WO2010137889A2 - 양극 활물질, 및 이를 포함하는 양극, 리튬 이차 전지 - Google Patents

양극 활물질, 및 이를 포함하는 양극, 리튬 이차 전지 Download PDF

Info

Publication number
WO2010137889A2
WO2010137889A2 PCT/KR2010/003367 KR2010003367W WO2010137889A2 WO 2010137889 A2 WO2010137889 A2 WO 2010137889A2 KR 2010003367 W KR2010003367 W KR 2010003367W WO 2010137889 A2 WO2010137889 A2 WO 2010137889A2
Authority
WO
WIPO (PCT)
Prior art keywords
active material
positive electrode
diameter
lithium
current collector
Prior art date
Application number
PCT/KR2010/003367
Other languages
English (en)
French (fr)
Other versions
WO2010137889A3 (ko
Inventor
홍승택
박혜웅
전호진
박성준
최대식
윤난지
김여진
최승돈
Original Assignee
주식회사 엘지화확
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020090046311A external-priority patent/KR101165063B1/ko
Application filed by 주식회사 엘지화확 filed Critical 주식회사 엘지화확
Priority to JP2012512975A priority Critical patent/JP5682970B2/ja
Priority to US13/322,487 priority patent/US8338026B2/en
Priority to EP10780800.8A priority patent/EP2437336B1/en
Priority to CN201080023159.5A priority patent/CN102449822B/zh
Publication of WO2010137889A2 publication Critical patent/WO2010137889A2/ko
Publication of WO2010137889A3 publication Critical patent/WO2010137889A3/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M2010/4292Aspects relating to capacity ratio of electrodes/electrolyte or anode/cathode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a positive electrode active material, and a positive electrode and a lithium secondary battery including the same, and more particularly, an active material having excellent thermal stability as a positive electrode active material, and two kinds of active materials having different particle sizes so as to have a high volume density. It relates to a positive electrode active material having improved safety by using, and a positive electrode and a lithium secondary battery comprising the same.
  • Lithium secondary batteries have higher voltage and higher capacity characteristics than conventional nickel cadmium secondary batteries.
  • a lithium transition metal represented by LiCoO 2 , LiNiO 2 , LiMn 2 O 4 is used as the positive electrode active material, and carbon such as graphite or carbon fiber is used as the negative electrode active material, not only a high voltage of 4V or more can be generated, As there is little concern about side effects such as short circuit, it is highly utilized as a portable power source for mobile electronic devices such as mobile phones, notebook PCs, digital cameras, and the like.
  • Japanese Patent Laid-Open No. 2000-082466 discloses a positive electrode active material in which the average particle diameter of lithium cobalt composite oxide particles is 0.1 to 50 ⁇ m and two peaks are present in the particle distribution.
  • Korean Patent Laid-Open Publication No. 2002-0057825 discloses a cathode active material in which a cathode active material having an average particle diameter of 7 to 25 ⁇ m and a cathode active material having an average particle diameter of 2 to 6 ⁇ m are mixed.
  • Japanese Patent Laid-Open No. 2004-119218 discloses a cathode active material in which a cathode active material having an average particle diameter of 7 to 20 ⁇ m and a cathode active material having an average particle diameter of 10 to 30% of the active material are mixed.
  • the conventional techniques are to mix two or more kinds of positive electrode active materials having different average particle diameters or to use two or more positive electrode active materials having a maximum average particle size to densify the positive electrode active material to improve battery capacity.
  • the contact resistance between the active materials may increase.
  • contact resistance between the active materials may be very large.
  • the positive electrode active material having excellent thermal stability may deteriorate the overall performance of the battery due to poor electrical conductivity and the like, and thus is not widely used in battery manufacturing.
  • the present invention employs a material having excellent thermal stability as a positive electrode active material, by mixing the two active materials having an appropriate particle size in an optimum ratio to improve the problem of large contact resistance between the active material, the dispersion of force during the positive electrode roll press
  • the purpose of the present invention is to provide a cathode active material having a high packing density and a high output density by minimizing this.
  • the present invention has been made to solve the above problems of the prior art,
  • a positive electrode active material comprising a small diameter active material having an average particle diameter of 0.5 ⁇ m, a maximum particle diameter of less than 1 ⁇ m, and a large diameter active material having an average particle diameter of 5 to 20 ⁇ m and a maximum particle diameter of less than 100 ⁇ m.
  • the small-diameter active material provides a positive electrode active material having an olivine structure of lithium metal phosphate.
  • the small-diameter active material provides a cathode active material, characterized in that the lithium iron phosphate (LiFePO 4 ) and the olivine structure of the carbon-coated lithium metal phosphate.
  • the large-diameter active material is at least one selected from the group consisting of lithium manganese oxide, lithium cobalt oxide, lithium nickel oxide, lithium manganese cobalt oxide, lithium manganese nickel oxide, lithium cobalt nickel oxide, and lithium manganese cobalt nickel oxide.
  • a cathode active material is provided.
  • the present invention a) the positive electrode active material of claim 1; b) conductive material; And c) provides a positive electrode comprising a current collector.
  • the current collector provides a positive electrode characterized in that the concave-convex structure is formed on the surface.
  • the uneven structure provides an anode, characterized in that formed by etching, in which case the etched depth of the current collector provides a cathode, characterized in that less than 1/3 of the total thickness of the current collector.
  • the average surface roughness (Ra) of the surface of the current collector on which the uneven structure is formed provides a positive electrode, characterized in that 0.02 ⁇ m or more.
  • the current collector provides a positive electrode having a capacity of 120 mW / cm 2 or less.
  • the current collector provides an anode, characterized in that the aluminum material.
  • the conductive material provides a positive electrode characterized in that the carbon black or graphite fine particles.
  • the positive electrode provides a positive electrode further comprises a d) a binder.
  • the thickness of the positive electrode provides a positive electrode, characterized in that 150 ⁇ 170 ⁇ m.
  • the present invention provides a lithium secondary battery having the positive electrode as described above.
  • the output density of the battery provides a lithium secondary battery, characterized in that 1000 W / Kg or more.
  • the composite positive electrode active material according to the present invention includes a large diameter positive electrode active material and a small diameter positive electrode active material, and it is possible to improve the filling density by mixing them at a constant particle size ratio and weight ratio, and includes a conventional positive electrode active material including a high stability material and a high conductivity material. Compared with the improved volume density, discharge capacity, thermal stability and high rate discharge characteristics.
  • the positive electrode active material of the present invention when applied to a current collector having a concave-convex structure on the surface, the binding force between the current collector and the active material and the current path are increased, thereby improving high temperature storage performance, energy density, and output power. .
  • FIG. 1 is a cross-sectional view showing a positive electrode according to an embodiment of the present invention.
  • the small diameter active material is an average particle diameter of 0.5 ⁇ m, the maximum particle diameter of less than 1 ⁇ m, the large diameter active material is an average particle diameter of 5 ⁇ 20 ⁇ m, the maximum particle size 100 It is characterized by being less than ⁇ .
  • One of the methods for improving the capacitance of a positive electrode for a lithium battery is to optimize the distribution of single or heterogeneous powders. That is, when a single type of powder is filled, a certain void is formed between the particles, so that other particles having a smaller particle size are filled between the pores. Therefore, two types of particles having different sizes should be used to fill the empty spaces between the large-diameter particles with the small-diameter particles for more compact filling, and in this case, the ratio of the size between these particles becomes important.
  • a cathode active material having an average particle diameter of 0.5 ⁇ m and a maximum particle diameter of less than 1 ⁇ m and a large diameter active material having an average particle diameter of 5 to 20 ⁇ m and a maximum particle diameter of less than 100 ⁇ m are mixed and used as the cathode active material.
  • the small-diameter active material and the large-diameter active material are mixed at the particle size ratio as described above, both the filling density and the output density may be improved, and the anode thickness may also be reduced.
  • the small diameter active material is preferably an active material having an olivine structure of lithium metal phosphate.
  • lithium iron phosphate Since lithium iron phosphate has a very excellent thermal stability compared to other cathode active materials, there is an advantage that can improve the safety of the lithium secondary battery.
  • the output characteristic and the rate characteristic may be deteriorated due to the characteristics having low electrical conductivity.
  • the lithium iron phosphate active material it is difficult to effectively reduce the thickness of the electrode due to the force dispersion effect of the small particles when the electrode is pressed. In order to compensate for this, a large diameter active material should be added to increase the electrode density.
  • the anode may be manufactured to a thin thickness of about 150 to 170 ⁇ m.
  • applying the carbon-coated olivine has the effect that the adhesion of the active material to the current collector is further improved.
  • the large-diameter active material is one selected from the group consisting of lithium manganese oxide, lithium cobalt oxide, lithium nickel oxide, lithium manganese cobalt oxide, lithium manganese nickel oxide, lithium cobalt nickel oxide, and lithium manganese cobalt nickel oxide. The above can be used.
  • the present invention a) the positive electrode active material of claim 1; b) conductive material; And c) relates to a positive electrode comprising a current collector.
  • the positive electrode of the present invention may be manufactured using the positive electrode active material as described above, and using a positive electrode manufacturing method known in the art.
  • the material containing the active material, the conductive material, and the binder may be molded into a certain shape, or may be manufactured by a method of applying the material to a current collector such as aluminum foil or a mesh.
  • a positive electrode material composition (typically the positive electrode material composition includes a positive electrode active material, a conductive material and a binder, etc.) is prepared and coated directly on an aluminum foil or a mesh current collector, or cast on a separate support
  • the positive electrode active material film which peeled from this support body is laminated on aluminum foil or a mesh collector, and a positive electrode is obtained.
