WO2010123087A1 - 太陽電池用二軸延伸ポリエステルフィルム - Google Patents

太陽電池用二軸延伸ポリエステルフィルム Download PDF

Info

Publication number
WO2010123087A1
WO2010123087A1 PCT/JP2010/057198 JP2010057198W WO2010123087A1 WO 2010123087 A1 WO2010123087 A1 WO 2010123087A1 JP 2010057198 W JP2010057198 W JP 2010057198W WO 2010123087 A1 WO2010123087 A1 WO 2010123087A1
Authority
WO
WIPO (PCT)
Prior art keywords
acid
film
polyester film
biaxially stretched
stretched polyester
Prior art date
Application number
PCT/JP2010/057198
Other languages
English (en)
French (fr)
Inventor
直子 松村
淳 小山松
Original Assignee
帝人デュポンフィルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 帝人デュポンフィルム株式会社 filed Critical 帝人デュポンフィルム株式会社
Priority to CN2010800183591A priority Critical patent/CN102414261A/zh
Priority to US13/265,743 priority patent/US20120053317A1/en
Priority to JP2011510370A priority patent/JP5568550B2/ja
Priority to EP10767142.2A priority patent/EP2423248A4/en
Publication of WO2010123087A1 publication Critical patent/WO2010123087A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/78Preparation processes
    • C08G63/82Preparation processes characterised by the catalyst used
    • C08G63/85Germanium, tin, lead, arsenic, antimony, bismuth, titanium, zirconium, hafnium, vanadium, niobium, tantalum, or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • C08K5/51Phosphorus bound to oxygen
    • C08K5/53Phosphorus bound to oxygen bound to oxygen and to carbon only
    • C08K5/5317Phosphonic compounds, e.g. R—P(:O)(OR')2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • H01L31/049Protective back sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a biaxially stretched polyester film for solar cells that is inexpensive but has excellent hydrolysis resistance.
  • Polyester films especially polyethylene terephthalate biaxially stretched films, have been widely used because they have excellent productivity, mechanical properties, thermal properties, electrical properties, chemical properties and dimensional stability.
  • the polyester is likely to be hydrolyzed and the physical performance tends to be lowered, and there has been a problem that the use period and use conditions are limited.
  • solar cell applications used in harsh natural environments, it has been demanded to improve long-term reliability.
  • a polyester film is used as a solar cell protective film, it has excellent hydrolysis resistance. It is necessary to grant.
  • Various proposals have been made for improving the hydrolysis resistance of polyester films. Japanese Unexamined Patent Application Publication No.
  • 2007-302878 describes a polyester film to which an epoxidized fatty acid alkyl ester or an epoxidized fatty acid glycerin ester is added as a hydrolysis-resistant agent.
  • the reactivity of the hydrolysis-resistant agent is low, and the effect of improving the hydrolysis resistance of the polyester film is small.
  • Japanese Patent Application Laid-Open No. 2002-187965 discloses a polyester film to which a carbodiimide compound or a monomer or polymer of an oxazoline compound is added as a hydrolysis-resistant agent.
  • a film containing a carbodiimide compound or the like generates gas due to isocyanate and other by-products and decomposition products in the production process and use, and this gas stimulates the mucous membrane and causes health damage. Further, when these hydrolysis-resistant agents are used, the viscosity of the polymer increases, and instability of extrusion and problems that are difficult to control occur in the extrusion process.
  • the polyester film used for the solar cell protective film is also improved due to insufficient hydrolysis resistance after long-term use, and a high molecular weight polyethylene terephthalate film is used (see JP 2002-26354 A).
  • the present invention has been made paying attention to the above problems.
  • the object of the present invention is, firstly, to be a two-dimensional battery for solar cells that has little degradation in mechanical properties and has excellent hydrolysis resistance even when used for a long time in a severe environment of high temperature and humidity. It is to provide an axially stretched polyester film.
  • a second object of the present invention is to provide a biaxially stretched polyester film for solar cells that has excellent hydrolysis resistance without using a hydrolysis resistance agent such as a carbodiimide compound or an oxazoline compound.
  • the present invention is a biaxially stretched polyester film comprising a composition of polyethylene terephthalate using an antimony compound and / or a titanium compound as a polycondensation catalyst. 10 to 80 mmol% of phosphorus atoms derived from the phosphorus compound represented by the following formula (I) or (II) based on the number, and 2 to 60 mmol% in total of antimony atoms and / or titanium atoms in terms of metal atoms
  • the biaxially stretched polyester film has a plane orientation coefficient fn of 0.160 to 0.175, an intrinsic viscosity of the film polyester of 0.56 to 0.74 dl / g, and a terminal carboxyl group concentration of 6 to 29 equivalents.
  • a biaxially stretched polyester film for solar cells characterized by That.
  • R 1 and R 2 each represent an alkyl group having 1 to 6 carbon atoms, an aryl group, or a benzyl group.
  • the biaxially stretched polyester film for solar cells of the present invention comprises a composition of polyethylene terephthalate polymerized using an antimony compound and / or a titanium compound as a polycondensation catalyst.
  • the polyethylene terephthalate of this composition is a polyester whose main repeating unit is ethylene terephthalate.
  • the main repeating unit is ethylene terephthalate, preferably 90% by mole or more, more preferably 95% by mole or more, and even more preferably 97% by mole or more of all repeating units constituting the polyester is composed of ethylene terephthalate units. means.
  • the polyethylene terephthalate may be copolymerized with a copolymer component in a range where the main repeating unit is ethylene terephthalate.
  • the copolymer component may be a dicarboxylic acid component or a diol component.
  • dicarboxylic acid component of the copolymer component examples include aromatic dicarboxylic acids such as isophthalic acid, phthalic acid and naphthalenedicarboxylic acid; aliphatic dicarboxylic acids such as adipic acid, azelaic acid, sebacic acid and decanedicarboxylic acid; cyclohexanedicarboxylic acid Examples thereof include alicyclic dicarboxylic acids.
  • diol component of the copolymer component examples include aliphatic diols such as butanediol and hexanediol; and alicyclic diols such as cyclohexanedimethanol.
  • a copolymerization component may be used independently and may use 2 or more types.
  • the composition of polyethylene terephthalate constituting the biaxially stretched polyester film for solar cells of the present invention is a phosphorus compound represented by the following formula (I) or (II) based on the number of moles of all dicarboxylic acid components constituting the polyethylene terephthalate 10 to 80 mmol%, preferably 15 to 75 mmol% of phosphorus atoms derived from the above.
  • R 1 and R 2 each represents an alkyl group, an aryl group, or a benzyl group.
  • Examples of the phosphorus compound represented by the formula (I) include methylphosphonic acid, ethylphosphonic acid, propylphosphonic acid, isopropylphosphonic acid, butylphosphonic acid, phenylphosphonic acid, tolylphosphonic acid, xylylphosphonic acid, and benzylphosphonic acid. Can be mentioned. Of these, phenylphosphonic acid is preferred.
  • Examples of the phosphorus compound represented by the formula (II) include methylphosphinic acid, ethylphosphinic acid, propylphosphinic acid, isopropylphosphinic acid, butylphosphinic acid, phenylphosphinic acid, tolylphosphinic acid, xylylphosphinic acid, and benzylphosphinic acid. Can be mentioned. Of these, phenylphosphinic acid is preferable.
  • the biaxially stretched polyester film for solar cells of the present invention comprises a phosphorus atom derived from a specific phosphorus compound and an antimony atom derived from an antimony compound used as a polycondensation catalyst and / or a titanium atom derived from a titanium compound. By containing, the crystallinity of the film is improved and high hydrolysis resistance is obtained.
  • the composition of polyethylene terephthalate constituting the biaxially stretched polyester film for solar cells of the present invention contains antimony atoms and / or titanium atoms in total 2 to 60 mmol%, preferably 10 to 50 mmol% in terms of metal atoms.
  • the antimony compound include organic antimony compounds such as antimony oxide, antimony chloride, and antimony acetate, and antimony oxide or antimony acetate is preferably used. These antimony compounds may be used alone or in combination.
  • the biaxially stretched polyester film for solar cells of the present invention has a plane orientation coefficient fn of 0.160 to 0.175, preferably 0.163 to 0.173.
  • fn is less than 0.160, the hydrolysis resistance of the film becomes insufficient.
  • fn exceeds 0.175, film formation becomes unstable, which is not practical in the industry.
  • the plane orientation coefficient fn is determined from the refractive index of a film measured using an Abbe refractometer described later.
  • the ethylene terephthalate unit of the polyester of the film is 90 mol% or more, and the draw ratio is referred to as the longitudinal direction (hereinafter referred to as “longitudinal direction”). ) And the direction perpendicular to the longitudinal direction (hereinafter referred to as “lateral direction”) are 2.8 to 4.5 times, and further, the area draw ratio multiplied by the draw ratio in the longitudinal direction and the draw ratio in the transverse direction is 10 times.
  • the heat treatment temperature after transverse stretching is preferably in the range of (Tm ⁇ 20 ° C.) to (Tm ⁇ 60 ° C.).
  • the intrinsic viscosity of the polyester of the film is 0.56 to 0.74 dl / g.
  • the hydrolysis resistance of the film becomes insufficient.
  • a polyester material having a higher degree of polymerization is required, which requires a long polymerization time, and also in the film production process. Since the melt viscosity of the raw material is high, the production efficiency is not increased, which is uneconomical.
  • the intrinsic viscosity of the polyester of the film is 0.60 to 0.90 dl / g, preferably 0.8. 65 to 0.85 dl / g is preferable.
  • the intrinsic viscosity of the polyester film is the intrinsic viscosity of the film sample
  • the intrinsic viscosity of the raw polyester is the intrinsic viscosity of the pellet sample supplied to the extruder.
  • These intrinsic viscosities are intrinsic viscosities determined from measured values measured at 35 ° C. after dissolving the sample in a phenol: tetrachloroethane mixed solvent having a weight ratio of 6: 4.
  • the terminal carboxyl group concentration of the polyester of the film is 6 to 29 equivalent / ton, preferably 6 to 24 equivalent / ton, more preferably 6 to 20 equivalent / ton.
  • the terminal carboxyl group concentration exceeds 29 equivalents / ton, the hydrolysis resistance of the film is inferior, and the physical properties of the film are liable to deteriorate when used for a long time under high temperature and high humidity conditions.
  • an oxazoline compound and / or a carbodiimide compound is added within a range not inhibiting the effects of the present invention. You may mix
  • a lubricant may be blended in order to slide the surface and improve the handling property.
  • the lubricant either an organic substance or an inorganic substance may be used. Examples of inorganic lubricants include titanium oxide, barium sulfate, calcium carbonate, silicon dioxide, and alumina particles.
  • the biaxially stretched polyester film for solar cells of the present invention may contain conventionally known additives as necessary, for example, an antioxidant, an ultraviolet absorber, an antistatic agent, a flame retardant is added.
  • an antioxidant for example, a hindered phenol compound can be used
  • the ultraviolet absorber for example, a benzotriazole compound or a triazine compound can be used.
  • the biaxially stretched polyester film for solar cells of the present invention may be colored as necessary, for example, white, black, or blue. If it is colored white, when used as a solar cell back surface protective film, reflection of sunlight on the film surface can be increased, and the conversion efficiency of the solar cell can be increased. In addition, if it is colored in black or blue, it is possible to provide a product that matches the design of the building in the architectural field where design is important.
  • the biaxially stretched polyester film for solar cells of the present invention may include a coating layer containing a lubricant, an additive, and a colorant.
  • the biaxially stretched polyester film itself for solar cells of the present invention may have a multilayer structure, and a lubricant, an additive, and a colorant may be added to at least one layer.
  • the biaxially stretched polyester film for solar cells of the present invention preferably has an elongation retention after aging for 3,000 hours in an environment of a temperature of 85 ° C. and a humidity of 85% RH of 50% or more. Aging for 3,000 hours in an environment of a temperature of 85 ° C. and a humidity of 85% RH corresponds to an outdoor exposure state for approximately 30 years.
  • the thickness of the biaxially stretched polyester film for solar cells of the present invention is preferably 20 to 350 ⁇ m, more preferably 40 to 250 ⁇ m, and particularly preferably 50 to 200 ⁇ m. When the thickness is in this range, good handling properties and film forming properties can be obtained.
