JP5651954B2 - 太陽電池用易接着性ポリエステルフィルム - Google Patents

太陽電池用易接着性ポリエステルフィルム Download PDF

Info

Publication number
JP5651954B2
JP5651954B2 JP2010000521A JP2010000521A JP5651954B2 JP 5651954 B2 JP5651954 B2 JP 5651954B2 JP 2010000521 A JP2010000521 A JP 2010000521A JP 2010000521 A JP2010000521 A JP 2010000521A JP 5651954 B2 JP5651954 B2 JP 5651954B2
Authority
JP
Japan
Prior art keywords
group
film
polyester film
polyester
hydrocarbon group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010000521A
Other languages
English (en)
Other versions
JP2011140529A (ja
Inventor
池畠 良知
良知 池畠
晃侍 伊藤
晃侍 伊藤
清水 亮
亮 清水
大橋 英人
英人 大橋
澤崎 真治
真治 澤崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP2010000521A priority Critical patent/JP5651954B2/ja
Publication of JP2011140529A publication Critical patent/JP2011140529A/ja
Application granted granted Critical
Publication of JP5651954B2 publication Critical patent/JP5651954B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)
  • Coating Of Shaped Articles Made Of Macromolecular Substances (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Laminated Bodies (AREA)
  • Polyesters Or Polycarbonates (AREA)

Description

本発明は、太陽電池裏面封止シート、太陽電池保護シートなど太陽電池構成材料に好適な太陽電池用易接着性ポリエステルフィルムに関し、さらに詳しくは、太陽電池用裏面封止シートの封止剤と接する面に用いた際に、封止材との接着性及び高温高湿下での接着性(耐湿熱性)、耐加水分解性、長期熱安定性に優れた太陽電池用易接着性ポリエステルフィルムに関する。
近年、次世代のクリーンエネルギー源として太陽電池が注目を集めている。太陽電池モジュールには、太陽電池モジュールの裏面を封止する太陽電池裏面封止シートや表面保護シートが部材として用いられる。太陽電池用裏面封止シートとしては、太陽電池素子側(封止材側)からベースフィルム/接着剤/ベースフィルム/金属、または、金属酸化物系薄膜層(防湿層)/接着剤/フッ素フィルムまたはポリエステルフィルムまたはポリエチレン系フィルム(防汚層)などの積層構成を有したものが提案されている。屋外で使用される太陽電池は長期にわたり使用されるため、これら構成部材も自然環境に対する耐久性が求められる。このような構成部材、例えば太陽電池裏面封止用のベースフィルムとしては、フッ素系フィルム、ポリエチレン系フィルム、あるいはポリエステル系フィルムが用いられる。(特許文献1、2)
なかでもポリエステル系フィルムとしては、種々の耐久性に改良がなされたものが提案されている。(特許文献3、4、5、6、7、8、9)
さらに、裏面封止シートには太陽電池素子を外部の湿気や汚染から長期にわたり、保護する役目がある。そのため、封止材と直接的に接する太陽電池素子側のフィルムと封止材との接着性は重要である。しかしながら、表面未処理のポリエステルフィルムでは、十分な接着性が得られず、改善することが求められている。ポリエステルフィルムの接着性を改善させる方法として、樹脂や架橋剤を含む接着層を設けることが提案されている(特許文献10〜13)。
特開平11−261085号公報 特開2000−114565号公報 特開2002−134770号公報 特開2002−26354号公報 特開2006−270025号公報 特開2007−150084号公報 特開2007−204538号公報 特開2008−311680号公報 特開2007−7885号公報 特開2006−152013号公報 特開2006−332091号公報 特開2007−48944号公報 特開2007−136911号公報
従来、太陽電池用ポリエステルフィルムの耐久性としては、耐加水分解の向上が行なわれており、たとえば上記提案により耐加水分解性の向上した太陽電池用ポリエステルフィルムが提供されている。しかしながら、近年、太陽電池は従来の屋根置きから、砂漠地域など大規模な太陽光発電所での設置へと発展している。このような環境では日照時間が長く、長期に高温に曝されることとなる。さらに、太陽電池モジュールは大型化、大出力化しており、大型化による温度上昇や、大出力化による電極・コネクタ部位の温度上昇が生じている。このように長期熱安定性がますます求められる状況においては、従来の耐加水分解性による改善だけでは、十分な耐久性を奏し得ないと考えられた。
一方、上記提案ではポリエステルの耐加水分解性を高めるために、フィルム樹脂のカルボキシル末端濃度(酸価)を低く抑えることが行われている(特許文献6、7)。また、劣化がある程度進んでも、物性を大きく低下させないために、分子量が比較的高い(IVが比較例高い)ポリエステルが用いられている(特許文献3、4、5、8)。フィルム樹脂のカルボキシル末端濃度を低く抑えるためには、原料となる樹脂のカルボキシル末端濃度を低いものにするだけでなく、フィルム製造過程でのカルボキシル末端濃度の上昇を抑制することが望ましい。フィルム製造過程で生じるカルボキシル末端濃度の上昇の要因のひとつとしては、溶融工程での熱分解が挙げられる。しかしながら、高い分子量の樹脂を用いると、押出し機において剪断発熱が生じ溶融温度が上昇する場合があった。また、熱分解を抑制する為に、溶融温度を低く設定すると、特に高い分子量の樹脂では吐出量が低下し、生産性が低下する場合があった。そのため、高い生産性を維持したまま、カルボキシル末端濃度(酸価)が低く、かつ分子量が比較的高いフィルムを製造する方法が望まれていた。
加えて、基材となるポリエステルフィルムを封止剤との貼り合せにおいては、初期接着性だけでなく、高温高湿下でも長期間、接着性を保持することも必要である。しかしながら、上記特許文献に開示されるような太陽電池用ポリエステルフィルムは、いまだ接着性が不十分であり、特に高温高湿下の長期間の使用においては接着強度の低下は避けられないものであった。
加えて、封止材には、生産性の向上や劣化防止の観点から架橋剤、紫外線吸収剤などの添加剤を含む多様な組成物種が用いられるようになってきている。また、用いる封止材により多様なパッケージング工程が採用されるようになってきている。例えば、スタンダードキュアタイプとされる封止材では、加熱圧着(例えば90〜130℃で5〜10分)の仮接着後に熱処理(例えば140〜160℃で30〜50分)を行い、ゆっくりと封止材を硬化させる接着条件が採用される。一方、ファストキュアタイプとされる封止材では、短時間で加熱圧着(例えば140〜160℃で15〜20分)を行い、急速に封止材を硬化させる接着条件が採用される。そのため、多様な封止材に対しても同程度の接着性を示す汎用性の高さだけでなく、多様な接着条件に対応し得る汎用性の高い易接着性が求められている。
本発明の目的は、上記課題に鑑み、過酷な環境下にも耐え得る強度な接着性を有し、従来避けられないと考えられてきた高温高湿下における接着性の低下をほとんど引き起こさず、多様な封止材に対しても良好な接着性を有し、耐加水分解性と長期熱安定性を有した太陽電池用易接着性ポリエステルフィルムを提供するものである。
本願発明者は、上記課題を解決するため、鋭意検討を行なった結果、ポリエステルの触媒種が熱劣化に影響を及ぼすことを感知し、特定の重合触媒により重合したポリエステルを用いることで、太陽電池用易接着性ポリエステルフィルムとして優れた耐加水分解性と格段に優れた長期熱安定性を発揮するという驚くべき効果を見出し、さらに脂肪族系ポリカーボネートポリオールを構成成分とするウレタン樹脂と架橋剤とを主成分とし、赤外分光スペクトルにおいて脂肪族系ポリカーボネート成分由来の1460cm−1付近の吸光度(A1460)とウレタン成分由来の1530cm−1付近の吸光度(A1530)との比率(A1460/A1530)が0.50〜1.55である塗布層を用いることにより、各種封止材・接着条件を用いる場合であっても過酷な環境下にも耐え得る強度な接着性を奏し、高温高湿下でも優れた接着性を奏することを見出し、本発明に至ったものである。
すなわち、本発明は、少なくとも片面に塗布層を有するポリエステルフィルムであって、前記ポリエステルフィルムは、アルミニウム及び/又はその化合物と、芳香族基を分子内に有するリン化合物を含有する重縮合触媒を用いて重合されたポリエステルを主たる構成成分とし、前記ポリエステルフィルムの厚みが10〜500μmであり、前記フィルムのカルボキシル末端濃度がポリエステルに対し25eq/ton以下であり、前記フィルムの固有粘度(IV)が0.60〜0.90dl/gであり、前記塗布層が脂肪族系ポリカーボネートポリオールを構成成分とするポリウレタン樹脂と架橋剤を主成分とし、赤外分光スペクトルにおいて脂肪族系ポリカーボネート成分由来の1460cm−1付近の吸光度(A1460)とウレタン成分由来の1530cm−1付近の吸光度(A1530)との比率(A1460/A1530)が0.50〜1.55であることを特徴とする太陽電池用易接着性ポリエステルフィルムである。
また、リン化合物のアルミニウム塩を含有する重縮合触媒を用いて重合されたポリエステルを主たる構成成分とし、前記ポリエステルフィルムの厚みが10〜500μmであり、前記フィルムのカルボキシル末端濃度がポリエステルに対し25eq/ton以下であり、前記フィルムの固有粘度(IV)が0.60〜0.90dl/gであるポリエステルフィルムであり、脂肪族系ポリカーボネートポリオールを構成成分とするポリウレタン樹脂と架橋剤を主成分とし、赤外分光スペクトルにおいて脂肪族系ポリカーボネート成分由来の1460cm−1付近の吸光度(A1460)とウレタン成分由来の1530cm−1付近の吸光度(A1530)との比率(A1460/A1530)が0.50〜1.55である塗布層を有することを特徴とする太陽電池用易接着性ポリエステルフィルムである。
また、前記一般式(5)で表される化合物から選択される少なくとも1種を含有する重縮合触媒を用いて重合されたポリエステルを主たる構成成分とし、前記ポリエステルフィルムの厚みが10〜500μmであり、前記フィルムのカルボキシル末端濃度がポリエステルに対し25eq/ton以下であり、前記フィルムの固有粘度(IV)が0.60〜0.90dl/gであるポリエステルフィルムであり、脂肪族系ポリカーボネートポリオールを構成成分とするポリウレタン樹脂と架橋剤を主成分とし、赤外分光スペクトルにおいて脂肪族系ポリカーボネート成分由来の1460cm−1付近の吸光度(A1460)とウレタン成分由来の1530cm−1付近の吸光度(A1530)との比率(A1460/A1530)が0.50〜1.55である塗布層を有することを特徴とする太陽電池用易接着性ポリエステルフィルムである。
本発明の太陽電池用易接着性ポリエステルフィルムは、封止材との接着性に優れ、耐加水分解性と長期熱安定性に優れる。よって、屋外で使用される太陽電池用部材、例えば、太陽電池裏面封止用のベースフィルムとして有用である。
本発明の太陽電池用易接着性ポリエステルフィルムの主たる構成成分であるポリエステルを重合する際に使用する重縮合触媒は、アルミニウム及び/又はその化合物と、芳香族基を分子内に有するリン化合物を含有する触媒、リン化合物のアルミニウム塩を含有する触媒、または前記一般式(5)で表わされる化合物から選択される少なくとも1種を含有する触媒である。
前記アルミニウム及び/又はアルミニウム化合物として、金属アルミニウムのほか、公知のアルミニウム化合物を限定なく使用することができる。
アルミニウム化合物としては、具体的には、ギ酸アルミニウム、酢酸アルミニウム、塩基性酢酸アルミニウム、プロピオン酸アルミニウム、蓚酸アルミニウムなどのカルボン酸塩、塩化アルミニウム、水酸化アルミニウム、水酸化塩化アルミニウムなどの無機酸塩、アルミニウムメトキサイド、アルミニウムエトキサイド、アルミニウムiso-プロポキサイド、アルミニウムn-ブトキサイド、アルミニウムt−ブトキサイドなどアルミニウムアルコキサイド、アルミニウムアセチルアセトネート、アルミニウムアセチルアセテート、などのアルミニウムキレート化合物、トリメチルアルミニウム、トリエチルアルミニウムなどの有機アルミニウム化合物およびこれらの部分加水分解物、酸化アルミニウムなどが挙げられる。これらのうちカルボン酸塩、無機酸塩およびキレート化合物が好ましく、これらの中でもさらに酢酸アルミニウム、塩化アルミニウム、水酸化アルミニウム、水酸化塩化アルミニウムおよびアルミニウムアセチルアセトネートが特に好ましい。
前記アルミニウム及び/又はアルミニウム化合物の添加量としては、得られるポリエステルのジカルボン酸や多価カルボン酸などのカルボン酸成分の全構成ユニットのモル数に対して0.001〜0.05モル%が好ましく、さらに好ましくは、0.005〜0.02モル%である。添加量が0.001モル%未満であると触媒活性が十分に発揮されない場合があり、添加量が0.05モル%以上になると、熱安定性や熱酸化安定性の低下、アルミニウムに起因する異物の発生や着色の増加が問題になる場合が発生する。この様にアルミニウム成分の添加量が少なくても本発明の重合触媒は十分な触媒活性を示す点に大きな特徴を有する。その結果、熱安定性や熱酸化安定性が優れ、アルミニウムに起因する異物や着色を低減することができる。
前記重縮合触媒を構成するリン化合物としては特に限定はされないが、ホスホン酸系化合物、ホスフィン酸系化合物からなる群より選ばれる一種または二種以上の化合物を用いると触媒活性の向上効果が大きく好ましい。これらの中でも、一種または二種以上のホスホン酸系化合物を用いると触媒活性の向上効果が特に大きく好ましい。
前記のホスホン酸系化合物、ホスフィン酸系化合物とは、それぞれ下記式(6)、(7)で表される構造を有する化合物のことである。
前記のホスホン酸系化合物としては、例えば、メチルホスホン酸ジメチル、メチルホスホン酸ジフェニル、フェニルホスホン酸ジメチル、フェニルホスホン酸ジエチル、フェニルホスホン酸ジフェニル、ベンジルホスホン酸ジメチル、ベンジルホスホン酸ジエチルなどが挙げられる。
前記のホスフィン酸系化合物としては、例えば、ジフェニルホスフィン酸、ジフェニルホスフィン酸メチル、ジフェニルホスフィン酸フェニル、フェニルホスフィン酸、フェニルホスフィン酸メチル、フェニルホスフィン酸フェニルなどが挙げられる。
ホスフィン酸系化合物、としては、下記式(8)、(9)で表される化合物を用いることが好ましい。
本発明の重縮合触媒においては、前記のリン化合物の中でも、分子中に芳香環構造を有する化合物を用いることが、十分な触媒活性を得るためには必要である。
また、前記の重縮合触媒を構成するリン化合物としては、下記一般式(10)〜(11)で表される化合物を用いると、特に触媒活性の向上効果が大きく好ましい。
(式(10)〜(11)中、R1、R4はそれぞれ独立に水素、炭素数1〜50の炭化水素基、水酸基またはハロゲン基またはアルコキシル基またはアミノ基を含む炭素数1〜50の炭化水素基を表す。R2、R3はそれぞれ独立に水素、炭素数1〜50の炭化水素基、水酸基またはアルコキシル基を含む炭素数1〜50の炭化水素基を表す。ただし、炭化水素基はシクロヘキシル等の脂環構造やフェニルやナフチル等の芳香環構造を含んでいてもよい。)
前記の重縮合触媒を構成するリン化合物としては、上記式(10)〜(11)中、R1、R4が芳香環構造を有する基である化合物が特に好ましい。
前記の重縮合触媒を構成するリン化合物としては、例えば、メチルホスホン酸ジメチル、メチルホスホン酸ジフェニル、フェニルホスホン酸ジメチル、フェニルホスホン酸ジエチル、フェニルホスホン酸ジフェニル、ベンジルホスホン酸ジメチル、ベンジルホスホン酸ジエチル、ジフェニルホスフィン酸、ジフェニルホスフィン酸メチル、ジフェニルホスフィン酸フェニル、フェニルホスフィン酸、フェニルホスフィン酸メチル、フェニルホスフィン酸フェニルなどが挙げられる。これらのうちで、フェニルホスホン酸ジメチル、ベンジルホスホン酸ジエチルが特に好ましい。
前記のリン化合物の添加量としては、得られるポリエステルのジカルボン酸や多価カルボン酸などのカルボン酸成分の全構成ユニットのモル数に対して5×10−7〜0.01モルが好ましく、更に好ましくは1×10−6〜0.005モルである。
