WO2011040575A1 - ポリアクリル酸(塩)系吸水性樹脂およびその製造方法 - Google Patents
ポリアクリル酸(塩)系吸水性樹脂およびその製造方法 Download PDFInfo
- Publication number
- WO2011040575A1 WO2011040575A1 PCT/JP2010/067158 JP2010067158W WO2011040575A1 WO 2011040575 A1 WO2011040575 A1 WO 2011040575A1 JP 2010067158 W JP2010067158 W JP 2010067158W WO 2011040575 A1 WO2011040575 A1 WO 2011040575A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- water
- acrylic acid
- ppm
- mass
- polymerization
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F20/00—Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
- C08F20/02—Monocarboxylic acids having less than ten carbon atoms, Derivatives thereof
- C08F20/04—Acids, Metal salts or ammonium salts thereof
- C08F20/06—Acrylic acid; Methacrylic acid; Metal salts or ammonium salts thereof
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J3/00—Processes of treating or compounding macromolecular substances
- C08J3/24—Crosslinking, e.g. vulcanising, of macromolecules
- C08J3/245—Differential crosslinking of one polymer with one crosslinking type, e.g. surface crosslinking
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/00002—Chemical plants
- B01J2219/00004—Scale aspects
- B01J2219/00006—Large-scale industrial plants
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2333/00—Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
- C08J2333/02—Homopolymers or copolymers of acids; Metal or ammonium salts thereof
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/31504—Composite [nonstructural laminate]
- Y10T428/31855—Of addition polymer from unsaturated monomers
- Y10T428/31859—Next to an aldehyde or ketone condensation product
Definitions
- the present invention relates to a method for producing a polyacrylic acid (salt) water-absorbing resin. More specifically, it relates to a polyacrylic acid (salt) water-absorbing resin for absorbers used in paper diapers, sanitary napkins, and the like, and a method for producing the same, excellent in yellowing prevention, no odor, and The present invention relates to a polyacrylic acid (salt) -based water-absorbing resin that exhibits excellent absorbability and a method for producing the same.
- water-absorbing resins having a high water-absorbing property have been developed, and are widely used mainly in disposable applications as absorbent articles such as paper diapers and sanitary napkins, as well as water retaining agents for agriculture and horticulture, industrial water-stopping materials, etc.
- a water-absorbing resin many monomers and hydrophilic polymers have been proposed as raw materials.
- polyacrylic acid (salt) -based water-absorbing using acrylic acid and / or a salt thereof as a monomer is proposed.
- Resins are most commonly used industrially because of their high water absorption performance.
- Such a polyacrylic acid (salt) water-absorbing resin is obtained by neutralizing acrylic acid before or after polymerization into a polyacrylate, and such neutralization and polymerization are disclosed in Patent Documents 1 to 4. ing. Moreover, it is known that this acrylic acid contains an acrylic acid dimer (nonpatent literature 1).
- the water absorption characteristics desired for the above water-absorbent resin include: water absorption capacity under no pressure, water absorption capacity under pressure, water absorption speed, liquid permeability under no pressure, liquid permeability under pressure, impact resistance, urine resistance, fluidity
- properties such as gel strength, color, particle size, etc. are known, and many specifications (parameter measurement methods) have been proposed from various viewpoints among the same physical properties (eg, water absorption capacity without pressure). ing.
- the water-absorbing resin that has been developed by paying attention to these many physical properties is still a paper diaper, etc., even if the above-mentioned many physical properties (for example, “absorption capacity under no pressure”, “absorption capacity under pressure”, etc.) are controlled. There was a problem that it was difficult to say that sufficient performance was exhibited in actual use with the absorber.
- these water-absorbing resins are mainly used for sanitary materials such as paper diapers and sanitary napkins, so when powdered water-absorbing resins are compounded with white pulp in sanitary materials, the appearance of foreign matter due to coloring.
- the water-absorbent resin is required to be white when shipped from the factory.
- the water-absorbing resin is generally a white powder, but it is colored over time (colored from yellow to brown) even after shipment, during storage and transportation, and when used as a sanitary material. It is known to be white, and is required to be white even when the absorbent article is stored for a long period of time. In recent years, since the usage rate (mass%) of the water-absorbent resin tends to increase in sanitary materials, the coloring problem has become more important.
- Patent Documents 5 to 31 listed below.
- a method for controlling the polymerization inhibitor in the monomer a technique for setting methoxyphenols in acrylic acid to 10 to 160 ppm (Patent Document 5), hydroquinone in acrylic acid to 0.2 ppm or less.
- Patent Literature 6 Technology for controlling
- Patent Literature 7 Technology for treating monomers with activated carbon
- Patent Literature 8 Technology for using tocophenol as an inhibitor
- Patent Document 9 N-oxyl compounds and manganese compounds as polymerization inhibitors And the like
- Patent Documents 10 and 11 a technique using methoxyphenol and a specific polyvalent metal salt
- Patent Document 12 As coloring inhibitors for water-absorbing resins, addition of reducing agents such as hypophosphite (Patent Document 12), addition of antioxidants (Patent Documents 13 and 14), metal chelating agents and other reducing agents as required And the like (Patent Documents 15 to 19), organic carboxylic acids and optionally other compounds (Patent Documents 20 to 23) are known.
- Patent Documents 24 to 26 are known as techniques focusing on the polymerization initiator.
- Patent Documents 27 and 28 focusing on the amount of iron in aluminum or a reducing agent has been proposed.
- a technique using an ammonium acrylate salt as a monomer (Patent Document 29) is also known.
- control of the oxygen amount in the drying process and the surface cross-linking process (Patent Documents 30 and 31) is also known.
- Patent Document 32 acrylic acid oligomer
- Patent Document 33 acetic acid and propionic acid reduction
- Patent Document 34 volatile organic solvent
- Patent Document 35 sulfur reducing agent
- Patent Document 36 alcohol Odor reduction of a system volatile substance
- an aluminum compound may be used as a liquid permeability improver, it is known that it contains iron which is a color-causing substance as described above (Patent Document 27).
- the water-absorbent resin to which the aluminum compound is added is easy to be colored, and when trying to reduce the color with the above-described anti-coloring agent (Patent Documents 12 to 23), a large amount of anti-coloring agent may be required. The balance between CRC and SFC was bad.
- polyacrylic acid (salt) -based water-absorbing resin can exhibit excellent water absorption performance, has excellent anti-coloring performance over time, has no odor, and is suitable for actual use. It is to provide a particulate water-absorbing resin for an absorbent material.
- an object of the present invention is to provide a water-absorbing resin excellent in whiteness.
- the present inventor has intensively studied to suppress variations in whiteness. As a result, the present inventor has found that the water content of acrylic acid is one factor that inhibits whiteness. And it discovered that the water-absorbing resin excellent in whiteness could be manufactured stably by setting a water
- the present inventor has intensively studied to suppress coloring over time. As a result, the present inventor has found that the presence of a certain amount of formic acid in the water-absorbing resin makes it possible to stably produce a water-absorbing resin having excellent whiteness in color with time.
- the present inventor conducted an investigation focusing on the iron content which is a cause of coloring so as to suppress coloring over time.
- the iron content in the water-absorbent resin is mainly brought in by addition of a basic composition for neutralizing acrylic acid and a polyvalent metal compound used as a liquid permeability improver (Patent Documents 27 and 28)
- the iron content of the basic composition is within a certain range
- a cationic polymer is added in place of the polyvalent metal compound, a certain amount of formic acid in the water-absorbent resin, especially water absorption
- the water-absorbing resin obtained by such a method has been found to have very high liquid permeability without a decrease in water absorption performance due to the addition of additives, odor, and other problems, and has completed the invention.
- the following first to fourth water-absorbing resin production methods are provided. Moreover, in order to solve the said subject, the following water absorbing resin is provided. In order to solve the above problems, the following method of using acrylic acid is provided.
- the polyacrylic acid (salt) -based water-absorbing resin production method (first production method) of the present invention includes a step of storing or producing acrylic acid, acrylic acid containing a polymerization inhibitor, water, a crosslinking agent, If necessary, mixing and / or neutralizing the basic composition to prepare a monomer aqueous solution, polymerizing the monomer aqueous solution, drying the resulting hydrogel crosslinked polymer, necessary And a method for producing a polyacrylic acid (salt) water-absorbing resin, which sequentially includes a step of surface cross-linking, wherein the water content in acrylic acid containing the polymerization inhibitor is 1000 ppm (mass standard, the same applies hereinafter) and / or Alternatively, the formic acid content in the monomer aqueous solution is 1 to 700 ppm with respect to the monomer.
- the polyacrylic acid (salt) -based water-absorbing resin production method (second production method) of the present invention includes a step of storing or producing acrylic acid, acrylic acid containing a polymerization inhibitor, water, a crosslinking agent, If necessary, mixing and / or neutralizing the basic composition to prepare a monomer aqueous solution, polymerizing the monomer aqueous solution, drying the resulting hydrogel crosslinked polymer, necessary
- a method for producing a polyacrylic acid (salt) -based water-absorbing resin that sequentially includes a step of surface cross-linking, wherein the formic acid content in the acrylic acid containing the polymerization inhibitor is 1 to 700 ppm (mass basis).
- the polyacrylic acid (salt) -based water-absorbing resin production method (third production method) of the present invention includes a step of storing or producing acrylic acid, acrylic acid containing a polymerization inhibitor, water, a crosslinking agent, If necessary, mixing and / or neutralizing the basic composition to prepare a monomer aqueous solution, polymerizing the monomer aqueous solution, drying the resulting hydrogel crosslinked polymer, necessary And a method for producing a polyacrylic acid (salt) water-absorbing resin, which sequentially includes a step of surface cross-linking, wherein the water content in acrylic acid containing the polymerization inhibitor is 1000 ppm (mass standard, the same applies hereinafter) and / or Alternatively, the formic acid content in the monomer aqueous solution satisfies 1 to 700 ppm with respect to the monomer and / or satisfies the following (1) to (3).
- the iron content in the basic composition is 0.007 to 7 ppm.
- 0.01 to 5 parts by mass of a cationic polymer is mixed with 100 parts by mass of the polymer.
- the polyacrylic acid (salt) -based water-absorbing resin production method (fourth production method) of the present invention includes a step of storing or producing acrylic acid, acrylic acid containing a polymerization inhibitor, water, a crosslinking agent, If necessary, mixing and / or neutralizing the basic composition to prepare a monomer aqueous solution, polymerizing the monomer aqueous solution, drying the resulting hydrogel crosslinked polymer, necessary
- a method for producing a polyacrylic acid (salt) -based water absorbent resin which sequentially includes the step of surface cross-linking, wherein the following (1) to (3) are satisfied.
- the iron content in the basic composition is 0.007 to 7 ppm.
- the polyacrylic acid (salt) water-absorbing resin of the present invention has a formic acid content of 1 to 500 ppm (provided that the cationic polymer content is 0.01 to 5 parts by mass in 100 parts by mass of the polymer).
- the water content of the water-absorbent resin is 2 ppm or less and the formic acid content is 1 to 50000 ppm.
- the method of using acrylic acid according to the present invention comprises 10 to 160 ppm of the polymerization inhibitor methoxyphenol, the water content in acrylic acid is 1000 ppm (mass standard, the same shall apply hereinafter) and / or the formic acid content is 0.5 to A water-absorbing resin of acrylic acid that is 700 ppm is used for the polymerization.
- formic acid means formic acid and a salt thereof, and the effect is the same even if the formic acid (salt) is acid-dissociated in an aqueous monomer solution or a water-absorbing resin.
- the formic acid content in the present invention is obtained by converting formic acid and a salt of formic acid as formic acid (acid type). Since formic acid has a higher degree of acid dissociation than acrylic acid, it is noted that formic acid is also acid-dissociated in the (partially) neutralized salt of acrylic acid.
- the water absorbent resin obtained in the present invention includes a water absorbent resin composition containing a cationic polymer and formic acid, and this water absorbent resin composition is also collectively referred to as a water absorbent resin.
- FIG. 1 is a conceptual diagram showing an apparatus (a neutralization system is circulated) used in a manufacturing method according to a preferred embodiment of the present invention.
- FIG. 2 is a conceptual diagram showing an apparatus (neutralizing system is circulated) used in a manufacturing method according to another preferred embodiment of the present invention.
- Water absorbent resin means a water-swellable, water-insoluble polymer gelling agent, and has the following physical properties. That is, the water absorption capacity without pressure (specified by CRC / ERT 441.2-02 (2002)) is essentially 5 [g / g] or more, more preferably 10 to 100 [g / g], still more preferably 20 to 80 [g / g], and the water-soluble component (specified by Extractables / ERT470.2-02 (2002)) is essentially 0 to 50% by mass, more preferably 0 to 30% by mass, and still more preferably Means a polymer gelling agent of 0 to 20% by mass, particularly preferably 0 to 10% by mass.
- the water-absorbing resin is not limited to a form in which the total amount (100%) is a polymer, and may contain additives, which will be described later, within the range where the above performance is maintained. Including.
- the water-absorbent resin is not limited to a form in which the total amount (100% by mass) is a polymer, and may contain additives, which will be described later, within a range in which the above performance is maintained. Moreover, the formic acid etc. which are mentioned later may be included.
- the water-absorbent resin of the present invention is a water-absorbent resin composition (mixture) further containing a cationic polymer and formic acid, which will be described later
- the preferred range of water and additives is 30% by mass, further 20% by mass. % Or less and 10 mass% or less.
- the water absorbent resin is not limited to the final product, and may refer to an intermediate in the production of the water absorbent resin for convenience (eg, dried water absorbent resin, water absorbent resin before surface crosslinking).
- polyacrylic acid (salt) means a polymer containing an optional graft component and having acrylic acid (salt) as a main component as a repeating unit.
- acrylic acid (salt) as a monomer excluding the crosslinking agent is essentially 50 to 100 mol%, more preferably 70 to 100 mol%, still more preferably 90 to 100 mol%, particularly preferably.
- a polymer containing substantially 100 mol% is meant.
- the salt as a polymer essentially includes an aqueous salt, more preferably a monovalent salt, still more preferably an alkali metal salt or an ammonium salt. Of these, alkali metal salts are preferable, and sodium salts are particularly preferable.
- EDANA European Disposables and Nonwovens Association
- ERT is an abbreviation for a method for measuring water-absorbent resin (ERT / EDANA Recommended Test Methods) of European standards (almost world standards).
- ERT is an abbreviation for a method for measuring water-absorbent resin (ERT / EDANA Recommended Test Methods) of European standards (almost world standards).
- the physical properties of the water-absorbent resin are measured with reference to the ERT original (known document: revised in 2002).
- liquid permeability The flow of liquid flowing between particles of the swollen gel under load or no load is referred to as “liquid permeability”.
- Typical measurement methods for “liquid permeability” include SFC (Saline Flow Conductivity) and GBP (Gel Bed Permeability).
- SFC saline flow inductivity
- GBP refers to the permeability of 0.69% by mass physiological saline to the water-absorbent resin under load or free expansion. It is measured according to the GBP test method described in International Publication No. 2005/016393 pamphlet.
- Initial Color Tone and Temporal Color Tone refers to the color tone of a water absorbent resin immediately after production or a water absorbent resin immediately after user shipment. Manage with the color tone. Examples of the color tone measurement method include the methods described in International Publication No. 2009/005114 (Lab value, YI value, WB value, etc.).
- the “color tone with time” refers to the color tone of the water-absorbent resin after long-term storage or distribution in an unused state. At this time, the change from the initial color tone is called time-dependent coloration. Since the water-absorbent resin is colored over time, the commercial value of the paper diaper can be reduced. Since coloration with time occurs in units of several months to several years, it is verified by an accelerated test (accelerated test under high temperature and high humidity) disclosed in International Publication No. 2009/005114.
- X to Y indicating a range means “X or more and Y or less”.
- t (ton) as a unit of mass means “Metric ton” (metric ton), and “ppm” means “mass ppm” unless otherwise specified.
- Acrylic acid (salt) In the present invention, the step of storing or producing acrylic acid, acrylic acid containing a polymerization inhibitor, water, a crosslinking agent and, if necessary, a basic composition are mixed and / or neutralized to obtain an aqueous monomer solution.
- a method for producing a polyacrylic acid (salt) -based water-absorbing resin comprising sequentially a step of preparing, a step of polymerizing the monomer aqueous solution, a step of drying the obtained hydrogel crosslinked polymer, and a step of surface cross-linking as necessary Because
- the water content in acrylic acid containing the polymerization inhibitor is 1000 ppm or less (case 1), and / or the formic acid content in the monomer aqueous solution is 1 to 700 ppm or less based on the monomer (case 2).
- the present invention also includes a step of storing or producing acrylic acid, mixing and / or neutralizing a basic composition with acrylic acid containing a polymerization inhibitor, water, a crosslinking agent, and if necessary, a single amount.
- a polyacrylic acid (salt) water-absorbing resin comprising a step of preparing a body aqueous solution, a step of polymerizing the monomer aqueous solution, a step of drying the obtained hydrogel crosslinked polymer, and a step of surface cross-linking as necessary
- a manufacturing method (Case 3) that satisfies the following (1) to (3).
- the iron content in the basic composition is 0.007 to 7 ppm.
- the amount of water in acrylic acid containing a polymerization inhibitor is 1000 ppm or less.
- the water content is preferably 750 ppm or less, 500 ppm or less, 300 ppm or less, 200 ppm or less, 100 ppm or less, 80 ppm or less, 50 ppm or less in this order. Less moisture is preferable, but about 1 ppm or even about 5 ppm is sufficient from the dehydration cost.
- Such acrylic acid can be appropriately controlled by distillation or crystallization in the production process of acrylic acid, and the acrylic acid after production is stored so that the increase in water content due to moisture absorption does not exceed the above range. Since the melting point of acrylic acid is 14 ° C., it is frequently used as an 80% by mass aqueous solution from the viewpoint of preventing freezing in winter, and a technique using an 80% by mass aqueous acrylic acid solution as a raw material for a water-absorbing resin is also known (for example, , Examples and Comparative Examples of WO 02/085959).
- water is contained in an amount of about 0.2 to 1% by mass as a minor component in acrylic acid, and 99.8% by mass of acrylic acid is also used for the production of a water-absorbent resin.
- the present invention is characterized in that acrylic acid, in which moisture is reduced in the acrylic acid production process and the moisture content of acrylic acid is controlled even after production, is used in the production process of the water absorbent resin.
- Case 2 Acrylic Acid
- the formic acid content in the monomer aqueous solution is 1 to 700 ppm or less based on the monomer.
- the formic acid content in the aqueous monomer solution is 1 ppm or more, preferably 2 ppm or more, more preferably 3 ppm or more, 4 ppm or more, 5 ppm or more, further 10 ppm or more, particularly 20 ppm or more,
- the upper limit is 700 ppm or less, and is appropriately determined in the range of 500 ppm or less and 200 ppm or less. If the content of formic acid in the aqueous monomer solution is less than 1 ppm with respect to the monomer, the coloring prevention effect of the present application cannot be obtained. Moreover, when the formic acid content in the monomer aqueous solution exceeds 700 ppm with respect to the monomer, the water-soluble content in the water-absorbent resin increases.
- a method for preparing a monomer aqueous solution containing formic acid in the above range a method for adding formic acid to the monomer aqueous solution, a method using acrylic acid containing formic acid in the following range as an impurity, and different amounts of formic acid are included.
- the method of mixing and using acrylic acid is mentioned.
- acrylic acid obtained from a plant and obtained by a specific production method is preferably used because it contains formic acid more than general petroleum-derived acrylic acid.
- these methods may be used in combination.
- the formic acid in acrylic acid is 0.5 ppm or more, more preferably 1 ppm or more, preferably 2 to 700 ppm, more preferably 3 to 500 ppm, more preferably 4 to 400 ppm, and particularly preferably 5 ppm. ⁇ 200 ppm, most preferably 10 to 100 ppm.
- acrylic acid particularly acrylic acid obtained in the production process of acrylic acid
- the acrylic acid in case 2 preferably controls the amount of water in the acrylic acid in the same manner as in case 1 in order to achieve the object of the present invention (anti-coloration, durability).
- suitable acrylic acid has a water content of 1000 ppm (mass standard; the same shall apply hereinafter) in acrylic acid containing a polymerization inhibitor and / or a formic acid content of 1 to 700 ppm.
- the present invention includes a step of storing or producing acrylic acid, mixing acrylic acid containing a polymerization inhibitor, water, a crosslinking agent, and a basic composition if necessary.
- a method for producing an acrylic acid (salt) water-absorbing resin wherein the water content in acrylic acid containing the polymerization inhibitor is 1000 ppm or less and / or the formic acid content is 1 to 700. Characterized in that it is a pm, polyacrylic acid (salt) -based to provide a method of manufacturing a water-absorbing resin.
- the amount of water and the amount of formic acid in acrylic acid preferably satisfy both, and are the amount of formic acid or the amount of water.
- the formic acid content in the monomer aqueous solution is preferably 1 ppm or more with respect to the monomer, and is preferably 2 ppm or more, 3 ppm or more, 4 ppm or more, 5 ppm or more, 10 ppm or more, or 20 ppm or more in order.
- About an upper limit, 700 ppm or less is preferable and 500 ppm or less, 200 ppm or less, and 100 ppm or less are preferable in order.
- the formic acid content is more than 700 ppm, the water-soluble content in the water-absorbent resin tends to increase, which is not preferable.
- acrylic acid preferably contains formic acid in the above range and / or preferably contains water in the above case 1. Therefore, the acrylic acid production process for obtaining acrylic acid containing a specific amount of moisture and / or formic acid and the water absorbent resin production process are directly connected by various transport processes such as tankers, tank trucks, pipelines, etc., preferably directly by pipelines. Is done.
- acrylic acid in case 3 in addition to the above formic acid, the water content in acrylic acid is set in the same manner as in case 1 in order to achieve the objects of the present invention (anti-coloration, durability). It is preferable to control.
- the liquid containing the above monomer usually contains a polymerization inhibitor.
- a preferred polymerization inhibitor is a phenolic compound.
- phenolic compounds include alkylphenols and alkoxyphenols. Preferred substituents for these compounds include t-butyl, methyl and ethyl groups.
- a typical polymerization inhibitor is p-methoxyphenol.
- the concentration of the polymerization inhibitor in the monomer aqueous solution is preferably 1 to 200 ppm, more preferably 2 to 180 ppm, still more preferably 10 to 160 ppm, particularly preferably 20 to 100 ppm, and 30 to 80 ppm with respect to the monomer. .
- concentration of the polymerization inhibitor within the above range, the polymerization reaction is prevented from being delayed, and the coloring of the particulate water-absorbing resin is suppressed.
- the use of p-methoxyphenol improves the light resistance of the water-absorbing resin, that is, the light stability of the swollen gel, so that it can be used as a monomer within a predetermined range and further contained in the resulting water-absorbing resin. preferable.
- the acrylic acid described above (common to cases 1 to 3) is preferably used for the polymerization of a water-absorbing resin to provide a low-color water-absorbing resin. That is, the present invention uses acrylic acid containing 10 to 160 ppm of a polymerization inhibitor methoxyphenol, having a water content in acrylic acid of 1000 ppm or less, and / or a formic acid content of 0.5 to 700 ppm. For use in the polymerization of water-absorbent resins.
- the amount of acrylic acid oligomer (Patent Document 32), acetic acid and propionic acid (Patent Document 33) in acrylic acid for reducing the odor of the water absorbent resin is adjusted.
- the technology is known.
- a technique for setting methoxyphenol in acrylic acid to 10 to 160 ppm Patent Document 5
- a technique for controlling hydroquinone in acrylic acid to 0.2 ppm or less Patent Document 6
- a method for treating a monomer with activated carbon is also known.
- Patent Documents 38 to 43 focused on the raw material of the water-absorbent resin, in order to reduce the residual monomer of the water-absorbent resin, the heavy metal content in the monomer is reduced to 0.
- a method of purifying to 1 ppm or less Japanese Patent Laid-Open No. 3-31306, Patent Document 37
- Patent Document 38 a method using acrylic acid dimer or acrylic acid with less oligomer
- Patent Document 38 acrylic acid Technology using dimer and monomer with less iron
- Patent Document 39 Technology for reducing ⁇ -hydroxypropionic acid in acrylate to 1000 ppm or less (European Patent No. 574260, Patent Document 40) ) Etc. have been proposed.
- a method using acrylic acid with little protoanemonene US Patent Application Publication No. 2004/110913, Patent Document 41
- a technique European Patent No. 1814913, Patent Document 42
- acrylic acid with a small amount of allyl acrylate to reduce water-soluble content is known.
- Other technologies using acrylic acid with 50 ppm or less maleic acid US Patent Application Publication No. 2008/091048, Patent Document 43
- Technology using a certain amount of caustic soda for neutralization US Patent Application Publication No. 2008/016152
- Patent Document 44 is also known.
- non-patent document 1 (Plant Operation Progress, Vol. 7, No. 3, (1988) pages 183 to 189) is a general document of acrylic acid. The fact of increasing with moisture, temperature, and time is disclosed, and Patent Document 45 (Japanese Patent Laid-Open No. 2002-179617) discloses acrylic acid having a moisture content of 300 ppm or less and aldehydes of 20 ppm or less.
- Patent Documents 1 to 45 and Non-Patent Document 1 it is known that moisture in acrylic acid affects dimers and, consequently, residual monomers. It does not suggest the fact that affects the coloring of the water-absorbent resin. Further, Fe ions and polymerization inhibitors are known as causes of coloring of the water-absorbent resin in Patent Documents 5 to 11 and Patent Documents 27 and 28, but the influence of water in acrylic acid is not known.
- Patent Document 6 discloses a technique for preventing coloring over time by lowering the pH of a water-absorbent resin to 5.5 or lower, and formic acid is disclosed as an example of an acid used for that purpose. Further, organic carboxylic acids and, if necessary, addition of other compounds (Patent Documents 20 to 23) are known as coloring inhibitors for water-absorbing resins, and formic acid is disclosed as an example of organic acids used for that purpose.
- Patent Document 46 US Pat. No. 4,698,404
- Patent Document 47 disclose formic acid as an example of a chain transfer agent during polymerization.
- Patent Document 48 (US Pat. No.
- Patent Document 49 Japanese Patent Laid-Open No. 2006-225456 exemplifies formic acid as an example of a reducing agent during Redox polymerization.
- Patent Documents 50 to 52 International Publication Nos. 2008/092842, WO2008 / 092843, and 2007/121937 disclose a method for producing a water-absorbing resin using an organic acid polyvalent metal salt. Formic acid is disclosed as an example.
- the protoanemonin and / or furfural content in acrylic acid is preferably 0 to 20 ppm. More specifically, it is preferably in the range of 10 ppm or less, more preferably 0.01 to 5 ppm, still more preferably 0.05 to 2 ppm, and particularly preferably 0.1 to 1 ppm.
- the content of aldehyde other than furfural and / or maleic acid is preferably as low as possible, and preferably 0 to 5 ppm, more preferably 0 to 3 ppm, still more preferably 0 to 1 ppm, particularly preferably 0 ppm (detection limit) with respect to acrylic acid.
- the aldehyde component other than furfural include benzaldehyde, acrolein, acetaldehyde and the like.
- the content of saturated carboxylic acid composed of acetic acid and / or propionic acid is preferably 1000 ppm or less, more preferably 10 to 800 ppm, and particularly preferably 100 to 500 ppm with respect to acrylic acid. .
- Patent Document 6 Patents above
- Document 37, Patent Document 38, Patent Document 40, and examples thereof are also known.
- acrylic acid is distilled during polymerization
- the content of p-methoxyphenol in acrylic acid after distillation is substantially N.D. due to the boiling point difference between acrylic acid and p-methoxyphenol.
- D Non Detectable / detection limit: 1 ppm / UV).
- the saturated carboxylic acid (particularly acetic acid or propionic acid) in the acrylic acid is also preferably controlled to 1% by mass or less, 0.5% by mass or less, and 0.3% by mass or less.
- Saturated carboxylic acid (especially propionic acid) at the time of polymerization improves the water absorption capacity (CRC), so 0.01% by mass or more, further 0.03% by mass or more, 0.05% by mass or more, particularly 0.1% by mass. % Or more is effective. That is, it has been found that propionic acid in acrylic acid improves the water absorption capacity (CRC) of the water-absorbent resin after polymerization, and it is preferable to contain a predetermined amount during polymerization.
- acrylic acid derived from plants In case 2 and case 3, it is preferable to use acrylic acid derived from a plant and obtained by a specific production method.
- Such acrylic acid contains 1 to 700 ppm of formic acid.
- it is a method in which glycerin obtained from fats and oils is treated to produce acrolein and further oxidized to produce acrylic acid.
- the obtained acrylic acid is preferably purified by distillation or crystallization.
- Formic acid in acrylic acid can be controlled by the above purification method and purification conditions, but acrylic acid containing a large amount of formic acid is particularly easily obtained by distillation.
- ethylene, propanol, butene, glycerin, biogas, and the like are listed as starting materials.
- the production routes of these substances from biomass are as follows. That is, a method of obtaining ethylene and / or butene from biomass through ethanol, a method of obtaining butanol and / or butene from biomass through ethanol, a method of obtaining butene from biomass through butanol, and i-propanol from biomass through acetone.
- Examples thereof include a method, a method of obtaining n-propanol and / or iso-propanol from biomass, a method of obtaining BDF and glycerin from biomass, a method of obtaining synthesis gas (CO, H 2 ) from biomass, and the like.
- Acrylic acid is mixed as necessary in order to make trace components such as formic acid into a predetermined amount.
- acrylic acid containing different trace components may be used, and preferably, acrylic acid of a fossil raw material and a non-fossil raw material is used.
- different acrylic acids may be used in which the oxidation system (particularly the catalyst) and the purification system (distillation and crystallization) are different, and these are preferably different in the amount of impurities, particularly propionic acid.
- the use ratio mass ratio
- the ratio is preferably 10:90 to 90:10, more preferably 20:80 to 80:20, and particularly preferably 30:70 to 70:30.
- the acrylic acid other than the above two may be used in the range of 0 to 50% by mass in the total amount of acrylic acid, more preferably 0 to 30% by mass, and still more preferably 0 to 10% by mass.
- the usage ratio of two or more different types of acrylic acid is appropriately determined depending on the price (raw material cost), supply amount, and minor components (propionic acid and other minor components) of both acrylic acids.
- the ratio can be measured by quantitative determination of 14 C in a monomer or a water absorbent resin.
- Patent Document 53 (US Patent Application Publication No. 2008/119626).
- the polymerization inert organic compound is an organic compound having no polymerizable unsaturated bond such as a vinyl group or an allyl group.
- a monomer is preferably used.
- solubility parameter ( ⁇ ) is a cohesive energy density and can be calculated by the following equation.
- ⁇ is the density [g / cm 3 ]
- G is the aggregation energy density of Holly
- ⁇ G is the sum of the aggregation energy constants of the component atomic groups
- ⁇ and G indicate values at 25 ⁇ 1 ° C.
- M represents molecular weight.
- solubility parameters and ⁇ values described in publications such as Polymer Handbook 3rd edition (WILLEY, SCIENCE publishing, pages 527 to 539) and Chemical Handbook Basic Edition (The Chemical Society of Japan) are applied.
- the ⁇ value derived by substituting the Holly cohesive energy constant described on page 525 into the Small formula described on page 524 of the Polymer Handbook 3rd edition is applied.
- such a polymerization inert organic compound is 0 to 1000 ppm, preferably 1 to 1000 ppm, preferably 1 to 500 ppm, more preferably 1 to 300 ppm, based on the monomer (acrylic acid composition). More preferably, it is 5 to 300 ppm, particularly preferably 10 to 300 ppm, and most preferably 10 to 100 ppm.
- the solubility parameter of the polymerization inert organic compound is essential to be 1.0 ⁇ 10 4 to 2.5 ⁇ 10 4 [(Jm ⁇ 3 ) 1/2 ], preferably 1.0 ⁇ 10 4. To 2.2 ⁇ 10 4 [(Jm ⁇ 3 ) 1/2 ], more preferably 1.1 ⁇ 10 4 to 2.0 ⁇ 10 4 [(Jm ⁇ 3 ) 1/2 ], and even more preferably 1. 3 ⁇ 10 4 to 2.0 ⁇ 10 4 [(Jm ⁇ 3 ) 1/2 ], most preferably 1.5 ⁇ 10 4 to 1.9 ⁇ 10 4 [(Jm ⁇ 3 ) 1/2 ]. .
- An organic compound having a solubility parameter of 1.0 ⁇ 10 4 to 2.5 ⁇ 10 4 [(Jm ⁇ 3 ) 1/2 ] has good compatibility with acrylic acid and has a polymerizable unsaturated bond.
- an organic compound preferably containing no halogen is preferable, and further, a hydrocarbon composed of only carbon and hydrogen.
- the boiling point of the organic compound is preferably 95 to 300 ° C, more preferably 130 to 260 ° C.
- heptane (boiling point 95 ° C), dimethylcyclohexane (132 ° C), ethylcyclohexane (101 ° C), toluene (110 ° C), ethylbenzene (136 ° C), xylene (138-144 ° C), Diethyl ketone (101 ° C.), diisopropyl ketone (124-125 ° C.), methyl propyl ketone (102 ° C.), methyl isobutyl ketone (116 ° C.), n-propyl acetate (101 ° C.), n-butyl acetate (124 to 125 ° C), at least one compound selected from the group consisting of diphenyl ether (259 ° C) and diphenyl (255 ° C).