  • a sealing resin for a solar cell element is provided on the polyester film.
  • an easy-adhesive coating can be applied to one side of the polyester film of the present invention.
  • the constituent material of the coating layer is preferably a material that exhibits excellent adhesion to both the polyester film and EVA (ethylene vinyl acetate).
  • EVA ethylene vinyl acetate
  • examples of such a material include a polyester resin and an acrylic resin. These resins preferably further contain a crosslinking component.
  • a general known coating method can be used.
  • it is an in-line coating method in which an aqueous liquid containing the above-mentioned components of the coating layer is applied to a stretchable polyester film, followed by drying, stretching, and heat treatment.
  • the thickness of the coating layer formed on the polyester film is preferably 0.01 to 1 ⁇ m.
  • the biaxially stretched polyester film for solar cells of the present invention can be suitably used as a solar cell back surface protective film. In this case, it can be used even if it is bonded to another film.
  • it can be laminated with another polyester film, and further laminated with a film of high weather resistance resin such as polyvinyl fluoride for the purpose of further improving durability. It can be a body.
  • steam barrier layer can be laminated
  • the solar cell protective film having this configuration preferably has a water vapor transmission rate of 5 g / (m 2 ⁇ 24 h) or less as measured according to JIS Z0208-73.
  • a film or foil having a water vapor barrier property, an inorganic oxide coating layer, or a vapor deposition thin film layer can be used.
  • Examples of the film having a water vapor barrier property include a polyvinylidene chloride film, a polyvinylidene chloride coated film, a polyvinylidene fluoride coated film, a silicon oxide deposited film, an aluminum oxide deposited film, and an aluminum deposited film.
  • Examples of the foil include aluminum foil and copper foil. When using the coating layer or vapor deposition thin film layer of an inorganic oxide, these layers can be directly apply
  • steam barrier layer can be laminated
  • polyethylene terephthalate is obtained by a method in which dimethyl terephthalate and ethylene glycol are reacted by transesterification and then subjected to a polycondensation reaction.
  • the transesterification is carried out while removing the generated alcohol, and then the phosphorus compound is added to substantially complete the transesterification, and then the reaction product obtained is added to the antimony compound and / or titanium. A compound is added and a polycondensation reaction is performed.
  • the obtained polyethylene terephthalate pellets are subjected to solid phase polymerization to obtain a polyethylene terephthalate composition having a terminal carboxyl group concentration of 6 to 29 equivalents / ton.
  • Tg glass transition temperature of polyethylene terephthalate
  • Tm melting point
  • the biaxially stretched polyester film for solar cells of the present invention can be produced by the following method, for example, in accordance with a conventionally known film forming method.
  • sequential biaxial stretching an unstretched film is heated by roll heating, infrared heating, or the like, and stretched in the longitudinal direction to obtain a longitudinally stretched film.
  • This stretching is preferably performed by utilizing the difference in peripheral speed between two or more rolls.
  • the stretching temperature is preferably a temperature equal to or higher than the Tg of the polyester, and more preferably Tg ⁇ (Tg + 70 ° C).
  • the film after the longitudinal stretching is sequentially subjected to the processes of lateral stretching, heat setting, and thermal relaxation to form a biaxially oriented film. These treatments are preferably performed while the film is running.
  • the transverse stretching process starts from a temperature higher than Tg. It is preferable to carry out the heating while raising the temperature to (Tg + 5 ° C.) to (Tg + 70 ° C.).
  • the temperature increase in the transverse stretching process may be continuous or stepwise (sequential).
  • the transverse stretching zone of the tenter is divided into a plurality along the film running direction, and the temperature is raised by flowing a heating medium having a predetermined temperature for each zone.
  • the draw ratio is preferably 2.5 to 4.5 times in both the longitudinal direction and the transverse direction. By setting it as the draw ratio of this range, a film with few thickness spots can be obtained without breaking during film formation. From the viewpoint of obtaining high productivity, it is preferable not to reduce the line speed, the stretching ratio in the longitudinal direction is set to 3.2 to 4.5 times, and the stretching ratio in the width direction is set to 2.8 to 4.2 times. It is preferable.
  • both ends of the film being gripped in the process of returning the film temperature to room temperature after heat setting are cut off. It is possible to relax in the longitudinal direction by adjusting the direction take-up speed (see JP-A-57-57628).
  • the means for relaxing include adjusting the speed of the roll group on the tenter exit side. As the rate of relaxation, the speed of the roll group is reduced with respect to the film line speed of the tenter, preferably 0.1 to 1.5%, more preferably 0.2 to 1.2%, particularly preferably 0.3.
  • the film is relaxed by performing a speed reduction of ⁇ 1.0% (this value is referred to as “relaxation rate”), and the longitudinal heat shrinkage rate is adjusted by controlling the relaxation rate.
  • a method of relaxing heat treatment of a film in a suspended state as disclosed in JP-A-1-275031 can be used.
  • a desired heat shrinkage rate can be obtained by reducing the width in the process until both ends are cut off.
  • ⁇ sp / C [ ⁇ ] + K [ ⁇ ] 2 ⁇ C
  • ⁇ sp (solution viscosity / solvent viscosity) ⁇ 1
  • C is the weight of dissolved polymer per 100 ml of solvent (g / 100 ml)
  • K is the Huggins constant.
  • the solution viscosity and solvent viscosity were measured using an Ostwald viscometer. The unit is indicated by [dl / g].
  • Plane orientation coefficient fn Measurement was performed using an Abbe refractometer using sodium D-line (wavelength 589 nm) as a light source.
  • the plane orientation coefficient fn (Nx + Ny) / 2 ⁇ Nz (4)
  • Breaking elongation retention rate (%) (Breaking elongation after 3,000 hours treatment time) / (breaking elongation before treatment) ⁇ 100 A: Breaking elongation retention is 70% or more B: Breaking elongation retention is 50 or more and less than 70% B: Breaking elongation retention is 30 or more and less than 50% X: Breaking elongation retention is less than 30% (6 ) Melt extrudability The extrudability was evaluated according to the following criteria. ⁇ : Extrusion is easy. X: The extrusion load is high, and it takes time and cost to produce the film.
  • a film was formed by biaxial stretching in the vertical and horizontal directions, and whether or not the film could be stably formed was evaluated according to the following criteria.
  • A film can be stably formed for 2 hours or more.
  • Cutting occurs for 10 minutes or more and less than 2 hours.
  • X Cutting occurs within 10 minutes, and stable film formation is not possible.
  • Reference Example 1 Production of polyethylene terephthalate (PET-a) A transesterification reaction vessel was charged with 100 parts by weight of dimethyl terephthalate, 60 parts by weight of ethylene glycol, and 30 mmol% of manganese acetate tetrahydrate (based on the number of moles of dimethyl terephthalate), and heated to 150 ° C. to melt. And stirred.
  • the reaction was advanced while the temperature in the reaction vessel was slowly raised to 235 ° C., and the produced methanol was distilled out of the reaction vessel.
  • phenylphosphonic acid was added to complete the transesterification reaction.
  • the reaction product was transferred to a polymerization apparatus, and antimony oxide was added as a polymerization catalyst.
  • the temperature in the polymerization apparatus was raised from 235 ° C. to 290 ° C. over 90 minutes, and at the same time, the pressure in the polymerization apparatus was reduced from atmospheric pressure to 100 Pa over 90 minutes.
  • the polymerization apparatus When the stirring torque of the contents of the polymerization apparatus reached a predetermined value, the polymerization apparatus was returned to atmospheric pressure with nitrogen gas to complete the polymerization.
  • the valve at the bottom of the polymerization apparatus was opened and the inside of the polymerization apparatus was pressurized with nitrogen gas, and the polymerized polyethylene terephthalate was discharged into water in the form of a strand.
  • the strand was chipped with a cutter.
  • a polyethylene terephthalate polymer having an intrinsic viscosity of 0.64 dl / g and a terminal carboxyl group concentration of 17 equivalents / ton was obtained.
  • PET-a The amounts of antimony oxide and phosphorus compound added as a polymerization catalyst (based on the number of moles of dimethyl terephthalate) were as shown in Table 1.
  • the obtained polyester is referred to as PET-a.
  • Reference Example 2 Production of polyethylene terephthalate (PET-b)
  • the polymer (PET-a) obtained in Reference Example 1 was pre-dried at 150 to 160 ° C. for 3 hours, and then subjected to solid state polymerization at 210 ° C., 100 Torr, and a nitrogen gas atmosphere for 7 hours.
  • the intrinsic viscosity after solid phase polymerization was 0.82 dl / g, and the terminal carboxyl group concentration was 10 equivalents / ton. This is referred to as PET-b.
  • PET-c polyethylene terephthalate
  • the polymer (PET-a) obtained in Reference Example 1 was pre-dried at 150 to 160 ° C. for 3 hours, and then subjected to solid state polymerization at 210 ° C., 100 Torr, and a nitrogen gas atmosphere for 12 hours.
  • the intrinsic viscosity after solid phase polymerization was 0.95 dl / g, and the terminal carboxyl group concentration was 10 equivalents / ton. This is referred to as PET-c.
  • PET-d polyethylene terephthalate
  • PET-e polyethylene terephthalate
  • PET-f polyethylene terephthalate
  • PET-g polyethylene terephthalate
  • PET-h polyethylene terephthalate
  • the phosphorus compound was phosphorous acid
  • a polymer of polyethylene terephthalate having an intrinsic viscosity of 0.64 dl / g and a terminal carboxyl group concentration of 17 equivalents / ton was obtained. This is referred to as PET-h.
  • PET-i polyethylene terephthalate
  • Both antimony oxide and titanium acetate were used as polycondensation catalysts. The amounts of these compounds and phenylphosphonic acid added (based on the number of moles of dimethyl terephthalate) are as shown in Table 1.
  • Example 2 The same procedure as in Example 1 was performed except that PET-b was used instead of PET-a. The evaluation results are shown in Table 2.
  • Comparative Example 1 A polyester film was obtained in the same manner as in Example 1 except that the drying temperature of the polyester raw material was 170 ° C. and the melt extrusion temperature was 290 ° C. The properties of the obtained film are shown in Table 2.
  • Comparative Example 2 The same procedure as in Example 1 was performed except that PET-c was used instead of PET-a.
  • Example 3 A polyester film was obtained in the same manner as in Example 1 except that the draw ratio was changed to 3.3 times in the longitudinal direction and 3.5 times in the transverse direction. The properties of the obtained film are shown in Table 2. Comparative Example 3 A polyester film was obtained in the same manner as in Example 1 except that the draw ratio was changed to 2.9 times in the longitudinal direction and 3.0 times in the transverse direction. The properties of the obtained film are shown in Table 2. Comparative Example 4 A polyester film was obtained in the same manner as in Example 1 except that the draw ratio was changed to 4.0 times in the longitudinal direction and 4.2 times in the transverse direction. The properties of the obtained film are shown in Table 2. Comparative Example 5 The same procedure as in Example 1 was performed except that PET-d was used instead of PET-a.
  • Comparative Example 6 The same procedure as in Example 1 was performed except that PET-e was used instead of PET-a. The evaluation results are shown in Table 2.
  • Example 4 The same procedure as in Example 1 was performed except that PET-f was used instead of PET-a. The evaluation results are shown in Table 2.
  • Example 5 The same procedure as in Example 1 was performed except that PET-i was used instead of PET-a. The evaluation results are shown in Table 2.
  • Comparative Example 7 The same procedure as in Example 1 was performed except that PET-g was used instead of PET-a. The evaluation results are shown in Table 2.
  • Comparative Example 8 The same procedure as in Example 1 was performed except that PET-h was used instead of PET-a. The evaluation results are shown in Table 2.
  • Comparative Example 9 The same procedure as in Example 1 was performed except that PET-j was used instead of PET-a.
  • the evaluation results are shown in Table 2.
  • a biaxially stretched polyester film for solar cells can be provided.
  • the biaxially oriented polyester film for solar cell of the present invention can be suitably used as a film member constituting a solar cell, particularly as a film for a solar cell back surface protective film.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Materials Engineering (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Photovoltaic Devices (AREA)
  • Polyesters Or Polycarbonates (AREA)

