WO2011065484A1 - 窒素含有多孔質炭素材料とその製造方法、及び該窒素含有多孔質炭素材料を用いた電気二重層キャパシタ - Google Patents

窒素含有多孔質炭素材料とその製造方法、及び該窒素含有多孔質炭素材料を用いた電気二重層キャパシタ Download PDF

Info

Publication number
WO2011065484A1
WO2011065484A1 PCT/JP2010/071135 JP2010071135W WO2011065484A1 WO 2011065484 A1 WO2011065484 A1 WO 2011065484A1 JP 2010071135 W JP2010071135 W JP 2010071135W WO 2011065484 A1 WO2011065484 A1 WO 2011065484A1
Authority
WO
WIPO (PCT)
Prior art keywords
nitrogen
porous carbon
carbon material
double layer
electric double
Prior art date
Application number
PCT/JP2010/071135
Other languages
English (en)
French (fr)
Inventor
曽根田 靖
昌也 児玉
森下 隆広
Original Assignee
独立行政法人産業技術総合研究所
東洋炭素株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 独立行政法人産業技術総合研究所, 東洋炭素株式会社 filed Critical 独立行政法人産業技術総合研究所
Priority to CN201080053864.XA priority Critical patent/CN102741160B/zh
Priority to KR1020127016030A priority patent/KR101731494B1/ko
Priority to US13/512,517 priority patent/US9281135B2/en
Priority to EP10833330.3A priority patent/EP2508475A4/en
Publication of WO2011065484A1 publication Critical patent/WO2011065484A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/34Carbon-based characterised by carbonisation or activation of carbon
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/06Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
    • C01B21/0605Binary compounds of nitrogen with carbon
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/05Preparation or purification of carbon not covered by groups C01B32/15, C01B32/20, C01B32/25, C01B32/30
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/26Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/44Raw materials therefor, e.g. resins or coal
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Definitions