- At least one compound selected from the group consisting of heptane, ethylbenzene, xylene, methyl isobutyl ketone, methyl-t-butyl ketone, diphenyl ether and diphenyl is preferable, and a hydrophobic compound is more preferable.
- Aromatic compounds are more preferable, and from the viewpoint of polymerization characteristics and productivity, and from the viewpoint of inhibiting oxidative degradation of the polymer chain after the completion of the polymerization process, toluene, diphenyl ether, and diphenyl are particularly preferable, and toluene is most preferable.
- the polymerization-inert organic compound is preferably contained in the monomer and acrylic acid before polymerization, and as a preparation method, it may be added after the preparation of the monomer, in other words, acrylic acid or the monomer. It may be added at the time of preparation of the monomer, in other words, acrylic acid, and it is added to the raw material of the monomer, in other words, the constituent of acrylic acid, for example, acrylic acid, crosslinking agent, water, alkaline compound, etc. It may be contained or added in advance.
- the polymerization-inert organic compound is hydrophobic and generally insoluble in water, and is preferably dissolved or contained in acrylic acid in advance.
- the polymerization-inert organic compound is contained or added in advance to acrylic acid used for the preparation of the monomer. That is, preferably, the polymerization inactive organic compound is dissolved or contained in advance in unneutralized acrylic acid, and an aqueous monomer solution is prepared using the unneutralized acrylic acid.
- acrylic acid has, for example, a solubility parameter of 1.0 ⁇ 10 4 to 2.5 ⁇ 10 4 (Jm ⁇ 3 ) 1 in the manufacturing process of acrylic acid or in the manufacturing process of an acrylic acid composition.
- polymerization inactive organic compound is used, and a certain amount is removed in the refining process to leave a certain amount in the final acrylic acid composition, so that the polymerization inactive organic compound is incorporated into the acrylic acid composition. It can be obtained by the method to do.
- the “basic composition” used for neutralization means a composition containing a basic compound.
- the basic composition in addition to the basic compound, the basic composition preferably contains iron described later, in other words, a compound containing iron.
- Examples of the basic compound used in the present invention include an alkali metal carbonate (hydrogen) salt, an alkali metal hydroxide, ammonia, an organic amine, and the like, and a water-absorbing resin having higher physical properties is obtained.
- strong alkali substances that is, alkali metal hydroxides such as sodium hydroxide, potassium hydroxide and lithium hydroxide are preferred, and sodium hydroxide is particularly preferred.
- Sodium hydroxide usually contains about 0 to 5% by mass of sodium carbonate and sodium chloride, and sodium hydroxide containing sodium carbonate and sodium chloride in the amount usually contained is also suitable for the present invention. Can be used.
- Patent Document 37 As described in Patent Document 37, heavy metals exceeding 0.1 ppm in an aqueous monomer solution have been known to increase the residual monomer of the water-absorbent resin, but acrylic acid containing specific trace components,
- a basic composition containing a specific amount (0.007 to 7 ppm) of iron preferably a basic composition containing iron and caustic soda
- Patent Document 3 discloses distillation of acrylic acid and activated carbon treatment of caustic soda as techniques for reducing heavy metals to 0.1 ppm, preferably 0.02 ppm or less.
- Patent Document 3 does not disclose the methoxyphenols of the present invention, and even if acrylic acid contains 200 ppm or more of methoxyphenols, it can be obtained by distillation purification of acrylic acid (boiling point 139 ° C.) as in Patent Document 3. High-boiling methoxyphenols (p-form boiling point 113 to 115 ° C / 5 mmHg) are removed, and in distilled acrylic acid, it becomes substantially 0 ppm (below the detection limit). Patent Document 3 does not disclose that heavy metals are useful for the polymerization of water-absorbent resins.
- the basic composition (abbreviation: base) used in the present invention contains a basic compound and iron.
- the basic composition essentially contains iron in the range of 0.01 to 10.0 ppm (in terms of Fe 2 O 3 ) with respect to the solid content of the basic composition. The range is preferably 0.2 to 5.0 ppm, more preferably 0.5 to 4.0 ppm.
- the iron content in the basic composition is 0.007 to 7 ppm, preferably 0.14 to 3.5 ppm, more preferably 0.35 to 2.8 ppm.
- the amount of iron in terms of Fe 2 O 3 means the absolute amount of Fe in a compound containing iron alone or iron (Fe 2 O 3 or its iron salt, iron hydroxide, iron complex, etc.).
- the absolute amount of iron is represented by an iron compound typified by Fe 2 O 3 (molecular weight 159.7), and the present iron amount (in terms of Fe 2 O 3 ) is the molecular weight of iron. From (Fe in Fe 2 O 3 ), it can be converted from ( ⁇ 55.85 ⁇ 2 / 159.7). That is, when the amount of Fe 2 O 3 is 0.01 to 10.0 ppm, the amount is 0.007 to 7 ppm.
- the iron used in the present invention may be Fe ions, but from the viewpoint of effects, it is preferably trivalent iron, particularly iron hydroxide or Fe 2 O 3 .nH 2 O.
- acrylic acid is preferably neutralized and further circulated before and / or during neutralization.
- the preferable neutralization method and acrylic acid circulation method will be described below.
- FIG. 1 is a conceptual diagram showing an apparatus 2 used in a preferable manufacturing method (neutralization system is circulated) of the present invention
- FIG. 2 is a conceptual diagram showing an apparatus 26 used in another preferable manufacturing method of the present invention.
- the neutralization tank is an acrylic acid storage tank (acrylic acid is circulated)
- the monomer aqueous solution is acrylic acid supplied from the acrylic acid production process through a pipeline.
- the circulated acrylic acid is diluted with water as necessary to obtain the monomer aqueous solution shown in FIGS. 1 and 2, further circulated and neutralized, and supplied to the polymerization machine.
- the neutralization system and the circulation of acrylic acid are preferable but not essential, and these devices 2 and 26 are only one embodiment of the present invention, and the devices shown in FIGS.
- the technical scope of the present invention is not limited.
- the apparatus 1 includes a neutralization tank 3, a pump 4, a heat exchanger 6, a line mixer 8, a polymerization machine 10, a first pipe 12, a second pipe 14, a third pipe 16, and a fourth pipe 18. And a fifth pipe 20.
- the apparatus 26 shown in FIG. 2 has a configuration in which a sixth pipe 30 is further added to the apparatus 2 of FIG.
- the neutralization tank 3 has an inlet 22 and an outlet 24.
- the first pipe 12 connects the outlet 24 and the pump 4.
- the second pipe 14 connects the pump 4 and the heat exchanger 6.
- the third pipe 16 connects the heat exchanger 6 and the inlet 22.
- the fourth pipe 18 connects the point P ⁇ b> 1 in the middle of the third pipe 16 and the line mixer 8.
- the fifth pipe 20 connects the line mixer 8 and the polymerization machine 10.
- the sixth pipe 30 connects a point P2 in the middle of the fourth pipe 18 and a point P3 in the middle of the first pipe 12.
- first pipe 12 the second pipe 14, and the third pipe 16 form a closed flow path (hereinafter also referred to as “first loop 32”).
- a part of the first pipe 12, a part of the second pipe 14, a part of the third pipe 16, a part of the fourth pipe 18, and the sixth pipe 30 are closed channels (hereinafter referred to as “second pipe”).
- Loop 34 The first loop 32 and the second loop 34 may be collectively referred to as a circulation loop.
- closed flow path means a piping system in which the start point and end point of the liquid flow coincide.
- devices such as a tank, a heat exchanger, and a pump may be included in the middle of the piping system.
- a curved closed channel (a narrow loop) may be used, or a polygonal closed channel formed by combining a plurality of straight pipes may be used.
- the closed flow path may be arranged three-dimensionally.
- a device group including the neutralization tank 3, the pump 4, the heat exchanger 6, and the first loop 32 (including the second loop 34 in the case of FIG. 2) is referred to as a “neutralization system”.
- a mixed liquid detailed later circulates.
- the concept of “circulation” includes not only the circulation of the mixed solution by the closed flow path but also the stirring of the mixed solution by the stirring blade installed in the neutralization tank 3.
- a group of devices including the line mixer 8, the fifth pipe 20, and the polymerization machine 10 is referred to as a “polymerization system”.
- the polymerization system monomer components contained in a mixed liquid described later are polymerized to obtain a polymer gel.
- the polymerization system includes equipment and piping for adding a polymerization initiator, an internal cross-linking agent, a basic substance and the like to the mixed solution.
- a liquid containing acrylic acid and a basic aqueous solution are continuously supplied to the neutralization system.
- the liquid containing acrylic acid essentially contains acrylic acid
- the basic aqueous solution refers to an aqueous solution obtained by mixing a basic substance (for example, caustic soda) and water.
- acrylic acid is continuously supplied to the acrylic acid storage step from the acrylic acid production step or / from an acrylic acid transporter such as a tanker or tank truck.
- the liquid containing acrylic acid and the basic aqueous solution are continuously supplied to the third pipe 16 and sent to the neutralization tank 3.
- the liquid containing acrylic acid and the basic aqueous solution are not supplied directly to the neutralization tank 3, but are supplied to the third pipe 16, thereby improving the mixing efficiency of these liquids. Therefore, it is preferable.
- the effect of the present invention can be obtained even when the liquid containing acrylic acid and the basic aqueous solution are changed to the structure for directly supplying to the neutralization tank 3 instead of the above structure.
- a mixed solution containing an acrylate obtained by a neutralization reaction between acrylic acid and a basic substance is obtained.
- the mixed liquid circulates in the first loop 32 (including the second loop 34 in FIG. 2) by the operation of the pump 4. At that time, neutralization heat is generated by a neutralization reaction between acrylic acid and a basic substance.
- the mixed solution can be adjusted and maintained within a desired range. Thereby, a predetermined neutralization rate is achieved.
- a part of the mixed liquid circulating in the neutralization system is continuously supplied to the polymerization system.
- a basic substance can be continuously supplied to the mixed solution as necessary.
- mixing in the line mixer 8 is preferable from the viewpoint of mixing efficiency.
- an internal cross-linking agent, a polymerization initiator, or the like is added to the line mixer 8 or upstream or downstream thereof.
- a polymerization reaction occurs, and a polymer gel (hydrogel-like crosslinked polymer) is obtained.
- a treatment such as drying described later, a particulate water-absorbing resin is obtained.
- the circulation of the mixed solution in the neutralization system, the supply of the mixed solution to the polymerization system, and the polymerization of the mixed solution proceed simultaneously.
- the inner surface of the device is preferably mirror-finished. This mirror finish can suppress damage to the water-absorbent resin powder.
- the stainless steel is mirror finished to further enhance the damage suppressing effect. Examples of stainless steel include SUS304, SUS316, and SUS316L.
- the inner surface has a surface roughness (Rz) defined by JIS B 0601-2001 controlled to 800 nm or less.
- the surface roughness (Rz) is preferably smoothed to 500 nm or less, more preferably 300 nm or less, still more preferably 200 nm or less, particularly preferably 185 nm or less, and most preferably 170 nm or less.
- the surface roughness (Rz) means the maximum value of the maximum height (nm) of surface irregularities.
- the lower limit of the surface roughness (Rz) is 0 nm, but there is no significant difference even if it is about 10 nm, and even about 10 nm or even 20 nm is sufficient.
- the other surface roughness (Ra) is also defined in JIS B 0601-2001, but its preferred value is also the same as Rz. More preferably, Ra is 250 nm or less, particularly preferably 200 nm or less. Such surface roughness can be measured in accordance with JIS B 0651-2001 with a stylus type surface roughness measuring instrument.
- Equation 2 and Equation 3 common to cases 1 to 3
- the relationship between the residence time of the mixed solution in the neutralization system and the contact area between the equipment and the piping constituting the neutralization system is defined. That is, in the manufacturing method of the present invention, the value X1 defined by the following formula 2 is 300 or less.
- V1 [kg] is the amount of the mixed solution existing in the neutralization system
- F1 [kg / hr] is the flow rate of the mixed solution supplied to the polymerization system
- A1 [m 2 ] Is the contact area between the liquid mixture present in the neutralization system and the equipment and piping constituting the neutralization system. Therefore, V1 / F1 [hr] means the residence time of the mixed liquid in the neutralization system.
- the method includes a step of circulating the acrylic acid in a storage tank and a step of continuously supplying a part of the circulating acrylic acid to the polymerization system.
- the value X2 is 300 or less.
- Equation 3 V2 [kg] is the amount of acrylic acid before neutralization, F2 [kg / hr] is the flow rate of acrylic acid supplied to the neutralization system, and A2 [m 2 ] is The contact area between the acrylic acid and the equipment and pipes constituting the neutralization system.
- Amount of liquid mixture present in neutralization system (V1)” means neutralization tank 3, pump 4, heat exchanger 6, and first loop 32 (in the case of FIG. 2, also includes second loop 34). Refers to the total amount of the mixture present. In other words, the amount of the liquid mixture present in the neutralization tank 3 is Va, the amount of the liquid mixture present in the pump 4 is V1b, the amount of the liquid mixture present in the heat exchanger 6 is Vc, and the piping constituting the circulation loop is included. When the amount of the liquid mixture present is Vd, the sum (V1a + V1b + V1c + V1d) is the amount of the liquid mixture present in the neutralization system. Therefore, the liquid which exists in the apparatus or piping etc.
- V2 [kg] is the amount of acrylic acid before neutralization, which is “the amount of acrylic acid present in the acrylic acid storage system”, and can be obtained in the same manner as V1.
- the “amount of the mixed solution present in the neutralization system” and the “amount of acrylic acid present in the acrylic acid storage system” are not particularly limited, but are preferably 100 to 30000 kg, more preferably 200 to 10000 kg.
- the amount of the liquid mixture present in the neutralization system is constant in a steady state because the total amount of liquid supplied to the neutralization system and the total amount of liquid mixture supplied to the polymerization system are usually the same. However, the balance between the supply amount to the neutralization system and the supply amount to the polymerization system may be lost, and the amount of the liquid mixture present in the neutralization system may vary. In that case, the liquid amount can be measured every certain time (for example, 1 hour), and the value X1 can be obtained using the arithmetic mean value of the measured values.
- the “flow rate (F1) of the mixed liquid supplied to the polymerization system” refers to the pipe connecting the neutralization system and the polymerization system (specifically, the fourth pipe 18 in the apparatus 2 and the point in the apparatus 26). It is measured with a flow meter installed in P2 and the line mixer 8.) Normally, the flow rate is reduced by dividing the total amount of the mixed solution supplied to the polymerization system by the operating time. Can be sought.
- the flow rate is not particularly limited, but is preferably 30 to 30000 [kg / hr], more preferably 100 to 10000 [kg / hr].
- the “flow rate of acrylic acid supplied to the neutralization system (F1)” can also be determined in the same manner.
- Contact area (A1) between the mixed liquid present in the neutralization system and the equipment and pipes constituting the neutralization system refers to the inner surface of all components such as tanks, devices, pipes, etc. present in the neutralization system. The area where the liquid mixture comes into contact.
- the contact area between the liquid mixture present in the neutralization tank 3 and the inner surface of the neutralization tank 3 is A1a
- the contact area between the liquid mixture present in the pump 4 and the inner surface of the pump 4 is A1b
- the mixing present in the heat exchanger 6 Assuming that the contact area between the liquid and the inner surface of the heat exchanger 6 is A1c, and the contact area between the mixed liquid existing in the piping constituting the circulation loop and the inner surface of the piping constituting the circulation loop is A1d, the total of them (A1a + A1b + A1c + A1d) is It becomes a contact area of the liquid mixture which exists in a neutralization system, and the apparatus and piping which comprise a neutralization system.
- A2 [m 2 ] is a contact area between acrylic acid and the equipment and pipes that constitute the neutralization system, and can be obtained in the same manner.
- the contact area refers to the area of the part that is actually in contact with the liquid mixture, and does not include the area of the space part.
- the space is not particularly limited.
- the neutralization tank 3 or the acrylic acid storage layer 3 ′ may have a space of 50 to 90 [vol%] of the neutralization tank capacity.
- the contact area between the mixed liquid existing in the neutralization system and the equipment and pipes constituting the neutralization system is, in a steady state, the total amount of the liquid supplied to the neutralization system and the total amount of the mixed liquid supplied to the polymerization system. Usually, it is constant because it is the same. However, the balance between the supply amount to the neutralization system and the supply amount to the polymerization system may be lost, and the amount of the liquid mixture present in the neutralization system may vary. In that case, the liquid amount can be measured every fixed time (for example, 1 hour), the average contact area can be obtained using the arithmetic mean value, and the value X1 can be calculated. In the acrylic acid storage system, X2 can be calculated in the same manner.
- the water content of acrylic acid containing a predetermined amount of the polymerization inhibitor is set to 1000 ppm or less, and the value X1 calculated by the above formula 1 is 300 or less, preferably 0.5 to 200, more preferably 1
- the value X1 calculated by the above formula 1 is 300 or less, preferably 0.5 to 200, more preferably 1
- the water content of acrylic acid containing a predetermined amount of the polymerization inhibitor is set to 1000 ppm or less, and the value X2 calculated by the above formula 2 is 300 or less, preferably 0.5 to 200, more preferably 1
- a particulate water-absorbing resin having excellent whiteness can be obtained.
- the positions of the points P1, P2, and P3 in the present invention are not particularly limited, and may be on the third pipe 16, the fourth pipe 18, and the first pipe 12, respectively. Therefore, it is preferable to set the position closer to the polymerization system.
- the supply of the mixed liquid to the polymerization system is also stopped. At that time, the mixed solution stays in the pipe connecting the neutralization system and the polymerization system, but the quality of the mixed solution deteriorates due to a chemical reaction or the like. From the viewpoint of the quality of the particulate water-absorbent resin, the retained liquid mixture is discarded.
- the mixed solution in the circulation loop may circulate without being affected by the operation status of the polymerization system. Therefore, by bringing the position of the point P2 closer to the polymerization system, the amount of the mixed liquid to be discarded can be reduced, and the length of the pipe to be cleaned can be shortened, so that productivity can be improved.
- the position of the neutralization system and the polymerization system may be separated for convenience of layout, and in this case, a particularly remarkable effect is exhibited. Furthermore, since the temperature of the mixed liquid can be optimally maintained in the circulation loop, a remarkable effect is exhibited in restarting the polymerization.
- the mixed liquid in the neutralization tank 3 is circulated by the first loop 32, and the mixed liquid is taken out from the neutralization tank 3 or the first loop 32 by the second loop 34. Then, it is conveyed to a position closer to the polymerization system than the first loop 32, and further returned to the neutralization tank 3 or the first loop 32.
- the length of La is preferably 20 m or less, and more preferably 10 m or less.
- the ratio (Lb / La) of both is preferably 10 or more, more preferably 20 or more, and further preferably 30 or more.
- the ratio (Ld / Lc) is preferably 10 or more, more preferably 20 or more, and more than 30. Further preferred. By setting the ratio (Ld / Lc) within this range, low cost and high productivity are achieved.
- the neutralization step in the present invention is performed in the neutralization system shown in FIG. 1 or FIG. 2, and a liquid (mixed liquid) containing the above-described monomer and a basic aqueous solution are continuously supplied. Moreover, it is preferable from a handling viewpoint that the said liquid mixture is made into aqueous solution irrespective of a monomer state (solid state or liquid state at normal temperature).
- room temperature refers to a temperature range of 20 to 30 ° C.
- the above mixed solution is preferably a 10 to 99% by mass monomer aqueous solution, and more preferably a 50 to 100% by mass acrylic acid aqueous solution.
- the mixed solution temperature is preferably 0 to 50 ° C., more preferably 25 to 50 ° C.
- acrylic acid is preferably the main component.
- the content of acrylic acid with respect to the total amount of the monomer is preferably 50 mol% or more, more preferably 80 mol% or more, and further preferably 95 mol% or more (the upper limit is 100 mol%).
- the acrylic acid is supplied within 96 hours after the crystallization step and / or the distillation step. More preferably within 72 hours, even more preferably within 48 hours, particularly preferably within 24 hours, most preferably within 12 hours.
- a production facility for acrylic acid as the acid group-containing monomer and the neutralization facility are constructed adjacent to each other and directly connected by a pipe (pipeline).
- the length of the pipeline is not particularly limited, but is preferably within 30 km, more preferably within 10 km, and even more preferably within 5 km.
- a storage tank for acrylic acid may be provided in the middle of the pipeline.
- acrylic acid since acrylic acid has been stored and transported in production facilities for a certain period of time, it takes about one week to several tens of days after acrylic acid production until it is supplied to the neutralization system. It has also caused coloring of the water-absorbent resin.
- the pipeline makes it possible to supply acrylic acid to the neutralization system in a short time, and coloration of the particulate water-absorbing resin can be prevented.
- the temperature of acrylic acid during transportation and storage by the pipeline is preferably low, specifically 30 ° C. or less, more preferably in the range of melting point to 25 ° C.
- the size of the storage tank is appropriately determined by the production amount, and is, for example, 1 to 500 m 3 .
- the basic aqueous solution is not particularly limited as long as it is capable of neutralizing with the monomer to form a salt (for example, a salt of sodium, lithium, potassium, ammonium, amines, etc.).
- a salt for example, a salt of sodium, lithium, potassium, ammonium, amines, etc.
- an aqueous sodium hydroxide solution is preferred.
- the basic aqueous solution is preferably an aqueous solution irrespective of the state of the basic substance (solid state or liquid state at room temperature) from the viewpoint of handling. Accordingly, the concentration of the basic aqueous solution is preferably 5 to 80% by mass, and more preferably 10 to 50% by mass.
- the temperature of the basic aqueous solution is preferably 0 to 50 ° C., more preferably 25 to 50 ° C.
- the liquid mixture present in the neutralization system contains unneutralized acrylic acid and acrylate.
- both unneutralized acrylic acid and the salt produced by neutralization are collectively referred to as a monomer component.
- the neutralization rate of acrylic acid is preferably 10 to 90 mol%, more preferably 20 to 80 mol%, and further preferably 25 to 75 mol%.
- the monomer component concentration (hereinafter sometimes referred to as “monomer concentration”) of the mixed liquid present in the neutralization system is preferably 30 to 70% by mass, more preferably 30 to 65% by mass, and 45 More preferred is ⁇ 65 mass%.
- the liquid temperature of the mixture present in the neutralization system is preferably 20 to 60 ° C., more preferably 30 to 50 ° C. By controlling the liquid temperature within the above range, it is possible to suppress polymerization reaction and generation of impurities.
- the residence time (V / F) of the mixed solution in the neutralization system is preferably 0.1 to 10 hours, more preferably 0.1 to 5 hours, further preferably 0.1 to 2 hours, .1 to 1.7 hours are particularly preferred.
- the flow rate F of the mixed solution supplied to the polymerization system is preferably 30 to 30000 [kg / hr], more preferably 100 to 25000 [kg / hr], and further preferably 2000 to 20000 [kg / hr]. .
- a particulate water-absorbing resin excellent in whiteness can be obtained, and further excellent productivity can be achieved.
- neutralization may be further performed in the polymerization step described later.
- the mixed solution supplied to the polymerization system is further supplied with a basic aqueous solution by the line mixer 8.
- the neutralization rate of the acid group-containing monomer is preferably 30 to 90 mol%.
- the neutralization treatment in the polymerization system is referred to as “two-stage neutralization” in the present invention.
- formic acid which is a constituent of the invention of Case 2 and Case 3, is contained in the monomer aqueous solution as shown in [2] Acrylic acid (salt) and / or the following (3- It is added in any one or a plurality of steps 1) to (3-8).
- formic acid is contained in the monomer aqueous solution, or (3-2) gel refinement step Or (3-7) added in the cationic polymer addition step, particularly preferably contained in the monomer aqueous solution, or (3-7) added in the cationic polymer addition step.
- polyvinylamine which may contain an unhydrolyzed product of poly (N-vinylformamide)
- formic acid can be added simultaneously. The process is simple and advantageous.
- the amount of formic acid added is described above for the case where it is contained in the monomer aqueous solution. However, when it is added in the steps (3-1) to (3-8), the use of a cationic polymer is described below. Depending on the amount, it is 0.01 to 5% by mass relative to the water-absorbent resin (or the solid content of the water-containing gel-like cross-linked polymer), and moreover, the range described later.
- the water absorbent resin used in the particulate water absorbent resin of the present invention has a structural unit derived from acrylic acid.
- the water-absorbent resin has a structural unit derived from acrylic acid as a main component.
- the method for producing the water-absorbing resin is not particularly limited.
- the water-absorbing resin is obtained by polymerizing a monomer component mainly composed of acrylic acid and / or a salt thereof.
- the monomer-derived structural unit corresponds to, for example, a structure in which a polymerizable double bond of each monomer is opened by a polymerization reaction.
- the structure in which a polymerizable double bond is opened is, for example, a structure in which a carbon-carbon double bond (C ⁇ C) is a single bond (—C—C—).
- alkali metal salts such as lithium, sodium and potassium; ammonium salts; monovalent salts of acrylic acid such as amine salts are usually used, and preferably alkali metal salts of acrylic acid are used. More preferably, it is a sodium salt or potassium salt of acrylic acid.
- polyvalent metal salts such as calcium salts and aluminum salts may be used in combination as long as they have water swellability.
- the neutralization rate of the water-absorbent resin obtained in the present invention is preferably partial neutralization, and is 10 mol% or more and less than 90 mol%, more preferably 40 mol% with respect to acid groups. As mentioned above, it is less than 80 mol%, More preferably, it is 50 mol% or more and less than 74 mol% with respect to an acid group.
- the neutralization rate is less than 10 mol%, the absorption performance, particularly the water absorption ratio may be remarkably lowered, which is not preferable, and when the neutralization rate is 100 mol%, or more than 90 mol%, the absorption performance, particularly A water-absorbing resin having a high water absorption capacity under pressure cannot be obtained, and coloration with time may be reduced, which is not preferable.
- the neutralization rate is less than 74 mol%, and more preferably less than 72 mol%, from the viewpoint of coloring over time and absorption performance.
- This neutralization may be performed on the monomer component before polymerization, or may be performed on the polymer during or after polymerization. Furthermore, neutralization of the monomer component and neutralization of the polymer may be used in combination. Preferably, it neutralizes with acrylic acid as a monomer component.
- the water content of the water-absorbent resin obtained in the present invention is adjusted to 10% by mass or less, preferably 5% by mass or less, through a drying step described later.
- acrylic acid and / or a salt thereof (hereinafter referred to as acrylic acid (salt)) is used within the above range, but other monomers may be used in combination.
- the monomer other than acrylic acid (salt) is based on the total amount of all monomers (acrylic acid (salt) used as the main component).
- the other monomer may be used in an amount of 0 to 50 mol%, preferably 0 to 30 mol%, more preferably 0 to 10 mol%.
- a water-soluble or hydrophobic unsaturated monomer may be used as the monomer used in combination.
- Water-soluble or hydrophobic unsaturated monomers include methacrylic acid, (anhydrous) maleic acid, fumaric acid, crotonic acid, itaconic acid, vinyl sulfonic acid, 2- (meth) acrylamide-2-methylpropane sulfonic acid, (Meth) acryloxyalkanesulfonic acid and its alkali metal salts, ammonium salts, N-vinyl-2-pyrrolidone, N-vinylacetamide, (meth) acrylamide, N-isopropyl (meth) acrylamide, N, N-dimethyl (meta ) Acrylamide, 2-hydroxyethyl (meth) acrylate, methoxypolyethylene glycol (meth) acrylate, polyethylene glycol
- the crosslinking method used in the present invention is not particularly limited, for example, a method of post-crosslinking by adding a crosslinking agent during or after polymerization, a method of radical crosslinking with a radical polymerization initiator, a method of radiation crosslinking with an electron beam, etc.
- a method in which a predetermined amount of an internal cross-linking agent is added to the monomer in advance for polymerization and a cross-linking reaction is performed simultaneously with or after the polymerization is preferable.
- Examples of the internal crosslinking agent used in the present invention include N, N′-methylenebisacrylamide, (poly) ethylene glycol di (meth) acrylate, (poly) propylene glycol di (meth) acrylate, and (polyoxyethylene) trimethyl.
- the amount of the internal cross-linking agent used is preferably 0.005 to 2 mol%, more preferably 0.01 to 1 mol%, still more preferably 0.05 to 0.2 mol% with respect to the monomer. is there. If the amount of the internal cross-linking agent used is less than 0.005 mol% or more than 2 mol%, the desired absorption characteristics may not be obtained.
- the concentration of the monomer component in this aqueous solution is particularly limited. However, it is preferably 10 to 70% by mass, more preferably 15 to 65% by mass, and still more preferably 30 to 55% by mass from the viewpoint of physical properties.
- the monomer aqueous solution is particularly limited. However, it is preferably 10 to 70% by mass, more preferably 15 to 65% by mass, and still more preferably 30 to 55% by mass from the viewpoint of physical properties.
- solvent other than water you may use together solvent other than water as needed, and the kind of solvent used together is not specifically limited.
- a water-soluble resin or a water-absorbing resin may be added to the monomer to improve various physical properties of the water-absorbing resin.
- various foaming agents carbonates, azo compounds, bubbles, etc.
- surfactants chelating agents, chain transfer agents, and the like are added to the monomer, for example, 0 to 5% by mass, preferably 0. ⁇ 1% by mass may be added to improve various physical properties of the water-absorbent resin.
- the use of the water-soluble resin or water-absorbent resin during polymerization gives a graft polymer or water-absorbent resin composition.
- the unsaturated monomer aqueous solution is polymerized, it is preferably carried out by aqueous solution polymerization or reverse phase suspension polymerization in view of performance and ease of polymerization control.
- these polymerizations can be carried out in an air atmosphere, it is preferably carried out in an inert gas atmosphere such as nitrogen or argon (for example, 1% by volume or less of oxygen), and the monomer component does not have dissolved oxygen.
- an active gas for example, less than 1 [mg / L] oxygen.
- it is particularly suitable for aqueous solution polymerization in which polymerization control is difficult in order to obtain a highly productive and highly water-absorbing resin.
- aqueous solution polymerization As particularly preferable aqueous solution polymerization, continuous belt polymerization (US Pat. No. 4,893,999, No. 6,241,928 and U.S. Patent Application Publication No. 2005/215734), continuous or batch kneader polymerization (described in U.S. Pat. Nos. 6,987,151 and 6,710,141, etc.).
- Aqueous polymerization is a method in which an aqueous monomer solution is polymerized without using a dispersion solvent.
- U.S. Pat. Nos. 4,462,001, 4,873,299, 4,286,082, 4,973,632, 4,985,518, No. 5124416 US Pat. No. 5,250,640, US Pat. No. 5,264,495, US Pat. No. 5,145,906, US Pat. No. 5,380,808, etc.
- European Patent Nos. 081636, 09555086, 0922717, 1178059 It is described in European patents such as Nos. 1711541 and 1799721.
- the monomers, crosslinking agents, polymerization initiators, and other additives described in these patents can also be applied in the present invention.
- Reverse phase suspension polymerization is a polymerization method in which an aqueous monomer solution is suspended in a hydrophobic organic solvent.
- Reverse phase suspension polymerization is a polymerization method in which an aqueous monomer solution is suspended in a hydrophobic organic solvent.
- the total time from the time when the monomer component is prepared until the start of polymerization is preferably as short as possible, and the total time is preferably within 24 hours, more preferably within 12 hours, even more preferably within 3 hours, and particularly preferably within 1 hour.
- the residence time that is, the above total time usually exceeds 24 hours, but after the monomer component is prepared and / or The longer the time after neutralization of acrylic acid (the above total time), the more residual monomers were found and the yellowing phenomenon of the water absorbent resin was found. Therefore, in order to shorten the residence time, preferably, batch polymerization or continuous polymerization is performed with continuous neutralization and continuous monomer component adjustment, and more preferably continuous polymerization is performed.
- the polymerization initiation temperature of the unsaturated monomer aqueous solution is 40 ° C. or higher, more preferably 50 ° C. or higher, even more preferably 60 ° C. or higher, and particularly preferably 70 ° C. or higher.
- the upper limit is not more than the boiling point of the aqueous solution, preferably not more than 105 ° C.
- high temperature polymerization in which the peak temperature of the polymerization temperature is 95 ° C. or higher, more preferably 100 ° C. or higher, and even 105 ° C. or higher is preferable.
- the present invention is applied to a hydrogel obtained by such boiling polymerization, the effects of the present invention including particle size control can be maximized.
- the upper limit is not more than the boiling point, preferably not more than 130 ° C., and more preferably not more than 120 ° C.
- the polymerization time is not particularly limited, and may be appropriately determined according to the kind of the hydrophilic monomer or polymerization initiator, the reaction temperature, etc., but is usually 0.5 minutes to 3 hours, preferably 1 Min to 1 hour.
