoisobutyrate are preferably used from the viewpoint of solubility in water.
  • the amount of water-miscible organic solvent added is preferably 1 to 50 parts by weight, more preferably 3 to 40 parts by weight, and even more preferably 5 parts by weight with respect to 100 parts by weight of the organosilicone compound. To 30 parts by mass. This is because when the amount added is less than 1 part by mass, the viscosity of the organosilicone compound solution is high, emulsification is difficult, and the emulsion stability may be poor. On the other hand, if the amount added is more than 50 parts by mass, it may take a long time to dry the emulsion.
  • Organosilicone compounds are usually solid when the content of the [RSiO 3/2 ] unit is high, or easily gelled when the condensation reactivity is high. Handled diluted in solvent.
  • a water-miscible organic solvent solution can be used as such a diluent, and further, a water-miscible organic solvent solution can be used as a solvent for producing an organosilicone compound.
  • the viscosity of the organosilicone compound solution diluted with the water-miscible organic solvent is determined from a B-type rotational viscometer from the viewpoint of emulsifiability. When used and measured, it is preferably 500 to 500,000 mPa ⁇ s at 25 ° C., more preferably 1,000 to 200,000 mPa ⁇ s.
  • water can also be used as a diluent for the organosilicone compound, and the amount of water in this case is preferably 25 to 2,000 parts by mass with respect to 100 parts by mass of the organosilicone compound, and more The amount is preferably 50 to 1,000 parts by mass.
  • Examples of the method for forming the protective coating include a method in which the silicone resin composition of the present invention is applied to the target material by spraying, brushing, or ironing.
  • the thickness of the coating is preferably 0.5 to 5 mm from the viewpoint of protective coating. This is because when the film thickness is less than 0.5 mm, there is a possibility of a barrier property, and when it is thicker than 5 mm, a problem of curing shrinkage may occur.
  • a primer layer may be provided between the silicone resin composition of the present invention and the target material, if necessary.
  • a top coat layer for finishing may be further provided on the surface of the film made of the resin composition.
  • a silicone resin or a moisture curable silicone resin a compound containing at least one element selected from calcium, magnesium, and aluminum as a curing catalyst for these resins, water or Since moisture is contained, the compound itself or metal ions eluted from the compound into water can be used as a catalyst, and the silicone resin can be cured without heating to form a film.
  • the compound containing any one element of calcium, magnesium, and aluminum is derived from steel slag, alumina cement, or a mixture thereof. It is possible to effectively use steel slag and alumina cement.
  • the silicone resin is an aqueous emulsion or an aqueous dispersion
  • a silicone resin using water as a solvent can be used, thereby preventing the problem of polluting the atmospheric environment. be able to.
  • silicone resin composition of the present invention since a silicone resin having a specific structure is used, it is possible to provide a silicone resin composition according to the usage environment and usage.
  • the protective coating method using the silicone resin composition of the present invention since the silicone resin composition that forms a film at room temperature without heating is used, a protective coating excellent in workability is performed. Can do.
  • silicone resin composition (Production of silicone resin) First, three types of silicone resins used for the silicone resin composition were produced by the method shown below. As a comparative example, an acrylic resin emulsion (manufactured by BAFS Japan, product number: YJ-2720D) was used.
  • Non-volatile content at 0.99 ° C. / 3 hours 47 mass%, to obtain an average particle size pale organosilicone compound emulsion is 190nm (A-2).
  • Compound containing at least one element selected from calcium, magnesium and aluminum For the compound containing at least one element selected from calcium, magnesium, and aluminum, calcium oxide (special grade reagent), steel slag, and alumina cement described later were used. As a comparative example, ordinary port and cement was used.
  • blast furnace slag is used as the steel slag, and among them, those having a specific surface area of 4000 cm 2 / g (steel slag-1) and those having a specific surface area of 10,000 cm 2 / g (steel slag-2) are used.
  • alumina cement one having a brain specific surface area of 4600 cm 2 / g was used.
  • the pH of water when mixing 5 g of the produced steel slag or alumina cement and 100 g of water was 10.8 at 23 ° C.
  • silicone resin compositions of Examples 1 to 10 and Comparative Examples 1 to 4 were prepared with the formulations shown in Table 1.
  • capacitance 1L it produced by kneading.
  • the workability test was performed by evaluating the workability at the time of ironing. Specifically, when ironing the silicone resin composition immediately after blending and stirring and after standing for 30 minutes, ⁇ if the workability is good, ⁇ if the workability is slightly reduced, if the workability is reduced Was evaluated by ⁇ , and when the work was not possible, it was evaluated as ⁇ .
  • the chlorine resistance test was performed by immersing the test piece in a 5% aqueous sodium hypochlorite solution. Specifically, a silicone resin composition is applied to a mortar plate having a length of 70 mm, a width of 70 mm, and a thickness of 20 mm by applying a trowel with a gold trowel so that the coating amount is 1.0 kg / m 2 , and the temperature is 20 ⁇ 2 ° C. A test piece was prepared by curing for 7 days under conditions of humidity 65 ⁇ 10%. Then, after immersing the test piece in the above aqueous solution for 30 days, visual observation is performed. If there is no change in appearance, ⁇ , if there is a slight change in color tone, ⁇ if there is a slight deterioration, ⁇ , deterioration phenomenon When it occurred, it was evaluated by evaluating as x.
  • ozone resistance test About the ozone resistance test, it carried out by immersing a test piece in the ozone treatment tank of a sewage treatment facility. Specifically, a silicone resin composition is applied to a mortar plate having a length of 80 mm, a width of 120 mm, and a thickness of 10 mm by applying a trowel with a gold trowel so that the coating amount is 1.0 kg / m 2 , and the temperature is 20 ⁇ 2 ° C. A test piece was prepared by curing for 7 days under conditions of humidity 65 ⁇ 10%.
  • the weather resistance test was performed using a super UV tester tester (manufactured by Iwasaki Electric Co., Ltd.). Specifically, a silicone resin composition is applied to a mortar plate having a length of 70 mm, a width of 150 mm, and a thickness of 3 mm by applying a trowel with a gold trowel so that the coating amount is 1.0 kg / m 2 , and the temperature is 20 ⁇ 2 ° C. A test piece was prepared by curing for 7 days under conditions of humidity 65 ⁇ 10%.
  • Heat resistance test About the heat resistance test, it carried out by immersing a test piece in boiling water. Specifically, a silicone resin composition is applied to a mortar plate having a length of 70 mm, a width of 70 mm, and a thickness of 20 mm by applying a trowel with a gold trowel so that the coating amount is 1.0 kg / m 2 , and the temperature is 20 ⁇ 2 ° C. A test piece was prepared by curing for 7 days under conditions of humidity 65 ⁇ 10%.
  • the antifouling test was conducted by an outdoor exposure test. Specifically, a silicone resin composition is applied to a mortar plate having a length of 70 mm, a width of 70 mm, and a thickness of 20 mm by applying a trowel with a gold trowel so that the coating amount is 1.0 kg / m 2 , and the temperature is 20 ⁇ 2 ° C. A test piece was prepared by curing for 7 days under conditions of humidity 65 ⁇ 10%. Then, in the Hyogo Prefecture, after outdoor exposure for half a year, visual observation was performed, ⁇ if there was no dirt on the appearance, ⁇ if there was some dirt, ⁇ if there was dirt, and x if there was a lot of dirt. This was done by evaluating.
  • the adhesion test to concrete was performed by measuring the tensile strength after application to a concrete plate. Specifically, a silicone resin composition was applied to a mortar plate having a length of 300 mm, a width of 300 mm, and a thickness of 60 mm with a trowel so that the coating amount was 1.0 kg / m 2 , and the temperature was 20 ⁇ 2 ° C. and the humidity was 65 Test specimens were prepared by curing for 7 days under ⁇ 10% conditions.
  • Step adhesion test The steel plate adhesion test was performed by measuring the tensile strength after application to the steel plate. Specifically, a silicone resin composition was applied to a steel plate having a length of 300 mm, a width of 300 mm, and a thickness of 5 mm with a trowel with a gold trowel so that the coating amount was 1.0 kg / m 2 , and the temperature was 20 ⁇ 2 ° C. Test specimens were prepared by curing for 7 days under conditions of humidity 65 ⁇ 10%.
  • the silicone resin composition of the present invention and the protective coating method using the silicone resin composition are excellent in workability because they form a film at room temperature without heating while using water as a solvent.
  • the coated film has sufficient film properties.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Paints Or Removers (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

【課題】溶媒に水を使用するものでありながら、加温することなく常温下で被膜を形成し、かつ、形成された被膜が十分な被膜物性を有するシリコーンレジン組成物が望まれていた。 【解決手段】本発明にかかるシリコーンレジン組成物は、シリコーン樹脂または湿気硬化型シリコーン樹脂と、これらの樹脂の硬化触媒となるカルシウム、マグネシウム、アルミニウムから選ばれる少なくとも1種の元素を含有する化合物と、水または水分とから構成されていることを特徴とする。