  • the present invention relates to a nitrogen-containing porous carbon material, a method for producing the same, and an electric double layer capacitor using the nitrogen-containing porous carbon material as an electrode.
  • An electric double layer capacitor has a large capacitance and is excellent in charge / discharge cycle characteristics, and is therefore used as a backup power source in various devices including automobiles.
  • a polarizable electrode in which activated carbon is formed into a sheet with a binder resin such as polytetrafluoroethylene is used.
  • a method for producing activated carbon used for a polarizable electrode a composite of carbon and magnesium oxide (MgO) is synthesized by mixing and baking with an organic substance serving as a carbon precursor using organic acid magnesium or the like as a template (template).
  • a method of synthesizing porous carbon by elution and removal of the MgO template by the acid treatment has been proposed (see Patent Document 1).
  • Patent Document 2 describes a method for producing nitrogen-containing carbon using swellable fluorine mica as a template and melamine resin or acrylonitrile resin. Moreover, in patent document 3, the manufacturing method of nitrogen-containing carbon by carbonization of a melamine resin foam is proposed.
  • the above method has not been sufficient.
  • the melamine monomer that is a raw material of the melamine resin is sublimated by heat treatment, it cannot be directly used as a raw material of the nitrogen-containing porous carbon material, and it is difficult to easily produce the nitrogen-containing porous carbon material. .
  • the present invention provides a nitrogen-containing porous carbon material that can be produced using melamine as a direct raw material and exhibits excellent characteristics as an electrode material for an electric double layer capacitor, and a high-capacity electric double layer capacitor using the same. This is the issue.
  • the nitrogen-containing carbon porous material according to (1) which is obtained by mixing melamine and magnesium citrate, heating to 700 ° C. or higher in an inert atmosphere, cooling, and acid cleaning.
  • a method for producing a nitrogen-containing carbon porous material comprising the steps of mixing melamine and magnesium citrate, heating to 700 ° C. or higher in an inert atmosphere, and then cooling and acid cleaning. .
  • the “specific surface area” in the present invention refers to a value measured by the BET method, and the nitrogen content refers to a mass% (an anhydrous ashless basis) value obtained by combustion analysis.
  • a nitrogen-containing porous carbon material can be produced using melamine, which has been difficult to be carbonized in the past, as a carbon material material for electrodes.
  • This nitrogen-containing porous carbon material exhibits excellent characteristics as an electrode for an electric double layer capacitor using an aqueous electrolyte due to the function and high surface area of nitrogen in the material.
  • the electric double layer capacitor using the nitrogen-containing porous carbon material of the present invention has a high capacity.
  • the nitrogen-containing porous carbon material of the present invention can be manufactured by heating magnesium citrate and melamine in an inert atmosphere, and then cooling and acid cleaning. During this heating, Mg of magnesium citrate is oxidized to form fine magnesium oxide (MgO), and a carbon film containing nitrogen derived from melamine is formed around the MgO particles.
  • MgO fine magnesium oxide
  • a carbon film containing nitrogen derived from melamine is formed around the MgO particles.
  • an oligomer for example, a 2 to 10 mer
  • melamine a melamine monomer
  • these are collectively referred to as melamine.
  • Melamine normally sublimes by heating and does not leave a carbon residue, but in the present invention, a carbon porous material containing nitrogen in the carbon skeleton is formed by mixing and heating with magnesium citrate. This is because magnesium citrate, which functions as a template, has the effect that the fine MgO particles that are produced promote the polymerization of melamine, and that the gas component generated by the decomposition of magnesium citrate reacts with melamine. This is thought to be due to the formation of a polymer.
  • the mixing ratio of melamine and magnesium citrate is that magnesium citrate (Mg 3 (C 6 H 5 O 7 ) 2 ⁇ 9H 2 O) produces 19.7% by mass of MgO.
  • magnesium citrate Mg 3 (C 6 H 5 O 7 ) 2 ⁇ 9H 2 O
  • melamine exceeds 0 (parts by mass) and 10 (parts by mass)
  • the melamine: magnesium citrate ratio is preferably 1: 9 to 9: 1 (parts by mass).
  • the heating temperature is preferably 700 ° C. or higher, more preferably 800 to 1000 ° C.
  • thermal decomposition of the raw material proceeds and crystallization of nitrogen-containing carbon proceeds.
  • an electrical resistance suitable as an electrode for an electric double layer capacitor can be obtained, which is advantageous for making the pores in the carbon skeleton uniform.
  • the rate of temperature rise to the above temperature is preferably 1 to 100 ° C./min, more preferably 5 to 20 ° C./min. At such a rate of temperature increase, thermal decomposition proceeds stably and crystallization proceeds more favorably.
  • the temperature is preferably maintained for 1 to 5000 minutes, more preferably 30 to 300 minutes. Since the desorption of light elements in the nitrogen-containing carbon proceeds with this holding time, the composition and specific surface area of the resulting nitrogen-containing porous carbon material can be controlled.
  • the reaction atmosphere during this period is performed under an inert atmosphere, for example, a nitrogen atmosphere.
  • the specific surface area of the nitrogen-containing porous carbon material of the present invention is 200 to 3000 m 2 / g, preferably 600 to 2200 m 2 / g. Further, the nitrogen content is 0.5 to 30% by mass, preferably 0.5 to 20% by mass.
  • the pores of the nitrogen-containing carbon porous material of the present invention have a high rate of mesopores of 2 to 50 nm. By having many such pores, the penetration of the electrolyte when used as an electrode for an electric double layer capacitor can be reduced. It is advantageous for ion movement and has good rate characteristics. Moreover, it can be set as the electrode for capacitors with a high specific capacity.
  • the electrode for an electric double layer capacitor of the present invention is formed by bonding the nitrogen-containing carbon porous material with a binder resin and forming the sheet into a shape such as a sheet.
  • the binder resin commonly used ones such as polytetrafluoroethylene (PTFE) can be used. At this time, an appropriate amount of carbon black or the like can be added.
  • the shape of the electrode is not particularly limited.
  • the electric double layer capacitor of the present invention is the same as the conventional electric double layer capacitor except that the electrode for electric double layer capacitor is used.
  • the electrodes for the electric double layer capacitor may be provided so as to face each other with a separator interposed therebetween, and these electrodes may be impregnated with an electrolytic solution so that each of them functions as an anode and a cathode.
  • magnesium citrate di citric tribasic magnesium nonahydrate Mg 3 (C 6 H 5 O 7) 2 ⁇ 9H 2 O
  • melamine C 3 H 6 N 6
  • the mixed raw material powder is filled in a quartz boat, set in a horizontal tubular electric furnace equipped with a quartz reaction tube, and heated to 800 ° C. at a heating rate of 10 ° C. per minute by a program temperature controller. did. After holding at 800 ° C. for 1 hour, it was naturally cooled to obtain a fired sample.
  • the mixing ratio (parts by mass) in Table 1 is that magnesium citrate (Mg 3 (C 6 H 5 O 7 ) 2 ⁇ 9H 2 O) produces 19.7% by mass of MgO. 19.7% of the weighed value (g) was converted to MgO mass, and each value was shown when the sum of MgO mass and melamine weighed value (g) was 10 (parts by mass).
  • the carbon yield is a ratio of carbon mass in the obtained carbon sample mass raw material (melamine + Mg citrate).
  • the working electrode was constructed by sandwiching the pellets in a Teflon (registered trademark) jig together with platinum mesh (current collector) and glass fiber filter paper (pore diameter: 1 ⁇ m).
  • a platinum plate was used for the counter electrode, and silver / silver chloride was used for the reference electrode.
  • a 1 mol / L sulfuric acid electrolyte was filled in a measurement cell in a vacuum. During the electrochemical measurement, nitrogen gas was bubbled to remove dissolved oxygen.
  • the mass specific capacity per single electrode was determined by cyclic voltammetry (CV) and constant current charge / discharge measurement (GC).
  • the constant current charge / discharge was based on the Japan Electronic Machinery Manufacturers Association standard (EIAJ RC-2377), and the specific capacity was calculated from the discharge curve of the fifth charge / discharge cycle.
  • Cyclic voltammetry (CV) was measured using VMP-01 (trade name, manufactured by Biologic).
  • the constant current charge / discharge measurement (GC) was measured using VMP-01 (trade name, manufactured by Biologic).
  • the specific capacity was calculated from 1/2 of the voltammogram area of the fifth cycle and the electrode mass by cyclic voltammetry (0 to 1 V vs Ag / AgCl, 1 mV / s). The results are shown in Table 2.
  • the electrodes of Examples 1 and 2 both have a high specific capacity, and have excellent characteristics when used in electric double layer capacitors.
  • the literature Electrode Acta 50 (2005) 1197-1206 shows a specific capacity of 22 to 164 F / g for 12 types of activated carbon, but the results of this example are superior to these. I understand that.
  • the specific capacities (F / m 2 ) of Example 1 and Example 2 exceed the value of Comparative Example 2 and show excellent characteristics of nitrogen in the nitrogen-containing porous carbon material.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