Abstract

 アンチモン化合物および/またはチタン化合物を重縮合触媒とするポリエチレンテレフタレートの組成物からなる二軸延伸ポリエステルフィルムであって、上記組成物は、ポリエチレンテレフタレートを構成する全ジカルボン酸成分のモル数を基準として特定のホスホン酸またはホスフィン酸に由来するリン原子を10~80ミリモル%、アンチモン原子および/またはチタン原子を金属原子換算で合計2~60ミリモル%含有し、そして上記二軸延伸ポリエステルフィルムは面配向係数fnが0.160~0.175であり、フィルムのポリエステルの極限粘度数が0.56~0.74dl/gかつ末端カルボキシル基濃度が6~29当量/トンである太陽電池用二軸延伸ポリエステルフィルム。

Description

太陽電池用二軸延伸ポリエステルフィルム
 本発明は、安価でありながら耐加水分解性に優れる、太陽電池用二軸延伸ポリエステルフィルムに関する。
 ポリエステルフィルム、特にポリエチレンテレフタレート二軸延伸フィルムは、優れた生産性、機械的性質、熱的性質、電気的性質、化学特性および寸法安定性を有するため、広く使用されてきた。しかし、大部分のポリエステルフィルムは、高温・多湿の環境で使用すると、ポリエステルが加水分解して物理的性能が低下しやすく、使用期間や使用条件が制限される問題があった。
 近年、過酷な自然環境下で使用される太陽電池用途において、その長期信頼性を向上することが要望されており、太陽電池保護膜としてポリエステルフィルムを用いる場合には、優れた耐加水分解性を付与することが必要である。
 ポリエステルフィルムの耐加水分解性の向上には、従来から種々の提案がなされている。特開2007−302878号公報には、耐加水分解剤としてエポキシ化脂肪酸アルキルエステルやエポキシ化脂肪酸グリセリンエステルを添加したポリエステルフィルムが記載されている。しかしこの提案は、耐加水分解剤の反応性が低く、ポリエステルフィルムの耐加水分解性の向上効果は小さいものであった。
 また、特開2002−187965号公報には耐加水分解剤としてカルボジイミド化合物やオキサゾリン化合物の単量体または重合体を添加したポリエステルフィルムが開示されている。しかしながら、カルボジイミド化合物等を含有するフィルムは、その製造工程や使用においてイソシアネートや他の副生成物および分解物によるガスが発生し、このガスが粘膜を刺激し、健康被害をもたらす。さらに、これら耐加水分解剤を使用した場合、ポリマーの粘度が上昇し、押出し工程において、押出しの不安定性や制御困難な問題が生じる。
 太陽電池保護膜に用いられるポリエステルフィルムにおいても、長期使用での耐加水分解性が不十分であることから改良が試みられ、高分子量のポリエチレンテレフタレートフィルムを用いること(特開2002−26354号公報参照)、オリゴマー含有量の少ないポリエチレンテレフタレートフィルムを用いること(特開2002−100788号公報、特開2002−134770号公報および特開2002−134771号公報参照)が提案されている。これらの技術では、耐加水分解性が従来に比べて改善するものの、フィルムを効率良く生産することが困難であり、産業上実用的な手段ではなかった。
 また、2,6−ナフタレンジカルボン酸成分を含有するポリエステルフィルムを用いること(特開2007−007885号公報および特開2006−306910号公報参照)も提案されているが、このフィルムは、耐加水分解性こそ優れるものの、紫外線による劣化変色が大きく、また、ポリエチレンテレフタレートフィルムに比べて高価であり、太陽電池用部材の用途での使用は制限されていた。
 本発明は上記問題点に注目してなされたものである。本発明の目的は、第一に、高温・多湿の過酷な自然環境下で長時間使用された場合にも、機械的性質の低下が少なく、優れた耐加水分解性を備える、太陽電池用二軸延伸ポリエステルフィルムを提供することにある。本発明の目的は、第二に、カルボジイミド化合物やオキサゾリン化合物といった耐加水分解剤を使用しなくても、優れた耐加水分解性を備える太陽電池用二軸延伸ポリエステルフィルムを提供することにある。
 本発明者等はかかる従来技術の有する問題点を解決するために鋭意検討した結果、以下の手段によりこの課題を解決することができることを見出し、本発明に到達した。
 すなわち本発明は、アンチモン化合物および/またはチタン化合物を重縮合触媒とするポリエチレンテレフタレートの組成物からなる二軸延伸ポリエステルフィルムであって、該組成物は、ポリエチレンテレフタレートを構成する全ジカルボン酸成分のモル数を基準として下記式(I)または(II)で表わされるリン化合物に由来するリン原子を10~80ミリモル%、アンチモン原子および/またはチタン原子を金属原子換算で合計2~60ミリモル%含有しそして該二軸延伸ポリエステルフィルムは面配向係数fnが0.160~0.175であり、フィルムのポリエステルの極限粘度数が0.56~0.74dl/gかつ末端カルボキシル基濃度が6~29当量/トンであることを特徴とする、太陽電池用二軸延伸ポリエステルフィルムである。
Figure JPOXMLDOC01-appb-I000002
 ここで、RおよびRは、それぞれ炭素数1~6のアルキル基、アリール基またはベンジル基を表わす。
 以下、本発明について詳細に説明する。
 [ポリエチレンテレフタレート]
 本発明の太陽電池用二軸延伸ポリエステルフィルムは、アンチモン化合物および/またはチタン化合物を重縮合触媒として重合されたポリエチレンテレフタレートの組成物からなる。この組成物のポリエチレンテレフタレートは、主たる繰り返し単位がエチレンテレフタレートであるポリエステルである。主たる繰り返し単位がエチレンテレフタレートであるとは、ポリエステルを構成する全繰り返し単位の、好ましくは90モル%以上、より好ましくは95モル%以上、さらに好ましくは97モル%以上がエチレンテレフタレート単位からなることを意味する。
 ポリエチレンテレフタレートの全繰り返し単位の90モル%以上がエチレンテレフタレート単位でないと、耐熱性が低下するほか、面配向係数fnを0.160~0.175にすることが困難になり、結果として、フィルムの耐加水分解性が劣ることになる。
 ポリエチレンテレフタレートには、主たる繰り返し単位がエチレンテレフタレートである範囲で共重合成分が共重合されていてもよい。共重合成分はジカルボン酸成分であってもジオール成分であってもよい。共重合成分のジカルボン酸成分としては、例えばイソフタル酸、フタル酸、ナフタレンジカルボン酸の如き芳香族ジカルボン酸;アジピン酸、アゼライン酸、セバシン酸、デカンジカルボン酸の如き脂肪族ジカルボン酸;シクロヘキサンジカルボン酸の如き脂環族ジカルボン酸を挙げることができる。また、共重合成分のジオール成分としては、例えばブタンジオール、ヘキサンジオールの如き脂肪族ジオール;シクロヘキサンジメタノールの如き脂環族ジオールを挙げることができる。共重合成分は単独で用いてもよく、二種以上を用いてもよい。
 [リン化合物]
 本発明の太陽電池用二軸延伸ポリエステルフィルムを構成するポリエチレンテレフタレートの組成物は、ポリエチレンテレフタレートを構成する全ジカルボン酸成分のモル数を基準として下記式(I)または(II)で表わされるリン化合物に由来するリン原子を10~80ミリモル%、好ましくは15~75ミリモル%含有する。
Figure JPOXMLDOC01-appb-I000003
 ここで、RおよびRは、それぞれアルキル基、アリール基またはベンジル基を表わす。
 式(I)で表わされるリン化合物としては、例えば、メチルホスホン酸、エチルホスホン酸、プロピルホスホン酸、イソプロピルホスホン酸、ブチルホスホン酸、フェニルホスホン酸、トリルホスホン酸、キシリルホスホン酸、ベンジルホスホン酸を挙げることができる。中でも、フェニルホスホン酸が好ましい。
 式(II)で表わされるリン化合物としては、例えば、メチルホスフィン酸、エチルホスフィン酸、プロピルホスフィン酸、イソプロピルホスフィン酸、ブチルホスフィン酸、フェニルホスフィン酸、トリルホスフィン酸、キシリルホスフィン酸、ベンジルホスフィン酸を挙げることができる。中でも、フェニルホスフィン酸が好ましい。
 式(I)または(II)で表わされるリン化合物に由来するリン原子の含有量が、ポリエチレンテレフタレートを構成するジカルボン酸成分のモル数を基準にして10ミリモル%未満であると得られるポリエステルフィルムの結晶性が不十分となり、耐加水分解性に劣る。他方、80ミリモル%を超えると効果が飽和し不経済なだけでなく、かえって耐加水分解性が低下するようになる。