- persulfates such as potassium persulfate, ammonium persulfate and sodium persulfate, hydroperoxides such as t-butyl hydroperoxide and hydrogen peroxide, 2,2 ′ -Azo compounds such as azobis (2-amidinopropane) dihydrochloride, polymerization initiators such as 2-hydroxy-1-phenyl-propan-1-one and benzoin methyl ether, and further promote the decomposition of these polymerization initiators And redox initiators used in combination with a reducing agent such as L-ascorbic acid.
- the amount of the polymerization initiator used is usually in the range of 0.001 to 1 mol%, more preferably 0.001 to 0.5 mol%, based on the monomer.
- the polymerization reaction may be carried out by irradiating the reaction system with active energy rays such as radiation, electron beam, and ultraviolet rays.
- active energy rays such as a radiation, an electron beam, and an ultraviolet-ray, and a polymerization initiator may be used together.
- a chelating agent described later is added to the monomer aqueous solution during polymerization or in the middle of polymerization for polymerization so that the effects of the present invention can be further exhibited.
- the hydrogel crosslinked polymer obtained by polymerization may be dried as it is, but if necessary, it is dried after being shredded using a gel grinder or the like.
- the shape of the color-stable water-absorbing resin particles of the present invention is not particularly limited, and can be any form such as granules, powders, flakes, and fibers.
- the shredding is performed by various methods. For example, a method of extruding from a screw-type extruder having a porous structure of an arbitrary shape and pulverizing can be exemplified. In extrusion pulverization, the color change can be further reduced by adding a chelating agent described later in the form of an aqueous solution.
- the drying temperature suitably used in the present invention is not particularly limited, but is, for example, in the range of 50 to 300 ° C. (when it is 100 ° C. or lower, it is preferably performed under reduced pressure), preferably 100 It is carried out at a temperature of ⁇ 250 ° C., more preferably 150 ° C. to 200 ° C.
- acrylic acid contains the above-described polymerization-inert organic compound
- the polymerization-inert organic compound is obtained by drying in the above-mentioned temperature range, particularly high-temperature drying (preferably 100 to 250 ° C., more preferably 150 to 200 ° C.). Since it can remove from a water absorbing resin, it is more preferable.
- Drying methods include heat drying, hot air drying, vacuum drying, fluidized bed drying, infrared drying, microwave drying, drum dryer drying, dehydration by azeotropy with hydrophobic organic solvent, high humidity drying using high temperature steam, etc.
- Various methods can be employed.
- a preferred embodiment is contact drying with a gas having a dew point of 40 to 100 ° C., more preferably a dew point of 50 to 90 ° C.
- time-stable color-stable water-absorbent resin particles of the present invention obtained by drying may be subjected to processes such as pulverization, classification, and preparation for grain size control as necessary according to the purpose. . These methods are described in, for example, International Publication No. 2004/69915.
- a dried product is obtained by drying the hydrogel crosslinked polymer after polymerization.
- the dried product may be used as it is as a dry powder (preferably a solid content of 80% by mass or more), and the particle size may be adjusted after drying if necessary.
- the water-absorbent resin after drying is preferably made to have a specific particle size in order to improve physical properties by surface cross-linking described later.
- the particle size can be appropriately adjusted by polymerization, pulverization, classification, granulation, fine powder recovery and the like.
- a similar classification step may be preferably included after the surface cross-linking step.
- the classification step after the drying step is referred to as a first classification step
- the classification step after the surface crosslinking step is referred to as a second classification step.
- the mass average particle diameter (D50) before surface crosslinking is adjusted to 200 to 600 ⁇ m, preferably 200 to 550 ⁇ m, more preferably 250 to 500 ⁇ m, and particularly preferably 350 to 450 ⁇ m. Further, the smaller the particle size is less than 150 ⁇ m, the better, and it is usually adjusted to 0 to 5% by mass, preferably 0 to 3% by mass, particularly preferably 0 to 1% by mass. Furthermore, the smaller the particles of 850 ⁇ m or more (more preferably 710 ⁇ m or more), the better, and the adjustment is usually 0 to 5% by mass, preferably 0 to 3% by mass, particularly preferably 0 to 1% by mass.
- the surface cross-linking is preferably performed at a ratio of 850 to 150 ⁇ m, more preferably 710 to 150 ⁇ m at 95% by mass or more and further 98% by mass or more (upper limit 100% by mass).
- the logarithmic standard deviation ( ⁇ ) of the particle size distribution is 0.25 to 0.45, preferably 0.30 to 0.40, and preferably 0.32 to 0.38. These measurement methods are described in, for example, International Publication No. 2004/69915 and EDANA-ERT420.2-02 using a standard sieve.
- the particle size before surface cross-linking is preferably applied to the final product (also known as a water-absorbing agent or particulate water-absorbing resin) after surface cross-linking.
- the method preferably further includes a step of recycling fine powder and recycling the water absorbent resin fine powder after the classification step before the drying step.
- a step of recycling fine powder By recycling the fine powder, it is possible to contribute to particle size control or improvement of water absorption speed and liquid permeability.
- the amount of fine powder recycled is appropriately determined within the range of 0.1 to 40% by mass, more preferably 1 to 30% by mass, and particularly 5 to 25% by mass in the pulverized product.
- the fine powder recycling method a known method is used, and the monomer is recycled (for example, US Pat. Nos. 5,455,284, 5,342,899, 5,264,495, US Patent Application Publication No. 2007/0225422), hydrous gel Recycled to cross-linked polymer (US Patent Application Publication No. 2008/0306209, US Pat. Nos. 5,478,879 and 5,350,799), recycled to granulation process (US Pat. Nos. 6,228,930 and 6,458,921), and gelled process Examples include recycling (US Pat. Nos. 4,950,692, 4,970,267 and 5,064,582). Among these, it is preferable to recycle to a polymerization step or (if necessary, granulate or hydrate) to a drying step.
- the time-stable color-stable water-absorbing resin particles obtained in the present invention are subjected to a conventionally known surface cross-linking treatment step after the above-mentioned steps, so that the time-stable color stability is more suitable for sanitary materials.
- the surface crosslinking may be performed simultaneously with drying, but is preferably performed after the drying step, more preferably after the classification step.
- Surface cross-linking means that a portion having a higher cross-linking density is provided on the surface layer of the water-absorbent resin (near the surface: usually several tens of ⁇ m from the surface of the water-absorbent resin). It can be formed by a crosslinking reaction or the like.
- a cross-linking agent capable of reacting with a carboxyl group can be preferably used from the viewpoint of physical properties and handleability.
- polyhydric alcohol compounds, epoxy compounds, polyvalent amine compounds or their condensates with haloepoxy compounds, oxazoline compounds, mono-, di- or polyoxazolidinone compounds, polyvalent metal salts, alkylene carbonate compounds, oxetane compounds, cyclic urea compounds Etc. can be illustrated.
- Alcohol compounds Epoxy compounds such as ethylene glycol diglycidyl ether and glycidol; Multivalents such as ethylenediamine, diethylenetriamine, triethylenetetramine, tetraethylenepentamine, pentaethylenehexamine, polyethyleneimine, and polyamidepolyamine Haloepoxy compounds such as epichlorohydrin, epibromohydrin, ⁇ -methylepichlorohydrin; condensates of the above polyvalent amine compounds and the above haloepoxy compounds; oxazolidinone compounds such as 2-oxazolidinone; ethylene carbonate, etc.
- the amount of the surface cross-linking agent used depends on the compounds to be used and combinations thereof, but is preferably in the range of 0.001 to 10 parts by mass with respect to 100 parts by mass of the water-absorbent resin particles. More preferably within the range of 5 parts by mass to 5 parts by mass.
- water can be used in accordance with the surface cross-linking agent. At this time, the amount of water used is preferably in the range of 0.5 to 20 parts by mass, more preferably 0.5 to 10 parts by mass with respect to 100 parts by mass of the water-absorbent resin particles.
- a hydrophilic organic solvent can be used in addition to water.
- the amount of the hydrophilic organic solvent used is in the range of 0 to 10 parts by mass, preferably 0 to 5 parts by mass with respect to 100 parts by mass of the water-absorbent resin particles.
- the range does not hinder the effect of the present invention, for example, 0 to 10% by mass or less, preferably 0 to 5% by mass, more preferably 0 to 1% by mass, A water-insoluble fine particle powder or a surfactant may coexist.
- Surfactants used and the amounts used are exemplified in US Pat. No. 7,473,739.
- a mixing device used for mixing the surface cross-linking agent solution various mixers can be used.
- a high-speed stirring type mixer particularly a high-speed stirring type continuous mixer is preferable.
- No. Hosokawa Micron Co., Ltd. and the brand name Redige Mixer (manufactured by Redige, Germany).
- the water-absorbing resin after mixing the surface cross-linking agent is preferably subjected to heat treatment, and if necessary, subsequent cooling treatment.
- the heating temperature is 70 to 300 ° C, preferably 120 to 250 ° C, more preferably 150 to 250 ° C, and the heating time is preferably in the range of 1 minute to 2 hours.
- the heat treatment can be performed using a normal dryer or a heating furnace.
- the surface treatment in the method for producing the particulate water-absorbing resin of the present invention is a step of surface cross-linking reaction for increasing the cross-linking density of the surface of the water-absorbent resin.
- 150 It is preferable to be performed in a temperature range of not lower than 250 ° C and lower than 250 ° C.
- the temperature is lower than 150 ° C.
- surface cross-linking of the particulate water-absorbing resin is not sufficient, and the water absorption magnification and saline flow induction rate under pressure are low.
- a particulate water-absorbing resin may color, and it is unpreferable.
- a water-soluble polyvalent metal salt such as an aluminum sulfate aqueous solution may be added after the crosslinking reaction.
- a polyvalent metal and / or a cationic polymer described later may be added simultaneously with the surface crosslinking or after the surface crosslinking.
- the production method of the invention of case 3 includes a step of adding a cationic polymer, particularly a step of adding a cationic polymer to the surface of the water-absorbent resin powder.
- the added cationic polymer acts on the surface coating or surface cross-linking of the water-absorbent resin, and improves the liquid permeability and shape retention of the water-absorbent resin.
- the cationic polymer may be a cross-linked product, a homopolymer, or a copolymer, and part or all of the cationic polymer may be water-swellable or water-insoluble, but a water-soluble cationic polymer is preferably used.
- water-soluble means that 1 g or more, further 10 g or more, particularly 50 g or more of the cationic polymer is dissolved in 100 g of water at 25 ° C.
- the cationic polymer is used for the water-absorbing resin after the drying step, preferably for the water-absorbing resin before, during (simultaneously) or after the surface cross-linking step, more preferably for the water-absorbing resin simultaneously with or after the surface cross-linking. Particularly preferably, it is added to the water-absorbent resin after surface crosslinking.
- the cationic polymer coats or reacts on the surface of the water-absorbent resin.
- formic acid is preferably further added to the surface of the water-absorbent resin.
- the water-absorbing resin can be used at a high concentration without coloring in a paper diaper.
- the cationic polymer may be added simultaneously with formic acid or separately, or may be used in combination.
- a mixture of the cationic polymer and formic acid is a water-absorbing resin. It is preferable to be mixed. It is presumed that the coloration derived from the cationic polymer is efficiently prevented by mixing at the same time (this mechanism does not limit the present invention).
- the cationic polymer and formic acid may be mixed as they are, but from the viewpoint of improving physical properties due to uniform mixing properties, the cationic polymer and formic acid are preferably mixed with the water-absorbent resin as a solution, more preferably as an aqueous solution.
- the amount of water or other solvent (preferably a hydrophilic solvent, particularly a lower alcohol) to be used is appropriately determined depending on the type and amount of the cationic polymer, but preferably 0.01 to 20 parts by mass of water, Is used in an amount of 0.1 to 10 parts by weight, particularly 0.5 to 8 parts by weight.
- the concentration of the aqueous solution at the time of mixing is also determined as appropriate, and is, for example, 1 to 100% by mass, further 5 to 80% by mass, or 10 to 60% by mass.
- the mixing amount of the cationic polymer is 0.01 to 5 parts by weight, preferably 0.05 to 4.5 parts by weight, more preferably 0.1 to 4 parts by weight, with respect to 100 parts by weight of the polymer. More preferably, it is appropriately determined within the range of 0.3 to 3.5 parts by mass.
- the mixing amount of formic acid is 0.0001 to 5 parts by weight, preferably 0.001 to 4.5 parts by weight, more preferably 0.01 to 4 parts by weight, based on 100 parts by weight of the polymer. More preferably, it is appropriately determined within the range of 0.1 to 3.5 parts by mass.
- the mass ratio in the mixture of the cationic polymer and formic acid is also appropriately determined.
- the cationic polymer: formic acid is preferably 1:20 to 20: 1, more preferably 1:10 to 10: 1, and still more preferably 1.
- the amount of formic acid is defined by the total amount of formic acid including the above-mentioned formic acid, that is, formic acid contained at 700 ppm or less (preferably 1 to 700 ppm) as necessary during polymerization.
- the salt of formic acid is defined by mass conversion to formic acid (eg, HCOONa (molecular weight 68) is HCOOH (molecular weight 46)).
- the cationic polymer and formic acid can be mixed with a mixer, a heat treatment machine, a cooler, or a mixer other than the surface cross-linker used for surface cross-linking. May be heated or dried at 20 to 150 ° C, more preferably 50 to 120 ° C.
- a mixture of formic acid and a cationic polymer in an amount exceeding the content of formic acid at the time of polymerization is further mixed with the water absorbent resin.
- a preferred cationic polymer is polyvinylamine or a partial hydrolyzate of poly (N-vinylformamide), but a cationic polymer described later can also be used or used in combination.
- the use of a complete hydrolyzate or partial hydrolyzate of poly (N-vinylformamide) containing a predetermined amount of formic acid as the cationic polymer, preferably the partial hydrolyzate is one of the preferred methods in the invention of Case 3. is there.
- the amount of formic acid used is in the above range at the time of polymerization and at the time of addition of the cationic polymer and the total amount with respect to the water absorbent resin. Addition of formic acid in this process does not cause formic acid to evaporate in the polymerization process or drying process, so there is little problem of acid odor derived from formic acid, and there is less loss compared to adding formic acid before the polymerization process or drying process. The effect of suppressing coloration with time is high with respect to the amount. If the monomer aqueous solution contains more than 700 ppm of formic acid, the water-soluble content increases beyond the amount of formic acid added, but such a water-soluble content does not occur after the polymerization step.
- formic acid when a cationic polymer is used, formic acid is added as a mixture with the cationic polymer, particularly as a mixture aqueous solution, from the viewpoint of an anti-coloring effect. Further, formic acid is added in a salt form (alkali metal salt or cationic polymer salt) from the viewpoint of odor.
- a salt form alkali metal salt or cationic polymer salt
- formic acid and cationic polymer are mixed separately, formic acid is not uniformly added to the color derived from the cationic polymer, so the anti-coloring effect is inferior, and the surface of the water-absorbent resin that exists separately from the cationic polymer Formic acid can cause odor.
- the cationic polymer is preferably polyvinylamine or a partial hydrolyzate of poly (N-vinylformamide).
- a polymer containing at least one selected from primary amino groups, secondary amino groups, tertiary amino groups and salts thereof, and quaternary alkyl ammonium salts is preferably used.
- the amino group salt is obtained by neutralizing the amino group nitrogen with an inorganic acid or an organic acid, or by reacting the amino group nitrogen with an electrophile.
- inorganic acids that can be used for neutralization include carbonic acid; boric acid; hydrogen acid such as hydrochloric acid and hydrofluoric acid; sulfuric acid, sulfurous acid, nitric acid, nitrous acid, phosphoric acid, hypophosphorous acid, phosphorous acid,
- organic acids include organic acids such as orthophosphoric acid, metaphosphoric acid, pyrophosphoric acid and other polyphosphoric acids, tripolyphosphoric acid, ultraphosphoric acid (acidic metaphosphoric acid), perchloric acid and other oxygen acids; Examples thereof include compounds having an acidic functional group such as carboxylic acid, sulfinic acid, sulfonic acid, phenolic acid, enol (carbonyl compound tautomer), mercaptan, imide (acid imide), oxime, sulfonamide and the like.
- oxygen such as formic acid, acetic acid, propionic acid glycolic acid, lactic acid, trichlorolactic acid, glyceric acid, malic acid, tartaric acid, citric acid, tartronic acid, gallic acid, etc. ; Amino acids such as aspartic acid; p-toluenesulfonic acid, and the like.
- Examples of usable electrophiles include iodomethane, iodoethane, 2-iodopropane, benzyl iodide, bromomethane, bromoethane, 2-bromopropane, benzyl bromide, chloromethane, chloroethane, 2-chloropropane, benzyl chloride, and the like. And alkyl sulfates such as diethyl sulfate and dimethyl sulfate. Said inorganic acid, organic acid, and electrophile are used individually, respectively, or 2 or more types are used together.
- the cationic polymer examples include polyethyleneimine, modified polyamidoamine modified by grafting of ethyleneimine, protonated polyamidoamine, condensate of polyamidoamine and epichlorohydrin, condensate of amines and epichlorohydrin, poly (vinyl) Benzyldialkylammonium), poly (diallylalkylammonium), poly (2-hydroxy-3-methacryloyloxypropyldialkylamine), polyetheramine, polyvinylamine, modified polyvinylamine, partial hydrolyzate of poly (N-vinylformamide) , Partial hydrolyzate of poly (N-vinylalkylamide), partial hydrolyzate of (N-vinylformamide)-(N-vinylalkylamide) copolymer, polyalkylamine, polyvinylidene Reaction with imidazole, polyvinyl pyridine, polyvinyl imidazoline, polyvinyl te
- the polyamidine referred to here is a polymer having an amidine ring in the molecule, and more preferably obtained by copolymerizing N-vinylformamide and acrylonitrile and then treating with acid.
- Specific examples of the polyamidine include, but are not limited to, a cationic polymer having an amidine structure described in Japanese Patent No. 2624089.
- Cationic polymers containing at least one selected from decomposed products or salts thereof, polyvinylamine or salts thereof, poly (N-vinylformamide) partial hydrolysates or salts thereof are suitable, and these cationic polymers
- the polymer may contain other repeating units on the order of 0 to 30 mol%, further 0 to 10 mol%.
- the production method of these cationic polymers is not limited, but in particular, in the method of hydrolyzing poly (N-vinylformamide), a cationic polymer having an amine group and formic acid (salt) are formed, and this partially hydrolyzed product or its Use of a mixture of salt and formic acid is preferable from the viewpoint of simplification of the process because the cationic polymer and formic acid can be added simultaneously.
- a purification method should be employed so that formic acid does not remain or is not removed so that a predetermined amount of formic acid remains.
- the hydrolysis rate of the complete or partial hydrolyzate (preferably partial hydrolyzate) of poly (N-vinylformamide) or a salt thereof is 10 to 100 mol%, more preferably 20 to 95 mol%, especially 30 to 90 mol%. Is preferred.
- a hydrolysis rate shows the ratio (%) of the amine group (mole number) formed by hydrolysis with respect to the formamide group (mole number) before hydrolysis.
- the 100 mol% hydrolyzate corresponds to polyvinylamine or a salt thereof.
- the cationic polymer preferably has a weight average molecular weight of 2000 or more, more preferably a number average molecular weight of 2000 or more, further preferably a weight average molecular weight of 5000 or more, most preferably a weight average molecular weight of 10,000 or more and a number average.
- the molecular weight is 5000 or more. If the weight average molecular weight is less than 2000, the expected effect may not be obtained.
- the number average molecular weight is measured by a viscosity method, and the weight average molecular weight is measured by an equilibrium sedimentation method. In addition, it can also be measured by gel permeation chromatography, static light scattering method or the like. From the viewpoint of cost, it is sufficient that the upper limit of the weight average molecular weight is about 5 million, and further about 1 million.
- Crosslinked cationic polymer As a method for obtaining a crosslinked cationic polymer, a monomer containing a corresponding cationic group is polymerized with another copolymerizable crosslinking agent to form a crosslinked polymer, or a cationic polymer.
- a crosslinked structure can be introduced into the cationic polymer by a conventionally known method such as crosslinking with a crosslinking agent having two or more groups capable of reacting with functional groups (for example, amino groups).
- These cationic polymer crosslinked products are made into a water-swellable composition, in a range of 200 parts by mass or less, and a composition with a polyacrylic acid water-absorbing resin, in particular a low neutralized or unneutralized polyacrylic acid water-absorbing agent, An acid-base water-absorbing resin composition may be used.
- crosslinking agent when the functional group is an amino group, for example, epoxy group, ketone group, aldehyde group, amide group, halogenated alkyl group, isocyanate group, carboxyl group, acid anhydride group, acid halide group
- the functional group is an amino group
- epoxy group for example, epoxy group, ketone group, aldehyde group, amide group, halogenated alkyl group, isocyanate group, carboxyl group, acid anhydride group, acid halide group
- Conventionally used compounds having two or more amide bond moieties, ester bond moieties, active double bonds and the like per molecule can be used.
- crosslinking agents include bisepoxy compounds, epichlorohydrins, halohydrins, dihalides such as dibromoethylene, dialdehyde compounds such as formalin and glyoxal, diglycidyl ethers of (poly) ethylene glycols, ( Examples include, but are not limited to, diglycidyl ethers of poly) propylene glycols, diglycidyl ethers of dialcohols such as neopentyl alcohol, polydiglycidyl ethers of glycerol, methylene bisacrylamide, and diacrylate compounds. .
- the cationic polymer of the present invention preferably has a cation density of 2 [mmol / g] or more, more preferably 4 [mmol / g] or more, and 6 [mmol / g] or more. Most preferred. If the cation density is less than 2 [mmol / g], the water-absorbent resin obtained by mixing the water-absorbent resin and the cationic polymer may not have sufficient shape retention of the water-absorbent resin aggregate after swelling. There is. Although an upper limit is suitably determined with a repeating unit, it is 30 [mmol / g] or less, Furthermore, it is 25 [mmol / g] or less.
- the manufacturing method of the particulate water-absorbing resin of the present invention includes an addition step of a chelating agent to prevent further coloring and deterioration.
- a chelating agent of the present invention a polymer or a non-polymer, particularly a non-polymer is preferable from the viewpoint of the effect, and a compound selected from an amino polyvalent carboxylic acid, an organic polyvalent phosphoric acid, and an amino polyvalent phosphoric acid, particularly a non-polymer. A compound is preferred.
- Suitable chelating agents are exemplified in EP 940148.
- the molecular weight of the chelating agent is preferably 100 to 5000, more preferably 200 to 1000 from the viewpoint of effect.
- polyvalent has a plurality of the functional groups in one molecule, preferably 2 to 30, more preferably 3 to 20, and 4 to 10 functional groups.
- the chelating agent contained in the particulate water-absorbing resin of the present invention is preferably in the range of 0.001 to 0.1% by mass, more preferably 0.002 to 0.05% by mass, and still more preferably 0.003. It is in the range of ⁇ 0.04 mass%, particularly preferably in the range of 0.004 to 0.02 mass%.
- the chelating agent is less than 0.001% by mass, the coloration with time of the particulate water-absorbing resin increases, which is not preferable.
- the chelating agent is more than 0.1% by mass, the initial color tone of the particulate water-absorbing resin is deteriorated, which is not preferable.
- the coloration with time refers to the coloring of the particulate water-absorbing resin when stored for a long time under high temperature and high humidity, and the initial color tone is the color tone or the color of the particulate water-absorbing resin at the time of production. Say the degree of coloring.
- (B) Inorganic reducing agent In the manufacturing method of this invention, the process of adding an inorganic reducing agent preferably from the further coloring prevention, deterioration prevention, and residual monomer reduction is included.
- an inorganic reducing agent of this invention the inorganic reducing agent containing a sulfur atom and the inorganic reducing agent containing a phosphorus atom are mentioned.
- the inorganic reducing agent may be in the acid form, but is preferably in the salt form, and the salt is a monovalent to polyvalent metal salt, and more preferably a monovalent salt.
- Suitable inorganic reducing agents are exemplified in U.S. Patent Application Publication No. 2006/074160, and sulfite (hydrogen) salts and the like are preferably used.
- the inorganic reducing agent contained in the water-absorbent resin of the present invention is preferably in the range of 0.01 to 1.5% by mass, more preferably 0.05 to 1.0% by mass, particularly preferably 0.05 to 0.5%. It is the range of mass%.
- the inorganic reducing agent is less than 0.01% by mass, the particulate water-absorbing resin of the present invention is not preferable because coloring with time increases.
- the amount of the inorganic reducing agent is more than 1.5% by mass, it is not preferable because the odor of the particulate water-absorbing resin becomes strong. In particular, it is not preferable because the odor after the particulate water-absorbing resin absorbs the aqueous liquid becomes strong.
- the inorganic reducing agent of the present invention is added after the surface cross-linking treatment step from the viewpoint of odor.
- the obtained particulate water-absorbing resin may have a bad odor, and the obtained particulate water-absorbing resin absorbs the aqueous liquid. Then, an unpleasant odor is generated, which is not preferable.
- Such odors are not limited to simple odors of inorganic reducing agents, but are presumed to be by-products in the surface cross-linking process, particularly in the surface cross-linking process aiming at high SFC and high AAP.
- the particulate water-absorbing resin of the present invention preferably contains an ⁇ -hydroxycarboxylic acid compound in order to prevent further coloring.
- the ⁇ -hydroxycarboxylic acid compound of the present invention is a carboxylic acid having a hydroxyl group in the molecule or a salt thereof, and is a hydroxycarboxylic acid compound having an ⁇ -position hydroxyl group.
- the ⁇ -hydroxycarboxylic acid compound is preferably a non-polymeric ⁇ -hydroxycarboxylic acid, and has a molecular weight in the range of 40 to 2000, more preferably 60 to 1000, particularly 100 to 500 in terms of ease of addition and addition effect. It is preferably water-soluble.
- ⁇ -hydroxycarboxylic acids include glycolic acid, tartaric acid, lactic acid (salt), citric acid (salt), malic acid (salt), isocitric acid (salt), glyceric acid (salt), poly ⁇ -hydroxyacrylic acid (salt) ) And the like. Among them, lactic acid (salt) and malic acid (salt) are preferable, and lactic acid (salt) is more preferable.
- the amount of these ⁇ -hydroxycarboxylic acid compounds to be used is preferably in the range of 0.05 to 1.0% by mass, more preferably 0.05 to 0.5% in the particulate water-absorbing resin from the viewpoint of cost performance.
- the mass is preferably in the range of 0.1 to 0.5 mass%.
- the particulate water-absorbing resin of the present invention containing a specific range of p-methoxyphenol, a chelating agent, and an inorganic reducing agent can further enhance the above-described effects of the present invention by further including an ⁇ -hydroxycarboxylic acid compound. .
- the particulate water-absorbing resin of the present invention preferably contains a polyvalent metal salt from the viewpoint of improving liquid permeability (SFC).
- a polyvalent metal salt from the viewpoint of improving liquid permeability (SFC).
- the polyvalent metal salt may not be used, but may be used in an amount of 0 to 1 part by mass.
- the polyvalent metal salt of the present invention is an organic acid salt or inorganic acid salt of a polyvalent metal, and polyvalent metal salts such as aluminum, zirconium, iron, titanium, calcium, magnesium, and zinc are preferable.
- the polyvalent metal salt may be either water-soluble or water-insoluble, but is preferably a water-soluble polyvalent metal salt. Salt can be used.
- examples include inorganic acid salts such as magnesium sulfate, magnesium nitrate, zinc chloride, zinc sulfate, zinc nitrate, zirconium chloride, zirconium sulfate and zirconium nitrate, and organic acid salts such as lactates and acetates of these polyvalent metals.
- the salt which has these crystal waters also from the point of solubility with absorption liquids, such as urine.
- Aluminum compounds among which aluminum chloride, polyaluminum chloride, aluminum sulfate, aluminum nitrate, potassium aluminum bissulfate, sodium aluminum bissulfate, potassium alum, ammonium alum, sodium alum, sodium aluminate are preferred, aluminum sulfate Particularly preferred are water-containing crystal powders such as aluminum sulfate 18 hydrate and aluminum sulfate 14-18 hydrate. These may be used alone or in combination of two or more.
- the polyvalent metal salt contained in the particulate water-absorbing resin of the present invention is in the range of 0 to 5% by mass, further 0.001 to 3% by mass, more preferably 0.01 to 2% by mass.
- the amount of the polyvalent metal salt is more than 5% by mass, the absorption performance, particularly the water absorption capacity may be remarkably lowered, and it is not preferable because coloring may be caused.
- a surfactant is preferably further mixed.
- the physical properties are further improved or stabilized by the mixing and the presence of the surfactant on the surface of the water absorbent resin.
- the surfactant is preferably a water-absorbing resin after the drying step, and further to the water-absorbing resin before, during (simultaneously) or after the surface cross-linking step, and further at the same time or after mixing with the cationic polymer. Added.
- Surfactants that can be used are exemplified in US Pat. No. 6,107,358 and the amount used is 0 to 1 part by weight, more preferably 0.0001 to 0.5 parts by weight, and particularly preferably 0. The range is 001 to 0.1 parts by mass. If the amount of the surfactant used is large, it is not only disadvantageous in terms of cost, but it may cause an increase in the amount of return in the paper diaper due to a decrease in the surface tension of the water-absorbent resin, which may not be preferable.
- water-insoluble inorganic fine particles are preferably further mixed.
- the physical properties are further improved or stabilized by mixing and the presence of the water-insoluble inorganic surfactant on the surface of the water-absorbent resin.
- the surfactant is preferably added to the water absorbent resin after the drying step, and further to the water absorbent resin before, during (simultaneously) or after the surface crosslinking step. In case 3, it is added simultaneously with or after mixing of the cationic polymer, particularly after mixing of the cationic polymer.
- organic powders such as compounds containing phosphorus atoms, oxidizing agents, organic reducing agents, metal soaps, deodorants, antibacterial agents, Pulp, thermoplastic fiber, etc. may be added in an amount of 0 to 3% by mass, preferably 0 to 1% by mass.
- surfactant the surfactant of international publication 2005/077500 is illustrated preferably.
- the production method of the present invention is preferably applied to a production method of a water-absorbent resin having high CRC and high liquid permeability (SFC), which has been difficult to be compatible with coloring.
- the resulting water-absorbent resin has a CRC of 25 [g / g] or more, an AAP of 20 [g / g] or more, and an SFC of 50 [ ⁇ 10 ⁇ 7 ⁇ cm 3 ⁇ s ⁇ g ⁇ 1 ] or more.
- the present invention can be suitably applied to a method for producing a water-absorbing resin exhibiting the ranges of AAP and SFC described later, and other physical properties described later.
- the water-absorbing resin obtained by the production method of Case 2 is an excellent water-absorbing resin with little coloration, contains 1 to 500 ppm of formic acid, mainly derived from monomers during polymerization, and further within the above range. It is. Further, it preferably contains 1 to 200 ppm of a phenolic compound (especially p-methoxyphenol) mainly derived from monomers at the time of polymerization, and further within the above range. Further, preferably, the base used for neutralization is derived from the base, preferably, the water-absorbent resin of Case 2 contains 2 ppm or less of iron (Fe) (about 2.8 ppm in terms of Fe 2 O 3 ), and further 1.5 ppm or less.
- Fe iron
- the resulting sodium polyacrylate has a neutralization rate of 75% and about 33% Fe remains. Fe amount).
- a predetermined amount of iron accelerates the decomposition of the water absorbent resin when discarded after use, but excessive iron is not preferable because it causes deterioration during use and coloring before use.
- the water absorbent resin of the case 2 preferably contains a polyvalent metal salt or a cationic polymer in the above range as a water absorbent resin excellent in coloring and liquid permeability. Furthermore, the water absorbent resin of Case 2 preferably contains a chelating agent and / or hydroxycarboxylic acid (particularly lactic acid) in the above range as a water absorbent resin excellent in coloring and liquid permeability.
- the iron content of the water absorbent resin is 2 ppm or less
- the formic acid content is 1 to 50000 ppm
- the cationic polymer content is 0.01 to 5 parts by mass with respect to 100 parts by mass of the polymer.
- a polyacrylic acid (salt) -based water-absorbing resin is provided.
- the water-absorbent resin is preferably formed by coating the surface of the water-absorbent resin with formic acid and a cationic polymer. Furthermore, when formic acid is contained at the time of polymerization, coloring is further prevented by further containing formic acid inside the water absorbent resin.
- the preferred cationic polymer and the content and mass ratio thereof are in the above ranges.
- the cationic polymer is polyvinylamine or a salt thereof, or a partial hydrolyzate of poly (N-vinylformamide) or Its salt.
- the mass ratio in the mixture of the cationic polymer and formic acid is preferably in the range of 1:20 to 20: 1, and more preferably in the above range.
- the content of the p-methoxyphenol compound is 1 to 200 ppm, more preferably in the above range, from the viewpoint of not only stabilization of polymerization but also light resistance of the obtained water-absorbent resin.
- the water-absorbent resin obtained by the manufacturing method of Case 3 preferably has a CRC of 25 [g / g] or more, an AAP of 20 [g / g] or more, and an SFC of 50 [ ⁇ 10 ⁇ 7 ⁇ cm 3 ⁇ s ⁇ g ⁇ 1 ] or more.
- the surfactant is contained in the above range.
- the mass ratio of the cationic polymer to formic acid is preferably in the range of 1:20 to 20: 1, and preferably contains water-insoluble inorganic fine particles in the above range.