 窒素含有量が0.5~30質量%であり、比表面積が200~3000m/gである窒素含有炭素多孔質材料。

Description

窒素含有多孔質炭素材料とその製造方法、及び該窒素含有多孔質炭素材料を用いた電気二重層キャパシタ
 本発明は、窒素含有多孔質炭素材料とその製造方法、及び該窒素含有多孔質炭素材料を電極に用いた電気二重層キャパシタに関する。
 電気二重層キャパシタ(ELDC)は、静電容量が大きく、充放電サイクル特性にも優れることから、自動車をはじめとする種々の機器にバックアップ電源として用いられている。このELDCには活性炭をポリテトラフルオロエチレンなどのバインダ樹脂でシート状にした分極性電極が用いられる。
 分極性電極に用いる活性炭の製造方法としては、有機酸マグネシウム等を鋳型(テンプレート)として、炭素前駆体となる有機物と混合、焼成することにより炭素と酸化マグネシウム(MgO)の複合体を合成し、その酸処理によってMgO鋳型を溶出除去して多孔質炭素を合成する手法が提案されている(特許文献1参照)。しかし、この方法では、合成される炭素骨格中に窒素を固溶した窒素含有多孔質炭素材料を製造することはできなかった。
 窒素含有炭素材料はEDLC用電極材料としてより適しており、メラミン樹脂等の窒素含有量の高い高分子を原料として合成した窒素含有炭素材料が知られている。特許文献2には、膨潤性フッ素マイカをテンプレートとし、メラミン樹脂、アクリロニトリル樹脂を用いた窒素含有炭素製造法が記載されている。また、特許文献3では、メラミン樹脂フォームの炭素化による含窒素炭素の製造方法が提案されている。
 EDLCの高容量化の要求に伴い、この窒素含有多孔質炭素材料の高表面積化が望まれているが、上記の方法では十分なものは得られていない。また、メラミン樹脂の原料であるメラミンモノマーは、熱処理によって昇華するため、直接、窒素含有多孔質炭素材料の原料とすることができず、容易に窒素含有多孔質炭素材料を製造することが難しかった。
特開2008-13394号公報 特開2005-239456号公報 特開2007-269505号公報
 本発明は、メラミンを直接の原料として製造することができ、電気二重層キャパシタ用電極材料として優れた特性を示す窒素含有多孔質炭素材料と、これを用いた高容量電気二重層キャパシタを提供することを課題とする。
 本発明によれば、以下の手段が提供される:
(1)窒素含有量が0.5~30質量%であり、比表面積が200~3000m/gである窒素含有炭素多孔質材料。
(2)メラミンとクエン酸マグネシウムを混合し、不活性雰囲気下で700℃以上に加熱したのち冷却し酸洗浄して得られる(1)に記載の窒素含有炭素多孔質材料。
(3)(1)または(2)に記載の窒素含有炭素多孔質材料をバインダ樹脂により結合してなることを特徴とする電気二重層キャパシタ用電極材料。
(4)(3)に記載の電気二重層キャパシタ用電極材料を電極に用いてなる電気二重層キャパシタ。
(5)メラミンとクエン酸マグネシウムを混合し、不活性雰囲気下で700℃以上に加熱したのち冷却して酸洗浄する工程を有してなることを特徴とする窒素含有炭素多孔質材料の製造方法。
(6)700℃以上の保持温度までの昇温速度を1~100℃/分とする(5)に記載の窒素含有炭素多孔質材料の製造方法。
(7)700℃以上での保持時間を1~5000分とすることを特徴とする(5)または(6)に記載の窒素含有炭素多孔質材料の製造方法。
 なお、本発明における「比表面積」はBET法により測定したものをいい、窒素含有率は燃焼分析によって求めた質量%(無水無灰基準)の値をいう。
 本発明の上記及び他の特徴及び利点は、下記の記載からより明らかになるであろう。
 本発明においては、クエン酸マグネシウムを鋳型に用いることで、従来炭素化が困難であったメラミンを電極用炭素材料原料として窒素含有多孔質炭素材料を製造することが可能となった。この窒素含有多孔質炭素材料は、材料中の窒素の機能と高い表面積により、水溶液電解質を用いた電気二重層キャパシタ用電極として優れた特性を示す。本発明の窒素含有多孔質炭素材料を用いた電気二重層キャパシタは、高い容量を有する。
 本発明の窒素含有多孔質炭素材料は、クエン酸マグネシウムとメラミンを、不活性雰囲気下で加熱し、その後、冷却して酸洗浄して製造できる。この加熱時にクエン酸マグネシウムのMgが酸化して微細な酸化マグネシウム(MgO)が形成され、このMgO粒子のまわりにメラミンに由来する窒素を含有する炭素膜が形成される。このような生成物を、MgOを溶解可能な酸、例えば硫酸、塩酸などの溶液で洗浄してMgOを除去すると、内部に細孔を有する窒素含有炭素膜が残るので、これが窒素含有多孔質炭素材料となる。
 本発明で原料として用いるメラミンは、メラミンモノマーのほか、オリゴマー(例えば2~10量体)も用いることができる(本発明においては、これらを合わせてメラミンという)。メラミンは通常は加熱により昇華してしまい、炭素残渣を残さないが、本発明においてはクエン酸マグネシウムと混合、加熱することで炭素骨格に窒素を含有する炭素多孔質材料を形成する。これは、鋳型(テンプレート)として機能するクエン酸マグネシウムにより、生成する微細なMgO粒子がメラミンの重合を促進する効果を持つことと、クエン酸マグネシウムの分解によって発生するガス成分がメラミンと反応することによって重合物を形成することによると考えられる。
 メラミンとクエン酸マグネシウムの混合比は、クエン酸マグネシウム(Mg(C・9HO)が19.7質量%のMgOを生成することから、クエン酸マグネシウムの秤量値(g)の19.7%をMgO質量と換算し、MgO質量とメラミン秤量値(g)の和を10(質量部)とした場合に、メラミンが0(質量部)を超え10(質量部)未満であればよいが、好ましくはメラミン:クエン酸マグネシウムが1:9~9:1(質量部)である。
 加熱温度は好ましくは700℃以上、より好ましくは800~1000℃とする。このような温度に加熱することにより、原料の熱分解が進行し、窒素含有炭素の結晶化が進む。また、電気二重層キャパシタ用電極として好適な電気抵抗が得られ、炭素骨格中の細孔の均一化にも有利である。
 上記温度への昇温速度は好ましくは1~100℃/分、より好ましくは5~20℃/分である。このような昇温速度においては、熱分解が安定に進行し、結晶化がより良好に進行する。
 また、上記温度で好ましくは1~5000分、より好ましくは30~300分保持する。この保持時間により、窒素含有炭素中の軽元素の脱離が進行するので、結果的に得られる窒素含有多孔質炭素材料の組成と比表面積をコントロールすることができる。