 [アンチモン原子および/またはチタン原子]
 本発明の太陽電池用二軸延伸ポリエステルフィルムは、特定のリン化合物に由来するリン原子と、重縮合触媒として用いられるアンチモン化合物に由来するアンチモン原子および/またはチタン化合物に由来するチタン原子と、を含有することでフィルムの結晶性を高め、高い耐加水分解性を得ている。
 本発明の太陽電池用二軸延伸ポリエステルフィルムを構成するポリエチレンテレフタレートの組成物は、アンチモン原子および/またはチタン原子を金属原子換算で合計2~60ミリモル%、好ましくは10~50ミリモル%含有する。含有量の合計が2ミリモル%未満であると重縮合反応速度が遅すぎてポリエステル原料の生産性が低下するだけでなく、必要な極限粘度数をもつ結晶性のポリエステルを得ることができず、フィルムの耐加水分解性が劣る。他方、60ミリモル%を越えるとフィルム中に過剰の重縮合触媒が存在することになり、フィルムの耐加水分解性が低下するか、フィルムの着色が大きくなる。
 アンチモン化合物としては、例えば酸化アンチモン、塩化アンチモン、酢酸アンチモン等の有機アンチモン化合物を挙げることができ、好ましくは酸化アンチモンまたは酢酸アンチモンが用いられる。これらのアンチモン化合物は単独で用いてもよく、複数で用いてもよい。
 チタン化合物としては、ポリエステルの重縮合触媒として一般的に知られるチタン化合物、例えば酢酸チタンやテトラ−n−ブトキシチタンを用いることができる。
 [フィルムの面配向係数]
 本発明の太陽電池用二軸延伸ポリエステルフィルムは、フィルムの面配向係数fnが、0.160~0.175、好ましくは0.163~0.173である。fnが0.160未満であるとフィルムの耐加水分解性が不十分となり、他方、fnが0.175を超えるとフィルムの製膜が不安定になり、産業上現実的ではない。
 本発明において面配向係数fnは、後述するアッベ屈折計を用いて測定したフィルムの屈折率より求める。
 フィルムの面配向係数fnを0.160~0.175の範囲内とするためには、フィルムのポリエステルのエチレンテレフタレート単位を90モル%以上とし、延伸倍率を長手方向(以下、「縦方向」という)、縦方向と直交する方向(以下、「横方向」という)ともに2.8~4.5倍とし、さらには長手方向の延伸倍率と、横方向の延伸倍率をかけた面積延伸倍率を10倍以上とし、横延伸後の熱処理温度を(Tm−20℃)~(Tm−60℃)の範囲とするのがよい。
 [極限粘度数]
 本発明の太陽電池用二軸延伸ポリエステルフィルムは、フィルムのポリエステルの極限粘度数が0.56~0.74dl/gであることが肝要である。極限粘度数が0.56dl/g未満であるとフィルムの耐加水分解性が不十分となる。他方、0.74dl/gを超えるポリエステルフィルムを作成するには、さらに高重合度のポリエステル原料が必要であり、そのためには長時間の重合時間が必要であり、また、フィルムの製造工程においても原料の溶融粘度が高いために生産効率が上がらず不経済となる。
 フィルムのポリエステルの極限粘度数を0.56~0.74dl/gにするためには、フィルムの製膜に供する原料ポリエステルの極限粘度数を0.60~0.90dl/g、好ましくは0.65~0.85dl/gとするのがよい。
 なお、フィルムのポリエステルの極限粘度数は、フィルムの試料の極限粘度数であり、原料ポリエステルの極限粘度数は押出機に供給するペレットの試料の極限粘度数である。これらの極限粘度数は、試料を重量比が6:4のフェノール:テトラクロロエタン混合溶媒に溶解後、35℃で測定した測定値から求めた極限粘度数である。
 [末端カルボキシル基濃度]
 本発明の太陽電池用二軸延伸ポリエステルフィルムは、フィルムのポリエステルの末端カルボキシル基濃度が6~29当量/トン、好ましくは6~24当量/トン、さらに好ましくは6~20当量/トンである。末端カルボキシル基濃度が29当量/トンを超えるとフィルムの耐加水分解性が劣り、高温・多湿の条件下において長時間使用する場合にフィルムの物理的性質が低下しやすく好ましくない。他方、6当量/トン未満のフィルムを得るためには、それ以上に末端カルボキシル基濃度の低いポリエステル原料を用いる必要があり、原料ポリエステルの重合時間が長く不経済である。
 [添加物]
 本発明の太陽電池用二軸延伸ポリエステルフィルムにおけるポリエチレンテレフタレートの組成物には、さらに高い耐加水分解性を付与するために、オキサゾリン化合物および/またはカルボジイミド化合物を、本発明の効果を阻害しない範囲で配合してもよい。
 本発明の太陽電池用二軸延伸ポリエステルフィルムにおけるポリエチレンテレフタレートの組成物には、表面を滑らせハンドリング性を良好にするために滑剤を配合してもよい。滑剤としては、有機物、無機物いずれを用いてもよい。無機物の滑剤としては、例えば酸化チタン、硫酸バリウム、炭酸カルシウム、二酸化珪素、アルミナの粒子を挙げることができる。これらの粒子は、板状、球状いずれの形状をとる粒子であってもよい。分散性と滑り性の観点から、これらの粒子の、平均粒径は、好ましくは0.1~5.0μm、さらに好ましくは0.2~4.0μmである。
 また、本発明の太陽電池用二軸延伸ポリエステルフィルムには、必要に応じて従来公知の添加剤を含有させてもよく、例えば酸化防止剤、紫外線吸収剤、帯電防止剤、難燃剤を添加することができる。酸化防止剤としては、例えばヒンダードフェノール系化合物を、紫外線吸収剤としては、例えばベンゾトリアゾール系化合物、トリアジン系化合物を用いることができる。
 本発明の太陽電池用二軸延伸ポリエステルフィルムは、必要に応じて、着色してもよく、例えば白色、黒色、青色に着色してもよい。白色に着色すれば太陽電池裏面保護膜として用いる場合にフィルム表面での太陽光の反射を増大させ、太陽電池の電換効率を高めることができる。また、黒色や青色に着色すれば意匠性を重視する建築分野に建築物のデザインに合ったものを提供することができる。
 また、本発明の太陽電池用二軸延伸ポリエステルフィルムは、滑剤、添加剤、着色剤を含む塗布層を備えてもよい。本発明の太陽電池用二軸延伸ポリエステルフィルム自体を多層構成とし、その少なくとも1層に滑剤、添加剤、着色剤を添加してもよい。
 [耐加水分解性]
 本発明の太陽電池用二軸延伸ポリエステルフィルムは、温度85℃、湿度85%RHの環境下において3,000時間エージング後の伸度保持率が50%以上であることが好ましい。温度85℃、湿度85%RHの環境下において3,000時間のエージングは、概ね30年間の屋外暴露状態に相当する。この伸度保持率を備えると、屋外での長期使用において劣化を引き起こし難く、長期に亘り物理的性質が低下しない。
 [フィルムの厚み、コーティング層]
 本発明の太陽電池用二軸延伸ポリエステルフィルムの厚みは、好ましくは20~350μm、さらに好ましくは40~250μm、特に好ましくは50~200μmである。この範囲の厚みであることによって、良好なハンドリング性と製膜性を得ることができる。
 本発明の太陽電池用二軸延伸ポリエステルフィルムを用いて太陽電池を作成するときには、該ポリエステルフィルムのうえに太陽電池素子の封止樹脂が設けられる。この場合に、ポリエステルフィルムと封止樹脂との接着性を向上させる目的で、本発明のポリエステルフィルムの片面に易接着性のコーティングを施すことができる。
 コーティング層の構成材としては、ポリエステルフィルムとEVA(エチレンビニルアセテート)の双方に優れた接着性を示す素材であることが好ましい。かかる素材としては、例えばポリエステル樹脂やアクリル樹脂を挙げることができる。これらの樹脂はさらに架橋成分を含有することが好ましい。コーティングは一般的な既知のコーティング方法を用いることができる。好ましくは、延伸可能なポリエステルフィルムに前述のコーティング層の構成成分を含む水性液を塗布した後、乾燥、延伸し、熱処理するインラインコーティング法である。このとき、ポリエステルフィルムの上に形成されるコーティング層の厚さは0.01~1μmであることが好ましい。
 [太陽電池保護膜]
 本発明の太陽電池用二軸延伸ポリエステルフィルムは、太陽電池裏面保護膜として好適に用いることができる。この場合に、他のフィルムと貼り合わせても使用することもできる。例えば、絶縁特性を向上させる目的で、別のポリエステルフィルムと貼合せて積層体とすることができ、さらに耐久性を向上させる目的でポリフッ化ビニルなどの高耐候性樹脂のフィルムと貼り合せて積層体とすることができる。