前記の重縮合触媒を構成するフェノール部を同一分子内に有するリン化合物としては、フェノール構造を有するリン化合物であれば特に限定はされないが、フェノール部を同一分子内に有する、ホスホン酸系化合物、ホスフィン酸系化合物からなる群より選ばれる一種または二種以上の化合物を用いると触媒活性の向上効果が大きく好ましい。これらの中でも、一種または二種以上のフェノール部を同一分子内に有するホスホン酸系化合物を用いると触媒活性の向上効果が特に大きく好ましい。
また、前記の重縮合触媒を構成するフェノール部を同一分子内に有するリン化合物としては、下記一般式(12)、(13)で表される化合物などが挙げられる。これらのうちで、下記式を用いると特に触媒活性が向上するため好ましい。
(式(12)〜(13)中、R1はフェノール部を含む炭素数1〜50の炭化水素基、水酸基またはハロゲン基またはアルコキシル基またはアミノ基などの置換基およびフェノール部を含む炭素数1〜50の炭化水素基を表す。Rはそれぞれ独立に水素、炭素数1〜50の炭化水素基、水酸基またはハロゲン基またはアルコキシル基またはアミノ基などの置換基を含む炭素数1〜50の炭化水素基を表す。R、Rはそれぞれ独立に水素、炭素数1〜50の炭化水素基、水酸基またはアルコキシル基などの置換基を含む炭素数1〜50の炭化水素基を表す。ただし、炭化水素基は分岐構造やシクロRとRの末端どうしは結合していてもよい。)
前記のフェノール部を同一分子内に有するリン化合物としては、例えば、p−ヒドロキシフェニルホスホン酸、p−ヒドロキシフェニルホスホン酸ジメチル、p−ヒドロキシフェニルホスホン酸ジエチル、p−ヒドロキシフェニルホスホン酸ジフェニル、ビス(p−ヒドロキシフェニル)ホスフィン酸、ビス(p−ヒドロキシフェニル)ホスフィン酸メチル、ビス(p−ヒドロキシフェニル)ホスフィン酸フェニル、p−ヒドロキシフェニルフェニルホスフィン酸、p−ヒドロキシフェニルフェニルホスフィン酸メチル、p−ヒドロキシフェニルフェニルホスフィン酸フェニル、p−ヒドロキシフェニルホスフィン酸、p−ヒドロキシフェニルホスフィン酸メチル、p−ヒドロキシフェニルホスフィン酸フェニルおよび下記式(14)〜(17)で表される化合物などが挙げられる。これらのうちで、下記式(16)で表される化合物およびp−ヒドロキシフェニルホスホン酸ジメチルが特に好ましい。
上記の式(16)にて示される化合物としては、例えばSANKO−220(三光株式会社製)が使用可能である。
これらのフェノール部を同一分子内に有するリン化合物をポリエステルの重合時に添加することによってアルミニウム化合物の触媒活性が向上するとともに、重合したポリエステルの熱安定性も向上する。
前記のフェノール部を同一分子内に有するリン化合物の添加量としては、得られるポリエステルのジカルボン酸や多価カルボン酸などのカルボン酸成分の全構成ユニットのモル数に対して5×10−7〜0.01モルが好ましく、更に好ましくは1×10−6〜0.005モルである。
また、前記のリン化合物として、リンの金属塩化合物を用いることが好ましい。前記のリンの金属塩化合物とは、リン化合物の金属塩であれば特に限定はされないが、ホスホン酸系化合物の金属塩を用いると、触媒活性の向上効果が大きく好ましい。リン化合物の金属塩としては、モノ金属塩、ジ金属塩、トリ金属塩などが含まれる。
また、上記のリン化合物の中でも、金属塩の金属部分が、Li、Na、K、Be、Mg、Sr、Ba、Mn、Ni、Cu、Znから選択されたものを用いると、触媒活性の向上効果が大きく好ましい。これらのうち、Li、Na、Mgが特に好ましい。
前記のリンの金属塩化合物として、下記一般式(18)で表される化合物から選択される少なくとも一種を用いると、触媒活性の向上効果が大きく好ましい。
(式(18)中、R1は水素、炭素数1〜50の炭化水素基、水酸基またはハロゲン基またはアルコキシル基またはアミノ基を含む炭素数1〜50の炭化水素基を表す。R2は、水素、炭素数1〜50の炭化水素基、水酸基またはアルコキシル基を含む炭素数1〜50の炭化水素基を表す。R3は、水素、炭素数1〜50の炭化水素基、水酸基またはアルコキシル基またはカルボニルを含む炭素数1〜50の炭化水素基を表す。lは1以上の整数、mは0または1以上の整数を表し、(l+m)は4以下である。Mは(l+m)価の金属カチオンを表す。nは1以上の整数を表す。炭化水素基はシクロヘキシル等の脂環構造や分岐構造やフェニルやナフチル等の芳香環構造を含んでいてもよい。)
上記のR1としては、例えば、フェニル、1−ナフチル、2−ナフチル、9−アンスリル、4−ビフェニル、2−ビフェニルなどが挙げられる。上記のR2としては例えば、水素、メチル基、エチル基、プロピル基、イソプロピル基、n−ブチル基、sec−ブチル基、tert−ブチル基、長鎖の脂肪族基、フェニル基、ナフチル基、置換されたフェニル基やナフチル基、−CH2CH2OHで表される基などが挙げられる。R3-としては例えば、水酸化物イオン、アルコラートイオン、アセテートイオンやアセチルアセトンイオンなどが挙げられる。
上記一般式(18)で表される化合物の中でも、下記一般式(19)で表される化合物から選択される少なくとも一種を用いることが好ましい。
(式(19)中、R1は水素、炭素数1〜50の炭化水素基、水酸基またはハロゲン基またはアルコキシル基またはアミノ基を含む炭素数1〜50の炭化水素基を表す。R3は、水素、炭素数1〜50の炭化水素基、水酸基またはアルコキシル基またはカルボニルを含む炭素数1〜50の炭化水素基を表す。lは1以上の整数、mは0または1以上の整数を表し、(l+m)は4以下である。Mは(l+m)価の金属カチオンを表す。炭化水素基はシクロヘキシル等の脂環構造や分岐構造やフェニルやナフチル等の芳香環構造を含んでいてもよい。)
上記のR1としては、例えば、フェニル、1−ナフチル、2−ナフチル、9−アンスリル、4−ビフェニル、2−ビフェニルなどが挙げられる。R3-としては例えば、水酸化物イオン、アルコラートイオン、アセテートイオンやアセチルアセトンイオンなどが挙げられる。
上記のリン化合物の中でも、芳香環構造を有する化合物を用いると触媒活性の向上効果が大きく好ましい。
上記式(19)の中でも、Mが、Li、Na、K、Be、Mg、Sr、Ba、Mn、Ni、Cu、Znから選択されたものを用いると触媒活性の向上効果が大きく好ましい。これらのうち、Li、Na、Mgがとくに好ましい。
前記のリンの金属塩化合物としては、リチウム[(1−ナフチル)メチルホスホン酸エチル]、ナトリウム[(1−ナフチル)メチルホスホン酸エチル]、マグネシウムビス[(1−ナフチル)メチルホスホン酸エチル]、カリウム[(2−ナフチル)メチルホスホン酸エチル]、マグネシウムビス[(2−ナフチル)メチルホスホン酸エチル]、リチウム[ベンジルホスホン酸エチル]、ナトリウム[ベンジルホスホン酸エチル]、マグネシウムビス[ベンジルホスホン酸エチル]、ベリリウムビス[ベンジルホスホン酸エチル]、ストロンチウムビス[ベンジルホスホン酸エチル]、マンガンビス[ベンジルホスホン酸エチル]、ベンジルホスホン酸ナトリウム、マグネシウムビス[ベンジルホスホン酸]、ナトリウム[(9−アンスリル)メチルホスホン酸エチル]、マグネシウムビス[(9−アンスリル)メチルホスホン酸エチル]、ナトリウム[4−ヒドロキシベンジルホスホン酸エチル]、マグネシウムビス[4−ヒドロキシベンジルホスホン酸エチル]、ナトリウム[4−クロロベンジルホスホン酸フェニル]、マグネシウムビス[4−クロロベンジルホスホン酸エチル]、ナトリウム[4−アミノベンジルホスホン酸メチル]、マグネシウムビス[4−アミノベンジルホスホン酸メチル]、フェニルホスホン酸ナトリウム、マグネシウムビス[フェニルホスホン酸エチル]、亜鉛ビス[フェニルホスホン酸エチル]などが挙げられる。
これらの中で、リチウム[(1−ナフチル)メチルホスホン酸エチル]、ナトリウム[(1−ナフチル)メチルホスホン酸エチル]、マグネシウムビス[(1−ナフチル)メチルホスホン酸エチル]、リチウム[ベンジルホスホン酸エチル]、ナトリウム[ベンジルホスホン酸エチル]、マグネシウムビス[ベンジルホスホン酸エチル]、ベンジルホスホン酸ナトリウム、マグネシウムビス[ベンジルホスホン酸]が特に好ましい。
前記の重縮合触媒を構成する別の好ましいリン化合物であるリンの金属塩化合物は、下記一般式(20)で表される化合物から選択される少なくとも一種からなるものである。
(式(20)中、R1、R2はそれぞれ独立に水素、炭素数1〜30の炭化水素基を表す。R3は、水素、炭素数1〜50の炭化水素基、水酸基またはアルコキシル基を含む炭素数1〜50の炭化水素基を表す。R4は、水素、炭素数1〜50の炭化水素基、水酸基またはアルコキシル基またはカルボニルを含む炭素数1〜50の炭化水素基を表す。R4-としては例えば、水酸化物イオン、アルコラートイオン、アセテートイオンやアセチルアセトンイオンなどが挙げられる。lは1以上の整数、mは0または1以上の整数を表し、(l+m)は4以下である。Mは(l+m)価の金属カチオンを表す。nは1以上の整数を表す。炭化水素基はシクロヘキシル等の脂環構造や分岐構造やフェニルやナフチル等の芳香環構造を含んでいてもよい。)
これらの中でも、下記一般式(21)で表される化合物から選択される少なくとも一種を用いることが好ましい。
(式(21)中、Mn+はn価の金属カチオンを表す。nは1、2、3または4を表す。)
上記式(20)または(21)の中でも、Mが、Li、Na、K、Be、Mg、Sr、Ba、Mn、Ni、Cu、Znから選択されたものを用いると触媒活性の向上効果が大きく好ましい。これらのうち、Li、Na、Mgが特に好ましい。
前記の特定のリンの金属塩化合物としては、リチウム[3,5−ジ−tert−ブチル−4−ヒドロキシベンジルホスホン酸エチル]、ナトリウム[3,5−ジ−tert−ブチル−4−ヒドロキシベンジルホスホン酸エチル]、ナトリウム[3,5−ジ−tert−ブチル−4−ヒドロキシベンジルホスホン酸]、カリウム[3,5−ジ−tert−ブチル−4−ヒドロキシベンジルホスホン酸エチル]、マグネシウムビス[3,5−ジ−tert−ブチル−4−ヒドロキシベンジルホスホン酸エチル]、マグネシウムビス[3,5−ジ−tert−ブチル−4−ヒドロキシベンジルホスホン酸]、ベリリウムビス[3,5−ジ−tert−ブチル−4−ヒドロキシベンジルホスホン酸メチル]、ストロンチウムビス[3,5−ジ−tert−ブチル−4−ヒドロキシベンジルホスホン酸エチル]、バリウムビス[3,5−ジ−tert−ブチル−4−ヒドロキシベンジルホスホン酸フェニル]、マンガンビス[3,5−ジ−tert−ブチル−4−ヒドロキシベンジルホスホン酸エチル]、ニッケルビス[3,5−ジ−tert−ブチル−4−ヒドロキシベンジルホスホン酸エチル]、銅ビス[3,5−ジ−tert−ブチル−4−ヒドロキシベンジルホスホン酸エチル]、亜鉛ビス[3,5−ジ−tert−ブチル−4−ヒドロキシベンジルホスホン酸エチル]などが挙げられる。これらの中で、リチウム[3,5−ジ−tert−ブチル−4−ヒドロキシベンジルホスホン酸エチル]、ナトリウム[3,5−ジ−tert−ブチル−4−ヒドロキシベンジルホスホン酸エチル]、マグネシウムビス[3,5−ジ−tert−ブチル−4−ヒドロキシベンジルホスホン酸エチル]が特に好ましい。
本発明の別の実施形態は、リン化合物のアルミニウム塩から選択される少なくとも一種を含むことを特徴とするポリエステル重合触媒である。リン化合物のアルミニウム塩に他のアルミニウム化合物やリン化合物やフェノール系化合物などを組み合わせて使用しても良い。
前記の重縮合触媒を構成する好ましい成分であるリン化合物のアルミニウム塩とは、アルミニウム部を有するリン化合物であれば特に限定はされないが、ホスホン酸系化合物のアルミニウム塩を用いると触媒活性の向上効果が大きく好ましい。リン化合物のアルミニウム塩としては、モノアルミニウム塩、ジアルミニウム塩、トリアルミニウム塩などが含まれる。
上記リン化合物のアルミニウム塩の中でも、芳香環構造を有する化合物を用いると触媒活性の向上効果が大きく好ましい。
上記の重合触媒を構成するリン化合物のアルミニウム塩としては、下記一般式(34)で表される化合物から選択される少なくとも一種を用いると触媒活性の向上効果が大きく好ましい。
(式(22)中、R1は水素、炭素数1〜50の炭化水素基、水酸基またはハロゲン基またはアルコキシル基またはアミノ基を含む炭素数1〜50の炭化水素基を表す。R2は、水素、炭素数1〜50の炭化水素基、水酸基またはアルコキシル基を含む炭素数1〜50の炭化水素基を表す。R3は、水素、炭素数1〜50の炭化水素基、水酸基またはアルコキシル基またはカルボニルを含む炭素数1〜50の炭化水素基を表す。lは1以上の整数、mは0または1以上の整数を表し、(l+m)は3である。nは1以上の整数を表す。炭化水素基はシクロヘキシル等の脂環構造や分岐構造やフェニルやナフチル等の芳香環構造を含んでいてもよい。)
上記のR1としては、例えば、フェニル、1−ナフチル、2−ナフチル、9−アンスリル、4−ビフェニル、2−ビフェニルなどが挙げられる。上記のR2としては例えば、水素、メチル基、エチル基、プロピル基、イソプロピル基、n−ブチル基、sec−ブチル基、tert−ブチル基、長鎖の脂肪族基、フェニル基、ナフチル基、置換されたフェニル基やナフチル基、−CH2CH2OHで表される基などが挙げられる。上記のR3-としては例えば、水酸化物イオン、アルコラートイオン、エチレングリコラートイオン、アセテートイオンやアセチルアセトンイオンなどが挙げられる。
前記のリン化合物のアルミニウム塩としては、(1−ナフチル)メチルホスホン酸エチルのアルミニウム塩、(1−ナフチル)メチルホスホン酸のアルミニウム塩、(2−ナフチル)メチルホスホン酸エチルのアルミニウム塩、ベンジルホスホン酸エチルのアルミニウム塩、ベンジルホスホン酸のアルミニウム塩、(9−アンスリル)メチルホスホン酸エチルのアルミニウム塩、4−ヒドロキシベンジルホスホン酸エチルのアルミニウム塩、2−メチルベンジルホスホン酸エチルのアルミニウム塩、4−クロロベンジルホスホン酸フェニルのアルミニウム塩、4−アミノベンジルホスホン酸メチルのアルミニウム塩、4−メトキシベンジルホスホン酸エチルのアルミニウム塩、フェニルホスホン酸エチルのアルミニウム塩などが挙げられる。
これらの中で、(1−ナフチル)メチルホスホン酸エチルのアルミニウム塩、ベンジルホスホン酸エチルのアルミニウム塩が特に好ましい。
また、別の実施形態は、下記一般式(23)で表されるリン化合物のアルミニウム塩から選択される少なくとも一種からなるポリエステル重合触媒である。リン化合物のアルミニウム塩に、他のアルミニウム化合物やリン化合物やフェノール系化合物などを組み合わせて使用しても良い。
(式(23)中、R1、R2はそれぞれ独立に水素、炭素数1〜30の炭化水素基を表す。R3は、水素、炭素数1〜50の炭化水素基、水酸基またはアルコキシル基を含む炭素数1〜50の炭化水素基を表す。R4は、水素、炭素数1〜50の炭化水素基、水酸基またはアルコキシル基またはカルボニルを含む炭素数1〜50の炭化水素基を表す。lは1以上の整数、mは0または1以上の整数を表し、(l+m)は3である。nは1以上の整数を表す。炭化水素基はシクロヘキシル等の脂環構造や分岐構造やフェニルやナフチル等の芳香環構造を含んでいてもよい。)
これらの中でも、下記一般式(24)で表される化合物から選択される少なくとも一種を用いることが好ましい。
(式(24)中、R3は、水素、炭素数1〜50の炭化水素基、水酸基またはアルコキシル基を含む炭素数1〜50の炭化水素基を表す。R4は、水素、炭素数1〜50の炭化水素基、水酸基またはアルコキシル基またはカルボニルを含む炭素数1〜50の炭化水素基を表す。lは1以上の整数、mは0または1以上の整数を表し、(l+m)は3である。炭化水素基はシクロヘキシル等の脂環構造や分岐構造やフェニルやナフチル等の芳香環構造を含んでいてもよい。)
上記のR3としては、例えば、水素、メチル基、エチル基、プロピル基、イソプロピル基、n−ブチル基、sec−ブチル基、tert−ブチル基、長鎖の脂肪族基、フェニル基、ナフチル基、置換されたフェニル基やナフチル基、−CH2CH2OHで表される基などが挙げられる。上記のR4-としては、例えば、水酸化物イオン、アルコラートイオン、エチレングリコラートイオン、アセテートイオンやアセチルアセトンイオンなどが挙げられる。
前記のリン化合物のアルミニウム塩としては、3,5−ジ−tert−ブチル−4−ヒドロキシベンジルホスホン酸エチルのアルミニウム塩、3,5−ジ−tert−ブチル−4−ヒドロキシベンジルホスホン酸メチルのアルミニウム塩、3,5−ジ−tert−ブチル−4−ヒドロキシベンジルホスホン酸イソプロピルのアルミニウム塩、3,5−ジ−tert−ブチル−4−ヒドロキシベンジルホスホン酸フェニルのアルミニウム塩、3,5−ジ−tert−ブチル−4−ヒドロキシベンジルホスホン酸のアルミニウム塩などが挙げられる。
これらの中で、3,5−ジ−tert−ブチル−4−ヒドロキシベンジルホスホン酸エチルのアルミニウム塩、3,5−ジ−tert−ブチル−4−ヒドロキシベンジルホスホン酸メチルのアルミニウム塩が特に好ましい。
また、前記リン化合物としてP−OH結合を少なくとも一つ有するリン化合物を用いることが好ましい。P−OH結合を少なくとも一つ有するリン化合物とは、分子内にP−OHを少なくとも一つ有するリン化合物であれば特に限定はされない。これらのリン化合物の中でも、P−OH結合を少なくとも一つ有するホスホン酸系化合物を用いると、触媒活性の向上効果が大きく好ましい。
