WO2011077048A1 - Feuille imprimable ultra lisse et recyclable et son procédé de fabrication - Google Patents

Feuille imprimable ultra lisse et recyclable et son procédé de fabrication Download PDF

Info

Publication number
WO2011077048A1
WO2011077048A1 PCT/FR2010/052879 FR2010052879W WO2011077048A1 WO 2011077048 A1 WO2011077048 A1 WO 2011077048A1 FR 2010052879 W FR2010052879 W FR 2010052879W WO 2011077048 A1 WO2011077048 A1 WO 2011077048A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
printable
sheet
face
plastic film
Prior art date
Application number
PCT/FR2010/052879
Other languages
English (en)
Inventor
Gaël DEPRES
Jean-Marie Vau
Original Assignee
Arjo Wiggins Fine Papers Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=42227692&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2011077048(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority to EP10809308.9A priority Critical patent/EP2516741B2/fr
Priority to KR1020127019337A priority patent/KR101970770B1/ko
Priority to BR112012015134A priority patent/BR112012015134A2/pt
Priority to CN201080059381.0A priority patent/CN102666989B/zh
Priority to US13/515,471 priority patent/US9416495B2/en
Application filed by Arjo Wiggins Fine Papers Limited filed Critical Arjo Wiggins Fine Papers Limited
Priority to ES10809308T priority patent/ES2517365T5/es
Priority to CA2785183A priority patent/CA2785183C/fr
Priority to IN5032DEN2012 priority patent/IN2012DN05032A/en
Priority to JP2012545398A priority patent/JP5890317B2/ja
Priority to RU2012122864/05A priority patent/RU2538581C2/ru
Publication of WO2011077048A1 publication Critical patent/WO2011077048A1/fr
Priority to ZA2012/03884A priority patent/ZA201203884B/en
Priority to HK12112872.4A priority patent/HK1173478A1/xx

Links

Classifications

    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H27/00Special paper not otherwise provided for, e.g. made by multi-step processes
    • D21H27/18Paper- or board-based structures for surface covering
    • D21H27/22Structures being applied on the surface by special manufacturing processes, e.g. in presses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M5/00Duplicating or marking methods; Sheet materials for use therein
    • B41M5/50Recording sheets characterised by the coating used to improve ink, dye or pigment receptivity, e.g. for ink-jet or thermal dye transfer recording
    • B41M5/52Macromolecular coatings
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H19/00Coated paper; Coating material
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H19/00Coated paper; Coating material
    • D21H19/36Coatings with pigments
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H19/00Coated paper; Coating material
    • D21H19/66Coatings characterised by a special visual effect, e.g. patterned, textured
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H19/00Coated paper; Coating material
    • D21H19/80Paper comprising more than one coating
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H23/00Processes or apparatus for adding material to the pulp or to the paper
    • D21H23/02Processes or apparatus for adding material to the pulp or to the paper characterised by the manner in which substances are added
    • D21H23/04Addition to the pulp; After-treatment of added substances in the pulp
    • D21H23/06Controlling the addition
    • D21H23/08Controlling the addition by measuring pulp properties, e.g. zeta potential, pH
    • D21H23/10Controlling the addition by measuring pulp properties, e.g. zeta potential, pH at least two kinds of compounds being added
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H23/00Processes or apparatus for adding material to the pulp or to the paper
    • D21H23/02Processes or apparatus for adding material to the pulp or to the paper characterised by the manner in which substances are added
    • D21H23/22Addition to the formed paper
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H23/00Processes or apparatus for adding material to the pulp or to the paper
    • D21H23/02Processes or apparatus for adding material to the pulp or to the paper characterised by the manner in which substances are added
    • D21H23/22Addition to the formed paper
    • D21H23/66Treating discontinuous paper, e.g. sheets, blanks, rolls
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H23/00Processes or apparatus for adding material to the pulp or to the paper
    • D21H23/02Processes or apparatus for adding material to the pulp or to the paper characterised by the manner in which substances are added
    • D21H23/22Addition to the formed paper
    • D21H23/70Multistep processes; Apparatus for adding one or several substances in portions or in various ways to the paper, not covered by another single group of this main group
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H23/00Processes or apparatus for adding material to the pulp or to the paper
    • D21H23/02Processes or apparatus for adding material to the pulp or to the paper characterised by the manner in which substances are added
    • D21H23/22Addition to the formed paper
    • D21H23/70Multistep processes; Apparatus for adding one or several substances in portions or in various ways to the paper, not covered by another single group of this main group
    • D21H23/72Plural serial stages only
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H27/00Special paper not otherwise provided for, e.g. made by multi-step processes
    • D21H27/001Release paper
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H27/00Special paper not otherwise provided for, e.g. made by multi-step processes
    • D21H27/002Tissue paper; Absorbent paper
    • D21H27/004Tissue paper; Absorbent paper characterised by specific parameters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49117Conductor or circuit manufacturing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24355Continuous and nonuniform or irregular surface on layer or component [e.g., roofing, etc.]