Description

シリコーンレジン組成物およびシリコーンレジン組成物を用いた保護被覆工法
 本発明は、シリコーンレジン組成物に係り、さらに詳しくは加温することなく常温下で硬化し、被膜物性に優れたシリコーンレジン組成物およびシリコーンレジン組成物を用いた保護被覆工法に関するものである。
 コンクリートや鋼板などを腐食性物質や使用環境から保護するための保護被覆は、一般的に材料表面に保護被覆のための組成物を塗布し、被膜を形成することによって行われる。
 ここで、これらの保護被覆に使用される組成物としては、特許文献1に示されるような有機系の合成樹脂で構成された組成物を用いることが多い。
 また、保護被覆する対象となる材料との密着性や形成される被膜の耐久性、耐候性などを考慮して、特許文献2に示されるような無機系のシリコーンレジン組成物も用いられている。
 さらに、近年においては環境に配慮して、特許文献3に示されるような有機溶剤を使用しない水性タイプのシリコーンレジン組成物が用いられることも多い。
特開平10-231453号公報 特開2000-26727号公報 特開2006-225629号公報
 しかしながら、特許文献1に記載の組成物は、有機系の合成樹脂を使用していることから、無機質の材料であるコンクリートなどに使用した場合には密着性などの点で必ずしも相性がよいとはいえない。従って、被膜がふくれたり、剥離したりするという問題があった。
 また、特許文献1に記載の組成物は、被膜が炭素結合によって形成されているものである。従って、10年程度の耐用年数が要求されるコンクリートの保護被覆においては、耐久性や耐候性の点において必ずしも十分であるとはいえないという問題もあった。
 一方、特許文献2に記載の組成物は、無機系のシリコーンレジン組成物であることから、無機質の材料であるコンクリートとは密着性に優れ、上記のような被膜がふくれたり、剥離したりするという問題を防止できるという長所を有している。
 しかしながら、特許文献2に記載の組成物は、溶媒に有機溶剤を使用することから、被膜形成時において有機溶剤が大気中に放出されることになり、大気環境を汚染するという問題があった。
 その点、特許文献3に記載の組成物は、溶媒に水を使用しているシリコーンレジンであることから、上記のような大気環境を汚染するという問題を防止できるという長所を有している。
 しかしながら、特許文献3に記載の組成物は、被膜形成時には加温することが不可欠であることから被膜形成に時間を要し、コンクリートなどの保護被覆に使用する際には作業性の点で問題があった。また、この問題は、特に冬場における屋外での作業時には顕著であった。
 なお、加温を必要とせずに空気中の水分で硬化するものとして湿気硬化型のシリコーン樹脂がある。しかしながら、コンクリートなどの保護被覆は数百μmの膜厚が必要になることから、かかる膜厚において十分な被膜物性を確保しようとすると、これら湿気硬化型のシリコーン樹脂を単独で使用するだけでは十分な性能を確保できないという問題もあった。
 本発明は上記した従来の問題点に鑑みてなされたものであって、溶媒に水を使用するものでありながら、加温することなく常温下で被膜を形成し、かつ、形成された被膜が十分な被膜物性を有するシリコーンレジン組成物およびシリコーンレジン組成物を用いた保護被覆工法を提供することを目的とする。
 上記目的を達成するために、本発明のシリコーンレジン組成物は、カルシウム、マグネシウム、アルミニウムから選ばれる少なくとも1種の元素を含有する化合物と、湿気硬化型シリコーン樹脂とが含有されていることを特徴とする。
 本発明のシリコーンレジン組成物は、カルシウム、マグネシウム、アルミニウムから選ばれる少なくとも1種の元素を含有する化合物が、鉄鋼スラグまたはアルミナセメントまたはその混合物に由来のものであることを特徴とする。
 本発明のシリコーンレジン組成物は、カルシウム、マグネシウム、アルミニウムから選ばれる少なくとも1種の元素を含有する化合物と、シリコーン樹脂と、水とが含有されていることを特徴とする。
 本発明のシリコーンレジン組成物は、カルシウム、マグネシウム、アルミニウムから選ばれる少なくとも1種の元素を含有する化合物が、鉄鋼スラグまたはアルミナセメントまたはその混合物に由来のものであることを特徴とする。
 本発明のシリコーンレジン組成物は、シリコーン樹脂が、水性エマルジョンまたは水性ディスパージョンであることを特徴とする。
 本発明のシリコーンレジン組成物は、シリコーン樹脂が、平均組成式:[RSiO3/2m[R2SiO]n(Rは同一又は異種の炭素数1~20の1価有機基であり、m+nが1.0である。)で示されるオルガノシリコーン化合物であることを特徴とする。
 本発明のシリコーンレジン組成物は、シリコーン樹脂が、(A)平均組成式:[RSiO3/2m[R2SiO]n(Rは同一又は異種の炭素数1~20の1価有機基であり、m+nが1.0である。)で示されるオルガノシリコーン化合物と、(B)乳化剤と、(C)水、とを含有してなる水性エマルジョンまたは水性ディスパージョンであることを特徴とする。
 本発明のシリコーンレジン組成物は、シリコーン樹脂が、(A)平均組成式:[RSiO3/2m[R2SiO]n(Rは同一又は異種の炭素数1~20の1価有機基であり、m+nが1.0である。)で示されるオルガノシリコーン化合物と、(B)乳化剤と、(C)水と、(D)SP値が8.0~11.0である水混和性有機溶剤、とを含有してなる水性エマルジョンまたは水性ディスパージョンであることを特徴とする。
 本発明のシリコーンレジン組成物を用いた保護被覆工法は、本発明のシリコーンレジン組成物を用いることを特徴とする。
 本発明のシリコーンレジン組成物は、シリコーン樹脂または湿気硬化型シリコーン樹脂と、これらの樹脂の硬化触媒となるカルシウム、マグネシウム、アルミニウムから選ばれる少なくとも1種の元素を含有する化合物と、水または水分とが必要であり、これらの各成分で構成されていることにより、加温することなく常温下で硬化し被膜を形成する。
 なお、湿気硬化型シリコーン樹脂としては、後記する、分子末端がアルコキシシリル基で封鎖された比較的低分子のシリコーンレジンである、シリコーンアルコキシオリゴマーが好適に使用される。
 ここで、各成分の配合量としては、使用環境に応じた被膜物性が発現するものであれば特に限定されないが、樹脂成分が湿気硬化型シリコーン樹脂の場合は、作業性の点から湿気硬化型シリコーン樹脂が50~100重量部、カルシウム、マグネシウム、アルミニウムから選ばれる少なくとも1種の元素を含有する化合物が50~200重量部、水が200重量部以下であることが好ましい。
 また、樹脂成分がシリコーン樹脂の場合には、同じく作業性の点からシリコーン樹脂が50~100重量部、カルシウム、マグネシウム、アルミニウムから選ばれる少なくとも1種の元素を含有する化合物が1~100重量部、水が200重量部以下であることが好ましい。
 また、本発明のシリコーンレジン組成物には、必要に応じて適宜、ケイ砂、磁器粉、ガラス粉、シラスバルーンなどの無機質系バルーンなどを使用してもよい。
 次に、本発明のシリコーンレジン組成物を構成する各成分について説明する。
(カルシウム、マグネシウム、アルミニウムから選ばれる少なくとも1種の元素を含有する化合物)
 本発明に用いられるカルシウム、マグネシウム、アルミニウムから選ばれる少なくとも1種の元素を含有する化合物は単体の化合物でもよいし、後記する鉄鋼スラグやアルミナセメントまたはその混合物の中に存在しているカルシウムアルミネート類等のように、他の化合物との複合物の状態となっているものでもよい。
 そして、これらの化合物は、化合物自体あるいは、化合物から水に溶出した微量の金属イオンが触媒となり、シリコーンレジンを硬化させ、被膜を形成させる。
 本発明に用いられるカルシウム、マグネシウム、アルミニウムから選ばれる少なくとも1種の元素を含有する化合物の配合比率は、作業性の点から、樹脂成分が湿気硬化型シリコーン樹脂の場合には湿気硬化型シリコーン樹脂50~100重量部に対して50~200重量部配合されていることが好ましく、樹脂成分がシリコーン樹脂の場合にはシリコーン樹脂50~100重量部に対して1~100重量部配合されていることが好ましい。
 配合量が上記範囲より少ない場合には硬化に長時間を要し、上記範囲を超える場合には逆に硬化が速くなりすぎるため、それぞれ作業性の問題が生じる恐れがあるからである。
 また、本発明に用いられるカルシウム、マグネシウム、アルミニウムから選ばれる少なくとも1種の元素を含有する化合物は、被覆する対象材料がコンクリートなどに代表されるような酸性物質に弱い材料である場合には、水に金属イオンが溶出した際の水のpHが9~13を示すものであることが好ましく、さらにはpHが10.5~11.5を示すものであることが好ましい。pHが9より小さい場合には硬化に長時間を要し、13を超える場合には逆に硬化が速くなりすぎるため、それぞれ作業性の点において問題が生じる恐れがあるからである。
 なお、上記のカルシウム、マグネシウム、アルミニウムから選ばれる少なくとも1種の元素を含有する化合物に炭酸カルシウムなどの単体の化合物を使用した場合には、樹脂成分に対する配合量がわずかとなることから、硬化触媒としての該化合物が組成物中に局在して分布することになり、まれに硬化にムラが発生し、良好な被膜を得ることが困難になる場合がある。
 従って、組成物中へ均一に分散させて硬化を緩やかにし、良好な被膜を得やすくするためには、上記のカルシウム、マグネシウム、アルミニウムから選ばれる少なくとも1種の元素を含有する化合物としては、後記する鉄鋼スラグやアルミナセメントまたはその混合物などに含まれているカルシウムアルミネート類等のように、他の化合物との複合物の状態となっているものを用いることが好ましい。
(鉄鋼スラグまたはアルミナセメントまたはその混合物)
 本発明に用いられる鉄鋼スラグとは、金属の精錬時に副産物として回収されるものであり、高炉スラグと製鋼スラグに分類されるものである。なお、高炉スラグはさらに徐冷スラグと水砕スラグに分類される。
 鉄鋼スラグの組成としては、酸化カルシウムと二酸化ケイ素を主成分とし、その他の成分として酸化アルミニウム、酸化マグネシウム、鉄、マンガン、硫黄などが単体あるいはカルシウムアルミネート類などのように他の化合物との複合物の状態となって含まれているものである。
 ここで、鉄鋼スラグを使用する場合には、作業性の点から高炉スラグを用いることが好ましい。製鋼スラグについては、使用するグレードによってシリコーンレジン組成物の硬化が速くなりすぎて、作業性の点から使用しづらい場合があるからである。
 本発明に用いられるアルミナセメントとは、ボーキサイトと石灰石から製造されるセメントであり、アルミン酸石灰を主成分とするものである。
 なお、本発明に用いられる鉄鋼スラグとアルミナセメントについては、上記のカルシウム、マグネシウム、アルミニウムから選ばれる少なくとも1種の元素を含有する化合物が含有されているものであれば、両者が混合されたものであってもよい。
 さらに、本発明に用いられる鉄鋼スラグやアルミナセメントは、カルシウム、マグネシウム、アルミニウムから選ばれる少なくとも1種の元素を含有する化合物を有するものであれば、物性は特に限定されないが、作業性、可使時間の点からブレーン比表面積が3000~10000cm/gの範囲のものであることが好ましい。
 ブレーン比表面積が3000cm/gより小さい場合には作業性の悪化の問題が生じ、10000cm/gを超える場合には作業性の悪化、可使時間の短縮の問題が生じる恐れがあるからである。