  • the positive electrode of the present invention is not limited to the above-listed forms, but may be in a form other than the enumerated forms.
  • conductive materials include carbon black and graphite fine particles.
  • the current collector may use any current collector used in the art without limitation.
  • the binding force between the current collector and the active material is stably secured even under severe conditions, thereby improving high temperature storage and cycle performance.
  • Current Path Current Path
  • the average surface roughness Ra of the current collector surface on which the uneven structure is formed is 0.02 ⁇ m or more. It is desirable to control the degree of formation of the uneven structure.
  • the depth of the etched region is preferably 1/3 or less of the total thickness of the current collector.
  • the mechanical strength of the current collector becomes weak, which may cause a problem that the current collector is broken when the lithium secondary battery is manufactured.
  • a path of a current (ion) is effectively formed when a small diameter active material and a large diameter active material having different average particle diameters are applied onto a current-etched current collector according to the present invention.
  • the current collector is generally made to a thickness of 3 to 500 ⁇ m.
  • the current collector preferably has a capacity of 120 mW / cm 2 or less. Since the etched current collector has an increased surface area due to irregular curvature of the surface, it can be represented by using the capacity per unit area in indicating the etching degree of the current collector. When the degree of etching exceeds the above range, the mechanical strength of the current collector becomes weak, which may cause a problem that the current collector is broken when the lithium secondary battery is manufactured.
  • Etching which is one of the methods of forming the uneven structure on the surface of the current collector, may be performed using a chemical etching method or an electrochemical etching method.
  • an acidic solution or an alkaline solution may be used.
  • the acid solution used in the chemical etching method hydrochloric acid, sulfuric acid, ferric chloride, etc. may be used.
  • the alkaline solution used in the chemical etching method may be a solution containing sodium hydroxide.
  • the solution used in the chemical etching method is not limited to the above-mentioned content, of course, a variety of solutions that can corrode aluminum can be used.
  • the chemical etching method of the aluminum is formed including a pretreatment process and an etching process.
  • the pretreatment is an alkali treatment of an aluminum thin film using an alkali solution containing sodium hydroxide (NaOH) to remove oil components and oxide films remaining on the surface of the current collector.
  • NaOH sodium hydroxide
  • the etching process is a process of forming irregularities on the surface of the aluminum thin film by immersing the aluminum thin film in an acidic solution or an alkaline solution.
  • an acidic solution or an alkaline solution As mentioned above, hydrochloric acid, sulfuric acid, ferric chloride, etc. may be used as the acid solution used at this time.
  • the acid solution maintains a proper concentration and a temperature higher than room temperature so that the etching process can proceed efficiently. For example, when hydrochloric acid is used as the acid solution, the concentration of hydrochloric acid is adjusted to 0.8 to 2.0 M, and the temperature may be maintained at 35 to 45 ° C. to proceed with the etching process.
  • an electrochemical etching method is used in addition to the chemical etching method.
  • the electrochemical etching method supplies current to the aluminum metal in order to proceed with etching faster than the chemical etching method. That is, a direct current or an alternating current is applied to the aluminum metal while the aluminum metal is immersed in an acidic solution or an alkaline solution. At this time, the applied current is supplied with an appropriate value according to the required etching region and depth.
  • the electrochemical etching method uses a current having a current density of several mA / cm 2 to several hundred mA / cm 2. In the case of using an alternating current, a current having an appropriate alternating frequency range is supplied.
  • a method of etching aluminum metal may be generally used.
  • the lithium secondary battery of the present invention is characterized by comprising the positive electrode.
  • the lithium secondary battery of the present invention can be produced as follows.
  • the positive electrode included in the battery of the present invention may be prepared and prepared as described above.
  • a negative electrode active material In the case of the negative electrode, first, a negative electrode active material, a conductive material, a binder, and a solvent are mixed to prepare a negative electrode active material composition.
  • the negative electrode active material composition is directly coated and dried on a metal current collector to prepare a negative electrode. It is also possible to produce the negative electrode by casting the negative electrode active material composition on a separate support, and then laminating the film obtained by peeling from the support on a metal current collector.
  • the negative electrode active material examples include a lithium metal, a lithium alloy, a carbon material, oxides, carbon compounds, carbon silicon compounds, silicon oxide compounds, titanium sulfides, boron carbide compounds, and carbon metal composites mainly composed of metals of the Periodic Tables 14 and 15.
  • the carbon material those obtained by pyrolysing organic substances under various pyrolysis conditions, artificial graphite, natural graphite, soil graphite, expanded graphite, scaly graphite, and the like can be used.
  • Carbon black may be used as the conductive material, and vinylidene fluoride / hexafluoropropylene copolymer, polyvinylidene fluoride, polyacrylonitrile, polymethyl methacrylate, polytetrafluoroethylene, or carboxy Methyl cellulose, mixtures thereof, and styrene butadiene rubber-based polymers are used, and as the solvent, N-methylpyrrolidone, acetone, water, and the like can be used.
  • the content of the negative electrode active material, the conductive material, the binder, and the solvent is appropriate as long as it is a level normally used for producing lithium batteries known in the art.
  • the separator is disposed between the positive electrode and the negative electrode to form a battery structure.
  • the battery structure is wound or folded, placed in a cylindrical battery case or a square battery case, and then injected with an organic electrolyte to complete a lithium ion battery.
  • the battery structure after stacking the battery structure in a bi-cell structure, it is impregnated in an organic electrolyte, and the resultant is placed in a pouch and sealed to complete a lithium ion polymer battery.
  • any one commonly used in a lithium battery may be used.
  • the material selected from glass fiber, polyester, teflon, polyethylene, polypropylene, polytetrafluoroethylene (PTFE), and combinations thereof may be nonwoven or woven.
  • a lithium ion battery uses a rollable separator made of a material such as polyethylene or polypropylene, and a lithium ion polymer battery uses a separator having excellent organic electrolyte impregnation ability. It can be manufactured according to the method.
  • a separator composition is prepared by mixing a polymer resin, a filler, and a solvent, and then the separator composition is directly coated and dried on an anode to form a separator film, or the separator composition is cast and dried on a support, and then the support The separator film peeled off can be laminated and formed on the upper portion of the positive electrode.
  • the polymer resin is not particularly limited, and any materials used for the binder of the positive electrode may be used.
  • any materials used for the binder of the positive electrode may be used.
  • vinylidene fluoride / hexafluoropropylene copolymer, polyvinylidene fluoride, polyacrylonitrile, polymethyl methacrylate and mixtures thereof can be used.
  • electrolyte examples include propylene carbonate, ethylene carbonate, diethyl carbonate, ethyl methyl carbonate, methyl propyl carbonate, butylene carbonate, benzonitrile, acetonitrile, tetrahydrofuran, 2-methyltetrahydrofuran, butyrolactone, dioxolane, 4-methyldioxolane, N, N-dimethylformamide, dimethylacetamide, dimethylsulfoxide, dioxane, 1,2-dimethoxyethane, sulfolane, dichloroethane, chlorobenzene, nitrobenzene, dimethylcarbonate, methyl LiPF 6 , LiBF 4 , LiSbF in a solvent such as ethyl carbonate, diethyl carbonate, methyl propyl carbonate, methyl isopropyl carbonate, ethyl propyl carbonate, dipropyl carbonate, dibutyl carbonate, diethylene
  • LiMn 0.1 Co 0.1 Ni 0.8 O 2 powder having an average particle diameter of 11 ⁇ m (less than 100 ⁇ m of maximum particle size) and 1.8 g of LiFePO 4 powder having an average particle diameter of 0.5 ⁇ m (less than 1 ⁇ m of maximum particle size) were used.
  • 0.6 g of acetylene black powder having an average diameter of 6 ⁇ m and 0.045 g of polyvinylidene fluoride (PVdF) as a binder were mixed, 5 mL of N-methyl-pyrrolidone was added thereto, followed by stirring for 30 minutes using a mechanical stirrer. was prepared.
  • the slurry was applied to an aluminum current collector using a doctor blade to a thickness of about 200 ⁇ m, dried, and dried again under vacuum and 110 ° C. to prepare a positive electrode. Finally, the positive electrode was rolled in a roll press to form a sheet to prepare a positive electrode.
  • LiMn 0.1 Co 0.1 Ni 0.8 O 2 powder having an average particle diameter of 11 ⁇ m (less than 100 ⁇ m maximum) and 1.4 g of LiFePO 4 powder having an average particle size of 0.5 ⁇ m (less than 1 ⁇ m maximum) were used as the positive electrode active material.
  • a positive electrode was prepared in the same manner as in Example 1.
  • Example 1 except that 1 g of LiMn 0.1 Co 0.1 Ni 0.8 O 2 powder having an average particle diameter of 11 ⁇ m (less than 100 ⁇ m maximum) and 1 g of LiFePO 4 powder having an average particle diameter of 0.5 ⁇ m (less than 1 ⁇ m maximum) were used as the positive electrode active material.
  • a positive electrode was prepared in the same manner as in 1.
  • a positive electrode was prepared in the same manner as in Example 1.
  • a positive electrode was prepared in the same manner as in Example 1 except that an electrochemically etched aluminum (Al) current collector was used. At this time, the capacity per unit area of the current collector was about 108 mW / cm 2.
  • a positive electrode was prepared in the same manner as in Example 1, except that 2 g of LiFePO 4 powder having an average particle diameter of 0.5 ⁇ m (less than 1 ⁇ m of maximum particle size) was used alone.
  • a positive electrode was prepared in the same manner as in Example 1, except that 2 g of LiMn 0.1 Co 0.1 Ni 0.8 O 2 powder having an average particle diameter of 11 ⁇ m (less than a maximum particle size of less than 100 ⁇ m) was used alone.
  • Example 1 Weight ratio of small diameter active material to large diameter active material Fill density (g / cm 3) Anode Thickness ( ⁇ m) Power density (W / Kg)
  • Example 1 9: 1 0.1047 163 1800
  • Example 2 7: 3 0.1089 160 1600
  • Example 3 5 5 0.1176 155 1500
  • Example 4 3: 7 0.1184 153 1400
  • Example 5 9: 1 (etching O) 0.1047 163 1900
  • the filling density and the output density were excellent, and the anode thickness was also reduced to an appropriate level.
  • the binding density between the current collector and the active material may be improved and the output density may be further increased.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)
  • Cell Electrode Carriers And Collectors (AREA)