Definitions

  • the present invention relates to a printable sheet smooth or ultra smooth and recyclable, as well as its manufacturing process.
  • This sheet may be used in distinct fields such as packaging, electronics, optics, or graphic arts, for example as a printing medium, in particular a photographic image.
  • an ultra-smooth sheet may be made by laminating a plastic film on one side of a paper, which plastic film defines an ultra smooth surface on the paper.
  • the base paper is formed of a fibrous material whose faces have a relatively high roughness, of the order of 20 ⁇ approximately, that is to say that each of its faces is formed of bumps and valleys whose height which separates them is of the order of 20 ⁇ .
  • the rolling of a plastic film on one side of such a paper makes it possible to give this face a very low roughness, of the order of 1 ⁇ in the case of a film of PET (polyethylene terephthalate).
  • paper is a relatively expensive material and is produced on a large scale, it is important that it be recyclable.
  • a paper-based sheet ultra smooth because having a plastic film is not recyclable or is difficult to recycle, which is not ecological or economic. Indeed, during the recycling of paper-based sheets, these sheets are crushed and mixed with water in a pulper to form a paste. In the case where these sheets comprise plastic films, these films are shredded in the pulper and their plastic material pollutes the paste.
  • Such an ultra smooth sheet is not printable and a printable resin must be deposited on the plastic film of the sheet for make printable.
  • This technique is used in particular to produce paper-based sheets for the printing of photographic images (called resin-coated photography papers), these sheets comprising a PE film (polyethylene) and having a Bekk smoothness of the order 6000s.
  • a smooth sheet may also be manufactured by depositing a coating composition on one side of a paper, which composition after drying a smooth face on the paper.
  • This technique makes it possible to manufacture a smooth sheet without plastic film.
  • the composition is deposited on the paper by a coating technique curtain, dragging or scraping blade, air knife, gravure printing or by rollers (s / ' ze press, press film, etc.).
  • the face of the paper base, on which the coating composition is deposited comprises an alternation of hollows and bumps, the hollows being filled by the coating composition and the bumps being flattened during coating, which makes it possible to reduce the roughness of the paper.
  • this technique does not make it possible to obtain a sheet as smooth as a sheet covered with a plastic film, even if this sheet is subsequently smoothed, for example by calendering.
  • the method currently used to make a glossy, smooth sheet consists in depositing a coating composition on a base paper by means of a mechanical roller whose cylindrical surface is very smooth and covered with a layer of chromium.
  • the Bekk smoothness of a sheet obtained by this process is of the order of 50s and is therefore less than that of a sheet comprising a plastic film (of the order of 6000s in the case of a PE film) .
  • the invention is particularly intended to provide a simple, effective and economical solution to the problems of the prior art.
  • a smooth sheet also called ultra smooth in the sense of the invention, the smoothness of this sheet being independent of the roughness of the paper or more generally of the base substrate used, and the sheet does not having no plastic film and is therefore at least partly recyclable, or even biodegradable.
  • a printable sheet having at least one smooth face and advantageously ultra smooth, this sheet comprising a substrate, in particular of paper, of which at least one face is covered at least in part with one or more superimposed layers, the method comprising the steps of:
  • a / preparing or providing a multilayer structure comprising at least, or consisting of, a preferably smooth plastic film, a release layer, and a printable layer, the release layer being interposed between the plastic film and the printable layer,
  • the multilayer structure is prepared prior to the implementation of the method of manufacturing the printable sheet.
  • the multilayer structure is provided for the production process of the printable sheet.
  • the smooth or ultra-smooth face of the sheet is defined by a printable layer which is prepared on a plastic film called "donor", said printable layer being, at this stage, included in a multilayer structure, and then transferred on the basic substrate called "receiver".
  • the smoothness of the printable layer and therefore of the sheet is induced by that of the plastic film of the multilayer structure, and therefore does not depend on that of the base substrate used.
  • the invention thus makes it possible to transfer the surface state of a plastic film to any substrate.
  • the invention makes it possible to manufacture a smooth or ultra-smooth sheet from any substrate, such as advantageously a rough paper and / or having a relatively large hand, for example greater than or equal to 1.10 cm 3 / g, and without including a plastic film in the sheet thus produced.
  • the sheet prepared by the process according to the invention is therefore both printable and recyclable.
  • printable sheet and substrate for the preparation of the printable sheet a thin element (whose thickness does not exceed 50 ⁇ ), preferably flexible and / or flexible.
  • Printable sheet or layer means a sheet or layer that can be printed by any printing technique, and in particular by printing Offset, inkjet, laser, helio, flex, dry toner, liquid toner, electrophotography, lithography etc.
  • a printable layer typically comprises a mixture of pigments and at least one binder, or is formed of a printable varnish based on polymer (s) of acrylic, vinyl, polyurethane, styrene, starch, polyvinyl alcohol, ethylene, or a mixture of these polymers.
  • the ink is intended to be deposited on the smooth or ultra smooth free face of the printable sheet or the printable layer.
  • Recyclable sheet means a sheet which is free of plastic film, for example thermoplastic or thermosetting material.
  • the printing of the printable layer does not entail any structural modification thereof, and in particular a change of state or phase thereof (such as for example from a solid state to a liquid state and then back to the solid state).
  • a multilayer structure of the invention prepared or provided in the context of the process according to the invention comprises, in particular, or consists of, a lower plastic film, a nonstick intermediate layer and a printable top layer.
  • the release layer covers at least a portion of the top face of the plastic film
  • the printable layer covers at least a portion of the top face of the release layer.
  • the plastic film serves as a manufacturing support for the printable layer. This film does not survive in the final product, namely the sheet, which is therefore recyclable.
  • the upper face of the film (located on the side of the printable layer) is advantageously the smoothest possible, because the surface quality of the smooth face of the sheet, defined by the printable layer, is a function of the surface quality of this face top of the plastic film. In other words, the more the plastic film of the multilayer structure is smooth and the resulting sheet is smooth.
  • the plastic film is selected from a film of polyethylene terephthalate (PET), polyethylene (PE), polypropylene (PP), polylactic acid-based polymer (PLA), any cellulose-based polymer, and the like.
  • PET polyethylene terephthalate
  • PE polyethylene
  • PP polypropylene
  • PLA polylactic acid-based polymer
  • the film has for example a thickness of the order of 12 ⁇ .
  • the plastic film is free and / or is not covered with PVDF (polyvinylidene fluoride), PP (polypropylene), teflon, silica, boron nitride, chromium stearyl chlorides or any other product having anti-adhesive / non-stick properties.
  • the face of the film located on the printable layer side is preferably smooth and may have a Bekk smoothness greater than 10,000s Bekk.
  • the thickness, hardness and glass transition temperature of the plastic film have no or little influence on the characteristics of the printable layer. Only the smoothness, or conversely, the roughness of the plastic film has an influence on the smoothness or roughness of the printable layer. The smoother the plastic film, the smoother the printable layer. Those skilled in the art are however able to determine which characteristics of the plastic film are likely to influence the surface condition of the printable layer, and to optimize these characteristics as a function of the final smoothness that is desired for this printable layer.
  • the nonstick layer of the multilayer structure is deposited on the plastic film by any technique, for example by gravure printing.
  • This non-stick layer serves to limit the adhesion of the printable layer on the plastic film and to facilitate the separation and removal of the plastic film from the printable layer in step c / of the above-defined process.
  • the nonstick layer does not affect or reduce the smoothness and the surface quality of the plastic film face on which this layer is deposited.
  • the nonstick layer may adhere more to the plastic film than to the printable layer, so that most or all of the nonstick layer remains adhered to the plastic film as it is removed from the printable layer. However, parts or traces of this release layer may persist on the printable layer after removal of the plastic film. Alternatively, the release layer may adhere more on the printable layer than on the plastic film, and is then intended to remain at least partially on the printable layer during removal of the plastic film.
  • the release layer is intended to divide substantially into two parts upon removal of the plastic film, a first portion remaining on the plastic film and a second portion remaining on the printable layer.
  • the multilayer structure may comprise two non-stick layers superimposed between the plastic film and the printable layer, these two layers being intended to separate from one another during the removal of the plastic film (one of the non-stick layers remaining on the plastic film and the other non-stick layer remaining on the printable layer).
  • Leaving part or all of a nonstick layer on the printable layer is particularly advantageous when the sheet is intended to be used as a support in a casting application.
  • the casting application consists of extruding and casting at least one polymer (such as polyurethane (PU), polyvinyl chloride (PVC), etc.) onto a support coated with a release layer.
  • This polymer may have a textured surface to give the sheet a particular appearance (eg, similar to leather).
  • the fact of leaving a release layer on the sheet according to the invention avoids having to redeposit such a layer on this sheet for a casting application, and is therefore particularly advantageous in terms of cost and preparation time of the support for the application. casting application.
  • the release layer has a thickness less than or equal to 5 ⁇ and preferably 1 ⁇ .
  • the release layer may be composed of silicone (s), siloxane (s), polysiloxane (s) or its derivatives, Werner complex (s), such as chromium stearyl chlorides, or polyethylene waxes, propylene, polyurethane, polyamide, polytetrafluoroethylene, etc.
  • the nonstick layer comprises no
  • the printable layer of the multilayer structure may be selected from a printable varnish, a paper coating, etc.
  • the term "printable varnish” means a substance based on acrylic polymer, polyurethane, polymethyl methacrylate, styrene butadiene, vinyl acetate, polyamide, nitrocellulose or any other cellulose, polyvinyl alcohol, polyvinyl alcohol, polyvinyl alcohol, starch, etc. This substance is usually deposited in liquid form and solidified by drying / heating or by UV or electron radiation.
  • paper coating means a composition comprising a binder and pigments.
  • the binder may be based on acrylic, polyurethane, polymethyl methacrylate, styrene butadiene, vinyl acetate, polyamide, nitrocellulose or any other cellulose, polyvinyl alcohol, starch, or a mixture of these. this.
  • the pigments may be chosen from calcium carbonates, kaolins, titanium dioxide, talc, silicas, mica, and pearlescent particles, plastic pigments (polystyrene (PS), polyurethane (PU), etc.), and their mixtures.
  • the level of binder relative to the pigments is between 5 and 50%, and preferably between 8 and 25% by dry weight.
  • Pigments are generally in the majority of the binder in a paper coating, to create porosities that improve ink absorption. On the contrary, in a heat transfer layer, the binders are in the majority with respect to the pigments because the objective is not to have surface porosity.
  • the plastic used in the printable layer (as a binder and / or pigments) is easily fragmentable and does not pollute the pulp when recycled. On the contrary, the plastic films keep a cohesion and clog the filters during the resuspension of the pulp.
  • Water-soluble binders such as starch, polyvinyl alcohol (PVA), etc. are particularly advantageous in this regard because they disperse in water during recycling.
  • the paper coating may further comprise a dispersant and / or a rheological modifier and / or a colorant and / or a surface or spreading agent and / or a conductive additive.
  • This conductive additive can be used to reduce the surface resistivity of the sheet.
  • the printable layer is free of antiblocking agent and / or of product capable of reducing the surface energy of the layer, such as a silicone material or the like, PVDF, PP, Teflon, silica , boron nitride, etc.
  • This type of agent or product may be required for thermal transfer layer printing, particularly to prevent paper from adhering to the printer ribbon.
  • the printable layer according to the invention may therefore not be printable by thermal transfer.
  • the printable layer may be formed of several sub-layers superimposed on each other, each sub-layer being printable and being selected from the aforementioned types (printable varnish, paper coating, etc.).
  • the printable layer may have a thickness less than or equal to 30 ⁇ , preferably less than or equal to 15 ⁇ , and more preferably less than or equal to 10 ⁇ . Its grammage is advantageously less than or equal to 30 g / m 2 , preferably less than or equal to 15 g / m 2 , and more preferably less than or equal to 10 g / m 2 .
  • the printable layer may for example have a thickness and a grammage that are less than or equal to the following combined values: 10 ⁇ and 10g / m 2 , 3 ⁇ and 10g / m 2 , 2 ⁇ and 10g / m 2 , 5 ⁇ and 5g / m 2 , 3 ⁇ and 5g / m 2 , 2 ⁇ and 5g / m 2 , 5 ⁇ and 2g / m 2 , 3 ⁇ and 2g / m 2 , or 2 ⁇ and 2g / m 2 .
  • the printable layer can be deposited on the release layer by any technique, for example by gravure printing.
  • the printable layer may be deposited on the nonstick layer in the liquid or semi-liquid state and then be solidified by drying, heating, or by UV or electronic radiation. After solidification and / or drying, the printable layer, which is in contact with the smooth side of the plastic film via the release layer, has a smooth face, located on the side of the plastic film.
  • the printable layer is thus dried and / or solidified before it is transferred onto the substrate, in particular so as not to modify the surface state of this layer conferred by the plastic film.
  • the multilayer structure is prepared prior to the transfer of the printable layer on the substrate, and the printable layer is in the solid state and / or dry during its transfer on the substrate, that is to say in steps b and cl of the process according to the invention.
  • the surface state of the printable layer is thus created during the preparation of the multilayer structure.
  • the manufacture of the printable layer is therefore performed independently of that of the base substrate. This allows in particular to implement the process with standard industrial tools, which allows optimal production speeds.
  • the smooth face of the sheet may have a Bekk smoothness greater than about 900 or 1000s, preferably greater than 2000s, and more preferably greater than 5000s.
  • the term "smooth or ultra-smooth face” is understood to mean a face having a Bekk smoothness greater than about 900 or 1000s, advantageously greater than 2000s, and more preferably greater than 5000s.
  • This smooth face may have a gloss of greater than 70%, and preferably greater than 80%, this brightness being for example measured at 75 according to the TAPPI® T480 om-92 method.
  • This gloss may be similar to or even greater than that of a photographic paper of the resin-coated type, comprising a plastic film.
  • the multilayer structure may comprise at least one additional layer deposited on the printable layer, on the opposite side to the plastic film, the free face of this additional layer or of the layer the furthest from the plastic film being intended, in step b /, to be glued and applied against the aforementioned face of the substrate.
  • the additional layer or layers may be functional or non-functional. They may for example be insulating (dielectric) or form a barrier (to gases, for example oxygen, liquids, for example water, grease, etc.).
  • the multilayer structure comprises a single additional layer
  • it is deposited on the upper face of the printable layer, that is to say on the face of the printable layer, located on the opposite side to the plastic film of the multilayer structure.
  • This additional layer can be of any kind, and is therefore not necessarily printable.
  • these additional layers are superimposed on each other and deposited on the aforementioned upper face of the printable layer.
  • the technique or techniques used to deposit the additional layer or layers on the printable layer may be of the aforementioned types, or of any other type.
  • the multilayer structure can therefore comprise in addition to the three aforementioned elements (a plastic film, a release layer, and a printable layer), one or more additional layers, which are printable or not, on the printable layer (on the opposite side to the plastic film ).
  • the multilayer structure may further comprise a layer or film of glue covering the layer furthest from the plastic film (i.e., the printable layer or the or an additional layer).
  • Step b / of the method according to the invention consists in gluing the face of the substrate intended to receive the printable layer, or the face of the multilayer structure, located on the opposite side to the plastic film, and to apply these faces against each other. the other, so as to fix them.
  • the substrate may be selected from paper, tracing paper, card stock, and coated or precoated paper.
  • the paper may have a relatively large hand greater than or equal to 1, 10cm 3 / g, preferably greater than or equal to 1.2 cm 3 / g, more preferably greater than or equal to 1.3 cm 3 / g, more particularly greater than or equal to 1.4 cm 3 / g, and even more particularly greater than or equal to 1.5 cm 3; /boy Wut.
  • the method according to the invention makes it possible to produce a sheet having both a large hand and a smoothing, which was not possible with the prior art. It was indeed not possible in the prior art to make a sheet with a large hand and a high surface quality.
  • a substrate having a large hand can be formed of an inexpensive material.
  • the pulp used may comprise cellulosic fibers, a binder, and a small proportion of fillers and / or adjuvants, such as starch.
  • the process according to the invention results in a slight decrease of about 2 to 5% in the hand of the paper substrate.
  • a smooth or ultra smooth sheet with a large hand made with the method according to the invention, has good printability and low basis weight, which allows for lightweight packaging but having a relatively high rigidity.
  • step b1 of the method the face to be coated with the substrate or the free face of the printable layer or of an additional layer of the multilayer structure is glued by means of a suitable glue.
  • the two aforementioned faces of the substrate and of the multilayer structure are glued simultaneously, or one after the other.
  • Sizing consists in depositing a layer of adhesive on the above-mentioned face or faces by any technique, such as, for example, gravure printing.
  • the glue may be of the thermal, non-thermal type, by UV crosslinking or by chemical reaction.
  • the adhesive may be deposited on the or each of the aforementioned surfaces in liquid or non-liquid form (in the case for example of a thermoadhesive film).
  • This glue is for example chosen from the following polymers: acrylic, polyurethane, polymethyl methacrylate, styrene butadiene, vinyl acetate, polyamide, nitrocellulose or any other cellulose, polyvinyl alcohol or starch.
  • the or each deposited adhesive layer may have a thickness less than or equal to 10 ⁇ m, and preferably less than or equal to 3 ⁇ m.
  • the adhesive is deposited on the aforementioned face of the multilayer structure during the preparation of this structure. This glue is then part of the entire multilayer structure.
  • the adhesive may be formed by a heat-activatable adhesive layer, this layer being activated by heating during the application of the multilayer structure on the substrate (receiver).
  • the nature of the glue and the gluing process can have a significant influence on the final surface state of the paper. It is for example important that the removal of the glue is uniform and avoid the formation of cavities between the paper and the printable layer.
  • the removal of the adhesive is preferably homogeneous to avoid excess and / or lack of adhesive in places, which would result in a final sheet having surface roughness.
  • the glue spreads perfectly on the support (film or paper) having an adequate surface tension and rheology.
  • the method of coating the glue can also be important. Coating modes that generate the least possible heterogeneity of deposit, such as gravure printing (reverse roll or kiss coating) are preferred.
  • the deposit is preferably chosen to fill the pores or surface irregularities of the paper as much as possible. For example, when a paper has an average surface roughness (for example Sa) of approximately 20 ⁇ m, an adhesive removal having a thickness of at least 10 ⁇ is preferable for filling the pores.
  • the deposition of glue is preferably performed on the paper when the latter is too rough. If the deposit on the paper is insufficient, cavities are formed between the surface of the paper and the printable layer. When printing, these cavities go become points of fragility of the paper which can then be sinking, if one exerts a pressure, or tear, if one exerts a traction.
  • the thickness of glue deposited on the paper and / or the printable layer is equal to at least half of the average surface roughness (for example Ra or Sa) of the paper.
  • the adhesive is deposited on at least one side of the substrate in step b /, and the thickness of the deposited adhesive layer is at least equal to half the average roughness of the substrate. the face of the substrate, and is preferably equal to this average roughness.
  • the adhesive can be aqueous-based, solvent-free, solvent-free, two-component or monocomponent.
  • the adhesive makes it possible to fix the printable layer (or an additional layer) on the substrate and, if necessary, to compensate for the surface irregularities of the substrate.
  • the glue fills in particular the hollows of the face to be coated with the substrate and thus makes it possible to smooth this face, without however modifying the characteristics of the substrate, such as its hand.
  • Step b / of the method then consists in applying the aforementioned face of the substrate to the aforementioned face of the multilayer structure, so as to laminate or laminate them.
  • the printable layer is then sandwiched between on the one hand the substrate and the glue (and optionally one or more additional layers), on one side, and on the other hand the plastic film and the non-stick layer, of the 'other side.
  • the application of the substrate to the multilayer structure is carried out hot, at a given temperature, which is for example between 50 and 200 ° C. about.
  • the application and bonding of the substrate to the multilayer structure can be performed at room temperature.
  • a slight pressure may be necessary to ensure good adhesion of the printable layer on the substrate, through the glue.
  • the temperature and / or the pressure used during the application and the gluing must not, however, modify the characteristics of the printable layer, and in particular the surface state of its face located on the side of the plastic film.
  • the printable layer should not be softened by the application of a high temperature, as this could cause a change and / or a decrease in the surface quality of its face, located on the side of the plastic film.
  • the step c1 of the method then consists in removing the plastic film from the printable layer and from the substrate, so that the printable layer (and optionally the aforementioned additional layer or layers of the multilayer structure) remain on the substrate.
  • the printable layer, and if necessary the additional layer or layers, are therefore transferred from the plastic film called donor, of the multilayer structure, to the substrate called the receiver.
  • the release layer can remain on the plastic film and is then removed from the printable layer, during removal of the plastic film.
  • the face of the printable layer, which was located on the side of the plastic film in the multilayer structure, is thus exposed, this face defining the smooth face of the sheet.
  • Transfer of the printable layer of the multilayer structure to the substrate, at steps b1 and c1 of the method, can be carried out as follows, when the substrate and the multilayer structure are in the form of continuous strips.
  • the rolling or lamination of the multilayer structure and the substrate can be achieved by passing these two elements between two parallel and adjacent mechanical rollers rotating in opposite directions.
  • the thickness of the product obtained is in particular a function of the distance between the rollers.
  • the method may further consist in that, before step b /, the aforementioned face of the substrate is precoated with at least one smoothing layer comprising one or more thermoplastic polymers (such as at least one polystyrene, one polyurethane, one acrylic, etc.) or a mixture of pigments (such as kaolins, calcium carbonates, talc, titanium dioxide, etc., and mixtures thereof) and at least one binder (such as acrylic, polyurethane, polymethyl methacrylate, styrene butadiene, vinyl acetate, polyamide, nitrocellulose or any other cellulose, starch or PVA).