(水)
 本発明のシリコーンレジン組成物における水の配合量については、特に限定されず、カルシウム、マグネシウム、アルミニウムから選ばれる少なくとも1種の元素を含有する化合物の溶解性や作業性などの点から適宜決定することができる。
 なお、樹脂成分に湿気硬化型シリコーン樹脂を用いる場合には、空気中の水分が硬化に寄与することから、原料としての水を特段、配合しないこともできる。
(湿気硬化型シリコーン樹脂)
 本発明に用いられる湿気硬化型シリコーン樹脂としては、シリコーンアルコキシオリゴマーが好適に使用され、より具体的には下記一般式(1)
 R Si(OR4-a   (1)
(式中、Rは同一又は異種の炭素数1~10の非置換又は置換の一価炭化水素基、Rは炭素数1~3のアルキル基、炭素数2もしくは3のアシル基、又は炭素数3~5のアルコキシアルキル基を表し、aは0、1、2のいずれかの数である。)で表されるシラン化合物の部分(共)加水分解縮合物の1種又は2種以上の混合物からなるシリコーンアルコキシオリゴマーが湿気硬化型シリコーン樹脂として好適に使用される。
 上記一般式(1)中のRは、同一又は異種の炭素数1~10の非置換又は置換の一価炭化水素基であり、具体的には、メチル基、エチル基、プロピル基、ブチル基、ヘキシル基、オクチル基、デシル基等のアルキル基、シクロヘキシル基等のシクロアルキル基、ビニル基、アリル基等のアルケニル基、フェニル基、トリル基等のアリール基、又はこれらの基の水素原子の一部又は全部をハロゲン原子で置換したクロロメチル基、クロロプロピル基、トリフルオロプロピル基等、シアノ基で置換したシアノエチル基等、エポキシ基で置換したグリシドキシプロピル基、エポキシシクロヘキシルエチル基等、(メタ)アクリル基で置換したメタクリロキシプロピル基、アクリロキシプロピル基等、アミノ基で置換したアミノプロピル基、アミノエチルアミノプロピル基等、メルカプト基で置換したメルカプトプロピル基等が例示される。
 上記一般式(1)中のRは、前記と同様に炭素数1~3のアルキル基、炭素数2もしくは3のアシル基、又は炭素数3~5のアルコキシアルキル基である。
 なお、シリコーンレジン組成物として使用した際の硬化性や被膜特性、組成物の保存安定性、汎用性、コスト面の観点から、上記一般式(1)におけるRはメチル基、エチル基、プロピル基、ビニル基、フェニル基であることが好ましく、更にはメチル基、フェニル基であることが好ましい。またRについても同様の観点から、メチル基、エチル基から選択されるアルキル基であることが好ましい。
 また、上記一般式(1)中のaは0、1、2のいずれかの数であるが、シリコーンレジン組成物の硬化性、硬化被膜の表面硬度、耐クラック性、基材との密着性といった観点からは、湿気硬化型シリコーン樹脂中で、a=1のシラン化合物の部分(共)加水分解縮合物の占める割合が30モル%以上であることが好ましく、更には40~100モル%であることがより好ましい。
 また、a=0のシラン化合物の部分(共)加水分解縮合物の占める割合は、湿気硬化型シリコーン樹脂中0~40モル%であることが好ましく、a=2のシラン化合物の部分(共)加水分解縮合物の占める割合は、湿気硬化型シリコーン樹脂中0~60モル%であることが好ましい。
 ここで、湿気硬化型シリコーン樹脂の原料であるシラン化合物として、a=1のシラン化合物に加えて、a=0のシラン化合物を配合すると、硬化被膜の表面硬度をより高くすることができるが、配合量が多すぎるとクラックが発生するおそれがある。また、a=2のシラン化合物を併用すると、硬化被膜に強靱性と可撓性が与えられるが、配合量が多すぎると十分な架橋密度が得られないために、表面硬度や硬化性が低下するおそれがある。
 なお、本発明に用いられる湿気硬化型シリコーン樹脂の原料となるシラン化合物のより具体的な例としては、テトラメトキシシラン、テトラエトキシシラン、テトライソプロポキシシラン、メチルトリメトキシシラン、メチルトリエトキシシラン、メチルトリイソプロポキシシラン、メチルトリアセトキシシラン、メチルトリス(メトキシエトキシ)シラン、メチルトリス(メトキシプロポキシ)シラン、エチルトリメトキシシラン、エチルトリエトキシシラン、エチルトリイソプロポキシシラン、プロピルトリメトキシシラン、プロピルトリエトキシシラン、プロピルトリイソプロポキシシラン、ブチルトリメトキシシラン、ブチルトリエトキシシラン、ヘキシルトリメトキシシラン、ヘキシルトリエトキシシラン、オクチルトリメトキシシラン、オクチルトリエトキシシラン、デシルトリメトキシシラン、デシルトリエトキシシラン、シクロヘキシルトリメトキシシラン、シクロヘキシルトリエトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリイソプロポキシシラン、ビニルトリアセトキシシラン、ビニルトリス(メトキシエトキシ)シラン、ビニルトリス(メトキシプロポキシ)シラン、アリルトリメトキシシラン、アリルトリエトキシシラン、フェニルトリメトキシシラン、フェニルトリエトキシシラン、フェニルトリイソプロポキシシラン、フェニルトリアセトキシシラン、トリルトリメトキシシラン、トリルトリエトキシシラン、クロロメチルトリメトキシシラン、クロロメチルトリエトキシシラン、γ-クロロプロピルトリメトキシシラン、γ-クロロプロピルトリエトキシシラン、3,3,3-トリフルオロプロピルトリメトキシシラン、3,3,3-トリフルオロプロピルトリエトキシシラン、シアノエチルトリエトキシシラン、γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルトリエトキシシラン、β-(3,4エポキシシクロヘキシル)エチルトリメトキシシラン、β-(3,4エポキシシクロヘキシル)エチルトリエトキシシラン、γ-メタクリロキシプロピルトリメトキシシラン、γ-メタクリロキシプロピルトリエトキシシラン、γ-アクリロキシプロピルトリメトキシシラン、γ-アクリロキシプロピルトリエトキシシラン、γ-アミノプロピルトリメトキシシラン、γ-アミノプロピルトリエトキシシラン、N-β(アミノエチル)γ-アミノプロピルトリメトキシシラン、N-β(アミノエチル)γ-アミノプロピルトリエトキシシラン、N-フェニル-γ-アミノプロピルトリメトキシシラン、γ-メルカプトプロピルトリメトキシシラン、γ-メルカプトプロピルトリエトキシシラン、ジメチルジメトキシシラン、ジメチルジエトキシシラン、ジメチルジイソプロポキシシラン、ジメチルジアセトキシシラン、ジメチルビス(メトキシエトキシ)シラン、ジメチルビス(メトキシプロポキシ)シラン、ジエチルジメトキシシラン、ジエチルジエトキシシラン、ジエチルジイソプロポキシシラン、ジエチルジアセトキシシラン、メチルエチルジメトキシシラン、メチルエチルジエトキシシラン、メチルエチルジイソプロポキシシラン、メチルエチルジアセトキシシラン、メチルプロピルジメトキシシラン、メチルプロピルジエトキシシラン、メチルプロピルジイソプロポキシシラン、メチルプロピルジアセトキシシラン、ジビニルジメトキシシラン、ジビニルジエトキシシラン、ジビニルジイソプロポキシシラン、ジビニルジアセトキシシラン、メチルビニルジメトキシシラン、メチルビニルジエトキシシラン、メチルビニルジイソプロポキシシラン、メチルビニルジアセトキシシラン、ジアリルジメトキシシラン、ジアリルジエトキシシラン、ジアリルジイソプロポキシシラン、メチルアリルジメトキシシラン、メチルアリルジエトキシシラン、メチルアリルジイソプロポキシシラン、メチルアリルジアセトキシシラン、ジフェニルジメトキシシラン、ジフェニルジエトキシシラン、ジフェニルジイソプロポキシシラン、ジフェニルジアセトキシシラン、メチルフェニルジメトキシシラン、メチルフェニルジエトキシシラン、メチルフェニルジイソプロポキシシラン、メチルフェニルジアセトキシシラン、γ-クロロプロピルメチルジメトキシシラン、γ-クロロプロピルメチルジエトキシシラン、3,3,3-トリフルオロプロピルメチルジメトキシシラン、ノナフルオロヘキシルメチルジメトキシシラン、シアノエチルメチルジエトキシシラン、γ-グリシドキシプロピルメチルジエトキシシラン、β-(3,4エポキシシクロヘキシル)エチルメチルジエトキシシラン、γ-メタクリロキシプロピルメチルジメトキシシラン、γ-メタクリロキシプロピルメチルジエトキシシラン、γ-アクリロキシプロピルメチルジメトキシシラン、γ-アミノプロピルメチルジエトキシシラン、N-β(アミノエチル)γ-アミノプロピルメチルジメトキシシラン、γ-メルカプトプロピルメチルジエトキシシラン等のアルコキシシラン又はアシロキシシランを挙げることができる。
 そして、本発明に用いられる湿気硬化型シリコーン樹脂となるシリコーンアルコキシオリゴマーは、上記したようなシラン化合物の部分(共)加水分解縮合物であり、特に、上記したようなシラン化合物の2量体(シラン化合物2モルに水1モルを作用させてアルコール2モルを脱離させ、ジシロキサン単位としたもの)~100量体としたものが好ましく、より好ましくは2~50量体としたものであり、更に好ましくは2~30量体としたものである。また、2種以上のシラン化合物を原料とする部分共加水分解縮合物を使用することも可能である。
 また、本発明の湿気硬化型シリコーン樹脂は、上記した部分(共)加水分解縮合物を単独で使用してもよいし、構造の異なる2種類以上の部分(共)加水分解縮合物を使用することも可能である。さらに、あるいは原料シラン化合物を一部併用したり、チタン酸エステル類や有機アルミニウム化合物等の有機金属化合物に代表される硬化触媒を併用することも可能である。
 本発明に用いられる湿気硬化型シリコーン樹脂の粘度は、25℃において1~5,000mm2/sであることが好ましく、さらに3~1,000mm2/sであることが好ましい。
(シリコーン樹脂)
 本発明に用いられるシリコーン樹脂は、シロキサン結合を有するものであって、上記したカルシウム、マグネシウム、アルミニウムから選ばれる少なくとも1種の元素を含有する化合物またはこれら化合物から溶出した金属イオンによって硬化するものであれば特に限定されない。また、本発明に用いられるシリコーン樹脂は、水溶性タイプのものを使用することもできるが、シリコーンレジン組成物の撥水性能の面から、オルガノシリコーン化合物を乳化剤、水、水混和性有機溶剤などによって乳化、分散させたエマルジョンタイプまたはディスパージョンタイプのものを用いることが好ましい。
 本発明に用いられるシリコーン樹脂にエマルジョンタイプまたはディスパージョンタイプのものを使用する場合には、これらの平均粒径は、保存安定性の点から1,000nm以下、特に800nm以下であることが好ましい。1,000nmを超える場合には経時分離の問題が生じる恐れがあるからである。
 また、本発明に用いられるシリコーン樹脂にエマルジョンタイプまたはディスパージョンタイプのものを使用する場合には、取り扱い性の点からシリコーン樹脂の不揮発分(固形分)が5~80質量%であることが好ましく、さらには10~70質量%であることが好ましい。不揮発分が5質量%より小さい場合にはシリコーンレジン組成物の粘度が低くなりすぎ成形性低下の問題が生じ、80質量%を超える場合にはシリコーン樹脂の粘度が高くなりすぎ作業性低下の問題が生じる恐れがあるからである。
 次に、シリコーン樹脂にエマルジョンタイプまたはディスパージョンタイプのものを使用する場合の各構成成分について説明する。
(オルガノシリコーン化合物)