 この間の反応雰囲気は、不活性雰囲気、例えば窒素雰囲気下で行う。
 本発明の窒素含有多孔質炭素材料の比表面積は200~3000m/g、好ましくは600~2200m/gである。また、窒素の含有量が0.5~30質量%であり、0.5~20質量%であることが好ましい。
 本発明の窒素含有炭素多孔質材料の細孔は2~50nmのメソ孔の率が高く、このような細孔を多く持つことで、電気二重層キャパシタ用電極としたときの電解液の浸透やイオンの移動に有利であり、レート特性が良好である。また、比容量の高いキャパシタ用電極とすることができる。
 本発明の電気二重層キャパシタ用電極は、上記窒素含有炭素多孔質材料をバインダ樹脂で結合してシート等の形状に成形したものである。バインダ樹脂としてはポリテトラフルオロエチレン(PTFE)など通常使用されるものを用いることができる。このとき適量のカーボンブラック等を添加することができる。電極の形状は特に制限はない。
 本発明の電気二重層キャパシタは上記電気二重層キャパシタ用電極を用いた以外は、従来の電気二重層キャパシタと同様のものである。具体的には、上記電気二重層キャパシタ用電極を、セパレータを介して対向して設け、これらの電極に電解液を含浸させて、それぞれが陽極と陰極として作用するものであればよい。
 以下に、本発明を実施例に基づいて詳細に説明するが、本発明はこれにより限定して解釈されるものではない。
(実施例1、2、比較例1、2)
[炭素多孔質材料の作製]
(1)クエン酸マグネシウム(二くえん酸三マグネシウム九水和物Mg(C・9HO)とメラミン(C)を所定量秤量し、メノウ乳鉢中で充分均一になるよう混合した。混合比は表1に示すとおりとした。
(2)混合した原料粉末を石英製ボートに充填し、石英製反応管を備えた横型管状電気炉中にセットし、プログラム温度調節計によって、毎分10℃の昇温速度で800℃まで加熱した。800℃で1時間保持した後、自然冷却して焼成試料を得た。この間、反応雰囲気は高純度窒素(99.9999%以上)を流通させた。
(3)上記手順により得られた焼成試料は、過剰量の6M塩酸中で15時間以上処理し、純水によって洗浄濾過、乾燥を行うことによって焼成試料中のMgO粒子を除去した。
(4)試料の比表面積は自動窒素吸着測定装置によって測定した77Kでの窒素吸着等温線よりBET法によって求めた。結果を表1に示す。
(5)元素組成は燃焼法によるCHN元素分析装置により定量した。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1中の混合比(質量部)は、クエン酸マグネシウム(Mg(C・9HO)が19.7質量%のMgOを生成することから、クエン酸マグネシウムの秤量値(g)の19.7%をMgO質量と換算し、MgO質量とメラミン秤量値(g)の和を10(質量部)とした場合のそれぞれの値で示した。炭素収率は得られた炭素試料質量の原料(メラミン+クエン酸Mg)中の炭素質量の比である。
 メラミンのみ(比較例1)の場合、昇華するため(融点354℃)、熱処理によって炭素を生成しない。
 実施例1および2で、炭素収率は比較例2のクエン酸マグネシウムのみの場合の値を超えており、共炭化によって両前駆体(メラミンとクエン酸マグネシウム)由来の炭素が生成したことを示している。
 上記の手順の通り前駆体の焼成と酸処理のみで、実施例1、2では、汎用活性炭の比表面積(通常800~1000m/g程度)以上の大きな比表面積を有する多孔質炭素材料が得られた。
 元素分析により、メラミンとクエン酸マグネシウムを混合した前駆体から得られた実施例1、2の多孔質炭素材料には窒素が含有されていることが示された。
[電気化学評価]
 表1に示した炭素多孔質材料の試料(実施例1、2、比較例2)を10mg秤量し、PTFE(ポリテトラフルオロエチレン)10質量%、カーボンブラック10質量%とともにアセトンを滴下して混練し、錠剤成型器で直径1cm、厚さ約0.4mmの円盤状ペレットを作製した。成型したペレットを100℃で1時間真空乾燥し、冷却後直ちに秤量して電極質量とした。ペレットを白金メッシュ(集電材)およびガラス繊維ろ紙(孔径1μm)と共にテフロン(登録商標)ジグに挟みこむことによって作用極を構成した。対極には白金板、参照極は銀/塩化銀を使用した。1mol/L硫酸電解液を容器中で真空とした測定セルに充填した。電気化学測定中は、窒素ガスをバブリングして溶存酸素を除去した。単電極あたりの質量比容量はサイクリックボルタンメトリー(CV)および定電流充放電測定(GC)によって求めた。
 定電流充放電は日本電子機械工業会規格(EIAJ RC-2377)に準拠し、第5回充放電サイクルの放電曲線より比容量を算出した。
 サイクリックボルタンメトリー(CV)の測定はVMP-01(商品名、Biologic社製)を用いて行った。定電流充放電測定(GC)の測定はVMP-01(商品名、Biologic社製)を用いて行った。
 比較としてサイクリックボルタモメトリー(0~1V vs Ag/AgCl,1mV/s)より、第5回サイクル目のボルタモグラム面積の1/2と電極質量から比容量を算出した。
 結果を表2に示す。
 実施例1及び2の電極はいずれも高い比容量を示しており、電気二重層キャパシタに用いたときに優れた特性を有するものである。
 例えば、文献(Electrochimica Acta 50 (2005) 1197-1206)には、12種類の活性炭について22~164F/gの比容量が示されているが、これらと比較して本実施例の結果が優れていることが分かる。
 実施例2(メラミン:クエン酸マグネシウム=3:7)では、クエン酸マグネシウムのみの場合(比較例2)より大きな比容量(F/g)が得られた。
 また、実施例1および実施例2の比容量(F/m)は、比較例2の値を超えており、当該窒素含有多孔質炭素材料における窒素の優れた特性を示している。
Figure JPOXMLDOC01-appb-T000002
 本発明をその実施態様とともに説明したが、我々は特に指定しない限り我々の発明を説明のどの細部においても限定しようとするものではなく、添付の請求の範囲に示した発明の精神と範囲に反することなく幅広く解釈されるべきであると考える。
 本願は、2009年11月30日に日本国で特許出願された特願2009-272409に基づく優先権を主張するものであり、これはここに参照してその内容を本明細書の記載の一部として取り込む。