  • thermoplastic polymers such as at least one polystyrene, one polyurethane, one acrylic, etc.
  • a mixture of pigments such as kaolins, calcium carbonates, talc, titanium dioxide, etc., and mixtures thereof
  • binder such as acrylic, polyurethane, polymethyl methacrylate, styrene butadiene, vinyl
  • This precoated surface of the substrate may also be calendered, before step b /, to increase its smoothness.
  • the method according to the invention may comprise an additional step of printing the sheet with an ink having electrical and / or optical properties.
  • the present invention further relates to a process for preparing a multilayer structure comprising at least or consisting of a plastic film, a release layer, and a printable layer, the release layer being interposed between the plastic film and the printable layer.
  • the present invention also relates to a process for printing a sheet prepared by the method described above, this process comprising a step of printing the sheet without modifying the state of its printable layer, ie without softening or melting this layer during printing.
  • the sheet is for example printed by offset, inkjet, laser, gravure, flex, dry toner, liquid toner, electrophotography, lithography, etc.
  • the present invention furthermore relates to a method for producing a casting sheet having at least one smooth surface, said sheet comprising a substrate, in particular of paper, at least one surface of which is covered at least in part with a layer or a plurality of superposed layers, the process comprising the steps of: a / preparing or providing a multilayer structure comprising at least, or consisting of, a plastic film, a release layer, and a casting application layer, the release layer being interposed therebetween between the plastic film and the layer for casting application,
  • the layer for casting application is for example a layer of PVA.
  • the casting application layer may have anti-adhesive properties.
  • the present invention also relates to a printable sheet having at least one smooth face, and advantageously ultra smooth, this sheet comprising a substrate, in particular of paper, of which at least one face is covered at least in part by one or more layers, of which a printable layer defining said smooth or ultra-smooth face, characterized in that this smooth or ultra-smooth face has a Bekk smoothness greater than 900s or greater than about 1000s, preferably greater than 2000s, and more preferably greater than 5000s.
  • the smooth or ultra-smooth face of the sheet may have a gloss of greater than 70%, and preferably greater than 80%, this brightness being measured, for example, at 75 ° according to the TAPPI T480 om-92 method.
  • the printable layer of the sheet may have a thickness less than or equal to 30 ⁇ m, preferably less than or equal to 15 ⁇ m, and more preferably less than or equal to 10 ⁇ .
  • the grammage of the printable layer may be less than or equal to 30 g / m 2 , preferably less than or equal to 15 g / m 2 , and more preferably less than or equal to 10 g / m 2 .
  • the printable layer may for example have a thickness and a grammage that are less than or equal to the following combined values: 10 ⁇ and 10g / m 2 , 3 ⁇ and 10g / m 2 , 2 ⁇ and 10g / m 2 , 5 ⁇ and 5g / m 2 , 3 ⁇ and 3g / m 2 , 2 ⁇ and 5g / m 2 , 5 ⁇ and 2g / m 2 , 3 ⁇ m and 2g / m 2 , or 2 ⁇ m and 2g / m 2 .
  • the present invention also relates to the use of a printable sheet as described above, for the production of an electronic and / or optical component, this sheet being printed by means of an ink having electrical properties and / or optics.
  • the sheet according to the invention can be compatible with electronic organic inks for electronic applications, such as for example the realization of RFID (Radio Frequency IDentification) chips, display or detection systems, etc., directly on the sheet.
  • RFID Radio Frequency IDentification
  • an RFID chip could be made on a sheet formed of a polyethylene terephthalate (PET) plastic film.
  • PET polyethylene terephthalate
  • this plastic film has a relatively low mechanical strength and temperature, which limits the possible applications of the chip and prevents printing of the film with inks at relatively high temperatures.
  • the PET film is not recyclable in a simple way.
  • the substrate of the sheet according to the invention is made of paper, this sheet has a better mechanical strength and at high temperatures.
  • a sheet printed with an ink having electrical properties advantageously comprises a flexible substrate and a printable layer with little or no electrically conductive effect.
  • This type of sheet can be used to produce thin film organic transistors using conductive or semiconducting organic inks.
  • the sheet according to the invention can also be used for producing optical components, such as waveguides, holographic patterns, etc.
  • the process defined above can comprise, before step a /, a preliminary step consisting in producing, for example by etching, recessed and / or embossed patterns on the face of the plastic film intended receiving the release layer and the printable layer, the printable layer being adapted to conform to the shape of these patterns so as to include a print of the aforementioned side of the plastic film.
  • the transfer of the surface condition of the film to the printable layer comprises both a transfer of the smoothness and patterns of the plastic film.
  • the patterns transferred onto the printable layer themselves have surfaces and / or walls having a smooth appearance and being precisely defined. This method is then particularly advantageous for the production of optical components of the aforementioned types.
  • the present invention finally relates to the use of a printable sheet as described above, for the printing of a photographic image, for the production of a package, and / or for a casting application.
  • FIG. 1 very schematically represents steps of the method according to the invention for manufacturing a smooth or ultra smooth printable sheet
  • FIG. 2 very schematically represents an alternative embodiment of the method according to the invention
  • FIGS. 3 and 4 show very schematically means for implementing the transfer step of the method according to the invention
  • FIGS. 5 and 6 are images obtained by a scanning electron microscope (SEM) of a face of a base paper and a face of a smooth or ultra-smooth sheet obtained by the process according to the invention; .
  • SEM scanning electron microscope
  • Figure 1 shows schematically steps a /, bl and cl of the method according to the invention for manufacturing a printable sheet smooth or ultra smooth 10 and fully recyclable.
  • Step a / of the process consists in preparing a multilayer structure 12 comprising a lower plastic film 14, a nonstick interlayer 16 and a printable top layer 18.
  • the preparation of this structure 12 can be carried out in one or more successive steps.
  • the nonstick layer 16 and the printable layer 18 can be simultaneously deposited on the plastic film 14, for example by a curtain coating technique.
  • the release layer 16 is deposited on the plastic film 14, then the printable layer 18 is deposited on the release layer.
  • the surface quality of the upper face 20 of the plastic film 14 is transmitted to the underside 22 of the printable layer 18 (via the release layer 16).
  • the surface characteristics of the face 22 of the printable layer are therefore defined by those of the face 20 of the plastic film 14.
  • the roughness of films and papers were tested using a device measuring the topography type ALTISURF 500 ALTIMET company.
  • the first film tested has a roughness (for example Sa) of 1 ⁇ .
  • This film was used to transfer a printable layer to Bristol® paper from Arjowiggins.
  • the measured roughness of this printable layer is 1.1 m.
  • the second film has a roughness of ⁇ , ⁇ .
  • This film was used to transfer a printable layer to another Bristol® paper.
  • the measured roughness of this printable layer was 0.7 ⁇ .
  • the roughness (or the surface condition) of the film has therefore been transferred from the films to the printable layers.
  • the surface characteristics of the face 22 are fixed and are not intended to be modified during the other steps of the method, and in particular the transfer of the printable layer 18 onto a substrate 24 , such as paper, to be coated.
  • the printable layer 18 may be formed of a printable resin or varnish or a papermaking coating comprising a binder and pigments.
  • the printable layer may comprise two or more sub-layers which are selected from a printable varnish and a paper coating.
  • the printable varnish is located above or below the paper coating, so that the underside 22 above of the printable layer is defined by printable varnish or paper coating.
  • the step b1 of the process consists in depositing a layer or a film of adhesive 26 on the upper face 28 of the printable layer 18 or on the lower face 30 to be coated on the substrate 24, or even on these two faces 28, 30, then on applying these faces 28, 30 against each other to laminate or laminate the multilayer structure 12 and the substrate 24, and thus form a rolled or laminated product 32.
  • the step c1 of the method consists in removing the plastic film 14 and the nonstick layer 16 from the printable layer 18, so that only this layer 18 remains (with the adhesive 26) on the substrate 24.
  • steps b / and c / can be performed simultaneously or one after the other.
  • the adhesive 26 is advantageously in the dry state and / or solidified during the removal of the plastic film 14.
  • step c1 the face 22 of the printable layer 18 is exposed, this face being smooth or ultra smooth. A portion of the release layer 16 may, however, remain on the face 22 of the printable layer 18 after removal of the plastic film.
  • the layer 18 is printable by any appropriate technique, the ink being intended to be deposited on the smooth or ultra smooth face 22 of the sheet 10.
  • the substrate 24 may be formed of a coated or precoated paper, that is to say a paper on one side of which a layer or precoat 33 is deposited, the latter comprising one or more thermoplastic polymers or a mixture of pigments and binder.
  • This layer or precoat 33 is intended to be deposited on the aforementioned face 30 of the substrate, and is advantageously smoothed by calendering. It is then intended to be glued on the face 28 of the printable layer 18.
  • FIG. 2 represents an alternative embodiment of the method according to the invention, and differs from the method previously described with reference to FIG. 1, in particular in that the multilayer structure 12 'furthermore comprises at least one additional layer 34 deposited on the face upper 28 of the printable layer 18.
  • Additional superimposed layers 34 may be deposited (simultaneously or successively) on the face 28 of the printable layer 18.
  • Each of the additional layers 34 may be printable or non-printable.
  • step b / the lower face 30 of the substrate 24 or the free upper face 36 of the additional layer 34 (furthest from the plastic film, in the case where the structure 12 'comprises several additional layers) is covered with 26.
  • these two faces 30, 36 are covered with glue 26.
  • step c / the multilayer structure 12 'and the substrate 24 are laminated or laminated, so as to form a rolled or laminated product 32', then the plastic film 14 and the release layer are removed, so as to to bare the smooth or ultra smooth face 22 of the printable layer 18 of the sheet 10 '.
  • the sheet of FIG. 2 may comprise a substrate 24 precoated on its face 30, in order to increase its smoothness.
  • the precoat 33 is of the same type as that described with reference to FIG.
  • Figures 3 and 4 show schematically means for implementing the c / transfer step of the method according to the invention.
  • a first roll 40 is provided for driving a continuous strip of the multilayer structure 12 (formed of a plastic film 14, a non-stick layer 16 and a printable layer 18 - and optionally layer (s) additional 34).
  • a second roller 42 parallel and adjacent to the first roller 40, is provided for driving a continuous strip of the substrate 24.
  • rollers 40, 42 rotate in opposite directions and are at a small distance from each other, the multilayer structure 12 and the substrate 24 being forced to pass between these rollers and being applied at a given pressure against each other. other, to ensure their rolling or lamination.
  • the adhesive 26 may be deposited on the multilayer structure 12 and / or the substrate 24, as indicated in the foregoing, prior to this lamination step, or during this lamination step. In the latter case, the glue 26 may be injected between the structure 12 and the substrate, prior to their passage between the rollers, as is schematically represented by the double arrow in FIG.
  • a third roller 44 drives in one direction the sheet 10 formed by the substrate 24 and the printable layer 18, while the plastic film 14 and the release layer 16 are driven in another direction to separate them from the sheet 10.
  • FIGS. 5 and 6 are images obtained by a scanning electron microscope (SEM) of a face of a paper or base substrate 24 and a smooth or ultra-smooth face of a sheet 10, produced by the method according to the invention, respectively.
  • the base paper ( Figure 5) is here formed of cellulosic fibers intermingled with each other and defining a rough face.
  • the roughness Sz of this face is of the order of 19,7 ⁇ , which means that the maximum surface height, from the highest point to the deepest valley is equal to 19,7 ⁇ .
  • the sheet according to the invention (FIG. 6) has a smooth or ultra-smooth face defined by its printable layer which has a roughness Sz of the order of ⁇ , ⁇ ⁇ , which is comparable to that of a paper coated with a plastic film, according to the prior art, which has a roughness Sz of the order of 1, 5 ⁇ .
  • Example 1 Preparation of a Smooth or Ultra Smooth Sheet Printable by Offset
  • a smooth or ultra-smooth sheet according to the invention was prepared for offset printing from a printable layer A having the following composition:
  • the printable layer A has a final concentration by weight of 50% and a viscosity of 100cps, measured using a Brookfield® viscometer.
  • the layer A is applied on one side of a PET plastic film, which is previously coated with a non-stick layer based on chromium stearyl chloride.
  • the removal of the layer A on the film is about 10 g / m 2 .
  • Layer A is then dried in an oven at 70 ° C.
  • a multilayer structure consisting of the PET plastic film, a non-stick layer of stearic chromium chloride and the printable layer A is then obtained.
  • the free face of the layer A is glued with a Super-Lok® 364 glue from the company National Starch.
  • the adhesive is deposited at a rate of 3 g / m 2 on the layer A.
  • the glued face of the layer A is applied against a substrate formed by a Bristol® paper 335 g / m 2 manufactured by the Arjowiggins company, then the whole is dried. in an oven at 70 ° C.
  • the process step b1 is then complete.
  • step c1 The plastic film and the nonstick layer are then removed (in step c1) leaving only the printable layer A and the adhesive on the paper substrate.
  • Example 2 Preparation of a Smooth or Ultra Smooth Sheet Printable by Offset, from a Bulky Paper or Having a Relatively Large Hand
  • Example 2 The printable layer A of Example 2 is prepared and applied in the same manner and under the same conditions as those discussed in Example 1, on a Bulk Paper Elementa® bulk from Arjowiggins. This paper has an initial hand of 1, 4cm 3 / g.
  • Example 3 Preparation of an Offset Printable Smooth or Ultra-Smooth Sheet from a Precut Backing Paper
  • the printable layer A of Example 3 is prepared and applied in the same manner and under the same conditions as those discussed in Example 1, on a Maine Gloss® precooked paper from Arjowiggins. This paper has an initial Bekk smoothness of 400s.
  • a smooth or ultra-smooth colored sheet according to the invention for Offset printing was prepared from a printable layer B having the following composition:
  • the printable layer B has a final concentration by weight of 50% and a viscosity of 100cps, measured using a Brookfield® viscometer.
  • the layer B is applied on one side of a PET plastic film which is previously coated with a non-stick layer based on chromium stearo chloride The removal of the layer B on the film is about 10g / m 2 .
  • the layer B is then dried in an oven at 70 ° C.
  • a multilayer structure consisting of the PET plastic film, a non-stick layer made of stearic chromium chloride and the printable layer B, is then obtained.
  • the free face of the layer B is glued with a Super-Lok® 364 glue from the company National Starch.
  • the adhesive is deposited at a rate of 3 g / m 2 on the layer B.
  • the glued face of the layer B is applied against a substrate formed by a Bristol® 335g / m 2 paper manufactured by the Arjowiggins company, then the whole is dried. in an oven at 70 ° C.
  • the plastic film and the nonstick layer are then removed leaving only the printable layer B and the adhesive on the paper substrate.
  • the paper obtained has a very homogeneous coloring.
  • a smooth or ultra-smooth sheet according to the invention with low surface resistivity and Offset printing was prepared from a printable layer C having the following composition:
  • the printable layer C has a final concentration by weight of 50% and a viscosity of 100cps, measured using a Brookfield® viscometer.
  • the layer C is applied on one side of a PET plastic film which is previously covered with a non-stick layer based on stearo chromium chloride.
  • the deposit of the layer C on the film is about 10 g / m 2 .
  • the layer C is then dried in an oven at 70 ° C.
  • a multilayer structure consisting of the PET plastic film, a non-stick layer of stearic chromium chloride and the printable layer C is then obtained.
  • the free face of the layer C is glued with a Super-Lok® 364 glue from the company National Starch.
  • the adhesive is deposited at a rate of 3 g / m 2 on the layer C.
  • the glued face of the layer C is applied against a substrate formed by a Bristol® 335 g / m 2 paper manufactured by Arjowiggins, then the whole is dried. in an oven at 70 ° C.
  • the plastic film and the nonstick layer are then removed leaving only the printable layer C and the adhesive on the paper substrate.
  • the resistivity of the paper thus obtained is relatively low, and is of the order of 3.10 7 . This resistivity is lower than that of the paper of Example A, which is of the order of about 10 10 .
  • a smooth or ultra-smooth sheet according to the invention for inkjet printing was prepared from a printable layer D having the following composition: compounds
  • the printable layer D has a final concentration by weight of 14% and a viscosity of 50cps, measured using a Brookfield® viscometer.
  • the layer D is applied on one side of a PET plastic film which is previously covered with a non-stick layer based on chromium stearo chloride.
  • the deposit of the layer D on the film is about 15 g / m 2 .
  • the D layer is then dried in an oven at 70 ° C.
  • a multilayer structure is thus obtained constituted by the PET plastic film, a non-stick layer made of stearochromium chloride and the printable layer D.
  • the free face of the layer D is glued with a Super-Lok® 364 glue from the company National Starch.
  • the glue is deposited at a rate of 3 g / m 2 on the layer D.
  • the glued face of the layer D is applied against a substrate formed by a Bristol® paper 335 g / m 2 manufactured by Arjowiggins, then the whole is dried. in an oven at 70 ° C.
  • the plastic film and the nonstick layer are then removed leaving only the printable layer D and the adhesive on the paper substrate.
  • the basis weight was measured according to ISO 536 (1976), using a Sartorius® scale with a range of 2200 g and an accuracy of 0.1 g; the thickness was measured according to ISO 534 (1988), by means of an MTS MI20 micrometer;
  • the gloss was measured at 75 ° according to the TAPPI® T480 om-92 method, using a Byk-Gardner® micro-gloss 75 ° model 4553 apparatus;
  • the surface resistivity was measured according to the ASTM D257-83 method, using a Philips PM2525 Multimeter apparatus;
  • Offset printability was evaluated by an absorption test with porometric inks according to a CTP method No. 9; the "porometric ink” test makes it possible to quantify the absorption capacity of a paper and the speed of penetration of the ink of this paper; it is based on the deposit of a special ink, consisting of a black dye, on the paper and on the study of its behavior over time; and
  • the transfer of a printable layer (A to D) on a support causes an increase in the basis weight and thickness of this support.
  • the increase in grammage is of the order of 30 to 40 g / m 2 in the case of the layer A, 126 g / m 2 in the case of the layer B, 41 g / m 2 in the case of the layer C, and 24g / m 2 in the case of the layer D.
  • the increase in thickness is of the order of 20 to 33 ⁇ in the case of the layer A, ⁇ in the case of the layer B, 64 ⁇ in the case of the layer C, and 84 ⁇ in the case of the layer D.
  • the increase in the basis weight and thickness of the support is mainly due to the addition of glue and the transfer of the printable layer on this support.
  • a paper has a relatively large hand when it has a value greater than or equal to 1, 10cm 3 / g. In the aforementioned examples, only Elementa® bulk paper has a large hand (1, 4cm 3 / g).
  • Deposition of the printable layer A on a support causes a decrease in his hand.
  • the support initially has a large hand, as is the case of Elementa® bulk in Example 2, the transfer of the layer A on this support causes a slight decrease of his hand (of the order of 5%) .
  • the hand of the Elementa® bulk support comprising the layer A remains however very important (1, 33cm 3 / g, that is to say greater than 1, 10cm 3 / g).
  • the deposition of the printable layer B on a support causes a decrease in his hand, while the deposition of the printable layer C on a support has little influence on his hand.
  • Deposition of the printable layer D on a support causes an increase in its hand because the printable layer is here an inkjet layer which is very porous and therefore has a low density.
  • the transfer of the D layer on a Bristol® support increases its smoothness to around 1000s.
  • the sheets prepared in Examples 1 to 6 all have a high gloss, greater than 80%.
  • the method therefore makes it possible to produce sheets having both a high degree of smoothness and gloss.
  • the presence of conductive additive in the layer C significantly reduces the surface resistivity of the sheet.
  • the sheet of Example 5 has a surface resistivity which is approximately 1000 times lower than that of the sheets of Examples 1 and 4. This additive makes it possible to increase the electrical conductivity of the sheets and thus to envisage the production of electro-magnetic sheets. conductive.
  • the porometric ink test shows that the papers have relatively correct optical density values after inking, even if they do not increase over time. , thus showing limited absorption.
  • Example 7 Preparation of a Smooth or Ultra-Smooth Printable Sheet Containing a Varnish or Printable Resin
  • a smooth or ultra-smooth sheet according to the invention was prepared from a printable layer formed by a lacquer or an acrylic printable resin E having the following composition. This sheet is printable by Offset.
  • the printable lacquer E has a final concentration by weight of 50% and a viscosity of 50cps, measured using a Brookfield® viscometer.
  • the varnish E is applied on one side of a PET plastic film, which is previously coated with a nonstick layer based on stéaro chromium chloride.
  • the removal of the varnish on the film is about 5g / m 2 .
  • the varnish is then dried in an oven at 70 ° C.
  • a multilayer structure consisting of PET plastic film, a non-stick layer of stearic chromium chloride and acrylic lacquer is then obtained.
  • the free face of the varnish is glued with a Super-Lok® 364 glue from National Starch.
  • the adhesive is deposited at a rate of 3g / m 2 on the varnish.
  • the glued face of the varnish is applied against a substrate formed by Bristol® 335g / m 2 paper manufactured by Arjowiggins, then the whole is dried in an oven at 70 ° C.
  • the plastic film and the layer nonstick are then removed (in step c) to leave only the printable varnish and glue on the paper substrate.
  • the transfer of the printable varnish E on the support modifies little the weight, the thickness and the hand of this support. This transfer makes it possible to produce a sheet with a smoothness (> 10,000s) and a gloss (99%) very high.
  • the printability of this sheet is however lower than those prepared in Examples 1 to 6 because of the absence of pigments in the printable layer.
  • Each prepared sheet here comprises two printable layers AA, AB or AC, a first layer (A, B or C) deposited (by kiss coating) on the nonstick layer of the multilayer structure and a second layer (A) deposited (by kiss coating ) on the first layer.
  • the first layer that is to say the layer closest to the plastic film in the multilayer structure, is the layer intended to directly receive the inks during printing. It defines the printability according to the printing process.
  • the second layer is a precoat allowing a good adhesion of the first layer on the support and forming a barrier to the glue (to prevent it from entering the first printable layer).
  • the plastic film used is a PET film 12 ⁇ thick.
  • the printable layers for the preparation of an offset printable sheet are a first layer B, and a second layer A.
  • the printable layers for the preparation of an HP Indigo printable sheet are a first layer C, and a second layer A.
  • the printable layers for the preparation of a printable sheet by electrically conductive inks (Printed Electronics) are a first layer A, and a second layer A.
  • the multilayer structures prepared are of the PET / non-stick layer / layer A & A or C & A type or B & A. Layers A, B and C are deposited at a rate of 6 g / m 2 .
  • compositions of these layers are detailed in the following tables.
  • Binder 1 aqueous dispersion of styrene-190ml copolymer
  • Binder 2 Dispersion aqueous copolymer n-butyl 94ml
  • Binder 1 aqueous dispersion of styrene-95ml copolymer
  • Binder 2 Aqueous dispersion of n-butyl copolymer 47ml acrylate-acrylonitrile-styrene
  • Binder 1 aqueous dispersion of styrene-95ml copolymer
  • Binder 2 Aqueous dispersion of n-butyl copolymer 47ml acrylate-acrylonitrile-styrene
  • the sheets obtained have good printability according to their applications, that is to say for offset, for the digital HP Indigo and for conductive inks (printed electronics).