 また、本発明の太陽電池用二軸延伸ポリエステルフィルムを、太陽電池裏面保護膜として用いるには、水蒸気バリア性を付与する目的で水蒸気バリア層を積層することができる。この構成の太陽電池保護膜は、JIS Z0208−73に従い測定される水蒸気の透過率が5g/(m・24h)以下であることが好ましい。
 水蒸気バリア層としては、水蒸気バリア性を有するフィルムや箔、無機酸化物の塗布層または蒸着薄膜層を用いることができる。水蒸気バリア性を有するフィルムとしては、例えばポリ塩化ビニリデンフィルム、ポリ塩化ビニリデンコートフィルム、ポリフッ化ビニリデンコートフィルム、酸化ケイ素蒸着フィルム、酸化アルミニウム蒸着フィルム、アルミニウム蒸着フィルムを挙げることができる。また、箔としては、アルミニウム箔、銅箔を挙げることができる。無機酸化物の塗布層または蒸着薄膜層を用いる場合、これらの層は、本発明の太陽電池用二軸延伸ポリエステルフィルムに直接塗布または蒸着することができる。
 水蒸気バリア層は、本発明のポリエステルフィルムのEVA接着面の反対側に積層することができる。また、さらにその外側に別の樹脂フィルムを積層して、複数のフィルムでガスバリア層を挟みこむ態様で太陽電池裏面保護膜とすることができる。
 [ポリエチレンテレフタレートの製造方法]
 本発明の太陽電池用二軸配向ポリエステルフィルムを製膜する原料として用いられるポリエチレンテレフタレートの組成物を製造する方法の一例を以下に説明する。ポリエチレンテレフタレートは、テレフタル酸ジメチルとエチレングリコールをエステル交換反応により反応させた後に重縮合反応を行う方法により得る。この製造過程において、発生するアルコールを除去させつつエステル交換反応を実施した後、リン化合物を添加して実質的にエステル交換反応を完了させ、次いで得られた反応生成物にアンチモン化合物および/またはチタン化合物を添加し、重縮合反応を行う。得られたポリエチレンテレフタレートのペレットを固相重合に供して、末端カルボキシル基濃度が6~29当量/トンのポリエチレンテレフタレートの組成物を得る。
 以下、ポリエチレンテレフタレートのガラス転移温度をTg、融点をTmという。
 ポリエチレンテレフタレートの末端カルボキシル基濃度をこの範囲にコントロールするためには、一旦、極限粘度数が0.50~0.58、末端カルボキシル基濃度が10~40当量/トンのポリエチレンテレフタレートを重合した後、(Tm−50℃)以上、Tm未満の温度で、減圧または窒素ガスのような不活性気体の流通下で加熱する、いわゆる固相重合を実施することができる。この固相重合によって、原料ポリエステルの末端カルボキシル基濃度を増加させることなく、原料ポリエステルの極限粘度数を0.60~0.90dl/gに高めることができる。
 [フィルムの製造方法]
 本発明の太陽電池用二軸延伸ポリエステルフィルムは、例えば以下の方法により、従来公知の製膜方法に準拠して製造することができる。
 まず、原料のポリエチレンテレフタレートをスリットダイよりフィルム状に溶融押出し、キャスティングドラムで冷却固化させて未延伸フィルムとし、得られた未延伸シートを少なくとも一軸方向、好ましくは二軸方向に延伸する。延伸は、逐次二軸延伸でも同時二軸延伸のいずれでもよい。
 例えば、逐次二軸延伸を採用する場合について説明すると、未延伸フィルムをロール加熱、赤外線加熱等で加熱し、縦方向に延伸して縦延伸フィルムを得る。この延伸は2個以上のロールの周速差を利用して行うのが好ましい。延伸温度はポリエステルのTg以上の温度、さらにはTg~(Tg+70℃)とすることが好ましい。縦延伸後のフィルムは、続いて、横延伸、熱固定、熱弛緩の処理を順次施して二軸配向フィルムとする。これら処理はフィルムを走行させながら行うのが好ましい。横延伸の処理はTgより高い温度から始める。そして(Tg+5℃)~(Tg+70℃)の温度まで昇温しながら行うのが好ましい。横延伸過程での昇温は連続的でも段階的(逐次的)でもよい。通常逐次的に昇温するのが好ましい。例えば、テンターの横延伸ゾーンをフィルム走行方向に沿って複数に分け、ゾーン毎に所定温度の加熱媒体を流すことで昇温する。
 延伸倍率は、縦方向、横方向ともに、好ましくは2.5~4.5倍である。この範囲の延伸倍率とすることで、厚み斑の少ないフィルムを、製膜中に破断することなく得ることができる。高い生産性を得る観点からは、ラインスピードを低くしないことが好ましく、縦方向の延伸倍率を3.2~4.5倍とし、幅方向の延伸倍率を2.8~4.2倍とすることが好ましい。
 横延伸後のフィルムは両端を把持したまま(Tm−20℃)~(Tm−60℃)で定幅または10%以下の幅減少下で熱処理して熱収縮率を低下させるのが好ましい。これにより寸法安定性が良くなる。これより高い温度で熱処理するとフィルムの平面性が悪くなり、厚み斑が大きくなり好ましくない。(Tm−60℃)より低い温度で熱処理すると熱収縮率が大きくなることがある。さらに、(Tm−20℃)~(Tm−60℃)の領域の熱収縮量を調整する方法として、熱固定後フィルム温度を常温に戻す過程で把持しているフィルムの両端を切り落し、フィルム縦方向の引き取り速度を調整し、縦方向に弛緩させることができる(特開昭57−57628号公報参照)。弛緩させる手段としては、例えばテンター出側のロール群の速度を調整することが挙げられる。弛緩させる割合として、テンターのフィルムライン速度に対してロール群の速度ダウンを行い、好ましくは0.1~1.5%、さらに好ましくは0.2~1.2%、特に好ましくは0.3~1.0%の速度ダウンを実施してフィルムを弛緩(この値を「弛緩率」という)して、弛緩率をコントロールすることによって縦方向の熱収縮率を調整する。また、別の方法としては、特開平1−275031号公報に示されるようなフィルムを懸垂状態で弛緩熱処理する方法などを用いることもできる。横方向の寸法安定性を高める方法としては、両端を切り落すまでの過程で幅減少させて、所望の熱収縮率を得ることもできる。
 以下、実施例により詳細に説明する。評価は以下の方法で行った。
(1)フィルム厚み
 フィルム試料をエレクトリックマイクロメーター(アンリツ製 K−402B)にて、10点厚みを測定し、平均値をフィルム厚みとした。
(2)極限粘度数(IV)
 重量比が6:4のフェノール:テトラクロロエタン混合溶媒に試料を溶解して、35℃の温度にて測定した溶液粘度から、下式で計算した値を用いた。
 ηsp/C=[η]+K[η]・C
 ここで、ηsp=(溶液粘度/溶媒粘度)−1であり、Cは、溶媒100mlあたりの溶解ポリマー重量(g/100ml)、Kはハギンス定数である。また、溶液粘度、溶媒粘度はオストワルド粘度計を用いて測定した。単位は[dl/g]で示す。
(3)面配向係数fn
 ナトリウムD線(波長589nm)を光源として、アッベ屈折計を用いて測定した。フィルムの縦方向の屈折率(Nx)、幅方向の屈折率(Ny)および、厚み方向の屈折率(Nz)から、以下の式により面配向係数fnを計算して求めた。
 fn=(Nx+Ny)/2−Nz
(4)末端カルボキシル基濃度
 試料10mgをHFIP(ヘキサフルオロイソプロパノール):重クロロホルム=1:3の混合溶媒0.5mlに溶解してイソプロピルアミンを数滴添加し、H−NMR法(50℃、600MHz)により定量した。
(5)耐加水分解性
 フィルムの縦方向に100mm長、横方向に10mm幅に切り出した短冊状の試料を、温度85℃、湿度85%RHに設定した環境試験機内に3,000時間放置した。その後試料を取り出し、試料の縦方向の破断伸度を5回測定し平均値を求めた。その平均値を放置前の破断伸度の測定値で割った値を破断伸度保持率(%)とし、下記基準にて耐加水分解性を評価した。なお、耐加水分解性は破断伸度保持率の高いものが良好である。
 破断伸度保持率(%)
 =(処理時間3,000時間後の破断伸度)/(処理前の破断伸度)×100
 ◎:破断伸度保持率が70%以上
 ○:破断伸度保持率が50以上70%未満
 △:破断伸度保持率が30以上50%未満
 ×:破断伸度保持率が30%未満
(6)溶融押出性
 押出性は、以下の基準で評価した。
 ○:押出が容易である。
 ×:押出負荷が高く、フィルム作成に時間、コストがかかる。
(7)製膜性
 縦方向および横方向に二軸延伸してフィルムを製膜し、安定に製膜できるか否かを下記基準で評価した。
 ○:2時間以上安定に製膜できる
 △:10分間以上2時間未満の間に切断が生ずる。