Claims (7)

  1.  窒素含有量が0.5~30質量%であり、比表面積が200~3000m/gである窒素含有炭素多孔質材料。
  2.  メラミンとクエン酸マグネシウムを混合し、不活性雰囲気下で700℃以上に加熱したのち冷却し酸洗浄して得られる請求項1に記載の窒素含有炭素多孔質材料。
  3.  請求項1または2に記載の窒素含有炭素多孔質材料をバインダ樹脂により結合してなることを特徴とする電気二重層キャパシタ用電極材料。
  4.  請求項3に記載の電気二重層キャパシタ用電極材料を電極に用いてなる電気二重層キャパシタ。
  5.  メラミンとクエン酸マグネシウムを混合し、不活性雰囲気下で700℃以上に加熱したのち冷却して酸洗浄する工程を有してなることを特徴とする窒素含有炭素多孔質材料の製造方法。
  6.  700℃以上の保持温度までの昇温速度を1~100℃/分とする請求項5に記載の窒素含有炭素多孔質材料の製造方法。
  7.  700℃以上での保持時間を1~5000分とすることを特徴とする請求項5または6に記載の窒素含有炭素多孔質材料の製造方法。
PCT/JP2010/071135 2009-11-30 2010-11-26 窒素含有多孔質炭素材料とその製造方法、及び該窒素含有多孔質炭素材料を用いた電気二重層キャパシタ WO2011065484A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201080053864.XA CN102741160B (zh) 2009-11-30 2010-11-26 含氮多孔碳材料和其制造方法以及使用该含氮多孔碳材料的双电层电容器
KR1020127016030A KR101731494B1 (ko) 2009-11-30 2010-11-26 질소 함유 다공질 탄소재료와 그 제조방법, 및 상기 질소 함유 다공질 탄소재료를 이용한 전기 이중층 캐패시터
US13/512,517 US9281135B2 (en) 2009-11-30 2010-11-26 Nitrogen-containing porous carbon material and method of producing the same, and electric double-layer capacitor using the nitrogen-containing porous carbon material
EP10833330.3A EP2508475A4 (en) 2009-11-30 2010-11-26 Nitrogen-containing porous carbon material, method for producing same, and electric double layer capacitor using the nitrogen-containing porous carbon material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009272409A JP5678372B2 (ja) 2009-11-30 2009-11-30 窒素含有多孔質炭素材料とその製造方法、及び該窒素含有多孔質炭素材料を用いた電気二重層キャパシタ
JP2009-272409 2009-11-30

Publications (1)

Publication Number Publication Date
WO2011065484A1 true WO2011065484A1 (ja) 2011-06-03

Family

ID=44066588

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/071135 WO2011065484A1 (ja) 2009-11-30 2010-11-26 窒素含有多孔質炭素材料とその製造方法、及び該窒素含有多孔質炭素材料を用いた電気二重層キャパシタ

Country Status (7)

Country Link
US (1) US9281135B2 (ja)
EP (1) EP2508475A4 (ja)
JP (1) JP5678372B2 (ja)
KR (1) KR101731494B1 (ja)
CN (1) CN102741160B (ja)
TW (1) TWI475582B (ja)
WO (1) WO2011065484A1 (ja)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102797111A (zh) * 2012-08-16 2012-11-28 黑龙江大学 三聚氰胺树脂/聚乙烯醇水溶液通过高压静电纺丝技术制备多孔含氮碳纤维电极材料的方法
EP2592048A1 (fr) * 2011-11-10 2013-05-15 Yunasko Limited Procédé de dopage à l'azote d'un matériau charbonneux et charbon actif dopé à l'azote pour électrodes de supercondensateur
JP2014001093A (ja) * 2012-06-15 2014-01-09 Toyo Tanso Kk 多孔質炭素材料およびその製造方法、並びにそれを用いた電気二重層キャパシタ
WO2015137106A1 (ja) * 2014-03-12 2015-09-17 東洋炭素株式会社 多孔質炭素、その製造方法、及び多孔質炭素を用いた吸着/脱離装置
EP2894128A4 (en) * 2012-09-05 2016-04-20 Toyo Tanso Co POROUS CARBON AND PRODUCTION METHOD THEREOF
US20200055736A1 (en) * 2012-05-07 2020-02-20 Carbon Technology Holdings, LLC Biogenic activated carbon and methods of making and using same
CN113830764A (zh) * 2021-11-09 2021-12-24 四川金汇能新材料股份有限公司 一种三聚氰胺参杂的多孔碳材料及其制备方法、应用
US11753698B2 (en) 2020-09-25 2023-09-12 Carbon Technology Holdings, LLC Bio-reduction of metal ores integrated with biomass pyrolysis
US11851723B2 (en) 2021-02-18 2023-12-26 Carbon Technology Holdings, LLC Carbon-negative metallurgical products
US11879107B2 (en) 2011-04-15 2024-01-23 Carbon Technology Holdings, LLC High-carbon biogenic reagents and uses thereof
US11932814B2 (en) 2021-04-27 2024-03-19 Carbon Technology Holdings, LLC Biocarbon blends with optimized fixed carbon content, and methods for making and using the same
US11987763B2 (en) 2021-07-09 2024-05-21 Carbon Technology Holdings, LLC Processes for producing biocarbon pellets with high fixed-carbon content and optimized reactivity, and biocarbon pellets obtained therefrom
US12103892B2 (en) 2021-11-12 2024-10-01 Carbon Technology Holdings, LLC Biocarbon compositions with optimized compositional parameters, and processes for producing the same
WO2024204299A1 (ja) * 2023-03-27 2024-10-03 積水化学工業株式会社 カーボン材料、材料組成物及びカーボン材料の製造方法