Landscapes

  • Laminated Bodies (AREA)
  • Ink Jet (AREA)
  • Ink Jet Recording Methods And Recording Media Thereof (AREA)
  • Paper (AREA)

Abstract

Procédé de fabrication d'une feuille imprimable lisse, voire ultra lisse, comprenant les étapes consistant à : préparer une structure multicouche (12) comprenant au moins un film plastique inférieur (14), une couche intermédiaire antiadhésive (16), et une couche supérieure imprimable (18), encoller une face (30) d'un substrat (24) ou la face supérieure (28) de la couche imprimable, et appliquer le substrat sur la couche imprimable, pour les contrecoller, puis retirer le film plastique de la couche imprimable, cette couche imprimable (18) définissant sur la feuille une face lisse ou ultra lisse (22).

Description

Feuille imprimable ultra lisse et recyclable
et son procédé de fabrication
La présente invention concerne une feuille imprimable lisse ou ultra lisse et recyclable, ainsi que son procédé de fabrication. Cette feuille peut être utilisée dans des domaines distincts tels que ceux de l'emballage, de l'électronique, de l'optique, ou des arts graphiques, par exemple comme support d'impression, en particulier d'image photographique.
Dans la technique connue, une feuille ultra lisse peut être fabriquée en laminant un film plastique sur une face d'un papier, ce film plastique définissant une face ultra lisse sur le papier. Le papier de base est formé d'un matériau fibreux dont les faces ont une rugosité relativement importante, de l'ordre de 20μηη environ, c'est-à-dire que chacune de ses faces est formée de bosses et de creux dont la hauteur qui les sépare est de l'ordre de 20μηη. Le laminage d'un film plastique sur une face d'un tel papier permet de conférer à cette face une rugosité très faible, de l'ordre de 1 μηη dans le cas d'un film de PET (polyéthylène téréphtalate).
Le papier étant un matériau relativement coûteux et produit à grande échelle, il est important qu'il soit recyclable. Cependant, une feuille à base de papier, ultra lisse car comportant un film plastique n'est pas recyclable ou est difficilement recyclable, ce qui n'est donc pas écologique ni économique. En effet, lors du recyclage de feuilles à base papier, ces feuilles sont broyées et mélangées à de l'eau dans un pulpeur pour former une pâte. Dans le cas où ces feuilles comprennent des films plastiques, ces films sont déchiquetés dans le pulpeur et leur matériau plastique pollue la pâte.
Il n'est donc pas possible, avec la technique actuelle, de fabriquer une feuille ultra lisse qui soit recyclable, de préférence entièrement recyclable.
Par ailleurs, une telle feuille ultra lisse n'est pas imprimable et une résine imprimable doit être déposée sur le film plastique de la feuille pour la rendre imprimable. Cette technique est notamment utilisée pour fabriquer des feuilles à base papier pour l'impression d'image photographique (appelées en anglais resin-coated photographie papers), ces feuilles comportant un film en PE (polyéthylène) et ayant un lissé Bekk de l'ordre de 6000s.
Une feuille lisse peut également être fabriquée en déposant une composition de couchage sur une face d'un papier, cette composition définissant après séchage une face lisse sur le papier. Cette technique permet de fabriquer une feuille lisse sans film plastique. La composition est déposée sur le papier par une technique de couchage au rideau, par lame traînante ou raclante, par lame d'air, par héliogravure ou encore par rouleaux (s/'ze press, film press, etc.) La face du papier de base, sur laquelle est déposée la composition de couchage, comporte une alternance de creux et de bosses, les creux étant remplis par la composition de couchage et les bosses étant aplanies lors du couchage, ce qui permet de réduire la rugosité du papier. Toutefois, cette technique ne permet pas d'obtenir une feuille aussi lisse qu'une feuille recouverte d'un film plastique, même si cette feuille est par la suite lissée, par exemple par calandrage.
Le procédé actuellement utilisé pour fabriquer une feuille lisse et brillante consiste à déposer une composition de couchage sur un papier de base au moyen d'un rouleau mécanique dont la surface cylindrique est très lisse et recouverte d'une couche de chrome. Le lissé Bekk d'une feuille obtenue par ce procédé est de l'ordre de 50s et est donc toutefois inférieur à celui d'une feuille comportant un film plastique (de l'ordre de 6000s dans le cas d'un film en PE).
Par ailleurs, il est difficile d'obtenir une feuille lisse par couchage d'une composition sur un papier relativement rugueux. En effet, lorsque les creux précités de la face du papier sont trop volumineux ou trop nombreux, la composition de couchage ne comble pas entièrement ces creux, ou une quantité trop importante de cette composition est nécessaire pour le faire. C'est par exemple le cas d'un papier ayant une main relativement importante, par exemple supérieure à 1 ,10cm3/g, qui a de ce fait des faces relativement rugueuses et une faible imprimabilité. Le couchage d'une composition sur une face de ce papier, même en grande quantité, ne permet pas de fabriquer une feuille lisse, et diminue par ailleurs considérablement sa main. De plus, même si le calandrage de la feuille permettait d'augmenter son lissé, cela se ferait au détriment de sa main.
Il n'est donc pas non plus possible, avec la technique connue, de fabriquer dans des conditions satisfaisantes, une feuille lisse à partir d'un papier rugueux et/ou ayant une main relativement importante.
L'invention a notamment pour but d'apporter une solution simple, efficace et économique aux problèmes des techniques antérieures.
Elle a pour objet un procédé de fabrication d'une feuille lisse, encore appelée ultra lisse au sens de l'invention, le lissé de cette feuille étant indépendant de la rugosité du papier ou plus généralement du substrat de base utilisé, et la feuille ne comportant pas de film plastique et étant donc au moins en partie recyclable, voire biodégradable.
Elle propose à cet effet un procédé de fabrication d'une feuille imprimable présentant au moins une face lisse, et avantageusement ultra lisse, cette feuille comportant un substrat, en particulier en papier, dont au moins une face est recouverte au moins en partie d'une couche ou de plusieurs couches superposées, le procédé comprenant les étapes consistant à :
a/ préparer ou apporter une structure multicouche comprenant au moins, ou constituée par, un film plastique, de préférence lisse, une couche antiadhésive, et une couche imprimable, la couche antiadhésive étant intercalée entre le film plastique et la couche imprimable,
b/ encoller une face du substrat et/ou la face de la structure multicouche, située du côté opposé au film plastique, et appliquer la face précitée du substrat contre la face précitée de la structure multicouche, de façon à contrecoller la structure multicouche et le substrat, et cl retirer le film plastique de la couche imprimable, cette couche imprimable définissant ladite face lisse ou ultra lisse de la feuille.
Dans un mode de réalisation particulier de l'invention, la structure multicouche est préparée préalablement à la mise en œuvre du procédé de fabrication de la feuille imprimable. Dans ce cas, la structure multicouche est apportée pour la réalisation du procédé de fabrication de la feuille imprimable.
Selon l'invention, la face lisse ou ultra lisse de la feuille est définie par une couche imprimable qui est préparée sur un film plastique appelé « donneur », ladite couche imprimable étant, à ce stade, comprise dans une structure multicouche, puis est transférée sur le substrat de base appelé « receveur ». Le lissé de la couche imprimable et donc de la feuille est induit par celui du film plastique de la structure multicouche, et ne dépend donc pas de celui du substrat de base utilisé. L'invention permet donc de transférer l'état de surface d'un film plastique sur un substrat quelconque. Autrement dit, l'invention permet de fabriquer une feuille lisse ou ultra lisse à partir d'un substrat quelconque, tel qu'avantageusement un papier rugueux et/ou ayant une main relativement importante, par exemple supérieure ou égale à 1 ,10cm3/g, et sans inclure un film plastique dans la feuille ainsi réalisée.
La feuille préparée par le procédé selon l'invention est donc à la fois imprimable et recyclable.
Dans la présente demande, on entend par feuille imprimable et par substrat destiné à la préparation de la feuille imprimable, un élément mince (dont l'épaisseur ne dépasse pas 50Όμηη), de préférence souple et/ou flexible.
On entend par feuille ou couche imprimable, une feuille ou une couche pouvant être imprimée par toute technique d'impression, et en particulier par impression Offset, jet d'encre, laser, hélio, fléxo, toner sec, toner liquide, électrophotographie, lithographie, etc. Une couche imprimable comprend typiquement un mélange de pigments et d'au moins un liant, ou est formée d'un vernis imprimable à base de polymère(s) du type acrylique, vinylique, polyuréthane, styrénique, d'amidon, d'alcool polyvinylique, d'éthylène, ou d'un mélange de ces polymères. L'encre est destinée à être déposée sur la face libre lisse ou ultra lisse de la feuille imprimable ou de la couche imprimable. On entend par feuille recyclable, une feuille qui est exempte de film plastique, par exemple en matière thermoplastique ou thermodurcissable.
Selon une caractéristique de l'invention, l'impression de la couche imprimable n'entraîne pas de modification structurelle de celle-ci, et en particulier de changement d'état ou de phase de celle-ci (tel par exemple qu'un passage d'un état solide à un état liquide puis retour à l'état solide).
Une structure multicouche de l'invention préparée ou apportée dans le cadre du procédé selon l'invention comporte notamment, ou est constituée par, un film plastique inférieur, une couche intermédiaire antiadhésive et une couche supérieure imprimable. La couche antiadhésive recouvre au moins une partie de la face supérieure du film plastique, et la couche imprimable recouvre au moins une partie de la face supérieure de la couche antiadhésive.
Le film plastique sert de support de fabrication de la couche imprimable. Ce film ne subsiste pas dans le produit final, à savoir la feuille, qui est donc recyclable. La face supérieure du film (située du côté de la couche imprimable) est avantageusement la plus lisse possible, car la qualité de surface de la face lisse de la feuille, définie par la couche imprimable, est fonction de la qualité de surface de cette face supérieure du film plastique. Autrement dit, plus le film plastique de la structure multicouche est lisse et plus la feuille obtenue est lisse.
Le film plastique est choisi parmi un film de polyéthylène téréphtalate (PET), de polyéthylène (PE), de polypropylène (PP), de polymère à base d'acide polylactique (PLA), de tout polymère à base de cellulose, etc. Le film a par exemple une épaisseur de l'ordre de 12μηη. Avantageusement, le film plastique est exempt et/ou n'est pas recouvert de PVDF (polyfluorure de vinylidène), de PP (polypropylène), de téflon, de silice, de nitrure de bore, de stéaro chlorures de chrome ou tout autre produit ayant des propriétés antiadhérentes/antiadhésives.
La face du film située du côté de la couche imprimable est de préférence lisse et peut avoir un lissé Bekk supérieur à 10 000s Bekk.
L'épaisseur, la dureté et la température de transition vitreuse du film plastique n'ont pas ou ont peu d'influence sur les caractéristiques de la couche imprimable. Seul(e) le lissé, ou a contrario, la rugosité du film plastique a une influence sur le lissé ou la rugosité de la couche imprimable. Plus le film plastique est lisse et plus la couche imprimable est lisse. L'homme du métier est toutefois à même de déterminer quelles caractéristiques du film plastique sont susceptibles d'influencer l'état de surface de la couche imprimable, et d'optimiser ces caractéristiques en fonction du lissé final que l'on souhaite obtenir pour cette couche imprimable.
La couche antiadhésive de la structure multicouche est déposée sur le film plastique par une technique quelconque, et par exemple par héliogravure. Cette couche antiadhésive a pour fonction de limiter l'adhérence de la couche imprimable sur le film plastique et de faciliter la séparation et le retrait du film plastique de la couche imprimable à l'étape c/ du procédé ci-dessus défini. La couche antiadhésive ne modifie pas ou peu le lissé et la qualité de surface de la face du film plastique, sur laquelle est déposée cette couche.
La couche antiadhésive peut adhérer plus sur le film plastique que sur la couche imprimable, de façon à ce qu'une majeure partie voire la totalité de cette couche antiadhésive reste collée sur le film plastique, lors de son retrait de la couche imprimable. Il se peut toutefois que des parties ou des traces de cette couche antiadhésive persistent sur la couche imprimable, après le retrait du film plastique. En variante, la couche antiadhésive peut adhérer plus sur la couche imprimable que sur le film plastique, et est alors destinée à rester au moins en partie sur la couche imprimable lors du retrait du film plastique.
Dans encore une autre variante, la couche antiadhésive est destinée à se diviser sensiblement en deux parties lors du retrait du film plastique, une première partie restant sur le film plastique et une seconde partie restant sur la couche imprimable.
La structure multicouche peut comprendre deux couches antiadhésives superposées entre le film plastique et la couche imprimable, ces deux couches étant destinées à se séparer l'une de l'autre lors du retrait du film plastique (une des couches antiadhésives restant sur le film plastique et l'autre couche antiadhésive restant sur la couche imprimable).
Le fait de laisser une partie ou la totalité d'une couche antiadhésive sur la couche imprimable est particulièrement avantageux lorsque la feuille est destinée à être utilisée comme support dans une application casting. L'application casting consiste à extruder et couler au moins un polymère (tel que du polyuréthane (PU), du polychlorure de vinyle (PVC), etc.) sur un support revêtu d'une couche antiadhésive. Ce polymère peut avoir une surface texturée pour conférer à la feuille un aspect particulier (par exemple, similaire au cuir). Le fait de laisser une couche antiadhésive sur la feuille selon l'invention évite d'avoir à redéposer une telle couche sur cette feuille pour une application casting, et est donc avantageux en particulier en termes de coût et de temps de préparation du support pour l'application casting.
La couche antiadhésive a une épaisseur inférieure ou égale à 5μηη et de préférence à 1 μηη. La couche antiadhésive peut être composée de silicone(s), siloxane(s), polysiloxane(s) ou de ses dérivés, complexe(s) de Werner, tels que les stéaro chlorures de chrome, ou de cires de polyéthylène, de propylène, de polyuréthane, de polyamide, polytétrafluoroéthylène, etc. Avantageusement, la couche antiadhésive de comprend pas de
PVDF.
La couche imprimable de la structure multicouche peut être choisie parmi un vernis imprimable, un couchage papetier, etc.
Dans la présente demande, on entend par vernis imprimable, une substance à base de polymère d'acrylique, de polyuréthane, de polyméthylméthacrylate, de styrène butadiène, de vinyl acétate, de polyamide, de nitrocellulose ou de toute autre cellulose, de polyvinylalcool, d'amidon, etc. Cette substance est en général déposée sous forme liquide et solidifiée par séchage/chauffage ou par rayonnement UV ou électronique.
On entend par couchage papetier (de l'anglais paper coating) ou composition de couchage, une composition comportant un liant et des pigments. Le liant peut être à base d'acrylique, de polyuréthane, de polyméthylméthacrylate, de styrène butadiène, de vinyl acétate, de polyamide, de nitrocellulose ou de toute autre cellulose, de polyvinylalcool, d'amidon, ou d'un mélange de ceux-ci. Les pigments peuvent être choisis parmi les carbonates de calcium, les kaolins, le dioxyde de titane, le talc, les silices, mica, et particules nacrées, les pigments plastiques (polystyrène (PS), polyuréthane (PU), etc.), et leurs mélanges. Le taux de liant par rapport aux pigments est compris entre 5 et 50% environ, et de préférence entre 8 et 25%, en poids sec. Les pigments sont en général majoritaires par rapport au liant dans un couchage papetier, afin de créer des porosités qui améliorent l'absorption d'encre. Au contraire, dans une couche pour transfert thermique, les liants sont majoritaires par rapport aux pigments car l'objectif n'est pas d'avoir de porosité de surface.
La matière plastique utilisée dans la couche imprimable (en tant que liant et/ou pigments) est facilement fragmentable et ne pollue pas la pâte à papier lorsqu'elle est recyclée. Au contraire, les films plastiques gardent une cohésion et colmatent les filtres lors de la remise en suspension de la pâte à papier. Les liants hydrosolubles (tels que l'amidon, le polyvinylalcool (PVA), etc.) sont particulièrement avantageux à ce sujet car ils se dispersent dans l'eau lors du recyclage.
Le couchage papetier peut en outre comprendre un dispersant et/ou un modificateur rhéologique et/ou un colorant et/ou un agent de surface ou d'étalement et/ou un additif conducteur. Cet additif conducteur peut être utilisé pour diminuer la résistivité surfacique de la feuille.
De préférence, la couche imprimable est exempte d'agent antiadhérent et/ou de produit susceptible de diminuer l'énergie de surface de la couche, tel qu'une matière siliconée ou analogue, du PVDF, du PP, du téflon, de la silice, du nitrure de bore, etc. Ce type d'agent ou produit peut être nécessaire pour une impression d'une couche par transfert thermique, en particulier pour éviter que le papier n'adhère au ruban de l'imprimante. La couche imprimable selon l'invention peut donc ne pas être imprimable par transfert thermique.
La couche imprimable peut être formée de plusieurs sous-couches superposées les unes sur les autres, chaque sous-couche étant imprimable et étant choisie parmi les types précités (vernis imprimable, couchage papetier, etc.).
La couche imprimable peut avoir une épaisseur inférieure ou égale à 30μηη, de préférence inférieure ou égale à 15μηη, et plus préférentiellement inférieure ou égale à 10μηη. Son grammage est avantageusement inférieur ou égal à 30g/m2, de préférence inférieur ou égal à 15g/m2, et plus préférentiellement inférieur ou égal à 10g/m2. La couche imprimable peut par exemple avoir une épaisseur et un grammage qui sont inférieurs ou égaux aux valeurs combinées suivantes : 10μηη et 10g/m2, 3μηη et 10g/m2, 2μηη et 10g/m2, 5μηη et 5g/m2, 3μηη et 5g/m2, 2μηη et 5g/m2, 5μηη et 2g/m2, 3μηη et 2g/m2, ou 2μηη et 2g/m2.
La couche imprimable peut être déposée sur la couche antiadhésive par une technique quelconque, et par exemple par héliogravure.
La couche imprimable peut être déposée sur la couche antiadhésive à l'état liquide ou semi-liquide puis être solidifiée par séchage, chauffage, ou par radiation UV ou électronique. Après solidification et/ou séchage, la couche imprimable, qui est en contact avec la face lisse du film plastique par l'intermédiaire de la couche antiadhésive, présente une face lisse, située du côté du film plastique.
La couche imprimable est donc séchée et/ou solidifiée avant son transfert sur le substrat, en particulier pour ne pas modifier l'état de surface de cette couche conféré par le film plastique. Autrement dit, la structure multicouche est préparée préalablement au transfert de la couche imprimable sur le substrat, et la couche imprimable est à l'état solide et/ou sec pendant son transfert sur le substrat, c'est-à-dire aux étapes b/ et cl du procédé selon l'invention. L'état de surface de la couche imprimable est donc créé pendant la préparation de la structure multicouche.
Dans le procédé selon l'invention, la fabrication de la couche imprimable est donc réalisée indépendamment de celle du substrat de base. Cela permet notamment de mettre en œuvre le procédé avec des outils industriels standard, ce qui autorise des vitesses de production optimales.
La face lisse de la feuille peut avoir un lissé Bekk supérieur à 900 ou 1000s environ, de préférence supérieur à 2000s, et plus préférentiellement supérieur à 5000s. Dans la présente demande, on entend donc par face lisse ou ultra lisse, une face ayant un lissé Bekk supérieur à 900 ou 1000s environ, avantageusement supérieur à 2000s, et plus préférentiellement supérieur à 5000s.
Cette face lisse peut avoir une brillance supérieure à 70 %, et de préférence supérieure à 80%, cette brillance étant par exemple mesurée à 75 selon la méthode TAPPI® T480 om-92. Cette brillance peut être similaire voire supérieure à celle d'un papier photographique du type resin- coated, comportant un film plastique.
La structure multicouche peut comprendre au moins une couche supplémentaire déposée sur la couche imprimable, du côté opposé au film plastique, la face libre de cette couche supplémentaire ou de la couche supplémentaire la plus éloignée du film plastique étant destinée, à l'étape b/, à être encollée et appliquée contre la face précitée du substrat.
La ou les couches supplémentaires peuvent être fonctionnelles ou non fonctionnelles. Elles peuvent par exemple être isolantes (diélectriques) ou former une barrière (aux gaz, par exemple à l'oxygène, aux liquides, par exemple à l'eau, aux graisses, etc.).
Dans le cas où la structure multicouche comprend une seule couche supplémentaire, celle-ci est déposée sur la face supérieure de la couche imprimable, c'est-à-dire sur la face de la couche imprimable, située du côté opposé au film plastique de la structure multicouche. Cette couche supplémentaire peut être de n'importe quelle nature, et n'est donc pas forcément imprimable. Dans le cas où la structure multicouche comprend deux ou plusieurs couches supplémentaires, ces couches supplémentaires sont superposées les unes sur les autres et déposées sur la face supérieure précitée de la couche imprimable. La ou les techniques employées pour déposer la ou les couches supplémentaires sur la couche imprimable peuvent être des types précités, ou de tout autre type.
La structure multicouche peut donc comprendre en plus des trois éléments précités (un film plastique, une couche antiadhésive, et une couche imprimable), une ou plusieurs couches supplémentaires, qui sont imprimables ou non, sur la couche imprimable (du côté opposé au film plastique). La structure multicouche peut en outre comprendre une couche ou un film de colle recouvrant la couche la plus éloignée du film plastique (c'est-à-dire la couche imprimable ou la ou une couche supplémentaire).