上記のリン化合物の中でも、芳香環構造を有する化合物を用いると触媒活性の向上効果が大きく好ましい。
前記の重縮合触媒を構成するP−OH結合を少なくとも一つ有するリン化合物として、下記一般式(25)で表される化合物から選択される少なくとも一種を用いると、触媒活性の向上効果が大きく好ましい。
(式(25)中、R1は水素、炭素数1〜50の炭化水素基、水酸基またはハロゲン基またはアルコキシル基またはアミノ基を含む炭素数1〜50の炭化水素基を表す。R2は、水素、炭素数1〜50の炭化水素基、水酸基またはアルコキシル基を含む炭素数1〜50の炭化水素基を表す。nは1以上の整数を表す。炭化水素基はシクロヘキシル等の脂環構造や分岐構造やフェニルやナフチル等の芳香環構造を含んでいてもよい。)
上記のR1としては、例えば、フェニル、1−ナフチル、2−ナフチル、9−アンスリル、4−ビフェニル、2−ビフェニルなどが挙げられる。上記のR2としては例えば、水素、メチル基、エチル基、プロピル基、イソプロピル基、n−ブチル基、sec−ブチル基、tert−ブチル基、長鎖の脂肪族基、フェニル基、ナフチル基、置換されたフェニル基やナフチル基、−CH2CH2OHで表される基などが挙げられる。
上記のリン化合物の中でも、芳香環構造を有する化合物を用いると触媒活性の向上効果が大きく好ましい。
P−OH結合を少なくとも一つ有するリン化合物としては、(1−ナフチル)メチルホスホン酸エチル、(1−ナフチル)メチルホスホン酸、(2−ナフチル)メチルホスホン酸エチル、ベンジルホスホン酸エチル、ベンジルホスホン酸、(9−アンスリル)メチルホスホン酸エチル、4−ヒドロキシベンジルホスホン酸エチル、2−メチルベンジルホスホン酸エチル、4−クロロベンジルホスホン酸フェニル、4−アミノベンジルホスホン酸メチル、4−メトキシベンジルホスホン酸エチルなどが挙げられる。これらの中で、(1−ナフチル)メチルホスホン酸エチル、ベンジルホスホン酸エチルが特に好ましい。
また、好ましいリン化合物としては、P−OH結合を少なくとも一つ有する特定のリン化合物が挙げられる。重縮合触媒を構成する好ましいリン化合物であるP−OH結合を少なくとも一つ有する特定のリン化合物とは、下記一般式(26)で表される化合物から選択される少なくとも一種の化合物のことを意味する。
(式(26)中、R1、R2はそれぞれ独立に水素、炭素数1〜30の炭化水素基を表す。R3は、水素、炭素数1〜50の炭化水素基、水酸基またはアルコキシル基を含む炭素数1〜50の炭化水素基を表す。nは1以上の整数を表す。炭化水素基はシクロヘキシル等の脂環構造や分岐構造やフェニルやナフチル等の芳香環構造を含んでいてもよい。)
これらの中でも、下記一般式(27)で表される化合物から選択される少なくとも一種を用いることが好ましい。
(式(27)中、R3は、水素、炭素数1〜50の炭化水素基、水酸基またはアルコキシル基を含む炭素数1〜50の炭化水素基を表す。炭化水素基はシクロヘキシル等の脂環構造や分岐構造やフェニルやナフチル等の芳香環構造を含んでいてもよい。)
上記のR3としては、例えば、水素、メチル基、エチル基、プロピル基、イソプロピル基、n−ブチル基、sec−ブチル基、tert−ブチル基、長鎖の脂肪族基、フェニル基、ナフチル基、置換されたフェニル基やナフチル基、−CH2CH2OHで表される基などが挙げられる。
前記のP−OH結合を少なくとも一つ有する特定のリン化合物としては、3,5−ジ−tert−ブチル−4−ヒドロキシベンジルホスホン酸エチル、3,5−ジ−tert−ブチル−4−ヒドロキシベンジルホスホン酸メチル、3,5−ジ−tert−ブチル−4−ヒドロキシベンジルホスホン酸イソプロピル、3,5−ジ−tert−ブチル−4−ヒドロキシベンジルホスホン酸フェニル、3,5−ジ−tert−ブチル−4−ヒドロキシベンジルホスホン酸オクタデシル、3,5−ジ−tert−ブチル−4−ヒドロキシベンジルホスホン酸などが挙げられる。これらの中で、3,5−ジ−tert−ブチル−4−ヒドロキシベンジルホスホン酸エチル、3,5−ジ−tert−ブチル−4−ヒドロキシベンジルホスホン酸メチルが特に好ましい。
好ましいリン化合物としては、化学式(28)であらわされるリン化合物が挙げられる。
(式(28)中、R1は炭素数1〜49の炭化水素基、または水酸基またはハロゲン基またはアルコキシル基またはアミノ基を含む炭素数1〜49の炭化水素基を表し、R2、R3はそれぞれ独立に水素、炭素数1〜50の炭化水素基、水酸基またはアルコキシル基を含む炭素数1〜50の炭化水素基を表す。炭化水素基は脂環構造や分岐構造や芳香環構造を含んでいてもよい。)
また、更に好ましくは、化学式(28)中のR、R、Rの少なくとも一つが芳香環構造を含む化合物である。
前記リン化合物の具体例を以下に示す。
また、前記リン化合物は、分子量が大きいものの方が重合時に留去されにくいためより好ましい。
重縮合触媒として使用することが好ましい別のリン化合物は、下記一般式(35)で表される化合物から選ばれる少なくとも一種のリン化合物である。
(上記式(35)中、R1、R2はそれぞれ独立に水素、炭素数1〜30の炭化水素基を表す。R3、R4はそれぞれ独立に水素、炭素数1〜50の炭化水素基、水酸基またはアルコキシル基を含む炭素数1〜50の炭化水素基を表す。nは1以上の整数を表す。炭化水素基はシクロヘキシル等の脂環構造や分岐構造やフェニルやナフチル等の芳香環構造を含んでいてもよい。)
上記一般式(35)の中でも、下記一般式(36)で表される化合物から選択される少なくとも一種を用いると触媒活性の向上効果が高く好ましい。
(上記式(36)中、R3、R4はそれぞれ独立に水素、炭素数1〜50の炭化水素基、水酸基またはアルコキシル基を含む炭素数1〜50の炭化水素基を表す。炭化水素基はシクロヘキシル等の脂環構造や分岐構造やフェニルやナフチル等の芳香環構造を含んでいてもよい。)
上記のR3、R4としては例えば、水素、メチル基、ブチル基等の短鎖の脂肪族基、オクタデシル等の長鎖の脂肪族基、フェニル基、ナフチル基、置換されたフェニル基やナフチル基等の芳香族基、−CH2CH2OHで表される基などが挙げられる。
前記の特定のリン化合物としては、3,5−ジ−tert−ブチル−4−ヒドロキシベンジルホスホン酸ジイソプロピル、3,5−ジ−tert−ブチル−4−ヒドロキシベンジルホスホン酸ジ−n−ブチル、3,5−ジ−tert−ブチル−4−ヒドロキシベンジルホスホン酸ジオクタデシル、3,5−ジ−tert−ブチル−4−ヒドロキシベンジルホスホン酸ジフェニルなどが挙げられる。
これらの中で、3,5−ジ−tert−ブチル−4−ヒドロキシベンジルホスホン酸ジオクタデシル、3,5−ジ−tert−ブチル−4−ヒドロキシベンジルホスホン酸ジフェニルが特に好ましい。
重縮合触媒として使用することが好ましい別のリン化合物は、化学式(37)、化学式(38)で表される化合物から選ばれる少なくとも一種のリン化合物である。
上記の化学式(37)で示される化合物としては、Irganox1222(チバ・スペシャルティーケミカルズ社製)が市販されている。また、化学式(38)にて示される化合物としては、Irganox1425(チバ・スペシャルティーケミカルズ社製)が市販されている。
リン化合物は、一般に酸化防止剤としてはよく知られていたが、これらのリン化合物を従来の金属含有ポリエステル重合触媒と組み合わせて使用しても、溶融重合を大きく促進することは知られていない。実際に、ポリエステル重合の代表的な触媒であるアンチモン化合物、チタン化合物、スズ化合物あるいはゲルマニウム化合物を重合触媒としてポリエステルを溶融重合する際に、リン化合物を添加しても、実質的に有用なレベルまで重合が促進されることは認められない。
即ち、前記のリン化合物を併用することにより、ポリエステル重合触媒中のアルミニウムの含有量が少量でも、十分な触媒効果を発揮することができる。
前記のリン化合物の添加量は、ポリエステルを構成するジカルボン酸成分の全構成ユニットのモル数に対して、0.0001〜0.1モル%が好ましく、0.005〜0.05モル%であることがさらに好ましい。リン化合物の添加量が0.0001モル%未満の場合には添加効果が発揮されない場合がある。一方、0.1モル%を超えて添加すると、逆にポリエステル重合触媒としての触媒活性が低下する場合がある。また、その低下の傾向は、アルミニウムの添加量等により変化する。
リン化合物を使用せず、アルミニウム化合物を主たる触媒成分とし、アルミニウム化合物の添加量を低減し、さらにコバルト化合物を添加することにより、アルミニウム化合物を主触媒とした場合の熱安定性の低下による着色を防止することが検討されているが、コバルト化合物を十分な触媒活性を有する程度に添加するとやはり熱安定性が低下する。従って、この技術では両者を両立することは困難である。
前記の特定の化学構造を有するリン化合物の使用により、熱安定性の低下、異物発生等の問題を起こさず、しかも金属含有成分のアルミニウムとしての添加量が少量でも十分な触媒効果を有する重縮合触媒が得られ、この重縮合触媒により重合したポリエステルを使用することにより、溶融成形後のポリエステルフィルムの熱安定性が改善される。
また、前記リン化合物に代えてリン酸やトリメチルリン酸等のリン酸エステルを添加しても、前記添加効果は見られない。さらに、前記のリン化合物を前記好ましい添加量の範囲で、従来のアンチモン化合物、チタン化合物、スズ化合物、ゲルマニウム化合物等の金属含有ポリエステル重縮合触媒と組み合わせて使用しても、溶融重合反応を促進する効果は認められない。
一方、本発明においてアルミニウムもしくはその化合物に加えて少量のアルカリ金属、アルカリ土類金属並びにその化合物から選択される少なくとも1種を第2金属含有成分として共存させても良い。かかる第2金属含有成分を触媒系に共存させることは、ジエチレングリコールの生成を抑制する効果に加えて触媒活性を高め、従って反応速度をより高めた触媒成分が得られ、生産性向上に有効である。
アルミニウム化合物にアルカリ金属化合物又はアルカリ土類金属化合物を添加して十分な触媒活性を有する触媒とする技術は公知である。かかる公知の触媒を使用すると熱安定性に優れたポリエステルが得られるが、アルカリ金属化合物又はアルカリ土類金属化合物を併用した公知の触媒は、実用的な触媒活性を得ようとすると、触媒添加量を多くする必要がある。
アルカリ金属化合物を併用した場合、それに起因する異物量が多くなり、フィルム製造時の溶融押出し工程でフィルター交換頻度が短くなったり、フィルム欠点が増加する傾向がある。
また、アルカリ土類金属化合物を併用した場合には、実用的な活性を得ようとすると、得られたポリエステルの熱安定性や熱酸化安定性が低下し、加熱による着色が大きく、異物の発生量も多くなる。
アルカリ金属、アルカリ土類金属、またはそれらの化合物を添加する場合、その添加量M(モル%)は、ポリエステルを構成する全ポリカルボン酸ユニットのモル数に対して、1×10-6以上0.1モル%未満であることが好ましく、より好ましくは5×10-6〜0.05モル%であり、さらに好ましくは1×10-5〜0.03モル%であり、特に好ましくは、1×10-5〜0.01モル%である。
すなわち、アルカリ金属やアルカリ土類金属の添加量が少量であるため、熱安定性低下、異物の発生、着色等の問題を発生させることなく、反応速度を高めることが可能である。また、耐加水分解性の低下等の問題を発生させることもない。
アルカリ金属、アルカリ土類金属、またはそれらの化合物の添加量Mが0.1モル%以上になると熱安定性の低下、異物発生や着色の増加、耐加水分解性の低下等が製品加工上問題となる場合が発生する。Mが1×10-6モル%未満では、添加してもその効果が明確ではない。
前記アルミニウムもしくはその化合物に加えて使用することが好ましい第2金属含有成分を構成するアルカリ金属、アルカリ土類金属としては、Li、Na、K、Rb、Cs、Be、Mg、Ca、Sr、Baから選択される少なくとも1種であることが好ましく、アルカリ金属ないしその化合物の使用がより好ましい。
アルカリ金属ないしその化合物を使用する場合、アルカリ金属としては、特にLi、Na、Kが好ましい。アルカリ金属やアルカリ土類金属の化合物としては、例えば、これら金属のギ酸、酢酸、プロピオン酸、酪酸、蓚酸などの飽和脂肪族カルボン酸塩、アクリル酸、メタクリル酸などの不飽和脂肪族カルボン酸塩、安息香酸などの芳香族カルボン酸塩、トリクロロ酢酸などのハロゲン含有カルボン酸塩、乳酸、クエン酸、サリチル酸などのヒドロキシカルボン酸塩、炭酸、硫酸、硝酸、リン酸、ホスホン酸、炭酸水素、リン酸水素、硫化水素、亜硫酸、チオ硫酸、塩酸、臭化水素酸、塩素酸、臭素酸などの無機酸塩、1−プロパンスルホン酸、1−ペンタンスルホン酸、ナフタレンスルホン酸などの有機スルホン酸塩、ラウリル硫酸などの有機硫酸塩、メトキシ、エトキシ、n−プロポキシ、iso−プロポキシ、n−ブトキシ、tert−ブトキシなどのアルコキサイド、アセチルアセトネートなどとのキレート化合物、水素化物、酸化物、水酸化物などが挙げられる。
これらのアルカリ金属、アルカリ土類金属またはそれらの化合物のうち、水酸化物等のアルカリ性の強いものを用いる場合、これらはエチレングリコール等のジオールもしくはアルコール等の有機溶媒に溶解しにくい傾向があるため、水溶液で重合系に添加しなければならず重合工程上問題となる場合が有る。
さらに、水酸化物等のアルカリ性の強いものを用いた場合、重合時にポリエステルが加水分解等の副反応を受けやすくなるとともに、重合したポリエステルは着色しやすくなる傾向があり、耐加水分解性も低下する傾向がある。
従って、前記のアルカリ金属またはその化合物、アルカリ土類金属またはその化合物として好適なものは、アルカリ金属あるいはアルカリ土類金属の飽和脂肪族カルボン酸塩、不飽和脂肪族カルボン酸塩、芳香族カルボン塩、ハロゲン含有カルボン酸塩、ヒドロキシカルボン酸塩、硫酸、硝酸、リン酸、ホスホン酸、リン酸水素、硫化水素、亜硫酸、チオ硫酸、塩酸、臭化水素酸、塩素酸、臭素酸から選ばれる無機酸塩、有機スルホン酸塩、有機硫酸塩、キレート化合物、および酸化物である。これらの中でもさらに、取り扱い易さや入手のし易さ等の観点から、アルカリ金属あるいはアルカリ土類金属の飽和脂肪族カルボン酸塩、特に酢酸塩の使用が好ましい。
本発明のポリエステルフィルムの主たる構成成分であるポリエステルは、熱安定性パラメータ(TS)が下記式を満たすことが好ましく、より好ましくは0.20以下、特に好ましくは0.18以下である。TSが0.25未満のポリエステルを用いることにより、フィルムを製造する際の溶融工程における熱安定性に優れ、着色や異物の発生の少ないポリエステルフィルムが得られる。また、TSの下限は、生産性の点から好ましくは0.01以上、より好ましくは0.05以上、さらに好ましくは0.07以上である。
(1)TS<0.25
TSは下記方法により算出する。ポリエステル1gをガラス試験管に入れ、130℃で12時間真空乾燥する。次いで、非流通窒素雰囲気下で300℃にて2時間溶融状態に維持した後、サンプルを取り出し冷凍粉砕する。それを真空乾燥後、固有粘度([IV]f)を測定する。例えば、ポリエステルがポリエチレンテレフタレートの場合には、次式により計算することができる。
TS=0.245{[IV]f -1.47 −[IV]i -1.47
非流通窒素雰囲気とは、流通しない窒素雰囲気を意味し、例えば、レジンチップを入れたガラス試験管を真空ラインに接続し、減圧と窒素封入を5回以上繰り返した後に100Torrとなるように窒素を封入して封管した状態である。
また、本発明のポリエステルフィルムの主たる構成成分であるポリエステルは、熱酸化安定性パラメータ(TOS)が下記式(2)を満たすことが好ましく、より好ましくは0.10以下、さらに好ましくは0.07以下、よりさらに好ましくは0.05以下である。また、TOSは低い方が好ましいが、0.0001が下限であると考える。
(2)TOS<0.20
TOSは下記方法により算出する。ポリエステル樹脂を冷凍粉砕し、20メッシュ以下の粉末にする。その粉末を130℃で12時間真空乾燥し、0.3gをガラス試験管に入れる。次いで、70℃で12時間真空乾燥し、さらにシリカゲルで乾燥した空気下で230℃、15分間加熱した後、固有粘度([IV]f1)を測定する。例えば、ポリエステルがポリエチレンテレフタレートの場合には、次式により計算することができる。
TOS=0.245{[IV]f1 -1.47−[IV]i -1.47
上記式において、[IV]i および[IV]f1はそれぞれ加熱試験前と加熱試験後のIV(dl/g)を指す。
シリカゲルで乾燥した空気下で加熱する方法としては、例えば、シリカゲルを入れた乾燥管をガラス試験管上部に接続し、乾燥した空気下で加熱する方法が例示できる。
また、本発明に使用するポリエステルは、耐加水分解性パラメータ(HS)が下記式(3)を満たすことが好ましく、より好ましくは0.06以下、特に好ましくは0.055以下である。また、HSは低い方が好ましいが、0.0005が下限であると考える。
(3)HS<0.07
HSは下記方法により算出する。ポリエステル樹脂を冷凍粉砕し20メッシュ以下の粉末にする。130℃で12時間真空乾燥した後、その1gを純水100mlと共にビーカーに入れる。密閉系にして、130℃で加熱、加圧した条件下で6時間撹拌した後、固有粘度([IV]f2)を測定する。例えば、ポリエステルがポリエチレンテレフタレートの場合には、次式により計算することができる。