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2669223A1 (en) 2006-11-15 2008-05-22 Energ2, Llc Electric double layer capacitance device
JP5795309B2 (ja) 2009-07-01 2015-10-14 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se 超高純度の合成炭素材料
US8654507B2 (en) 2010-09-30 2014-02-18 Energ2 Technologies, Inc. Enhanced packing of energy storage particles
CN103282984A (zh) * 2010-11-26 2013-09-04 巴斯夫欧洲公司 制备含氮的多孔碳质材料的方法
US20120262127A1 (en) 2011-04-15 2012-10-18 Energ2 Technologies, Inc. Flow ultracapacitor
EP2715840B1 (en) 2011-06-03 2015-05-27 Basf Se Carbon-lead blends for use in hybrid energy storage devices
WO2013120011A1 (en) 2012-02-09 2013-08-15 Energ2 Technologies, Inc. Preparation of polymeric resins and carbon materials
JP2014036113A (ja) * 2012-08-08 2014-02-24 Toyo Tanso Kk キャパシタ
WO2014143213A1 (en) 2013-03-14 2014-09-18 Energ2 Technologies, Inc. Composite carbon materials comprising lithium alloying electrochemical modifiers
KR101486658B1 (ko) * 2013-09-13 2015-01-29 한국과학기술원 고성능 수퍼커패시터 전극을 위한 그래핀 기반 전극재료 및 이를 포함하는 수퍼커패시터
US10195583B2 (en) 2013-11-05 2019-02-05 Group 14 Technologies, Inc. Carbon-based compositions with highly efficient volumetric gas sorption
CN103806129B (zh) * 2014-02-19 2015-09-30 中国科学院化学研究所 一种氮掺杂多孔碳纤维材料及其制备方法与应用
KR102546284B1 (ko) 2014-03-14 2023-06-21 그룹14 테크놀로지스, 인코포레이티드 용매의 부재하의 졸-겔 중합을 위한 신규한 방법 및 그러한 방법으로부터의 가변형 탄소 구조의 생성
CN104045074B (zh) * 2014-06-18 2016-06-15 广西师范大学 一种淀粉基多孔中空碳微球及其制备方法
CN104358027A (zh) * 2014-09-30 2015-02-18 东华大学 一种纤维规则排布的CaSi2O2N2:Eu2+荧光纤维膜的制备方法
CN105692579A (zh) * 2014-11-28 2016-06-22 中国科学院大连化学物理研究所 一种超级电容器用分级多孔碳材料及其制备方法
JP6603988B2 (ja) * 2015-01-06 2019-11-13 株式会社クラレ 窒素含有多孔質炭素および触媒
CN104689857B (zh) * 2015-03-26 2018-10-19 中国科学院青岛生物能源与过程研究所 氮掺杂多孔碳材料的制备方法以及含该材料的催化剂及用途
WO2017030995A1 (en) 2015-08-14 2017-02-23 Energ2 Technologies, Inc. Nano-featured porous silicon materials
KR102636894B1 (ko) 2015-08-28 2024-02-19 그룹14 테크놀로지스, 인코포레이티드 극도로 내구성이 우수한 리튬 인터칼레이션을 나타내는 신규 물질 및 그의 제조 방법
CN105417522A (zh) * 2016-01-26 2016-03-23 安徽工业大学 一种软模板法制备超级电容器用蜂窝状多孔炭的方法
TWI601689B (zh) * 2016-02-01 2017-10-11 台灣奈米碳素股份有限公司 含氮之多孔性碳材料及其電容與製造方法
TWI552424B (zh) * 2016-02-01 2016-10-01 台灣奈米碳素股份有限公司 含氮碳電極的製作方法及其液流電池
EP3249669A1 (en) 2016-05-25 2017-11-29 Universiteit van Amsterdam Supercapacitor and nitrogen-doped porous carbon material
KR102571014B1 (ko) 2017-03-09 2023-08-25 그룹14 테크놀로지스, 인코포레이티드 다공성 스캐폴드 재료 상의 실리콘 함유 전구체의 분해
CN107176655B (zh) * 2017-04-11 2020-05-19 北京化工大学 一种利用块状泡沫结构螯合物合成多级孔碳电吸附电极材料的方法及应用
EP3406624A1 (en) 2017-05-24 2018-11-28 University Of Amsterdam Use of a nitrogen-doped porous carbon material for enriching phosphorylated proteins or peptides
CN110371970A (zh) * 2019-08-12 2019-10-25 四川轻化工大学 一种高比表面积富氮分级多孔碳材料的制备方法
CN113509948A (zh) * 2020-04-10 2021-10-19 上海大学 一种氮掺杂介孔碳负载铂催化剂及其制备方法和应用
CN111863452A (zh) * 2020-07-15 2020-10-30 宁波市江北九方和荣电气有限公司 一种油浸式防爆阻燃结构电容器
CN112010404A (zh) * 2020-08-03 2020-12-01 深圳大学 有机小分子裂解碳及其制备方法与电容去离子单元及系统
US11335903B2 (en) 2020-08-18 2022-05-17 Group14 Technologies, Inc. Highly efficient manufacturing of silicon-carbon composites materials comprising ultra low z
US11174167B1 (en) 2020-08-18 2021-11-16 Group14 Technologies, Inc. Silicon carbon composites comprising ultra low Z
US11639292B2 (en) 2020-08-18 2023-05-02 Group14 Technologies, Inc. Particulate composite materials
JP2023544717A (ja) 2020-09-30 2023-10-25 グループ14・テクノロジーズ・インコーポレイテッド シリコン-カーボン複合材料の酸素含有量及び反応性制御のための不動態化の方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004168587A (ja) * 2002-11-19 2004-06-17 Toyota Central Res & Dev Lab Inc 含窒素炭素系多孔体及びその製造方法
JP2005239456A (ja) 2004-02-24 2005-09-08 National Institute Of Advanced Industrial & Technology 窒素含有炭素およびその製造方法
JP2006124250A (ja) * 2004-10-29 2006-05-18 National Institute For Materials Science 窒化炭素多孔体およびその製造方法
JP2007269505A (ja) 2006-03-30 2007-10-18 National Institute Of Advanced Industrial & Technology 電極用材料及びその製造方法
JP2008013394A (ja) 2006-07-05 2008-01-24 Daido Metal Co Ltd 活性炭およびその製造方法
JP2008021833A (ja) * 2006-07-13 2008-01-31 Nippon Steel Chem Co Ltd 電気二重層キャパシタ用多孔質炭素材料およびその製造方法ならびに非水系電気二重層キャパシタ
JP2008239418A (ja) * 2007-03-28 2008-10-09 Asahi Kasei Chemicals Corp 窒素含有炭素多孔体およびその製法
WO2008126799A1 (ja) * 2007-04-05 2008-10-23 National Institute For Materials Science メソ多孔性窒化炭素材料とその製造方法
JP2009269764A (ja) * 2008-04-10 2009-11-19 Kansai Coke & Chem Co Ltd アルカリ賦活炭およびその製造方法
JP2009272409A (ja) 2008-05-02 2009-11-19 Olympus Corp 半導体発光装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2057184C (en) * 1990-12-13 1996-11-19 Hisaki Abe Active carbon materials, process for the preparation thereof and the use thereof
JPH05254954A (ja) * 1991-03-12 1993-10-05 Koa Oil Co Ltd 炭素質発泡体の製造方法
JP5390790B2 (ja) * 2008-04-30 2014-01-15 関西熱化学株式会社 メソポア活性炭の製造方法
US20100209823A1 (en) * 2009-02-18 2010-08-19 Feng Chia University Porous carbonized substrate, its preparation method and uses
US20140113200A1 (en) * 2011-07-25 2014-04-24 Fraser Seymour Functionalized Carbon Electrode, Related Material, Process for Production, and Use Thereof