L'étape b/ du procédé selon l'invention consiste à encoller la face du substrat destinée à recevoir la couche imprimable, ou la face de la structure multicouche, située du côté opposé au film plastique, et à appliquer ces faces l'une contre l'autre, de façon à les fixer.
Le substrat peut être choisi parmi un papier, un papier calque, un papier cartonné, et un papier couché ou précouché. Le papier peut avoir une main relativement importante supérieure ou égale à 1 ,10cm3/g, de préférence supérieure ou égale à 1 ,2cm3/g, plus préférentiellement supérieure ou égale à 1 ,3cm3/g, plus particulièrement supérieure ou égale à 1 ,4cm3/g, et encore plus particulièrement supérieure ou égale à 1 ,5cm3/g.
Le procédé selon l'invention permet de réaliser une feuille ayant à la fois une main et un lissé importants, ce qui n'était pas possible avec la technique antérieure. Il n'était en effet pas possible dans la technique antérieure de réaliser une feuille avec une main importante et une grande qualité de surface. Un substrat ayant une main importante peut être formé d'un matériau peu coûteux. Dans le cas d'un papier, la pâte à papier utilisée peut comprendre des fibres cellulosiques, un liant, et une faible proportion de charges et/ou d'adjuvants, tels que de l'amidon.
Dans un exemple particulier de réalisation de l'invention, le procédé selon l'invention entraîne une faible diminution, de 2 à 5% environ, de la main du substrat papier.
Une feuille lisse ou ultra lisse et ayant une main importante, fabriquée avec le procédé selon l'invention, a une bonne imprimabilité et un faible grammage, ce qui permet réaliser des emballages légers mais ayant une rigidité relativement importante.
Lors de l'étape bl du procédé, la face à revêtir du substrat ou la face libre de la couche imprimable ou d'une couche supplémentaire de la structure multicouche, est encollée au moyen d'une colle appropriée.
En variante, les deux faces précitées du substrat et de la structure multicouche sont encollées simultanément, ou l'une après l'autre.
L'encollage consiste à déposer une couche de colle sur la ou les faces précitées, par une technique quelconque, telle que par exemple par héliogravure. La colle peut être du type thermique, non thermique, par réticulation UV ou par réaction chimique. La colle peut être déposée sur la ou sur chaque face précitée sous forme liquide ou non liquide (dans le cas par exemple d'un film thermoadhésif). Cette colle est par exemple choisie parmi les polymères suivants : acrylique, polyuréthane, polyméthylméthacrylate, styrène butadiène, vinyl acétate, polyamide, nitrocellulose ou de toute autre cellulose, polyvinylalcool ou amidon. La ou chaque couche de colle déposée peut avoir une épaisseur inférieure ou égale à 10μηη, et de préférence inférieure ou égale à 3μηη.
Dans un cas particulier de réalisation de l'invention, la colle est déposée sur la face précitée de la structure multicouche pendant la préparation de cette structure. Cette colle fait alors partie à part entière de la structure multicouche. La colle peut être formée par une couche adhésive thermoactivable, cette couche étant activée par chauffage lors de l'application de la structure multicouche sur le substrat (receveur).
La nature de la colle et le processus de collage (sur le film et/ou sur le papier) peuvent avoir une influence importante sur l'état de surface final du papier. Il est par exemple important que la dépose de la colle soit uniforme et d'éviter la formation de cavités entre le papier et la couche imprimable.
Concernant l'uniformité de la dépose de la colle, la dépose de la colle est de préférence homogène pour éviter des excès et/ou des manques de colle par endroit, ce qui se traduirait par une feuille finale présentant des rugosités de surface. Avantageusement, la colle s'étale parfaitement sur le support (film ou papier) en ayant une tension de surface et une rhéologie adéquates.
Le mode d'enduction de la colle peut également avoir une importance. Les modes d'enduction qui génèrent le moins possible d'hétérogénéité de dépose, tels que l'héliogravure (reverse roll ou kiss coating) sont préférés. La dépose est de préférence choisie pour remplir au maximum les pores ou irrégularités de surface du papier. A titre d'exemple, lorsqu'un papier a une rugosité moyenne (par exemple Sa) de surface de 20μηη environ, une dépose de colle ayant une épaisseur d'au moins 10μηη est préférable pour combler les pores. Le dépôt de colle est de préférence réalisé sur le papier lorsque ce dernier est trop rugueux. Si la dépose sur le papier est insuffisante, il se forme alors des cavités entre la surface du papier et la couche imprimable. Lors de l'impression, ces cavités vont devenir des points de fragilité du papier qui pourront alors soit s'enfoncer, si on exerce une pression, soit s'arracher, si on exerce une traction.
Avantageusement, l'épaisseur de colle déposée sur le papier et/ou la couche imprimable est égale à au moins la moitié de la rugosité moyenne de surface (par exemple Ra ou Sa) du papier. Dans un mode de réalisation de l'invention, la colle est déposée sur au moins une face du substrat à l'étape b/, et l'épaisseur de la couche de colle déposée est au moins égale à la moitié de la rugosité moyenne de la face du substrat, et est de préférence égale à cette rugosité moyenne.
La colle peut être à base aqueuse, solvant, sans solvant, bicomposant ou monocomposant.
La colle permet de fixer la couche imprimable (ou une couche supplémentaire) sur le substrat et, le cas échéant, de compenser les irrégularités de surface du substrat. La colle comble notamment les creux de la face à revêtir du substrat et permet donc d'aplanir cette face, sans toutefois modifier les caractéristiques du substrat, telles que sa main.
L'étape b/ du procédé consiste ensuite à appliquer la face précitée du substrat sur la face précitée de la structure multicouche, de façon à les laminer ou à les contrecoller. La couche imprimable est alors prise en sandwich entre d'une part le substrat et la colle (et le cas échéant une ou plusieurs couches supplémentaires), d'un côté, et d'autre part le film plastique et la couche antiadhésive, de l'autre côté.
Dans le cas où la colle utilisée pour coller le substrat sur la structure multicouche est du type thermoadhésif, l'application du substrat sur la structure multicouche est réalisée à chaud, à une température donnée, qui est par exemple comprise entre 50 et 200°C environ. En variante, l'application et le collage du substrat sur la structure multicouche peuvent être réalisés à température ambiante.
Une légère pression peut être nécessaire pour assurer une bonne adhésion de la couche imprimable sur le substrat, par l'intermédiaire de la colle. La température et/ou la pression utilisées lors de l'application et du collage ne doivent toutefois pas modifier les caractéristiques de la couche imprimable, et en particulier l'état de surface de sa face située du côté du film plastique. Par exemple, la couche imprimable ne doit pas être ramollie par l'application d'une température élevée, car cela pourrait entraîner une modification et/ou une diminution de la qualité de surface de sa face, située du côté du film plastique.
L'étape cl du procédé consiste ensuite à retirer le film plastique de la couche imprimable et du substrat, de façon à ce que la couche imprimable (et le cas échéant la ou les couches supplémentaires précitées de la structure multicouche) restent sur le substrat. La couche imprimable, et le cas échéant la ou les couches supplémentaires, sont donc transférées depuis le film plastique appelé donneur, de la structure multicouche, sur le substrat appelé receveur.
Comme expliqué dans ce qui précède, au moins une partie et avantageusement la majorité voire la totalité de la couche antiadhésive peut rester sur le film plastique et est alors retirée de la couche imprimable, lors du retrait du film plastique. La face de la couche imprimable, qui était située du côté du film plastique dans la structure multicouche, est donc mise à nue, cette face définissant la face lisse de la feuille.
Le transfert de la couche imprimable de la structure multicouche sur le substrat, aux étapes bl et cl du procédé, peut être réalisé de la façon suivante, lorsque le substrat et la structure multicouche se présentent sous forme de bandes continues.
Le laminage ou contrecollage de la structure multicouche et du substrat peut être réalisé en passant ces deux éléments entre deux rouleaux mécaniques parallèles et adjacents, tournant dans des sens opposés. L'épaisseur du produit obtenu est notamment fonction de la distance entre les rouleaux. Une fois que la colle est sèche ou solidifiée, le film plastique est retiré de la feuille pendant que celle-ci est entraînée par un autre rouleau mécanique. En variante, on peut encoller soit la structure multicouche soit le substrat, faire sécher la colle, puis mettre en contact ces deux éléments l'un contre l'autre en appliquant une température et une pression déterminées.
Le procédé peut en outre consister en ce que, avant l'étape b/, la face précitée du substrat est précouchée avec au moins une couche de lissage comportant un ou plusieurs polymères thermoplastiques (tels qu'au moins une polystyrène, un polyuréthane, un acrylique, etc.) ou un mélange de pigments (tels que les kaolins, les carbonates de calcium, le talc, le dioxyde de titane, etc., et leurs mélanges) et d'au moins un liant (tel que à base d'acrylique, de polyuréthane, de polyméthylméthacrylate, de styrène butadiène, de vinyl acétate, de polyamide, de nitrocellulose ou de toute autre cellulose, d'amidon ou de PVA).
Cette face précouchée du substrat peut en outre être calandrée, avant l'étape b/, pour augmenter son lissé.
Le procédé selon l'invention peut comprendre une étape supplémentaire consistant à imprimer la feuille avec une encre ayant des propriétés électriques et/ou optiques.
La présente invention concerne en outre un procédé de préparation d'une structure multicouche comprenant au moins, ou constituée par, un film plastique, une couche antiadhésive, et une couche imprimable, la couche antiadhésive étant intercalée entre le film plastique et la couche imprimable.
La présente invention concerne encore un procédé d'impression d'une feuille préparée par le procédé décrit ci-dessus, ce procédé comprenant une étape d'impression de la feuille sans modification de l'état de sa couche imprimable, c'est à dire sans ramollissement ou fusion de cette couche pendant l'impression. La feuille est par exemple imprimée par Offset, jet d'encre, laser, hélio, fléxo, toner sec, toner liquide, électrophotographie, lithographie, etc. La présente invention concerne de plus un procédé de fabrication d'une feuille pour application casting présentant au moins une face lisse, cette feuille comportant un substrat, en particulier en papier, dont au moins une face est recouverte au moins en partie d'une couche ou de plusieurs couches superposées, le procédé comprenant les étapes consistant à : a/ préparer ou apporter une structure multicouche comprenant au moins, ou constituée par, un film plastique, une couche antiadhésive, et une couche pour application casting, la couche antiadhésive étant intercalée entre le film plastique et la couche pour application casting,
b/ encoller une face du substrat et/ou la face de la structure multicouche située du côté opposé au film plastique, et appliquer la face précitée du substrat contre la face précitée de la structure multicouche, de façon à contrecoller la structure multicouche et le substrat, et
cl retirer le film plastique de la couche pour application casting, cette couche définissant ladite face lisse de la feuille.
La couche pour application casting est par exemple une couche de PVA. La couche pour application casting peut avoir des propriétés antiadhérentes.
La présente invention concerne également une feuille imprimable présentant au moins une face lisse, et avantageusement ultra lisse, cette feuille comprenant un substrat, en particulier en papier, dont au moins une face est recouverte au moins en partie d'une ou plusieurs couches, dont une couche imprimable définissant ladite face lisse ou ultra lisse, caractérisée en ce que cette face lisse ou ultra lisse a un lissé Bekk supérieur à 900s ou supérieur à 1000s environ, de préférence supérieur à 2000s, et plus préférentiellement supérieur à 5000s.
La face lisse ou ultra lisse de la feuille peut avoir une brillance supérieure à 70%, et de préférence supérieure à 80%, cette brillance étant par exemple mesurée à 75° selon la méthode TAPPI T480 om-92.
La couche imprimable de la feuille peut avoir une épaisseur inférieure ou égale à 30μηη, de préférence inférieure ou égale à 15μηη, et plus préférentiellement inférieure ou égale à 10μηη. Le grammage de la couche imprimable peut être inférieur ou égal à 30g/m2, de préférence inférieur ou égal à 15g/m2, et plus préférentiellement inférieur ou égal à 10g/m2. La couche imprimable peut par exemple avoir une épaisseur et un grammage qui sont inférieurs ou égaux aux valeurs combinées suivantes : 10μηη et 10g/m2, 3μηη et 10g/m2, 2μηη et 10g/m2, 5μηη et 5g/m2, 3μηη et 3g/m2, 2μηη et 5g/m2, 5μηη et 2g/m2, 3μm et 2g/m2, ou 2μm et 2g/m2.
La présente invention concerne encore l'utilisation d'une feuille imprimable telle que décrite ci-dessus, pour la réalisation d'un composant électronique et/ou optique, cette feuille étant imprimée au moyen d'une encre ayant des propriétés électriques et/ou optiques.
La feuille selon l'invention peut être compatible avec des encres organiques électroniques pour des applications électroniques, telles que par exemple la réalisation de puces RFID (de l'anglais Radio Frequency IDentification), de systèmes d'affichage ou de détection, etc., directement sur la feuille.
Dans la technique antérieure, une puce RFID pouvait être réalisée sur une feuille formée d'un film plastique en polyéthylène téréphtalate (PET). Cependant, ce film plastique a une tenue mécanique et en température relativement faibles, ce qui limite les applications possibles de la puce et empêche l'impression du film avec des encres à des températures relativement élevées. De plus, le film en PET n'est pas recyclable de façon simple. Au contraire, lorsque le substrat de la feuille selon l'invention est réalisé en papier, cette feuille a une meilleure tenue mécanique et aux températures élevées.
Une feuille imprimée avec une encre ayant des propriétés électriques, comprend avantageusement un substrat flexible et une couche imprimable peu ou pas électriquement conductrice. Ce type de feuille peut être utilisé pour réaliser des transistors organiques en film mince au moyen d'encres organiques conductrices ou semi-conductrices. La feuille selon l'invention peut être également utilisée pour réaliser des composants optiques, tels que des guides d'onde, des motifs holographiques, etc.
A titre d'exemple, le procédé défini ci-dessus peut comprendre, avant l'étape a/, une étape préliminaire consistant à réaliser, par exemple par gravure, des motifs en creux et/ou en relief sur la face du film plastique destinée à recevoir la couche antiadhésive et la couche imprimable, la couche imprimable étant destinée à épouser la forme de ces motifs de manière à comprendre une empreinte de la face précitée du film plastique.
Dans ce cas, le transfert de l'état de surface du film à la couche imprimable comprend à la fois un transfert du lissé et des motifs du film plastique. Les motifs transférés sur la couche imprimable présentent eux- mêmes des surfaces et/ou des parois ayant un aspect lisse et étant définis de manière précise. Ce procédé est alors particulièrement avantageux pour la réalisation de composants optiques des types précités.
La présente invention concerne enfin l'utilisation d'une feuille imprimable telle que décrite ci-dessus, pour l'impression d'une image photographique, pour la réalisation d'un emballage, et/ou pour une application casting.
L'invention sera mieux comprise et d'autres détails, caractéristiques et avantages de la présente invention apparaîtront plus clairement à la lecture de la description suivante faite à titre d'exemple non limitatif et en référence aux dessins annexés dans lesquels :
- la figure 1 représente de manière très schématique des étapes du procédé selon l'invention de fabrication d'une feuille imprimable lisse ou ultra lisse ;
- la figure 2 représente de manière très schématique une variante de réalisation du procédé selon l'invention ;
- les figures 3 et 4 représentent de manière très schématique des moyens de réalisation de l'étape de transfert du procédé selon l'invention ; et - les figures 5 et 6 sont des images obtenues par un microscope électronique à balayage (MEB) d'une face d'un papier de base et d'une face d'une feuille lisse ou ultra lisse obtenue par le procédé selon l'invention.
On se réfère d'abord à la figure 1 qui représente de manière très schématique des étapes a/, bl et cl du procédé selon l'invention de fabrication d'une feuille imprimable lisse ou ultra lisse 10 et entièrement recyclable.
L'étape a/ du procédé consiste à préparer une structure multicouche 12 comportant un film plastique inférieur 14, une couche intermédiaire antiadhésive 16 et une couche supérieure imprimable 18. La préparation de cette structure 12 peut être réalisée en une étape ou plusieurs étapes successives.
La couche antiadhésive 16 et la couche imprimable 18 peuvent être déposées simultanément sur le film plastique 14, par une technique de couchage au rideau par exemple.
En variante, la couche antiadhésive 16 est déposée sur le film plastique 14, puis la couche imprimable 18 est déposée sur la couche antiadhésive.
La qualité de surface de la face supérieure 20 du film plastique 14 est transmise à la face inférieure 22 de la couche imprimable 18 (par l'intermédiaire de la couche antiadhésive 16). Les caractéristiques de surface de la face 22 de la couche imprimable sont donc définies par celles de la face 20 du film plastique 14.
A titre d'exemple, les rugosités de films et de papiers ont été testées à l'aide d'un appareil mesurant la topographie de type ALTISURF 500 de la société ALTIMET. Le premier film testé a une rugosité (par exemple Sa) de 1 μηη. Ce film a été utilisé pour transférer une couche imprimable sur un papier Bristol® de la société Arjowiggins. La rugosité mesurée de cette couche imprimable est de 1 ,1 m. Le second film a une rugosité de Ο,δμιτι. Ce film a été utilisé pour transférer une couche imprimable sur un autre papier Bristol®. La rugosité mesurée de cette couche imprimable a été de 0,7μηη. La rugosité (ou l'état de surface) du film a donc bien été transférée des films aux couches imprimables. Après séchage et/ou solidification de la couche imprimable, les caractéristiques de surface de la face 22 sont figées et ne sont pas destinées à être modifiées lors des autres étapes du procédé, et en particulier le transfert de la couche imprimable 18 sur un substrat 24, tel qu'un papier, à revêtir.
La couche imprimable 18 peut être formée d'une résine ou d'un vernis imprimable ou d'un couchage papetier comportant un liant et des pigments. En variante, la couche imprimable peut comprendre deux ou plus sous-couches qui sont choisies parmi un vernis imprimable et un couchage papetier. Dans le cas où la couche imprimable comprend deux sous- couches : un vernis imprimable et un couchage papetier, le vernis imprimable est situé au dessus ou au dessous du couchage papetier, de sorte que la face inférieure 22 précitée de la couche imprimable soit définie par le vernis imprimable ou le couchage papetier.
L'étape bl du procédé consiste à déposer une couche ou un film de colle 26 sur la face supérieure 28 de la couche imprimable 18 ou sur la face inférieure 30 à revêtir du substrat 24, voire sur ces deux faces 28, 30, puis à appliquer ces faces 28, 30 l'une contre l'autre pour laminer ou contrecoller la structure multicouche 12 et le substrat 24, et ainsi former un produit laminé ou contrecollé 32.
L'étape cl du procédé consiste à retirer le film plastique 14 et la couche antiadhésive 16 de la couche imprimable 18, de façon à ce que seule cette couche 18 reste (avec la colle 26) sur le substrat 24.
Ces étapes b/ et c/ peuvent être réalisées simultanément ou l'une après l'autre. Dans ce dernier cas, la colle 26 est avantageusement à l'état sec et/ou solidifiée lors du retrait du film plastique 14.
A l'issue de l'étape cl, la face 22 de la couche imprimable 18 est mise à nue, cette face étant lisse ou ultra lisse. Une partie de la couche antiadhésive 16 peut toutefois rester sur la face 22 de la couche imprimable 18 après le retrait du film plastique.
La couche 18 est imprimable par toute technique appropriée, l'encre étant destinée à être déposée sur la face lisse ou ultra lisse 22 de la feuille 10.
En variante, le substrat 24 peut être formé d'un papier couché ou précouché, c'est-à-dire un papier sur une face duquel une couche ou précouche 33 est déposée, celle-ci comportant un ou plusieurs polymères thermoplastiques ou un mélange de pigments et de liant. Cette couche ou précouche 33 est destinée à être déposée sur la face 30 précitée du substrat, et est avantageusement lissée par calandrage. Elle est ensuite destinée à être collée sur la face 28 de la couche imprimable 18.
La figure 2 représente une variante de réalisation du procédé selon l'invention, et diffère du procédé précédemment décrit en référence à la figure 1 , notamment en ce que la structure multicouche 12' comprend en outre au moins une couche supplémentaire 34 déposée sur la face supérieure 28 de la couche imprimable 18.
Plusieurs couches supplémentaires 34 superposées peuvent être déposées (simultanément ou successivement) sur la face 28 de la couche imprimable 18. Chacune des couches supplémentaires 34 peut être imprimable ou non imprimable.
Lors de l'étape b/, la face inférieure 30 du substrat 24 ou la face supérieure libre 36 de la couche supplémentaire 34 (la plus éloignée du film plastique, dans le cas ou la structure 12' comprend plusieurs couches supplémentaires) est recouverte de colle 26. En variante, ces deux faces 30, 36 son recouvertes de colle 26.