HS=0.245×{[IV]f2 -1.47−[IV]i -1.47
HSの測定に使用するビーカーは、酸やアルカリの溶出のないものを使用する。具体的には、ステンレスビーカー、石英ビーカーの使用が好ましい。
本発明で用いるポリエステルは、ポリエステル重合触媒として前記の特定の触媒を用いる以外は、従来公知の製造方法で行うことができる。例えば、PETを製造する場合は、テレフタル酸とエチレングリコールとをエステル化反応させた後重縮合する方法、もしくはテレフタル酸ジメチルなどのテレフタル酸のアルキルエステルとエチレングリコールとのエステル交換反応を行った後重縮合する方法、のいずれの方法でも行うことができる。また、重合装置は、回分式であっても、連続式であってもよい。
本発明で用いるポリエステルの触媒は、重合反応のみならずエステル化反応およびエステル交換反応にも触媒活性を有する。例えば、テレフタル酸ジメチルなどのジカルボン酸のアルキルエステルとエチレングリコールなどのグリコールとのエステル交換反応による重合は、通常チタン化合物や亜鉛化合物などのエステル交換触媒の存在下で行われるが、これらの触媒に代えて、もしくはこれらの触媒に共存させて本発明の請求項に記載の触媒を用いることもできる。また、前記の触媒は、溶融重合のみならず固相重合や溶液重合においても触媒活性を有しており、いずれの方法によってもポリエステルフィルムを製造に適したポリエステルを製造することが可能である。特に、本発明ではポリエステルフィルムの耐久性を付与するため、固有粘度が0.60dl/g超のポリエステルを用いるのか好ましいが、固有粘度を調整するために、重合後に固相重合を施すことが望ましい。
本発明で用いるポリエステルの重合触媒は、重合反応の任意の段階で反応系に添加することができる。例えば、エステル化反応もしくはエステル交換反応の開始前および反応途中の任意の段階、重縮合反応の開始直前、あるいは重縮合反応途中の任意の段階で、反応系への添加することが出きる。特に、アルミニウムないしその化合物は重縮合反応の開始直前に添加することが好ましい。
本発明で用いるポリエステルの重縮合触媒の添加方法は、特に限定されないが、粉末状もしくはニート状での添加であってもよいし、エチレングリコールなどの溶媒のスラリー状もしくは溶液状での添加であってもよい。また、アルミニウム金属もしくはその化合物と他の成分、好ましくは本発明のフェノール系化合物もしくはリン化合物とを予め混合したものを添加してもよいし、これらを別々に添加してもよい。また、アルミニウム金属もしくはその化合物と他の成分、好ましくはフェノール系化合物もしくはリン化合物とを同じ添加時期に重合系に添加しても良いし、それぞれを異なる添加時期に添加してもよい。
本発明で用いるポリエステルの重縮合触媒は、アンチモン化合物、チタン化合物、ゲルマニウム化合物、スズ化合物等の他の重合触媒は用いないことが好ましいが、を、ポリエステルの特性、加工性、色調品に問題が生じない範囲内において、適量共存させても良い。
具体的には、アンチモン化合物の添加量は、重合して得られるポリエステルに対してアンチモン原子換算で50ppm以下とすることが好ましく、より好ましくは30ppm以下の量である。アンチモン原子換算量が50ppmを超えると、金属アンチモンの析出が起こり、ポリエステルが黒っぽくなり外観上好ましくない。また、金属アンチモンに起因する異物が増加し、特に欠点に対する要求が厳しい用途では好ましくない。
チタン化合物の添加量は、重合して得られるポリエステルに対してチタン原子換算で10ppm以下の量とすることが好ましく、より好ましくは5ppm以下、さらに好ましくは2ppm以下、特に好ましくは1ppm以下である。チタン原子換算量が10ppmを超えると、得られるレジンの熱安定性が著しく低下する。
ゲルマニウム化合物の添加量は、重合して得られるポリエステルに対してゲルマニウム原子換算量で20ppm以下とすることが好ましく、より好ましくは10ppm以下である。ゲルマニウム原子換算量が20ppmを超えると、コスト的に不利となるため好ましくない。
前記アンチモン化合物、チタン化合物、ゲルマニウム化合物およびスズ化合物の種類は特に限定はない。
具体的には、アンチモン化合物としては、三酸化アンチモン、五酸化アンチモン、酢酸アンチモン、アンチモングリコキサイドなどが挙げられ、これらのうち三酸化アンチモンが好ましい。
また、チタン化合物としては、テトラ−n−プロピルチタネート、テトライソプロピルチタネート、テトラ−n−ブチルチタネート、テトライソブチルチタネート、テトラ−tert−ブチルチタネート、テトラシクロヘキシルチタネート、テトラフェニルチタネート、蓚酸チタン等が挙げられ、これらのうちテトラ−n−ブトキシチタネートが好ましい。
さらに、ゲルマニウム化合物としては二酸化ゲルマニウム、四塩化ゲルマニウムなどが挙げられ、これらのうち二酸化ゲルマニウムが好ましい。
スズ化合物としては、ジブチルスズオキサイド、メチルフェニルスズオキサイド、テトラエチルスズ、ヘキサエチルジスズオキサイド、トリエチルスズハイドロオキサイド、モノブチルヒドロキシスズオキサイド、トリイソブチルスズアデテート、ジフェニルスズジラウレート、モノブチルスズトリクロライド、ジブチルスズサルファイド、ジブチルヒドロキシスズオキサイド、メチルスタンノン酸、エチルスタンノン酸などが挙げられ、特にモノブチルヒドロキシスズオキサイドの使用が好ましい。
本発明でフィルム原料として使用するポリエステルとは、ジカルボン酸を含む多価カルボン酸およびこれらのエステル形成性誘導体から選ばれる一種または二種以上とグリコールを含む多価アルコールから選ばれる一種または二種以上とから成るもの、またはヒドロキシカルボン酸およびこれらのエステル形成性誘導体からなるもの、または環状エステルからなるものをいう。
好ましいポリエステルとしては、主たる酸成分がテレフタル酸またはそのエステル形成性誘導体、もしくはナフタレンジカルボン酸またはそのエステル形成性誘導体であり、主たるグリコール成分がアルキレングリコールであるポリエステルである。
主たる酸成分がテレフタル酸またはそのエステル形成性誘導体もしくはナフタレンジカルボン酸またはそのエステル形成性誘導体であるポリエステルとは、全酸成分に対してテレフタル酸またはそのエステル形成性誘導体とナフタレンジカルボン酸またはそのエステル形成性誘導体を合計して70モル%以上含有するポリエステルであることが好ましく、より好ましくは80モル%以上含有するポリエステルであり、さらに好ましくは90モル%以上含有するポリエステルである。
主たるグリコール成分がアルキレングリコールであるポリエステルとは、全グリコール成分に対してアルキレングリコールを合計して70モル%以上含有するポリエステルであることが好ましく、より好ましくは80モル%以上含有するポリエステルであり、さらに好ましくは90モル%以上含有するポリエステルである。
テレフタル酸、ナフタレンジカルボン酸に共重合可能なジカルボン酸としては、耐加水分解性を低下させないことから、オルソフタル酸、イソフタル酸、4,4’−ビフェニルジカルボン酸、4,4’−ビフェニルスルホンジカルボン酸、4,4’−ビフェニルエーテルジカルボン酸、1,2−ビス(フェノキシ)エタン−p,p’−ジカルボン酸、パモイン酸、アントラセンジカルボン酸などに例示される芳香族ジカルボン酸、またはこれらのエステル形成性誘導体が好ましい。また、ピロメリット酸、トリメリット酸、などの3官能以上のカルボン酸成分を共重合させても良い。
グリコールとしては、エチレングリコール、1,2−プロピレングリコール、1,3−プロピレングリコール、ジエチレングリコール、トリエチレングリコール、1,2−ブチレングリコール、1,3−ブチレングリコール、2,3−ブチレングリコール、1,4−ブチレングリコール、1,5−ペンタンジオール、ネオペンチルグリコール、1,6−ヘキサンジオール、1,2−シクロヘキサンジオール、1,3−シクロヘキサンジオール、1,4−シクロヘキサンジオール、1,2−シクロヘキサンジメタノール、1,3−シクロヘキサンジメタノール、1,4−シクロヘキサンジメタノール、1,4−シクロヘキサンジエタノール、1,10−デカメチレングリコール、1,12−ドデカンジオールなどのアルキレングリコール、ポリエチレングリコール、ポリトリメチレングリコール、ポリテトラメチレングリコールなどに例示される脂肪族グリコール、ヒドロキノン、4,4’−ジヒドロキシビスフェノール、1,4−ビス(β−ヒドロキシエトキシ)ベンゼン、1,4−ビス(β−ヒドロキシエトキシフェニル)スルホン、ビス(p−ヒドロキシフェニル)エーテル、ビス(p−ヒドロキシフェニル)スルホン、ビス(p−ヒドロキシフェニル)メタン、1,2−ビス(p−ヒドロキシフェニル)エタン、ビスフェノールA、ビスフェノールC、2,5−ナフタレンジオール、これらのグリコールにエチレンオキシドが付加したグリコール、などに例示される芳香族グリコールが挙げられる。
これらのグリコールのうち、アルキレングリコールが好ましく、さらに好ましくは、エチレングリコール、1,3−プロピレングリコール、1,4−ブチレングリコール、1,4−シクロヘキサンジメタノールである。また、前記アルキレングリコールは、分子鎖中に置換基や脂環構造を含んでいても良く、同時に2種以上を使用しても良い。
これらグリコール以外の多価アルコールとして、トリメチロールメタン、トリメチロールエタン、トリメチロールプロパン、ペンタエリスリトール、グリセロール、ヘキサントリオールなどが挙げられる。
これらの中でも、とくに好ましく本発明で用いるポリエステルとしては、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリプロピレンテレフタレート、ポリ(1,4−シクロヘキサンジメチレンテレフタレート)、ポリエチレンナフタレート、ポリブチレンナフタレート、ポリプロピレンナフタレートおよびこれらの共重合体が好ましく、特に好ましくはポリエチレンテレフタレートおよびこの共重合体である。
また、ポリエステルを重合した後に、得られたポリエステルから触媒を除去するか、またはリン化合物などの添加によって触媒を失活させることによって、ポリエステルの熱安定性をさらに高めることができる。
ポリエステルの重合中にジアルキレングリコールが副生するが、ジアルキレングリコールは耐熱性を低下させる。代表的なジアルキレングリコールとしてジエチレングリコールを例にすると、ジエチレングリコール量は2.3モル%以下であることが好ましい。より好ましくは2.0モル%以下、さらに好ましくは1.8モル%以下である。ジエチレングリコール量を上記範囲にすることにより、耐熱安定性を高めることができ、乾燥時、成形時の分解によるカルボキシル末端濃度の増加を小さくすることが出来る。さらに、セルを封止する際の充填剤を硬化させる熱による分解も低いレベルに抑えることが出来る。なお、ジエチレングリコール量は少ない方が良いが、ポリエステル製造の祭のテレフタル酸のエステル化反応時、テレフタル酸ジメチルのエステル交換反応時に副反応物として生成するものであり、現実的には下限は1.0モル%、さらには1.2モル%である。
アセトアルデヒド含有量は50ppm以下であることが好ましい。さらに好ましくは40ppm以下、特に好ましくは30ppm以下である。アセトアルデヒドはアセトアルデヒド同士で縮合反応を容易に起こし、副反応物として水が生成し、この水により、ポリエステルの加水分解が進む場合がある。アセトアルデヒド含有量の下限は現実的には1ppm程度である。アセトアルデヒド量を上記範囲にするためには、樹脂の製造時の溶融重合、固相重合など各工程での酸素濃度を低く保つ、樹脂保管時、乾燥時の酸素濃度を低く保つ、フィルム製造時に押し出し機、メルト配管、ダイ等で樹脂にかかる熱履歴を低くする、溶融させる祭の押し出し機のスクリュー構成等で局所的に強い剪断がかからないようにするなどの方法を採用することが出来る。
なお、アセトアルデヒド含有量は、冷凍粉砕したフィルム/蒸留水=1g/2mlを窒素置換したガラスアンプルに入れて上部を溶封し、160℃で2時間抽出処理を行い、冷却後抽出液中のアセトアルデヒドを高感度ガスクロマトグラフィ−で測定した値である。
酢酸含有量は1ppm以下であることが好ましい。さらに好ましくは0.5ppm以下、特に好ましくは0.3ppm以下である。上記範囲を超えると、ポリエステルの加水分解を促進させる場合がある。酢酸含有量を上記範囲にするためには、上記アセトアルデヒド含有量を低くするための方策が採用できる。
なお、酢酸含有量は、冷凍粉砕したフィルム2gをガラス容器に入れ、沸騰したイオン交換水500mlを注ぎ、密栓後10分間放置後室温に冷却し、7日間放置後、この液1mlを用いてイオンクロマトグラフ法により定量した値である。
ポリエステルに不溶なアルミニウム系異物の含有量はとして3500ppm以下であることが好ましい。より好ましくは2500ppm以下、さらに好ましくは1500ppm以下、特に好ましくは1000ppm以下である。上記範囲を超えると、耐絶縁性が低下することがある。なお、ポリエステルに不溶なアルミニウム系異物は、以下の方法で測定したものである。
1cm角程度に切断したフィルム30gおよびパラクロロフェノール/テトラクロロエタン(3/1:重量比)混合溶液300mlを攪拌機付き丸底フラスコに投入し、100〜105℃、2時間で攪拌・溶解した。該溶液を室温になるまで放冷し、直径47mm/孔径1.0μmのポリテトラフルオロエチレン製のメンブレンフィルター(Advantec社製PTFEメンブレンフィルター、品名:T100A047A)を用い、全量を0.15MPaの加圧下で異物を濾別した。有効濾過直径は37.5mmとした。濾過終了後、引き続き300mlのクロロホルムを用い洗浄し、次いで、30℃で一昼夜減圧乾燥した。該メンブレンフィルターの濾過面を走査型蛍光X線分析装置(RIGAKU社製、ZSX100e、Rhライン球4.0kW)でアルミニウム元素量を定量した。定量はメンブレンフィルターの中心部直径30mmの部分について行った。なお、該蛍光X線分析法の検量線はアルミニウム元素含有量が既知のポリエチレンテレフタレート樹脂を用いて求め、見掛けのアルミニウム元素量をppmで表示した。測定はX線出力50kV−70mAで分光結晶としてペンタエリスリトール、検出器としてPC(プロポーショナルカウンター)を用い、PHA(波高分析器)100−300の条件でAl−Kα線強度を測定することにより実施した。検量線用PET樹脂中のアルミニウム元素量は、高周波誘導結合プラズマ発光分析法で定量した。
本発明で用いるポリエステル中には、使用する目的に応じて、無機粒子、耐熱性高分子粒子、架橋高分子粒子などの不活性粒子、蛍光増白剤、紫外線防止剤、赤外線吸収色素、熱安定剤、界面活性剤、酸化防止剤などの各種添加剤を1種もしくは2種以上含有させることができる。酸化防止剤としては、芳香族アミン系、フェノール系などの酸化防止剤が使用可能であり、安定剤としては、リン酸やリン酸エステル系等のリン系、イオウ系、アミン系などの安定剤が使用可能である。
本発明のポリエステルフィルムは、耐久性および機械的強度の点から配向ポリエステルフィルムであることが好ましく、より好ましくは二軸配向ポリエステルフィルムである。配向ポリエステルフィルムの場合、前記特定の触媒を用いて重合したポリエステルチップを押出機において溶融する溶融工程、押出機から溶融樹脂を押出すことにより未延伸フィルムを形成するフィルム化工程、未延伸フィルムの少なくとも一方向に延伸する延伸工程、および、延伸したフィルムを熱処理する熱固定工程を経ることにより製造することが望ましい。次に、本願発明の配向ポリエステルフィルムの製造方法について詳しく説明する。
溶融工程においては、ポリエステルチップを溶融押出機に供給し、ポリマー融点以上の温度に加熱し溶融する。この際、フィルム製造中のカルボキシル末端濃度の上昇を抑制するために、十分乾燥したポリエステルチップを用いることが好ましい。用いるポリエステルチップの水分量は100ppm以下であることが好ましく、50ppm以下であることがより好ましく、30ppm以下であることがさらに好ましい。ポリエステルチップを乾燥する方法は、減圧乾燥など公知の方法を用いることができる。
押出機内におけるポリエステル樹脂の最高温度は、280℃以上であることが好ましく、285℃以上であることが好ましく、290℃以上であることがさらに好ましい。溶融温度を上げることにより、押出機内での濾過時の背圧が低下し、良好な生産性を奏することができる。また、押出機内におけるポリエステル樹脂の最高温度は、320℃以下が好ましく、310℃以下がさらに好ましい。溶融温度が高くなるとポリエステルの熱劣化が進行し、ポリエステルのカルボキシル末端濃度が上昇し、耐加水分解性が低下する場合がある。
本発明で用いる前記特定の触媒を用いて重合したポリエステルは、熱酸化安定性が高く、押出機内での最高温度が上記の範囲であっても、フィルム製造中におけるカルボキシル末端濃度の低下を抑制することができる。
原料樹脂として用いるポリエステルチップのカルボキシル末端濃度と製膜後のポリエステルフィルムでのカルボキシル末端濃度との差(変動量)は6eq/ton以下であることが好ましく、5eq/ton以下であることがさらに好ましい。上記範囲であれば、フィルム製造中でのカルボキル末端濃度の上昇が抑制され、耐久性の良好なポリエステルフィルムを高い生産性を維持したまま製造することができる。なお、上記変動量の下限は、生産性の点から0.5eq/tonが下限であると考える。