Abstract

본 발명은 양극 활물질, 및 이를 포함하는 양극과 리튬 이차 전지에 관한 것으로서, 더욱 상세하게는 활물질로서 열 안정성이 우수한 활물질을 채용하고, 여기에 높은 체적 밀도를 갖도록 입경크기가 다른 2 종의 활물질을 사용한 양극 활물질, 및 이를 포함하는 양극과 리튬 이차 전지에 관한 것이다. 본 발명은, 평균입경 0.5 ㎛, 최대입경 1 ㎛ 미만인 소구경 활물질 및 평균입경 5 ~ 20 ㎛, 최대입경 100 ㎛ 미만인 대구경 활물질을 포함하는 것을 특징으로 한다. 본 발명의 복합 양극 활물질은 대구경 양극 활물질 및 소구경 양극 활물질을 일정한 입경비 및 중량비로 혼합하여 충진 밀도를 향상시키는 것이 가능하고, 고안정성/고전도성 물질을 포함하여 종래의 양극 활물질에 비해 향상된 체적 밀도, 방전 용량, 열 안정성 및 고율 방전 특성을 나타내는 효과가 있다.

Description

양극 활물질, 및 이를 포함하는 양극, 리튬 이차 전지
본 출원은 2009년 5월 27일 한국특허청에 제출된 한국특허출원 제 10-2009-0046311호 및 2009년 6월 8일 한국특허청에 제출된 한국특허출원 제 10-2009-0050404호의 우선권을 청구하며, 본 명세서에서 참조로서 통합된다.
본 발명은 양극 활물질, 및 이를 포함하는 양극과 리튬 이차 전지에 관한 것으로서, 더욱 상세하게는 양극 활물질로서 열 안정성이 우수한 활물질을 채용하고, 여기에 높은 체적 밀도를 갖도록 입경크기가 다른 2 종의 활물질을 사용함으로써 안전성이 향상된 양극 활물질, 및 이를 포함하는 양극과 리튬 이차 전지에 관한 것이다.
리튬 이차 전지는 종래의 니켈카드뮴 이차 전지 등에 비해 고전압 및 고용량 특성을 구비한다. 특히, 양극 활물질로서 LiCoO2, LiNiO2, LiMn2O4 로 대표되는 리튬 전이 금속을 사용하고, 음극 활물질로서 그래파이트, 탄소 섬유 등의 카본을 사용하면, 4V 이상의 고전압을 발생시킬 수 있을 뿐 아니라, 단락 등의 부작용 우려도 적은 바, 휴대전화, 노트북 피씨, 디지털 카메라 등과 같은 모바일 전자 기기의 휴대용 전원으로서 그 활용도가 높은 실정이다.
모바일 기기가 지속적으로 경량화 소형화 되면서도 다양한 기능이 부여되는 등의 형태로 점차 고기능화 되어가고, 고온이나 저온환경하에서의 사용도 요구되는 등, 보다 높은 수준의 전기 용량, 충방전, 및 안정성 특성이 요구되고 있다.
따라서 양극 활물질로 단순히 일정한 형태의 LiCoO2 분말을 사용하는 종래의 리튬 전지로는 상기에서 필요로 하는 전지 특성을 얻을 수 없다는 문제가 있으며 이러한 요구를 충족시키기 위하여 다양한 종래의 기술이 제시되었다.
예를 들어, 양극 활물질 입자를 코팅하는 방법이 제안되었다. 그러나, 이러한 방법은 공정의 복잡화를 야기하여 실제 적용이 곤란한 문제점이 있었다.
또 다른 방법으로는, 활물질 입자의 충진 밀도를 향상시키는 방법이 제안되었다. 이러한 방법과 관련한 종래의 기술로는 아래에 기술한 특허문헌을 예시할 수 있다.
일본 특허 공개 제 2000-082466 호는 리튬 코발트 복합 산화물 입자의 평균 입경이 0.1 내지 50 ㎛이면서 입자 분포에서 2개의 피크가 존재하는 양극 활물질을 개시하고 있다.
대한민국 특허 공개 제 2002-0057825 호는 평균 입경이 7 내지 25 ㎛인 양극 활물질과 평균 입경이 2 내지 6 ㎛인 양극 활물질을 혼합한 양극 활물질을 개시하고 있다.
일본 특허 공개 제2004-119218 호는 평균 입경 7 내지 20 ㎛인 양극 활물질과 평균 입경이 상기 활물질의 10 내지 30%인 양극 활물질을 혼합한 양극 활물질을 개시하고 있다.
상기 종래 기술들은 평균 입경이 다른 2 종류 이상의 양극 활물질을 혼합하거나 평균 입경의 최대값이 2 개 이상인 양극 활물질을 사용한 것으로서 양극 활물질을 조밀하게 충진시켜 전지 용량을 향상시키고자 하는 것이다.
한편, 입경크기가 다른 2가지 활물질을 사용하는 경우 활물질간 접촉저항이 커질 수 있다. 또한 입경크기가 1 ㎛ 이하 크기의 활물질을 사용하는 경우 활물질간의 접촉저항이 매우 커질 수 있다.
또한 활물질과 집전체를 압연하여 전극을 제조할 때에, 혼합된 활물질의 입경에 따라 롤 프레스의 힘이 고르게 분산되지 않는 경우도 발생하는 문제점이 있다.
따라서 2 종류 이상의 양극 활물질을 보다 적절히 혼합 및 충진시켜 체적 밀도를 향상시키는 것이 요구된다.
또한, 고전압 안정성, 열 안정성, 고율 방전 특성 등의 물성도 향상된 리튬 전지를 제공할 수 있는 복합 양극 활물질을 얻는 것이 여전히 필요한 실정이다. 특히, 열 안정성이 우수한 양극 활물질은 전기전도도 등이 좋지 않아 전지의 전반적인 성능을 열화시킬 수 있고, 이에 따라 전지 제조시에 많이 사용되고 있지 않은 실정이다.
이에, 본 발명은 양극 활물질로서 열 안정성이 우수한 물질을 채용하고, 이에 적절한 입경을 가진 2 가지 활물질을 최적의 비율로 혼합하여 활물질간 접촉저항이 큰 문제점을 개선하며, 양극 롤 프레스시 힘의 분산을 최소화하여 충진 밀도(packing density) 및 출력 밀도가 우수한 양극활물질을 제공함을 목적으로 한다.
본 발명은 상기한 종래기술의 문제점을 해결하기 위해 안출된 것으로서,
평균입경 0.5 ㎛, 최대입경 1 ㎛ 미만인 소구경 활물질 및 평균입경 5 ~ 20 ㎛, 최대입경 100 ㎛ 미만인 대구경 활물질을 포함하는 것을 특징으로 하는 양극 활물질을 제공한다.
또한, 상기 소구경 활물질은 리튬메탈인산염의 올리빈 구조를 가지는 것을 특징으로 하는 양극 활물질을 제공한다.
구체적으로, 상기 소구경 활물질은 리튬철인산염(LiFePO4)인 것을 특징으로 하는 양극 활물질 및 카본 코팅된 리튬메탈인산염의 올리빈 구조를 가지는 것을 특징으로 하는 양극 활물질을 제공한다.
또한, 상기 소구경 활물질 및 대구경 활물질의 중량비가 소구경 활물질 : 대구경 활물질 = 7 + x : 3 - x (단, 0 ≤ x < 3) 범위 이내인 것을 특징으로 하는 양극 활물질을 제공한다.
구체적으로, 상기 소구경 활물질 및 대구경 활물질의 중량비가 소구경 활물질 : 대구경 활물질 = 9 : 1 인 것을 특징으로 하는 양극 활물질을 제공한다.
또한, 상기 대구경 활물질은 리튬망간산화물, 리튬코발트산화물, 리튬니켈산화물, 리튬망간코발트산화물, 리튬망간니켈산화물, 리튬코발트니켈산화물, 및 리튬망간코발트니켈산화물로 이루어진 군에서 선택되는 1종 이상인 것을 특징으로 하는 양극 활물질을 제공한다.
한편, 본 발명은 a) 제1항의 양극 활물질; b) 도전재; 및 c) 집전체를 포함하는 것을 특징으로 하는 양극을 제공한다.
또한, 상기 집전체는 표면에 요철구조가 형성된 것을 특징으로 하는 양극을 제공한다.
구체적으로, 상기 요철구조는 에칭에 의해 형성된 것을 특징으로 하는 양극을 제공하고, 이 경우 상기 집전체의 에칭된 깊이는 집전체 전체 두께의 1/3 이하인 것을 특징으로 하는 양극을 제공한다.
또한, 상기 요철구조가 형성된 집전체 표면의 평균 표면조도(Ra)는 0.02 ㎛ 이상인 것을 특징으로 하는 양극을 제공한다.
또한, 상기 집전체는 120 ㎌/㎠ 이하의 캐퍼시티를 가진 것을 특징으로 하는 양극을 제공한다.
또한, 상기 집전체는 알루미늄 재질인 것을 특징으로 하는 양극을 제공한다.
또한, 상기 도전재는 카본블랙 또는 흑연 미립자인 것을 특징으로 하는 양극을 제공한다.
또한, 상기 양극은 d) 결착제를 더 포함하는 것을 특징으로 하는 양극을 제공한다.
또한, 상기 양극의 두께는 150 ~ 170 ㎛인 것을 특징으로 하는 양극을 제공한다.
한편, 본 발명은 상기와 같은 양극을 구비하는 리튬 이차 전지를 제공한다.
또한, 상기 전지의 출력 밀도는 1000 W/Kg 이상인 것을 특징으로 하는 리튬 이차 전지를 제공한다.
본 발명에 의한 복합 양극 활물질은 대구경 양극 활물질 및 소구경 양극 활물질을 포함하며 이들을 일정한 입경비 및 중량비로 혼합하여 충진 밀도를 향상시키는 것이 가능하고 고안정성 물질 및 고전도성 물질을 포함하여 종래의 양극 활물질에 비해 향상된 체적 밀도, 방전 용량, 열 안정성 및 고율 방전 특성을 나타내는 효과가 있다.
또한, 본 발명의 양극 활물질을 표면에 요철구조가 형성된 집전체에 적용할 경우 집전체와 활물질간의 결착력과 전류 경로(Current Path)가 증대되어 고온저장 성능, 에너지 밀도 및 출력 또한 향상되는 효과가 있다.
도 1은 본 발명의 일 실시예에 따른 양극을 도시한 단면도이다.
이하, 본 발명에 관하여 상세히 설명한다.
본 발명은,