Lors de l'étape c/, la structure multicouche 12' et le substrat 24 sont contrecollés ou laminés, de façon à former un produit laminé ou contrecollé 32', puis le film plastique 14 et la couche antiadhésive sont retirées, de façon à mettre à nue la face lisse ou ultra lisse 22 de la couche imprimable 18 de la feuille 10'. Comme c'est le cas en figure 1 , la feuille de la figure 2 peut comprendre un substrat 24 préalablement précouché sur sa face 30, pour augmenter son lissé. La précouche 33 est du même type que celle décrite en référence à la figure 1 .
Les figures 3 et 4 représentent de manière schématique des moyens de mise en œuvre de l'étape c/ de transfert du procédé selon l'invention.
Un premier rouleau 40 est prévu pour l'entraînement d'une bande continue de la structure multicouche 12 (formée d'un film plastique 14, d'une couche antiadhésive 16 et d'une couche imprimable 18 - et éventuellement de couche(s) supplémentaire(s) 34). Un second rouleau 42, parallèle et adjacent au premier rouleau 40, est prévu pour l'entraînement d'une bande continue du substrat 24.
Les rouleaux 40, 42 tournent dans des sens opposés et sont à faible distance l'un de l'autre, la structure multicouche 12 et le substrat 24 étant forcés de passer entre ces rouleaux et étant appliqués à une pression donnée l'un contre l'autre, pour assurer leur laminage ou contrecollage.
La colle 26 peut être déposée sur la structure multicouche 12 et/ou le substrat 24, comme indiqué dans ce qui précède, préalablement à cette étape de contrecollage, ou lors de cette étape de contrecollage. Dans ce dernier cas, la colle 26 peut être injectée entre la structure 12 et le substrat, préalablement à leur passage entre les rouleaux, comme cela est schématiquement représenté par la double flèche en figure 3.
Un troisième rouleau 44 entraîne dans une direction la feuille 10 formée par le substrat 24 et la couche imprimable 18, tandis que le film plastique 14 et la couche antiadhésive 16 sont entraînés dans une autre direction pour les séparer de la feuille 10.
Les figures 5 et 6 sont des images obtenues par un microscope électronique à balayage (MEB) d'une face d'un papier ou substrat de base 24 et d'une face lisse ou ultra lisse d'une feuille 10, fabriquée par le procédé selon l'invention, respectivement. Le papier de base (figure 5) est ici formé de fibres cellulosiques entremêlées les unes aux autres et définissant une face rugueuse. La rugosité Sz de cette face est de l'ordre de 19,7μηη, ce qui signifie que la hauteur maximale de surface, du plus haut point à la plus profonde vallée est égale à 19,7μηη.
La feuille selon l'invention (figure 6) a une face lisse ou ultra lisse définie par sa couche imprimable qui a une rugosité Sz de l'ordre de Ι ,ΟΊ μηη, celle-ci étant comparable à celle d'un papier recouvert d'un film plastique, selon la technique antérieure, qui a une rugosité Sz de l'ordre de 1 ,5μηη.
Cette valeur de rugosité de Ι ,ΟΊ μηη de la feuille selon l'invention est donnée à titre indicatif et illustre un exemple particulier de réalisation de l'invention.
D'autres exemples illustrant la présente invention vont maintenant être décrits dans ce qui suit
Exemple 1 : Préparation d'une feuille lisse ou ultra lisse imprimable par Offset
On a préparé une feuille lisse ou ultra lisse selon l'invention pour impression Offset, à partir d'une couche imprimable A ayant la composition suivante :
Composition de la couche A
Pigments Carbonate de calcium 1248g
Hydrocarb® 60 OG (Omya)
Liant Dispersion aqueuse de copolymère n-butyl 300g
acrylate-acrylonitrile-styrène
Acronal® S504 (BASF)
Dispersant Acide sulfoccinique - isooctylester, sel de 3g
sodium
Agnique® EHS 75E (Cognis)
Modificateur rhéologique Dispersion aqueuse de copolymère acrylique 0,6g
Sterocoll® FD (BASF)
Agent d'étalement Tensio-actif non-ionique 0,2g
Surfynol® 420 (Safic-Alcan) La couche imprimable A a une concentration finale en poids de 50% et une viscosité de 100cps, mesurée à l'aide d'un viscosimètre Brookfield®.
La couche A est appliquée sur une face d'un film plastique en PET, qui est préalablement recouverte d'une couche antiadhésive à base de stéaro chlorure de chrome. La dépose de la couche A sur le film est d'environ 10g/m2. La couche A est ensuite séchée dans un four à 70°C. On obtient alors une structure multicouche constituée par le film plastique en PET une couche antiadhésive en stéaro chlorure de chrome et la couche imprimable A.
La face libre de la couche A, c'est-à-dire la face située du côté opposé au film plastique, est encollée avec une colle Super-Lok® 364 de la société National Starch. La colle est déposée à raison de 3g/m2 sur la couche A. La face encollée de la couche A est appliquée contre un substrat formé par un papier Bristol® 335g/m2 fabriqué par la société Arjowiggins, puis l'ensemble est séché dans un four à 70°C. L'étape bl du procédé est alors terminée.
Le film plastique et la couche antiadhésive sont ensuite retirés (lors de l'étape cl) pour ne laisser que la couche imprimable A et la colle sur le substrat papier.
La feuille préparée est imprimable par Offset. Elle n'est pas imprimable par transfert thermique. Ceci a été confirmé par un test d'impression de la feuille obtenue à l'exemple 1 avec une imprimante transfert thermique Canon Selphy CP800. Les transferts du jaune, du cyan et du magenta ont été mauvais, et le noir ne s'est pas du tout transféré. L'image finale n'était pas acceptable. Exemple 2 : Préparation d'une feuille lisse ou ultra lisse imprimable par Offset, à partir d'un papier bouffant ou ayant une main relativement importante
La couche imprimable A de l'exemple 2 est préparée et appliquée de la même manière et dans les mêmes conditions que celles discutés dans l'exemple 1 , sur un papier bouffant Elementa® bulk de la société Arjowiggins. Ce papier a une main initiale de 1 ,4cm3/g. Exemple 3 : Préparation d'une feuille lisse ou ultra lisse imprimable par Offset, à partir d'un papier support précouché
La couche imprimable A de l'exemple 3 est préparée et appliquée de la même manière et dans les mêmes conditions que celles discutés dans l'exemple 1 , sur un papier précouché Maine Gloss® de la société Arjowiggins. Ce papier a un lissé Bekk initial de 400s.
Exemple 4 : Préparation d'une feuille colorée lisse ou ultra lisse imprimable par Offset
On a préparé une feuille colorée lisse ou ultra lisse selon l'invention pour impression Offset, à partir d'une couche imprimable B ayant la composition suivante :
Figure imgf000028_0001
La couche imprimable B a une concentration finale en poids de 50% et une viscosité de 100cps, mesurée à l'aide d'un viscosimètre Brookfield®.
La couche B est appliquée sur une face d'un film plastique en PET qui est préalablement recouverte d'une couche antiadhésive à base de stéaro chlorure de chrome La dépose de la couche B sur le film est d'environ 10g/m2. La couche B est ensuite séchée dans un four à 70°C. On obtient alors une structure multicouche constituée par le film plastique en PET une couche antiadhésive en stéaro chlorure de chrome et la couche imprimable B.
La face libre de la couche B, c'est-à-dire la face située du côté opposé au film plastique, est encollée avec une colle Super-Lok® 364 de la société National Starch. La colle est déposée à raison de 3g/m2 sur la couche B. La face encollée de la couche B est appliquée contre un substrat formé par un papier Bristol® 335g/m2 fabriqué par la société Arjowiggins, puis l'ensemble est séché dans un four à 70°C.
Le film plastique et la couche antiadhésive sont ensuite retirés pour ne laisser que la couche imprimable B et la colle sur le substrat papier.
Le papier obtenu a une coloration très homogène.
Exemple 5 : Préparation d'une feuille lisse ou ultra lisse imprimable par Offset et à faible résistivité surfacique
On a préparé une feuille lisse ou ultra lisse selon l'invention à faible résistivité surfacique et pour impression Offset, à partir d'une couche imprimable C ayant la composition suivante :
Composition de la couche imprimable C
Pigments Carbonate de calcium 1248g
Hydrocarb® 60 OG (Omya)
Liant Dispersion aqueuse de copolymère n-butyl 300g
acrylate-acrylonitrile-styrène
Acronal® S504 (BASF)
Dispersant Acide sulfoccinique - isooctylester, sel de 3g
sodium
Agnique® EHS 75E (Cognis)
Additif conducteur Dispersion aqueuse d'un polymère 3 g
conducteur
Clevios® P ( H.C. Starck)
Modificateur rhéologique Dispersion aqueuse de copolymère acrylique 0,6g
Sterocoll® FD (BASF) Agent d'étalement Tensio-actif non-ionique 0,2g
Surfynol® 420 (Safic-Alcan)
La couche imprimable C a une concentration finale en poids de 50% et une viscosité de 100cps, mesurée à l'aide d'un viscosimètre Brookfield®.
La couche C est appliquée sur une face d'un film plastique en PET qui est préalablement recouverte d'une couche antiadhésive à base de stéaro chlorure de chrome La dépose de la couche C sur le film est d'environ 10g/m2. La couche C est ensuite séchée dans un four à 70°C. On obtient alors une structure multicouche constituée par le film plastique en PET une couche antiadhésive en stéaro chlorure de chrome et la couche imprimable C.
La face libre de la couche C, c'est-à-dire la face située du côté opposé au film plastique, est encollée avec une colle Super-Lok® 364 de la société National Starch. La colle est déposée à raison de 3g/m2 sur la couche C. La face encollée de la couche C est appliquée contre un substrat formé par un papier Bristol® 335g/m2 fabriqué par la société Arjowiggins, puis l'ensemble est séché dans un four à 70°C.
Le film plastique et la couche antiadhésive sont ensuite retirés pour ne laisser que la couche imprimable C et la colle sur le substrat papier.
La résistivité du papier ainsi obtenu est relativement faible, et est de l'ordre de 3.107. Cette résistivité est inférieure à celle du papier de l'exemple A, qui est de l'ordre de 1 .1010 environ.
Exemple 6 : Préparation d'une feuille lisse ou ultra lisse imprimable par jet d'encre
On a préparé une feuille lisse ou ultra lisse selon l'invention pour impression jet d'encre, à partir d'une couche imprimable D ayant la composition suivante : Composés
Pigments Alumine 1000g
Disperal HP14-2 (Sasol)
Liant Polyvinyl Alcool 100g
Mowiol 47-88 (Seppic)
Agent d'étalement Tensio-actif non-ionique 1g
Surfynol® CT211 (Safic-Alcan)
La couche imprimable D a une concentration finale en poids de 14% et une viscosité de 50cps, mesurée à l'aide d'un viscosimètre Brookfield®.
La couche D est appliquée sur une face d'un film plastique en PET qui est préalablement recouverte d'une couche antiadhésive à base de stéaro chlorure de chrome La dépose de la couche D sur le film est d'environ 15g/m2. La couche D est ensuite séchée dans un four à 70°C. On obtient alors une structure multicouche constituée par le film plastique en PET une couche antiadhésive en stéaro chlorure de chrome et la couche imprimable D.
La face libre de la couche D, c'est-à-dire la face située du côté opposé au film plastique, est encollée avec une colle Super-Lok® 364 de la société National Starch. La colle est déposée à raison de 3g/m2 sur la couche D. La face encollée de la couche D est appliquée contre un substrat formé par un papier Bristol® 335g/m2 fabriqué par la société Arjowiggins, puis l'ensemble est séché dans un four à 70°C.
Le film plastique et la couche antiadhésive sont ensuite retirés pour ne laisser que la couche imprimable D et la colle sur le substrat papier.
Résultats : Les différentes feuilles préparées aux exemples 1 à 6 ont été analysées et les paramètres suivants de la feuille ont été mesurés : grammage, épaisseur, main, lissé, brillance, résistivité et imprimabilité.
Les mesures ont été réalisées de la façon suivante :
- le grammage a été mesuré selon la norme ISO 536 (1976), au moyen d'une balance Sartorius® de portée 2200 g et avec une précision de 0,1 g ; - l'épaisseur a été mesurée selon la norme ISO 534 (1988), au moyen d'un micromètre MTS MI20 ;
- la main (ou volume massique) a été mesurée selon la norme NFQ 03- 017 ;
- le lissé Bekk a été mesurée selon la norme ISO 5627 (1984), au moyen d'un appareil Buchel® 131 ED ;
- la brillance a été mesurée à 75° selon la méthode TAPPI® T480 om-92, au moyen d'un appareil Byk-Gardner® micro-gloss 75° modèle 4553 ;
- la résistivité de surface a été mesurée selon la méthode ASTM D257 - 83, au moyen d'un appareil Philips PM2525 Multimeter ;
- l'imprimabilité Offset a été évaluée par un test d'absorption aux encres porométriques selon une méthode CTP n°9 ; le test aux "encres porométriques" permet de chiffrer la capacité d'absorption d'un papier et la vitesse de pénétration de l'encre de ce papier ; il est basé sur la dépose d'une encre spéciale, formée d'un colorant noir, sur le papier et sur l'étude de son comportement dans le temps; et
- les tests d'impression jet d'encre ont été réalisés avec des imprimantes jet d'encre Epson 2400 et Canon ip 8500.
Le tableau ci-dessous récapitule toutes les mesures et analyses effectuées sur les feuilles des exemples 1 à 6.
Figure imgf000033_0001
paramètres non mesurés)
Le transfert d'une couche imprimable (A à D) sur un support provoque une augmentation du grammage et de l'épaisseur de ce support. L'augmentation du grammage est de l'ordre de 30 à 40g/m2 dans le cas de la couche A, de 126g/m2 dans le cas de la couche B, de 41 g/m2 dans le cas de la couche C, et de 24g/m2 dans le cas de la couche D. L'augmentation d'épaisseur est de l'ordre de 20 à 33μηη dans le cas de la couche A, de ΘΟμιτι dans le cas de la couche B, de 64μηη dans le cas de la couche C, et de 84μηη dans le cas de la couche D. L'augmentation du grammage et de l'épaisseur du support est essentiellement due à l'addition de colle et au transfert de la couche imprimable sur ce support.
Un papier a une main relativement importante lorsqu'elle a une valeur supérieure ou égale à 1 ,10cm3/g. Dans les exemples précités, seul le papier Elementa® bulk a une main importante (1 ,4cm3/g).
Le dépôt de la couche imprimable A sur un support entraîne une diminution de sa main. Lorsque le support a initialement une main importante, comme c'est le cas de Elementa® bulk dans l'exemple 2, le transfert de la couche A sur ce support entraîne une légère diminution de sa main (de l'ordre de 5%). La main du support Elementa® bulk comportant la couche A reste toutefois très importante (1 ,33cm3/g, c'est-à-dire supérieure à 1 ,10cm3/g).
Le dépôt de la couche imprimable B sur un support entraîne une diminution de sa main, alors que le dépôt de la couche imprimable C sur un support a peu d'influence sur sa main. Le dépôt de la couche imprimable D sur un support entraîne une augmentation de sa main car la couche imprimable est ici une couche jet d'encre qui est très poreuse et a donc une densité faible.
Les papiers Bristol® et Elementa® bulk ont initialement un lissé relativement faible, inférieur à 100s. Le papier précouché Maine Gloss® a initialement, grâce à sa précouche à base de carbonate de calcium et de latex styrène butadiène un lissé relativement important de 400s. Le transfert d'une couche imprimable sur un support, au moyen du procédé selon l'invention, permet de conférer au support une face lisse ou ultra lisse, comme expliqué dans ce qui précède.
Le transfert de la couche imprimable A sur un support papier permet d'augmenter considérablement son lissé. On remarque que la couche imprimable A permet de conférer à un papier à forte main un lissé très important (5035s dans l'exemple 2). Le procédé selon l'invention permet donc de réaliser un papier ayant à la fois une main et un lissé importants.
On remarque également que, plus le lissé initial du support est important et plus le lissé du support sur lequel est transféré la couche A est important. La couche A transférée sur un papier Maine Gloss® permet en effet de conférer à ce papier un lissé très important de 9436s.
Le transfert de la couche D sur un support Bristol® permet d'augmenter son lissé à environ 1000s.
Les feuilles préparées aux exemples 1 à 6 ont toutes une brillance élevée, supérieure à 80%. Le procédé permet donc de réaliser des feuilles ayant à la fois un lissé et une brillance importants.
La présence d'additif conducteur dans la couche C permet de diminuer notablement la résistivité surfacique de la feuille. La feuille de l'exemple 5 a une résistivité surfacique inférieure d'un facteur 1000 environ de celle des feuilles des exemples 1 et 4. Cet additif permet d'augmenter la conductivité électrique des feuilles et donc d'envisager la réalisation de feuilles électro-conductrices.
En ce qui concerne l'imprimabilité par Offset des feuilles préparées aux exemples 1 à 5, le test aux encres porométriques montre que les papiers ont des valeurs de densité optique après encrage relativement correctes, même si celles-ci n'augmentent pas dans le temps, montrant ainsi une absorption limitée.
En ce qui concerne le papier imprimable par jet d'encre, préparé à l'exemple 6, des tests sur imprimante jet d'encre Epson et Canon montrent des résultats corrects malgré une faible dépose. Exemple 7 : Préparation d'une feuille imprimable lisse ou ultra lisse comportant un vernis ou une résine imprimable
On a préparé une feuille lisse ou ultra lisse selon l'invention, à partir d'une couche imprimable formée par un vernis ou une résine imprimable acrylique E ayant la composition suivante. Cette feuille est imprimable par Offset.
Figure imgf000036_0001
Le vernis imprimable E a une concentration finale en poids de 50% et une viscosité de 50cps, mesurée à l'aide d'un viscosimètre Brookfield®.
Le vernis E est appliqué sur une face d'un film plastique en PET, qui est préalablement recouverte d'une couche antiadhésive à base de stéaro chlorure de chrome. La dépose du vernis sur le film est d'environ 5g/m2. Le vernis est ensuite séché dans un four à 70°C. On obtient alors une structure multicouche constituée par le film plastique en PET une couche antiadhésive en stéaro chlorure de chrome et le vernis acrylique.
La face libre du vernis est encollée avec une colle Super-Lok® 364 de la société National Starch. La colle est déposée à raison de 3g/m2 sur le vernis. La face encollée du vernis est appliquée contre un substrat formé par un papier Bristol® 335g/m2 fabriqué par la société Arjowiggins, puis l'ensemble est séché dans un four à 70°C. Le film plastique et la couche antiadhésive sont ensuite retirés (lors de l'étape cl) pour ne laisser que le vernis imprimable et la colle sur le substrat papier.
Le tableau ci-dessous récapitule les mesures et analyses effectuées sur la feuilles préparée par cet exemple 7.
Figure imgf000037_0001
Le transfert du vernis imprimable E sur le support modifie peu le grammage, l'épaisseur et la main de ce support. Ce transfert permet de réaliser une feuille avec un lissé (> 10 000s) et une brillance (99%) très élevés. L'imprimabilité de cette feuille est toutefois inférieure à celles préparées aux exemples 1 à 6 du fait de l'absence de pigments dans la couche imprimable.
Exemple 8 : Préparation de feuilles imprimables lisses ou ultra lisses imprimables par Offset, Indigo, ou par des encres électro-conductrices
Chaque feuille préparée comprend ici deux couches imprimables AA, AB ou AC, une première couche (A, B ou C) déposée (par kiss coating) sur la couche antiadhésive de la structure multicouche et une seconde couche (A) déposée (par kiss coating) sur la première couche. La première couche, c'est-à-dire la couche la plus proche du film plastique dans la structure multicouche, est la couche destinée à recevoir directement les encres lors de l'impression. C'est elle qui définit l'imprimabilité selon le procédé d'impression. La seconde couche est une précouche permettant une bonne adhésion de la première couche sur le support et formant une barrière à la colle (pour éviter que celle-ci pénètre dans la première couche imprimable).
Le film plastique utilisé est un film de PET de 12μηη d'épaisseur. Les couches imprimables pour la préparation d'une feuille imprimable par Offset sont une première couche B, et une seconde couche A. Les couches imprimables pour la préparation d'une feuille imprimable par HP Indigo sont une première couche C, et une seconde couche A. Les couches imprimables pour la préparation d'une feuille imprimable par des encres électriquement conductrices (Electronique Imprimée) sont une première couche A, et une seconde couche A. Les structures multicouches préparées sont du type PET/couche antiadhésive/couches A&A ou C&A ou B&A. Les couches A, B et C sont déposées à raison de 6 g/m2.
Les compositions de ces couches sont détaillées dans les tableaux suivants.
Composition de la couche imprimable A
Pigments Carbonate de calcium 475ml
Carbital® 95 (Imerys)
Liant 1 Dispersion aqueuse de copolymère styrène- 190ml
Butadiène
Styronal® D517 (BASF)
Liant 2 Dispersion aqueuse de copolymère n-butyl 94ml
acrylate-acrylonitrile-styrène
Acronal® S 305 (BASF)
Dispersant Acide sulfoccinique - isooctylester, sel de 3g
sodium
Agnique® EHS 75E (Cognis)
Modificateur rhéologique Dispersion aqueuse de copolymère acrylique 0,6g
Sterocoll® FD (BASF)
Agent d'étalement Tensio-actif non-ionique 0,2g
Surfynol® 420 (Safic-Alcan) Composition de la couche imprimable B
Pigments Carbonate de calcium 475ml
Carbital® 95 (Imerys)
Liant 1 Dispersion aqueuse de copolymère styrène- 95ml
Butadiène
Styronal® D517 (BASF)
Liant 2 Dispersion aqueuse de copolymère n-butyl 47ml acrylate-acrylonitrile-styrène
Acronal® S 305 (BASF)
Dispersant Acide sulfoccinique - isooctylester, sel de 3g sodium
Agnique® EHS 75E (Cognis)
Modificateur rhéologique Dispersion aqueuse de copolymère acrylique 0,6g
Sterocoll® FD (BASF)
Agent d'étalement Tensio-actif non-ionique 0,2g
Surfynol® 420 (Safic-Alcan)
Composition de la couche imprimable C
Pigments Carbonate de calcium 475ml
Carbital® 95 (Imerys)
Liant 1 Dispersion aqueuse de copolymère styrène- 95ml
Butadiène
Styronal® D517 (BASF)
Liant 2 Dispersion aqueuse de copolymère n-butyl 47ml acrylate-acrylonitrile-styrène
Acronal® S 305 (BASF)
Promoteur d'adhérence Dispersion aqueuse d'acide Acrylique - 280 ml
Ethylène Diamond® 63001 (NALCO)
Dispersant Acide sulfoccinique - isooctylester, sel de 3g sodium
Agnique® EHS 75E (Cognis)
Modificateur rhéologique Dispersion aqueuse de copolymère acrylique 0,6g
Sterocoll® FD (BASF)
Agent d'étalement Tensio-actif non-ionique 0,2g
Surfynol® 420 (Safic-Alcan) Chacune des trois structures multicouches et un papier Opale® 200 g/m2 de la société Arjowiggins ont été contrecollés avec une colle polyuréthane bicomposant, déposée à raison de 10g/m2.
Les feuilles obtenues présentent une bonne imprimabilité suivant leurs applications, c'est-à-dire pour l'offset, pour le digital HP Indigo et pour les encres conductrices (électronique imprimée).