 ×:10分間以内に切断が発生し、安定な製膜ができない。
 参考例1 ポリエチレンテレフタレートの製造(PET−a)
 エステル交換反応容器にテレフタル酸ジメチルを100重量部、エチレングリコールを60重量部、酢酸マンガン四水塩を30ミリモル%(テレフタル酸ジメチルのモル数を基準とする)仕込み、150℃に加熱して溶融し撹拌した。反応容器内温度をゆっくりと235℃まで昇温しながら反応を進め、生成するメタノールを反応容器外へ留出させた。メタノールの留出が終了したらフェニルホスホン酸を添加し、エステル交換反応を終了させた。その後反応物を重合装置に移行し、重合触媒として酸化アンチモンを添加した。ついで重合装置内の温度を235℃から290℃まで90分かけて昇温し、同時に重合装置内の圧力を大気圧から100Paまで90分かけて減圧した。重合装置の内容物の撹拌トルクが所定の値に達したら重合装置内を窒素ガスで大気圧に戻して重合を終了した。重合装置下部のバルブを開いて重合装置内部を窒素ガスで加圧し、重合の完了したポリエチレンテレフタレートをストランド状にして水中に吐出した。ストランドはカッターによってチップ化した。このようにして極限粘度数が0.64dl/g、末端カルボキシル基濃度が17当量/トンであるポリエチレンテレフタレートのポリマーを得た。なお、重合触媒として添加する酸化アンチモンおよびリン化合物の添加量(テレフタル酸ジメチルのモル数を基準とする。)は表1に示すとおりとした。得られたポリエステルをPET−aと称する。
 参考例2 ポリエチレンテレフタレートの製造(PET−b)
 参考例1で得られたポリマー(PET−a)を150~160℃で3時間予備乾燥した後、210℃、100トール、窒素ガス雰囲気下で7時間固相重合を行った。固相重合後の極限粘度数は0.82dl/g、末端カルボキシル基濃度は10当量/トンであった。これをPET−bと称する。
 参考例3 ポリエチレンテレフタレートの製造(PET−c)
 参考例1で得られたポリマー(PET−a)を150~160℃で3時間予備乾燥した後、210℃、100トール、窒素ガス雰囲気下で12時間固相重合を行った。固相重合後の極限粘度数は0.95dl/g、末端カルボキシル基濃度は10当量/トンであった。これをPET−cと称する。
 参考例4 ポリエチレンテレフタレートの製造(PET−d)
 フェニルホスホン酸の添加量を5ミリモル%とする以外は参考例1と同様に実施し、極限粘度数が0.64dl/g、末端カルボキシル基濃度が17当量/トンであるポリエチレンテレフタレートのポリマーを得た。これをPET−dと称する。
 参考例5 ポリエチレンテレフタレートの製造(PET−e)
 フェニルホスホン酸の添加量を100ミリモル%とする以外は参考例1と同様に実施し、極限粘度数0.64dl/g、末端カルボキシル基濃度17当量/トンであるポリエチレンテレフタレートのポリマーを得た。これをPET−eと称する。
 参考例6 ポリエチレンテレフタレートの製造(PET−f)
 リン化合物をフェニルホスフィン酸とする以外は参考例1と同様に実施し、極限粘度数0.64dl/g、末端カルボキシル基濃度17当量/トンであるポリエチレンテレフタレートのポリマーを得た。これをPET−fと称する。
 参考例7 ポリエチレンテレフタレートの製造(PET−g)
 リン化合物を正リン酸とする以外は参考例1と同様に実施し、極限粘度数0.64dl/g、末端カルボキシル基濃度17当量/トンであるポリエチレンテレフタレートのポリマーを得た。これをPET−gと称する。
 参考例8 ポリエチレンテレフタレートの製造(PET−h)
 リン化合物を亜リン酸とする以外は参考例1と同様に実施し、極限粘度数0.64dl/g、末端カルボキシル基濃度17当量/トンであるポリエチレンテレフタレートのポリマーを得た。これをPET−hと称する。
 参考例9 ポリエチレンテレフタレートの製造(PET−i)
 重縮合触媒として酸化アンチモンと酢酸チタンの両方を用いた。これらの化合物とフェニルホスホン酸の添加量(テレフタル酸ジメチルのモル数を基準とする)を表1記載のとおりとした。これら以外は参考例1と同様に実施してポリマーを得た。このポリマーを150~160℃で3時間予備乾燥した後、210℃、100トール、窒素ガス雰囲気下で5時間固相重合を行った。得られたポリマーの極限粘度数は0.74dl/g、末端カルボキシル基濃度は8当量/トンであった。これをPET−iと称する。
 参考例10 ポリエチレンテレフタレートの製造(PET−j)
 エステル交換触媒としてテトラブチル−n−チタネート、重縮合触媒として酸化ゲルマニウム、リン化合物として正リン酸を用いた。これらの化合物の添加量(テレフタル酸ジメチルのモル数を基準とする)を表1に示すとおりとした。これら以外は参考例1と同様に実施してポリマーを得た。次いで、このポリマーを150~160℃で3時間予備乾燥した後、210℃、100トール、窒素ガス雰囲気下で5時間固相重合を行った。得られたポリマーの極限粘度数は0.74dl/g、末端カルボキシル基濃度は8当量/トンであった。これをPET−jと称する。
 実施例1
 PET−aを回転式真空乾燥機にて180℃で3時間乾燥した後、押出機に供給して、280℃で溶融押出し、スリットダイよりシート状に成形した。このシートを、表面温度20℃の冷却ドラムで冷却固化して未延伸フィルムとした。これを100℃にて縦方向に3.5倍延伸し、25℃のロール群で冷却し、続いて、フィルムの両端をクリップで保持しながらテンターに導き130℃に加熱された雰囲気中で横方向に3.7倍延伸した。その後テンター内で220℃に加熱された雰囲気中で熱固定を行い、横方向に3%の幅入れを行い、室温まで冷やしてポリエステルフィルムを得た。得られたフィルムについて、製膜工程での溶融押出性、製膜性および各種フィルム特性を評価した結果を表2に示す。
 実施例2
 PET−aのかわりにPET−bを用いる他は実施例1と同様にして実施した。評価結果を表2に示す。
 比較例1
 ポリエステル原料の乾燥温度を170℃、溶融押出温度を290℃とする以外は実施例1と同様にしてポリエステルフィルムを得た。得られたフィルムの特性は表2のとおりであった。
 比較例2
 PET−aのかわりにPET−cを用いる他は実施例1と同様にして実施した。評価結果を表2に示す。
 実施例3
 延伸倍率を縦方向3.3倍、横方向3.5倍に変更した以外は実施例1と同様にしてポリエステルフィルムを得た。得られたフィルムの特性は表2のとおりであった。
 比較例3
 延伸倍率を縦方向2.9倍、横方向3.0倍に変更した以外は実施例1と同様にしてポリエステルフィルムを得た。得られたフィルムの特性は表2のとおりであった。
 比較例4
 延伸倍率を縦方向4.0倍、横方向4.2倍に変更した以外は実施例1と同様にしてポリエステルフィルムを得た。得られたフィルムの特性は表2のとおりであった。
 比較例5
 PET−aのかわりにPET−dを用いる他は実施例1と同様にして実施した。評価結果を表2に示す。
 比較例6
 PET−aのかわりにPET−eを用いる他は実施例1と同様にして実施した。評価結果を表2に示す。
 実施例4
 PET−aのかわりにPET−fを用いる他は実施例1と同様にして実施した。評価結果を表2に示す。
 実施例5
 PET−aのかわりにPET−iを用いる他は実施例1と同様にして実施した。評価結果を表2に示す。
 比較例7
 PET−aのかわりにPET−gを用いる他は実施例1と同様にして実施した。評価結果を表2に示す。
 比較例8
 PET−aのかわりにPET−hを用いる他は実施例1と同様にして実施した。評価結果を表2に示す。
 比較例9
 PET−aのかわりにPET−jを用いる他は実施例1と同様にして実施した。評価結果を表2に示す。
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
 以上のとおり、本発明によれば、第一に、高温・多湿の過酷な自然環境下で長時間使用された場合にも、機械的性質の低下が少なく、優れた耐加水分解性を備える、太陽電池用二軸延伸ポリエステルフィルムを提供することができる。本発明によれば、第二に、カルボジイミド化合物やオキサゾリン化合物といった耐加水分解剤を使用しなくても、優れた耐加水分解性を備える太陽電池用二軸延伸ポリエステルフィルムを提供することができる。
 本発明の太陽電池用二軸配向ポリエステルフィルムは、太陽電池を構成するフィルム部材として、特に太陽電池裏面保護膜用フィルムとして好適に利用することができる。