평균입경이 상호 다른 소구경 활물질 및 대구경 활물질을 포함하는 양극 활물질에 있어서, 상기 소구경 활물질은 평균입경 0.5 ㎛, 최대입경 1 ㎛ 미만인 것이고, 상기 대구경 활물질은 평균입경 5 ~ 20 ㎛, 최대입경 100 ㎛ 미만인 것임을 특징으로 한다.
리튬 전지용 양극의 전기 용량을 향상시키기 위한 방법들 중의 하나는 단일 또는 이종 분말의 분포를 최적화하는 방법이다. 즉, 단일 종류의 분말을 충진할 경우에 입자들 사이에는 일정한 공극이 생기게 되므로, 이 공극 사이에 보다 작은 입자 크기의 다른 입자가 채워지게 되는 방법이다. 따라서 보다 조밀한 충진을 위해 크기가 다른 2 종류의 입자를 사용하여 대구경 입자들 사이의 빈 공간을 소구경 입자로 채워져야 하고, 이 경우 이러한 입자들 사이의 크기의 비가 중요하게 된다.
본 발명에서는 양극 활물질로서 평균입경 0.5 ㎛, 최대입경 1 ㎛ 미만인 소구경 활물질과 평균입경 5 ~ 20 ㎛, 최대입경 100 ㎛ 미만인 대구경 활물질을 혼합 사용한다. 상기와 같은 입경비로 소구경 활물질과 대구경 활물질을 혼합할 경우, 충진 밀도 및 출력 밀도가 모두 향상되고, 양극 두께 또한 감소시킬 수 있다.
또한 본 발명에 있어서, 소구경 활물질 및 대구경 활물질의 중량비가 소구경 활물질 : 대구경 활물질 = 7 + x : 3 - x (단, 0 ≤ x < 3) 범위 이내인 것이 바람직하다. 더 바람직하게는 상기 활물질은 소구경 활물질 및 대구경 활물질의 중량비가 소구경 활물질 : 대구경 활물질 = 9 : 1 인 것이다. 본 발명의 실시예에서 보듯이 상기와 같은 비율로 구성할 경우 양극의 두께 감소와 더불어 출력 밀도를 1000 W/Kg 이상의 수준으로 높일 수 있다.
본 발명에 있어서, 상기 소구경 활물질은 리튬메탈인산염의 올리빈 구조를 가지는 활물질인 것이 바람직하다. 구체적으로 상기 리튬메탈인산염은 LiMPO4 (여기서 M = Co, Ni, Fe, Cr, Zn, Cu 또는 Ta)의 구조를 가지는 것이 바람직하고, 특히 리튬철인산염(LiFePO4)인 것이 더욱 바람직하다.
리튬철인산염은 다른 양극활물질에 비해 매우 우수한 열 안정성을 가지고 있으므로, 리튬 이차 전지의 안전성을 향상시킬 수 있는 장점이 있다. 다만, 리튬철인산염의 경우 낮은 전기전도도를 가지는 특성으로 인해 출력특성 및 Rate특성이 저하될 우려가 있다. 이를 해결하기 위해서 활물질의 입경을 작게 제조하는 것이 바람직하나, 리튬철인산염 활물질의 경우, 전극 프레스를 실시할 때 작은 입자의 힘분산효과로 인해 효과적으로 전극의 두께를 감소시키기 어렵기 때문에, 이러한 단점을 보완 수정하기 위해 대구경의 활물질을 첨가하여 전극 밀도를 높혀야 하는 것이다. 예를 들어 본 발명에 의할 경우 양극을 150 ~ 170 ㎛ 정도의 두께로 얇게 제조할 수 있다. 한편, 카본 코팅된 올리빈을 적용하면 활물질의 집전체에 대한 접착력이 더욱 향상되는 효과가 발휘된다.
본 발명에 있어서, 상기 대구경 활물질은 리튬망간산화물, 리튬코발트산화물, 리튬니켈산화물, 리튬망간코발트산화물, 리튬망간니켈산화물, 리튬코발트니켈산화물, 및 리튬망간코발트니켈산화물로 이루어진 군에서 선택되는 1종 이상을 사용할 수 있다.
한편, 본 발명은 a) 제1항의 양극 활물질; b) 도전재; 및 c) 집전체를 포함하는 것을 특징으로 하는 양극에 관한 것이다. 바람직하게는 d) 결착제를 더 포함하도록 한다.
본 발명의 양극은 전술한 바와 같은 양극 활물질을 사용하고, 당해 기술분야에 알려진 양극제조방법을 사용하여 제조될 수 있다. 예를 들어 상기 활물질, 도전재, 결착제를 포함하는 재료를 일정한 형상으로 성형하여도 좋고 상기의 재료를 알루미늄박이나 메쉬 등의 집전체에 도포시키는 방법으로 제조된 것도 바람직하다. 더욱 구체적으로는 양극 재료 조성물(통상적으로 양극 재료 조성물은 양극 활물질, 도전재 및 결착제 등을 포함한다)을 제조하여, 이를 알루미늄박이나 메쉬 집전체에 직접 코팅하거나, 별도의 지지체상에 캐스팅하고 이 지지체로부터 박리시킨 양극 활물질 필름을 알루미늄박이나 메쉬 집전체에 라미네이션하여 양극을 얻는다. 본 발명의 양극은 상기에서 열거한 형태에 한정되는 것은 아니고 열거한 형태 이외의 형태라도 가능하다.
전지는 고용량화를 위해서 대량의 전류를 충방전하는 것이 필수적이며 이를 위하여는 전극의 전기 저항이 낮은 재료가 요구되고 있다. 따라서 전극의 저항을 감소시키기 위하여 각종 도전재의 첨가가 일반적이며 주로 사용되는 도전재로는 카본블랙, 흑연 미립자 등이 있다.
본 발명의 양극에 있어서, 상기 집전체는 당해 기술분야에 사용되는 집전체를 제한없이 사용할 수 있다. 다만, 상기 집전체 표면에는 활물질의 충진 측면 또는 집전체와 활물질간의 결착력 측면에서 에칭 등의 방법으로 요철구조를 형성하는 것이 바람직하다. 이 경우 집전체와 활물질간의 결착력이 가혹조건에서도 안정적으로 확보되어 고온 저장 및 사이클 성능이 향상된다. 또한 활물질과 집전체간의 전류 경로(Current Path)의 확보가 용이해져 출력이 증대(올리빈의 경우 약 30% 이상)되고 에너지 밀도도 향상(약 6 ~ 7 %)된다. 특히, 로딩량이 적을 때 집전체 표면에 요철구조가 형성된 것이 효과적일 수 있다.
또한, 상기 요철구조가 형성된 집전체의 재질로는 알루미늄(Al)을 사용하는 것이 바람직하며, 결착력 향상을 극대화 하기 위하여 요철구조가 형성된 집전체 표면의 평균 표면조도(Ra)는 0.02 ㎛ 이상이 되도록 요철구조 형성의 정도를 조절함이 바람직하다.
더불어, 에칭된 영역의 깊이는 상기 집전체 전체 두께의 1/3 이하인 것이 바람직하다. 에칭된 영역의 깊이가 1/3보다 크게 되면, 상기 집전체의 기계적 강도가 취약해져서 리튬 이차 전지 제조시 집전체가 끊어지는 문제가 발생할 수 있다.
도 1을 참조하면, 본 발명에 따라 표면이 에칭된 집전체 상에 평균입경이 상호 다른 소구경 활물질과 대구경 활물질을 도포한 경우 효과적으로 전류(이온)의 경로가 형성됨을 알 수 있다.
상기 집전체는 일반적으로 3 내지 500 ㎛의 두께로 만든다.
또한, 상기 집전체는 120 ㎌/㎠ 이하의 캐퍼시티(capacity)를 가진 것이 바람직하다. 에칭된 집전체는 표면의 불규칙한 굴곡으로 인해 표면적이 증가되므로, 집전체의 에칭정도를 나타냄에 있어 단위면적당 캐퍼시티를 사용하여 나타낼 수 있다. 에칭정도가 상기 범위를 초과하는 경우 집전체의 기계적 강도가 취약해져서 리튬 이차 전지 제조시 집전체가 끊어지는 문제가 발생할 수 있다.
집전체 표면에 요철구조를 형성하는 방법 중 하나인 에칭은 화학적 에칭방법 또는 전기화학적 에칭방법을 사용하여 수행할 수 있다.
상기 집전체에 에칭하는 화학적 에칭방법에서는 산성용액 또는 알카리용액이 사용될 수 있다. 화학적 에칭방법에 사용되는 산성용액으로는 염산, 황산, 염화제2철 등이 사용될 수 있다. 또한 화학적 에칭방법에 사용되는 알카리용액은 수산화나트륨을 포함하는 용액이 사용될 수도 있다. 다만, 화학적 에칭방법에 사용되는 용액으로는 상기에 언급한 내용에 한정하는 것은 아니며, 알루미늄을 부식시킬 수 있는 다양한 용액이 사용될 수 있음은 물론이다.
상기 알루미늄의 화학적 에칭방법은 전처리과정과 에칭과정을 포함하여 형성된다. 상기 전처리과정은 알루미늄 박막을 수산화나트륨(NaOH)을 포함하는 알카리 용액을 사용하여 알카리 처리하여 상기 집전체의 표면에 잔존하는 기름 성분 및 산화피막을 제거하는 과정이다.
상기 에칭과정은 알루미늄 박막을 산성용액 또는 알카리용액에 침적하여 상기 알루미늄 박막의 표면에 요철을 형성하는 과정이다. 상기에서 언급한 바와 같이 이때 사용되는 산성용액으로는 염산, 황산, 염화 제2철 등이 사용될 수 있다. 또한 상기 산성용액은 적정한 농도와 상온보다 높은 온도를 유지하여 에칭 과정이 효율적으로 진행될 수 있도록 한다. 예를 들면, 산성용액으로 염산을 사용하는 경우에는 염산의 농도를 0.8 ~ 2.0M으로 조정하며, 온도는 35 ~ 45℃를 유지하여 에칭공정을 진행할 수 있다.
상기 집전체에 에칭영역을 형성하는 방법으로 상기 화학적 에칭방법 외에 전기화학적 에칭방법이 사용된다. 전기화학적 에칭방법은 화학적 에칭방법보다 에칭을 빠르게 진행하기 위해서 알루미늄 금속에 전류를 공급한다. 즉, 알루미늄 금속을 산성용액 또는 알카리용액에 침적한 상태에서 알루미늄 금속에 직류전류 또는 교류전류를 가하게 된다. 이때, 가해지는 전류는 필요한 에칭영역과 깊이에 따라 적정한 값을 공급하게 된다. 예를 들면, 전기화학적 에칭방법에서는 전류밀도가 수 mA/㎠ 내지 수백 mA/㎠인 전류를 사용하게 된다. 또한 교류전류를 사용하는 경우에는 적정한 교류 주파수 범위를 갖는 전류를 공급하게 된다.
상기 집전체를 에칭하는 방법은 상기 설명한 것 이외에 일반적으로 알루미늄 금속에 에칭하는 방법이 사용될 수 있음은 물론이다.