Claims

REVENDICATIONS
1 . Procédé de fabrication d'une feuille imprimable (10) présentant au moins une face lisse (22), cette feuille comportant un substrat (24), en particulier en papier, dont au moins une face est recouverte au moins en partie d'une couche ou de plusieurs couches superposées, le procédé comprenant les étapes consistant à :
a/ préparer ou apporter une structure multicouche (12) comprenant au moins, ou constituée par, un film plastique (14), une couche antiadhésive (16), et une couche imprimable (18), la couche antiadhésive étant intercalée entre le film plastique et la couche imprimable,
b/ encoller une face (30) du substrat et/ou la face (28) de la structure multicouche située du côté opposé au film plastique, et appliquer la face précitée du substrat contre la face précitée de la structure multicouche, de façon à contrecoller la structure multicouche et le substrat, et
c/ retirer le film plastique de la couche imprimable, cette couche imprimable (18) définissant ladite face lisse (22) de la feuille.
2. Procédé selon la revendication 1 , caractérisé en ce que la couche imprimable (18) est à l'état solide et/ou sec à l'étape b/ et/ou à l'étape cl.
3. Procédé selon la revendication 1 ou 2, caractérisé en ce que le substrat (24) est choisi parmi un papier, un papier calque, un papier cartonné, et un papier couché ou précouché.
4. Procédé selon la revendication 3, caractérisé en ce que le papier a une main supérieure ou égale à 1 ,10cm3/g, de préférence supérieure ou égale à 1 ,2cm3/g, et plus préférentiel lement supérieure ou égale à 1 ,3cm3/g.
5. Procédé selon l'une des revendications précédentes, caractérisé en ce que, avant l'étape b/, la face précitée du substrat est précouchée avec au moins une couche de lissage comportant un ou plusieurs polymères thermoplastiques ou un mélange de pigments et d'au moins un liant.
6. Procédé selon la revendication 5, caractérisé en ce que, avant l'étape b/, la face précouchée du substrat est calandrée pour augmenter son lissé.
7. Procédé selon l'une des revendications précédentes, caractérisé en ce que le film plastique (14) est choisi parmi un film de polyéthylène téréphtalate (PET), de polyéthylène (PE), de polypropylène (PP), de polymère à base d'acide polylactique (PLA), ou de tout polymère à base de cellulose.
8. Procédé selon l'une des revendications précédentes, caractérisé en ce que la couche antiadhésive (16) est à base de silicone(s), siloxane(s), polysiloxane(s) ou de ses dérivés, complexe(s) de Werner, tels que les stéaro chlorures de chrome, ou de cires de polyéthylène, de propylène, de polyuréthane, de polyamide, polytétrafluoroéthylène, ou d'un mélange de ceux-ci.
9. Procédé selon l'une des revendications 1 à 8, caractérisé en ce que la couche antiadhésive (16) est au moins en partie retirée de la couche imprimable (18) lors du retrait du film plastique (14) à l'étape cl.
10. Procédé selon l'une des revendications précédentes, caractérisé en à ce que la couche antiadhésive (16) reste sur la couche imprimable (18) lors du retrait du film plastique (14) à l'étape cl.
1 1 . Procédé selon l'une des revendications précédentes, caractérisé en ce que la couche imprimable (18) comprend un mélange de pigments et d'au moins un liant ou un vernis imprimable, par exemple à base de polymère acrylique, de polyuréthane, de polyméthylméthacrylate, de styrène butadiène, de vinyl acétate, de polyamide, de nitrocellulose ou de toute autre cellulose, de polyvinylalcool, d'amidon, ou d'un mélange de ceux-ci.
12. Procédé selon l'une des revendications précédentes, caractérisé en ce que la structure multicouche (12') comprend au moins une couche supplémentaire (34) déposée sur la couche imprimable (18), du côté opposé au film plastique (14), la face libre de cette couche supplémentaire ou de la couche supplémentaire la plus éloignée du film plastique étant destinée à être encollée et appliquée contre la face précitée du substrat lors de l'étape bl.
13. Procédé selon l'une des revendications précédentes, caractérisé en ce qu'il comprend une étape supplémentaire consistant à imprimer la feuille
(10) avec une encre ayant des propriétés électriques et/ou optiques.
14. Procédé selon l'une des revendications précédentes, caractérisé en ce que la face lisse (22) de la feuille (10) a un lissé Bekk supérieur à 900s environ ou supérieur à 1000s environ, de préférence supérieur à 2000s, et plus préférentiellement supérieur à 5000s.
15. Procédé selon l'une des revendications précédentes, caractérisé en ce que la face lisse (22) de la feuille (10) a une brillance supérieure à 70%, et de préférence supérieure à 80%.
16. Procédé selon l'une des revendications précédentes, caractérisé en ce que la couche imprimable (18) a une épaisseur inférieure ou égale à
30μηη, de préférence inférieure ou égale à 15μηη, et plus préférentiellement inférieure ou égale à 10μηη, et/ou un grammage inférieur ou égal à 30g/m2, de préférence inférieur ou égal à 15g/m2, et plus préférentiellement inférieur ou égal à 10g/m2.
17. Procédé selon l'une des revendications précédentes, caractérisé en ce qu'il comprend, avant l'étape a/, une étape préliminaire consistant à réaliser, par exemple par gravure, des motifs en creux et/ou en relief sur la face du film plastique destinée à recevoir la couche antiadhésive et la couche imprimable, la couche imprimable étant destinée à épouser la forme de ces motifs de manière à comprendre une empreinte de la face précitée du film plastique.
18. Procédé selon l'une des revendications précédentes, caractérisé en ce que la colle est déposée sur au moins une face du substrat à l'étape bl, et en ce que l'épaisseur de la couche de colle déposée est au moins égale à la moitié de la rugosité moyenne de la face du substrat, et est de préférence égale à cette rugosité moyenne.
19. Feuille imprimable (10) présentant au moins une face lisse (22), cette feuille comprenant un substrat (24), en particulier en papier, dont au moins une face est recouverte au moins en partie d'une couche ou de plusieurs couches superposées, dont une couche imprimable (18) définissant ladite face lisse, caractérisée en ce que cette face lisse a un lissé Bekk supérieur à 900s environ ou supérieur à 1000s, de préférence supérieur à 2000s, et plus préférentiellement supérieur à 5000s.
20. Feuille imprimable selon la revendication 19, caractérisée en ce que sa face lisse (22) a une brillance supérieure à 70%, et de préférence supérieure à 80%.
21 . Feuille imprimable selon la revendication 19 ou 20, caractérisée en ce que la couche imprimable (18) a une épaisseur inférieure ou égale à 30μηη, de préférence inférieure ou égale à 15μηη, et plus préférentiellement inférieure ou égale à 10μηη, et/ou un grammage inférieur ou égal à 30g/m2, de préférence inférieur ou égal à 15g/m2, et plus préférentiellement inférieur ou égal à 10g/m2.
22. Utilisation d'une feuille imprimable selon l'une des revendications 19 à 21 , pour la réalisation d'un composant électronique et/ou optique, cette feuille étant imprimée au moyen d'une encre ayant des propriétés électriques et/ou optiques.
23. Utilisation d'une feuille imprimable selon l'une des revendications 19 à 21 , pour l'impression d'une image photographique, pour la réalisation d'un emballage, et/ou pour une application casting.
PCT/FR2010/052879 2009-12-23 2010-12-22 Feuille imprimable ultra lisse et recyclable et son procédé de fabrication WO2011077048A1 (fr)

Priority Applications (12)

Application Number Priority Date Filing Date Title
RU2012122864/05A RU2538581C2 (ru) 2009-12-23 2010-12-22 Ультрагладкий листовой материал для нанесения печати, пригодный для переработки, и способ его изготовления
CA2785183A CA2785183C (fr) 2009-12-23 2010-12-22 Feuille imprimable ultra lisse et recyclable et son procede de fabrication
BR112012015134A BR112012015134A2 (pt) 2009-12-23 2010-12-22 folha imprimível ultralisa e reciclável, e seu processo de fabricação
CN201080059381.0A CN102666989B (zh) 2009-12-23 2010-12-22 超光滑且可再生的可印刷纸张及其制造方法
US13/515,471 US9416495B2 (en) 2009-12-23 2010-12-22 Printable sheet that is ultra-smooth and recyclable, and its method of fabrication
EP10809308.9A EP2516741B2 (fr) 2009-12-23 2010-12-22 Feuille imprimable ultra lisse et recyclable et son procédé de fabrication
ES10809308T ES2517365T5 (es) 2009-12-23 2010-12-22 Hoja imprimible ultra-lisa y reciclable y su procedimiento de fabricación
KR1020127019337A KR101970770B1 (ko) 2009-12-23 2010-12-22 재생가능한 초-평탄 프린트 시트 및 그 제조방법
IN5032DEN2012 IN2012DN05032A (fr) 2009-12-23 2010-12-22
JP2012545398A JP5890317B2 (ja) 2009-12-23 2010-12-22 超平滑で再利用可能な印刷可能シート、及びその製造方法
ZA2012/03884A ZA201203884B (en) 2009-12-23 2012-05-28 Ultrasmooth and recyclable printable sheet and process for manufacturing same
HK12112872.4A HK1173478A1 (en) 2009-12-23 2012-12-13 Ultra smooth and recyclable printing sheet and its manufacturing process

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0906325A FR2954361B1 (fr) 2009-12-23 2009-12-23 Feuille imprimable ultra lisse et recyclable et son procede de fabrication
FR09/06325 2009-12-23

Publications (1)

Publication Number Publication Date
WO2011077048A1 true WO2011077048A1 (fr) 2011-06-30

Family

ID=42227692

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2010/052879 WO2011077048A1 (fr) 2009-12-23 2010-12-22 Feuille imprimable ultra lisse et recyclable et son procédé de fabrication

Country Status (14)

Country Link
US (1) US9416495B2 (fr)
EP (1) EP2516741B2 (fr)
JP (2) JP5890317B2 (fr)
KR (1) KR101970770B1 (fr)
CN (1) CN102666989B (fr)
BR (1) BR112012015134A2 (fr)
CA (1) CA2785183C (fr)
ES (1) ES2517365T5 (fr)
FR (1) FR2954361B1 (fr)
HK (1) HK1173478A1 (fr)
IN (1) IN2012DN05032A (fr)
RU (1) RU2538581C2 (fr)
WO (1) WO2011077048A1 (fr)
ZA (1) ZA201203884B (fr)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2992663A1 (fr) * 2012-07-02 2014-01-03 Arjo Wiggins Fine Papers Ltd Procede de fabrication d'une feuille dont une face comporte une zone de plus grand lisse que le reste de la face
CN104204353A (zh) * 2012-01-13 2014-12-10 阿约威津斯优质纸有限公司 制造板片的方法
FR3012153A1 (fr) * 2013-10-21 2015-04-24 Arjo Wiggins Fine Papers Ltd Papier destine en particulier a l'impression d'une couche electro-conductrice
WO2017085085A1 (fr) 2015-11-16 2017-05-26 Arjo Wiggins Fine Papers Limited Objet en plastique moulé par injection présentant un circuit électronique enrobé, imprimé sur un support en papier et procédé pour sa production