- the water-absorbing resin of Case 3 contains iron as the main origin of the base used for neutralization.
- the content is 2 ppm (about 2.8 ppm in terms of Fe 2 O 3 ) or less, preferably 1.5 ppm or less, more preferably 1 ppm or less, and still more preferably 0.5 ppm or less.
- iron content it is 0.001 ppm or more, Preferably it is 0.01 ppm or more.
- Such a predetermined amount of iron promotes the decomposition of the water-absorbing resin when discarded after use, but excessive iron is not preferable because it causes deterioration during use and coloring before use.
- the amount of iron is controlled mainly by controlling the base used for neutralization (especially caustic soda). In addition, control of trace amounts of raw materials (acrylic acid, crosslinking agent, water, etc.), polymerization equipment, monomer piping, etc. This can be done with various water-absorbing resin devices, piping resin coating, glass coating, stainless steel control, etc.
- the amount of iron in the base and the water-absorbent resin can be quantified by, for example, the ICP emission spectroscopic method described in JIS K1200-6, and refer to International Publication No. 2008/090961 as a reference for the quantification method. Can do.
- the water absorbent resin of the case 3 preferably contains a polyvalent metal salt or a cationic polymer in the above range as a water absorbent resin excellent in coloring and liquid permeability. Furthermore, the water absorbent resin of Case 3 preferably contains a chelating agent and / or a hydroxycarboxylic acid (particularly lactic acid) in the above range as a water absorbent resin excellent in coloring and liquid permeability.
- the water-absorbent resin obtained by each manufacturing method of Case 1, Case 2, and Case 3 of the present invention achieves the following physical properties.
- the polymerization and surface cross-linking should be controlled to at least one of the following (a) to (k), and more than two, especially at least three including AAP. Is preferred. When the following conditions are not satisfied, sufficient performance may not be exhibited with the high-concentration diapers described below.
- Each production method of the present invention can be suitably applied to the following water-absorbent resin production method, but is preferably applicable to control and improvement of liquid permeability (SFC) and water absorption rate (FSR).
- SFC liquid permeability
- FSR water absorption rate
- AAP Absorption capacity under pressure
- AAP is 20 [g / g] or more, preferably 22 [g / g] or more, more preferably 23 [g / g] or more, still more preferably 24 [g / g] or more, and most preferably Is 25 [g / g] or more.
- the upper limit value of AAP is not particularly limited, but is preferably 30 [g / g] or less.
- AAP can be adjusted, for example, by the above-described surface crosslinking, particularly surface crosslinking after particle size control.
- the SFC is preferably 30 [ ⁇ 10 ⁇ 7 ⁇ cm 3 ⁇ s ⁇ g ⁇ 1 ] or more, more preferably 50 [ ⁇ 10 ⁇ 7 ⁇ cm 3 ⁇ s ⁇ g ⁇ 1 ] or more, and further preferably Is 70 [ ⁇ 10 ⁇ 7 ⁇ cm 3 ⁇ s ⁇ g ⁇ 1 ] or more, and particularly preferably 80 [ ⁇ 10 ⁇ 7 ⁇ cm 3 ⁇ s ⁇ g ⁇ 1 ] or more.
- the upper limit of SFC is not particularly specified, but is preferably 3000 [ ⁇ 10 ⁇ 7 ⁇ cm 3 ⁇ s ⁇ g ⁇ 1 ] or less, more preferably 2000 [ ⁇ 10 ⁇ 7 ⁇ cm 3 ⁇ s ⁇ g ⁇ 1 ]. It is as follows.
- SFC can be controlled by the above-mentioned surface crosslinking, particle size, polyvalent metal salt of the above), cationic polymer, and the like. Among them, SFC can be adjusted, for example, by surface crosslinking up to the following CRC after particle size control, and a cationic polymer is used.
- the absorption capacity without load (CRC) is preferably 5 [g / g] or more, more preferably 15 [g / g] or more, and further preferably 25 [g / g] or more.
- the upper limit of CRC is not particularly limited, it is preferably 70 [g / g] or less, more preferably 50 [g / g] or less, and still more preferably 40 [g / g] or less.
- CRC When the CRC is less than 5 [g / g], when the particulate water-absorbing resin is used as the water-absorbing agent, the amount of absorption is too small and it is not suitable for the use of sanitary materials such as paper diapers. Moreover, when CRC is larger than 70 [g / g], when a particulate water-absorbing resin is used for a water absorbent body such as a paper diaper, it is possible to obtain a water absorbent resin having an excellent liquid uptake rate into the water absorbent body. It may not be possible.
- CRC can be controlled by the internal cross-linking agent and surface cross-linking agent described above. If the CRC is out of the above range, SFC and AAP may not satisfy the above ranges (a) and (b). Therefore, it is preferable to crosslink to the above CRC range by surface crosslinking.
- the water-soluble content is preferably 35% by mass or less, more preferably 25% by mass or less, and still more preferably 15% by mass or less.
- the gel strength is weak and the liquid permeability may be inferior.
- a particulate water-absorbing agent is used for the water-absorbing body, there is a possibility that it becomes impossible to obtain a water-absorbing resin with little liquid return (commonly known as Re-Wet) when pressure is applied to the water-absorbing body.
- the water-soluble component can be controlled by the above internal cross-linking agent.
- the residual monomer is controlled to 0 to 500 ppm, preferably 0 to 400 ppm, more preferably 0 to 300 ppm from the viewpoint of safety.
- the water absorption rate (FSR) of 1 g of water-absorbing resin with respect to 20 g of physiological saline is preferably 0.1 [g / g / sec] or more, more preferably 0.15 [g / g / sec] or more. More preferably, it is 0.20 [g / g / sec] or more, and most preferably 0.25 [g / g / sec] or more.
- the upper limit value of the FSR is not particularly limited, but is preferably 5.0 [g / g / sec] or less, more preferably 3.0 [g / g / sec] or less.
- a method for measuring such FSR can be defined in International Publication No. 2009/016055.
- the FSR is less than 0.05 [g / g / sec], for example, when a particulate water-absorbing resin is used for the water-absorbing body, the liquid may not be sufficiently absorbed and liquid leakage may occur.
- the FSR can be controlled by the above particle size and foam polymerization.
- surfactants compounds containing phosphorus atoms, oxidizing agents, organic reducing agents, water-insoluble inorganics such as silica and metal soaps.
- Organic powder, deodorant, antibacterial agent, pulp, thermoplastic fiber and the like may be added in an amount of 0 to 3% by mass, preferably 0 to 1% by mass.
- surfactant the surfactant of international publication 2005/077500 is illustrated preferably.
- the water content of the water-absorbent resin is 10% by mass or less, preferably more than 0% by mass and 10% by mass or less, more preferably 1 to 10% by mass, more preferably 2 to 8% by mass, more preferably Is 2 to 7% by mass, more preferably 2 to 6% by mass, and particularly preferably 2 to 5% by mass.
- the water-absorbent resin is inferior in powder characteristics (fluidity, transportability, damage resistance).
- the particulate water-absorbing resin according to the present invention can be suitably used for sanitary materials such as paper diapers, and is preferably a white powder.
- the particulate water-absorbing resin according to the present invention has an L value (Lightness) of at least 88, more preferably 89 or more, and preferably 90 or more in Hunter Lab color system measurement using a spectral color difference meter after the production of the water-absorbing resin. It is preferable to show.
- the upper limit of the L value is normally 100, but if it is 88 or more, there is no problem with color tone in products such as sanitary materials.
- the b value is 0 to 12, preferably 0 to 10, more preferably 0 to 9, and the a value is -3 to 3, preferably -2 to 2, and more preferably -1 to 1.
- the initial color tone is a color tone after the production of the particulate water-absorbing agent, but is generally a color tone measured before factory shipment. Further, for example, if stored in an atmosphere of 30 ° C. or lower and a relative humidity of 50% RH, the value is measured within one year after the production.
- the particulate water-absorbing resin according to the present invention can be suitably used for sanitary materials such as paper diapers, and in that case, it is remarkably also in a long-term storage state under high humidity and temperature conditions. It is preferable to maintain a clean white state.
- the long-term storage state is a spectroscopic formula of the water-absorbent resin after exposing the particulate water-absorbent resin to an atmosphere at a temperature of 70 ⁇ 1 ° C. and a relative humidity of 65 ⁇ 1% RH for 7 days as a long-term storage color stability acceleration test. It can be examined by measuring the L value (Lightness) of the Hunter Lab color system using a color difference meter.
- the water-absorbent resin according to the present invention has an L value (Lightness) of at least 80 or more, more preferably 81 or more, in Hunter Lab color system measurement using a spectral color difference meter of the water-absorbent resin after the long-term storage color stability promotion test. Further, it is preferable to show 82 or more, particularly 83 or more.
- the upper limit of L value is 100 normally, if the L value after an acceleration test is 80 or more, it is a level which does not generate
- the b value is 0 to 15, preferably 0 to 12, more preferably 0 to 10, and the a value is ⁇ 3 to 3, preferably ⁇ 2 to 2, and more preferably ⁇ 1 to 1.
- the use of the water-absorbent resin of the present invention is not particularly limited, but it can be preferably used for absorbent articles such as paper diapers, sanitary napkins, incontinence pads, and the like.
- it is used for high-concentration diapers (a large amount of water-absorbent resin is used for one diaper), which has been problematic in the past due to odor, coloring, etc., especially in the absorbent upper layer in the absorbent article. When used in parts, particularly excellent performance is exhibited.
- the content (core concentration) of the water-absorbent resin in the absorbent body optionally containing other absorbent materials (pulp fibers and the like) is 30 to 100% by mass, preferably 40 to 100% by mass, More preferably, the effect of the present invention is exhibited at 50 to 100% by mass, further preferably 60 to 100% by mass, particularly preferably 70 to 100% by mass, and most preferably 75 to 95% by mass.
- the water-absorbent resin of the present invention when used at the above-mentioned concentration, particularly in the upper layer of the absorbent body, it has high liquid permeability (liquid permeability under pressure), so that it is excellent in diffusibility of absorbing liquid such as urine.
- An absorbent article such as a diaper can provide an absorbent article that keeps the absorbent body in a hygienic white state in addition to improving the amount of absorption of the entire absorbent article by efficient liquid distribution.
- the electric devices used in the examples were all 200V or 100V unless otherwise specified.
- the physical properties described in the claims and examples of the water-absorbent resin obtained in the present invention are as follows under the conditions of room temperature (20 to 25 ° C.) and humidity of 50 RH% unless otherwise specified. It calculated
- PSD particle diameter
- the water-absorbent resin (polymer) For measuring the particle size distribution of the water-absorbent resin (polymer), 10.0 g of the water-absorbent resin (polymer) was used at room temperature (20 to 25 ° C.) and humidity of 50 RH%. , 1000 ⁇ m, 850 ⁇ m, 710 ⁇ m, 600 ⁇ m, 500 ⁇ m, 425 ⁇ m, 300 ⁇ m, 212 ⁇ m, 150 ⁇ m, 45 ⁇ m JIS standard sieve (THE IIDA TESTING SIVEE: diameter 8cm), vibration classifier (IIDA SIEVE SHAKER-65, TYPE: SER.No. 0501), classification was performed for 5 minutes.
- TEE IIDA TESTING SIVEE diameter 8cm
- vibration classifier IIDA SIEVE SHAKER-65, TYPE: SER.No. 0501
- the mass average particle diameter (D50) is a particle diameter of a standard sieve corresponding to 50% by mass of the whole particle with a standard sieve having a constant mesh, as described in US Pat. No. 5,051,259.
- [Moisture content] 1 g of water-absorbing resin (polymer) is spread thinly on an aluminum dish having a diameter of 6 cm and dried in a windless oven at 180 ° C. for 3 hours. The mass before drying and the mass after drying are measured. The moisture content (% by mass) was measured by substitution. The solid content (mass%) is defined by (100-water content) (mass%). The solid content of the cationic polymer was measured and calculated in the same manner as the solid content of the water absorbent resin.
- Example 1-1 The moisture content of the acrylic acid (AA1-1) purified by the crystallization method was measured by a Karl Fischer moisture meter (KF-200 type, manufactured by Mitsubishi Chemical Analytical Co., Ltd.), and was found to be 64 ppm.
- the acrylic acid was stored in a circulating tank for 1 week at room temperature. In addition, the tank filling rate at this time was 75 volume%.
- the water-containing gel-like crosslinked polymer (1-1) was subdivided into about 1 to 2 mm with a cutter mill (RC250, manufactured by Yoshiko Co., Ltd.).
- the fragmented gel was dried at 180 ° C. for 20 minutes with a ventilation dryer (Satake Chemical Machinery Co., Ltd. 71-S6 type) to obtain a dried polymer (1-1).
- the obtained dried polymer (1-1) was pulverized with a roll mill and then classified with a low tap to obtain a water absorbent resin powder (1-1) having a particle size of 150 ⁇ m or more and less than 850 ⁇ m.
- a surface cross-linking agent consisting of a mixed solution of 0.5 parts by mass of 1,4-butanediol and 3.0 parts by mass of water was added, It heat-processed at 200 degreeC for 60 minute (s) with the ventilation-type dryer (71-S6 type
- the CRC of the particulate water-absorbing resin (SAP1-1) was 26.2 [g / g]. Table 1 shows the initial color tone and temporal color tone of the particulate water-absorbing resin (SAP1-1).
- Example 1-2 The same operation as in Example 1-1 was performed except that acrylic acid (AA1-2) having a water content of 291 ppm was used by adding water to acrylic acid (AA1-1) in Example 1-1. As a result, surface-crosslinked particulate water-absorbing resin (SAP1-2) was obtained. Table 1 shows the initial color tone and temporal color tone of the obtained particulate water-absorbing resin (SAP1-2).
- Example 1-3 Except for using acrylic acid (AA1-3) having a water content of 594 ppm by adding water to acrylic acid (AA1-1) of Example 1-1, the same operation as in Example 1-1 was performed. And surface-crosslinked particulate water-absorbing resin (SAP1-3) was obtained. Table 1 shows the initial color tone and temporal color tone of the obtained particulate water-absorbing resin (SAP1-3).
- Example 1-4 The same operation as in Example 1-1 was performed except that acrylic acid (AA1-4) having a water content of 966 ppm was used by adding water to the acrylic acid (AA1-1) of Example 1-1. And surface-crosslinked particulate water-absorbing resin (SAP1-4) was obtained. Table 1 shows the initial color tone and temporal color tone of the obtained particulate water-absorbing resin (SAP1-4).
- Example 1-1 The same as Example 1-1 except that comparative acrylic acid (Comparative AA1-1) having a water content of 6794 ppm was added by adding water to the acrylic acid (AA1-1) of Example 1-1. The operation was performed to obtain a surface-crosslinked particulate comparative water-absorbent resin (Comparative SAP1-1). Table 1 shows the initial color tone and color tone with time of the obtained comparative particulate water-absorbent resin (Comparative SAP1-1).
- Example 1-5 The same operation as in Example 1-2 was performed except that acrylic acid (AA1-5) having the same water content (291 ppm) as Example 1-2 was obtained by changing the conditions of the crystallization method. A crosslinked particulate water-absorbing resin (SAP1-5) was obtained. Table 1 shows the initial color tone and temporal color tone of the obtained particulate water-absorbing resin (SAP1-5).
- Example 1-2 According to the example of WO 02/085959, 80% by mass acrylic acid aqueous solution was used, and the amount of deionized water was adjusted so that the acrylic acid concentration in the monomer aqueous solution was the same as in Example 1-1. Except for the above, the same operation as in Example 1-1 was performed to obtain a surface-crosslinked particulate comparative water-absorbent resin (Comparative SAP1-2). Table 1 shows the initial color tone and color tone with time of the obtained comparative particulate water-absorbing resin (Comparative SAP1-2).
- Comparative Example 1-3 According to the comparative example of US Pat. No. 4,507,438, acrylic acid having a purity of 99.8% by mass was used, and the amount of deionized water was adjusted so that the acrylic acid concentration in the monomer aqueous solution was the same as in Example 1-1. Except for the adjustment, the same operation as in Example 1-1 was performed to obtain a surface-crosslinked particulate water-absorbing resin (Comparative SAP1-3). Table 1 shows the initial color tone and temporal color tone of the obtained comparative particulate water-absorbing resin (Comparative SAP 1-3).
- Example 1-4 An attempt was made to carry out the same operation as in Example 1-1 without adding p-methoxyphenol to acrylic acid (AA1-1) purified by the crystallization method of Example 1-1. Since acrylic acid was polymerized in the process, a water absorbent resin could not be obtained.
- Example 1-6 An apparatus having the structure shown in FIG. 2 was prepared.
- This apparatus has a neutralization tank with a capacity of 300L.
- acrylic acid having a water content of 64 ppm and a sodium hydroxide aqueous solution having a concentration of 19.6% by mass were continuously supplied and circulated through the first loop and the second loop to obtain a mixed solution.
- the supply amount per unit time is as follows.
- Sodium hydroxide aqueous solution 118.5 [kg / hr]
- the supply amount may vary, in this case, the supply amount is calculated by dividing the total amount of liquid supplied while the neutralization system is operating by the operating time.
- the monomer concentration was 62.7% by mass, and the neutralization rate was 25.5 mol%.
- This mixed solution was supplied from the neutralization system toward the polymerization system.
- a sodium hydroxide aqueous solution and 0.05 mol% of an internal cross-linking agent polyethylene glycol diacrylate were added to the mixed solution by a line mixer.
- a polymerization initiator was further mixed with this mixed liquid and conveyed to a polymerization machine.
- the monomer concentration was 54.4% by mass, the neutralization rate was 70.0 mol%, and the temperature was 97 ° C. This mixed solution was continuously charged into a belt type polymerization machine.
- the temperature of the endless belt of the polymerization machine was 60 ° C to 70 ° C.
- the mixed solution was heated with this polymerization machine, and the mixed solution was irradiated with ultraviolet rays to obtain a hydrogel crosslinked polymer (1-6).
- the hydrogel crosslinked polymer (1-6) was dried and further pulverized to obtain a water-absorbent resin powder (1-6).
- a liquid mixture of 1,4-butanediol, propylene glycol and water is sprayed onto the obtained water absorbent resin powder (1-6) to crosslink the surface of the water absorbent resin powder (1-6).
- SAP1-6 surface-crosslinked particulate water-absorbing resin
- Table 2 shows the initial color tone and X1 of the obtained particle water-absorbing resin (SAP1-6).
- the amount V1 of the liquid present in the neutralization system is 350 kg
- the flow rate F1 per unit time of the liquid supplied from the neutralization system to the polymerization system is 283 [ kg / hr]
- the contact area A1 between the liquid present in the neutralization system and this neutralization system is 16.3 m 2
- X1 is 20.
- Example 1-7 The hydrogel crosslinked polymer (1-7) was prepared in the same manner as in Example 1-6 except that the amount of each aqueous solution supplied per unit time was as follows and the flow rate F2 was 21.9 [kg / hr]. ) This hydrogel crosslinked polymer (1-7) was subjected to the same drying treatment, pulverization treatment and surface crosslinking treatment as in Example 1-6 to obtain a particulate water-absorbing resin (SAP1-7). Table 2 shows the initial color tone and X1 of the obtained particle water-absorbing resin (SAP1-7). Acrylic acid: 12.7 [kg / hr] Sodium hydroxide aqueous solution: 9.2 [kg / hr]
- the amount V1 of the liquid existing in the neutralization system is 350 kg, and the flow rate F1 per unit time of the liquid supplied from the neutralization system to the polymerization system is 21. 9 [kg / hr], the contact area A1 between the liquid present in the neutralization system and this neutralization system is 16.3 m 2 , and thus X1 is 260.
- Example 1-8 An apparatus having the structure shown in FIG. 2 was prepared.
- This apparatus has a neutralization tank with a capacity of 4000L.
- acrylic acid having a water content of 64 ppm and an aqueous sodium hydroxide solution having a concentration of 14.4% by mass were continuously supplied and circulated through the first loop and the second loop to obtain a mixed solution.
- the supply amount per unit time is as follows.
- Acrylic acid 3038.5 [kg / hr]
- Sodium hydroxide aqueous solution 4317.5 [kg / hr]
- the supply amount may vary, in this case, the supply amount is calculated by dividing the total amount of each liquid supplied while the neutralization system is operating by the operating time.
- the monomer concentration was 45.9% by mass, and the neutralization rate was 36.8 mol%.
- This mixed solution was supplied from the neutralization system toward the polymerization system.
- a sodium hydroxide aqueous solution and an internal cross-linking agent were added to this mixed solution with a line mixer.
- a polymerization initiator was further mixed with this mixed liquid and conveyed to a polymerization machine.
- the monomer concentration was 43.1% by mass
- the neutralization rate was 73.0 mol%
- the temperature was 93 ° C. This mixed solution was continuously charged into a belt type polymerization machine.
- the temperature of the endless belt of the polymerization machine was 60 ° C to 70 ° C.
- the mixed solution was heated with this polymerization machine, and the mixed solution was irradiated with ultraviolet rays to obtain a hydrogel crosslinked polymer (1-8).
- This hydrogel crosslinked polymer (1-8) was subjected to the same drying treatment, pulverization treatment and surface crosslinking treatment as in Example 1-6 to obtain a surface-crosslinked particulate water-absorbing resin (SAP1-8). Obtained.
- Table 2 shows the initial color tone and X1 of the obtained particle water-absorbing resin (SAP1-8).
- the amount V1 of the liquid existing in the neutralization system is 3680 kg, and the flow rate F1 per unit time of the liquid supplied from the neutralization system toward the polymerization system is 7356 [ kg / hr], and the contact area between the liquid present in the neutralization system and this neutralization system was 122 m 2 .
- Example 1-9 An apparatus having the structure shown in FIG. 1 was prepared.
- This apparatus has a neutralization tank having a capacity of 4000L.
- acrylic acid having a water content of 67 ppm and an aqueous sodium hydroxide solution having a concentration of 14.2% by mass were continuously supplied and circulated through a first loop to obtain a mixed solution.
- the supply amount per unit time is as follows.
- Acrylic acid 895 [kg / hr]
- Sodium hydroxide aqueous solution 1272 [kg / hr]
- the supply amount may vary, in this case, the supply amount is calculated by dividing the total amount of each liquid supplied while the neutralization system is operating by the operating time.
- the monomer concentration was 45.9% by mass, and the neutralization rate was 36.8 mol%.
- This mixed solution was supplied from the neutralization system toward the polymerization system.
- an aqueous sodium hydroxide solution and an internal crosslinking agent polyethylene glycol acrylate were added with a line mixer.
- a polymerization initiator was further mixed with this mixed liquid and conveyed to a polymerization machine.
- the monomer concentration was 43.1% by mass
- the neutralization rate was 73.0 mol%
- the temperature was 93 ° C. This mixed solution was continuously charged into a belt type polymerization machine.
- the temperature of the endless belt of the polymerization machine was 60 ° C to 70 ° C.
- the mixed solution was heated with this polymerization machine, and the mixed solution was irradiated with ultraviolet rays to obtain a hydrogel crosslinked polymer (1-9).
- the hydrogel crosslinked polymer (1-9) was dried and further pulverized to obtain a water-absorbent resin powder (1-9).
- a liquid mixture of 1,4-butanediol, propylene glycol and water is sprayed onto the obtained water absorbent resin powder (1-9) to crosslink the surface of the water absorbent resin powder (1-9).
- SAP1-9 surface-crosslinked particulate water-absorbing resin
- Table 2 shows the initial color tone and X1 of the obtained particle water-absorbing resin (SAP1-9).
- the amount V of liquid present in the neutralization system is 3620 kg
- the flow rate F per unit time of the liquid supplied from the neutralization system to the polymerization system is 2167 [ kg / hr]
- the contact area between the liquid present in the neutralization system and this neutralization system was 113 m 2 .
- Example 2-1 Metoquinone was added to petroleum-derived purified acrylic acid as an inhibitor, and crystallization was repeated to make formic acid ND (detection limit 0.1 ppm) and water content 64 ppm, and then the amount of methoquinone was adjusted to 70 ppm.
- Acrylic acid having a formic acid content of about 12 ppm was prepared by mixing 99.68 g of this formic acid-free acrylic acid with 0.0012 g of formic acid.
- the obtained hydrogel cross-linked polymer (2-1) was subjected to gel pulverization with a meat chopper (manufactured by Hiraga Works), and a stationary air dryer (trade name “aeration flow batch dryer 71-S6 type”). (Made by Satake Chemical Machinery Co., Ltd.) at 170 ° C. for 20 minutes.
- the obtained dried product was pulverized with a roll mill, and further classified with a standard sieve having openings of 850 ⁇ m and 150 ⁇ m to obtain a water absorbent resin powder (SAP2-1).
- Example 2-2 A water-absorbent resin powder was prepared in the same manner as in Example 2-1, except that the amount of formic acid added was 0.012 g (about 120 ppm for acrylic acid and 100 ppm for monomer) in Example 2-1. The body (SAP2-2) was obtained. The water-absorbent resin powder (SAP2-2) was subjected to the long-term storage color stability promotion test. The results are shown in Table 3 together with the physical properties of the water absorbent resin powder (SAP2-2).
- Example 2-3 A water-absorbent resin powder was prepared in the same manner as in Example 2-1, except that the amount of formic acid added was 0.06 g (about 600 ppm for acrylic acid and 500 ppm for monomer) in Example 2-1. Body (SAP2-3) was obtained. The water-absorbent resin powder (SAP2-3) was subjected to the long-term storage color stability promotion test. The results are shown in Table 3 together with the physical properties of the water absorbent resin powder (SAP2-3).
- Example 2-1 In Example 2-1, except that formic acid was not added, the same operation as in Example 2-1 was performed to obtain a comparative water absorbent resin powder (Comparative SAP 2-1).
- Example 2-4 In Example 2-4, the same operation as in Example 2-4 was performed except that formic acid was not added, to obtain a comparative water absorbent resin powder (Comparative SAP2-2).
- the comparative water-absorbent resin powder (Comparative SAP2-2) was subjected to the long-term storage color stability promotion test. The results are shown in Table 3 together with the physical properties of the comparative water absorbent resin powder (Comparative SAP2-2).
- Comparative Example 2-1 In Comparative Example 2-1, the same operation as in Comparative Example 2-1 was performed except that plant-derived acrylic acid was used instead of petroleum-derived acrylic acid to obtain a water-absorbent resin powder (SAP2-5). . In addition, this acrylic acid is made into acrylic acid from vegetable oil through glycerol. Acrylic acid was purified by distillation, and acrylic acid contained 10 ppm formic acid. The monomer aqueous solution contained 8 ppm of formic acid relative to the monomer.
- plant-derived acrylic acid was used instead of petroleum-derived acrylic acid to obtain a water-absorbent resin powder (SAP2-5).
- this acrylic acid is made into acrylic acid from vegetable oil through glycerol.
- Acrylic acid was purified by distillation, and acrylic acid contained 10 ppm formic acid.
- the monomer aqueous solution contained 8 ppm of formic acid relative to the monomer.
- Example 2-3 In Example 2-2, 100 ppm of acetic acid exemplified in Patent Documents 20 to 23 was used to obtain a comparative water absorbent resin powder (Comparative SAP2-3).
- the comparative water-absorbent resin powder (Comparative SAP2-3) was subjected to the above long-term storage color stability promotion test. The results are shown in Table 3 together with the physical properties of the comparative water absorbent resin powder (Comparative SAP2-3).
- Example 2-4 In Example 2-2, 100 ppm of propionic acid exemplified in Patent Documents 20 to 23 was used in place of formic acid to obtain a comparative water-absorbent resin powder (Comparative SAP2-4).
- the comparative water-absorbent resin powder (Comparative SAP2-4) was subjected to the long-term storage color stability promotion test. The results are shown in Table 3 together with the physical properties of the comparative water absorbent resin powder (Comparative SAP2-4).
- Example 2-5 In Example 2-2, 100 ppm of butyric acid exemplified in Patent Documents 20 to 23 was used instead of formic acid to obtain a comparative water absorbent resin powder (Comparative SAP 2-5).
- Example 2-6 a comparative water absorbent resin powder (Comparative SAP 2-6) was obtained using 100 ppm of benzoic acid preferably exemplified in Patent Documents 20 to 23.
- the comparative water-absorbent resin powder (Comparative SAP 2-6) was subjected to the above long-term storage color stability promotion test. The results are shown in Table 3 together with the physical properties of the comparative water absorbent resin powder (Comparative SAP2-6).
- Example 2-3 a comparative water-absorbent resin powder (Comparative SAP 2-7) was obtained by using 1000 ppm of benzoic acid preferably exemplified in Patent Documents 20 to 23.
- the comparative water-absorbent resin powder (Comparative SAP 2-7) was subjected to the long-term storage color stability promotion test. The results are shown in Table 3 together with the physical properties of the comparative water absorbent resin powder (Comparative SAP2-7).
- Example 2-8 In Example 2-1, a comparative water absorbent resin powder (Comparative SAP 2-8) was obtained using the amount of formic acid described in Example 1 of Patent Document 46 (US Pat. No. 4,698,404).
- the comparative water-absorbent resin powder (Comparative SAP 2-8) was subjected to the above long-term storage color stability promotion test. The results are shown in Table 3 together with the physical properties of the comparative water absorbent resin powder (Comparative SAP 2-8).
- Comparative Example 2-10 In Comparative Example 2-1, formic acid as an acid used for the purpose was added in an amount of 5% by mass in accordance with Patent Document 6 that discloses a technique for preventing coloration with time by lowering the pH to 5.5 or lower. Thus, a comparative water absorbent resin powder (Comparative SAP 2-10) was obtained. The hydrogel crosslinked polymer obtained after polymerization was sticky.
- Example 2-6 the water-absorbent resin powder (SAP2-6) was obtained by changing to caustic soda containing 10 ppm of Fe in NaOH.
- Example 2-7 In Example 2-1, 100 ppm of a polymerization inert organic solvent (toluene) described in Patent Document 53 was added to acrylic acid, and polymerization was carried out in the same manner to obtain a water-absorbent resin powder (SAP2-7). It was.
- a polymerization inert organic solvent toluene
- Example 2-8 In Example 2-1, 10 ppm of a polymerization inert organic solvent (diphenyl ether) described in Patent Document 53 was added to acrylic acid, and polymerization was carried out in the same manner to obtain a water-absorbent resin powder (SAP2-8). It was.
- a polymerization inert organic solvent diphenyl ether
- Example 3-1 By adding p-methoxyphenol as a polymerization inhibitor to refined acrylic acid derived from petroleum and performing crystallization several times, formic acid is determined to be ND (detection limit 0.1 ppm) and water content 64 ppm (measured by Karl Fischer method). Thereafter, p-methoxyphenol was adjusted to 70 ppm (acrylic acid (3-1)). Acrylic acid containing formic acid was prepared by mixing 0.037 parts by mass of formic acid with 100 parts by mass of acrylic acid (3-1) not containing formic acid (acrylic acid (3-2)).
- a 48.5 mass% aqueous sodium hydroxide solution containing 0.70 ppm iron (1 ppm in terms of Fe 2 O 3 ) with respect to sodium hydroxide was prepared.
- the acrylic acid (3-2) (370 ppm formic acid (with respect to acrylic acid)), the 48.5 mass% sodium hydroxide aqueous solution, and ion-exchanged water were mixed while cooling to neutralize sodium acrylate having a neutralization rate of 75 mol%. 5500 parts by mass of an aqueous solution (monomer concentration: 37.2% by mass) was prepared.
- the formic acid in the neutralized monomer is 300 ppm (to monomer), and the amount of Fe is about 0.24 ppm (to monomer).
- the obtained particulate hydrogel crosslinked polymer (3-1) had a mass average particle diameter (D50) of about 1500 ⁇ m and a solid content of 41% by mass.
- the hydrated gel crosslinked polymer (3-1) was subjected to 180 ° C. for 45 minutes with an aerated stationary dryer (trade name “Aerated Flow Batch Dryer 71-S6”, manufactured by Satake Chemical Machinery Co., Ltd.). Dried under conditions. Subsequently, the obtained dried product is pulverized with a roll mill, and classified and mixed with a JIS standard sieve having an opening of 850 ⁇ m and 150 ⁇ m, so that the mass average particle diameter (D50) is 390 ⁇ m, and the proportion of particles less than 150 ⁇ m is 2% by mass. A dried water absorbent resin powder (3-1) was obtained.
- polyallylamine / hydrochloride aqueous solution (weight average molecular weight of about 10,000, manufactured by Nitto Boseki Co., Ltd.) is ion-exchanged with respect to 100 parts by mass of the surface-crosslinked particulate water-absorbing resin (3-1). Then, 5 parts by mass was added and mixed. Further, the mixture was heated at 90 ° C. for 1 hour to obtain a particulate water-absorbing resin (SAP3-1).
- Table 4 shows the formic acid concentration, water absorption properties, and color tone with time in the particulate water-absorbing resin (SAP3-1).