 ここで、エマルジョンタイプまたはディスパージョンタイプのシリコーン樹脂を使用する場合には、被膜特性の点から、平均組成式が[RSiO3/2m[R2SiO]n(Rは同一又は異種の炭素数1~20の1価有機基であり、m+nが1.0である。)で示されるオルガノシリコーン化合物を用いたものを使用することが好ましい。
 ここで、Rは同一又は異種の炭素数1~20の1価有機基であり、具体的には、メチル、エチル、プロピル、ブチル、ペンチル、ヘキシル、ヘプチル、オクチル、ノニル、デシル、ドデシル、テトラデシル、ヘキサデシル、オクタデシル、シクロペンチル、シクロヘキシル、シクロヘプチルなどのアルキル基、フェニル、トリル、ナフチルなどのアリール基、ビニル、アリルなどのアルケニル基などが挙げられる。
 また、水素原子の一部(1個又はそれ以上)がエポキシ基、メルカプト基、メタクリル基、アクリル基、カルボキシル基、アミノ基、ケト基などの反応性基で置換されたものも含まれる。反応性基で置換された有機基としては、3-グリシドキシプロピル、2-(3,4-エポキシシクロヘキシル)エチル、3-メルカプトプロピル、3-メタクリロキシプロピル、3-アクリロキシプロピル、3-アミノプロピル、N-(2-アミノエチル)-3-アミノプロピル、N-フェニル-3-アミノプロピル、3-ウレイドプロピル、3-クロロプロピル、10-カルボキシデシル、2-カルボキシエチル、3-(2-ヒドロキシエトキシ)プロピル、-C24-CHO、-C36-S-C24-CONH-C(CH32-CH2COCH3などが挙げられる。なお、本発明においては、耐候性の点からRの30モル%以上がメチル基であることが望ましい。
 オルガノシリコーン化合物中の[RSiO3/2]単位のモル比率(m)は、被膜の硬度と耐久性の点から0.2~1.0の範囲が好ましく、より好ましくは0.3~1.0の範囲であり、さらに好ましくは0.4~1.0の範囲である。0.2より小さい場合には被膜硬度が軟らかくなり、耐久性が低下してしまう恐れがあるからである。 
 また、オルガノシリコーン化合物中の[R2SiO]単位のモル比率(n)も同様に、被膜の硬度と耐久性の点から0~0.8の範囲が好ましく、より好ましくは0~0.7の範囲であり、さらに好ましくは0~0.6の範囲である。0.8より大きい場合には被膜硬度が軟らかくなり、耐久性が低下してしまう恐れがあるからである。
 さらに、オルガノシリコーン化合物については、成分中に硬化性や被膜特性を損なわない範囲で[R3SiO1/2]単位(Rは上記の通り)および/または[SiO2]単位を微量含んでも構わない。但しこの場合には、m+nは0.8~1.0であることが好ましく、さらには0.9~1.0であることが好ましい。ここでm+n=1.0でない場合には、残りの単位は[R3SiO1/2]単位、[SiO2]単位であり、これらとの総計が1.0となる。
 オルガノシリコーン化合物は、該当する単位のクロロシランやアルコキシシランを加水分解、縮合反応する方法など、公知の方法で製造することができる。これら公知の方法で製造されたオルガノシリコーン化合物は、末端基として少量の水酸基や、場合によりさらにアルコキシ基を含有する。そして、この水酸基やアルコキシ基が、上記したカルシウム、マグネシウム、アルミニウムから選ばれる少なくとも1種の元素を含有する化合物またはこれら化合物から溶出した金属イオンを触媒として脱水縮合、脱アルコール縮合することによって加温することなく常温下で硬化し被膜となるのである。
 ここで硬化性の点から、水酸基の量は0.1~10質量%、アルコキシ基量は0.1~10質量%であり、水酸基とアルコキシ基の合計量は0.1~15質量%であることが好ましい。水酸基とアルコキシ基の合計量が0.1質量%より小さい場合には硬化不良の問題が生じ、15質量%を超える場合には収縮の問題が生じる恐れがあるからである。さらに、アルコキシ基については反応性の点から炭素数が1~6であることが好ましい。
 また、オルガノシリコーン化合物については、必要に応じて、乳化剤、水、水混和性有機溶剤を用いることができる。
 ここで、オルガノシリコーン化合物に乳化剤、水、水混和性有機溶剤を用いる場合には、エマルジョンまたはディスパージョンになった際の安定性の点から、予めオルガノシリコーン化合物の水混和性有機溶剤溶液を作製しておき、次に乳化剤と水とを混合して、撹拌することで乳化分散をさせる方法によって製造することが好ましい。
(乳化剤)
 乳化剤としては、オルガノシリコーン化合物を水中へ乳化分散させることができるものであれば特に制限はない。そしてこれらの乳化剤としては、例えば、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンプロピレンアルキルエーテル、ポリオキシエチレンアルキルフェニルエーテル、ポリオキシエチレン脂肪酸エステル等のノニオン系界面活性剤、アルキル硫酸塩、アルキルベンゼンスルホン酸塩、アルキルスルホコハク酸塩、アルキル燐酸塩、ポリオキシエチレンアルキルエーテル硫酸塩、ポリオキシエチレンアルキルフェニルエーテル硫酸塩等のアニオン系界面活性剤、第4級アンモニウム塩、アルキルアミン酢酸塩等のカチオン系界面活性剤、アルキルベタイン、アルキルイミダゾリン等の両性界面活性剤等を挙げることができる。また、これらの乳化剤は、単独あるいは2種以上を併用して使用することができる。
 そしてこれらの乳化剤としては、上記の中でも安定性の面から、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンプロピレンアルキルエーテル、ポリオキシエチレンアルキルフェニルエーテルのようなノニオン系界面活性剤が好ましい。
 さらに、これらノニオン系界面活性剤の具体例としては、ポリオキシエチレンオクチルエーテル、ポリオキシエチレンノニルエーテル、ポリオキシエチレンデシルエーテル、ポリオキシエチレンプロピレンデシルエーテル、ポリオキシエチレンラウリルエーテル、ポリオキシエチレンプロピレンラウリルエーテル、ポリオキシエチレントリデシルエーテル、ポリオキシエチレンプロピレントリデシルエーテル、ポリオキシエチレンミリスチルエーテル、ポリオキシエチレンセチルエーテル、ポリオキシエチレンステアリルエーテル、ポリオキシエチレンオクチルフェニルエーテル、ポリオキシエチレンノニルフェニルエーテル、ポリオキシエチレンスチレン化フェニルエーテルなどが挙げられる。
 また、乳化剤の添加量としては、エマルジョン化、被膜硬度、密着性の点からオルガノシリコーン化合物100質量部に対して1~50質量部であることが好ましく、より好ましくは2~30質量部であり、さらに好ましくは3~20質量部である。乳化剤の添加量が1質量部より少ないとエマルジョン化が困難であり、50質量部より多いと被膜の硬度や強度、基材との密着性が低下してしまう恐れがあるからである。
(水混和性有機溶剤)
 水混和性有機溶剤としては、オルガノシリコーン化合物を乳化する際に流動性を付与したり、オルガノシリコーン化合物の粘度を調整したりするために使用されるものであり、SP値(溶解パラメーター)が8.0~11.0で、水混和性のものであることが好ましい。
 ここで、SP値とは溶解パラメーターのことであり、溶解度係数ともいう、Hildebrandにより提唱された液体間の混合性の尺度となる特性値である。
 なお、SP値はオルガノシリコーン化合物の溶解性と乳化した際のエマルジョンの安定性の点から8.0~11.0が好ましく、より好ましくは8.5~10.5である。SP値が8.0より小さい場合にはオルガノシリコーン化合物を均一溶解することができず、11.0より大きい場合には乳化した際のエマルジョンの安定性が低下してしまう恐れがあるからである。
 また、該有機溶剤は水混和性が必要であり、水混和性がない場合には乳化した際のエマルジョンの安定性が低下してしまう。ここで、水混和性としては20℃における水100gへの溶解度が1g以上のものである必要があり、2g以上のものであることが好ましい。
 このような水混和性有機溶剤としては、アルコール系化合物、ケトン系化合物、エステル系化合物、エーテル系化合物などがある。具体的には、セロソルブ、プロピルセロソルブ、ブチルセロソルブ、プロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノブチルエーテル、ジプロピレングリコールモノメチルエーテル、メチルカルビトール、カルビトール、プロピルカルビトール、ブチルカルビトール、セロソルブアセテート、ブチルセロソルブアセテート、プロピレングリコールモノメチルエーテルアセテート、酢酸カルビトール、酢酸ブチルカルビトール、2,2,4-トリメチル-1,3-ペンタジオールモノイソブチレートなどが挙げられる。 
 そしてこの中でも水への溶解度の点から、ブチルセロソルブアセテート、プロピレングリコールモノメチルエーテルアセテート、ジプロピレングリコールモノメチルエーテル、2,2,4-トリメチル-1,3-ペンタジオールモノイソブチレートを用いるのが好ましい。
 水混和性有機溶剤を配合する場合の添加量としては、オルガノシリコーン化合物100質量部に対して1~50質量部であることが好ましく、より好ましくは3~40質量部であり、さらに好ましくは5~30質量部である。添加量が1質量部より少ないとオルガノシリコーン化合物溶液の粘度が高く、エマルジョン化が困難であり、乳化安定性も劣る恐れがあるからである。一方、添加量が50質量部より多いとエマルジョンの乾燥に長時間要してしまう恐れがあるからである。
 また、オルガノシリコーン化合物は、[RSiO3/2]単位の含有率が高い場合には固体状であること、あるいは縮合反応性が高い場合にはゲル化しやすいことから、通常はトルエンやキシレンといった有機溶剤に希釈された状態で取り扱われる。本発明においては、水混和性有機溶剤溶液をこのような希釈剤として使用することもでき、さらには水混和性有機溶剤溶液をオルガノシリコーン化合物製造時の溶剤として使用することも可能である。
 ここで、水混和性有機溶剤溶液をオルガノシリコーン化合物の希釈剤として用いる際には、乳化性の点から、水混和性有機溶剤により希釈されたオルガノシリコーン化合物溶液の粘度がB型回転粘度計を用いて測定した場合に、25℃において500~500,000mPa・sであることが好ましく、さらには1,000~200,000mPa・sとなるようにすることが好ましい。
 なお、オルガノシリコーン化合物の希釈剤としては水を用いることもでき、この場合の水の配合量は、オルガノシリコーン化合物100質量部に対して25~2,000質量部であることが好ましく、さらには50~1,000質量部であることが好ましい。
 次に、本発明のシリコーンレジン組成物を用いた保護被覆工法について説明する。
(シリコーンレジン組成物を用いた防食方法)
 本発明のシリコーンレジン組成物を用いた保護被覆工法としては、従来のコンクリートの保護だけでなく、例えば、工場の煙突の内面(煙道)に代表されるような耐熱、屋外で使用される場合の耐候性、オゾン及び塩素などの過酷な環境にさらされる材料の保護被覆に対しても使用することができる。
 保護被膜の形成方法としては、本発明のシリコーンレジン組成物を対象材料にスプレー、刷毛、コテなどで塗装する方法などがあげられる。ここで、被膜の厚さについては、保護被覆性の点から0.5~5mmであることが好ましい。膜厚が0.5mmより薄い場合には遮断性の問題が生じ、5mmより厚い場合には硬化収縮の問題が生じる恐れがあるからであるからである。