Claims (6)

  1.  アンチモン化合物および/またはチタン化合物を重縮合触媒とするポリエチレンテレフタレートの組成物からなる二軸延伸ポリエステルフィルムであって、該組成物は、ポリエチレンテレフタレートを構成する全ジカルボン酸成分のモル数を基準として下記式(I)または(II)で表わされるリン化合物に由来するリン原子を10~80ミリモル%、アンチモン原子および/またはチタン原子を金属原子換算で合計2~60ミリモル%含有しそして該二軸延伸ポリエステルフィルムは面配向係数fnが0.160~0.175であり、フィルムのポリエステルの極限粘度数が0.56~0.74dl/gかつ末端カルボキシル基濃度が6~29当量/トンであることを特徴とする、太陽電池用二軸延伸ポリエステルフィルム。
    Figure JPOXMLDOC01-appb-I000001
     ここで、RおよびRは、それぞれ炭素数1~6のアルキル基、アリール基またはベンジル基を表わす。
  2.  式(I)で表されるリン化合物がメチルホスホン酸、エチルホスホン酸、プロピルホスホン酸、イソプロピルホスホン酸、ブチルホスホン酸、フェニルホスホン酸、トリルホスホン酸、キシリルホスホン酸またはベンジルホスホン酸である請求項1に記載の二軸延伸ポリエステルフィルム。
  3.  式(II)で表わされるリン化合物がメチルホスフィン酸、エチルホスフィン酸、プロピルホスフィン酸、イソプロピルホスフィン酸、ブチルホスフィン酸、フェニルホスフィン酸、トリルホスフィン酸、キシリルホスフィン酸またはベンジルホスフィン酸である請求項1に記載の二軸延伸ポリエステルフィルム。
  4.  リン化合物が、フェニルホスホン酸である、請求項1記載の太陽電池用二軸延伸ポリエステルフィルム。
  5.  請求項1記載の太陽電池用二軸延伸ポリエステルフィルムを用いた太陽電池保護膜。
  6.  請求項1記載の太陽電池用二軸延伸ポリエステルフィルムの太陽電池保護膜への使用。
PCT/JP2010/057198 2009-04-23 2010-04-16 太陽電池用二軸延伸ポリエステルフィルム WO2010123087A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN2010800183591A CN102414261A (zh) 2009-04-23 2010-04-16 太阳能电池用双轴拉伸聚酯膜
US13/265,743 US20120053317A1 (en) 2009-04-23 2010-04-16 Biaxially oriented polyester film for solar cells
JP2011510370A JP5568550B2 (ja) 2009-04-23 2010-04-16 太陽電池用二軸延伸ポリエステルフィルム
EP10767142.2A EP2423248A4 (en) 2009-04-23 2010-04-16 BIAXIAL SUPPRESSED POLYESTER FOR SUNBATTERY

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009105058 2009-04-23
JP2009-105058 2009-04-23

Publications (1)

Publication Number Publication Date
WO2010123087A1 true WO2010123087A1 (ja) 2010-10-28

Family

ID=43011201

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/057198 WO2010123087A1 (ja) 2009-04-23 2010-04-16 太陽電池用二軸延伸ポリエステルフィルム

Country Status (7)

Country Link
US (1) US20120053317A1 (ja)
EP (1) EP2423248A4 (ja)
JP (1) JP5568550B2 (ja)
KR (1) KR20120022761A (ja)
CN (1) CN102414261A (ja)
TW (1) TWI475069B (ja)
WO (1) WO2010123087A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011207986A (ja) * 2010-03-29 2011-10-20 Fujifilm Corp ポリエステルフィルム及びその製造方法、太陽電池用バックシート、並びに太陽電池モジュール
WO2012005034A1 (ja) * 2010-07-06 2012-01-12 帝人デュポンフィルム株式会社 太陽電池裏面保護膜用ポリエステルフィルム
JP2012138490A (ja) * 2010-12-27 2012-07-19 Mitsubishi Plastics Inc 太陽電池裏面保護材用ポリエステルフィルムおよび太陽電池裏面保護材用部材
JP2012231029A (ja) * 2011-04-26 2012-11-22 Fujifilm Corp 太陽電池用保護シート及びその製造方法並びに太陽電池モジュール
JP2014012767A (ja) * 2012-07-04 2014-01-23 Teijin Dupont Films Japan Ltd 難燃性ポリエステルフィルム
JP2014235920A (ja) * 2013-06-04 2014-12-15 三菱樹脂株式会社 電池外装用積層フィルム
JP2015180755A (ja) * 2015-07-13 2015-10-15 東洋紡株式会社 耐加水分解性ポリエステルフィルム
JP2016000814A (ja) * 2015-07-13 2016-01-07 東洋紡株式会社 耐加水分解性ポリエステルフィルム
US9714349B2 (en) 2010-08-18 2017-07-25 Toyobo Co., Ltd. Hydrolysis-resistant polyester film

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150020207A (ko) * 2012-05-16 2015-02-25 노보폴리머스 앤.브이. 태양광 전지 모듈용 다층 캡슐화재 필름
US20140186606A1 (en) * 2012-12-31 2014-07-03 Toray Plastics (America), Inc. Balanced and low heat shrinkage sequentially biaxially oriented polyethylene terephthalate film and process for producing the same
CN116080233A (zh) * 2015-12-28 2023-05-09 东洋纺株式会社 层叠聚酯膜
JP7009216B2 (ja) * 2015-12-28 2022-01-25 東洋紡株式会社 積層ポリエステルフィルム
AU2017242303B2 (en) 2016-03-30 2020-12-10 Furanix Technologies B.V. Polyester film
JP7025402B2 (ja) 2017-03-01 2022-02-24 東洋紡株式会社 フランジカルボン酸ユニットを有するポリエステルフィルムの製造方法
EP3590711B1 (en) * 2017-03-01 2023-11-22 Toyobo Co., Ltd. Laminate provided with heat-sealable resin layer and polyester film having furandicarboxylic acid unit, and packaging bag
JP7380601B2 (ja) * 2019-02-14 2023-11-15 東洋紡株式会社 二軸延伸ポリエステルフィルム
CN115107341B (zh) * 2022-08-08 2024-05-31 江苏裕兴薄膜科技股份有限公司 一种高透低雾光学基膜及其制备方法