また、本発明フィルムの製造方法の場合、熱劣化によるフィルム製造中での固有粘度の下落も抑制することができる。原料樹脂として用いるポリエステルチップの固有粘度(IV)と製膜後のポリエステルフィルムでの固有粘度(IV)との差(変動量)は0.07dl/g以下であることが好ましく、0.06dl/g以下であることがさらに好ましい。なお、上記変動量の下限は、生産性の点から0.001dl/gが下限であると考える。
フィルム化工程においては、前記の特定の触媒を用いて重合したポリエステル樹脂を溶融押出しし、T−ダイスより冷却回転ロール上にシート状に成型し、未延伸フィルムを作成する。この際、例えば特公平6−39521号公報、特公平6−45175号公報に記載の技術を適用することにより、高速製膜性が可能となる。また、複数の押出し機を用い、コア層、スキン層に各種機能を分担させ、共押出し法により積層フィルムとしても良い。
延伸工程においては、本発明のポリエステルフィルムは、公知の方法を用いて、ポリエステルのガラス転移温度以上結晶化温度未満で、少なくとも一軸方向に1.1〜6倍に延伸することにより得ることができる。
例えば、二軸配向ポリエステルフィルムを製造する場合、縦方向または横方向に一軸延伸を行い、次いで直交方向に延伸する逐次二軸延伸方法、縦方向及び横方向に同時に延伸する同時二軸延伸する方法、さらに同時二軸延伸する際の駆動方法としてリニアモーターを用いる方法を採用することができる。
さらに、延伸終了後、フィルムの熱収縮率を低減させるために、熱固定工程において(融点−50℃)〜融点未満の温度で30秒以内、好ましくは10秒以内で熱固定処理を行い、0.5〜10%の縦弛緩処理、横弛緩処理などを施すことが好ましい。
太陽電池用易接着性ポリエステルフィルムとしてより高度な熱寸法安定性が要求される場合は、縦緩和処理を施すことが望ましい。縦緩和処理の方法としては、公知の方法を用いることができるが、例えばテンターのクリップ間隔を徐々に狭くして縦緩和処理を行う方法(特特公平4−028218号公報)や、テンターの内で端部に剃刀を入れ切断しクリップの影響を避けて緩和処理を行う方法(特公昭57−54290号公報)などが利用できる。
得られた太陽電池用易接着性ポリエステルフィルムの厚みは、10〜500μmであることが好ましく、より好ましく15〜400μmであり、さらに好ましくは20〜250μmである。10μm未満では腰が無く取り扱いが困難である。さらに、フィルム厚みが薄いと、熱収縮の影響が大きく、高温高湿処理後の接着性が低下する場合がある。また500μmを超えるとハンドリング性が低下し、取り扱いが困難となる。
また、絶縁性、耐擦り傷性、などの各種機能を付与するために、太陽電池用易接着性ポリエステルフィルム表面にコーティング法により高分子樹脂を被覆してもよい。また、無機蒸着層もしくはアルミ層を設け水蒸気バリア機能を付与したりすることもできる。
また、本発明のポリエステルフィルムは、滑り性、走行性、耐摩耗性、巻き取り性などのハンドリング特性を向上させるために、フィルム表面に凹凸を形成させることが好ましい。フィルム表面に凹凸を付与するためには、ポリエステルの重合工程で無機及び/又は耐熱性高分子樹脂粒子を添加する外部粒子添加法、重合工程で触媒残渣とポリエステルの構成成分とを反応させて不溶性の粒子を析出させる内部粒子法、被覆層に前記粒子を含有させる方法、薄膜層表面に凹凸が付与されたロールなどでエンボス加工する方法、レーザービームなどで表面凹凸をパターニングする方法、などが挙げられる。
易滑性付与のためにポリエステルに添加する不活性粒子の種類及び含有量は、特に限定されるものではないが、シリカ、二酸化チタン、タルク、カオリナイト等の金属酸化物、炭酸カルシウム、リン酸カルシウム、硫酸バリウムなどの金属の塩または耐熱性高分子粒子など、ポリエステル樹脂に対し不活性な粒子が例示される。これらの不活性粒子は、いずれか一種を単独で用いてもよく、また2種以上を併用してもよい。
ヘイズを小さくするためには、ポリエステルに含有させる不活性粒子としては、粒子の屈折率がポリエステルに近いシリカ、ガラスフィラー、アルミナ−シリカ複合酸化物粒子が好ましく、可視光線の波長よりも小さな粒子径を有する粒子が好ましく、含有量も低いほうが良い。また、延伸張力が大きくなると、粒子周囲に発生するボイドが大きくなるため、延伸張力が低くなるように、すなわち、延伸温度を高目にする又は延伸倍率を小さくするように延伸条件を適正化する必要がある。さらに、積層構成とし、中心層のポリエステル層には不活性粒子を含有させず、表面層のみ粒子を含有する方法もヘイズを小さくするのにきわめて有効な方法である。
前記の不活性粒子は、平均粒子径が0.01〜3.5μmであることが好ましく、粒子径のばらつき度(標準偏差と平均粒子径との比率)が25%以下であることが好ましい。また、粒子の形状は、面積形状係数が60%以上の粒子が1種類以上含まれていることが好ましい。このような特性を有する不活性粒子をポリエステル樹脂に対し0.005〜2.0質量%含有させることが好ましく、特に好ましくは1.0質量%以下である。
本発明のポリエステルフィルムは、カルボキシル末端濃度がポリエステルに対し25eq/ton以下であることが、太陽電池用部材としての高度な耐加水分解性を得るのに重要である。ポリエステルフィルムは、カルボキシル末端濃度がポリエステルに対して20eq/ton以下であることが好ましく、18eq/ton以下であることがさらに好ましく、15eq/ton以下であることがよりさらに好ましく、13eq/ton以下であることが特に好ましく、10eq/ton以下であることがより特に好ましい。この値が25eq/tonより大きい場合は、対加水分解性が低下し、太陽電池用部材としての耐久性が発揮できす、早期の劣化が生じやすくなる。なお、ポリエステルのカルボキシル末端濃度の測定は、後述する滴定法、もしくはNMR法により測定することができる。
ポリエステルフィルムのカルボキシル末端濃度を上記範囲にするには、原料樹脂として用いるポリエステルチップのカルボキシル末端濃度を25eq/ton未満にすることが好ましい。用いるポリエステルチップのカルボキシル末端濃度は、20eq/ton未満であることがより好ましく、13eq/ton未満であることがさらに好ましく、10eq/ton未満であることがよりさらに好ましく、8eq/ton未満であることが特に好ましく、5eq/ton未満であることがより特に好ましい。ポリエステルチップのカルボキシル末端濃度を上記範囲にすることは、樹脂の重合条件を適宜選択することにより行いことができる。例えば、エステル化反応装置の構造等の製造装置要因や、エステル化反応槽に供給するスラリーのジカルボン酸とグリコールの組成比、エステル化反応温度、エステル化反応圧、エステル化反応時間等のエステル化反応条件もしくは固層重合条件等を適宜設定することにより行えばよい。さらに、上記のように、ポリエステルチップの水分量を制御したり、溶融工程での樹脂温度を制御することが好ましい。また、エポキシ化合物やカルボジイミド化合物などによりポリエステルのカルボキシル末端を封鎖することも好ましい方法である。なお、ポリエステルフィルムのカルボキシル末端濃度は小さい方が好ましいが、生産性の点から0.5eg/tonが下限であると考えている。
本発明のポリエステルフィルムは、固有粘度(IV)の値が0.60〜0.90dl/gであることが高度な耐熱性、耐加水分解性を得るためには好ましく、より好ましくは0.62〜0.85dl/g、更に好ましくは0.65〜0.8dl/gである。IVの値が0.60dl/gより低い場合は、耐加水分解性や耐熱性が十分でなく、また、0.90dl/gより高い場合は、溶融工程の背圧が高くなるために生産性を低下させたり、せん断発熱により熱劣化が促進したりするために好ましくない。
本発明の太陽電池用易接着性ポリエステルフィルムは、160℃での耐熱テストにおける破断伸度保持率半減期が700時間以上、より好ましくは800時間以上である。係る範囲にあることにより、本発明の太陽電池用易接着性ポリエステルフィルムは、大型化、高出力化した太陽電池でも長期の使用に耐えうる長期熱安定性を奏することができる。
本発明の太陽電池用易接着性ポリエステルフィルムは、耐加水分解性の評価である105℃、100%RH、0.03MPa下192時間での伸度保持率が好ましくは65%以上、より好ましくは70%以上である。係る範囲にあることにより、本発明の太陽電池用易接着性ポリエステルフィルムは、屋外での長期使用に耐えうる高い耐加水分解性を奏することができる。
本発明の太陽電池用易接着性ポリエステルフィルムは、密度が1.38〜1.41g/cmであることが好ましく、更に好ましくは1.39〜1.40g/cm3である。フィルムの密度が1.38g/cmより低い場合には、フィルムの高温下での寸法安定性が悪化する場合がある。また、フィルムの密度が1.41g/cmより高い場合には、耐熱性評価での伸度保持率が低下する場合がある。フィルム密度を上記範囲に制御する方法としては、延伸工程における延伸倍率を適宜制御することにより行うことができる。
本発明の太陽電池用易接着性ポリエステルフィルムは、150℃における熱収縮率は長手方向(縦方向)および幅方向(横方向)ともに−0.5%〜2.0%であることが好ましく、−0.5%〜1.8%であることがより好ましい。また、例えば、高温での使用や高温加工での精密性など太陽電池としてより厳しい熱収縮率が求められる場合、150℃における熱収縮率は長手方向(縦方向)および幅方向(横方向)ともに−0.5%〜0.5%であることが好ましい。これにより、粘着層形成などの加熱加工時や、積層状態でのカールの発生などを抑制することができる。150℃の熱収縮率を上記範囲にする方法としては、延伸条件を制御する、もしくは熱固定工程において縦緩和処理、および横緩和処理を施すことにより行なうことができる。
破断伸度を保持するためには、フィルムの縦横の配向バランスをとることが好ましい。本発明の太陽電池用易接着性ポリエステルフィルムのフィルム厚みを50μmに換算したときのMOR値(MOR−C)は、1.0〜2.0であることが好ましく、1.3〜1.8であることがさらに好ましい。これにより、縦横のフィルムのバランスが調整され、機械的強度や耐久性の維持の有効である。また、積層時のカールの発生も抑制することができ、密着性の向上にも有効である。MOR−Cを上記範囲にする方法としては、延伸工程における縦横の延伸倍率の比を制御することにより行うことができる。
(塗布層)
また、太陽電池封止シートと充填剤層との接着性を向上させるために、本発明のポリエステルフィルムの少なくとも片面に、オフラインコートまたは/およびインラインコートにより塗布層を設ける。
本発明の太陽電池用易接着性ポリエステルフィルムには、脂肪族系ポリカーボネートポリオールを構成成分とするウレタン樹脂と架橋剤とを主成分とした塗布層が形成され、赤外分光法による測定で、脂肪族系ポリカーボネート成分由来の1460cm−1付近の吸光度(A1460)とウレタン成分由来の1530cm−1付近の吸光度(A1530)の比率(A1460/A1530)が0.50〜1.55であることが重要である。ここで、「主成分」とは、塗布層に含まれる全固形成分中として50質量%以上、より好ましくは70質量%以上含有することを意味する。
上記特許文献10〜13のように、従来の技術常識では塗布層の耐久性を向上させる点からは塗布層形成において架橋構造を積極的に導入し、剛直で強硬な塗布層にすることが望ましいと考えられていた。しかし、本発明では脂肪族系ポリカーボネートポリオールを構成成分とするポリウレタン樹脂を赤外分光法による吸光度を一定の範囲に制御することで、強固な接着性を奏し、かつ高温高湿熱下での接着性を向上させるという顕著な効果を見出し、本発明に至った。このような構成により、接着性を向上させることの機序はよくわからないが、本発明者は次のように考えている。
例えば、モジュールのパッケージングに際して、ガラス基板/封止材/塗布層を有するポリエステルフィルム(塗布層)を積層した構成で高温で加熱圧着が行われる。この際、高温接着時のフィルムの熱収縮により、フィルム(塗布層)と封止材の間に応力が生じる。特に、係る応力の発生も多様な封止材の種類・接着条件によって変化しうる。特に、高い温度が長時間かかるスタンダードキュアタイプでは熱収縮に伴う応力変化が大きくなる。その結果、上記応力が緩和し切れず、封止材との接着性が低下すると考えられた。さらに、係る積層体を高温高湿下においた場合、加水分解により、塗布層の劣化が進行する。その結果、上記応力に耐え切れず、封止材が剥離し、高温高湿下での接着性が低下すると考えられた。そのため、封止材との強固な密着性や高温高湿下での接着性を高度に保持するためには、単に塗布層を強固に架橋することで耐久性を付与するのではなく、耐熱、耐加水分解性を保持した成分で、かつ、上記応力に耐えうる柔軟性を備えることが望ましいと考えられる。しかし、単に柔軟性を有するだけでは、ファストキュアタイプのように短時間で高温加熱圧着させる場合、塗布層に部分的に溶解した封止材が侵食し、特に高温高湿処理後のフィルム基材との接着性が低下すると考えられる。そのためこれら相反する特性を両立させることが最も望ましい。
本発明では、脂肪族系ポリカーボネートポリオールを構成成分とするウレタン樹脂を主成分とする塗布層であって、赤外分光法による測定される脂肪族系ポリカーボネート成分由来の1460cm−1付近の吸光度(A1460)とウレタン成分由来の1530cm−1付近の吸光度(A1530)の比率(A1460/A1530)が0.50〜1.55とすることで、上記特性を両立させるものである。すなわち、耐加水分解性を有する脂肪族ポリカーボネート成分と、強硬性を奏するウレタン成分を所定の割合で共存させ、さらに架橋剤を添加することで、上記特性の両立を図るものである。これにより、高温での熱接着時のフィルムの熱収縮による応力を緩和することができるため、様々な封止材・接着条件であっても強固な接着性を得ることができ、その後の高温高湿の環境下でも、耐熱、耐加水分解性を保持しているため、塗布層の劣化を防止できると考えている
ここで、1460cm−1付近の吸光度(A1460)は、脂肪族系ポリカーボネート成分に含まれるメチレン基にC−H結合に特有の変角振動に由来する。よって、1460cm−1付近の吸光度(A1460)の大きさは塗布層に存在するウレタン樹脂を構成する脂肪族系ポリカーボネートポリオール成分量に依存する。一方、1530cm−1付近の吸光度(A1530)は、ウレタン成分に含まれるN−H結合に特有の変角振動に由来する。よって、1530cm−1付近の吸光度(A1530)の大きさは塗布層に存在するウレタン樹脂を構成するウレタン成分量に依存する。そのため、これらの吸光度比率(A1460/A1530)は、それぞれ異なる特性を有する両成分を特定の割合で共存していることを示すものである。本発明では、前記比率(A1460/A1530)が0.50〜1.55であるが、前記比率(A1460/A1530)の下限は好ましくは0.60であり、より好ましくは0.75である。また、前記比率(A1460/A1530)の上限は好ましくは1.45であり、より好ましくは1.35であり、さらに好ましくは1.25である。前記比率(A1460/A1530)が、0.50未満の場合は、強硬なウレタン成分が多くなりすぎ、塗布層の応力緩和が低下するため耐湿熱性が低下する。また、前記比率(A1460/A1530)が、1.55を越える場合は、柔軟な脂肪族系ポリカーボネートの脂肪族成分が多くなりすぎ、塗布層の強度が低下するため塗膜強度や耐湿熱性が低下する。
本発明は、上記態様により、封止材との強度な接着性を奏し、高温高湿下での接着性(耐湿熱性)を向上させることができる。さらに、本発明の構成を以下に詳細する。
本発明のウレタン樹脂は、構成成分として、少なくともポリオール成分、ポリイソシアネート成分を含み、さらに必要に応じて鎖延長剤を含む。本発明のウレタン樹脂は、これら構成成分が主としてウレタン結合により共重合された高分子化合物である。本発明では、ウレタン樹脂の構成成分として脂肪族系ポリカーボネートポリオールを有することを特徴とする。本発明の塗布層に脂肪族系ポリカーボネートポリオールを構成成分とするウレタン樹脂を含有させることで、耐湿熱性を向上させることができる。なお、これらウレタン樹脂の構成成分は、核磁気共鳴分析などにより特定することが可能である。
本発明のウレタン樹脂の構成成分であるジオール成分には、耐熱、耐加水分解性に優れる脂肪族系ポリカーボネートポリオールを含有させる必要がある。本発明の太陽光による黄変防止の点から脂肪族系ポリカーボネートポリオールを用いることが好ましい。