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004168587A (ja) * 2002-11-19 2004-06-17 Toyota Central Res & Dev Lab Inc 含窒素炭素系多孔体及びその製造方法
JP2005239456A (ja) 2004-02-24 2005-09-08 National Institute Of Advanced Industrial & Technology 窒素含有炭素およびその製造方法
JP2006124250A (ja) * 2004-10-29 2006-05-18 National Institute For Materials Science 窒化炭素多孔体およびその製造方法
JP2007269505A (ja) 2006-03-30 2007-10-18 National Institute Of Advanced Industrial & Technology 電極用材料及びその製造方法
JP2008013394A (ja) 2006-07-05 2008-01-24 Daido Metal Co Ltd 活性炭およびその製造方法
JP2008021833A (ja) * 2006-07-13 2008-01-31 Nippon Steel Chem Co Ltd 電気二重層キャパシタ用多孔質炭素材料およびその製造方法ならびに非水系電気二重層キャパシタ
JP2008239418A (ja) * 2007-03-28 2008-10-09 Asahi Kasei Chemicals Corp 窒素含有炭素多孔体およびその製法
WO2008126799A1 (ja) * 2007-04-05 2008-10-23 National Institute For Materials Science メソ多孔性窒化炭素材料とその製造方法
JP2009269764A (ja) * 2008-04-10 2009-11-19 Kansai Coke & Chem Co Ltd アルカリ賦活炭およびその製造方法
JP2009272409A (ja) 2008-05-02 2009-11-19 Olympus Corp 半導体発光装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ELECTROCHIMICA ACTA, vol. 50, 2005, pages 1197 - 1206
See also references of EP2508475A4