 なお、本発明のシリコーンレジン組成物を用いた保護被覆工法としては、必要に応じて、本発明のシリコーンレジン組成物と対象材料との間にプライマー層を設けても構わないし、本発明のシリコーンレジン組成物による被膜の表面にさらに仕上げ用のトップコート層を設けても構わない。
 本発明のシリコーンレジン組成物によれば、シリコーン樹脂または湿気硬化型シリコーン樹脂と、これらの樹脂の硬化触媒となるカルシウム、マグネシウム、アルミニウムから選ばれる少なくとも1種の元素を含有する化合物と、水または水分とが含有されているので、これら化合物自体あるいは、化合物から水に溶出した金属イオンが触媒となり、シリコーンレジンを加温することなく硬化させ、被膜を形成させることができる。
 本発明のシリコーンレジン組成物によれば、カルシウム、マグネシウム、アルミニウムのうちいずれか1つの元素を含有する化合物が、鉄鋼スラグまたはアルミナセメントまたはその混合物に由来のものであるので、鉄鋼製造工程の副産物である鉄鋼スラグやアルミナセメントなどを有効利用することができる。
 本発明のシリコーンレジン組成物によれば、シリコーン樹脂が、水性エマルジョンまたは水性ディスパージョンであるので、溶媒に水を用いたシリコーン樹脂を使用することができ、大気環境を汚染するという問題を防止することができる。
 本発明のシリコーンレジン組成物によれば、シリコーン樹脂に特定の構造のものを用いているので、使用環境、使用用途に応じたシリコーンレジン組成物を提供することができる。
 本発明のシリコーンレジン組成物を用いた保護被覆工法によれば、加温することなく常温下で被膜を形成するシリコーンレジン組成物を使用しているので、作業性に優れた保護被覆を行うことができる。
 以下に、本発明の具体的な実施例をその比較例と対比させて詳しく説明する。
 なお、本発明は以下の実施例に限定されるものではない。
(シリコーン樹脂の作製)
 まず、以下に示す方法にてシリコーンレジン組成物に使用するシリコーン樹脂を3種類作製した。また、比較例としてアクリル樹脂系エマルジョン(BAFSジャパン社製、品番:YJ-2720D)を使用した。
(製造例1)
 平均組成式:[(CH3)SiO3/20.67[(C65)SiO3/20.33で示されるオルガノシリコーン化合物のエチレングリコールモノブチルエーテルアセテート(SP値8.9)溶液(シリコーンレジン/エチレングリコールモノブチルエーテルアセテート=83/17質量比)530部、乳化剤として「ノイゲンXL40」(商品名、第一工業製薬社製、ポリオキシアルキレンデシルエーテル、HLB10.5)25部、「ノイゲンXL400D」(商品名、第一工業製薬社製、ポリオキシアルキレンデシルエーテル、HLB18.4の65%水溶液)38.5部、「ニューコール291M」(商品名、日本乳化剤社製、アルキルスルホコハク酸ソーダ75%液)5部及び脱イオン水401.5部を、ホモディスパーを用いて乳化分散し、150℃/3時間での不揮発分が47質量%、平均粒径(コールター社製粒度分布測定装置N4Plusで測定)が200nmの青白色なオルガノシリコーン化合物エマルジョン(A-1)を得た。
(製造例2)
 平均組成式:[(CH3)SiO3/20.67[(CH32SiO2/20.33で示されるオルガノシリコーン化合物のエチレングリコールモノブチルエーテルアセテート(SP値8.9)溶液(シリコーンレジン/エチレングリコールモノブチルエーテルアセテート=93/7質量比)530部、乳化剤として「ノイゲンXL40」(商品名、第一工業製薬社製、ポリオキシアルキレンデシルエーテル、HLB10.5)25部、「ノイゲンXL400D」(商品名、第一工業製薬社製、ポリオキシアルキレンデシルエーテル、HLB18.4の65%水溶液)38.5部、「ニューコール291M」(商品名、日本乳化剤社製、アルキルスルホコハク酸ソーダ75%液)5部及び脱イオン水401.5部を、ホモディスパーを用いて乳化分散し、150℃/3時間での不揮発分が47質量%、平均粒径(コールター社製粒度分布測定装置N4Plusで測定)が190nmの青白色なオルガノシリコーン化合物エマルジョン(A-2)を得た。
(製造例3)
 メチルトリメトキシシランの部分加水分解縮合物(平均重合度15、粘度40mm2/s)33重量%、ジメチルジメトキシシラン25モル%とフェニルトリメトキシシラン75モル%との部分共加水分解縮合物(平均重合度12、粘度140mm2/s)33重量%、ジメチルジメトキシシラン30モル%とフェニルトリメトキシシラン50モル%とジフェニルジメトキシシラン20モル%との部分共加水分解縮合物(平均重合度4、粘度20mm2/s)33重量%、有機金属系硬化触媒としてテトラ-n-ブチルチタネート重合体1重量%を、ホモディスパーを用いて混合し、湿気硬化型シリコーン樹脂(A-3)を得た。
(カルシウム、マグネシウム、アルミニウムから選ばれる少なくとも1種の元素を含有する化合物)
 カルシウム、マグネシウム、アルミニウムから選ばれる少なくとも1種の元素を含有する化合物については、酸化カルシウム(特級試薬)および後記する鉄鋼スラグ、アルミナセメントを使用した。また、比較例として普通ポルトアンドセメントを使用した。
(鉄鋼スラグ、アルミナセメントの作製)
 次に、鉄鋼スラグとしては高炉スラグを用い、その中でもブレーン比表面積が4000cm/gのもの(鉄鋼スラグ-1)とブレーン比表面積が10000cm/gのもの(鉄鋼スラグ-2)を使用し、アルミナセメントとしてはブレーン比表面積が4600cm/gのものを使用した。
 なお、作製した鉄鋼スラグまたはアルミナセメント5gと水100gを混合した際の水のpHについては23℃において10.8であった。
(実施例1~10、比較例1~4)
 次に、表1に示す配合にて、実施例1~10と、比較例1~4のシリコーンレジン組成物を作製した。なお、作製方法については、表1の原料を容量1Lの容器に入れた後、混錬することによって作製した。
Figure JPOXMLDOC01-appb-T000001
 そして、以上の実施例1~10および比較例1~4のシリコーンレジン組成物について、作業性試験、耐薬品性試験(耐塩素性試験、耐オゾン性試験)、耐候性試験、耐熱性試験、防汚染性試験、コンクリート付着性試験、鋼板付着性試験をそれぞれ以下の方法で実施した。但し、作業性試験およびコンクリート付着性試験、鋼板付着性試験にて×の評価であったものについては、その他の試験は行わなかった。
(作業性試験)
 作業性試験については、コテ塗り時の作業性を評価することにより行った。具体的には調合・攪拌直後及び30分間放置後のシリコーンレジン組成物をコテ塗り作業した際、作業性が良好な場合は◎、作業性が若干低下した場合は○、作業性が低下した場合は△、作業ができない場合は×と評価することにより行った。
(耐塩素性試験)
 耐塩素性試験については、試験片を次亜塩素ナトリウム5%水溶液に浸漬することにより行った。具体的には、縦70mm×横70mm×厚さ20mmのモルタル板にシリコーンレジン組成物を塗布量が1.0kg/mになるように金ゴテによるコテ塗りで塗装し、温度20±2℃、湿度65±10%の条件下で7日硬化させることによって試験片を作製した。
 そして、上記の水溶液に試験片を30日間浸漬した後目視観察を行い、外観に変化無い場合は◎、若干の色調変化が生じた場合○、若干の劣化が生じた場合は△、劣化現象が生じた場合は×と評価することにより行った。
(耐オゾン性試験)
 耐オゾン性試験については、試験片を下水処理施設のオゾン処理槽に浸漬することにより行った。具体的には、縦80mm×横120mm×厚さ10mmのモルタル板にシリコーンレジン組成物を塗布量が1.0kg/mになるように金ゴテによるコテ塗りで塗装し、温度20±2℃、湿度65±10%の条件下で7日硬化させることによって試験片を作製した。
 そして、上記の処理槽に試験片を1年間浸漬した後目視観察を行い、外観に変化が無い場合を◎、若干の色調変化が生じた場合を○、若干の劣化現象が生じた場合を△、劣化現象が生じた場合を×と評価することにより行った。
(耐候性試験)
 耐候性試験については、スーパーUVテスター試験機(岩崎電気社製)を用いて行った。具体的には、縦70mm×横150mm×厚さ3mmのモルタル板にシリコーンレジン組成物を塗布量が1.0kg/mになるように金ゴテによるコテ塗りで塗装し、温度20±2℃、湿度65±10%の条件下で7日硬化させることによって試験片を作製した。
 そして、1000時間経過後目視観察を行い、外観に変化が無い場合を◎、若干の色調変化が生じた場合を○、若干の劣化現象が生じた場合を△、劣化現象が生じた場合を×と評価することにより行った。
(耐熱性試験)
 耐熱性試験については、試験片を煮沸水に浸漬することにより行った。具体的には、縦70mm×横70mm×厚さ20mmのモルタル板にシリコーンレジン組成物を塗布量が1.0kg/mになるように金ゴテによるコテ塗りで塗装し、温度20±2℃、湿度65±10%の条件下で7日硬化させることによって試験片を作製した。
 そして、上記の煮沸水に試験片を7日間浸漬した後目視観察を行い、外観に変化が無い場合を◎、若干の色調変化が生じた場合を○、若干の劣化現象が生じた場合を△、劣化現象が生じた場合を×と評価することにより行った。
(防汚染性試験)
 防汚染性試験については、屋外暴露試験により行った。具体的には、縦70mm×横70mm×厚さ20mmのモルタル板にシリコーンレジン組成物を塗布量が1.0kg/mになるように金ゴテによるコテ塗りで塗装し、温度20±2℃、湿度65±10%の条件下で7日硬化させることによって試験片を作製した。
 そして、兵庫県内において半年間屋外暴露した後目視観察を行い、外観に汚れが無い場合を◎、若干の汚れが生じた場合を○、汚れが生じた場合を△、汚れが多い場合を×と評価することにより行った。
(コンクリートへの付着性試験)
 コンクリートへの付着性試験については、コンクリート板への塗布後の引張強度測定により行った。具体的には、縦300mm×横300mm×厚さ60mmのモルタル板にシリコーンレジン組成物を塗布量が1.0kg/mになるようにコテ塗りで塗装し、温度20±2℃、湿度65±10%の条件下で7日硬化させることによって試験片を作製した。
 そして、所定のアタッチメントを接着剤にて被膜に接着した後、建研式接着力試験機にて引っ張り、破断強度が1.0N/mm以上の場合を◎、0.5以上~1.0N/mm未満の場合を○、0.5N/mm未満の場合を×と評価することにより行った。
(鋼板付着性試験)
 鋼板付着性試験については、鋼板への塗布後の引張強度測定により実施した。具体的には、縦300mm×横300mm×厚さ5mmの鋼板にシリコーンレジン組成物を塗布量が1.0kg/mになるように金ゴテによるコテ塗りで塗装し、温度20±2℃、湿度65±10%の条件下で7日硬化させることによって試験片を作製した。
 そして、所定のアタッチメントを接着剤にて被膜に接着した後、建研式接着力試験機にて引っ張り、破断強度が1.0N/mm以上の場合を◎、0.5以上~1.0N/mm未満の場合を○、0.5N/mm未満の場合を×と評価することにより行った。
 以上の試験結果から、本発明にかかるシリコーンレジン組成物は、加温することなく常温下で硬化し、優れた被膜物性を示すことがわかった。
 本発明のシリコーンレジン組成物およびシリコーンレジン組成物を用いた保護被覆工法は、溶媒に水を使用しつつ加温することなく常温下で被膜を形成することから作業性に優れ、かつ、形成された被膜が十分な被膜物性を有する。