또한 본 발명의 리튬 이차 전지는 상기 양극을 구비하는 것을 특징으로 한다. 본 발명의 리튬 이차 전지는 다음과 같이 제조할 수 있다.
우선, 본 발명의 전지에 포함되는 양극은 상기 설명한 바와 같이 제조하여 준비될 수 있다.
음극의 경우 우선, 음극 활물질, 도전재, 결착제 및 용매를 혼합하여 음극 활물질 조성물을 준비한다. 상기 음극 활물질 조성물을 금속 집전체 상에 직접 코팅 및 건조하여 음극을 준비한다. 상기 음극 활물질 조성물을 별도의 지지체 상에 캐스팅한 다음, 이 지지체로부터 박리하여 얻은 필름을 금속 집전체 상에 라미네이션하여 음극을 제조하는 것도 가능하다.
상기 음극 활물질로는 리튬 금속, 리튬 합금, 탄소 재료, 주기율표 14, 15족의 금속을 주체로 하는 산화물, 탄소 화합물, 탄소 규소 화합물, 산화 규소 화합물, 황화 티탄, 탄화 붕소 화합물, 탄소 금속 복합물 등을 들 수 있다. 탄소 재료로서는 여러가지 열분해 조건으로 유기물을 열분해 한 것이나 인조 흑연, 천연 흑연, 토양 흑연, 팽창 흑연, 비늘 조각 형태 흑연 등을 사용할 수 있다.
도전재로는 카본 블랙을 사용할 수 있으며, 결착제로는 비닐리덴 플루오라이드/헥사플루오로프로필렌 코폴리머, 폴리비닐리덴플루오라이드, 폴리아크릴로니트릴, 폴리메틸메타크릴레이트, 폴리테트라플루오로에틸렌, 카르복시메틸셀룰로오스 및 그 혼합물, 스티렌 부타디엔 고무계 폴리머를 사용하며, 용매로는 N-메틸피롤리돈, 아세톤, 물 등을 사용할 수 있다. 이 때 음극 활물질, 도전재, 결착제 및 용매의 함량은 당해업계에 알려진 리튬 전지 제조에 통상적으로 사용하는 수준이면 적당하다.
상기한 양극과 음극 사이에 세퍼레이터를 배치하여 전지 구조체를 형성한다. 이러한 전지 구조체를 와인딩하거나 접어서 원통형 전지 케이스나 각형 전지 케이스에 넣은 다음, 유기 전해액을 주입하면 리튬 이온 전지가 완성된다.
또한 상기 전지 구조체를 바이셀 구조로 적층한 다음, 이를 유기 전해액에 함침시키고, 얻어진 결과물을 파우치에 넣어 밀봉하면 리튬 이온 폴리머 전지가 완성된다.
상기 세퍼레이터로는 리튬 전지에서 통상적으로 사용되는 것이라면 모두 사용가능하다. 특히 전해질의 이온 이동에 대하여 저저항이면서 전해액 함습 능력이 우수한 것이 바람직하다. 이를 보다 구체적으로 설명하면, 유리 섬유, 폴리에스테르, 테프론, 폴리에틸렌, 폴리프로필렌, 폴리테트라플루오로에틸렌(PTFE), 그 조합물 중에서 선택된 재질로서, 부직포 또는 직포형태이어도 무방하다. 이를 보다 상세하게 설명하면 리튬 이온 전지의 경우에는 폴리에틸렌, 폴리프로필렌 등과 같은 재료로 된 권취가능한 세퍼레이터를 사용하며, 리튬 이온 폴리머 전지의 경우에는 유기전해액 함침 능력이 우수한 세퍼레이터를 사용하는데, 이러한 세퍼레이터는 하기 방법에 따라 제조가능하다.
즉, 고분자 수지, 충진제 및 용매를 혼합하여 세퍼레이터 조성물을 준비한 다음, 상기 세퍼레이터 조성물을 양극 상부에 직접 코팅 및 건조하여 세퍼레이터 필름을 형성하거나, 또는 상기 세퍼레이터 조성물을 지지체상에 캐스팅 및 건조한 후, 상기 지지체로부터 박리시킨 세퍼레이터 필름을 양극 상부에 라미네이션하여 형성할 수 있다.
상기 고분자 수지는 특별히 한정되지는 않으며, 양극판의 결착제에 사용되는 물질들이 모두 사용가능하다. 예를 들면 비닐리덴플루오라이드/헥사플루오로프로필렌 코폴리머, 폴리비닐리덴플루오라이드, 폴리아크릴로니트릴, 폴리메틸메타크릴레이트 및 그 혼합물을 사용할 수 있다.
전해액으로는 프로필렌 카보네이트, 에틸렌 카보네이트, 디에틸 카보네이트, 에틸 메틸 카보네이트, 메틸 프로필 카보네이트, 부틸렌 카보네이트, 벤조니트릴, 아세토니트릴, 테트라히드로퓨란, 2-메틸테트라히드로퓨란, 부티로락톤, 디옥소란, 4-메틸디옥소란, N,N-디메틸포름아미드, 디메틸아세트아미드, 디메틸설폭사이드, 디옥산, 1,2-디메톡시에탄, 설포란, 디클로로에탄, 클로로벤젠, 니트로벤젠, 디메틸카보네이트, 메틸에틸카보네이트, 디에틸카보네이트, 메틸프로필카보네이트, 메틸이소프로필카보네이트, 에틸프로필카보네이트, 디프로필카보네이트, 디부틸카보네이트, 디에틸렌글리콜 또는 디메틸에테르 등의 용매 또는 이들의 혼합 용매에 LiPF6, LiBF4, LiSbF6, LiAsF6, LiClO4, LiCF3SO3, Li(CF3SO2)2N,LiC4F9SO3, LiSbF6, LiAlO4, LiAlCl4, LiN(CxF2x+1SO2)(CyF2y+1SO2)(단 x,y는 자연수), LiCl, LiI 등의 리튬 염으로 이루어진 전해질 중의 1종 또는 이들을 2종 이상 혼합한 것을 용해하여 사용할 수 있다.
이하의 실시예 및 비교예를 통하여 본 발명을 더욱 상세하게 설명한다. 단, 실시예는 본 발명을 예시하기 위한 것이지 이들만으로 본 발명의 범위를 한정하기 위한 것은 아니다.
실시예
실시예 1
양극 활물질로 평균 입경 11㎛(최대입경 100㎛ 미만)의 LiMn0.1Co0.1Ni0.8O2 분말 0.2g, 평균 입경 0.5㎛(최대입경 1㎛ 미만)의 LiFePO4 분말 1.8g 을 사용하고, 도전재로서 평균지름 6㎛의 아세틸렌 블랙 분말 0.6g 및 결착제로서 폴리불화비닐리덴(PVdF) 0.045g을 혼합하고 5mL의 N-메틸-피롤리돈을 투입한 후 기계식 교반기를 사용하여 30분간 교반하여 슬러리를 제조하였다.
이 슬러리를 닥터 블레이드(doctor blade)를 사용하여 알루미늄(Al) 집전체 위에 약 200㎛의 두께로 도포하고 건조한 후 진공, 섭씨 110℃의 조건에서 다시 한번 건조하여 양극을 제조하였다. 최종적으로, 상기 양극을 롤 프레스(roll press)로 압연하여 시트 형태로 만들어 양극을 제조하였다.
실시예 2
양극 활물질로 평균 입경 11㎛(최대입경 100 ㎛ 미만)의 LiMn0.1Co0.1Ni0.8O2 분말 0.6g, 평균 입경 0.5 ㎛(최대입경 1 ㎛ 미만)의 LiFePO4 분말 1.4g 을 사용한 것을 제외하고는 실시예 1과 동일하게 양극을 제조하였다.
실시예 3
양극 활물질로 평균 입경 11㎛(최대입경 100 ㎛ 미만)의 LiMn0.1Co0.1Ni0.8O2 분말 1g, 평균 입경 0.5 ㎛(최대입경 1 ㎛ 미만)의 LiFePO4 분말 1g 을 사용한 것을 제외하고는 실시예 1과 동일하게 양극을 제조하였다.
실시예 4
양극 활물질로서 평균 입경 11㎛(최대입경 100 ㎛ 미만)의 LiMn0.1Co0.1Ni0.8O2 분말 1.4g, 평균 입경 0.5 ㎛(최대입경 1 ㎛ 미만)의 LiFePO4 분말 0.6g 을 사용한 것을 제외하고는 실시예 1과 동일하게 양극을 제조하였다.
실시예 5
전기화학적으로 에칭된 알루미늄(Al) 집전체를 사용한 것을 제외하고는 실시예 1과 동일하게 양극을 제조하였다. 이때 집전체의 단위 면적당 캐퍼시티는 약 108 ㎌/㎠ 이었다.
비교예 1
양극 활물질로서 평균 입경 0.5 ㎛(최대입경 1 ㎛ 미만)의 LiFePO4 분말 2g 을 단독 사용한 것을 제외하고는 실시예 1과 동일하게 양극을 제조하였다.
비교예 2
양극 활물질로서 평균 입경 11㎛(최대입경 100 ㎛ 미만)의 LiMn0.1Co0.1Ni0.8O2 분말 2g 을 단독 사용한 것을 제외하고는 실시예 1과 동일하게 양극을 제조하였다.
상기 실시예 및 비교예에 대해서 물성을 측정하였고, 결과는 하기 표 1과 같았다.
표 1
소구경 활물질 대 대구경 활물질의 중량비 충진 밀도(g/㎤) 양극 두께(㎛) 출력 밀도 (W/Kg)
실시예 1 9 : 1 0.1047 163 1800
실시예 2 7 : 3 0.1089 160 1600
실시예 3 5 : 5 0.1176 155 1500
실시예 4 3 : 7 0.1184 153 1400
실시예 5 9 : 1(에칭 O) 0.1047 163 1900
비교예 1 10 : 0 0.0864 181 1500
비교예 2 0 : 10 0.1190 150 900
상기 표 1에 나타난 바와 같이, 실시예처럼 소구경 활물질과 대구경 활물질을 특정 입경비로 혼합 사용한 경우 충진 밀도 및 출력 밀도가 우수하였고, 양극 두께 또한 적절한 수준으로 감소시킬 수 있었다. 특히, 집전체를 에칭처리하면 집전체와 활물질의 결착력 향상과 더불어 출력 밀도 또한 더욱 증가시킬 수 있었다.
또한, 대구경 활물질의 중량비가 늘어나면 충진 밀도는 전반적으로 늘어나지만, 충진 밀도가 늘어나는 경우라도 활물질간 접촉저항이 증가하여 출력 밀도 향상 효과는 없는 바, 소구경 활물질 대 대구경 활물질의 중량비를 소구경 활물질 : 대구경 활물질 = 7 + x : 3 - x (단, 0 ≤ x < 3) 범위 이내로 하는 것이 적절한 것임을 알 수 있다.