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11879107B2 (en) 2011-04-15 2024-01-23 Carbon Technology Holdings, LLC High-carbon biogenic reagents and uses thereof
US12084623B2 (en) 2011-04-15 2024-09-10 Carbon Technology Holdings, LLC High-carbon biogenic reagents and uses thereof
US11965139B2 (en) 2011-04-15 2024-04-23 Carbon Technology Holdings, LLC Systems and apparatus for production of high-carbon biogenic reagents
US11959038B2 (en) 2011-04-15 2024-04-16 Carbon Technology Holdings, LLC High-carbon biogenic reagents and uses thereof
US11891582B2 (en) 2011-04-15 2024-02-06 Carbon Technology Holdings, LLC High-carbon biogenic reagents and uses thereof
EP2592048A1 (fr) * 2011-11-10 2013-05-15 Yunasko Limited Procédé de dopage à l'azote d'un matériau charbonneux et charbon actif dopé à l'azote pour électrodes de supercondensateur
WO2013068812A1 (ru) * 2011-11-10 2013-05-16 Юнаско Лимитед Легированный азотом активированный уголь и способ легирования азотом активированного угля
US20200055736A1 (en) * 2012-05-07 2020-02-20 Carbon Technology Holdings, LLC Biogenic activated carbon and methods of making and using same
JP2014001093A (ja) * 2012-06-15 2014-01-09 Toyo Tanso Kk 多孔質炭素材料およびその製造方法、並びにそれを用いた電気二重層キャパシタ
CN102797111A (zh) * 2012-08-16 2012-11-28 黑龙江大学 三聚氰胺树脂/聚乙烯醇水溶液通过高压静电纺丝技术制备多孔含氮碳纤维电极材料的方法
EP2894128A4 (en) * 2012-09-05 2016-04-20 Toyo Tanso Co POROUS CARBON AND PRODUCTION METHOD THEREOF
JP2015171978A (ja) * 2014-03-12 2015-10-01 東洋炭素株式会社 多孔質炭素、その製造方法、及び多孔質炭素を用いた吸着/脱離装置
WO2015137106A1 (ja) * 2014-03-12 2015-09-17 東洋炭素株式会社 多孔質炭素、その製造方法、及び多孔質炭素を用いた吸着/脱離装置
US11753698B2 (en) 2020-09-25 2023-09-12 Carbon Technology Holdings, LLC Bio-reduction of metal ores integrated with biomass pyrolysis
US11851723B2 (en) 2021-02-18 2023-12-26 Carbon Technology Holdings, LLC Carbon-negative metallurgical products
US11932814B2 (en) 2021-04-27 2024-03-19 Carbon Technology Holdings, LLC Biocarbon blends with optimized fixed carbon content, and methods for making and using the same
US11987763B2 (en) 2021-07-09 2024-05-21 Carbon Technology Holdings, LLC Processes for producing biocarbon pellets with high fixed-carbon content and optimized reactivity, and biocarbon pellets obtained therefrom
CN113830764A (zh) * 2021-11-09 2021-12-24 四川金汇能新材料股份有限公司 一种三聚氰胺参杂的多孔碳材料及其制备方法、应用
US12103892B2 (en) 2021-11-12 2024-10-01 Carbon Technology Holdings, LLC Biocarbon compositions with optimized compositional parameters, and processes for producing the same
WO2024204299A1 (ja) * 2023-03-27 2024-10-03 積水化学工業株式会社 カーボン材料、材料組成物及びカーボン材料の製造方法

Also Published As

Publication number Publication date
TWI475582B (zh) 2015-03-01
US9281135B2 (en) 2016-03-08
KR101731494B1 (ko) 2017-05-04
KR20120112475A (ko) 2012-10-11
US20120241691A1 (en) 2012-09-27
EP2508475A4 (en) 2018-04-04
TW201135772A (en) 2011-10-16
CN102741160B (zh) 2015-09-09
EP2508475A1 (en) 2012-10-10
JP2011111384A (ja) 2011-06-09
JP5678372B2 (ja) 2015-03-04
CN102741160A (zh) 2012-10-17

Similar Documents

Publication Publication Date Title
JP5678372B2 (ja) 窒素含有多孔質炭素材料とその製造方法、及び該窒素含有多孔質炭素材料を用いた電気二重層キャパシタ
JP6071261B2 (ja) 多孔質炭素材料およびその製造方法、並びにそれを用いた電気二重層キャパシタ
JP5392735B2 (ja) キャパシタ用電極及びその製造方法
JP5344972B2 (ja) 電気二重層キャパシタ電極用炭素材およびその製造方法
Hu et al. Inherent N, O-containing carbon frameworks as electrode materials for high-performance supercapacitors
JP2012507470A5 (ja)
Choi et al. CoFe Prussian blue analogues on 3D porous N-doped carbon nanosheets boost the intercalation kinetics for a high-performance quasi-solid-state hybrid capacitor
CN111681887B (zh) 一种超级电容器用超薄类石墨烯碳材料的制备方法
JP2014036113A (ja) キャパシタ
KR101381316B1 (ko) 붕소가 도핑된 환원된 그래핀 옥사이드 및 이의 제조방법
CN108455596B (zh) 一步炭化法制备高比表面积富氮多级孔炭材料的方法及其应用
JP2016531068A (ja) Co2活性化ココナッツ炭を含有する高電圧edlc電極
TW201602416A (zh) 能量儲存裝置和用於製造和使用的方法
JP5246697B2 (ja) 電気二重層キャパシタ用電極の製造方法
KR20190073710A (ko) 전극소재용 활성탄의 제조방법
KR101448211B1 (ko) 질소 도핑 다공성 탄소소재 및 그 제조방법
KR20130093740A (ko) 수퍼커패시터 전극용 탄소재 및 그 제조방법
JP2001316103A (ja) 多孔質炭素材料、その製造方法および電気二重層キャパシタ
JPH11307405A (ja) 電気二重層キャパシタ、電極及び活性炭並びにその製造方法
KR101580892B1 (ko) 슈퍼커패시터용 피치 기반 탄소/망간산화물 복합체의 제조방법
JP2005286178A (ja) 電気二重層キャパシタ用炭素質電極及びその製造方法
TWI266661B (en) Niobium powder and solid electrolytic capacitor
JP2001058807A (ja) ポリ塩化ビニリデン系樹脂粉末及び活性炭
JP7130750B2 (ja) 電極素材用活性炭の製造方法
Munhoz et al. Electrochemical Properties of Iron Oxide Decorated Activated Carbon Cloth as a Binder-Free Flexible Electrode

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080053864.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10833330

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2010833330

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13512517

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20127016030

Country of ref document: KR

Kind code of ref document: A