Claims (9)

  1. カルシウム、マグネシウム、アルミニウムから選ばれる少なくとも1種の元素を含有する化合物と、
    湿気硬化型シリコーン樹脂とが含有されていることを特徴とするシリコーンレジン組成物。
  2. 前記カルシウム、マグネシウム、アルミニウムから選ばれる少なくとも1種の元素を含有する化合物が、
    鉄鋼スラグまたはアルミナセメントまたはその混合物に由来のものであることを特徴とする請求項1に記載のシリコーンレジン組成物。
  3. カルシウム、マグネシウム、アルミニウムから選ばれる少なくとも1種の元素を含有する化合物と、
    シリコーン樹脂と、
    水とが含有されていることを特徴とするシリコーンレジン組成物。
  4. 前記カルシウム、マグネシウム、アルミニウムから選ばれる少なくとも1種の元素を含有する化合物が、
    鉄鋼スラグまたはアルミナセメントまたはその混合物に由来のものであることを特徴とする請求項3に記載のシリコーンレジン組成物。
  5. 前記シリコーン樹脂が、
    水性エマルジョンまたは水性ディスパージョンであることを特徴とする請求項3または請求項4に記載のシリコーンレジン組成物。
  6. 前記シリコーン樹脂が、
    平均組成式:[RSiO3/2m[R2SiO]n(Rは同一又は異種の炭素数1~20の1価有機基であり、m+nが1.0である。)で示されるオルガノシリコーン化合物であることを特徴とする請求項3から請求項5のいずれか一項に記載のシリコーンレジン組成物。
  7. 前記シリコーン樹脂が、
    (A)平均組成式:[RSiO3/2m[R2SiO]n(Rは同一又は異種の炭素数1~20の1価有機基であり、m+nが1.0である。)で示されるオルガノシリコーン化合物と、
    (B)乳化剤と、
    (C)水、
    とを含有してなる水性エマルジョンまたは水性ディスパージョンであることを特徴とする請求項3から請求項5のいずれか一項に記載のシリコーンレジン組成物。
  8. 前記シリコーン樹脂が、
    (A)平均組成式:[RSiO3/2m[R2SiO]n(Rは同一又は異種の炭素数1~20の1価有機基であり、m+nが1.0である。)で示されるオルガノシリコーン化合物と、
    (B)乳化剤と、
    (C)水と、
    (D)SP値が8.0~11.0である水混和性有機溶剤、
    とを含有してなる水性エマルジョンまたは水性ディスパージョンであることを特徴とする請求項3から請求項5のいずれか一項に記載のシリコーンレジン組成物。
  9. 請求項1~8に記載のシリコーンレジン組成物を用いることを特徴とする保護被覆工法。
     