- Example 3-2 In Example 3-1, formic acid and the cationic polymer were added together with an aqueous solution. That is, acrylic acid (3-2) containing formic acid used in Example 3-1 was changed to acrylic acid (3-1) not containing formic acid, and polyallylamine hydrochloride was changed to poly (N-vinylformamide). The same procedure as in Example 3-1 was carried out except that a partial hydrolyzate (solid content 9% by mass, weight average molecular weight of about 40,000, hydrolysis rate of about 50 mol%) and formic acid were mixed. A resin (SAP3-2) was obtained. The solid content in the mixture added to the particulate water-absorbing resin (SAP3-2) was 0.
- Example 3-3 In Example 3-1, operation was performed in the same manner as in Example 3-1, except that the acrylic acid was crystallized, the water content was adjusted, and acrylic acid (3-3) having a water content of 2000 ppm was obtained. A water absorbent resin (SAP3-3) was obtained. Table 4 shows the formic acid concentration, water absorption properties, and color tone with time in the particulate water-absorbing resin (SAP3-3).
- Example 3-1 In Example 3-1, in the same manner as in Example 1 except that acrylic acid (3-1) not containing formic acid was used instead of acrylic acid (3-2) containing formic acid, particulate comparative water absorption was performed. Resin (Comparative SAP3-1) was obtained. Table 4 shows the formic acid concentration, water absorption properties, and color tone with time in the comparative particulate water-absorbing resin (Comparative SAP3-1).
- Example 3-2 In Example 3-2, the procedure was carried out in the same manner as in Example 3-2 except that an aluminum sulfate composition solution was used in place of the partial hydrolyzate of poly (N-vinylformamide) with reference to Comparative Example 3 in Patent Document 19. Thus, a particulate comparative water absorbent resin (Comparative SAP3-2) was obtained.
- Table 4 shows the formic acid concentration, water absorption physical properties, and color tone with time in the comparative particulate water-absorbing resin (Comparative SAP3-2).
- this aluminum sulfate composition liquid is a liquid aluminum sulfate 50 mass% solution for waterworks (Asakawa Chemical Industries Co., Ltd.) 1.0 mass part, a 60 mass% sodium lactate aqueous solution (Musashino Chemical Laboratory Co., Ltd.) 0
- the addition amount was 1.26 parts by mass with respect to 100 parts by mass of the surface-crosslinked water-absorbing resin.
- After adding the said aluminum sulfate composition liquid to the surface-crosslinked water-absorbing resin it heated at 60 degreeC for 1 hour.
- Comparative Example 3-3 In Comparative Example 3-2, with reference to Example 17 of Patent Document 19, a 40 mass% sodium dihydrogen phosphate aqueous solution was added between the surface crosslinking step of Comparative Example 3-2 and the step of adding the aluminum sulfate composition solution. And a step of heating at 60 ° C. for 30 minutes was added. The amount added was 0.76 parts by mass (0.31 parts by mass as sodium dihydrogen phosphate) with respect to 100 parts by mass of the surface-crosslinked water-absorbing resin. Except for the above, the same operation as in Comparative Example 3-2 was carried out to obtain a particulate comparative water absorbent resin (Comparative SAP 3-2). Table 4 shows the formic acid concentration, water absorption physical properties, and color tone with time in the comparative particulate water-absorbing resin (Comparative SAP3-2).
- Example 3-4 In Example 3-1, the same procedure as in Example 3-1, in which the cationic polymer was not added to the surface-crosslinked water-absorbent resin, was performed to obtain a particulate comparative water-absorbent resin (Comparative SAP 3-4). . Table 4 shows the formic acid concentration, water absorption properties, and color tone with time in the comparative particulate water-absorbing resin (Comparative SAP3-4).
- Example 3-5 In Example 3-1, except that an aqueous solution of sodium hydroxide in which the iron content of the 48.5% by mass aqueous solution of sodium hydroxide was 10.5 ppm (15 ppm in terms of Fe 2 O 3 ) with respect to sodium hydroxide was used, Example 3- In the same manner as in No. 1, a particulate comparative water-absorbing resin (Comparative SAP 3-5) was obtained. Table 4 shows the formic acid concentration, water absorption properties, and color tone with time in the comparative particulate water-absorbing resin (Comparative SAP3-5).
- (Summary) Table 4 is a table showing the physical properties of the water-absorbent resin obtained by the method for producing Case 3 of the present invention. From the comparison between Example 3-1 and Comparative Example 3-1, it can be seen that the presence of formic acid in the water-absorbent resin reduces the coloration with time (improves L, a, and b). Further, when Examples 3-1 and 3-2 were compared with Comparative Examples 3-2 and 3-3, the SFC was the same, and the color tone with time was better when the cationic polymer was added than when the aluminum sulfate composition was added. It turns out that is excellent.
- Comparative Example 3-4 is superior in color tone with time, but does not use a liquid permeability improver, so that the liquid permeability is good. It can be seen that (SFC) is insufficient. Further, from the comparison between Example 3-1 and Comparative Example 3-5, it can be seen that the amount of Fe in the basic composition has a great influence on coloring.
- the water absorbent resin obtained by the production method according to the present invention is suitable for sanitary materials such as paper diapers, sanitary napkins and incontinence pads. Furthermore, this water-absorbent resin can also be used for agricultural materials, civil engineering materials, and the like.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
- Processes Of Treating Macromolecular Substances (AREA)
- Polymerisation Methods In General (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
Abstract
Description
本発明のポリアクリル酸(塩)系吸水性樹脂の製造方法(第1の製造方法)は、アクリル酸を貯蔵あるいは製造する工程、重合禁止剤を含むアクリル酸と、水と、架橋剤と、必要により塩基性組成物とを混合および/または中和して単量体水溶液を調製する工程、該単量体水溶液を重合する工程、得られた含水ゲル状架橋重合体を乾燥する工程、必要により表面架橋する工程を順次含むポリアクリル酸(塩)系吸水性樹脂の製造方法であって、上記重合禁止剤を含むアクリル酸中の水分量が1000ppm(質量規準。以下同じ)以下、および/または、上記単量体水溶液中の蟻酸含有量が単量体に対して1~700ppmであることを特徴とする。
本発明のポリアクリル酸(塩)系吸水性樹脂の製造方法(第2の製造方法)は、アクリル酸を貯蔵あるいは製造する工程、重合禁止剤を含むアクリル酸と、水と、架橋剤と、必要により塩基性組成物とを混合および/または中和して単量体水溶液を調製する工程、該単量体水溶液を重合する工程、得られた含水ゲル状架橋重合体を乾燥する工程、必要により表面架橋する工程を順次含むポリアクリル酸(塩)系吸水性樹脂の製造方法であって、上記重合禁止剤を含むアクリル酸中の蟻酸含有量が1~700ppm(質量基準)であることを特徴とする。
本発明のポリアクリル酸(塩)系吸水性樹脂の製造方法(第3の製造方法)は、アクリル酸を貯蔵あるいは製造する工程、重合禁止剤を含むアクリル酸と、水と、架橋剤と、必要により塩基性組成物とを混合および/または中和して単量体水溶液を調製する工程、該単量体水溶液を重合する工程、得られた含水ゲル状架橋重合体を乾燥する工程、必要により表面架橋する工程を順次含むポリアクリル酸(塩)系吸水性樹脂の製造方法であって、上記重合禁止剤を含むアクリル酸中の水分量が1000ppm(質量規準。以下同じ)以下、および/または、上記単量体水溶液中の蟻酸含有量が、単量体に対して1~700ppm、および/または、下記(1)~(3)を満たすことを特徴とする。
(1)上記塩基性組成物中の鉄分が0.007~7ppmであること。
(2)乾燥工程以降に、重合体100質量部に対して、カチオン性ポリマー0.01~5質量部を混合すること。
(3)重合時の単量体および/または重合後の重合体100質量部に対して、蟻酸0.0001~5質量部を存在させるおよび/または混合すること(但し、重合時の単量体中の蟻酸存在量は0~700ppm(対単量体))。
本発明のポリアクリル酸(塩)系吸水性樹脂の製造方法(第4の製造方法)は、アクリル酸を貯蔵あるいは製造する工程、重合禁止剤を含むアクリル酸と、水と、架橋剤と、必要により塩基性組成物とを混合および/または中和して単量体水溶液を調製する工程、該単量体水溶液を重合する工程、得られた含水ゲル状架橋重合体を乾燥する工程、必要により表面架橋する工程を順次含むポリアクリル酸(塩)系吸水性樹脂の製造方法であって、下記(1)~(3)を満たすことを特徴とする。
(1)上記塩基性組成物中の鉄分が0.007~7ppmであること。
(2)乾燥工程以降に、重合体100質量部に対して、カチオン性ポリマー0.01~5質量部を混合すること。
(3)重合時の単量体および/または重合後の重合体100質量部に対して、蟻酸0.0001~5質量部を存在させるおよび/または混合すること(但し、重合時の単量体中の蟻酸存在量は0~700ppm(対単量体))。
本発明のポリアクリル酸(塩)系吸水性樹脂は、蟻酸含有量が1~500ppmである(但し、重合体100質量部中、カチオン性ポリマー含有量が0.01~5質量部含まれている場合は、吸水性樹脂の鉄分含有量が2ppm以下および蟻酸含有量が1~50000ppmである)ことを特徴とする。
本発明のアクリル酸の使用方法は、重合禁止剤メトキシフェノール10~160ppmを含み、アクリル酸中の水分量が1000ppm(質量規準。以下同じ)以下、および/または、蟻酸含有量が0.5~700ppmであるアクリル酸の吸水性樹脂を重合へ使用することを特徴とする。
(1-1)「吸水性樹脂」
本明細書において、「吸水性樹脂」とは、水膨潤性水不溶性の高分子ゲル化剤を意味し、以下の物性を有するものをいう。即ち、無加圧下吸水倍率(CRC/ERT441.2-02(2002)で規定)が、必須に5[g/g]以上、より好ましくは10~100[g/g]、さらに好ましくは20~80[g/g]であり、また、水可溶分(Extractables/ERT470.2-02(2002)で規定)が、必須に0~50質量%、より好ましくは0~30質量%、さらに好ましくは0~20質量%、特に好ましくは0~10質量%である高分子ゲル化剤をいう。なお、該吸水性樹脂は、全量(100%)が重合体である形態に限定されず、上記性能を維持する範囲において、後述する添加剤等を含んでいてもよく、好ましくは後述の蟻酸を含む。
本明細書において、「ポリアクリル酸(塩)」とは、任意にグラフト成分を含み、繰り返し単位として、アクリル酸(塩)を主成分とする重合体を意味する。具体的には、架橋剤を除く単量体として、アクリル酸(塩)を、必須に50~100モル%、より好ましくは70~100モル%、さらに好ましくは90~100モル%、特に好ましくは実質100モル%含む重合体を意味する。重合体としての塩は、必須に水溶液塩を含み、より好ましくは一価の塩、さらに好ましくはアルカリ金属塩あるいはアンモニウム塩である。その中でもアルカリ金属塩が好ましく、ナトリウム塩が特に好ましい。
「EDANA」は、European Disposables and Nonwovens Associationの略称であり、「ERT」は、欧州標準(ほぼ世界標準)の吸水性樹脂の測定法(ERT/EDANA Recomended Test Methods)の略称である。本明細書においては、特に断りのない限り、ERT原本(公知文献:2002年改定)を参照して、吸水性樹脂の物性を測定している。
「pH」(ERT400.2-02)。吸水性樹脂のpH
「Moisture Content」(ERT430.2-2)。吸水性樹脂の含水率。
「Flow Rate」(ERT450.2-02)。吸水性樹脂粉末の流下速度。
「Density」(ERT460.2-02)。吸水性樹脂のかさ比重。
荷重下または無荷重下における膨潤ゲルの粒子間を流れる液の流れを「通液性」という。この「通液性」の代表的な測定方法として、SFC(Saline Flow Conductivity)やGBP(Gel Bed Permeability)がある。
本発明における「初期色調」(別称:初期着色)とは、製造直後の吸水性樹脂またはユーザー出荷直後の吸水性樹脂の色調をいい、通常、工場出荷前の色調で管理する。色調の測定方法については、国際公開第2009/005114号に記載される方法(Lab値、YI値、WB値等)を例示することができる。
本明細書において、範囲を示す「X~Y」は、「X以上、Y以下」であることを意味する。また、質量の単位である「t(トン)」は、「Metric ton(メトリック トン)」であることを意味し、さらに、特に注釈のない限り、「ppm」は「質量ppm」を意味する。
本発明では、アクリル酸を貯蔵あるいは製造する工程、重合禁止剤を含むアクリル酸と、水と、架橋剤と、必要により塩基性組成物とを混合および/または中和して単量体水溶液を調製する工程、該単量体水溶液を重合する工程、得られた含水ゲル状架橋重合体を乾燥する工程、必要により表面架橋する工程を順次含むポリアクリル酸(塩)系吸水性樹脂の製造方法であって、
上記重合禁止剤を含むアクリル酸中の水分量が1000ppm以下(ケース1)、および/または
上記単量体水溶液中の蟻酸含有量が、単量体に対して1~700ppm以下である(ケース2)ことを特徴とする。
(1)上記塩基性組成物中の鉄分が0.007~7ppmであること。
(2)乾燥工程以降に、重合体100質量部に対して、カチオン性ポリマー0.01~5質量部を添加すること。
(3)重合時の単量体および/または重合後の重合体100質量部中、蟻酸0.0001~5質量部を存在させるおよび/または混合すること(但し、重合時の単量体中の蟻酸存在量は0~700ppm(対単量体))。
本発明の目的(着色防止、耐久性)を達成するうえで、ケース1では、重合禁止剤を含むアクリル酸中の水分量を1000ppm以下とする。水分量は、750ppm以下、500ppm以下、300ppm以下、200ppm以下、100ppm以下、80ppm以下、50ppm以下の順で好ましい。水分は少ないほど好ましいが、脱水コストから1ppm程度、さらには5ppm程度でも十分である。かかる低水分のアクリル酸を得るには、アクリル酸の精製に蒸留や晶析を繰り返して所定量の水分にまで調整したり、アクリル酸を無機又は有機の脱水剤と接触させたりして、水分を所定量とすれよい。水分量が1000ppmを超える場合、得られる吸水性樹脂の着色(特に経時着色)が悪化する傾向にある。
ケース2では、単量体水溶液中の蟻酸含有量を、単量体に対して1~700ppm以下とする。
ケース3では、重合時の単量体および/または重合後の重合体100質量部に対して、蟻酸0.0001~5質量部を存在させるおよび/または混合する(但し、重合時の単量体中の蟻酸存在量は0~700ppm(対単量体))。ここで、蟻酸は、重合時の単量体中に不存在もしくは極少量存在すればよく、好ましくは蟻酸が単量体調製時のアクリル酸に予め含有され、単量体水溶液中の蟻酸の濃度が単量体に対して1~700ppmであればよい。少量の蟻酸を含む単量体を重合時に使用することで、カチオン性ポリマーを混合した際の着色(経時着色)が改善することが見いだされた。重合時の単量体中に存在する蟻酸が、重合体の内部に均一に存在して吸水性樹脂粉末の着色を防止すると推定される(かかる機構は本発明を制限しない)。
従来、吸水性樹脂の製造方法において、上記諸問題を解決するために、単量体の微量成分を調整する技術は知られている。
特許文献6では、吸水性樹脂のpHを5.5以下に下げて経時着色を防止する技術を開示し、そのために使用する酸の一例として蟻酸を開示する。また、吸水性樹脂の着色防止剤として、有機カルボン酸および必要によりその他化合物の添加(特許文献20~23)等が知られ、そのために使用する有機酸の一例として蟻酸を開示する。また、特許文献46(米国特許第4698404号)や特許文献47(米国特許第6335406号)は重合時の連鎖移動剤の一例として蟻酸を開示する。特許文献48(米国特許第4693713号)は血液吸収のためにカルボン酸塩等を含む吸水性樹脂組成物を開示し、そのカルボン酸塩の一例として蟻酸塩を開示する。特許文献49(特開2006-225456号)はレッドクス重合時の還元剤の一例として、蟻酸を例示する。特許文献50~52(国際公開第2008/092842号、同第2008/092843号、同第2007/121937号)は有機酸多価金属塩を用いる吸水性樹脂の製造方法を開示し、その有機酸の一例として蟻酸を開示する。
吸水性樹脂の物性や特性向上と言う観点からは、アクリル酸中のプロトアネモニンおよび/またはフルフラール含有量は、0~20ppmとすることが好ましい。より具体的には、好ましくは10ppm以下、より好ましくは0.01~5ppm、さらに好ましくは0.05~2ppm、特に好ましくは0.1~1ppmの範囲である。さらに、フルフラール以外のアルデヒド分および/またはマレイン酸も少ないほど良く、アクリル酸に対して、好ましくは0~5ppm、より好ましくは0~3ppm、さらに好ましくは0~1ppm、特に好ましくは0ppm(検出限界以下)である。なお、フルフラール以外のアルデヒド分としては、ベンズアルデヒド、アクロレイン、アセトアルデヒド等が挙げられる。さらに、アクリル酸にあっては、酢酸および/またはプロピオン酸からなる飽和カルボン酸の含有量は、アクリル酸に対して好ましくは1000ppm以下、より好ましくは10~800ppm、特に好ましくは100~500ppmである。
ケース2とケース3では植物由来で特定の製法により得られたアクリル酸を用いることが好ましい。このようなアクリル酸は蟻酸が1~700ppm含まれている。具体的には油脂などから得られるグリセリンを処理してアクロレインを製造し、さらに酸化してアクリル酸を製造する方法である。得られたアクリル酸は好ましくは蒸留法または晶析法により精製される。上記精製法や精製条件によりアクリル酸中の蟻酸を制御できるが、特に蒸留法により蟻酸を多く含むアクリル酸が得られやすい。なお、蟻酸の含有量が多すぎる場合には、蟻酸の含有量が少ないアクリル酸と混ぜて使用しても良い。
蟻酸等の微量成分を所定の量にするため、アクリル酸は必要により混合される。混合の際には、異なる微量成分を含有するアクリル酸を使用すればよく、好ましくは、化石原料と非化石原料のアクリル酸が使用される。また、異なるアクリル酸として、原料以外にその他、酸化系(特に触媒)、精製系(蒸留や晶析)が異なるものでもよく、これらで、好ましくは不純物、特にプロピオン酸量が異なるようにする。2種類のアクリル酸を使用する場合、その使用比率(質量比)は適宜決定されるが、通常1:99~99:1の範囲とする。好ましくは10:90~90:10、より好ましくは20:80~80:20、特に好ましくは30:70~70:30である。なお、上記2種以外のアクリル酸は、アクリル酸全量中、0~50質量%の範囲で使用してもよく、0~30質量%がより好ましく、0~10質量%がさらに好ましい。異なる2種類ないしそれ以上のアクリル酸の使用比率は、両アクリル酸の価格(原料コスト)、供給量、微量成分(プロピオン酸やそれ以外の微量成分)等で適宜決定され、特に、アクリル酸として化石原料および非化石原料の複数(特に2種類)の原料ソースを使用することで吸水性樹脂の原料コストをヘッジできる。なお、化石原料および非化石原料を併用する場合、その比率は、単量体中や吸水性樹脂中の14Cの定量で測定できる。
吸水倍率(CRC)と水可溶分(Ext)の相対関係の向上のために、ケース2とケース3のアクリル酸や単量体は、好ましくは特許文献53(米国特許出願公開第2008/119626号)に例示の重合不活性有機化合物を含む。重合不活性有機化合物とは、ビニル基やアリル基等の重合性不飽和結合を有しない有機化合物のことである。
このようなアクリル酸は、例えば、アクリル酸の製造工程において、あるいは、アクリル酸組成物の製造工程において、前記溶解度パラメータが1.0×104~2.5×104(Jm-3)1/2である重合不活性有機化合物を使用し、さらに精製工程で一定量を除去して最終アクリル酸組成物に一定量を残存させることで、重合不活性有機化合物をアクリル酸組成物中に配合する方法などで得ることができる。
本明細書において、中和に用いられる「塩基性組成物」とは、塩基性化合物を含有する組成物を意味する。本発明では、上記塩基性組成物には、上記塩基性化合物に加えて、後述する鉄、換言すれば、鉄を含有する化合物が含まれていることが好ましい。
本発明の吸水性樹脂の製造方法において、アクリル酸は好ましくは中和、さらには中和前および/または中和中も循環されてなる。下記に好ましい中和方法およびアクリル酸の循環方法を説明する。
まず、本発明の吸水性樹脂の製造方法において、好ましい実施態様である上記アクリル酸およびその中和系の循環について、図面を参照しながら、説明する。
本発明では、好ましくは、上記中和系における混合液の滞留時間と、上記中和系を構成する機器及び配管等との接触面積の関係が規定される。即ち、本発明の製造方法においては、下記数2で規定される値X1が300以下である。
本発明における中和工程は、図1又は図2に示した中和系で行われ、前述した単量体を含む液(混合液)と塩基性水溶液が連続的に供給される。また、上記混合液は、モノマーの状態(常温で固体状態又は液体状態)に関わりなく水溶液とすることが、取り扱いの観点から好ましい。なお、本発明においては、「常温」とは20~30℃の温度範囲をいう。
以下に一般的な、あるいは本発明に有利なポリアクリル酸(塩)系吸水性樹脂の製造方法を示す。ケース3の発明の構成要件であるカチオン性ポリマーの添加工程は、(3-7)に示す。従って、(3-1)から(3-6)までは、ケース1~3に共通する。
本発明の粒子状吸水性樹脂に用いられる吸水性樹脂は、アクリル酸由来の構成単位を有する。好ましくは、この吸水性樹脂は、アクリル酸由来の構成単位を主成分として有している。この吸水性樹脂の製法は特に限定されないが、好ましくは、この吸水性樹脂は、アクリル酸および/またはその塩を主成分とする単量体成分を重合して得られる。なお、上記単量体由来の構成単位とは、例えば、重合反応によって、各単量体の重合性二重結合が開いた構造に相当する。重合性二重結合が開いた構造とは、例えば、炭素間の二重結合(C=C)が単結合(-C-C-)となった構造である。
重合で得られた含水ゲル状架橋重合体はそのまま乾燥を行っても良いが、必要によりゲル粉砕機等を用いて細断された後乾燥される。本発明の色安定性吸水性樹脂粒子の形状は、特に制限なく、例えば、顆粒状・粉末状・フレーク状・繊維状等、任意の形態とすることができる。
本発明において好適に使用される乾燥温度は特に制限されないが、例えば、50~300℃の範囲(100℃以下の場合は減圧下で行うことが好ましい)、好ましくは100~250℃、さらに好ましくは150~200℃で行われる。特にアクリル酸が上記重合不活性有機化合物を含有する場合、上記の温度範囲での乾燥、特に高温乾燥(好ましくは100~250℃、さらに好ましくは150~200℃)によって、重合不活性有機化合物を吸水性樹脂から除去できるため、より好ましい。
乾燥により得られた本発明の経時色安定性吸水性樹脂粒子は、その目的に応じ必要により粒経制御のため粉砕、分級、調合等の工程を経ても良い。これらの方法については例えば、国際公開第2004/69915号に記載されている。
本発明で好ましくは微粉リサイクルされ、上記分級工程後の吸水性樹脂微粉を乾燥工程以前にリサイクルする工程をさらに含む。微粉がリサイクルされることで、粒度制御ないし吸水速度や通液性の向上に寄与できる。微粉リサイクル量は粉砕物中の0.1~40質量%、さらには1~30質量%、特に5~25質量%の範囲で適宜決定される。
本発明で得られる経時色安定性吸水性樹脂粒子は、上記工程後に、従来から知られている表面架橋処理工程を経て、より衛生材料向けに好適な経時色安定性吸水性樹脂とすることができる。なお、表面架橋は乾燥と同時に行ってもよいが、好ましくは乾燥工程後、さらに好ましくは分級工程後に行われる。表面架橋とは、吸水性樹脂の表面層(表面近傍:吸水性樹脂表面から通常数10μm前後)にさらに架橋密度の高い部分を設けることであり、表面でのラジカル架橋や表面重合、表面架橋剤との架橋反応等で形成できる。
ケース3の発明の製造方法はカチオン性ポリマーの添加工程、特に吸水性樹脂粉末の表面へのカチオン性ポリマーの添加工程を含んでいる。ここで、添加されたカチオン性ポリマーは吸水性樹脂の表面被覆ないし表面架橋に作用して、吸水性樹脂の通液性や形態保持性などを向上させる。カチオン性ポリマーは、架橋体でもよく、ホモポリマーでもよく、共重合体でもよく、一部または全部が水膨潤性や水不溶性でもよいが、好ましくは水溶性のカチオン性ポリマーが使用される。なお、上記「水溶性」とは、25℃の水100gにカチオン性ポリマーが1g以上、さらには10g以上、特に50g以上、溶解することをいう。
かかるカチオン性ポリマーと蟻酸はそのまま混合してもよいが、均一な混合性による物性向上の観点から、好ましくは溶液、さらに好ましくは水溶液として吸水性樹脂に混合される。使用する水やその他溶媒(好ましくは親水性溶媒、特に低級アルコール)の量は、カチオン性ポリマーの種類や使用量で適宜決定されるが、好ましくは、水が0.01~20質量部、さらには0.1~10質量部、特に0.5~8質量部で使用される。混合時の水溶液濃度も適宜決定され、例えば、1~100質量%、さらには5~80質量%、10~60質量%である。
カチオン性ポリマーの混合量は、重合体100質量部に対して、0.01~5質量部であり、好ましくは0.05~4.5質量部、より好ましくは0.1~4質量部、さらに好ましくは0.3~3.5質量部の範囲内で適宜決定される。
カチオン性ポリマーと蟻酸の混合は、表面架橋に使用される混合機、加熱処理機、冷却機、あるいは表面架橋とは別の混合機等で混合でき、必要により混合後に加熱ないし溶解を乾燥、好ましくは20~150℃、さらには50~120℃で加熱ないし乾燥してもよい。
蟻酸が重合時の単量体に上記の濃度で含有されている場合、さらに、重合時の蟻酸含有量を超える量の蟻酸とカチオン性ポリマーとの混合物を吸水性樹脂に混合する。好ましいカチオン性ポリマーはポリビニルアミン、または、ポリ(N-ビニルホルムアミド)の部分加水分解物であるが、後述のカチオン性ポリマーも使用ないし併用できる。カチオン性ポリマーとして、蟻酸を所定量含有させたポリ(N-ビニルホルムアミド)の完全加水分解物または部分加水分解物、好ましくは部分加水分解物の使用はケース3の発明において好ましい方法の一つである。蟻酸の使用量は吸水性樹脂に対し重合時およびカチオン性ポリマーの添加時および合計量で上記範囲である。この工程での蟻酸の添加は重合工程や乾燥工程における蟻酸の蒸散がないため、蟻酸由来の酸臭の問題も少なく、重合工程や乾燥工程以前に蟻酸を加える場合と比べてロスが少なく、使用量に対して経時着色の抑制効果が高い。また、単量体水溶液に700ppmより多く蟻酸が含まれると、蟻酸の添加量以上に水可溶分が増加するが、重合工程以降はこのような水可溶分の問題は起らない。
上記カチオン性ポリマーとして、好ましくはポリビニルアミン、または、ポリ(N-ビニルホルムアミド)の部分加水分解物である。その他のカチオン性ポリマーとしては、第1級アミノ基、第2級アミノ基、第3級アミノ基およびそれらの塩、および第4級アルキルアンモニウム塩から選ばれる少なくとも1種を含むポリマーが好ましく使用される。この場合、アミノ基の塩とは、アミノ基窒素が無機酸あるいは有機酸で中和されるか、または、アミノ基窒素と求電子試薬との反応により得られたものである。中和に使用可能な無機酸としては、例えば、炭酸;ホウ酸;塩酸、フッ化水素酸等の水素酸;硫酸、亜硫酸、硝酸、亜硝酸、リン酸、次亜リン酸、亜リン酸、オルトリン酸、メタリン酸、ピロリン酸等のポリリン酸、トリポリリン酸、ウルトラリン酸(酸性メタリン酸)、過塩素酸等の酸素酸;上記酸素酸の塩;等をあげることができ、有機酸としては、例えば、カルボン酸、スルフィン酸、スルホン酸、フェノール酸、エノール(カルボニル化合物の互変異性体)、メルカプタン、イミド(酸イミド)、オキシム、スルホンアミド等の酸性の官能基を有する化合物が挙げられ、具体的には、蟻酸、酢酸、プロピオン酸グリコール酸、乳酸、トリクロロ乳酸、グリセリン酸、リンゴ酸、酒石酸、クエン酸、タルトロン酸、没食子酸等のオキシ酸;アスパラギン酸等のアミノ酸;p-トルエンスルホン酸、等を例示できる。求電子試薬として使用可能なものとしては、例えば、ヨードメタン、ヨードエタン、2-ヨードプロパン、ベンジルヨージド、ブロモメタン、ブロモエタン、2-ブロモプロパン、ベンジルブロミド、クロロメタン、クロロエタン、2-クロロプロパン、ベンジルクロライド等のアルキルハライド;ジエチル硫酸、ジメチル硫酸等のアルキル硫酸等を挙げることができる。上記の無機酸、有機酸、求電子試薬はそれぞれ単独で使用されたり、2種以上併用されたりする。
カチオン性ポリマーは、好ましくは重量平均分子量が2000以上であり、より好ましくは数平均分子量が2000以上であり、さらに好ましくは重量平均分子量が5000以上、最も好ましくは重量平均分子量が10000以上かつ数平均分子量が5000以上である。重量平均分子量が2000未満であると期待する効果が得られなくなるおそれがある。なお、平均分子量の測定は、数平均分子量は粘度法によって測定し、重量平均分子量は平衡沈降法によって測定される。また、その他ゲルパーミエーションクロマトグラフィー、静的光散乱法等によっても測定できる。コスト面から、上限は重量平均分子量が500万程度、さらには100万程度で十分である。
架橋されてなるカチオン性ポリマーを得る方法としては、対応するカチオン性基を含有する単量体を重合する際に他の共重合性架橋剤と共重合して架橋重合体としたり、カチオン性ポリマーをその官能基(たとえばアミノ基)と反応しうる基を2個以上有する架橋剤で架橋したりする等、従来公知の方法でカチオン性ポリマーに架橋構造を導入することができる。これらカチオン性ポリマー架橋体を水膨潤性として、200質量部以下の範囲で、ポリアクリル酸系吸水性樹脂、特に低中和ないし未中和のポリアクリル酸系吸水性との組成物して、酸塩基型の吸水性樹脂組成物としてもよい。
また、本発明のカチオン性ポリマーはカチオン密度が2[mmol/g]以上であることが好ましく、4[mmol/g]以上であることがさらに好ましく、6[mmol/g]以上であることが最も好ましい。カチオン密度が2[mmol/g]未満であると、吸水性樹脂とカチオン性ポリマーを混合して得られた吸水性樹脂における、膨潤後の吸水性樹脂集合体の保型性が十分でなくなるおそれがある。上限は繰り返し単位で適宜決定されるが、30[mmol/g]以下、さらには25[mmol/g]以下である。
(a)キレート剤
本発明の粒子状吸水性樹脂の製造方法は、さらなる着色防止や劣化防止から、キレート剤の添加工程を含む。本発明のキレート剤としては、効果の面から高分子または非高分子、中でも非高分子が好ましく、アミノ多価カルボン酸、有機多価燐酸、アミノ多価燐酸から選ばれる化合物、特に非高分子化合物であることが好ましい。好適なキレート剤は欧州特許第940148号に例示されている。
本発明の製造方法では、さらなる着色防止や劣化防止、残存モノマー低減から、無機還元剤を好ましくは添加する工程を含む。本発明の無機還元剤としては、硫黄原子を含む無機還元剤、リン原子を含む無機還元剤が挙げられる。無機還元剤は酸型でもよいが、好ましくは塩型であり、塩としては1価~多価金属塩、さらには1価塩である。好適な無機還元剤は米国特許出願公開第2006/074160号に例示され、亜硫酸(水素)塩等が好ましくは使用される。
本発明の粒子状吸水性樹脂は、さらなる着色防止等から、α-ヒドロキシカルボン酸化合物を含むことが好ましい。本発明のα-ヒドロキシカルボン酸化合物とは、分子内にヒドロキシル基を併せ持つカルボン酸またはその塩のことで、α位ヒドロキシル基を有するヒドロキシカルボン酸化合物である。
本発明の粒子状吸水性樹脂は、通液性(SFC)向上等から、多価金属塩を含むことが好ましい。なお、ケース3の発明では、多価金属塩に変えてカチオン性ポリマーを用いるので、多価金属塩を使用しなくてもよいが、0~1質量部で併用してもよい。
本発明では好ましくはさらに界面活性剤が混合される。界面活性剤の吸水性樹脂表面への混合さらには存在によって、より物性が向上ないし安定化する。界面活性剤は好ましくは乾燥工程後の吸水性樹脂、さらには、表面架橋工程の前、途中(同時)または後の吸水性樹脂に対して、さらには、カチオン性ポリマーの混合と同時または混合後に添加される。
本発明では好ましくはさらに水不溶性無機微粒子が混合される。水不溶性無機界面活性剤の吸水性樹脂表面への混合さらには存在によって、より物性が向上ないし安定化する。界面活性剤は好ましくは乾燥工程後の吸水性樹脂、さらには、表面架橋工程の前、途中(同時)または後の吸水性樹脂に対して、添加される。ケース3では、カチオン性ポリマーの混合と同時または混合後、特にカチオン性ポリマーの混合後に添加される。
さらに、その目的機能に応じて、種々の機能を付与させるため、リン原子を含む化合物、酸化剤、有機還元剤、金属石鹸等の有機粉末、消臭剤、抗菌剤、パルプや熱可塑性繊維等が、0~3質量%、好ましくは0~1質量%添加されても良い。なお、界面活性剤としては、国際公開第2005/075070号記載の界面活性剤が好ましく例示される。
本発明の製造方法は、着色との両立が困難であった、高いCRC、高い通液性(SFC)の吸水性樹脂の製造方法に好適に適用される。得られる吸水性樹脂は、CRCが25[g/g]以上、AAPが20[g/g]以上、SFCが50[×10-7・cm3・s・g-1]以上である。さらには後述のAAP、SFCの範囲、さらにはその他後述の物性を示す吸水性樹脂の製造方法に好適に適用できる。
(4-1;ケース2の製造方法で得られる吸水性樹脂の物性)
ケース2の製造方法では、着色の少ない優れた吸水性樹脂として、蟻酸を1~500ppm含むポリアクリル酸(塩)系吸水性樹脂を提供する。好ましい蟻酸の範囲は上記のとおりである。
一方、ケース3の製造方法では、吸水性樹脂の鉄分含有量が2ppm以下、蟻酸含有量が1~50000ppm、および重合体100質量部に対してカチオン性ポリマー含有量が0.01~5質量部であるポリアクリル酸(塩)系吸水性樹脂を提供する。かかる吸水性樹脂は、蟻酸を乾燥工程後に添加する場合、好ましくは、吸水性樹脂の表面が蟻酸およびカチオン性ポリマーで被覆されてなる。さらに、重合時に蟻酸が含有される場合、吸水性樹脂の内部にも蟻酸がさらに含有することによって、より着色が防止される。
ケース3においても、重合の安定化のみならず、得られた吸水性樹脂の耐光性から、p-メトキシフェノール系化合物の含有量が1~200ppmであり、さらには上記範囲であることが好ましい。
本発明のケース1,ケース2,ケース3の各製造方法で得られる吸水性樹脂は、次の物性を達成することが好ましい。衛生材料、特に紙オムツを目的とする場合、上記重合や表面架橋をもって、下記(a)~(k)の少なくとも1つ、さらにはAAPを含め2つ以上、特に3つ以上に制御されることが好ましい。下記を満たさない場合、後述の高濃度オムツでは十分な性能を発揮しないことがある。
AAPは20[g/g]以上、好ましくは22[g/g]以上であり、より好ましくは23[g/g]以上であり、さらに好ましくは24[g/g]以上であり、最も好ましくは25[g/g]以上である。AAPの上限値は特に限定されないが、好ましくは30[g/g]以下である。AAPが20[g/g]未満の場合、粒子状の吸水性樹脂が吸水体に使用された場合、吸水体に圧力が加わった際の液の戻り(通称リウェット:Re-Wetといわれる)が少ない吸水性樹脂を得ることができなくなるおそれがある。AAPは、例えば、上記表面架橋、特に粒度制御後の表面架橋で調整できる。
SFCは、好ましくは30[×10-7・cm3・s・g-1]以上であり、より好ましくは50[×10-7・cm3・s・g-1]以上であり、さらに好ましくは70[×10-7・cm3・s・g-1]以上であり、特に好ましくは80[×10-7・cm3・s・g-1]以上である。
無加圧下吸水倍率(CRC)は、好ましくは5[g/g]以上であり、より好ましくは15[g/g]以上であり、さらに好ましくは25[g/g]以上である。CRCの上限値は、特に限定されないが、好ましくは70[g/g]以下であり、より好ましくは50[g/g]以下であり、さらに好ましくは40[g/g]以下である。
水可溶分は好ましくは35質量%以下であり、より好ましくは25質量%以下であり、さらに好ましくは15質量%以下である。
本発明にかかる粒子状の吸水性樹脂は、安全性の観点より、残存モノマーは0~500ppm、好ましくは0~400ppm、より好ましくは0~300ppmに制御される。
20gの生理食塩水に対する吸水性樹脂1gでの吸水速度(FSR)は好ましくは0.1[g/g/sec]以上であり、より好ましくは0.15[g/g/sec]以上であり、さらに好ましくは0.20[g/g/sec]以上、最も好ましくは0.25[g/g/sec]以上である。FSRの上限値は特に限定されないが、好ましくは5.0[g/g/sec]以下であり、より好ましくは3.0[g/g/sec]以下である。かかるFSRの測定法は国際公開第2009/016055号で規定できる。
上記範囲である。
さらに、その目的機能に応じて、種々の機能を付与させるため、界面活性剤、リン原子を含む化合物、酸化剤、有機還元剤、シリカや金属石鹸等の水不溶性無機ないし有機粉末、消臭剤、抗菌剤、パルプや熱可塑性繊維などが、0~3質量%、好ましくは0~1質量%添加されても良い。なお、界面活性剤としては、国際公開第2005/075070号記載の界面活性剤が好ましく例示される。
吸水性樹脂の含水率は10質量%以下、好ましくは0質量%を超えて10質量%以下、より好ましくは1~10質量%、より好ましくは2~8質量%、より好ましくは2~7質量%、より好ましくは2~6質量%、特に好ましくは2~5質量%とされる。含水率が外れると、粉体特性(流動性、搬送性、耐ダメージ)に劣った吸水性樹脂となる。
本発明にかかる粒子状の吸水性樹脂は、紙オムツ等の衛生材料向けに好適に使用できるものであり、白色粉末であることが好ましい。本発明にかかる粒子状の吸水性樹脂は、吸水性樹脂製造後の分光式色差計によるハンターLab表色系測定において、L値(Lightness)が少なくとも88、さらには89以上、好ましくは90以上を示すことが好ましい。なお、L値の上限は通常100であるが、88以上ならば衛生材料等の製品において色調による問題が発生しない。また、b値は0~12、好ましくは0~10、さらに好ましくは0~9、a値は-3~3、好ましくは-2~2、さらに好ましくは-1~1とされる。