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2954361B1 (fr) * 2009-12-23 2012-06-15 Arjo Wiggins Fine Papers Ltd Feuille imprimable ultra lisse et recyclable et son procede de fabrication
CN102320074B (zh) * 2011-09-14 2014-05-28 黄俊腾 环保无机纸的制造方法
CN104631214A (zh) * 2015-01-16 2015-05-20 福建泰兴特纸有限公司 一种高透光纤维玻面纸及其制作方法
CN104727189A (zh) * 2015-03-17 2015-06-24 云南中烟工业有限责任公司 一种高透光纤维玻面纸及其制备方法
US9650746B2 (en) * 2015-06-11 2017-05-16 Golden Arrow Printing Co., Ltd. Pulp molding process and paper-shaped article made thereby
CN105178096A (zh) * 2015-09-10 2015-12-23 江苏琛亚印材科技有限公司 一种纸张背涂乳液及其制备工艺
CN106218265A (zh) * 2016-07-08 2016-12-14 广东德生科技股份有限公司 一种社保卡的制作方法
PL3580428T3 (pl) * 2017-02-08 2021-06-14 Inventio Ag Sposób mocowania uchwytu do szyn układu dźwigu oraz układu dźwigu
CN107059472A (zh) * 2017-02-14 2017-08-18 高域(北京)智能科技研究院有限公司 防水纸及其制造方法
CN107254757A (zh) * 2017-03-31 2017-10-17 深圳市良益达数码纺织技术有限公司 一种激光烧花数字喷印一体机
US10272836B2 (en) 2017-06-28 2019-04-30 Honda Motor Co., Ltd. Smart functional leather for steering wheel and dash board
US10953793B2 (en) 2017-06-28 2021-03-23 Honda Motor Co., Ltd. Haptic function leather component and method of making the same
US10742061B2 (en) 2017-06-28 2020-08-11 Honda Motor Co., Ltd. Smart functional leather for recharging a portable electronic device
US11665830B2 (en) 2017-06-28 2023-05-30 Honda Motor Co., Ltd. Method of making smart functional leather
US11225191B2 (en) 2017-06-28 2022-01-18 Honda Motor Co., Ltd. Smart leather with wireless power
US10682952B2 (en) 2017-06-28 2020-06-16 Honda Motor Co., Ltd. Embossed smart functional premium natural leather
CN107268337A (zh) * 2017-07-09 2017-10-20 云南中烟工业有限责任公司 一种高透光纤维玻面纸及其制备方法
EP3483337B1 (fr) * 2017-11-14 2021-12-08 Aw Branding Limited Papier translucide ou transparent recyclable et repulpable à utiliser pour des applications d'emballage
EP3656823A1 (fr) * 2018-11-26 2020-05-27 BillerudKorsnäs AB Revêtement silicone activé par une couche de support
US11751337B2 (en) 2019-04-26 2023-09-05 Honda Motor Co., Ltd. Wireless power of in-mold electronics and the application within a vehicle
CN111469574A (zh) * 2020-05-29 2020-07-31 贵州劲嘉新型包装材料有限公司 一种黑色高亮光复合纸凹印联线印刷结构及其印刷方法
WO2022226698A1 (fr) * 2021-04-25 2022-11-03 The Procter & Gamble Company Matériau d'emballage et procédé de préparation de celui-ci
CN113304980A (zh) * 2021-06-02 2021-08-27 松本涂层科技(昆山)有限公司 涂布法pvc人造革生产用离型纸及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4867844A (en) * 1985-02-22 1989-09-19 Hoechst Ag Method for treating paper to improve the holdout characteristics of printing inks
EP0454428A1 (fr) * 1990-04-24 1991-10-30 Oji Paper Company Limited Feuille réceptrice d'image par transfert thermique
EP0474494A2 (fr) * 1990-09-07 1992-03-11 Dai Nippon Printing Co., Ltd. Matériau récepteur d'image pour le transfert thermique et son procédé de fabrication
US20010009696A1 (en) * 2000-01-17 2001-07-26 Katsuya Kume Process for producing printing sheet
EP2045090A1 (fr) * 2006-07-24 2009-04-08 Tokuyama Corporation Feuille d'impression

Family Cites Families (55)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2747241C2 (de) 1977-10-21 1986-03-20 Helmuth 2058 Lauenburg Schmoock Verfahren zur Herstellung einer Schichtstoffkombination
US4349402A (en) 1980-02-08 1982-09-14 Transfer Print Foils, Inc. Method for producing a bright metalized foil or board
US4292397A (en) 1980-04-17 1981-09-29 Dai Nippon Printing Co., Ltd. Method for preparing dry planographic plates with plasma
EP0038878A1 (fr) 1980-04-28 1981-11-04 Koninklijke Emballage Industrie Van Leer B.V. Procédé de métallisation par transfert
JPH072426B2 (ja) * 1985-06-18 1995-01-18 キヤノン株式会社 インクジエツト記録方法
JP2542187B2 (ja) 1986-03-12 1996-10-09 日本製紙株式会社 感熱転写記録用受像シ−ト
JPH04363292A (ja) * 1990-09-27 1992-12-16 Dainippon Printing Co Ltd 熱転写受像シートの製造方法及び熱転写受像シート
FR2672008B1 (fr) 1991-01-29 1994-09-02 Cros Jean Pierre Materiau pour impression et procede et installation d'impression au moyen de ce materiau.
GB9203568D0 (en) 1992-02-20 1992-04-08 Amblehurst Ltd Transfer method and device
JPH06297865A (ja) * 1993-04-16 1994-10-25 Dainippon Printing Co Ltd 熱転写受像シート
JP3404602B2 (ja) * 1993-12-02 2003-05-12 大日本印刷株式会社 中間転写記録媒体及び画像形成物
JPH09119093A (ja) * 1995-10-24 1997-05-06 Oji Paper Co Ltd 支持体及びそれを用いたインクジェット記録体
WO1997018090A1 (fr) 1995-11-13 1997-05-22 Kimberly-Clark Worldwide, Inc. Revetement de support d'image
DE19628341C2 (de) 1996-07-13 1998-09-17 Sihl Gmbh Aufzeichnungsmaterial für Tintenstrahlverfahren mit wäßriger Tinte und Verwendung zum Herstellen wasserfester und lichtbeständiger Aufzeichnungen auf diesem Material
JPH10250245A (ja) * 1997-03-17 1998-09-22 Mitsubishi Paper Mills Ltd 記録用紙
GB2323800B (en) 1997-03-31 2000-12-27 Somar Corp Ink-jet recording film having improved ink fixing
JP3594788B2 (ja) * 1997-06-16 2004-12-02 日東電工株式会社 印刷シート
US6215508B1 (en) * 1997-10-15 2001-04-10 Robert A. Bryan Reverse image printing apparatus, cartridge and label, and method of making the same
JP2000001097A (ja) * 1998-06-16 2000-01-07 Dainippon Printing Co Ltd 化粧材の製造方法
US6551692B1 (en) * 1998-09-10 2003-04-22 Jodi A. Dalvey Image transfer sheet
DE59900030D1 (de) 1999-02-10 2001-01-25 Sihl Gmbh RFID-Transponder mit bedruckbarer Oberfläche
WO2000064685A1 (fr) * 1999-04-23 2000-11-02 Foto-Wear, Inc. Feuille de transfert enduite comprenant un materiau thermodurcissable ou polymerisable aux uv
US6513434B1 (en) 1999-05-17 2003-02-04 Fuji Photo Film Co., Ltd. On-press recording type lithographic printing method and apparatus
WO2001042340A1 (fr) 1999-12-07 2001-06-14 Yupo Corporation Film de resine poreux
US6465081B2 (en) 2000-04-17 2002-10-15 3M Innovative Properties Company Image receptor sheet
DE60100682T2 (de) * 2000-06-01 2004-03-11 Oji Paper Co., Ltd. Wärmeempfindliches Aufzeichnungsmaterial
JP2005501761A (ja) 2001-09-05 2005-01-20 エーピーアイ・フォイルズ・リミテッド 金型を用いない箔押し
US6819348B2 (en) 2001-09-12 2004-11-16 Dai Nippon Printing Co., Ltd. Thermal transfer film, process for producing the same and method for image formation using said thermal transfer film
DE10222433A1 (de) 2002-05-22 2003-12-11 Kurz Leonhard Fa Streifenförmiges Sicherheitselement
US6881458B2 (en) 2002-06-03 2005-04-19 3M Innovative Properties Company Ink jet receptive coating
RU2285618C2 (ru) * 2002-06-27 2006-10-20 Упм-Кюммене Ой Печатная основа и способ печати
WO2004037656A2 (fr) 2002-10-22 2004-05-06 Metsys, Llc Systeme de stockage modulaire a bacs pivotants
AU2003284168B2 (en) 2002-10-23 2007-01-18 Graphic Packaging International, Inc. Multi-layer metallized packaging material and method of making same
AT504572A1 (de) 2004-03-26 2008-06-15 Hueck Folien Gmbh Folienmaterial mit optischen merkmalen
DE102004014778A1 (de) 2004-03-26 2005-10-13 Leonard Kurz Gmbh & Co. Kg Sicherheits- und/oder Wertdokument
US7189676B2 (en) * 2004-04-21 2007-03-13 Eastman Kodak Company Crosslinked copolymer dye-receiving layer
WO2005106597A2 (fr) 2004-04-23 2005-11-10 Flexographic Prepress Solutions Cliche polymere et procede d'imagerie de la surface d'un cliche polymere
JP2006026522A (ja) 2004-07-15 2006-02-02 Seiko Epson Corp 薄膜パターンの形成方法、デバイスおよびその製造方法
JP4603311B2 (ja) * 2004-07-30 2010-12-22 富士フイルム株式会社 画像記録材料用支持体及びその製造方法並びに画像記録材料
US20060189113A1 (en) 2005-01-14 2006-08-24 Cabot Corporation Metal nanoparticle compositions
DE102005017169B4 (de) 2005-04-13 2023-06-22 Ovd Kinegram Ag Transferfolie
WO2007045431A1 (fr) 2005-10-20 2007-04-26 Man Roland Druckmaschinen Ag Procede de fabrication pour moyens d'emballage et publicitaires
WO2007070391A1 (fr) 2005-12-09 2007-06-21 K. B., Inc. Procede et materiau pour fabriquer des motifs electroconducteurs, notamment des antennes d'identification par radiofrequence (rfid)
DE102006048523A1 (de) 2005-12-27 2007-08-02 Man Roland Druckmaschinen Ag Überdruckbare Prägebeschichtung
EP1987904B1 (fr) 2006-02-23 2015-08-12 Kabushiki Kaisha Kobe Seiko Sho Produit de jonction entre un produit en acier et un materiau en aluminum
US20080187651A1 (en) 2006-10-24 2008-08-07 3M Innovative Properties Company Conductive ink formulations
US20080131590A1 (en) 2006-12-04 2008-06-05 Illinois Tool Works Inc. Method for printing electrically conductive circuits
US20080264682A1 (en) 2007-04-24 2008-10-30 John Catron Substrate and negative imaging method for providing transparent conducting patterns
WO2009118761A2 (fr) 2008-03-24 2009-10-01 Bhandari Mohan Harakchand Matériau pour couvercle à base de papier métallisé pour emballage-coque, et procédé correspondant
JP5188915B2 (ja) 2008-09-30 2013-04-24 富士フイルム株式会社 配線形成方法
US20110079344A1 (en) 2009-10-03 2011-04-07 Victor Shi-Yueh Sheu Method for making a thin film having a metallic pattern layer
FR2954361B1 (fr) * 2009-12-23 2012-06-15 Arjo Wiggins Fine Papers Ltd Feuille imprimable ultra lisse et recyclable et son procede de fabrication
CN103582962B (zh) 2010-09-01 2017-03-22 无限科技全球公司 发光或动力生成装置
WO2013027220A2 (fr) 2011-08-24 2013-02-28 Digiflex Ltd. Procédé pour le revêtement à sec de surfaces flexographiques
RU2014127750A (ru) 2012-01-13 2016-03-10 Арджо Виггинс Файн Пэйперс Лимитед Способ изготовления листового материала

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4867844A (en) * 1985-02-22 1989-09-19 Hoechst Ag Method for treating paper to improve the holdout characteristics of printing inks
EP0454428A1 (fr) * 1990-04-24 1991-10-30 Oji Paper Company Limited Feuille réceptrice d'image par transfert thermique
EP0474494A2 (fr) * 1990-09-07 1992-03-11 Dai Nippon Printing Co., Ltd. Matériau récepteur d'image pour le transfert thermique et son procédé de fabrication
US20010009696A1 (en) * 2000-01-17 2001-07-26 Katsuya Kume Process for producing printing sheet
EP2045090A1 (fr) * 2006-07-24 2009-04-08 Tokuyama Corporation Feuille d'impression

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104204353A (zh) * 2012-01-13 2014-12-10 阿约威津斯优质纸有限公司 制造板片的方法
CN104204353B (zh) * 2012-01-13 2017-08-15 阿约威津斯优质纸有限公司 制造板片的方法
EP2802711B1 (fr) 2012-01-13 2017-10-25 Arjo Wiggins Fine Papers Limited Procédé de fabrication d'une feuille
FR2992663A1 (fr) * 2012-07-02 2014-01-03 Arjo Wiggins Fine Papers Ltd Procede de fabrication d'une feuille dont une face comporte une zone de plus grand lisse que le reste de la face
FR3012153A1 (fr) * 2013-10-21 2015-04-24 Arjo Wiggins Fine Papers Ltd Papier destine en particulier a l'impression d'une couche electro-conductrice
WO2015059157A1 (fr) * 2013-10-21 2015-04-30 Arjo Wiggins Fine Papers Limited Papier destiné en particulier à l'impression d'une couche électro-conductrice
KR20160074539A (ko) * 2013-10-21 2016-06-28 아르조 위긴스 파인 페이퍼즈 리미티드 특히 전기전도성 층을 프린트하기 위한 종이
KR102014904B1 (ko) 2013-10-21 2019-08-27 아르조 위긴스 파인 페이퍼즈 리미티드 특히 전기전도성 층을 프린트하기 위한 종이
WO2017085085A1 (fr) 2015-11-16 2017-05-26 Arjo Wiggins Fine Papers Limited Objet en plastique moulé par injection présentant un circuit électronique enrobé, imprimé sur un support en papier et procédé pour sa production
US11052584B2 (en) 2015-11-16 2021-07-06 Aw Branding Limited Injection molded plastic object with an embedded electronic circuit printed on a paper base and method of its production
EP3187322A1 (fr) 2015-12-31 2017-07-05 Arjo Wiggins Fine Papers Limited Utilisation de dispositifs électroniques imprimés sur papier pour intégrer un circuit dans des objets moulés en plastique

Also Published As

Publication number Publication date
ES2517365T3 (es) 2014-11-03
JP2013515628A (ja) 2013-05-09
CA2785183C (fr) 2017-08-01
IN2012DN05032A (fr) 2015-10-02
RU2538581C2 (ru) 2015-01-10
ZA201203884B (en) 2013-01-31
KR20120125406A (ko) 2012-11-14
JP2016106183A (ja) 2016-06-16
JP5890317B2 (ja) 2016-03-22
CN102666989A (zh) 2012-09-12
CA2785183A1 (fr) 2011-06-30
FR2954361B1 (fr) 2012-06-15
BR112012015134A2 (pt) 2016-06-21
US9416495B2 (en) 2016-08-16
EP2516741A1 (fr) 2012-10-31
RU2012122864A (ru) 2014-01-27
EP2516741B1 (fr) 2014-08-06
JP6218795B2 (ja) 2017-10-25
EP2516741B2 (fr) 2021-05-12
ES2517365T5 (es) 2021-12-14
US20120308744A1 (en) 2012-12-06
CN102666989B (zh) 2015-11-25
KR101970770B1 (ko) 2019-08-27
FR2954361A1 (fr) 2011-06-24
HK1173478A1 (en) 2013-05-16

Similar Documents

Publication Publication Date Title
EP2516741B1 (fr) Feuille imprimable ultra lisse et recyclable et son procédé de fabrication
EP2802711B1 (fr) Procédé de fabrication d'une feuille
CA2925082C (fr) Papier destine en particulier a l'impression d'une couche electro-conductrice
EP2858817B1 (fr) Document de securite a haute durabilite
WO2014068512A1 (fr) Carte securisee personnalisable par impression par transfert thermique
CN105102220B (zh) 用于层压在图像支持物上的具有金属消光饰面的可印刷薄膜和制造方法
FR2985744A1 (fr) Procede de fabrication d'une feuille electro-conductrice
EP3478493B1 (fr) Procede de fabrication d'un document de securite presentant un signe de securite a contraste de brillance
EP0563245B1 (fr) Feuille imprimable marquee couchee et son procede de fabrication
FR2992663A1 (fr) Procede de fabrication d'une feuille dont une face comporte une zone de plus grand lisse que le reste de la face
FR3116022A1 (fr) procede de fabrication d’UN DOCUMENT DE SECURITE
WO2013030784A1 (fr) Support d'information destine a l'impression sur presses a toner liquide
EP3439865A1 (fr) Procede de fabrication d'un document de securite recouvert d'un film de protection et document ainsi obtenu
OA17228A (fr) Document de sécurité à haute durabilité.
WO2014097146A1 (fr) Support d'information destine a l'impression sur presses offset
WO2015040090A1 (fr) Papier comportant au moins une face ultra-brillante et procédé de fabrication dudit papier

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10809308

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010809308

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 5032/DELNP/2012

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 2785183

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2012545398

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20127019337

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2012122864

Country of ref document: RU

WWE Wipo information: entry into national phase

Ref document number: 13515471

Country of ref document: US

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112012015134

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112012015134

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20120619