脂肪族系ポリカーボネートポリオールとしては、脂肪族系ポリカーボネートジオール、脂肪族系ポリカーボネートトリオールなどが挙げられるが、好適には脂肪族系ポリカーボネートジオールを用いることができる。本発明のウレタン樹脂の構成成分である脂肪族系ポリカーボネートジオールとしては、例えば、エチレングリコール、プロピレングリコール、1,3−プロパンジオール、1,4−ブタンジオール、1,5−ペンタンジオール、3−メチル−1,5−ペンタンジオール、1,6−ヘキサンジオール、1,9−ノナンジオール、1,8−ノナンジオール、ネオペンチルグリコール、ジエチレングリコール、ジプロピレングリコール、1,4−シクロヘキサンジオール、1,4−シクロヘキサンジメタノールなどのジオール類の1種または2種以上と、例えば、ジメチルカーボネート、ジフェニルカーボネート、エチレンカーボネート、ホスゲンなどのカーボネート類とを反応させることにより得られる脂肪族系ポリカーボネートジオールなどが挙げられる。脂肪族系ポリカーボネートジオールの数平均分子量としては、好ましくは1500〜4000であり、より好ましくは2000〜3000である。脂肪族系ポリカーボネートジオールの数平均分子量が小さい場合は、相対的にウレタン樹脂を構成する脂肪族系ポリカーボネート成分の比率が小さくなる。そのため、前記比率(A1460/A1530)を前述の範囲にするためには、脂肪族系ポリカーボネートジオールの数平均分子量を上記範囲で制御することが好ましい。脂肪族系ポリカーボネートジオールの数平均分子量が大きいと、脂肪族系ポリカーボネート成分由来の1460cm−1付近の吸光度(A1460)が増加し、脂肪族成分が増加してしまうため、接着性や高温高湿処理後の強度が低下する場合がある。脂肪族系ポリカーボネートジオールの数平均分子量が小さいと強硬なウレタン成分が増加し、基材の熱収縮による応力を緩和できなくなり、接着性が低下する場合がある。
本発明のウレタン樹脂の構成成分であるポリイソシアネートとしては、例えば、キシリレンジイソシアネート等の芳香族脂肪族ジイソシアネート類、イソホロンジイソシアネート及び4,4−ジシクロヘキシルメタンジイソシアネート、1,3−ビス(イソシアネートメチル)シクロヘキサン等の脂環式ジイソシアネート類、ヘキサメチレンジイソシアネート、および2,2,4−トリメチルヘキサメチレンジイソシアネート等の脂肪族ジイソシアネート類、あるいはこれらの化合物を単一あるいは複数でトリメチロールプロパン等とあらかじめ付加させたポリイソシアネート類が挙げられる。芳香族イソシアネートを使用した場合、黄変の問題があり、好ましくない場合がある。また、脂肪族系と比較して、強硬な塗膜になるため、基材の熱収縮による応力を緩和できなくなり、接着性が低下する場合がある。
鎖延長剤としては、エチレングリコール、ジエチレングリコール、1,4−ブタンジオール、ネオペンチルグリコール及び1,6−ヘキサンジオール等のグリコール類、グリセリン、トリメチロールプロパン、およびペンタエリスリトール等の多価アルコール類、エチレンジアミン、ヘキサメチレンジアミン、およびピペラジン等のジアミン類、モノエタノールアミンおよびジエタノールアミン等のアミノアルコール類、チオジエチレングルコール等のチオジグリコール類、あるいは水が挙げられる。ウレタン成分由来の1530cm−1付近の吸光度の低下を防ぐために、1,4−ブタンジオール、1,6−ヘキサンジオール、ヘキサメチレンジアミンなどの直鎖で分子量の大きいものが好ましい。
本発明の塗布層は、水系の塗布液を用い後述のインラインコート法により設けることが好ましい。そのため、本発明のウレタン樹脂は水溶性であることが望ましい。なお、前記の「水溶性」とは、水、または水溶性の有機溶剤を50質量%未満含む水溶液に対して溶解することを意味する。
ウレタン樹脂に水溶性を付与させるためには、ウレタン分子骨格中にスルホン酸(塩)基又はカルボン酸(塩)基を導入(共重合)することができる。スルホン酸(塩)基は強酸性であり、その吸湿性能により耐湿性を維持するのが困難な場合があるので、弱酸性であるカルボン酸(塩)基を導入するのが好適である。また、ポリオキシアルキレン基などのノニオン性基を導入することもできる。
ウレタン樹脂にカルボン酸(塩)基を導入するためには、例えば、ポリオール成分として、ジメチロールプロピオン酸、ジメチロールブタン酸などのカルボン酸基を有するポリオール化合物を共重合成分として導入し、塩形成剤により中和する。塩形成剤の具体例としては、アンモニア、トリメチルアミン、トリエチルアミン、トリイソプロピルアミン、トリ−n−プロピルアミン、トリ−n−ブチルアミンなどのトリアルキルアミン類、N−メチルモルホリン、N−エチルモルホリンなどのN−アルキルモルホリン類、N−ジメチルエタノールアミン、N−ジエチルエタノールアミンなどのN−ジアルキルアルカノールアミン類が挙げられる。これらは単独で使用できるし、2種以上併用することもできる。
水溶性を付与するために、カルボン酸(塩)基を有するポリオール化合物を共重合成分として用いる場合は、ウレタン樹脂中のカルボン酸(塩)基を有するポリオール化合物の組成モル比は、ウレタン樹脂の全ポリイソシアネート成分を100モル%としたときに、3〜60モル%であることが好ましく、5〜40モル%であることが好ましい。前記組成モル比が3モル%未満の場合は、水分散性が困難になる場合がある。また、前記組成モル比が60モル%を超える場合は、耐水性が低下するため耐湿熱性が低下する場合がある。
本発明のウレタン樹脂のガラス転移点温度は0℃未満が好ましく、より好ましくは−5℃未満である。ガラス転移点温度が0℃未満の場合は、加圧接着の際に部分的に溶融したEVAやPVBなどのオレフィン樹脂と粘度が近くなり、部分的混合による強固な接着性の向上に寄与し、塗布層の応力緩和の点から好適な柔軟性を奏しやすく好ましい。
本発明のウレタン樹脂には高温高湿後の接着性を向上させるために、樹脂自体に架橋基を導入しても良い。塗液の経時安定性や架橋密度向上効果からシラノール基が好ましい。
本発明のウレタン樹脂以外の樹脂でも、接着性を向上させるために含有させても良い。例えば、ポリエーテル、または、ポリエステルを構成成分とするウレタン樹脂、アクリル樹脂、ポリエステル樹脂などが挙げられる。
本発明において、塗布層中に架橋剤を含有させなければならない。架橋剤を含有させることにより、高温高湿下での接着性を更に向上させることが可能になる。また、短時間で高温加熱圧着させる場合にEVAの侵食による基材密着性の低下を防ぐことができる。そのため、各種の接着条件においても対応可能な汎用性の高い易接着性を奏することができる。架橋剤としては、カルボン酸基、水酸基、アミノ基などと反応して、アミド結合、ウレタン結合、ウレア結合を形成するものが高温高湿処理で劣化しにくいため好ましい。逆に、エステル結合、エーテル結合を伴う場合は加水分解性を有する場合があり好ましくない。本発明で好適に用いられる架橋剤としては、メラミン系、イソシアネート系、カルボジイミド系、オキサゾリン系等が挙げられる。これらの中で、塗液の経時安定性、高温高湿処理下の接着性向上効果からイソシアネート系、カルボジイミド系、が好ましい。さらに、塗布層に適度な柔軟性を奏し、塗布層の応力緩和作用を好適に付与する点で、イソシアネート系架橋剤を用いることが特に好ましい。また、架橋反応を促進させるため、触媒等を必要に応じて適宜使用される。
架橋剤の含有量としては、ウレタン樹脂に対して、5質量%以上90質量%以下が好ましい。より好ましくは、10質量%以上50質量%以下である。少ない場合には、塗布層の高温高湿下での強度が低下し、接着性が低下する場合があり、多い場合には、塗布層の樹脂の柔軟性が低下し、常温、高温高湿下での接着性が低下する場合がある。
本発明において、塗膜強度を向上させるために、2種類の架橋剤を混合させても良い。また、架橋反応を促進させるため、触媒等を必要に応じて適宜使用される。
本発明において、塗布層中に粒子を含有させることもできる。粒子は(1)シリカ、カオリナイト、タルク、軽質炭酸カルシウム、重質炭酸カルシウム、ゼオライト、アルミナ、硫酸バリウム、カーボンブラック、酸化亜鉛、硫酸亜鉛、炭酸亜鉛、二酸化チタン、サチンホワイト、珪酸アルミニウム、ケイソウ土、珪酸カルシウム、水酸化アルミニウム、加水ハロイサイト、炭酸マグネシウム、水酸化マグネシウム、等の無機粒子、(2)アクリルあるいはメタアクリル系、塩化ビニル系、酢酸ビニル系、ナイロン、スチレン/アクリル系、スチレン/ブタジエン系、ポリスチレン/アクリル系、ポリスチレン/イソプレン系、ポリスチレン/イソプレン系、メチルメタアクリレート/ブチルメタアクリレート系、メラミン系、ポリカーボネート系、尿素系、エポキシ系、ウレタン系、フェノール系、ジアリルフタレート系、ポリエステル系等の有機粒子が挙げられる。
前記粒子は、平均粒径が1〜500nmのものが好適である。平均粒子径は特に限定されないが、フィルムの透明性を維持する点から1〜100nmであれば好ましい。
前記粒子は、平均粒径の異なる粒子を2種類以上含有させても良い。
なお、上記の平均粒径は、透過型電子顕微鏡(TEM)を用いて、倍率12万倍で積層フィルムの断面を撮影し、塗布層の断面に存在する10ヶ以上の粒子の最大径を測定し、それらの平均値として求めることができる。
粒子の含有量としては、0.5質量%以上20質量%以下が好ましい。少ない場合は、十分な耐ブロッキング性を得ることができない。また、対スクラッチ性が悪化してしまう。多い場合は、塗膜強度が低下する。
塗布層には、コート時のレベリング性の向上、コート液の脱泡を目的に界面活性剤を含有させることもできる。界面活性剤は、カチオン系、アニオン系、ノニオン系などいずれのものでも構わないが、シリコン系、アセチレングリコール系又はフッ素系界面活性剤が好ましい。これらの界面活性剤は、封止材との接着性を損なわない程度の範囲、例えば、塗布液中に0.005〜0.5質量%の範囲で含有させることも好ましい。
塗布層に他の機能性を付与するために、封止材との接着性を損なわない程度の範囲で、各種の添加剤を含有させても構わない。前記添加剤としては、例えば、蛍光染料、蛍光増白剤、可塑剤、紫外線吸収剤、顔料分散剤、抑泡剤、消泡剤、防腐剤、帯電防止剤等が挙げられる。
本発明において、ポリエステルフィルム上に塗布層を設ける方法としては、溶媒、粒子、樹脂を含有する塗布液をポリエステルフィルムに塗布、乾燥する方法が挙げられる。溶媒として、トルエン等の有機溶剤、水、あるいは水と水溶性の有機溶剤の混合系が挙げられるが、好ましくは、環境問題の点から水単独あるいは水に水溶性の有機溶剤を混合したものが好ましい。
このフィルム製造工程の任意の段階で、PETフィルムの少なくとも片面に、塗布液を塗布し、前記塗布層を形成するインラインコート法が好ましい。。塗布層はPETフィルムの両面に形成させても特に問題はない。塗布液中の樹脂組成物の固形分濃度は、2〜35重量%であることが好ましく、特に好ましくは4〜15重量%である。
この塗布液をPETフィルムに塗布するための方法は、公知の任意の方法を用いることができる。例えば、リバースロールコート法、グラビアコート法、キスコート法、ダイコーター法、ロールブラッシュ法、スプレーコート法、エアナイフコート法、ワイヤーバーコート法、パイプドクター法、含浸コート法、カーテンコート法、などが挙げられる。これらの方法を単独で、あるいは組み合わせて塗工する。
本発明においては、塗布層は未延伸あるいは一軸延伸後のPETフィルムに前記塗布液を塗布、乾燥した後、少なくとも一軸方向に延伸し、次いで熱処理を行って形成させる。
本発明において、最終的に得られる塗布層の厚みは10〜3000nm、乾燥後の塗布量は、0.01〜3g/mであることが好ましい。塗布層の塗布量が0.01g/m未満であると、接着性に対する効果がほとんどなくなる。一方、塗布量が3g/mを越えると、耐ブロッキング性が低下してしまう。
(太陽電池用裏面封止シート)
本発明の太陽電池用裏面封止シートは前記塗布層を有するポリエステルフィルムを構成部材とする。特に、封止材と直接的に接する最表層に用いることが好ましい。係る構成により本発明の太陽電池用裏面封止シートは封止材との強固な密着性を奏することができ、長期にわたる過酷な環境下においても良好な密着性を奏する。そのため、太陽電池素子の防湿性保持やバリア性向上に寄与しうる。
本発明の太陽電池用裏面封止シートの態様としては、例えば、前記塗布層を有するポリエステルフィルム/接着剤/金属箔又は金属系薄膜層を有するフィルム/接着剤/ポリフッ化ビニルフイルム又はポリエステル系高耐久防湿フィルムといった構成が例示される。また本発明のポリエステルフィルムは両面に前記塗布層を有する構成であっても構わない。本発明の塗布層は封止材以外の構成とも良好な接着性を奏しうる。ここで金属箔又は金属系薄膜層を有するフィルムとしては、水蒸気バリア性を有するものが好適に用いることができる。
前記金属の種類としてはアルミニウム、錫、マグネシウム、銀、ステンレスなどが挙げられるが中でもアルミニウム、銀が比較的高い反射率を有し、工業的に入手しやすいため好適である。金属層は金属箔をして使用しても良いし、ポリエステルフィルム等に薄膜として積層してもよい。これら金属を薄膜として積層する方法としては真空蒸着法、スパッタリング法、イオンプレーティング法、プラズマ気相成長法(CVD)等を用いることができる。
本発明においては前記塗布層を有するポリエステルフィルム、金属箔又は金属系薄膜層を有するフィルム、ポリフッ化ビニルフイルム又はポリエステル系高耐久防湿フィルムの各層間を、真空吸引等により一体化して加熱圧着するラミネ−ション法等の通常の成形法を利用し、上記の各層を一体成形体として加熱圧着成形して、太陽電池用裏面封止シートを製造することができる。上記において、各フィルム間の接着性等を高めるために、接着剤を介して積層するのが好ましい。接着剤としては例えば(メタ)アクリル系樹脂、オレフィン系樹脂、ビニル系樹脂、その他等の樹脂をビヒクルの主成分とする加熱溶融型接着剤、溶剤型接着剤、光硬化型接着剤等が挙げられる。
ここで、高耐久防湿フィルムとは耐候性を向上させる目的で積層されるものであり、高耐久防湿フィルムとしては、例えばポリテトラフロロエチレン(PTFE)、4−フッ化エチレン−パークロロアルコキシ共重合体(PFA)、4−フッ化エチレン−6−フッ化プロピレン共重合体(FEP)、2−エチレン−4フッ化エチレン共重合体(ETFE)、ポリ3−フッ化エチレン(PCTFE)、ポリフッ化ビニデン(PVDF)、もしくはポリフッカビニル(PVF)等のフッ素樹脂フィルム、あるいはポリカーボネート、ポリメチルメタクリレート、ポリアクリレート、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、アクリル等の樹脂に紫外線吸収剤を練り混んだ樹脂組成物からなるフィルムが挙げられる。
次に、実施例および比較例を用いて本発明を詳細に説明するが、本発明は当然以下の実施例に限定されるものではない。また、本発明で用いた評価方法は以下の通りである。
(1)耐加水分解性評価(破断伸度保持率)
耐加水分解性評価として、JIS−60068−2−66で規格化されているHAST(Highly Accelerated temperature and humidity Stress Test)を行った。機器はエスペック社製EHS−221を用い、105℃、100%RH、0.03MPa下の条件で行った。
フィルムを70mm×190mmにカットし、治具を用いてフィルムを設置した。各フィルムは各々が接触しない距離を保ち設置した。105℃、100%RH、0.03MPaの条件下で192時間処理を行った。処理前、処理後の破断伸度をJIS−C−2318−1997 5.3.31(引張強さ及び伸び率)に準拠して測定し、下記式に従い破断伸度保持率を算出した。
破断伸度保持率(%)=[(処理後の破断伸度(MPa))/(処理前の破断伸度(MPa))]×100
(2)ポリエステルチップの水分率
水分率測定器(三菱化成製、VA-05型)を使用し、230℃で10分間の条件で、チップ1〜2gに熱処理を行い、チップ中に含まれる水分を揮発させて、水分率を測定する。
(3)ポリエステルフィルムの密度
JIS K 7112に準じて密度勾配管を用いて25℃で測定した。
(4)160℃での耐熱テストの破断伸度率半減期
フィルムを長手方向に、長さ200mm、幅10mmの短冊状サンプルを切り出して用いた。JIS K−7127に規定された方法に従って、引っ張り試験器を用いて25℃、65%RHにて破断伸度を測定した。初期引っ張りチャック間距離は100mmとし、引っ張り速度は300m/分とした。測定はサンプルを変更して20回行い、その破断伸度の平均値(X)を求めた。また、長さ200mm、幅10mmの短冊状サンプルをギアオーブンに入れ、160℃の雰囲気下で放置した後、自然冷却し、このサンプルについて前記と同条件での引っ張り試験を20回行い、その破断伸度の平均値(Y)を求めた。得られた破断伸度の平均値(X)、(Y)から伸度保持率を次式で求めた。
伸度保持率(%)=(Y/X)×100
伸度保持率が50%以下となるまでの熱処理時間を求め、破断伸度保持率半減期とした。
(5)150℃におけるフィルムの熱収縮率
フィルムを幅10mm、長さ250mmのサイズに長辺(250mm)がそれぞれ長手方向、幅方向と一致する方向に沿ってカットし、200mm間隔で印をつけ、5gの一定張力で間隔Aを測った。続いて、無荷重で、150℃の雰囲気のオーブン中で30分間放置した。フィルムをオーブンから取り出し室温まで冷却した後、印の間隔Bを5gの一定張力下で求め、以下の式により熱収縮率を求めた。なお、フィルムの150℃における熱収縮率は、フィルム幅方向に100mm間隔で測定し、サンプル3点の平均値を小数第3位の桁で四捨五入し、小数第2位の桁に丸め使用し、長手方向、幅方向で値の大きい方向の値を用いた。
熱収縮率(%)=[(A−B)/A]×100
(6)MOR−C
得られたフィルムを幅方向に5等分割し、それぞれの位置で長手方向、幅方向に100mmの正方形サンプルを採取し、マイクロ波透過型分子配向計(王子計測機器(株)MOA−6004)を用いて測定を行った。厚み補正を50μmとし、MOR−Cを求め5点の平均値を用いた。