本発明にかかる粒子状の吸水性樹脂は、紙オムツ等の衛生材料向けに好適に使用できるものであり、その際、高い湿度や温度条件下での長期貯蔵状態においても著しく清浄な白い状態を維持することが好ましい。
本発明の吸水性樹脂の用途は特に限定されないが、好ましくは、紙オムツ、生理ナプキン、失禁パット等の吸収性物品に使用され得る。特に、従来、原料由来の臭気、着色等が問題になっていた高濃度オムツ(1枚のオムツに多量の吸水性樹脂を使用したもの)に使用され、特に前記吸収性物品中の吸収体上層部に使用された場合に、特に優れた性能が発揮される。
以下、実施例および比較例にしたがって本発明をより具体的に説明するが、本発明はこれらに限定され解釈されるものではなく、異なる実施例に開示されたそれぞれの技術的手段を適宜組み合わせて得られる実施例についても、本願発明の範囲に含まれるものとする。また、便宜上、「リットル」を「L」、「質量%」を「wt%」と記すことがある。
[AAP(加圧下吸水倍率)]
ERT442.2-02に従って測定した。なお、本発明においては、荷重条件を4.83kPa(0.7psi)に変更して測定した。
米国特許第5669894号明細書に記載されたSFC試験方法に準じて測定した。
ERT441.2-02に従って測定した。
ERT470.2-02に従って測定した。
ERT410.2-02に従って測定した。
粒径の分布および質量平均粒子径(D50)は、以下で説明するように、試料を標準篩にかけることにより測定した。
吸水性樹脂(重合体)1gを直径6cmのアルミ皿に薄く広げて、180℃の無風オーブンで3時間乾燥することで、その乾燥前の質量と乾燥後の質量を測定し、下記式1に代入することにより含水率(質量%)を測定した。なお、固形分(質量%)は、(100-含水率)(質量%)で規定される。なお、カチオン性ポリマーの固形分についても吸水性樹脂の固形分と同様に測定、計算した。
(a)初期色調
日本電色工業株式会社製の分光式色差計SZ-Σ80COLOR MEASURING SYSTEMを用いて行った。測定の設定条件は、反射測定が選択され、内径30mmで且つ高さ12mmである付属の粉末・ペースト用容器が用いられ、標準として粉末・ペースト用標準丸白板No.2が用いられ、30Φ投光パイプが用いられた。備え付けの粉末・ペースト用容器に約5gの吸水性樹脂を充填した。
(b)経時色調
吸水性樹脂を高温高湿下(70℃、65%RHで7日間放置後の色)に放置したのち、上記(a)の手法で色を測定した。
晶析法により精製されたアクリル酸(AA1-1)の水分量をカールフィッシャー法水分計(株式会社三菱化学アナリティック製 KF-200型)により測定した結果、64ppmであった。このアクリル酸を循環式タンクで一週間、常温で貯蔵した。なお、このときのタンク充填率は75容積%であった。
実施例1-1のアクリル酸(AA1-1)に水を添加することで、水分量を291ppmとしたアクリル酸(AA1-2)を用いた以外は、実施例1-1と同様の操作を行い、表面架橋された粒子状の吸水性樹脂(SAP1-2)を得た。得られた粒子状吸水性樹脂(SAP1-2)の初期色調および経時色調を表1に記載する。
実施例1-1のアクリル酸(AA1-1)に水を添加することで、水分量を594ppmとしたアクリル酸(AA1-3)を用いた以外は、実施例1-1と同様の操作を行い、表面架橋された粒子状の吸水性樹脂(SAP1-3)を得た。得られた粒子状吸水性樹脂(SAP1-3)の初期色調および経時色調を表1に記載する。
実施例1-1のアクリル酸(AA1-1)に水を添加することで、水分量が966ppmとしたアクリル酸(AA1-4)を用いた以外は、実施例1-1と同様の操作を行い、表面架橋された粒子状の吸水性樹脂(SAP1-4)を得た。得られた粒子状吸水性樹脂(SAP1-4)の初期色調および経時色調を表1に記載する。
実施例1-1のアクリル酸(AA1-1)に水を添加することで、水分量が6794ppmとした比較アクリル酸(比較AA1-1)を用いた以外は、実施例1-1と同様の操作を行い、表面架橋された粒子状の比較吸水性樹脂(比較SAP1-1)を得た。得られた比較粒子状吸水性樹脂(比較SAP1-1)の初期色調および経時色調を表1に記載する。
晶析法の条件を変更することにより、実施例1-2と同じ水分量(291ppm)のアクリル酸(AA1-5)を得た以外は、実施例1-2と同様の操作を行い、表面架橋された粒子状吸水性樹脂(SAP1-5)を得た。得られた粒子状吸水性樹脂(SAP1-5)の初期色調および経時色調を表1に記載する。
国際公開第02/085959号の実施例に準じて、80質量%アクリル酸水溶液を用い、単量体水溶液中のアクリル酸濃度が実施例1-1と同じになるように脱イオン水量を調整した以外は、実施例1-1と同様の操作を行い、表面架橋された粒子状の比較吸水性樹脂(比較SAP1-2)を得た。得られた比較粒子状吸水性樹脂(比較SAP1-2)の初期色調および経時色調を表1に記載する。
米国特許第4507438号の比較例に準じて、純度99.8質量%のアクリル酸を用い、単量体水溶液中のアクリル酸濃度が実施例1-1と同じになるように脱イオン水量を微調整した以外は、実施例1-1と同様の操作を行い、表面架橋された粒子状の比較吸水性樹脂(比較SAP1-3)を得た。得られた比較粒子状吸水性樹脂(比較SAP1-3)の初期色調および経時色調を表1に記載する。
実施例1-1の晶析法により精製されるアクリル酸(AA1-1)に、p-メトキシフェノールを添加せず、実施例1-1と同様の操作を行おうとしたが、アクリル酸の貯蔵工程でアクリル酸が重合したため、吸水性樹脂を得ることができなかった。
図2に示される構造を有する装置を用意した。この装置は、容量が300Lである中和槽を有する。この中和槽に、水分量64ppmのアクリル酸及び濃度が19.6質量%である水酸化ナトリウム水溶液を連続的に供給し、第一ループ及び第二ループによって循環させて混合液を得た。単位時間当たりの供給量は、以下の通りである。
アクリル酸水溶液 :164.5[kg/hr]
水酸化ナトリウム水溶液:118.5[kg/hr]
得られた吸水性樹脂粉体(1-6)に、1,4-ブタンジオール、プロピレングリコールおよび水を混合した液を噴霧し、該吸水性樹脂粉体(1-6)の表面を架橋して、表面架橋された粒子状の吸水性樹脂(SAP1-6)を得た。得られた粒子吸水性樹脂(SAP1-6)の初期色調およびX1を表2に記載する。なお、実施例1-6における製造方法では、中和系に存在する液の量V1は350kgであり、中和系から重合系に向けて供給される液の単位時間当たりの流量F1は283[kg/hr]、中和系に存在する液とこの中和系との接触面積A1は16.3m2であり、よって、X1は20となる。
各水溶液の単位時間当たりの供給量を下記の通りとし、流量F2を21.9[kg/hr]とした他は実施例1-6と同様にして、含水ゲル状架橋重合体(1-7)を得た。この含水ゲル状架橋重合体(1-7)を、実施例1-6と同様の乾燥処理、粉砕処理及び表面架橋処理に供して、粒子状の吸水性樹脂(SAP1-7)を得た。得られた粒子吸水性樹脂(SAP1-7)の初期色調およびX1を表2に記載する。
アクリル酸 :12.7[kg/hr]
水酸化ナトリウム水溶液: 9.2[kg/hr]
図2に示される構造を有する装置を用意した。この装置は、容量が4000Lである中和槽を有する。この中和槽に、上記水分量64ppmのアクリル酸及び濃度が14.4質量%である水酸化ナトリウム水溶液を連続的に供給し、第一ループ及び第二ループによって循環させて混合液を得た。単位時間当たりの供給量は、以下の通りである。
アクリル酸 :3038.5[kg/hr]
水酸化ナトリウム水溶液:4317.5[kg/hr]
図1で示される構造を有する装置を用意した。この装置は容量4000Lである中和槽を有する。この中和槽に、水分量が67ppmであるアクリル酸及び濃度が14.2質量%である水酸化ナトリウム水溶液を連続的に供給し、第一ループによって循環させて混合液を得た。単位時間当たりの供給量は、以下の通りである。
アクリル酸 : 895[kg/hr]
水酸化ナトリウム水溶液:1272[kg/hr]
得られた吸水性樹脂粉体(1-9)に、1,4-ブタンジオール、プロピレングリコールおよび水を混合した液を噴霧し、該吸水性樹脂粉体(1-9)の表面を架橋して、表面架橋された粒子状の吸水性樹脂(SAP1-9)を得た。得られた粒子吸水性樹脂(SAP1-9)の初期色調およびX1を表2に記載する。なお、実施例1-9における製造方法では、中和系に存在する液の量Vは3620kgであり、中和系から重合系に向けて供給される液の単位時間当たりの流量Fは2167[kg/hr]であり、中和系に存在する液とこの中和系との接触面積は113m2であった。
表1、表2に示されるように、各実施例の製造方法(ケース1)で得られた吸水性樹脂は、比較例の製造方法で得られた含水ゲル状架橋重合体に比べて白色度が高い。この評価結果から、ケース1の発明の優位性は明らかである。また、着色は、アクリル酸中の水分量が影響することがわかる。
石油由来の精製アクリル酸に禁止剤としてメトキノンを添加し、晶析を繰り返すことで、蟻酸をND(検出限界0.1ppm)および水分64ppmとしたのち、メトキノン量を70ppmに調製した。この蟻酸を含まないアクリル酸99.68gに蟻酸0.0012gを混合することで、蟻酸含有量が約12ppmのアクリル酸を調製した。
実施例2-1において、蟻酸の添加量を0.012g(対アクリル酸で約120ppm、対単量体で100ppm)とした以外は実施例2-1と同様の操作を行い、吸水性樹脂粉体(SAP2-2)を得た。この吸水性樹脂粉体(SAP2-2)について、上記長期貯蔵色安定性促進試験を行った。この結果を吸水性樹脂粉体(SAP2-2)の物性とともに表3に示す。
実施例2-1において、蟻酸の添加量を0.06g(対アクリル酸で約600ppm、対単量体で500ppm)とした以外は実施例2-1と同様の操作を行い、吸水性樹脂粉体(SAP2-3)を得た。この吸水性樹脂粉体(SAP2-3)について、上記長期貯蔵色安定性促進試験を行った。この結果を吸水性樹脂粉体(SAP2-3)の物性とともに表3に示す。
実施例2-1において、蟻酸を添加しなかった以外は実施例2-1と同様の操作を行い、比較吸水性樹脂粉体(比較SAP2-1)を得た。
比較例2-1の比較吸水性樹脂(比較SAP2-1)100質量部に対し、30質量%エチレンカーボネート水溶液3質量部を混合して、200℃で30分加熱した。さらに比較吸水性樹脂粉体(比較SAP2-1)100質量部に対し、硫酸アルミウム14-18水和物/乳酸ナトリウム/蟻酸=0.9質量部/0.1質量部/0.01質量部からなる組成液を混合し、吸水性樹脂粉体(SAP2-4)を得た。
実施例2-4において、蟻酸を添加しなかった以外は実施例2-4と同様の操作を行い、比較吸水性樹脂粉体(比較SAP2-2)を得た。
比較例2-1において、石油由来のアクリル酸の代わりに植物由来のアクリル酸を用いた以外は比較例2-1と同様の操作を行い、吸水性樹脂粉体(SAP2-5)を得た。なお、このアクリル酸は植物油脂からグリセリンを経てアクリル酸としたものである。アクリル酸の精製は蒸留法で行い、アクリル酸には蟻酸が10ppm含まれていた。また、単量体水溶液には単量体に対し蟻酸が8ppm含まれていた。
実施例2-2において、特許文献20~23に例示の酢酸を100ppm使用して、比較吸水性樹脂粉体(比較SAP2-3)を得た。
実施例2-2において、蟻酸の代わりに特許文献20~23に例示のプロピオン酸を100ppm使用して、比較吸水性樹脂粉体(比較SAP2-4)を得た。
実施例2-2において、蟻酸の代わりに特許文献20~23に例示の酪酸を100ppm使用して、比較吸水性樹脂粉体(比較SAP2-5)を得た。
実施例2-2において、特許文献20~23に好ましく例示の安息香酸を100ppm使用して、比較吸水性樹脂粉体(比較SAP2-6)を得た。
実施例2-3において、特許文献20~23に好ましく例示の安息香酸を1000ppm使用して、比較吸水性樹脂粉体(比較SAP2-7)を得た。
実施例2-1において、特許文献46(米国特許4698404号)の実施例1に記載の蟻酸量を用いて、比較吸水性樹脂粉体(比較SAP2-8)を得た。
特許文献50~52(国際公開第2008/092842号、同第2008/092843号、同第2007/121937号)に準じて、乳酸アルミニウムを100ppm添加して、比較吸水性樹脂粉体(比較SAP2-9)を得た。
比較例2-1において、pHを5.5以下に下げて経時着色を防止する技術を開示する特許文献6に準じて、そのために使用する酸として蟻酸を単量体に対し5質量%添加して、比較吸水性樹脂粉体(比較SAP2-10)を得た。なお、重合後に得られる含水ゲル状架橋重合体には、粘着性があった。
実施例2-1において、NaOH中のFeが10ppmの苛性ソーダに変更して、吸水性樹脂粉体(SAP2-6)を得た。
実施例2-1において、アクリル酸に対して特許文献53に記載の重合不活性有機溶媒(トルエン)を100ppm添加して同様に重合を行って、吸水性樹脂粉体(SAP2-7)を得た。
実施例2-1において、アクリル酸に対して特許文献53に記載の重合不活性有機溶媒(ジフェニルエーテル)を10ppm添加して同様に重合を行って、吸水性樹脂粉体(SAP2-8)を得た。
表3に示されるように、各実施例の製造方法(ケース2)で得られた吸水性樹脂は、比較例の製造方法で得られた吸水性樹脂に比べて白色度が高い。この評価結果から、ケース2の発明の優位性は明らかである。
石油由来の精製アクリル酸に、重合禁止剤としてp-メトキシフェノールを添加し、晶析を複数回行うことで、蟻酸をND(検出限界0.1ppm)および水分64ppm(カールフィッシャー法で測定)としたのち、p-メトキシフェノールを70ppmに調製した(アクリル酸(3-1))。この蟻酸を含まないアクリル酸(3-1)100質量部に蟻酸0.037質量部を混合して、蟻酸を含むアクリル酸を調製した(アクリル酸(3-2))。
実施例3-1において、蟻酸とカチオン性ポリマーと同時に水溶液で添加した。すなわち、実施例3-1で使用した蟻酸を含むアクリル酸(3-2)を、蟻酸を含まないアクリル酸(3-1)に変更し、ポリアリルアミン塩酸塩をポリ(N-ビニルホルムアミド)の部分加水分解物(固形分9質量%、重量平均分子量約40000、加水分解率約50モル%)および蟻酸の混合物水溶液に変更した以外は実施例3-1と同様に操作し、粒子状吸水性樹脂(SAP3-2)を得た。
なお、粒子状吸水性樹脂(SAP3-2)に添加した混合物中の固形分は、表面架橋された吸水性樹脂100質量部に対して、ポリ(N-ビニルホルムアミド)の部分加水分解物0.4質量部および蟻酸は0.103質量部であった。粒子状吸水性樹脂(SAP3-2)中の蟻酸濃度、吸水物性、および経時色調を表4に示す。
実施例3-1において、アクリル酸の晶析を行った後、水分の調整を行い水分2000ppmのアクリル酸(3-3)とした以外は、実施例3-1と同様に操作し、粒子状吸水性樹脂(SAP3-3)を得た。該粒子状吸水性樹脂(SAP3-3)中の蟻酸濃度、吸水物性、および経時色調を表4に示す。
実施例3-1において、蟻酸を含むアクリル酸(3-2)の代わりに蟻酸を含まないアクリル酸(3-1)を用いた以外は実施例1と同様に操作し、粒子状の比較吸水性樹脂(比較SAP3-1)を得た。比較粒子状吸水性樹脂(比較SAP3-1)中の蟻酸濃度、吸水物性、および経時色調を表4に示す。
実施例3-2において、特許文献19の比較例3を参考にポリ(N-ビニルホルムアミド)の部分加水分解物の代わりに硫酸アルミニウム組成液を用いた以外は実施例3-2と同様に操作し、粒子状の比較吸水性樹脂(比較SAP3-2)を得た。比較粒子状吸水性樹脂(比較SAP3-2)中の蟻酸濃度、吸水物性、および経時色調を表4に示す。
比較例3-2において、特許文献19の実施例17を参考にして、比較例3-2の表面架橋工程と硫酸アルミニウム組成液を添加する工程の間に40質量%リン酸二水素ナトリウム水溶液を添加し、さらに60℃で30分加熱する工程を加えた。添加量は表面架橋された吸水性樹脂100質量部に対し、0.76質量部(リン酸二水素ナトリウムとしては0.31質量部)であった。上記以外は比較例3-2と同様に操作し、粒子状の比較吸水性樹脂(比較SAP3-2)を得た。比較粒子状吸水性樹脂(比較SAP3-2)中の蟻酸濃度、吸水物性、および経時色調を表4に示す。
実施例3-1において、表面架橋された吸水性樹脂にカチオン性ポリマーを添加しなかった実施例3-1と同様に操作し、粒子状の比較吸水性樹脂(比較SAP3-4)を得た。比較粒子状吸水性樹脂(比較SAP3-4)中の蟻酸濃度、吸水物性、および経時色調を表4に示す。
実施例3-1において48.5質量%水酸化ナトリウム水溶液の鉄分が水酸化ナトリウムに対し10.5ppm(Fe2O3換算で15ppm)である水酸化ナトリウム水溶液を用いた以外は実施例3-1と同様に操作し、粒子状の比較吸水性樹脂(比較SAP3-5)を得た。比較粒子状吸水性樹脂(比較SAP3-5)中の蟻酸濃度、吸水物性、および経時色調を表4に示す。
表4は、本発明のケース3の製造方法で得られた吸水性樹脂の物性を示した表である。実施例3-1と比較例3-1の比較から、蟻酸が所定量吸水性樹脂中に存在することにより、経時着色を低減(L,a,bの向上)していることが分かる。また、実施例3-1、3-2と比較例3-2、3-3を比較したとき、SFCは同等で、カチオン性ポリマーを添加した方が、硫酸アルミニウム組成物を添加するより経時色調が優れていることが分かる。さらに、実施例3-1、3-2と比較例3-4の比較から、比較例3-4は、経時色調は優れているものの、通液性向上剤を使用していないので通液性(SFC)が不足していることが分かる。さらに実施例3-1と比較例3-5の比較から、塩基性組成物中のFe量が着色に大きな影響を与えることが分かる。
3 中和槽
4 ポンプ
6 熱交換器
8 ラインミキサー
10 重合機
12 第一配管
14 第二配管
16 第三配管
18 第四配管
20 第五配管
30 第六配管
22 入口
24 出口
32 第一ループ
34 第二ループ
Claims (48)
- アクリル酸を貯蔵あるいは製造する工程、重合禁止剤を含むアクリル酸と、水と、架橋剤と、必要により塩基性組成物とを混合および/または中和して単量体水溶液を調製する工程、該単量体水溶液を重合する工程、得られた含水ゲル状架橋重合体を乾燥する工程、必要により表面架橋する工程を順次含むポリアクリル酸(塩)系吸水性樹脂の製造方法であって、
上記重合禁止剤を含むアクリル酸中の水分量が1000ppm(質量規準。以下同じ)以下、および/または、上記単量体水溶液中の蟻酸含有量が単量体に対して1~700ppmであることを特徴とする、ポリアクリル酸(塩)系吸水性樹脂の製造方法。 - アクリル酸を貯蔵あるいは製造する工程、重合禁止剤を含むアクリル酸と、水と、架橋剤と、必要により塩基性組成物とを混合および/または中和して単量体水溶液を調製する工程、該単量体水溶液を重合する工程、得られた含水ゲル状架橋重合体を乾燥する工程、必要により表面架橋する工程を順次含むポリアクリル酸(塩)系吸水性樹脂の製造方法であって、
上記重合禁止剤を含むアクリル酸中の蟻酸含有量が1~700ppm(質量基準)であることを特徴とする、ポリアクリル酸(塩)系吸水性樹脂の製造方法。 - 上記塩基性組成物中の鉄分が0.007~7ppmである、請求項1または2に記載の製造方法。
- 乾燥工程以降に、重合体100質量部に対して、カチオン性ポリマー0.01~5質量部を混合する、請求項1~3の何れか1項に記載の製造方法。
- 重合時の単量体および/または重合後の重合体100質量部に対して、蟻酸0.0001~5質量部を存在させるおよび/または混合する、請求項1~4の何れか1項に記載の製造方法(但し、重合時の単量体中の蟻酸存在量は0~700ppm(対単量体))。
- アクリル酸を貯蔵あるいは製造する工程、重合禁止剤を含むアクリル酸と、水と、架橋剤と、必要により塩基性組成物とを混合および/または中和して単量体水溶液を調製する工程、該単量体水溶液を重合する工程、得られた含水ゲル状架橋重合体を乾燥する工程、必要により表面架橋する工程を順次含むポリアクリル酸(塩)系吸水性樹脂の製造方法であって、
上記重合禁止剤を含むアクリル酸中の水分量が1000ppm(質量規準。以下同じ)以下、および/または、上記単量体水溶液中の蟻酸含有量が、単量体に対して1~700ppm、および/または、下記(1)~(3)を満たすことを特徴とする、ポリアクリル酸(塩)系吸水性樹脂の製造方法。
(1)上記塩基性組成物中の鉄分が0.007~7ppmであること。
(2)乾燥工程以降に、重合体100質量部に対して、カチオン性ポリマー0.01~5質量部を混合すること。
(3)重合時の単量体および/または重合後の重合体100質量部に対して、蟻酸0.0001~5質量部を存在させるおよび/または混合すること(但し、重合時の単量体中の蟻酸存在量は0~700ppm(対単量体))。 - 上記単量体水溶液の調製工程において、予め蟻酸を含有するアクリル酸を使用する請求項1~6の何れか1項に記載の製造方法。
- アクリル酸を貯蔵あるいは製造する工程、重合禁止剤を含むアクリル酸と、水と、架橋剤と、必要により塩基性組成物とを混合および/または中和して単量体水溶液を調製する工程、該単量体水溶液を重合する工程、得られた含水ゲル状架橋重合体を乾燥する工程、必要により表面架橋する工程を順次含むポリアクリル酸(塩)系吸水性樹脂の製造方法であって、
下記(1)~(3)を満たすことを特徴とする、ポリアクリル酸(塩)系吸水性樹脂の製造方法。
(1)上記塩基性組成物中の鉄分が0.007~7ppmであること。
(2)乾燥工程以降に、重合体100質量部に対して、カチオン性ポリマー0.01~5質量部を混合すること。
(3)重合時の単量体および/または重合後の重合体100質量部に対して、蟻酸0.0001~5質量部を存在させるおよび/または混合すること(但し、重合時の単量体中の蟻酸存在量は0~700ppm(対単量体))。 - 上記アクリル酸の水分量が1000ppm以下である、請求項1~8の何れか1項に記載の製造方法。
- 上記アクリル酸の水分量が1~100ppmである、請求項1~9の何れか1項に記載の製造方法。
- 上記アクリル酸中の重合禁止剤としてのメトキシフェノール類が180ppm以下である、請求項1~10の何れか1項に記載の製造方法。
- 上記アクリル酸が植物由来である、請求項1~11の何れか1項に記載の製造方法。
- 上記アクリル酸および/または単量体水溶液が、貯蔵槽内および/または中和槽内で循環されてなる、請求項1~12の何れか1項に記載の製造方法。
- 上記中和前または中和後のアクリル酸および/または単量体水溶液の循環が、貯蔵槽内または中和槽とこの貯蔵槽内または中和槽に取り付けられた閉流路とによってなされる請求項13に記載の製造方法。
- 単量体が中和されてなり、且つアクリル酸と塩基性物質との中和反応によって得られたアクリル酸塩を含む混合液を、中和槽を備える中和系において循環させる工程を含む、請求項13または14に記載の製造方法。
- 中和温度が70℃以下での連続中和工程を含む、請求項1~17の何れか1項に記載の製造方法。
- 中和槽を備える中和系において、循環工程に次いで、重合工程前にさらに第2中和工程を含み、該第2中和工程の直後における上記液の中和率が30~90モル%である請求項1~18の何れか1項に記載の製造方法。
- アクリル酸の製造工程と吸水性樹脂の製造工程をアクリル酸の貯蔵工程をはさんでパイプラインで連結させる、請求項1~19の何れか1項に記載の製造方法。
- 上記吸水性樹脂の製造に用いる装置内面および/または原料接触面がステンレス鋼である、請求項1~20の何れか1項に記載の製造方法。
- 生産量が100[kg/hr]以上の連続製造である、請求項1~21の何れか1項に記載の製造方法。
- 晶析又は蒸留によるアクリル酸の精製後、96時間以内に、このアクリル酸を上記中和系に供給する、請求項1~22の何れか1項に記載の製造方法。
- 上記単量体水溶液中の単量体濃度が30~70質量%である、請求項1~23の何れか1項に記載の製造方法。
- 上記単量体水溶液中の、アクリル酸に対する溶解度パラメータが1.0×104~2.5×104[(Jm-3)1/2]である重合不活性有機化合物の含有量が、単量体に対して1~1000ppmである、請求項1~24の何れかに記載の製造方法。
- 上記単量体水溶液の調製が終了した時点から重合開始までの合計時間が1秒~24時間である、請求項1~25の何れか1項に記載の吸水性樹脂の製造方法。
- カチオン性ポリマーと蟻酸との混合物をポリアクリル酸(塩)系吸水性樹脂に混合する、請求項4、6および8~26の何れか1項に記載の製造方法。
- カチオン性ポリマーと蟻酸との上記混合物における質量比が1:20~20:1の範囲である、請求項27に記載の製造方法。
- 蟻酸が重合時の単量体に含有され、さらに、重合時の単量体の蟻酸含有量を超える量の蟻酸とカチオン性ポリマーとの混合物を吸水性樹脂に混合する、請求項4、6および8~28の何れか1項に記載の製造方法。
- 上記カチオン性ポリマーがポリビニルアミンまたはその塩、またはポリ(N-ビニルホルムアミド)の部分加水分解物またはその塩である、請求項4、6および8~29の何れか1項に記載の製造方法。
- 上記カチオン性ポリマーの重量平均分子量が2000以上である、請求項4、6および8~30の何れか1項に記載の製造方法。
- キレート剤、無機還元剤、α-ヒドロキシカルボン酸(塩)の何れかの添加工程を含む、請求項1~31の何れか1項に記載の製造方法。
- さらに界面活性剤を混合する、請求項1~32の何れか1項に記載の製造方法。
- さらに水不溶性無機微粒子を混合する、請求項1~33の何れか1項に記載の製造方法。
- 得られるポリアクリル酸(塩)系吸水性樹脂のCRCが25[g/g]以上、AAPが20[g/g]以上、SFCが50[×10-7・cm3・s・g-1]以上である、請求項1~34の何れか1項に記載の製造方法。
- 蟻酸含有量が1~500ppmである(但し、重合体100質量部中、カチオン性ポリマー含有量が0.01~5質量部含まれている場合は、吸水性樹脂の鉄分含有量が2ppm以下および蟻酸含有量が1~50000ppmである)ことを特徴とする、ポリアクリル酸(塩)系吸水性樹脂。
- フェノール系化合物の含有量が1~200ppmである、請求項36に記載の吸水性樹脂。
- 鉄分の含有量が2ppm以下である、請求項36または37に記載の吸水性樹脂。
- さらに、多価金属塩またはカチオン性ポリマーを含有する、請求項36~38の何れか1項に記載の吸水性樹脂。
- 上記吸水性樹脂の表面が蟻酸およびカチオン性ポリマーで被覆されてなる、請求項36~39の何れか1項に記載の吸水性樹脂。
- 上記吸水性樹脂の内部にも蟻酸をさらに含有する、請求項36~40の何れか1項に記載の吸水性樹脂。
- 上記カチオン性ポリマーがポリビニルアミンまたはその塩、またはポリ(N-ビニルホルムアミド)の部分加水分解物またはその塩である、請求項36~41の何れか1項に記載の吸水性樹脂。
- p-メトキシフェノール系化合物の含有量が1~200ppmである、請求項36~42の何れか1項に記載の吸水性樹脂。
- CRCが25[g/g]以上、AAPが20[g/g]以上、SFCが50[×10-7・cm3・s・g-1]以上である、請求項36~43の何れか1項に記載の吸水性樹脂。
- さらに界面活性剤を含有する、請求項36~44の何れか1項に記載の吸水性樹脂。
- さらに水不溶性無機微粒子を含有する、請求項36~45の何れか1項に記載の吸水性樹脂。
- 蟻酸とカチオン性ポリマーとの質量比が1:20~20:1の範囲である、請求項36~46の何れか1項に記載の吸水性樹脂。
- 重合禁止剤としてのp-メトキシフェノール10~160ppmを含み、水分量が1000ppm以下、および/または、蟻酸含有量が0.5~700ppmであるアクリル酸の吸水性樹脂の重合への使用。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011534336A JP5731390B2 (ja) | 2009-09-30 | 2010-09-30 | ポリアクリル酸(塩)系吸水性樹脂およびその製造方法 |
EP10820690.5A EP2484702B2 (en) | 2009-09-30 | 2010-09-30 | Polyacrylic acid salt-based water absorbent resin and method for producing same |
CN201080044201.1A CN102549028B (zh) | 2009-09-30 | 2010-09-30 | 聚丙烯酸(盐)系吸水树脂及其制造方法 |
US13/499,037 US10294315B2 (en) | 2009-09-30 | 2010-09-30 | Polyacrylic acid (salt)-based water absorbent resin and method for producing same |
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009227861 | 2009-09-30 | ||
JP2009-227861 | 2009-09-30 | ||
JP2010-158981 | 2010-07-13 | ||
JP2010158981 | 2010-07-13 | ||
JP2010-183011 | 2010-08-18 | ||
JP2010183011 | 2010-08-18 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011040575A1 true WO2011040575A1 (ja) | 2011-04-07 |
Family
ID=44356154
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2010/067158 WO2011040575A1 (ja) | 2009-09-30 | 2010-09-30 | ポリアクリル酸(塩)系吸水性樹脂およびその製造方法 |
Country Status (5)
Country | Link |
---|---|
US (1) | US10294315B2 (ja) |
EP (1) | EP2484702B2 (ja) |
JP (1) | JP5731390B2 (ja) |
CN (1) | CN102549028B (ja) |
WO (1) | WO2011040575A1 (ja) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014515430A (ja) * | 2011-06-03 | 2014-06-30 | ビーエーエスエフ ソシエタス・ヨーロピア | 吸水性ポリマー粒子の連続的な製造法 |
JP2014522399A (ja) * | 2011-06-03 | 2014-09-04 | ビーエーエスエフ ソシエタス・ヨーロピア | アクリル酸及びその共役塩基を含む水溶液 |
WO2015030128A1 (ja) * | 2013-08-28 | 2015-03-05 | 株式会社日本触媒 | 吸水性樹脂の製造方法 |
WO2017188400A1 (ja) * | 2016-04-28 | 2017-11-02 | 株式会社日本触媒 | 共重合体の製造方法 |
JP2021502454A (ja) * | 2017-11-10 | 2021-01-28 | ビーエイエスエフ・ソシエタス・エウロパエアBasf Se | 高吸収体 |
JP2022507247A (ja) * | 2018-11-14 | 2022-01-18 | ビーエーエスエフ ソシエタス・ヨーロピア | 超吸収体を製造する方法 |
JP2022507366A (ja) * | 2018-11-14 | 2022-01-18 | ビーエーエスエフ ソシエタス・ヨーロピア | 超吸収体を製造する方法 |
CN115028774A (zh) * | 2022-05-13 | 2022-09-09 | 金陵科技学院 | 改性纤维素共聚丙烯酸型两性有机抗水分散剂的制备方法 |
Families Citing this family (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3838403A1 (en) | 2011-05-13 | 2021-06-23 | Novomer, Inc. | Carbonylation catalysts and method |
KR102143772B1 (ko) * | 2012-09-11 | 2020-08-12 | 가부시키가이샤 닛폰 쇼쿠바이 | 폴리아크릴산(염)계 흡수제의 제조 방법 및 그 흡수제 |
JP6220342B2 (ja) * | 2012-10-26 | 2017-10-25 | 和光純薬工業株式会社 | リチウム電池用結着剤、電極作製用組成物および電極 |
RU2683651C2 (ru) * | 2013-06-18 | 2019-04-01 | Иван Дмитриевич Захаров | Лекарственное средство для лечения кератоконуса и других дегенеративных заболеваний роговицы и фармацевтические препараты на его основе |
JP6151790B2 (ja) * | 2013-10-09 | 2017-06-21 | 株式会社日本触媒 | 吸水性樹脂を主成分とする粒子状吸水剤及びその製造方法 |
WO2015171372A1 (en) | 2014-05-05 | 2015-11-12 | Novomer, Inc. | Catalyst recycle methods |
SG11201610058QA (en) | 2014-05-30 | 2016-12-29 | Novomer Inc | Integrated methods for chemical synthesis |
EP3171976B1 (en) | 2014-07-25 | 2023-09-06 | Novomer, Inc. | Synthesis of metal complexes and uses thereof |
EP3696161A1 (en) | 2015-02-13 | 2020-08-19 | Novomer, Inc. | Continuous carbonylation processes |
MA41514A (fr) | 2015-02-13 | 2017-12-19 | Novomer Inc | Procédés intégrés de synthèse chimique |
MA41513A (fr) | 2015-02-13 | 2017-12-19 | Novomer Inc | Procédé de distillation pour la production d'acide acrylique |
MA41510A (fr) | 2015-02-13 | 2017-12-19 | Novomer Inc | Procédé de production d'acide acrylique |
KR20180127429A (ko) * | 2016-03-21 | 2018-11-28 | 노보머, 인코포레이티드 | 초흡수성 중합체의 제조를 위한 시스템 및 방법 |
WO2018062539A1 (ja) | 2016-09-30 | 2018-04-05 | 株式会社日本触媒 | 吸水性樹脂組成物 |
CN111303354B (zh) * | 2020-02-27 | 2023-05-26 | 河北工程大学 | 一种可用于复合高吸水树脂制备的“梯度引发”方法 |
Citations (134)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4093776A (en) | 1976-10-07 | 1978-06-06 | Kao Soap Co., Ltd. | Process for preparation of spontaneously-crosslinked alkali metal acrylate polymers |
US4286082A (en) | 1979-04-06 | 1981-08-25 | Nippon Shokubai Kagaku Kogyo & Co., Ltd. | Absorbent resin composition and process for producing same |
US4367323A (en) | 1980-12-03 | 1983-01-04 | Sumitomo Chemical Company, Limited | Production of hydrogels |
US4446261A (en) | 1981-03-25 | 1984-05-01 | Kao Soap Co., Ltd. | Process for preparation of high water-absorbent polymer beads |
US4507438A (en) | 1981-12-30 | 1985-03-26 | Seitetsu Kagaku Co., Ltd. | Water-absorbent resin having improved water-absorbency and improved water-dispersibility and process for producing same |
US4625001A (en) | 1984-09-25 | 1986-11-25 | Nippon Shokubai Kagaku Kogyo Co., Ltd. | Method for continuous production of cross-linked polymer |
US4683274A (en) | 1984-10-05 | 1987-07-28 | Seitetsu Kagaku Co., Ltd. | Process for producing a water-absorbent resin |
US4693713A (en) | 1981-07-16 | 1987-09-15 | Miroslav Chmelir | Absorbents for blood and serous body fluids |
US4698404A (en) | 1987-03-16 | 1987-10-06 | Nalco Chemical Company | Water-absorbent acrylic acid polymer gels |
US4873299A (en) | 1986-03-21 | 1989-10-10 | Basf Aktiengesellschaft | Batchwise preparation of crosslinked, finely divided polymers |
EP0349240A2 (en) | 1988-06-28 | 1990-01-03 | Nippon Shokubai Co., Ltd. | Water-absorbent resin and production process |
US4893999A (en) | 1985-12-18 | 1990-01-16 | Chemische Fabrik Stockhausen Gmbh | Apparatus for the continuous production of polymers and copolymers of water-soluble monomers |
JPH0211934A (ja) | 1988-06-30 | 1990-01-17 | Oi Seisakusho Co Ltd | ブレーキ機構 |
JPH0224304A (ja) | 1988-07-13 | 1990-01-26 | Shin Etsu Chem Co Ltd | 塩化ビニル系樹脂の製造方法 |
US4950692A (en) | 1988-12-19 | 1990-08-21 | Nalco Chemical Company | Method for reconstituting superabsorbent polymer fines |
US4970267A (en) | 1990-03-08 | 1990-11-13 | Nalco Chemical Company | Reconstitution of superabsorbent polymer fines using persulfate salts |
US4973632A (en) | 1988-06-28 | 1990-11-27 | Nippon Shokubai Kagaku Kogyo Co., Ltd. | Production process for water-absorbent resin |
JPH031306A (ja) | 1989-05-30 | 1991-01-08 | Fujitsu Ten Ltd | デジタルオーディオテーププレーヤ |
US4985518A (en) | 1981-10-26 | 1991-01-15 | American Colloid Company | Process for preparing water-absorbing resins |
JPH0331306A (ja) * | 1989-06-29 | 1991-02-12 | Toagosei Chem Ind Co Ltd | 吸水性樹脂の製造方法 |
EP0450923A2 (en) | 1990-04-02 | 1991-10-09 | Nippon Shokubai Co., Ltd. | Method of treating the surface of an absorbent resin |
US5064582A (en) | 1989-09-15 | 1991-11-12 | The Dow Chemical Company | Process and apparatus for recycling aqueous fluid absorbents fines |
US5124416A (en) | 1988-05-23 | 1992-06-23 | Nippon Shokubai Kagaku Kogyo, Co., Ltd. | Method for production of absorbent polymer |
US5145906A (en) | 1989-09-28 | 1992-09-08 | Hoechst Celanese Corporation | Super-absorbent polymer having improved absorbency properties |
JPH04331205A (ja) | 1991-05-01 | 1992-11-19 | Mitsubishi Petrochem Co Ltd | 高吸水性ポリマーの製造法 |
US5210298A (en) | 1988-10-28 | 1993-05-11 | Nippon Shokubai Kagaku Kogyo, Co., Ltd. | Method for production of acrylate and acrylate-containing polymer |
US5244735A (en) | 1988-06-28 | 1993-09-14 | Nippon Shokubai Kagaku Kabushiki Kaisha | Water-absorbent resin and production process |
US5250640A (en) | 1991-04-10 | 1993-10-05 | Nippon Shokubai Co., Ltd. | Method for production of particulate hydrogel polymer and absorbent resin |
US5264495A (en) | 1990-04-27 | 1993-11-23 | Nippon Shokubai Kagaku Kogyo Co., Ltd. | Method for production of salt-resistant absorbent resin |
EP0574260A1 (en) | 1992-06-10 | 1993-12-15 | Nippon Shokubai Co., Ltd. | Method for production of hydrophilic resin |
JPH0656931A (ja) * | 1992-06-10 | 1994-03-01 | Nippon Shokubai Co Ltd | アクリル酸塩系ポリマーの製造方法および組成物 |
EP0605150A1 (en) | 1992-12-16 | 1994-07-06 | Nippon Shokubai Co., Ltd. | Method for production of absorbent resin |
JPH06211934A (ja) * | 1993-01-18 | 1994-08-02 | Sanyo Chem Ind Ltd | 吸水性樹脂の製造法 |
US5342899A (en) | 1991-05-16 | 1994-08-30 | The Dow Chemical Company | Process for recycling aqueous fluid absorbents fines to a polymerizer |
US5350799A (en) | 1990-05-31 | 1994-09-27 | Hoechst Celanese Corporation | Process for the conversion of fine superabsorbent polymer particles into larger particles |
US5380808A (en) | 1990-07-17 | 1995-01-10 | Sanyo Chemical Industries, Ltd. | Process for producing water-absorbing resins |
US5385983A (en) | 1992-11-12 | 1995-01-31 | The Dow Chemical Company | Process for preparing a water-absorbent polymer |