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5757628A (en) 1980-09-25 1982-04-06 Teijin Ltd Manufacture of blaxially rolled film
JPH01275031A (ja) 1988-04-27 1989-11-02 Teijin Ltd 二軸延伸ポリエステルフイルムの熱処理法
JP2002026354A (ja) 2000-07-11 2002-01-25 Toray Ind Inc 太陽電池裏面封止用フィルムおよびそれを用いた太陽電池
JP2002100788A (ja) 2000-09-20 2002-04-05 Mitsubishi Alum Co Ltd 太陽電池カバー材用バックシート及びそれを用いた太陽電池モジュール
JP2002134771A (ja) 2000-10-23 2002-05-10 Toppan Printing Co Ltd 太陽電池用裏面保護シート
JP2002134770A (ja) 2000-10-23 2002-05-10 Toppan Printing Co Ltd 太陽電池用裏面保護シート
JP2002187965A (ja) 2000-09-29 2002-07-05 Mitsubishi Polyester Film Gmbh 透明二軸延伸熱固定フィルムおよびその製造方法
JP2004269772A (ja) * 2003-03-11 2004-09-30 Konica Minolta Holdings Inc 光学フィルム、その製造方法及びその光学フィルムを用いた表示装置
JP2006306910A (ja) 2005-04-26 2006-11-09 Teijin Dupont Films Japan Ltd 太陽電池用ポリエステルフィルム
JP2006341425A (ja) * 2005-06-08 2006-12-21 Toyobo Co Ltd ガスバリア性積層フィルム
JP2007007885A (ja) 2005-06-28 2007-01-18 Teijin Dupont Films Japan Ltd 太陽電池裏面保護膜用ポリエステルフィルムおよびそれを用いた太陽電池裏面保護膜
JP2007070430A (ja) * 2005-09-06 2007-03-22 Toray Ind Inc 太陽電池用ポリエステルフィルム
JP2007276478A (ja) * 2006-04-06 2007-10-25 Mitsubishi Polyester Film Gmbh 積層ポリエステルフィルム及びその製造方法
JP2007302878A (ja) 2006-04-06 2007-11-22 Mitsubishi Polyester Film Gmbh ポリエステルフィルム及びその製造方法
JP2008066629A (ja) * 2006-09-11 2008-03-21 Toppan Printing Co Ltd 太陽電池用裏面保護シートおよび太陽電池モジュール
JP2009256621A (ja) * 2008-03-24 2009-11-05 Mitsubishi Plastics Inc 二軸配向ポリエステルフィルム

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5650019A (en) * 1993-09-30 1997-07-22 Canon Kabushiki Kaisha Solar cell module having a surface coating material of three-layered structure
ID27680A (id) * 1998-10-26 2001-04-19 Toray Industries Komposisi poliester, metoda produksi daripadanya dan film poliester
GB9912210D0 (en) * 1999-05-25 1999-07-28 Acma Ltd Esterification catalysts
JP5243997B2 (ja) * 2009-03-06 2013-07-24 東洋紡株式会社 太陽電池用ポリエステルフィルムおよびその製造方法

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5757628A (en) 1980-09-25 1982-04-06 Teijin Ltd Manufacture of blaxially rolled film
JPH01275031A (ja) 1988-04-27 1989-11-02 Teijin Ltd 二軸延伸ポリエステルフイルムの熱処理法
JP2002026354A (ja) 2000-07-11 2002-01-25 Toray Ind Inc 太陽電池裏面封止用フィルムおよびそれを用いた太陽電池
JP2002100788A (ja) 2000-09-20 2002-04-05 Mitsubishi Alum Co Ltd 太陽電池カバー材用バックシート及びそれを用いた太陽電池モジュール
JP2002187965A (ja) 2000-09-29 2002-07-05 Mitsubishi Polyester Film Gmbh 透明二軸延伸熱固定フィルムおよびその製造方法
JP2002134771A (ja) 2000-10-23 2002-05-10 Toppan Printing Co Ltd 太陽電池用裏面保護シート
JP2002134770A (ja) 2000-10-23 2002-05-10 Toppan Printing Co Ltd 太陽電池用裏面保護シート
JP2004269772A (ja) * 2003-03-11 2004-09-30 Konica Minolta Holdings Inc 光学フィルム、その製造方法及びその光学フィルムを用いた表示装置
JP2006306910A (ja) 2005-04-26 2006-11-09 Teijin Dupont Films Japan Ltd 太陽電池用ポリエステルフィルム
JP2006341425A (ja) * 2005-06-08 2006-12-21 Toyobo Co Ltd ガスバリア性積層フィルム
JP2007007885A (ja) 2005-06-28 2007-01-18 Teijin Dupont Films Japan Ltd 太陽電池裏面保護膜用ポリエステルフィルムおよびそれを用いた太陽電池裏面保護膜
JP2007070430A (ja) * 2005-09-06 2007-03-22 Toray Ind Inc 太陽電池用ポリエステルフィルム
JP2007276478A (ja) * 2006-04-06 2007-10-25 Mitsubishi Polyester Film Gmbh 積層ポリエステルフィルム及びその製造方法
JP2007302878A (ja) 2006-04-06 2007-11-22 Mitsubishi Polyester Film Gmbh ポリエステルフィルム及びその製造方法
JP2008066629A (ja) * 2006-09-11 2008-03-21 Toppan Printing Co Ltd 太陽電池用裏面保護シートおよび太陽電池モジュール
JP2009256621A (ja) * 2008-03-24 2009-11-05 Mitsubishi Plastics Inc 二軸配向ポリエステルフィルム

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011207986A (ja) * 2010-03-29 2011-10-20 Fujifilm Corp ポリエステルフィルム及びその製造方法、太陽電池用バックシート、並びに太陽電池モジュール
WO2012005034A1 (ja) * 2010-07-06 2012-01-12 帝人デュポンフィルム株式会社 太陽電池裏面保護膜用ポリエステルフィルム
US9714349B2 (en) 2010-08-18 2017-07-25 Toyobo Co., Ltd. Hydrolysis-resistant polyester film
JP2012138490A (ja) * 2010-12-27 2012-07-19 Mitsubishi Plastics Inc 太陽電池裏面保護材用ポリエステルフィルムおよび太陽電池裏面保護材用部材
JP2012231029A (ja) * 2011-04-26 2012-11-22 Fujifilm Corp 太陽電池用保護シート及びその製造方法並びに太陽電池モジュール
JP2014012767A (ja) * 2012-07-04 2014-01-23 Teijin Dupont Films Japan Ltd 難燃性ポリエステルフィルム
JP2014235920A (ja) * 2013-06-04 2014-12-15 三菱樹脂株式会社 電池外装用積層フィルム
JP2015180755A (ja) * 2015-07-13 2015-10-15 東洋紡株式会社 耐加水分解性ポリエステルフィルム
JP2016000814A (ja) * 2015-07-13 2016-01-07 東洋紡株式会社 耐加水分解性ポリエステルフィルム

Also Published As

Publication number Publication date
EP2423248A4 (en) 2015-03-18
KR20120022761A (ko) 2012-03-12
US20120053317A1 (en) 2012-03-01
JPWO2010123087A1 (ja) 2012-10-25
JP5568550B2 (ja) 2014-08-06
TWI475069B (zh) 2015-03-01
TW201114833A (en) 2011-05-01
EP2423248A1 (en) 2012-02-29
CN102414261A (zh) 2012-04-11

Similar Documents

Publication Publication Date Title
JP5568550B2 (ja) 太陽電池用二軸延伸ポリエステルフィルム
JP5648629B2 (ja) ポリエチレンテレフタレート組成物、その製造方法およびポリエチレンテレフタレートフィルム
EP2484716B1 (en) Polyester film for solar cells
WO2010100959A1 (ja) 太陽電池用ポリエステルフィルムおよびその製造方法
JP2010003900A (ja) 太陽電池裏面保護膜用ポリエステルフィルム
JP4881464B2 (ja) 太陽電池裏面保護膜用ポリエステルフィルム
JP5635366B2 (ja) 太陽電池裏面保護膜用ポリエステルフィルムの製造方法および太陽電池裏面保護膜用ポリエステルフィルム
JP5651955B2 (ja) 太陽電池用易接着性ポリエステルフィルム
JP5651954B2 (ja) 太陽電池用易接着性ポリエステルフィルム
JP5740236B2 (ja) フィルムおよびその製造方法
JP6231580B2 (ja) 太陽電池用ポリエステルフィルムおよびそれからなる太陽電池用保護膜
KR20150077990A (ko) 폴리에스테르 필름, 이를 이용한 태양광모듈용 백시트 및 폴리에스테르 필름의 제조방법
JP2015216213A (ja) 太陽電池裏面保護膜用ポリエステルフィルムおよびそれからなる太陽電池裏面保護膜
JP6136810B2 (ja) ポリエチレンテレフタレートフィルムおよびその製造方法
KR102616009B1 (ko) 내가수분해성 폴리에스테르 필름
JP2011192790A (ja) 太陽電池用ポリエステルフィルムおよびその製造方法
JP2009263604A (ja) 太陽電池裏面保護膜用ポリエステルフィルム
JP2011222580A (ja) 太陽電池用積層フィルム
JP2015037097A (ja) 太陽電池保護膜用ポリエステルフィルムおよびそれからなる太陽電池保護膜
JP5633278B2 (ja) 太陽電池用ポリエステルフィルム
JP2012248709A (ja) 太陽電池裏面保護用ポリエステルフィルム
JP2016180054A (ja) ポリエステルフィルム
JP2014187263A (ja) 太陽電池裏面保護用ポリエステルフィルム
JP2014209645A (ja) 太陽電池裏面保護用ポリエステルフィルム

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080018359.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10767142

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011510370

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20117023638

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13265743

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2010767142

Country of ref document: EP