(7)固有粘度
JIS K 7367−5に準拠し、溶媒としてフェノール(60質量%)と1,1,2,2−テトラクロロエタン(40質量%)の混合溶媒を用い、30℃で測定した。
(8)ガラス転移点温度
JIS K7121に準拠し、示差走査熱量計(セイコーインスツルメンツ株式会社製、DSC6200)を使用して、DSC曲線からガラス転移開始温度を求めた。
(9)カルボキシル末端濃度の測定方法
A.試料の調整
ポリエステルを粉砕し、70℃で24時間真空乾燥を行った後、天秤を用いて0.20±0.0005gの範囲に秤量する。そのときの重量をW(g)とする。試験管にベンジルアルコール10mlと秤量した試料を加え、試験管を205℃に加熱したベンジルアルコール浴に浸し、ガラス棒で攪拌しながら試料を溶解する。溶解時間を3分間、5分間、7分間としたときのサンプルをそれぞれA、B、Cとする。次いで、新たに試験管を用意し、ベンジルアルコールのみ入れ、同様の手順で処理し、溶解時間を3分間、5分間、7分間としたときのサンプルをそれぞれa、b、cとする。
B.滴定
予めファクターの分かっている0.04mol/l水酸化カリウム溶液(エタノール溶液)を用いて滴定する。指示薬はフェノールレッドを用い、黄緑色から淡紅色に変化したところを終点とし、水酸化カリウム溶液の滴定量(ml)を求める。サンプルA、B、Cの滴定量をXA、XB、XC(ml)とする。サンプルa、b、cの滴定量をXa、Xb、Xc(ml)とする。
C.カルボキシル末端濃度の算出
各溶解時間に対しての滴定量XA、XB、XCを用いて、最小2乗法により、溶解時間0分での滴定量V(ml)を求める。同様にXa,Xb,Xcを用いて、滴定量V0(ml)を求める。次いで、次式に従いカルボキシル末端濃度を求めた。
カルボキシル末端濃度(eq/ton)=[(V−V0)×0.04×NF×1000]/W
NF:0.04mol/l水酸化カリウム溶液のファクター
W:試料重量(g)
(10)熱酸化安定性パラメータ(TOS)
フィルム([IV]i)を冷凍粉砕して20メッシュ以下の粉末にした。この粉末を130℃で12時間真空乾燥し、粉末300mgを内径約8mm、長さ約140mmのガラス試験管に入れ70℃で12時間真空乾燥した。次いで、シリカゲルを入れた乾燥管を試験管上部につけて乾燥した空気下で、230℃の塩バスに浸漬して15分間加熱した後の[IV]f1を測定した。TOSは、下記のように求めた。ただし、[IV]iおよび[IV]f1はそれぞれ加熱試験前と加熱試験後のIV(dl/g)を指す。冷凍粉砕は、フリーザーミル(米国スペックス社製、6750型)を用いて行った。専用セルに約2gのレジンチップ又はフィルムと専用のインパクターを入れた後、セルを装置にセットし液体窒素を装置に充填して約10分間保持し、次いでRATE10(インパクターが1秒間に約20回前後する)で5分間粉砕を行った。
TOS=0.245{[IV]f1 -1.47−[IV]i -1.47
(11)熱安定性パラメータ(TS)
フィルムを1mm辺以下に細砕し、得られたフィルム試料(溶融試験前;[IV]i )1gを内径約14mmのガラス試験管に入れ130℃で12時間真空乾燥した後、ガラス試験管を真空ラインに接続し、減圧と窒素封入を5回以上繰り返した後に100Torrとなるように窒素を封入して封管した。この試験管を300℃の塩バスに浸漬して2時間溶融状態に維持した後、サンプルを取り出して上記方法にて冷凍粉砕し、真空乾燥後、IV(溶融試験後;[IV]f2)を測定した。この[IV]f2から、下記計算式を用いてTSを求めた。
TS=0.245{[IV]f2 -1.47 −[IV]i -1.47
(12)赤外分光法による吸光度測定
得られた太陽電池用易接着性ポリエステルフィルムについて塗布層を削り取り、約1mgの試料を採取した。採取した試料に圧力をかけ、厚み約1μmのフィルム状に成型した塗布層試料片(大きさ:約50μm×約50μm)を作成した。さらに、ブランク試料として基材フィルムと同質のPET樹脂についても前記手順と同様にして試料片(ブランク試料片)を作成した。
作成した試料片をKBr板上に載せ、下記条件の顕微透過法により赤外吸収スペクトルを測定した。塗布層の赤外分光スペクトルは、塗布層試料片から得た赤外分光スペクトルとブランク試料片のスペクトルとの差スペクトルとして求めた。
脂肪族系ポリカーボネート成分由来の1460cm−1付近の吸光度(A1460)は1460±10cm−1の領域に吸収極大をもつ吸収ピーク高さの値とし、ウレタン成分由来の1530cm−1付近の吸光度(A1530)は1530±10cm−1の領域に吸収極大をもつ吸収ピーク高さの値とした。なお、ベースラインはそれぞれの極大吸収のピークの両側の裾を結ぶ線とした。得られた吸光度から下記式により吸光度比率を求めた。
(吸光度比率)=A1460/A1530
(測定条件)
装置:FT−IR分析装置SPECTRA TECH社製 IRμs/SIRM
検出器:MCT
分解能:4cm−1
積算回数:128回
(13)接着性
得られた太陽電池用易接着性ポリエステルフィルムを100mm幅×100mm長、EVAシートを70mm幅×90mm長に切り出したもの用意し、フィルム(塗布層面)/下記記載のEVA/(塗布層面)フィルムの構成で重ね、真空ラミネーターで下記記載の接着条件で加熱圧着し、サンプルを作成した。作成したサンプルを20mm幅×100mm長に切り出した後、SUS板に貼りつけ、下記記載の条件で引張り試験機でフィルム層とEVA層の剥離強度を測定した。剥離強度は極大点を越えた後に安定して剥離している部分の平均値として求めた。下記の基準でランク分けした。
◎:100N/20mm以上、または、フィルムの材破
○:75N/20mm以上、100N/20mm未満
△:50N/20mm以上、75N/20mm未満
×:50N/20mm未満
(サンプル作成条件)
装置:真空ラミネーター エヌ・ピー・シー社製 LM−30×30型
加圧:1気圧
EVA:
A.スタンダードキュアタイプ
I.サンビック製 Urtla Pearl PV(0.4μm)
ラミネート工程:100℃(真空5分、真空加圧5分)
キュア工程:熱処理150℃(常圧45分)
II.三井ファブロ製 ソーラーエバ SC4(0.4μm)
ラミネート工程:130℃(真空5分、真空加圧5分)
キュア工程:150℃(常圧45分)
B.ファストキュアタイプ
I.サンビック製 Urtla Pearl PV(0.45μm)
ラミネート工程:135℃(真空5分、真空加圧15分)
II.三井ファブロ製 ソーラーエバ RC02B(0.45μm)
ラミネート工程:150℃(真空5分、真空加圧15分)
(測定条件)
装置:テンシロン 東洋BALDWIN社製 RTM−100
剥離速度:200mm/分
剥離角度:180度
(15)耐湿熱性
得られた太陽電池用易接着性ポリエステルフィルムを、高温高湿槽中で85℃、85%RHの環境下1000時間放置した。次いで、太陽電池用易接着性ポリエステルフィルムを取りだし、室温常湿で24時間放置した。その後、は、前記(14)と同様の方法で剥離強度を測定し、下記の基準でランク分けをした。
◎:100N/20mm以上、または、フィルムの材破
○:75N/20mm以上、100N/20mm未満
△:50N/20mm以上、75N/20mm未満
×:50N/20mm未満
(実施例1)
(1)重縮合触媒溶液の調製
(リン化合物のエチレングリコール溶液の調製)
窒素導入管、冷却管を備えたフラスコに、常温常圧下、エチレングリコール2.0リットルを加えた後、窒素雰囲気下200rpmで攪拌しながら、リン化合物として(化39)で表されるIrganox1222(チバ・スペシャルティーケミカルズ社製)の200gを加えた。さらに2.0リットルのエチレングリコールを追加した後、ジャケット温度の設定を196℃に変更して昇温し、内温が185℃以上になった時点から60分間還流下で攪拌した。その後加熱を止め、直ちに溶液を熱源から取り去り、窒素雰囲気下を保ったまま、30分以内に120℃以下まで冷却した。得られた溶液中のIrganox1222のモル分率は40%、Irganox1222から構造変化した化合物のモル分率は60%であった。
(アルミニウム化合物の水溶液の調製)
冷却管を備えたフラスコに、常温常圧下、純水5.0リットルを加えた後、200rpmで攪拌しながら、塩基性酢酸アルミニウム200gを純水とのスラリーとして加えた。さらに全体として10.0リットルとなるよう純水を追加して常温常圧で12時間攪拌した。その後、ジャケット温度の設定を100.5℃に変更して昇温し、内温が95℃以上になった時点から3時間還流下で攪拌した。攪拌を止め、室温まで放冷し水溶液を得た。
(アルミニウム化合物のエチレングリコール混合溶液の調製)
上記方法で得たアルミニウム化合物水溶液に等容量のエチレングリコールを加え、室温で30分間攪拌した後、内温80〜90℃にコントロールし、徐々に減圧して、到達27hPaとして、数時間攪拌しながら系から水を留去し、20g/lのアルミニウム化合物のエチレングリコール溶液を得た。得られたアルミニウム溶液の27Al−NMRスペクトルのピーク積分値比は2.2であった。
(2)無機粒子のエチレングリコールスラリーの調製
ホモジナイザー付きの分散槽にエチレングリコール5リットルと、無機粒子としてシリカ粒子(富士シリシア化学製、サイリシア310)600gを入れて、8000rpmで2時間攪拌分散し、120g/lのスラリーとした。得られたシリカ粒子のエチレングリコールスラリーのシリカの平均粒子径は2.3μmであった。
(3)エステル化反応および重縮合
3基の連続エステル化反応槽および3基の重縮合反応槽よりなり、かつ第3エステル化反応槽から第1重縮合反応槽への移送ラインに高速攪拌器を有したインラインミキサーが設置された連続式ポリエステル製造装置に高純度テレフタル酸1質量部に対してエチレングリコール0.75質量部とをスラリー調製槽に連続的に供給した。調製されスラリーを連続的に供給し第1エステル化槽が反応温度250℃、110kPa、第2エステル化反応槽が260℃、105kPa、第3エステル化反応槽が260℃、105kPaとして、第2エステル化反応槽にエチレングルコール0.025質量部を連続的に投入しポリエステルオリゴマーを得た。該オリゴマーを3基の反応槽よりなる連続重縮合装置に連続的に移送すると共に、該移送ラインに設置されたインラインミキサーに上記方法で調製したアルミニウム化合物のエチレングリコール溶液およびリン化合物のエチレングリコール溶液、シリカ粒子のエチレングリコールスラリーをそれぞれポリエステル中の酸成分に対してアルミニウム原子およびリン原子、SiO分子として0.015モル%および0.036モル%、0.07重量%となるように攪拌式のミキサーで攪拌しながら連続的に添加し、初期重縮合反応槽が265℃、9kPa、中期重縮合反応槽が265〜268℃、0.7kPa、最終重縮合反応槽が273℃、13.3Paで重縮合しIV0.620dl/g、カルボキシル末端濃度が13.5eq/tonのPET−Aを得た。
得られたPET−Aレジンを回転型真空重合装置を用い、0.5mmHgの減圧下、220℃で時間を変えて固相重合を行い、IV値0.750dl/g、カルボキシル末端濃度5eq/tonのPET−Bレジンを作成した。
(4)塗布液の調合
(脂肪族系ポリカーボネートポリオールを構成成分とするウレタン樹脂A−1の重合)
撹拌機、ジムロート冷却器、窒素導入管、シリカゲル乾燥管、及び温度計を備えた4つ口フラスコに、4,4−ジフェニルメタンジイソシアネート43.75質量部、ジメチロールブタン酸12.85質量部、数平均分子量2000のポリヘキサメチレンカーボネートジオール153.41質量部、ジブチルスズジラウレート0.03質量部、及び溶剤としてアセトン84.00質量部を投入し、窒素雰囲気下、75℃において3時間撹拌し、反応液が所定のアミン当量に達したことを確認した。次に、この反応液を40℃にまで降温した後、トリエチルアミン8.77質量部を添加し、ポリウレタンプレポリマー溶液を得た。次に、高速攪拌可能なホモディスパーを備えた反応容器に、水450gを添加して、25℃に調整して、2000min−1で攪拌混合しながら、イソシアネート基末端プレポリマーを添加して水分散した。その後、減圧下で、アセトンおよび水の一部を除去することにより、固形分35%の水溶性ポリウレタン樹脂溶液(A−1)を調製した。得られたポリウレタン樹脂(A−1)のガラス転移点温度は−30℃であった。
(脂肪族系ポリカーボネートポリオールを構成成分とするウレタン樹脂A−2の重合)
撹拌機、ジムロート冷却器、窒素導入管、シリカゲル乾燥管、及び温度計を備えた4つ口フラスコに、4,4−ジフェニルメタンジイソシアネート29.14質量部、ジメチロールブタン酸7.57質量部、数平均分子量3000のポリヘキサメチレンカーボネートジオール173.29質量部、ジブチルスズジラウレート0.03質量部、及び溶剤としてアセトン84.00質量部を投入し、窒素雰囲気下、75℃において3時間撹拌し、反応液が所定のアミン当量に達したことを確認した。次に、この反応液を40℃にまで降温した後、トリエチルアミン5.17質量部を添加し、ポリウレタンプレポリマー溶液を得た。次に、高速攪拌可能なホモディスパーを備えた反応容器に、水450gを添加して、25℃に調整して、2000min−1で攪拌混合しながら、イソシアネート基末端プレポリマーを添加して水分散した。その後、減圧下で、アセトンおよび水の一部を除去することにより、固形分35%の水溶性ポリウレタン樹脂溶液(A−2)を調製した。
(脂肪族系ポリカーボネートポリオールを構成成分とするウレタン樹脂A−3の重合)
撹拌機、ジムロート冷却器、窒素導入管、シリカゲル乾燥管、及び温度計を備えた4つ口フラスコに、4,4−ジフェニルメタンジイソシアネート43.75質量部、ジメチロールブタン酸11.12質量部、ヘキサンジオール1.97質量部、数平均分子量2000のポリヘキサメチレンカーボネートジオール143.40質量部、ジブチルスズジラウレート0.03質量部、及び溶剤としてアセトン84.00質量部を投入し、窒素雰囲気下、75℃において3時間撹拌し、反応液が所定のアミン当量に達したことを確認した。次に、この反応液を40℃にまで降温した後、トリエチルアミン8.77質量部を添加し、ポリウレタンプレポリマー溶液を得た。次に、高速攪拌可能なホモディスパーを備えた反応容器に、水450gを添加して、25℃に調整して、2000min−1で攪拌混合しながら、ポリウレタンプレポリマー溶液を添加して水分散した。その後、減圧下で、アセトンおよび水の一部を除去することにより、固形分35%の水溶性ポリウレタン樹脂溶液(A−3)を調製した。
(脂肪族系ポリカーボネートポリオールを構成成分とするシラノール基含有ウレタン樹脂A−4の重合)
撹拌機、ジムロート冷却器、窒素導入管、シリカゲル乾燥管、及び温度計を備えた4つ口フラスコに、イソホロンジイソシアネート38.41質量部、ジメチロールプロパン酸6.95質量部、数平均分子量2000のポリヘキサメチレンカーボネートジオール158.99質量部、ジブチルスズジラウレート0.03質量部、及び溶剤としてアセトン84.00質量部を投入し、窒素雰囲気下、75℃において3時間撹拌し、反応液が所定のアミン当量に達したことを確認した。次に、この反応液を40℃にまで降温した後、トリエチルアミン4.37質量部を添加し、ポリウレタンプレポリマー溶液を得た。次にγ―(アミノエチル)アミノプロピルトリエトキシシラン3.84質量部、2−[(2−アミノエチル)アミノ]エタノール1.80質量部と水450gを添加して、ポリウレタンプレポリマー溶液を滴下して水分散した。その後、減圧下で、アセトンおよび水の一部を除去することにより、固形分30%の水溶性シラノール基含有ポリウレタン樹脂溶液(A−4)を調製した。
(脂肪族系ポリカーボネートポリオールを構成成分とするウレタン樹脂A−5の重合)
水溶性ポリウレタン樹脂(A−1)の数平均分子量2000のポリヘキサメチレンカーボネートジオールを数平均分子量1000のポリヘキサメチレンカーボネートジオールに変更した以外は、同様の方法で固形分35%の水溶性ポリウレタン樹脂溶液(A−5)を得た。
(脂肪族系ポリカーボネートポリオールを構成成分とするウレタン樹脂A−6の重合)
水溶性ポリウレタン樹脂(A−1)の数平均分子量2000のポリヘキサメチレンカーボネートジオールを数平均分子量5000のポリヘキサメチレンカーボネートジオールに変更した以外は、同様の方法で固形分35%の水溶性ポリウレタン樹脂溶液(A−6)を得た。
(ポリエステルポリオールを構成成分とするウレタン樹脂の重合A−7)
水溶性ポリウレタン樹脂(A−1)の数平均分子量2000のポリヘキサメチレンカーボネートジオールを数平均分子量2000のポリエステルジオールに変更した以外は、同様の方法で固形分35%の水溶性ポリウレタン樹脂溶液(A−7)を得た。
(ポリエーテルポリオールを構成成分とするウレタン樹脂の重合A−8)
水溶性ポリウレタン樹脂(A−1)の数平均分子量2000のポリヘキサメチレンカーボネートジオールを数平均分子量2000のポリエーテルジオールに変更した以外は、同様の方法で固形分35%の水溶性ポリウレタン樹脂溶液(A−8)を得た。
(ブロックポリイソシアネート架橋剤の重合)