Claims (19)

  1. 평균입경 0.5 ㎛, 최대입경 1 ㎛ 미만인 소구경 활물질 및 평균입경 5 ~ 20 ㎛, 최대입경 100 ㎛ 미만인 대구경 활물질을 포함하는 것을 특징으로 하는 양극 활물질.
  2. 제1항에 있어서,
    상기 소구경 활물질은 리튬메탈인산염의 올리빈 구조를 가지는 것을 특징으로 하는 양극 활물질.
  3. 제1항 또는 제2항에 있어서,
    상기 소구경 활물질은 리튬철인산염(LiFePO4)인 것을 특징으로 하는 양극 활물질.
  4. 제2항에 있어서,
    상기 소구경 활물질은 카본 코팅된 리튬메탈인산염의 올리빈 구조를 가지는 것을 특징으로 하는 양극 활물질.
  5. 제1항에 있어서,
    상기 소구경 활물질 및 대구경 활물질의 중량비가 소구경 활물질 : 대구경 활물질 = 7 + x : 3 - x (단, 0 ≤ x < 3) 범위 이내인 것을 특징으로 하는 양극 활물질.
  6. 제5항에 있어서,
    상기 소구경 활물질 및 대구경 활물질의 중량비가 소구경 활물질 : 대구경 활물질 = 9 : 1 인 것을 특징으로 하는 양극 활물질.
  7. 제1항에 있어서,
    상기 대구경 활물질은 리튬망간산화물, 리튬코발트산화물, 리튬니켈산화물, 리튬망간코발트산화물, 리튬망간니켈산화물, 리튬코발트니켈산화물, 및 리튬망간코발트니켈산화물로 이루어진 군에서 선택되는 1종 이상인 것을 특징으로 하는 양극 활물질.
  8. a) 제1항의 양극 활물질;
    b) 도전재; 및
    c) 집전체를 포함하는 것을 특징으로 하는 양극.
  9. 제8항에 있어서,
    상기 집전체는 표면에 요철구조가 형성된 것을 특징으로 하는 양극.
  10. 제9항에 있어서,
    상기 요철구조는 에칭에 의해 형성된 것을 특징으로 하는 양극.
  11. 제10항에 있어서,
    상기 집전체의 에칭된 깊이는 집전체 전체 두께의 1/3 이하인 것을 특징으로 하는 양극.
  12. 제9항에 있어서,
    상기 요철구조가 형성된 집전체 표면의 평균 표면조도(Ra)는 0.02 ㎛ 이상인 것을 특징으로 하는 양극.
  13. 제9항에 있어서,
    상기 집전체는 120 ㎌/㎠ 이하의 캐퍼시티를 가진 것을 특징으로 하는 양극.
  14. 제9항에 있어서,
    상기 집전체는 알루미늄 재질인 것을 특징으로 하는 양극.
  15. 제8항에 있어서,
    상기 도전재는 카본블랙 또는 흑연 미립자인 것을 특징으로 하는 양극.
  16. 제8항에 있어서,
    상기 양극은 d) 결착제를 더 포함하는 것을 특징으로 하는 양극.
  17. 제8항에 있어서,
    상기 양극의 두께는 150 ~ 170 ㎛인 것을 특징으로 하는 양극.
  18. 제8항의 양극을 구비하는 리튬 이차 전지.
  19. 제18항에 있어서,
    상기 전지의 출력 밀도는 1000 W/Kg 이상인 것을 특징으로 하는 리튬 이차 전지.
PCT/KR2010/003367 2009-05-27 2010-05-27 양극 활물질, 및 이를 포함하는 양극, 리튬 이차 전지 WO2010137889A2 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2012512975A JP5682970B2 (ja) 2009-05-27 2010-05-27 正極活物質、及びこれを含む正極、リチウム二次電池
US13/322,487 US8338026B2 (en) 2009-05-27 2010-05-27 Positive electrode active material, and positive electrode and lithium secondary battery including the same
EP10780800.8A EP2437336B1 (en) 2009-05-27 2010-05-27 Positive electrode active material, and positive electrode and lithium secondary battery comprising same
CN201080023159.5A CN102449822B (zh) 2009-05-27 2010-05-27 正极活性材料及包含该正极活性材料的正极和锂二次电池