US5409771A (en) | 1990-06-29 | 1995-04-25 | Chemische Fabrik Stockhausen Gmbh | Aqueous-liquid and blood-absorbing powdery reticulated polymers, process for producing the same and their use as absorbents in sanitary articles |
JPH07242709A (ja) | 1994-03-03 | 1995-09-19 | Toagosei Co Ltd | 吸水性樹脂の製造方法 |
US5455284A (en) | 1990-07-09 | 1995-10-03 | Chemische Fabrik Stockhausen Gmbh | Process for the production of water-swellable products using superfines of water-swellable polymers |
US5462972A (en) | 1993-09-17 | 1995-10-31 | Nalco Chemical Company | Superabsorbent polymer having improved absorption rate and absorption under pressure |
US5478879A (en) | 1991-01-22 | 1995-12-26 | Nippon Shokubai Co., Ltd. | Method for production of absorbent resin |
US5597873A (en) | 1994-04-11 | 1997-01-28 | Hoechst Celanese Corporation | Superabsorbent polymers and products therefrom |
US5610220A (en) | 1992-12-30 | 1997-03-11 | Chemische Fabrik Stockhausen Gmbh | Powder-form polymers which absorb, even under pressure, aqueous liquids and blood, a method of producing them and their use in textile articles for body-hygiene applications |
US5633316A (en) | 1991-04-15 | 1997-05-27 | The Dow Chemical Company | Surface crosslinked and surfactant coated absorbent resin particles and method of preparation |
JP2624089B2 (ja) | 1991-08-20 | 1997-06-25 | 三菱化学株式会社 | カチオン性高分子凝集剤 |
US5669894A (en) | 1994-03-29 | 1997-09-23 | The Procter & Gamble Company | Absorbent members for body fluids having good wet integrity and relatively high concentrations of hydrogel-forming absorbent polymer |
US5674633A (en) | 1986-04-25 | 1997-10-07 | Weirton Steel Corporation | Light-gage composite-coated flat-rolled steel manufacture and product |
EP0811636A1 (en) | 1996-06-05 | 1997-12-10 | Nippon Shokubai Co., Ltd. | Method for production of cross-linked polymer |
EP0812873A1 (en) | 1995-12-27 | 1997-12-17 | Nippon Shokubai Co., Ltd. | Water absorbent and process and equipment for the production thereof |
EP0922717A1 (en) | 1997-12-10 | 1999-06-16 | Nippon Shokubai Co., Ltd. | Production process of water-absorbent resin |
WO1999042496A1 (de) | 1998-02-21 | 1999-08-26 | Basf Aktiengesellschaft | Vernetzte quellfähige polymere |
WO1999042494A1 (de) | 1998-02-21 | 1999-08-26 | Basf Aktiengesellschaft | Nachvernetzung von hydrogelen mit 2-oxazolidinonen |
WO1999043720A1 (de) | 1998-02-26 | 1999-09-02 | Basf Aktiengesellschaft | Verfahren zur vernetzung von hydrogelen mit bis- und poly-2-oxazolidinonen |
EP0940148A1 (en) | 1998-03-03 | 1999-09-08 | Nippon Shokubai Co., Ltd. | Water-absorbing agent and its production process and use |
EP0955086A2 (en) | 1998-04-28 | 1999-11-10 | Nippon Shokubai Co., Ltd. | Method for production of shaped hydrogel of absorbent resin |
US6107358A (en) | 1996-08-23 | 2000-08-22 | Nippon Shokubai Co., Ltd. | Water-absorbent resin and method for production thereof |
JP3107873B2 (ja) | 1991-09-26 | 2000-11-13 | ユニ・チャーム株式会社 | 高吸水性ポリマーの経時着色防止方法および経時着色防止剤 |
US6228930B1 (en) | 1997-06-18 | 2001-05-08 | Nippon Shokubai Co., Ltd. | Water-absorbent resin granule-containing composition and production process for water-absorbent resin granule |
US6241928B1 (en) | 1998-04-28 | 2001-06-05 | Nippon Shokubai Co., Ltd. | Method for production of shaped hydrogel of absorbent resin |
US6254990B1 (en) | 1998-02-18 | 2001-07-03 | Nippon Shokubai Co., Ltd. | Surface-crosslinking process for water-absorbent resin |
EP1178059A2 (en) | 2000-08-03 | 2002-02-06 | Nippon Shokubai Co., Ltd. | Water-absorbent resin, hydropolymer, process for producing them, and uses of them |
US6359049B1 (en) | 1999-03-12 | 2002-03-19 | Basf Aktiengesellschaft | Color-stable superabsorbent polymer composition |
JP2002179617A (ja) | 2000-12-13 | 2002-06-26 | Toagosei Co Ltd | 高純度アクリル酸の製造方法及び高純度アクリル酸 |
US6444744B1 (en) | 1998-03-11 | 2002-09-03 | Nippon Shokubai Co., Ltd. | Hydrophilic resin, absorbent article, and acrylic acid for polymerization |
WO2002085959A1 (fr) | 2001-04-16 | 2002-10-31 | Sumitomo Seika Chemicals Co., Ltd. | Resine d'absorption d'eau appropriee a l'absorption de liquide visqueux contenant un compose a poids moleculaire eleve, et absorbant et article absorbant les contenant |
WO2003051940A1 (en) | 2001-12-19 | 2003-06-26 | Nippon Shokubai Co., Ltd. | Acrylic acid composition and its production process, and process for producing water-absorbent resin using this acrylic acid composition, and water-absorbent resin |
WO2003053482A1 (de) | 2001-12-21 | 2003-07-03 | Basf Aktiengesellschaft | Tocopherol-haltige superabsorber |
WO2003059961A1 (fr) | 2002-01-15 | 2003-07-24 | Sumitomo Seika Chemicals Co., Ltd. | Procede de prevention de la coloration d'une resine absorbant l'eau |
US6605673B1 (en) | 1999-03-05 | 2003-08-12 | Stockhausen Gmbh & Co., Kg | Powdery, cross-linked polymers which absorb aqueous liquids and blood, method for the production thereof and their use |
WO2003095510A1 (de) | 2002-05-13 | 2003-11-20 | Basf Aktiengesellschaft | Verfahren zur herstellung geruchsarmer hydrogel-bildender polymerisate |
US6710141B1 (en) | 1999-11-20 | 2004-03-23 | Basf Aktiengesellschaft | Method for continuously producing cross-linked fine-particle geleous polymerizates |
US20040110913A1 (en) | 2001-12-19 | 2004-06-10 | Teruyuki Kanto | Water-absorbent resin and production prcess therefor |
WO2004052819A2 (de) | 2002-12-06 | 2004-06-24 | Basf Aktiengesellschaft | Verfahren zur reduktion des mehq gehalts in acrylsäure |
WO2004052949A1 (de) | 2002-12-09 | 2004-06-24 | Basf Aktiengesellschaft | Verfahren zur herstellung geruchsarmer hydrogel-bildender polymerisate |
WO2004069293A1 (en) | 2003-02-10 | 2004-08-19 | Nippon Shokubai Co., Ltd. | Water-absorbent resin composition and its production process |
WO2004069915A2 (en) | 2003-02-10 | 2004-08-19 | Nippon Shokubai Co., Ltd. | Particulate water-absorbing agent |
WO2005016393A1 (en) | 2003-07-31 | 2005-02-24 | Kimberly-Clark Worldwide, Inc. | Absorbent materials and articles |
US20050070671A1 (en) | 2003-09-19 | 2005-03-31 | Kazushi Torii | Water-absorbent resin having treated surface and process for producing the same |
US20050085604A1 (en) | 2002-01-16 | 2005-04-21 | Masayoshi Handa | Process for producing water-absorbing resin |
JP2005186016A (ja) | 2003-12-26 | 2005-07-14 | San-Dia Polymer Ltd | 吸収剤 |
WO2005075070A1 (ja) | 2004-02-05 | 2005-08-18 | Nippon Shokubai Co., Ltd. | 粒子状吸水剤及びその製造方法並びに吸水性物品 |
US20050215734A1 (en) | 2004-03-24 | 2005-09-29 | Yorimichi Dairoku | Method for continuous production of water-absorbent resin |
US20050288182A1 (en) | 2004-06-18 | 2005-12-29 | Kazushi Torii | Water absorbent resin composition and production method thereof |
US6987151B2 (en) | 2001-09-12 | 2006-01-17 | Dow Global Technologies Inc. | Continuous polymerization process for the manufacture of superabsorbent polymers |
WO2006008905A1 (ja) | 2004-07-15 | 2006-01-26 | Sumitomo Seika Chemicals Co., Ltd. | 吸水性樹脂の製造方法 |
WO2006008024A2 (de) | 2004-07-16 | 2006-01-26 | Carl Zeiss Jena Gmbh | Linearführung mit wälzkörpern |
US20060074160A1 (en) | 2002-12-27 | 2006-04-06 | Masayoshi Handa | Water-absorbing resin composition |
EP1645596A1 (en) | 2003-07-11 | 2006-04-12 | Sumitomo Seika Chemicals Co., Ltd. | Water-absorbing resin composition |
US20060089611A1 (en) | 2003-03-26 | 2006-04-27 | Norbert Herfert | Color-stable superabsorbent polymer composition |
WO2006088115A1 (en) | 2005-02-15 | 2006-08-24 | Nippon Shokubai Co., Ltd. | Water absorbing agent, water absorbing article and method for production of water absorbing agent |
JP2006219661A (ja) | 2005-01-14 | 2006-08-24 | San-Dia Polymer Ltd | 吸水性樹脂の製造方法 |
JP2006225456A (ja) | 2005-02-16 | 2006-08-31 | Asahi Kasei Chemicals Corp | 高保水力型吸水性樹脂の製造方法 |
WO2006092272A2 (de) | 2005-02-28 | 2006-09-08 | Stockhausen Gmbh | Auf nachwachsenden rohstoffen basierende acrylsäure und wasserabsorbierende polymergebilde sowie verfahren zu deren herstellung |
WO2006092271A2 (de) | 2005-02-28 | 2006-09-08 | Stockhausen Gmbh | Verfahren zur herstellung eines absorbierenden polymergebildes basierend auf acrylsäure, wobei das substrat für die acrylsäuresynthese teilweise durch enzymatische verfahren gewonnen wurde |
EP1711541A1 (de) | 2004-01-28 | 2006-10-18 | Basf Aktiengesellschaft | Verfahren zur herstellung von polymeren |
WO2006109882A1 (en) | 2005-04-12 | 2006-10-19 | Nippon Shokubai Co., Ltd. | Particulate water absorbing agent including polyacrylic acid (polyacrylate) based water absorbing resin as a principal component, method for production thereof, water-absorbent core and absorbing article in which the particulate water absorbing agent is used |
WO2006136336A2 (de) | 2005-06-20 | 2006-12-28 | Evonik Stockhausen Gmbh | Herstellung von acrolein, acrylsäure und wasserabsorbierenden polymergebilden aus glycerin |
US7157141B2 (en) | 2000-03-31 | 2007-01-02 | Stockhausen Gmbh | Pulverulent polymers crosslinked on the surface |
WO2007012937A2 (en) | 2005-07-26 | 2007-02-01 | Council Of Scientific And Industrial Research | Method for diagnosis of glioma distinguishing between progressive and denovo types |
WO2007028747A1 (de) | 2005-09-07 | 2007-03-15 | Basf Se | Neutralisationsverfahren |
US20070106013A1 (en) | 2003-06-24 | 2007-05-10 | Yoshifumi Adachi | Water absorbent resin composition and production method thereof |
US20070129570A1 (en) | 2004-01-30 | 2007-06-07 | Nippon Shokubai Co., Ltd. | Method for producing acrylic acid |
EP1799721A1 (de) | 2004-09-28 | 2007-06-27 | Basf Aktiengesellschaft | Verfahren zur kontinuierlichen herstellung von vernetzten feinteiligen gelförmigen polymerisaten |
WO2007072969A1 (en) | 2005-12-22 | 2007-06-28 | Nippon Shokubai Co., Ltd. | Water-absorbent resin composition, method of manufacturing the same, and absorbent article |
EP1814913A2 (en) | 2004-11-05 | 2007-08-08 | Palingen Inc. | Antibody induced cell membrane wounding |
US20070225422A1 (en) | 2006-03-24 | 2007-09-27 | Nippon Shokubai Co., Ltd. | Water-absorbing resin and method for manufacturing the same |
WO2007109128A2 (en) | 2006-03-17 | 2007-09-27 | The Procter & Gamble Company | Absorbent article comprising a synthetic polymer derived from a renewable resource and methods of producing said article |
WO2007119528A1 (ja) | 2006-03-30 | 2007-10-25 | Nippon Shokubai Co., Ltd. | アクロレインの製造方法 |
WO2007121037A2 (en) | 2006-04-13 | 2007-10-25 | Motorola Inc. | Method and apparatus for reordering fragments within a mac layer service data unit within a downlink frame |
WO2007121937A2 (de) | 2006-04-21 | 2007-11-01 | Evonik Stockhausen Gmbh | Oberflächennachvernetzte superabsorber behandelt mit aluminiumlactat und optional aluminiumsulfat |
WO2007132926A1 (en) | 2006-05-12 | 2007-11-22 | Nippon Shokubai Co., Ltd. | Production method of acrolein |
US20070293632A1 (en) | 2004-11-30 | 2007-12-20 | Basf Aktiengesellschaft, A German Corporation | Postcrosslinking of Water Absorbing Polymeric Particles |
US20080016152A1 (en) | 2003-11-20 | 2008-01-17 | Canon Kabushiki Kaisha | Method of controlling server apparatus which stores image data received via network in memory, program for causing computer apparatus to execute the method, storage medium which stores the program, and compuer apparatus |
WO2008009842A1 (fr) | 2006-07-21 | 2008-01-24 | Peugeot Citroën Automobiles SA | Fourchette de maintien d'un porte-injecteur de moteur thermique |
WO2008009671A1 (en) | 2006-07-18 | 2008-01-24 | Boehringer Ingelheim Pharma Gmbh & Co. Kg | Process for the preparation of a tetrahydro-1h-azepines |
WO2008009843A2 (fr) | 2006-07-18 | 2008-01-24 | Arkema France | Procede de preparation de polymeres (meth) acryliques |
WO2008023039A1 (de) | 2006-08-22 | 2008-02-28 | Evonik Stockhausen Gmbh | Verfahren zur herstellung von durch kristallisation gereinigter acrylsäure aus hydroxypropionsäure sowie vorrichtungen dazu |
WO2008023040A2 (de) | 2006-08-22 | 2008-02-28 | Evonik Stockhausen Gmbh | Auf nachwachsenden rohstoffen basierende acrylsäure und wasserabsorbierende polymergebilde sowie verfahren zu deren herstellung mittels dehydratisierung |
WO2008026772A1 (en) | 2006-08-31 | 2008-03-06 | Nippon Shokubai Co., Ltd. | Particulate water absorbing agent and production method thereof |
US20080075937A1 (en) | 2004-09-24 | 2008-03-27 | Katsuyuki Wada | Particulate Water-Absorbing Agent Containing Water-Absorbent Resin as a Main Component |
US20080119626A1 (en) | 2005-04-07 | 2008-05-22 | Hirotama Fujimaru | Polyacrylic Acid (Salt) Water-Absorbent Resin, Production Process Thereof, and Acrylic Acid Used in Polymerization for Production of Water-Absorbent Resin |
WO2008090961A1 (ja) | 2007-01-24 | 2008-07-31 | Nippon Shokubai Co., Ltd. | 粒子状吸水性ポリマーおよびその製造方法 |
WO2008092842A1 (de) | 2007-01-29 | 2008-08-07 | Basf Se | VERFAHREN ZUR HERSTELLUNG WEIßER UND FARBSTABILER WASSERABSORBIERENDER POLYMERPARTIKEL MIT HOHEM ABSORPTIONSVERMÖGEN UND HOHER FLÜSSIGKEITSLEITFÄHIGKEIT |
WO2008092843A1 (de) | 2007-01-29 | 2008-08-07 | Basf Se | VERFAHREN ZUR HERSTELLUNG WEIßER UND FARBSTABILER WASSERABSORBIERENDER POLYMERPARTIKEL MIT HOHEM ABSORPTIONSVERMÖGEN UND HOHER FLÜSSIGKEITSLEITFÄHIGKEIT |
US20080194863A1 (en) | 2005-09-07 | 2008-08-14 | Basf Se | Neutralization Process |
WO2008114847A1 (en) * | 2007-03-16 | 2008-09-25 | Nippon Shokubai Co., Ltd. | Water absorbent resin production method and usage thereof |
US20080242816A1 (en) | 2005-09-07 | 2008-10-02 | Basf Se | Neutralization Process |
US20080306209A1 (en) | 2005-12-29 | 2008-12-11 | Uwe Stueven | Production of a Water-Absorbing Resin to Which a Particulate Additive is Admixed |
WO2009005114A1 (ja) | 2007-07-04 | 2009-01-08 | Nippon Shokubai Co., Ltd. | 粒子状吸水剤およびその製造方法 |
WO2009011717A1 (en) | 2007-07-16 | 2009-01-22 | Evonik Stockhausen, Inc. | Superabsorbent polymer compositions having color stability |
WO2009016055A2 (en) | 2007-07-27 | 2009-02-05 | Basf Se | Water-absorbing polymeric particles and method for the production thereof |
US7528291B2 (en) | 2003-03-26 | 2009-05-05 | Basf Aktiengesellschaft | Color-stable superabsorbent polymer composition |
WO2009060062A1 (de) | 2007-11-08 | 2009-05-14 | Evonik Stockhausen Gmbh | Wasserabsorbierende polymergebilde mit verbesserter farbstabilität |
Family Cites Families (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6054939B2 (ja) † | 1977-08-04 | 1985-12-03 | 住友化学工業株式会社 | 粗製アクリル酸の精製方法 |
US4507436A (en) | 1983-01-13 | 1985-03-26 | General Electric Company | Compositions of polyphenylene ether resin and poly(tetra-alkylated bisphenol) having reduced melt viscosity |
DK157899C (da) | 1987-12-15 | 1990-09-03 | Coloplast As | Hudpladeprodukt |
CA2004864A1 (en) | 1988-12-08 | 1990-06-08 | Kinya Nagasuna | Method for production of absorbent resin excelling in durability |
US5164459A (en) | 1990-04-02 | 1992-11-17 | Nippon Shokubai Kagaku Kogyo Co., Ltd. | Method for treating the surface of an absorbent resin |
EP0528409B1 (en) | 1991-08-20 | 1996-05-22 | Mitsubishi Chemical Corporation | Cationic polymer flocculating agents |
US5510408A (en) * | 1993-05-31 | 1996-04-23 | Kuraray Co., Ltd. | Methacrylic resin composition and method for production thereof |
JPH07224304A (ja) | 1994-02-10 | 1995-08-22 | Toyo Alum Kk | ホウ素含有アルミニウム合金の製造方法 |
US5610208A (en) | 1994-02-17 | 1997-03-11 | Nippon Shokubai Co., Ltd. | Water-absorbent agent, method for production thereof, and water-absorbent composition |
DE4439978A1 (de) | 1994-11-09 | 1996-05-15 | Stockhausen Chem Fab Gmbh | Verfahren zur Herstellung von Terpolymeren |
DE19909653A1 (de) | 1999-03-05 | 2000-09-07 | Stockhausen Chem Fab Gmbh | Pulverförmige, vernetzte, wässrige Flüssigkeiten sowie Blut absorbierende Polymere, Verfahren zu ihrer Herstellung und ihre Verwendung |
JP2000327926A (ja) | 1999-05-25 | 2000-11-28 | Sanyo Chem Ind Ltd | 吸収剤組成物および吸収性物品 |
JP2001226320A (ja) † | 2000-02-14 | 2001-08-21 | Nippon Shokubai Co Ltd | アクリル酸の捕集方法およびアクリル酸の精製方法 |
JP2003052742A (ja) | 2001-08-09 | 2003-02-25 | San-Dia Polymer Ltd | 吸収剤及びこれを使用した吸収性構造体 |
US7393976B2 (en) † | 2003-11-26 | 2008-07-01 | Rohm And Haas Company | Process for manufacturing reduced water content (meth)acrylic acid |
DE102004034316B4 (de) | 2004-07-15 | 2015-07-16 | Evonik Degussa Gmbh | Ein Verfahren zur Herstellung von (Meth)Acrylsäure |
WO2006014031A1 (en) | 2004-08-06 | 2006-02-09 | Nippon Shokubai Co., Ltd. | Particulate water-absorbing agent with water-absorbing resin as main component, method for production of the same, and absorbing article |
FR2882053B1 (fr) | 2005-02-15 | 2007-03-23 | Arkema Sa | Procede de deshydratation du glycerol en acrolene |
CN101151285B (zh) * | 2005-04-07 | 2011-05-11 | 株式会社日本触媒 | 聚丙烯酸(盐)吸水树脂,及其生产方法,以及在生产吸水树脂的聚合中使用的丙烯酸 |
CN101198363B (zh) | 2005-04-22 | 2013-01-23 | 赢创斯托豪森有限公司 | 用金属盐和金属氧化物处理并在其表面后交联的超吸收体 |
DE102005018924A1 (de) | 2005-04-22 | 2006-10-26 | Stockhausen Gmbh | Wasserabsorbierende Polymergebilde mit verbesserten Absorptionseigenschaften |
DE102005018922A1 (de) | 2005-04-22 | 2006-10-26 | Stockhausen Gmbh | Mit Polykationen oberflächenbehandeltes wasserabsorbierendes Polymergebilde |
EP1840137B1 (en) * | 2006-03-29 | 2009-11-25 | Nippon Shokubai Co., Ltd. | Method of Producing Polyacrylic Acid (Salt) Water-Absorbent Resin |
DE102006019157A1 (de) | 2006-04-21 | 2007-10-25 | Stockhausen Gmbh | Herstellung von hochpermeablen, superabsorbierenden Polymergebilden |
WO2008027488A2 (en) † | 2006-08-31 | 2008-03-06 | Kimberly-Clark Worlwide, Inc. | Absorbent articles comprising polyamine-coated superabsorbent polymers |
CN101448896A (zh) † | 2006-08-31 | 2009-06-03 | 株式会社日本触媒 | 吸水剂及其制备方法 |
EP2116571B1 (en) | 2007-02-05 | 2019-05-01 | Nippon Shokubai Co., Ltd. | Granular water absorber and method of producing the same |
EP2261264B1 (en) * | 2008-03-31 | 2013-10-09 | Nippon Shokubai Co., Ltd. | Method of manufacturing particulate water absorbent with water-absorbent resin as main ingredient |
-
2010
- 2010-09-30 US US13/499,037 patent/US10294315B2/en active Active
- 2010-09-30 WO PCT/JP2010/067158 patent/WO2011040575A1/ja active Application Filing
- 2010-09-30 JP JP2011534336A patent/JP5731390B2/ja active Active
- 2010-09-30 EP EP10820690.5A patent/EP2484702B2/en active Active
- 2010-09-30 CN CN201080044201.1A patent/CN102549028B/zh active Active
Patent Citations (139)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4093776A (en) | 1976-10-07 | 1978-06-06 | Kao Soap Co., Ltd. | Process for preparation of spontaneously-crosslinked alkali metal acrylate polymers |
US4286082A (en) | 1979-04-06 | 1981-08-25 | Nippon Shokubai Kagaku Kogyo & Co., Ltd. | Absorbent resin composition and process for producing same |
US4367323A (en) | 1980-12-03 | 1983-01-04 | Sumitomo Chemical Company, Limited | Production of hydrogels |
US4446261A (en) | 1981-03-25 | 1984-05-01 | Kao Soap Co., Ltd. | Process for preparation of high water-absorbent polymer beads |
US4693713A (en) | 1981-07-16 | 1987-09-15 | Miroslav Chmelir | Absorbents for blood and serous body fluids |
US4985518A (en) | 1981-10-26 | 1991-01-15 | American Colloid Company | Process for preparing water-absorbing resins |
US4507438A (en) | 1981-12-30 | 1985-03-26 | Seitetsu Kagaku Co., Ltd. | Water-absorbent resin having improved water-absorbency and improved water-dispersibility and process for producing same |
US4625001A (en) | 1984-09-25 | 1986-11-25 | Nippon Shokubai Kagaku Kogyo Co., Ltd. | Method for continuous production of cross-linked polymer |
US4683274A (en) | 1984-10-05 | 1987-07-28 | Seitetsu Kagaku Co., Ltd. | Process for producing a water-absorbent resin |
US4893999A (en) | 1985-12-18 | 1990-01-16 | Chemische Fabrik Stockhausen Gmbh | Apparatus for the continuous production of polymers and copolymers of water-soluble monomers |
US4873299A (en) | 1986-03-21 | 1989-10-10 | Basf Aktiengesellschaft | Batchwise preparation of crosslinked, finely divided polymers |
US5674633A (en) | 1986-04-25 | 1997-10-07 | Weirton Steel Corporation | Light-gage composite-coated flat-rolled steel manufacture and product |
US4698404A (en) | 1987-03-16 | 1987-10-06 | Nalco Chemical Company | Water-absorbent acrylic acid polymer gels |
US5124416A (en) | 1988-05-23 | 1992-06-23 | Nippon Shokubai Kagaku Kogyo, Co., Ltd. | Method for production of absorbent polymer |
EP0349240A2 (en) | 1988-06-28 | 1990-01-03 | Nippon Shokubai Co., Ltd. | Water-absorbent resin and production process |
US5244735A (en) | 1988-06-28 | 1993-09-14 | Nippon Shokubai Kagaku Kabushiki Kaisha | Water-absorbent resin and production process |
US4973632A (en) | 1988-06-28 | 1990-11-27 | Nippon Shokubai Kagaku Kogyo Co., Ltd. | Production process for water-absorbent resin |
JPH0211934A (ja) | 1988-06-30 | 1990-01-17 | Oi Seisakusho Co Ltd | ブレーキ機構 |
JPH0224304A (ja) | 1988-07-13 | 1990-01-26 | Shin Etsu Chem Co Ltd | 塩化ビニル系樹脂の製造方法 |