PCT/JP2011/050503 2010-01-18 2011-01-14 シリコーンレジン組成物およびシリコーンレジン組成物を用いた保護被覆工法 WO2011087073A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020127018823A KR101787129B1 (ko) 2010-01-18 2011-01-14 실리콘 레진 조성물 및 실리콘 레진 조성물을 이용한 보호 피복 공법
JP2011550010A JP5710503B2 (ja) 2010-01-18 2011-01-14 シリコーンレジン組成物およびシリコーンレジン組成物を用いた保護被覆工法
CN201180006437.0A CN102712811B (zh) 2010-01-18 2011-01-14 硅树脂组合物以及使用硅树脂组合物的保护覆盖方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010008124 2010-01-18
JP2010-008124 2010-01-18

Publications (1)

Publication Number Publication Date
WO2011087073A1 true WO2011087073A1 (ja) 2011-07-21

Family

ID=44304342

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/050503 WO2011087073A1 (ja) 2010-01-18 2011-01-14 シリコーンレジン組成物およびシリコーンレジン組成物を用いた保護被覆工法

Country Status (4)

Country Link
JP (2) JP5710503B2 (ja)
KR (1) KR101787129B1 (ja)
CN (1) CN102712811B (ja)
WO (1) WO2011087073A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015523312A (ja) * 2012-07-10 2015-08-13 シーカ・テクノロジー・アーゲー 二成分セメント組成物
JP2016117040A (ja) * 2014-12-22 2016-06-30 淑 百瀬 超微粉体含有物の固化材及び固化方法
JP2017155123A (ja) * 2016-03-01 2017-09-07 セイコーインスツル株式会社 コーティング剤、コーティング剤の製造方法及びコーティング膜の形成方法
JP2019099738A (ja) * 2017-12-06 2019-06-24 信越ポリマー株式会社 導電性高分子分散液及びその製造方法、並びに導電性フィルム及びその製造方法
JP2020007505A (ja) * 2018-07-12 2020-01-16 信越化学工業株式会社 加水分解性基含有シリコーン樹脂を含むコーティング組成物、コーティング被膜、および該被膜を有する物品
CN112521782A (zh) * 2021-01-06 2021-03-19 成都容浓伊涂料科技有限公司 一种高韧性水性耐磨陶瓷涂料的制备方法
JP7468399B2 (ja) 2020-03-17 2024-04-16 信越化学工業株式会社 シリコーンコーティング剤組成物及び物品

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103740106A (zh) * 2012-10-16 2014-04-23 瓦克化学(中国)有限公司 水性硅树脂乳液及其应用
CN105566864A (zh) * 2015-12-14 2016-05-11 广东弘擎电子材料科技有限公司 一种抗静电离型膜
CN106064916A (zh) * 2016-05-27 2016-11-02 百濑淑 超微粉体含有物的固化材料及固化方法
CN112409831A (zh) * 2020-10-14 2021-02-26 武汉轻工大学 一种复合型水泥基防水涂料及其制备方法

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB768099A (en) * 1954-07-06 1957-02-13 Hans Buettner Improvements in or relating to silicone resin mouldings
JPS5566968A (en) * 1978-11-13 1980-05-20 Matsushita Electric Ind Co Ltd Coating compound
JPH08311330A (ja) * 1995-05-17 1996-11-26 Sekisui Chem Co Ltd 室温硬化性組成物
JPH1180550A (ja) * 1997-09-09 1999-03-26 Shin Etsu Chem Co Ltd 室温硬化性オルガノポリシロキサン組成物
JPH11349912A (ja) * 1998-06-08 1999-12-21 Yokohama Rubber Co Ltd:The 一成分形弾性接着剤
JP2000143968A (ja) * 1998-11-10 2000-05-26 Sekisui Chem Co Ltd 室温硬化性組成物
JP2001011379A (ja) * 1999-07-01 2001-01-16 Jsr Corp 下塗り用コーティング組成物
JP2001152090A (ja) * 1999-11-29 2001-06-05 Jsr Corp 防汚性物品用コーティング組成物および防汚性物品
JP2001192640A (ja) * 2000-01-11 2001-07-17 Konishi Co Ltd 変成シリコーン樹脂を含む接着剤を用いた接着方法
JP2003327829A (ja) * 2002-05-09 2003-11-19 Shin Etsu Chem Co Ltd 室温硬化性オルガノポリシロキサン組成物
JP2006143970A (ja) * 2004-11-24 2006-06-08 Soft99 Corporation 着色コーティング組成物
JP2006225629A (ja) * 2005-01-24 2006-08-31 Shin Etsu Chem Co Ltd オルガノシリコーンレジンエマルジョン組成物及び該組成物の被膜が形成された物品
JP2007238718A (ja) * 2006-03-07 2007-09-20 Momentive Performance Materials Japan Kk ポリオルガノシロキサンコロイド分散液の製造方法
JP2009138040A (ja) * 2007-12-04 2009-06-25 Momentive Performance Materials Japan Kk シリコーン樹脂水性乳濁液
WO2010112081A1 (en) * 2009-04-03 2010-10-07 Abb Research Ltd Silicone rubber composition