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR1020090046311A KR101165063B1 (ko) 2009-05-27 2009-05-27 리튬 이차 전지용 전극체, 및 이를 포함하는 리튬 이차 전지
KR10-2009-0046311 2009-05-27
KR20090050404 2009-06-08
KR10-2009-0050404 2009-06-08

Publications (2)

Publication Number Publication Date
WO2010137889A2 true WO2010137889A2 (ko) 2010-12-02
WO2010137889A3 WO2010137889A3 (ko) 2011-03-31

Family

ID=43223255

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2010/003367 WO2010137889A2 (ko) 2009-05-27 2010-05-27 양극 활물질, 및 이를 포함하는 양극, 리튬 이차 전지

Country Status (5)

Country Link
US (1) US8338026B2 (ko)
EP (1) EP2437336B1 (ko)
JP (1) JP5682970B2 (ko)
CN (1) CN102449822B (ko)
WO (1) WO2010137889A2 (ko)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012190786A (ja) * 2011-03-09 2012-10-04 Samsung Sdi Co Ltd 正極活物質、並びにそれを採用した正極及びリチウム電池
JP2012216322A (ja) * 2011-03-31 2012-11-08 Sharp Corp 非水電解質二次電池及びその製造方法
CN102881914A (zh) * 2011-07-15 2013-01-16 株式会社三星横滨研究所 二次电池用电极、二次电池用电极的制造方法和二次电池
CN103367738A (zh) * 2012-04-03 2013-10-23 三星精密化学株式会社 锂锰氧化物正极活性材料和包含其的锂离子二次电池
WO2013162025A1 (ja) * 2012-04-27 2013-10-31 東洋インキScホールディングス株式会社 リチウム二次電池の電極形成用組成物、電極及びリチウム二次電池
KR20170075654A (ko) * 2015-12-23 2017-07-03 주식회사 엘지화학 이차전지용 양극활물질 및 이를 포함하는 이차전지
US9887422B2 (en) 2015-06-30 2018-02-06 Samsung Sdi Co., Ltd. Negative electrode for rechargeable lithium battery and rechargeable lithium battery including same

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2658010B1 (en) 2011-02-15 2017-05-31 LG Chem, Ltd. Cathode mixture for secondary battery and secondary battery comprising same
JP2015510249A (ja) * 2012-04-18 2015-04-02 エルジー・ケム・リミテッド 多層構造の電極及びその製造方法
KR101511935B1 (ko) 2012-08-01 2015-04-14 주식회사 엘지화학 이차전지용 전극조립체 및 이를 포함하는 리튬 이차전지
KR101718057B1 (ko) 2012-08-02 2017-03-20 삼성에스디아이 주식회사 양극 활물질 및 이를 채용한 양극과 리튬전지
EP2784867B1 (en) * 2013-01-28 2016-11-23 LG Chem, Ltd. High-voltage lithium secondary battery
WO2014196816A1 (ko) 2013-06-05 2014-12-11 주식회사 엘지화학 신규한 이차전지
JP6456630B2 (ja) 2013-09-18 2019-01-23 株式会社東芝 非水電解質電池
CN105765774B (zh) * 2013-10-17 2018-11-13 日本贵弥功株式会社 导电性碳、包含该碳的电极材料、使用该电极材料的电极和具备该电极的蓄电器件
CN103618084A (zh) * 2013-11-21 2014-03-05 刘铁建 一种锂离子动力电池混合正极材料
JP6436472B2 (ja) * 2014-03-05 2018-12-12 日本ケミコン株式会社 導電性カーボンの製造方法、導電性カーボンを含む電極材料の製造方法、及び、電極材料を用いた電極の製造方法
WO2015133586A1 (ja) * 2014-03-05 2015-09-11 日本ケミコン株式会社 導電性カーボン、この導電性カーボンを含む電極材料、及びこの電極材料を用いた電極
DE112014006450B4 (de) 2014-03-10 2020-01-16 Kabushiki Kaisha Toyota Jidoshokki Positivelektrodenaktivmaterialschicht beinhaltend ein erstes Positivelektrodenaktivmaterial und ein zweites Positivelektrodenaktivmaterial, und Lithiumsekundärbatterie umfassend die Positivelektrodenaktivmaterialschicht
KR101566718B1 (ko) * 2014-03-27 2015-11-09 주식회사 비츠로셀 메시 플레이트 타입의 니켈계 2차 전지 단위 셀 및 이를 갖는 니켈계 2차 전지 스택
JP6497972B2 (ja) * 2014-05-19 2019-04-10 日本ケミコン株式会社 電極、この電極の製造方法、この電極を備えた蓄電デバイス、及び蓄電デバイス電極用の導電性カーボン混合物
WO2015178347A1 (ja) * 2014-05-19 2015-11-26 日本ケミコン株式会社 電極、この電極の製造方法、この電極を備えた蓄電デバイス、及び蓄電デバイス電極用の導電性カーボン混合物
KR102307910B1 (ko) 2014-12-31 2021-10-05 삼성에스디아이 주식회사 리튬이온 이차전지용 양극 활물질, 그의 제조방법 및 이것을 포함하는 리튬이온 이차전지
JP6951363B2 (ja) * 2016-05-27 2021-10-20 ユミコア リチウムイオンバッテリー用の正極
DE102016217390A1 (de) * 2016-09-13 2018-03-15 Robert Bosch Gmbh Elektrode mit lokalen Porositätsunterschieden, Verfahren zur Herstellung einer solchen Elektrode und deren Verwendung
CN106756106B (zh) * 2017-01-04 2019-02-22 潍坊学院 一种锌基锂离子提取材料的制备方法
CN111247663B (zh) * 2017-08-31 2024-01-12 罗伯特·博世有限公司 用于电化学电池的混合复合固态电解质
JP6590973B2 (ja) * 2018-03-23 2019-10-16 太平洋セメント株式会社 リチウムイオン二次電池用正極活物質複合物及びその製造方法
KR102453273B1 (ko) * 2018-05-23 2022-10-11 주식회사 엘지에너지솔루션 리튬 이차전지용 양극재, 이를 포함하는 리튬 이차전지용 양극 및 리튬 이차전지
KR102553570B1 (ko) * 2018-06-27 2023-07-10 삼성전자 주식회사 리튬 이온 전지용 양극 활물질 및 이를 포함하는 리튬 이온 전지
CN111029529A (zh) * 2019-12-24 2020-04-17 北京汽车集团越野车有限公司 一种正极材料结构的制备方法、电池正极、电池及汽车
WO2022058737A1 (en) 2020-09-18 2022-03-24 Johnson Matthey Public Limited Company Cathode material
GB202014766D0 (en) 2020-09-18 2020-11-04 Johnson Matthey Plc Cathode material
GB202104495D0 (en) 2021-03-30 2021-05-12 Johnson Matthey Plc Cathode material and process
CN113422049A (zh) * 2021-06-25 2021-09-21 湖北亿纬动力有限公司 一种磷酸铁锂正极极片及其制备方法和应用
CN116387496B (zh) * 2023-06-02 2023-10-31 瑞浦兰钧能源股份有限公司 一种二次电池正极材料、二次电池正极极片及二次电池