US5210298A (en) | 1988-10-28 | 1993-05-11 | Nippon Shokubai Kagaku Kogyo, Co., Ltd. | Method for production of acrylate and acrylate-containing polymer |
US4950692A (en) | 1988-12-19 | 1990-08-21 | Nalco Chemical Company | Method for reconstituting superabsorbent polymer fines |
JPH031306A (ja) | 1989-05-30 | 1991-01-08 | Fujitsu Ten Ltd | デジタルオーディオテーププレーヤ |
JPH0331306A (ja) * | 1989-06-29 | 1991-02-12 | Toagosei Chem Ind Co Ltd | 吸水性樹脂の製造方法 |
US5064582A (en) | 1989-09-15 | 1991-11-12 | The Dow Chemical Company | Process and apparatus for recycling aqueous fluid absorbents fines |
US5145906A (en) | 1989-09-28 | 1992-09-08 | Hoechst Celanese Corporation | Super-absorbent polymer having improved absorbency properties |
US4970267A (en) | 1990-03-08 | 1990-11-13 | Nalco Chemical Company | Reconstitution of superabsorbent polymer fines using persulfate salts |
EP0450923A2 (en) | 1990-04-02 | 1991-10-09 | Nippon Shokubai Co., Ltd. | Method of treating the surface of an absorbent resin |
US5264495A (en) | 1990-04-27 | 1993-11-23 | Nippon Shokubai Kagaku Kogyo Co., Ltd. | Method for production of salt-resistant absorbent resin |
US5350799A (en) | 1990-05-31 | 1994-09-27 | Hoechst Celanese Corporation | Process for the conversion of fine superabsorbent polymer particles into larger particles |
US5409771A (en) | 1990-06-29 | 1995-04-25 | Chemische Fabrik Stockhausen Gmbh | Aqueous-liquid and blood-absorbing powdery reticulated polymers, process for producing the same and their use as absorbents in sanitary articles |
US5455284A (en) | 1990-07-09 | 1995-10-03 | Chemische Fabrik Stockhausen Gmbh | Process for the production of water-swellable products using superfines of water-swellable polymers |
US5380808A (en) | 1990-07-17 | 1995-01-10 | Sanyo Chemical Industries, Ltd. | Process for producing water-absorbing resins |
US5478879A (en) | 1991-01-22 | 1995-12-26 | Nippon Shokubai Co., Ltd. | Method for production of absorbent resin |
US5250640A (en) | 1991-04-10 | 1993-10-05 | Nippon Shokubai Co., Ltd. | Method for production of particulate hydrogel polymer and absorbent resin |
US5633316A (en) | 1991-04-15 | 1997-05-27 | The Dow Chemical Company | Surface crosslinked and surfactant coated absorbent resin particles and method of preparation |
JPH04331205A (ja) | 1991-05-01 | 1992-11-19 | Mitsubishi Petrochem Co Ltd | 高吸水性ポリマーの製造法 |
US5342899A (en) | 1991-05-16 | 1994-08-30 | The Dow Chemical Company | Process for recycling aqueous fluid absorbents fines to a polymerizer |
JP2624089B2 (ja) | 1991-08-20 | 1997-06-25 | 三菱化学株式会社 | カチオン性高分子凝集剤 |
JP3107873B2 (ja) | 1991-09-26 | 2000-11-13 | ユニ・チャーム株式会社 | 高吸水性ポリマーの経時着色防止方法および経時着色防止剤 |
JPH0656931A (ja) * | 1992-06-10 | 1994-03-01 | Nippon Shokubai Co Ltd | アクリル酸塩系ポリマーの製造方法および組成物 |
EP0574260A1 (en) | 1992-06-10 | 1993-12-15 | Nippon Shokubai Co., Ltd. | Method for production of hydrophilic resin |
US5385983A (en) | 1992-11-12 | 1995-01-31 | The Dow Chemical Company | Process for preparing a water-absorbent polymer |
EP0605150A1 (en) | 1992-12-16 | 1994-07-06 | Nippon Shokubai Co., Ltd. | Method for production of absorbent resin |
US5610220A (en) | 1992-12-30 | 1997-03-11 | Chemische Fabrik Stockhausen Gmbh | Powder-form polymers which absorb, even under pressure, aqueous liquids and blood, a method of producing them and their use in textile articles for body-hygiene applications |
JPH06211934A (ja) * | 1993-01-18 | 1994-08-02 | Sanyo Chem Ind Ltd | 吸水性樹脂の製造法 |
US5462972A (en) | 1993-09-17 | 1995-10-31 | Nalco Chemical Company | Superabsorbent polymer having improved absorption rate and absorption under pressure |
JPH07242709A (ja) | 1994-03-03 | 1995-09-19 | Toagosei Co Ltd | 吸水性樹脂の製造方法 |
US5669894A (en) | 1994-03-29 | 1997-09-23 | The Procter & Gamble Company | Absorbent members for body fluids having good wet integrity and relatively high concentrations of hydrogel-forming absorbent polymer |
US5597873A (en) | 1994-04-11 | 1997-01-28 | Hoechst Celanese Corporation | Superabsorbent polymers and products therefrom |
EP0812873A1 (en) | 1995-12-27 | 1997-12-17 | Nippon Shokubai Co., Ltd. | Water absorbent and process and equipment for the production thereof |
US6071976A (en) | 1995-12-27 | 2000-06-06 | Nippon Shokubai Co., Ltd. | Water absorbing agent, manufacturing method thereof, and manufacturing machine thereof |
EP0811636A1 (en) | 1996-06-05 | 1997-12-10 | Nippon Shokubai Co., Ltd. | Method for production of cross-linked polymer |
US6107358A (en) | 1996-08-23 | 2000-08-22 | Nippon Shokubai Co., Ltd. | Water-absorbent resin and method for production thereof |
US6458921B1 (en) | 1997-06-18 | 2002-10-01 | Nippon Shokubai Co., Ltd. | Water-absorbent resin granule-containing composition and production process for water-absorbent resin granule |
US6228930B1 (en) | 1997-06-18 | 2001-05-08 | Nippon Shokubai Co., Ltd. | Water-absorbent resin granule-containing composition and production process for water-absorbent resin granule |
EP0922717A1 (en) | 1997-12-10 | 1999-06-16 | Nippon Shokubai Co., Ltd. | Production process of water-absorbent resin |
US6254990B1 (en) | 1998-02-18 | 2001-07-03 | Nippon Shokubai Co., Ltd. | Surface-crosslinking process for water-absorbent resin |
WO1999042494A1 (de) | 1998-02-21 | 1999-08-26 | Basf Aktiengesellschaft | Nachvernetzung von hydrogelen mit 2-oxazolidinonen |
WO1999042496A1 (de) | 1998-02-21 | 1999-08-26 | Basf Aktiengesellschaft | Vernetzte quellfähige polymere |
WO1999043720A1 (de) | 1998-02-26 | 1999-09-02 | Basf Aktiengesellschaft | Verfahren zur vernetzung von hydrogelen mit bis- und poly-2-oxazolidinonen |
EP0940148A1 (en) | 1998-03-03 | 1999-09-08 | Nippon Shokubai Co., Ltd. | Water-absorbing agent and its production process and use |
US6444744B1 (en) | 1998-03-11 | 2002-09-03 | Nippon Shokubai Co., Ltd. | Hydrophilic resin, absorbent article, and acrylic acid for polymerization |
US6241928B1 (en) | 1998-04-28 | 2001-06-05 | Nippon Shokubai Co., Ltd. | Method for production of shaped hydrogel of absorbent resin |
EP0955086A2 (en) | 1998-04-28 | 1999-11-10 | Nippon Shokubai Co., Ltd. | Method for production of shaped hydrogel of absorbent resin |
US6605673B1 (en) | 1999-03-05 | 2003-08-12 | Stockhausen Gmbh & Co., Kg | Powdery, cross-linked polymers which absorb aqueous liquids and blood, method for the production thereof and their use |
US6359049B1 (en) | 1999-03-12 | 2002-03-19 | Basf Aktiengesellschaft | Color-stable superabsorbent polymer composition |
US6710141B1 (en) | 1999-11-20 | 2004-03-23 | Basf Aktiengesellschaft | Method for continuously producing cross-linked fine-particle geleous polymerizates |
US7157141B2 (en) | 2000-03-31 | 2007-01-02 | Stockhausen Gmbh | Pulverulent polymers crosslinked on the surface |
EP1178059A2 (en) | 2000-08-03 | 2002-02-06 | Nippon Shokubai Co., Ltd. | Water-absorbent resin, hydropolymer, process for producing them, and uses of them |
JP2002179617A (ja) | 2000-12-13 | 2002-06-26 | Toagosei Co Ltd | 高純度アクリル酸の製造方法及び高純度アクリル酸 |
WO2002085959A1 (fr) | 2001-04-16 | 2002-10-31 | Sumitomo Seika Chemicals Co., Ltd. | Resine d'absorption d'eau appropriee a l'absorption de liquide visqueux contenant un compose a poids moleculaire eleve, et absorbant et article absorbant les contenant |
US6987151B2 (en) | 2001-09-12 | 2006-01-17 | Dow Global Technologies Inc. | Continuous polymerization process for the manufacture of superabsorbent polymers |
WO2003051940A1 (en) | 2001-12-19 | 2003-06-26 | Nippon Shokubai Co., Ltd. | Acrylic acid composition and its production process, and process for producing water-absorbent resin using this acrylic acid composition, and water-absorbent resin |
US20040110913A1 (en) | 2001-12-19 | 2004-06-10 | Teruyuki Kanto | Water-absorbent resin and production prcess therefor |
WO2003053482A1 (de) | 2001-12-21 | 2003-07-03 | Basf Aktiengesellschaft | Tocopherol-haltige superabsorber |
WO2003059961A1 (fr) | 2002-01-15 | 2003-07-24 | Sumitomo Seika Chemicals Co., Ltd. | Procede de prevention de la coloration d'une resine absorbant l'eau |
US20050085604A1 (en) | 2002-01-16 | 2005-04-21 | Masayoshi Handa | Process for producing water-absorbing resin |
WO2003095510A1 (de) | 2002-05-13 | 2003-11-20 | Basf Aktiengesellschaft | Verfahren zur herstellung geruchsarmer hydrogel-bildender polymerisate |
WO2004052819A2 (de) | 2002-12-06 | 2004-06-24 | Basf Aktiengesellschaft | Verfahren zur reduktion des mehq gehalts in acrylsäure |
WO2004052949A1 (de) | 2002-12-09 | 2004-06-24 | Basf Aktiengesellschaft | Verfahren zur herstellung geruchsarmer hydrogel-bildender polymerisate |
US20060074160A1 (en) | 2002-12-27 | 2006-04-06 | Masayoshi Handa | Water-absorbing resin composition |
WO2004069915A2 (en) | 2003-02-10 | 2004-08-19 | Nippon Shokubai Co., Ltd. | Particulate water-absorbing agent |
US20060073969A1 (en) | 2003-02-10 | 2006-04-06 | Kazushi Torii | Vater-absorbent resin composition and its production process |
WO2004069293A1 (en) | 2003-02-10 | 2004-08-19 | Nippon Shokubai Co., Ltd. | Water-absorbent resin composition and its production process |
US7528291B2 (en) | 2003-03-26 | 2009-05-05 | Basf Aktiengesellschaft | Color-stable superabsorbent polymer composition |
US20060089611A1 (en) | 2003-03-26 | 2006-04-27 | Norbert Herfert | Color-stable superabsorbent polymer composition |
US20070106013A1 (en) | 2003-06-24 | 2007-05-10 | Yoshifumi Adachi | Water absorbent resin composition and production method thereof |
EP1645596A1 (en) | 2003-07-11 | 2006-04-12 | Sumitomo Seika Chemicals Co., Ltd. | Water-absorbing resin composition |
WO2005016393A1 (en) | 2003-07-31 | 2005-02-24 | Kimberly-Clark Worldwide, Inc. | Absorbent materials and articles |
US20050070671A1 (en) | 2003-09-19 | 2005-03-31 | Kazushi Torii | Water-absorbent resin having treated surface and process for producing the same |
US20080016152A1 (en) | 2003-11-20 | 2008-01-17 | Canon Kabushiki Kaisha | Method of controlling server apparatus which stores image data received via network in memory, program for causing computer apparatus to execute the method, storage medium which stores the program, and compuer apparatus |
JP2005186016A (ja) | 2003-12-26 | 2005-07-14 | San-Dia Polymer Ltd | 吸収剤 |
EP1711541A1 (de) | 2004-01-28 | 2006-10-18 | Basf Aktiengesellschaft | Verfahren zur herstellung von polymeren |
US20070129570A1 (en) | 2004-01-30 | 2007-06-07 | Nippon Shokubai Co., Ltd. | Method for producing acrylic acid |
WO2005075070A1 (ja) | 2004-02-05 | 2005-08-18 | Nippon Shokubai Co., Ltd. | 粒子状吸水剤及びその製造方法並びに吸水性物品 |
US7473739B2 (en) | 2004-02-05 | 2009-01-06 | Nippon Shokubai Co., Ltd. | Particulate water absorbent agent and production method thereof, and water absorbent article |
US20050215734A1 (en) | 2004-03-24 | 2005-09-29 | Yorimichi Dairoku | Method for continuous production of water-absorbent resin |
US20050288182A1 (en) | 2004-06-18 | 2005-12-29 | Kazushi Torii | Water absorbent resin composition and production method thereof |
WO2006008905A1 (ja) | 2004-07-15 | 2006-01-26 | Sumitomo Seika Chemicals Co., Ltd. | 吸水性樹脂の製造方法 |
WO2006008024A2 (de) | 2004-07-16 | 2006-01-26 | Carl Zeiss Jena Gmbh | Linearführung mit wälzkörpern |
US20080075937A1 (en) | 2004-09-24 | 2008-03-27 | Katsuyuki Wada | Particulate Water-Absorbing Agent Containing Water-Absorbent Resin as a Main Component |
EP1799721A1 (de) | 2004-09-28 | 2007-06-27 | Basf Aktiengesellschaft | Verfahren zur kontinuierlichen herstellung von vernetzten feinteiligen gelförmigen polymerisaten |
EP1814913A2 (en) | 2004-11-05 | 2007-08-08 | Palingen Inc. | Antibody induced cell membrane wounding |
US20070293632A1 (en) | 2004-11-30 | 2007-12-20 | Basf Aktiengesellschaft, A German Corporation | Postcrosslinking of Water Absorbing Polymeric Particles |
JP2006219661A (ja) | 2005-01-14 | 2006-08-24 | San-Dia Polymer Ltd | 吸水性樹脂の製造方法 |
WO2006088115A1 (en) | 2005-02-15 | 2006-08-24 | Nippon Shokubai Co., Ltd. | Water absorbing agent, water absorbing article and method for production of water absorbing agent |
JP2006225456A (ja) | 2005-02-16 | 2006-08-31 | Asahi Kasei Chemicals Corp | 高保水力型吸水性樹脂の製造方法 |
WO2006092272A2 (de) | 2005-02-28 | 2006-09-08 | Stockhausen Gmbh | Auf nachwachsenden rohstoffen basierende acrylsäure und wasserabsorbierende polymergebilde sowie verfahren zu deren herstellung |
WO2006092271A2 (de) | 2005-02-28 | 2006-09-08 | Stockhausen Gmbh | Verfahren zur herstellung eines absorbierenden polymergebildes basierend auf acrylsäure, wobei das substrat für die acrylsäuresynthese teilweise durch enzymatische verfahren gewonnen wurde |
US20080119626A1 (en) | 2005-04-07 | 2008-05-22 | Hirotama Fujimaru | Polyacrylic Acid (Salt) Water-Absorbent Resin, Production Process Thereof, and Acrylic Acid Used in Polymerization for Production of Water-Absorbent Resin |
JP2008537553A (ja) * | 2005-04-07 | 2008-09-18 | 株式会社日本触媒 | ポリアクリル酸(塩)系吸水性樹脂の製造方法 |
WO2006109882A1 (en) | 2005-04-12 | 2006-10-19 | Nippon Shokubai Co., Ltd. | Particulate water absorbing agent including polyacrylic acid (polyacrylate) based water absorbing resin as a principal component, method for production thereof, water-absorbent core and absorbing article in which the particulate water absorbing agent is used |
WO2006136336A2 (de) | 2005-06-20 | 2006-12-28 | Evonik Stockhausen Gmbh | Herstellung von acrolein, acrylsäure und wasserabsorbierenden polymergebilden aus glycerin |
WO2007012937A2 (en) | 2005-07-26 | 2007-02-01 | Council Of Scientific And Industrial Research | Method for diagnosis of glioma distinguishing between progressive and denovo types |
US20080242816A1 (en) | 2005-09-07 | 2008-10-02 | Basf Se | Neutralization Process |
US20080194863A1 (en) | 2005-09-07 | 2008-08-14 | Basf Se | Neutralization Process |
WO2007028747A1 (de) | 2005-09-07 | 2007-03-15 | Basf Se | Neutralisationsverfahren |
WO2007072969A1 (en) | 2005-12-22 | 2007-06-28 | Nippon Shokubai Co., Ltd. | Water-absorbent resin composition, method of manufacturing the same, and absorbent article |
US20080306209A1 (en) | 2005-12-29 | 2008-12-11 | Uwe Stueven | Production of a Water-Absorbing Resin to Which a Particulate Additive is Admixed |
WO2007109128A2 (en) | 2006-03-17 | 2007-09-27 | The Procter & Gamble Company | Absorbent article comprising a synthetic polymer derived from a renewable resource and methods of producing said article |
US20070225422A1 (en) | 2006-03-24 | 2007-09-27 | Nippon Shokubai Co., Ltd. | Water-absorbing resin and method for manufacturing the same |
WO2007119528A1 (ja) | 2006-03-30 | 2007-10-25 | Nippon Shokubai Co., Ltd. | アクロレインの製造方法 |
WO2007121037A2 (en) | 2006-04-13 | 2007-10-25 | Motorola Inc. | Method and apparatus for reordering fragments within a mac layer service data unit within a downlink frame |
WO2007121937A2 (de) | 2006-04-21 | 2007-11-01 | Evonik Stockhausen Gmbh | Oberflächennachvernetzte superabsorber behandelt mit aluminiumlactat und optional aluminiumsulfat |
WO2007132926A1 (en) | 2006-05-12 | 2007-11-22 | Nippon Shokubai Co., Ltd. | Production method of acrolein |
WO2008009843A2 (fr) | 2006-07-18 | 2008-01-24 | Arkema France | Procede de preparation de polymeres (meth) acryliques |
WO2008009671A1 (en) | 2006-07-18 | 2008-01-24 | Boehringer Ingelheim Pharma Gmbh & Co. Kg | Process for the preparation of a tetrahydro-1h-azepines |
WO2008009842A1 (fr) | 2006-07-21 | 2008-01-24 | Peugeot Citroën Automobiles SA | Fourchette de maintien d'un porte-injecteur de moteur thermique |
WO2008023039A1 (de) | 2006-08-22 | 2008-02-28 | Evonik Stockhausen Gmbh | Verfahren zur herstellung von durch kristallisation gereinigter acrylsäure aus hydroxypropionsäure sowie vorrichtungen dazu |
WO2008023040A2 (de) | 2006-08-22 | 2008-02-28 | Evonik Stockhausen Gmbh | Auf nachwachsenden rohstoffen basierende acrylsäure und wasserabsorbierende polymergebilde sowie verfahren zu deren herstellung mittels dehydratisierung |
WO2008026772A1 (en) | 2006-08-31 | 2008-03-06 | Nippon Shokubai Co., Ltd. | Particulate water absorbing agent and production method thereof |
WO2008090961A1 (ja) | 2007-01-24 | 2008-07-31 | Nippon Shokubai Co., Ltd. | 粒子状吸水性ポリマーおよびその製造方法 |
WO2008092843A1 (de) | 2007-01-29 | 2008-08-07 | Basf Se | VERFAHREN ZUR HERSTELLUNG WEIßER UND FARBSTABILER WASSERABSORBIERENDER POLYMERPARTIKEL MIT HOHEM ABSORPTIONSVERMÖGEN UND HOHER FLÜSSIGKEITSLEITFÄHIGKEIT |
WO2008092842A1 (de) | 2007-01-29 | 2008-08-07 | Basf Se | VERFAHREN ZUR HERSTELLUNG WEIßER UND FARBSTABILER WASSERABSORBIERENDER POLYMERPARTIKEL MIT HOHEM ABSORPTIONSVERMÖGEN UND HOHER FLÜSSIGKEITSLEITFÄHIGKEIT |
WO2008114847A1 (en) * | 2007-03-16 | 2008-09-25 | Nippon Shokubai Co., Ltd. | Water absorbent resin production method and usage thereof |
WO2009005114A1 (ja) | 2007-07-04 | 2009-01-08 | Nippon Shokubai Co., Ltd. | 粒子状吸水剤およびその製造方法 |
WO2009011717A1 (en) | 2007-07-16 | 2009-01-22 | Evonik Stockhausen, Inc. | Superabsorbent polymer compositions having color stability |
WO2009016055A2 (en) | 2007-07-27 | 2009-02-05 | Basf Se | Water-absorbing polymeric particles and method for the production thereof |
WO2009060062A1 (de) | 2007-11-08 | 2009-05-14 | Evonik Stockhausen Gmbh | Wasserabsorbierende polymergebilde mit verbesserter farbstabilität |
Non-Patent Citations (5)
Title |
---|
"Kagaku Binran Kiso-hen", CHEMICAL SOCIETY OF JAPAN |
"Polymer Handbook", WILEY SCIENCE, pages: 525 |
"Polymer Handbook", WILLEY SCIENCE, pages: 527 - 529 |
FRANCIS M. WAMPLER: "Formation of diacrylic acid during acrylic acid storage", PLANT OPERATION PROGRESS, vol. 7, no. 3, July 1988 (1988-07-01), pages 183 - 189, XP001205305, DOI: doi:10.1002/prsb.720070312 |
See also references of EP2484702A4 * |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014515430A (ja) * | 2011-06-03 | 2014-06-30 | ビーエーエスエフ ソシエタス・ヨーロピア | 吸水性ポリマー粒子の連続的な製造法 |
JP2014522399A (ja) * | 2011-06-03 | 2014-09-04 | ビーエーエスエフ ソシエタス・ヨーロピア | アクリル酸及びその共役塩基を含む水溶液 |
WO2015030128A1 (ja) * | 2013-08-28 | 2015-03-05 | 株式会社日本触媒 | 吸水性樹脂の製造方法 |
JP5989912B2 (ja) * | 2013-08-28 | 2016-09-07 | 株式会社日本触媒 | 吸水性樹脂の製造方法 |
US10570233B2 (en) | 2016-04-28 | 2020-02-25 | Nippon Shokubai Co., Ltd. | Method for producing copolymer |
JPWO2017188400A1 (ja) * | 2016-04-28 | 2018-09-20 | 株式会社日本触媒 | 共重合体の製造方法 |
WO2017188400A1 (ja) * | 2016-04-28 | 2017-11-02 | 株式会社日本触媒 | 共重合体の製造方法 |
JP2021502454A (ja) * | 2017-11-10 | 2021-01-28 | ビーエイエスエフ・ソシエタス・エウロパエアBasf Se | 高吸収体 |
JP7254793B2 (ja) | 2017-11-10 | 2023-04-10 | ビーエーエスエフ ソシエタス・ヨーロピア | 高吸収体 |
JP2022507247A (ja) * | 2018-11-14 | 2022-01-18 | ビーエーエスエフ ソシエタス・ヨーロピア | 超吸収体を製造する方法 |
JP2022507366A (ja) * | 2018-11-14 | 2022-01-18 | ビーエーエスエフ ソシエタス・ヨーロピア | 超吸収体を製造する方法 |
JP7497826B2 (ja) | 2018-11-14 | 2024-06-11 | ベーアーエスエフ・エスエー | 超吸収体を製造する方法 |
CN115028774A (zh) * | 2022-05-13 | 2022-09-09 | 金陵科技学院 | 改性纤维素共聚丙烯酸型两性有机抗水分散剂的制备方法 |
CN115028774B (zh) * | 2022-05-13 | 2023-04-21 | 金陵科技学院 | 改性纤维素共聚丙烯酸型两性有机抗水分散剂的制备方法 |
Also Published As
Publication number | Publication date |
---|---|
EP2484702A4 (en) | 2013-10-09 |
EP2484702B2 (en) | 2021-11-10 |
CN102549028B (zh) | 2016-03-02 |
JPWO2011040575A1 (ja) | 2013-02-28 |
US10294315B2 (en) | 2019-05-21 |
CN102549028A (zh) | 2012-07-04 |
JP5731390B2 (ja) | 2015-06-10 |
EP2484702B1 (en) | 2015-12-02 |
US20120189861A1 (en) | 2012-07-26 |
EP2484702A1 (en) | 2012-08-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5731390B2 (ja) | ポリアクリル酸(塩)系吸水性樹脂およびその製造方法 | |
US10525445B2 (en) | Particulate water absorbing agent and water absorbent article | |
KR102000808B1 (ko) | 폴리아크릴산(염)계 흡수성 수지 및 그의 제조 방법 | |
JP6282669B2 (ja) | ポリアクリル酸(塩)系吸水剤及びその製造方法 | |
EP2112172B1 (en) | Particulate water-absorbent polymer and process for production thereof | |
JP5421243B2 (ja) | 吸水性樹脂を主成分とする粒子状吸水剤の製造方法 | |
JP5722921B2 (ja) | ポリアクリル酸(塩)系吸水性樹脂粉末の製造方法 | |
JP5914677B2 (ja) | ポリアクリル酸(塩)系吸水剤の製造方法及びその吸水剤 | |
JP5558818B2 (ja) | 粒子状吸水剤およびその製造方法 | |
JP5731522B2 (ja) | 粒子状吸水剤及びその製造方法 | |
JP5128098B2 (ja) | 粒子状吸水剤の製造方法および粒子状吸水剤 | |
JP5879023B2 (ja) | 吸水性樹脂を主成分とする粒子状吸水剤 | |
JP2010502768A (ja) | 粒子状吸水剤およびその製造方法 | |
JP5632906B2 (ja) | 吸水性樹脂の製造方法 | |
WO2012102406A1 (ja) | ポリアクリル酸(塩)系吸水性樹脂粉末の製造方法 | |
JP2012161789A (ja) | 吸水剤の製法 | |
JP2016112475A (ja) | ポリ(メタ)アクリル酸塩系吸水性樹脂を主成分とする吸水剤及びその製造方法 | |
JP2016113465A (ja) | ポリアクリル酸(塩)系吸水性樹脂及びその製造方法 | |
WO2020145384A1 (ja) | 吸水性樹脂を主成分とする吸水剤及びその製造方法 | |
JP2016069418A (ja) | ポリ(メタ)アクリル酸(塩)系吸水性樹脂の製造方法 | |
WO2007141875A1 (ja) | 吸水性樹脂組成物の製造方法および吸水性樹脂組成物 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201080044201.1 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10820690 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011534336 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13499037 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010820690 Country of ref document: EP |