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5869756A (ja) * 1981-10-21 1983-04-26 電気化学工業株式会社 セメント製品の製法
JPS61251555A (ja) * 1985-04-26 1986-11-08 ニチアス株式会社 撥水性ケイ酸カルシウム成形体の製造法
US4780754A (en) * 1987-09-15 1988-10-25 International Business Machines Corporation Polysiloxane modified cement
JP2640514B2 (ja) * 1988-09-21 1997-08-13 東レ・ダウコーニング・シリコーン株式会社 水硬性無機質組成物
JP2686792B2 (ja) * 1988-11-24 1997-12-08 東レ・ダウコーニング・シリコーン株式会社 水硬性無機質組成物
JP2826881B2 (ja) * 1990-02-28 1998-11-18 東レ・ダウコーニング・シリコーン株式会社 水硬性無機質組成物
JP3949175B2 (ja) * 1997-02-14 2007-07-25 三菱化学株式会社 ポリアルコキシシロキサン化合物及びその製造方法並びにこれを含有する塗料組成物
JPH1150006A (ja) * 1997-06-04 1999-02-23 Toto Ltd 光触媒性親水性被膜形成前の表面の前処理法並びにそれに用いられる洗浄剤およびアンダーコート組成物
JP2000319625A (ja) * 1999-05-06 2000-11-21 Sekisui Chem Co Ltd 制振部材
JP2001089220A (ja) * 1999-09-24 2001-04-03 Dow Corning Toray Silicone Co Ltd セメント組成物
JP2001089221A (ja) * 1999-09-24 2001-04-03 Dow Corning Toray Silicone Co Ltd セメント組成物
JP3963628B2 (ja) * 2000-02-15 2007-08-22 菊水化学工業株式会社 塗料組成物及びその塗膜構造並びにその塗装方法
JP4356477B2 (ja) * 2004-02-26 2009-11-04 宇部興産株式会社 下地調整材用水硬性組成物、及びこの下地調整材
JP2005272173A (ja) * 2004-03-23 2005-10-06 Ube Ind Ltd 自己流動性水硬性組成物

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB768099A (en) * 1954-07-06 1957-02-13 Hans Buettner Improvements in or relating to silicone resin mouldings
JPS5566968A (en) * 1978-11-13 1980-05-20 Matsushita Electric Ind Co Ltd Coating compound
JPH08311330A (ja) * 1995-05-17 1996-11-26 Sekisui Chem Co Ltd 室温硬化性組成物
JPH1180550A (ja) * 1997-09-09 1999-03-26 Shin Etsu Chem Co Ltd 室温硬化性オルガノポリシロキサン組成物
JPH11349912A (ja) * 1998-06-08 1999-12-21 Yokohama Rubber Co Ltd:The 一成分形弾性接着剤
JP2000143968A (ja) * 1998-11-10 2000-05-26 Sekisui Chem Co Ltd 室温硬化性組成物
JP2001011379A (ja) * 1999-07-01 2001-01-16 Jsr Corp 下塗り用コーティング組成物
JP2001152090A (ja) * 1999-11-29 2001-06-05 Jsr Corp 防汚性物品用コーティング組成物および防汚性物品
JP2001192640A (ja) * 2000-01-11 2001-07-17 Konishi Co Ltd 変成シリコーン樹脂を含む接着剤を用いた接着方法
JP2003327829A (ja) * 2002-05-09 2003-11-19 Shin Etsu Chem Co Ltd 室温硬化性オルガノポリシロキサン組成物
JP2006143970A (ja) * 2004-11-24 2006-06-08 Soft99 Corporation 着色コーティング組成物
JP2006225629A (ja) * 2005-01-24 2006-08-31 Shin Etsu Chem Co Ltd オルガノシリコーンレジンエマルジョン組成物及び該組成物の被膜が形成された物品
JP2007238718A (ja) * 2006-03-07 2007-09-20 Momentive Performance Materials Japan Kk ポリオルガノシロキサンコロイド分散液の製造方法
JP2009138040A (ja) * 2007-12-04 2009-06-25 Momentive Performance Materials Japan Kk シリコーン樹脂水性乳濁液
WO2010112081A1 (en) * 2009-04-03 2010-10-07 Abb Research Ltd Silicone rubber composition

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015523312A (ja) * 2012-07-10 2015-08-13 シーカ・テクノロジー・アーゲー 二成分セメント組成物
JP2016117040A (ja) * 2014-12-22 2016-06-30 淑 百瀬 超微粉体含有物の固化材及び固化方法
JP2017155123A (ja) * 2016-03-01 2017-09-07 セイコーインスツル株式会社 コーティング剤、コーティング剤の製造方法及びコーティング膜の形成方法
JP2019099738A (ja) * 2017-12-06 2019-06-24 信越ポリマー株式会社 導電性高分子分散液及びその製造方法、並びに導電性フィルム及びその製造方法
JP2020007505A (ja) * 2018-07-12 2020-01-16 信越化学工業株式会社 加水分解性基含有シリコーン樹脂を含むコーティング組成物、コーティング被膜、および該被膜を有する物品
JP7468399B2 (ja) 2020-03-17 2024-04-16 信越化学工業株式会社 シリコーンコーティング剤組成物及び物品
CN112521782A (zh) * 2021-01-06 2021-03-19 成都容浓伊涂料科技有限公司 一种高韧性水性耐磨陶瓷涂料的制备方法

Also Published As

Publication number Publication date
KR20120120239A (ko) 2012-11-01
KR101787129B1 (ko) 2017-10-18
CN102712811B (zh) 2014-08-13
JP2014062258A (ja) 2014-04-10
CN102712811A (zh) 2012-10-03
JP5710503B2 (ja) 2015-04-30
JPWO2011087073A1 (ja) 2013-05-20
JP5726272B2 (ja) 2015-05-27

Similar Documents

Publication Publication Date Title
JP5710503B2 (ja) シリコーンレジン組成物およびシリコーンレジン組成物を用いた保護被覆工法
JP4110402B2 (ja) シリコーン系コーティング剤組成物
TW200806750A (en) Room temperature curable organopolysiloxane compositions
JP6921713B2 (ja) 下地調整塗料組成物及び複層塗膜の形成方法
JPH0423857A (ja) 難燃性塗材及び該塗材で塗装した被塗装物
KR101336976B1 (ko) 콘크리트 염해 및 중성화 방지용 수용성 에폭시 수지 조성물 및 이를 이용한 도막의 형성방법
JP5117723B2 (ja) エポキシ樹脂組成物及びエポキシ−ポリシロキサン塗料組成物
JP6335092B2 (ja) 塗料組成物、塗膜形成方法及び透明塗膜
JP5037025B2 (ja) エポキシ樹脂組成物及びエポキシ−ポリシロキサン塗料組成物
JP6666827B2 (ja) シリコーン樹脂含有エマルジョン組成物及び硬化被膜形成基材
JP6704228B2 (ja) 複層塗膜
JP6649797B2 (ja) 被膜形成方法
JPH07133463A (ja) コーティング用組成物
JP2005298561A (ja) 水性オルガノポリシロキサン溶液の製造方法及びコーティング組成物
JP2022191026A (ja) ポリシロキサンの製造方法、およびポリシロキサンの利用
JP2001181556A (ja) 水性塗料組成物
JP4998935B2 (ja) 塗料組成物
JP2005325169A (ja) 水性塗料組成物
JP3030954B2 (ja) コーティング用組成物
JP3194722B2 (ja) 水性オルガノポリシロキサン溶液の製造方法
JP4169988B2 (ja) 着色セメント瓦の製造方法
JP2010065098A (ja) 水性被覆材
JP3415823B2 (ja) 無溶剤型塗料組成物
JP3900452B2 (ja) 水性オルガノポリシロキサン溶液の製造方法及びコーティング組成物
JP3395838B2 (ja) 意匠性塗膜の形成方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180006437.0

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2011550010

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20127018823

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11732943

Country of ref document: EP

Kind code of ref document: A1