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000082466A (ja) 1998-07-02 2000-03-21 Nippon Chem Ind Co Ltd 正極活物質及び非水電解質二次電池
KR20020057825A (ko) 2001-01-05 2002-07-12 구사마 사부로 화상 처리 장치, 화상 처리 방법, 그 처리 방법을 기억한정보 기록 매체 및 컴퓨터 프로그램
JP2004119218A (ja) 2002-09-26 2004-04-15 Seimi Chem Co Ltd リチウム二次電池用の正極活物質及びその製造方法
KR20090046311A (ko) 2007-11-05 2009-05-11 김선광 의복용 벨트 및 제조방법
KR20090050404A (ko) 2007-11-15 2009-05-20 (주)화인상사 수납식 쌀통

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1186875A (ja) * 1997-09-10 1999-03-30 Asahi Glass Co Ltd 非水系二次電池用正極体
JP4878687B2 (ja) * 2001-02-23 2012-02-15 三洋電機株式会社 リチウム二次電池
US6887623B2 (en) * 2001-04-09 2005-05-03 Sanyo Electric Co., Ltd. Electrode for rechargeable lithium battery and rechargeable lithium battery
JP2003007305A (ja) 2001-04-19 2003-01-10 Sanyo Electric Co Ltd リチウム二次電池用電極及びリチウム二次電池
JP4187524B2 (ja) * 2002-01-31 2008-11-26 日本化学工業株式会社 リチウム鉄リン系複合酸化物炭素複合体、その製造方法、リチウム二次電池正極活物質及びリチウム二次電池
JP4027255B2 (ja) * 2003-03-28 2007-12-26 三洋電機株式会社 リチウム二次電池用負極及びその製造方法
KR100559364B1 (ko) * 2003-05-09 2006-03-10 한국과학기술연구원 다공성의 3차원 집전체로 구성된 전극과 이를 이용한리튬전지, 및 그 제조방법
CN100486003C (zh) * 2004-03-03 2009-05-06 三洋电机株式会社 非水电解质电池
KR100738773B1 (ko) 2004-03-03 2007-07-12 산요덴키가부시키가이샤 비수 전해질 전지
KR20060091486A (ko) * 2005-02-15 2006-08-21 삼성에스디아이 주식회사 양극 활물질, 그 제조 방법 및 이를 채용한 양극과 리튬 전지
JP5470669B2 (ja) * 2005-05-13 2014-04-16 日産自動車株式会社 非水電解リチウムイオン電池用正極材料、これを用いた電池および非水電解リチウムイオン電池用正極材料の製造方法
JP2007265668A (ja) * 2006-03-27 2007-10-11 Sanyo Electric Co Ltd 非水電解質二次電池用正極及びその製造方法
CN101489936A (zh) 2006-12-28 2009-07-22 Agc清美化学股份有限公司 含锂复合氧化物及其制造方法
JP4435194B2 (ja) * 2007-03-27 2010-03-17 株式会社東芝 非水電解質電池、電池パック及び自動車
JP4317571B2 (ja) * 2007-04-27 2009-08-19 Tdk株式会社 活物質、電極、電池、及び活物質の製造方法
CN101388452A (zh) * 2007-09-10 2009-03-18 深圳市比克电池有限公司 锂离子二次电池正极片集流体的涂布方法
KR100889622B1 (ko) * 2007-10-29 2009-03-20 대정이엠(주) 안전성이 우수한 리튬 이차전지용 양극 활물질 및 그제조방법과 이를 포함하는 리튬 이차전지

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000082466A (ja) 1998-07-02 2000-03-21 Nippon Chem Ind Co Ltd 正極活物質及び非水電解質二次電池
KR20020057825A (ko) 2001-01-05 2002-07-12 구사마 사부로 화상 처리 장치, 화상 처리 방법, 그 처리 방법을 기억한정보 기록 매체 및 컴퓨터 프로그램
JP2004119218A (ja) 2002-09-26 2004-04-15 Seimi Chem Co Ltd リチウム二次電池用の正極活物質及びその製造方法
KR20090046311A (ko) 2007-11-05 2009-05-11 김선광 의복용 벨트 및 제조방법
KR20090050404A (ko) 2007-11-15 2009-05-20 (주)화인상사 수납식 쌀통

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2437336A4

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012190786A (ja) * 2011-03-09 2012-10-04 Samsung Sdi Co Ltd 正極活物質、並びにそれを採用した正極及びリチウム電池
JP2012216322A (ja) * 2011-03-31 2012-11-08 Sharp Corp 非水電解質二次電池及びその製造方法
US8968930B2 (en) 2011-03-31 2015-03-03 Sharp Kabushiki Kaisha Electrode for a nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery, and method of manufacture of electrode for a nonaqueous electrolyte secondary battery
CN102881914A (zh) * 2011-07-15 2013-01-16 株式会社三星横滨研究所 二次电池用电极、二次电池用电极的制造方法和二次电池
JP2013025902A (ja) * 2011-07-15 2013-02-04 Samsung Yokohama Research Institute Co Ltd 二次電池用電極、二次電池用電極の製造方法並びに二次電池
CN103367738A (zh) * 2012-04-03 2013-10-23 三星精密化学株式会社 锂锰氧化物正极活性材料和包含其的锂离子二次电池
WO2013162025A1 (ja) * 2012-04-27 2013-10-31 東洋インキScホールディングス株式会社 リチウム二次電池の電極形成用組成物、電極及びリチウム二次電池
US9887422B2 (en) 2015-06-30 2018-02-06 Samsung Sdi Co., Ltd. Negative electrode for rechargeable lithium battery and rechargeable lithium battery including same
KR20170075654A (ko) * 2015-12-23 2017-07-03 주식회사 엘지화학 이차전지용 양극활물질 및 이를 포함하는 이차전지
KR101937899B1 (ko) * 2015-12-23 2019-01-14 주식회사 엘지화학 이차전지용 양극활물질 및 이를 포함하는 이차전지

Also Published As

Publication number Publication date
JP5682970B2 (ja) 2015-03-11
CN102449822B (zh) 2015-06-24
JP2012528451A (ja) 2012-11-12
EP2437336A4 (en) 2013-11-13
US20120156560A1 (en) 2012-06-21
EP2437336A2 (en) 2012-04-04
CN102449822A (zh) 2012-05-09
EP2437336B1 (en) 2014-12-10
US8338026B2 (en) 2012-12-25
WO2010137889A3 (ko) 2011-03-31

Similar Documents

Publication Publication Date Title
WO2010137889A2 (ko) 양극 활물질, 및 이를 포함하는 양극, 리튬 이차 전지
KR101113074B1 (ko) 양극 활물질, 및 이를 포함하는 양극, 리튬 이차 전지
WO2019103460A1 (ko) 이차전지용 양극재 및 이를 포함하는 리튬 이차전지
WO2020111580A1 (ko) 리튬 이차 전지용 양극 첨가제, 이의 제조방법, 이를 포함하는 리튬 이차 전지용 양극 및 이를 포함하는 리튬 이차 전지
WO2020055183A1 (ko) 리튬 이차전지용 음극 및 리튬 이차전지의 제조방법
WO2018105970A1 (ko) 비수성 전해질 및 이를 포함하는 리튬 이차 전지
WO2015065102A1 (ko) 리튬 이차전지
KR20070005341A (ko) 리튬 이차 전지
WO2014193148A1 (ko) 비수성 전해액 및 이를 포함하는 리튬 이차전지
WO2018217071A1 (ko) 이차전지용 양극의 제조방법, 이와 같이 제조된 이차전지용 양극 및 이를 포함하는 리튬 이차전지
WO2020185014A1 (ko) 음극 및 이를 포함하는 이차전지
WO2019013557A2 (ko) 리튬 이차전지용 음극, 이를 포함하는 리튬 이차전지, 및 이의 제조 방법
WO2019098541A1 (ko) 이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지
WO2019083332A2 (ko) 실리콘-탄소 복합체 및 이를 포함하는 리튬 이차전지
WO2020071814A1 (ko) 실리콘계 화합물을 포함하는 다층 구조 음극 및 이를 포함하는 리튬 이차전지
WO2019177403A1 (ko) 리튬 이차전지용 음극활물질, 이를 포함하는 리튬 이차전지용 음극
WO2020153690A1 (ko) 리튬 복합 음극 활물질, 이를 포함하는 음극 및 이들의 제조방법
WO2019198938A1 (ko) 리튬 이차전지용 음극, 이의 제조방법 및 이를 포함하는 리튬 이차전지
WO2019203455A1 (ko) 리튬 이차전지용 음극, 이의 제조방법 및 이를 포함하는 리튬 이차전지
WO2019147082A1 (ko) 리튬 이차전지용 음극 및 상기 음극을 포함하는 리튬 이온 이차 전지
WO2014027841A1 (ko) 리튬-설퍼 전지용 양극의 제조 방법 및 리튬 설퍼 전지
WO2019245087A1 (ko) 겔형 고분자 전해질을 적용한 리튬 이차 전지 및 그 제조방법
WO2019147084A1 (ko) 리튬 이차전지용 음극의 제조방법
WO2022060138A1 (ko) 음극 및 이를 포함하는 이차전지
WO2019078506A2 (ko) 리튬 이차전지용 양극 활물질의 제조방법, 이에 의해 제조된 양극 활물질, 이를 포함하는 리튬 이차전지용 양극 및 리튬 이차전지

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080023159.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10780800

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 2012512975

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2010780800

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13322487

Country of ref document: US