撹拌機、温度計、還流冷却管を備えたフラスコにヘキサメチレンジイソシアネートを原料としたイソシアヌレート構造を有するポリイソシアネート化合物(旭化成ケミカルズ製、デュラネートTPA)100質量部、プロピレングリコールモノメチルエーテルアセテート55質量部、ポリエチレングリコールモノメチルエーテル(平均分子量 750)30質量部を仕込み、窒素雰囲気下、70℃で4時間保持した。その後、反応液温度を50℃に下げ、メチルエチルケトオキシム47質量部を滴下した。反応液の赤外スペクトルを測定し、イソシアネート基の吸収が消失したことを確認し、固形分75質量%のブロックポリイソシアネート水分散液(B)を得た。
(オキサゾリン系架橋剤の重合)
温度計、窒素ガス導入管、還流冷却器、滴下ロート、および攪拌機を備えたフラスコに水性媒体としてのイオン交換水58質量部とイソプロパノール58質量部との混合物、および、重合開始剤(2,2’−アゾビス(2−アミジノプロパン)・二塩酸塩)4質量部を投入した。一方、滴下ロートに、オキサゾリン基を有する重合性不飽和単量体としての2−イソプロペニル−2−オキサゾリン16質量部、メトキシポリエチレングリコールアクリレート(エチレングリコールの平均付加モル数・9モル、新中村化学製)32質量部、およびメタクリル酸メチル32質量部の混合物を投入し、窒素雰囲気下、70℃において1時間にわたり滴下した。滴下終了後、反応溶液を9時間攪拌し、冷却することで固形分濃度40質量%のオキサゾリン基を有する水溶性樹脂溶液(C)を得た。
(カルボジイミド系架橋剤の重合)
撹拌機、温度計、還流冷却管を備えたフラスコにヘキサメチレンジイソシアネート168質量部とポリエチレングリコールモノメチルエーテル(M400、平均分子量400)220質量部を仕込み、120℃で1時間、撹拌し、更に4,4’−ジシクロヘキシルメタンジイソシアネート26質量部とカルボジイミド化触媒として3−メチル−1−フェニル−2−フォスフォレン−1−オキシド3.8質量部(全イソシイアネートに対し2重量%)を加え、窒素気流下185℃で更に5時間撹拌した。反応液の赤外スペクトルを測定し、波長2200〜2300cm−1の吸収が消失したことを確認した。60℃まで放冷し、イオン交換水を567質量部加え、固形分40質量%のカルボジイミド水溶性樹脂溶液(D)を得た。
(塗布液調製)
下記の塗剤を混合し、塗布液を作成した。
水 55.62質量%
イソプロパノール 30.00質量%
ポリウレタン樹脂溶液(A−1) 11.29質量%
ブロックイソシアネート水分散液(B) 2.26質量%
粒子 0.71質量%
(平均粒径40nmのシリカゾル、固形分濃度40質量%)
粒子 0.07質量%
(平均粒径450nmのシリカゾル、固形分濃度40質量%)
界面活性剤 0.05質量%
(シリコン系、固形分濃度100質量%)
(5)太陽電池用易接着ポリエステルフィルムの製造
ポリエチレンテレフタレートPET−Bレジンを10時間減圧乾燥(1Torr)した後、押出機に供給し、押出機熔融部、混練り部、ポリマー管、ギアポンプ、フィルターまでの樹脂最高温度は290℃、その後のポリマー管では285℃とし、ダイスよりシート状にして押し出した。これらのポリマーは、それぞれステンレス焼結体の濾材(公称濾過精度20μm粒子95%カット)を用いて濾過した。また、フラットダイは樹脂温度が285℃になるようにした。なお、押出機入り口で抜き出したPETペレットの水分率を測定した結果、水分率は18ppmであった。押し出した樹脂を静電印加キャスト法を用いて表面温度30℃のキャスティングドラムに巻きつけて冷却固化し、未延伸フィルムを作った。
次に、この未延伸フィルムを加熱されたロール群及び赤外線ヒーターで100℃に加熱し、その後周速差のあるロール群で長手方向に3.3倍延伸して一軸配向PETフィルムを得た。
次いで、前記塗布液をロールコート法でPETフィルムの片面に塗布した後、80℃で20秒間乾燥した。なお、最終(二軸延伸後)の乾燥後の塗布量が0.15g/mになるように調整した。
引き続いて、テンターで、130℃で幅方向に4.0倍に延伸を行った後、熱固定を220℃で行い、さらに200℃で幅方向に弛緩処理を行い、厚さ250μmの太陽電池用易接着性ポリエステルフィルムを得た。得られたフィルムの特性を表1に示す。
(比較例1)
ポリウレタン樹脂をポリウレタン樹脂(A−5)に変更した以外は実施例1と同様にして太陽電池用易接着性ポリエステルフィルムを得た。
(比較例2)
ポリウレタン樹脂をポリウレタン樹脂(A−6)に変更した以外は実施例1と同様にして太陽電池用易接着性ポリエステルフィルムを得た。
(比較例3)
ポリウレタン樹脂をポリウレタン樹脂(A−7)に変更した以外は実施例1と同様にして太陽電池用易接着性ポリエステルフィルムを得た。
(比較例4)
ポリウレタン樹脂をポリウレタン樹脂(A−8)に変更した以外は実施例1と同様にして太陽電池用易接着性ポリエステルフィルムを得た。
(比較例5)
太陽電池用易接着性ポリエステルフィルムの基材厚みを5μmに変更した以外は実施例1と同様にして太陽電池用易接着性ポリエステルフィルムを得た。
(実施例2)
塗布液を下記に変更したこと以外は実施例1と同様にして太陽電池用易接着性ポリエステルフィルムを得た。
水 58.02質量%
イソプロパノール 30.00質量%
ポリウレタン樹脂溶液(A−1) 9.47質量%
ブロックイソシアネート水分散液(B) 1.89質量%
粒子 0.59質量%
(平均粒径40nmのシリカゾル、固形分濃度40質量%)
界面活性剤 0.03質量%
(シリコン系、固形分濃度100質量%)
(実施例3)
塗布液を下記に変更したこと以外は実施例1と同様にして太陽電池用易接着性ポリエステルフィルムを得た。
水 54.75質量%
イソプロパノール 30.00質量%
ポリウレタン樹脂溶液(A−1) 12.99質量%
ブロックイソシアネート水分散液(B) 1.52質量%
粒子 0.71質量%
(平均粒径40nmのシリカゾル、固形分濃度40質量%)
界面活性剤 0.03質量%
(シリコン系、固形分濃度100質量%)
(実施例4)
塗布液を下記に変更したこと以外は実施例1と同様にして太陽電池用易接着性ポリエステルフィルムを得た。
水 57.35質量%
イソプロパノール 30.00質量%
ポリウレタン樹脂溶液(A−1) 8.12質量%
ブロックイソシアネート水分散液(B) 3.79質量%
粒子 0.71質量%
(平均粒径40nmのシリカゾル、固形分濃度40質量%)
界面活性剤 0.03質量%
(シリコン系、固形分濃度100質量%)
(実施例5)
塗布液を下記に変更したこと以外は実施例1と同様にして太陽電池用易接着性ポリエステルフィルムを得た。
水 59.95質量%
イソプロパノール 30.00質量%
ポリウレタン樹脂溶液(A−1) 3.25質量%
ブロックイソシアネート水分散液(B) 6.06質量%
粒子 0.71質量%
(平均粒径40nmのシリカゾル、固形分濃度40質量%)
界面活性剤 0.03質量%
(シリコン系、固形分濃度100質量%)
(実施例6)
塗布液を下記に変更したこと以外は実施例1と同様にして太陽電池用易接着性ポリエステルフィルムを得た。
水 60.82質量%
イソプロパノール 30.00質量%
ポリウレタン樹脂溶液(A−1) 1.62質量%
ブロックイソシアネート水分散液(B) 6.82質量%
粒子 0.71質量%
(平均粒径40nmのシリカゾル、固形分濃度40質量%)
界面活性剤 0.03質量%
(シリコン系、固形分濃度100質量%)
(実施例7)
ポリウレタン樹脂をポリウレタン樹脂(A−2)に変更した以外は実施例1と同様にして太陽電池用易接着性ポリエステルフィルムを得た。
(実施例8)
ポリウレタン樹脂をポリウレタン樹脂(A−3)に変更した以外は実施例1と同様にして太陽電池用易接着性ポリエステルフィルムを得た。
(実施例9)
ポリウレタン樹脂をシラノール基含有ポリウレタン樹脂(A−4)に変更した以外は実施例1と同様にして太陽電池用易接着性ポリエステルフィルムを得た。
(実施例10)
太陽電池用易接着性ポリエステルフィルムの基材厚みを50μmに変更した以外は実施例1と同様にして太陽電池用易接着性ポリエステルフィルムを得た。
(実施例11)
太陽電池用易接着性ポリエステルフィルムの基材厚みを15μmに変更した以外は実施例1と同様にして太陽電池用易接着性ポリエステルフィルムを得た。
(実施例12)
太陽電池用易接着性ポリエステルフィルムの基材厚みを100μmに変更した以外は実施例1と同様にして太陽電池用易接着性ポリエステルフィルムを得た。
(実施例13)
太陽電池用易接着性ポリエステルフィルムの基材厚みを350μmに変更した以外は実施例1と同様にして太陽電池用易接着性ポリエステルフィルムを得た。
参考例14)
ブロックポリイソシアネート水分散液(B)をオキサゾリン基を有する水溶性樹脂(C)に変更した以外は実施例1と同様にして太陽電池用易接着性ポリエステルフィルムを得た。なお、表1の実施例14は参考例14に読み替えるものとする。
(実施例15)
ブロックポリイソシアネート水分散液(C)をカルボジイミド水溶性樹脂(D)に変更した以外は実施例1と同様にして太陽電池用易接着性ポリエステルフィルムを得た。
参考例16)
ブロックポリイソシアネート水分散液(C)をイミノ・メチロールメラミン(固形分濃度70質量%)に変更した以外は実施例1と同様にして太陽電池用易接着性ポリエステルフィルムを得た。なお、表1の実施例16は参考例16に読み替えるものとする。
(実施例17)
太陽電池用易接着性ポリエステルフィルムの基材厚みを50μmに変更した以外は実施例1と同様にして太陽電池用易接着性ポリエステルフィルムを得た。
(実施例18)
太陽電池用易接着性ポリエステルフィルムの基材厚みを100μmに変更した以外は実施例1と同様にして太陽電池用易接着性ポリエステルフィルムを得た。
(実施例19)
太陽電池用易接着性ポリエステルフィルムの基材厚みを350μmに変更した以外は実施例1と同様にして太陽電池用易接着性ポリエステルフィルムを得た。
(実施例20)
塗布液を下記に変更したこと以外は実施例1と同様にして太陽電池用易接着性ポリエステルフィルムを得た。
水 62.82質量%
イソプロパノール 30.00質量%
ポリウレタン樹脂溶液(A−1) 5.67質量%
ブロックポリイソシアネート水分散液(B) 1.13質量%
粒子 0.35質量%
(平均粒径40nmのシリカゾル、固形分濃度40質量%)
界面活性剤 0.03質量%
(シリコン系、固形分濃度100質量%)
(実施例21)
塗布液を下記に変更したこと以外は実施例1と同様にして太陽電池用易接着性ポリエステルフィルムを得た。
水 45.99質量%
イソプロパノール 30.00質量%
ポリウレタン樹脂溶液(A−1) 18.99質量%
ブロックポリイソシアネート水分散液(B) 3.80質量%
粒子 1.19質量%
(平均粒径40nmのシリカゾル、固形分濃度40質量%)
界面活性剤 0.03質量%
(シリコン系、固形分濃度100質量%)
(実施例22)
IV0.85dl/gのPETチップを用い、押出機熔融部、混練り部、ポリマー管、ギアポンプ、フィルターまでの樹脂最高温度は295℃、その後のポリマー管では290℃とした以外は、実施例1と同様の方法で製膜を行い、厚さ250μmの二軸延伸PETフィルムを得た。得られた太陽電池用易接着性ポリエステルフィルムの特性を表1に示す。
(実施例23)
テンターのクリップを縦方向に3.0%緩和できる構造のものを用い、熱固定後、200℃で幅方向に弛緩処理を行うと同時に、クリップの間隔を狭め、長手方向にも3.0%弛緩した以外は、実施例1と同様の方法で製膜を行い、厚さ250μmの二軸延伸PETフィルムを得た。得られた太陽電池用易接着性ポリエステルフィルムの特性を表1に示す。
(実施例24)
(7)太陽電池用裏面封止シートの製造
実施例1の太陽電池用易接着性ポリエステルフィルム/黒色ポリエステルフィルム(50μm)/アルミ箔(30μm)/ポリフッ化ビニルフィルム(38μm)の構成でドライラミネート法で接着し、太陽電池用裏面封止シートを得た。
ドライラミネート用接着剤
タケラックA−315(三井化学製)/タケネートA−10(三井化学製)=9/1(固形分比)
(比較例6)
ジメチレンテレフタレート100質量部、エチレングリコール64質量部と酢酸カルシウム0.09質量部を触媒としてエステル交換した後、シリカ粒子のエチレングリコールスラリー、トリメチルホスフェート、三酸化アンチモンを0.03質量%で重合し、IVが0.60dl/g、カルボキシル末端濃度が11eq/tonのPETを得た。得られたPETを実施例1と同様の固相重合を行い、表1に示すとおりのIV値、カルボキシル末端濃度のPETチップを得た。このPETチップを用い、実施例1と同様の方法で製膜を行い厚さ250μmの太陽電池用易接着性ポリエステルフィルムを得た。得られたフィルムの特性を表1に示す。
本発明の太陽電池用易接着性ポリエステルフィルムは、封止材との接着性及び高温高湿下での接着性(耐湿熱性)、耐加水分解性、長期熱安定性を有する。そのため、太陽電池裏面封止シート、太陽電池表面保護シート、フレキシブル性を有する太陽電池の貼合わせ部材などの太陽電池用構成部材として好適である。

Claims (15)

  1. 少なくとも片面に塗布層を有するポリエステルフィルムであって、
    前記ポリエステルフィルムは、アルミニウム及び/又はその化合物と、芳香族基を分子内に有するリン化合物を含有する重縮合触媒を用いて重合されたポリエステルを主たる構成成分とし、
    前記ポリエステルフィルムの厚みが10〜500μmであり、
    前記フィルムのカルボキシル末端濃度がポリエステルに対し25eq/ton以下であり、
    前記フィルムの固有粘度(IV)が0.60〜0.90dl/gであり、
    前記塗布層が脂肪族系ポリカーボネートポリオールを構成成分とするポリウレタン樹脂と架橋剤を主成分とし、
    前記架橋剤が、イソシアネート系架橋剤またはカルボジイミド系架橋剤であり、
    赤外分光スペクトルにおいて脂肪族系ポリカーボネート成分由来の1460cm−1付近の吸光度(A1460)とウレタン成分由来の1530cm−1付近の吸光度(A1530)との比率(A1460/A1530)が0.50〜1.55であることを特徴とする太陽電池用易接着性ポリエステルフィルム。
  2. 前記塗布層中の前記架橋剤の含有量が、ポリウレタン樹脂に対して、5質量%以上90質量%以下であることを特徴とする請求項1に記載の太陽電池用易接着性ポリエステルフィルム。
  3. リン化合物が、ホスホン酸系化合物、ホスフィン酸系化合物からなる群より選ばれる一種または二種以上の化合物であることを特徴とする請求項1又は2に記載の太陽電池用易接着性ポリエステルフィルム。
  4. リン化合物が、下記一般式(1)〜(2)で表される化合物からなる群より選ばれる一種または二種以上であることを特徴とする請求項1〜3のいずれかに記載の太陽電池用易接着性ポリエステルフィルム。
    (式(1)〜(2)中、R、Rはそれぞれ独立に水素、炭素数1〜50の炭化水素基、水酸基またはハロゲン基またはアルコキシル基またはアミノ基を含む炭素数1〜50の炭化水素基を表す。R、Rはそれぞれ独立に水素、炭素数1〜50の炭化水素基、水酸基またはアルコキシル基を含む炭素数1〜50の炭化水素基を表す。ただし、炭化水素基は脂環構造や芳香環構造を含んでいてもよい。)
  5. 前記一般式(1)〜(2)中のR、Rが芳香環構造を有する基であることを特徴とする請求項4に記載の太陽電池用易接着性ポリエステルフィルム。
  6. リン化合物が、フェノール部を同一分子内に有することを特徴とする請求項1〜のいずれかに記載の太陽電池用易接着性ポリエステルフィルム。
  7. フェノール部を同一分子内に有するリン化合物が、下記一般式(3)〜(4)で表される化合物からなる群より選ばれる一種または二種以上であることを特徴とする請求項6に記載の太陽電池用易接着性二軸配向ポリエステルフィルム。
    (式(3)〜(4)中、Rはフェノール部を含む炭素数1〜50の炭化水素基、水酸基またはハロゲン基またはアルコキシル基またはアミノ基およびフェノール部を含む炭素数1〜50の炭化水素基を表す。Rはそれぞれ独立に水素、炭素数1〜50の炭化水素基、水酸基またはハロゲン基またはアルコキシル基またはアミノ基を含む炭素数1〜50の炭化水素基を表す。R、Rはそれぞれ独立に水素、炭素数1〜50の炭化水素基、水酸基またはアルコキシル基を含む炭素数1〜50の炭化水素基を表す。ただし、炭化水素基は分岐構造や脂環構造や芳香環構造を含んでいてもよい。RとRの末端どうしは結合していてもよい。)
  8. 少なくとも片面に塗布層を有するポリエステルフィルムであって、
    前記ポリエステルフィルムは、リン化合物のアルミニウム塩を含有する重縮合触媒を用いて重合されたポリエステルを主たる構成成分とし、
    前記ポリエステルフィルムの厚みが10〜500μmであり、
    前記フィルムのカルボキシル末端濃度がポリエステルに対し25eq/ton以下であり、
    前記フィルムの固有粘度(IV)が0.60〜0.90dl/gであり、
    前記塗布層が脂肪族系ポリカーボネートポリオールを構成成分とするポリウレタン樹脂と架橋剤を主成分とし、
    前記架橋剤が、イソシアネート系架橋剤またはカルボジイミド系架橋剤であり、
    赤外分光スペクトルにおいて脂肪族系ポリカーボネート成分由来の1460cm−1付近の吸光度(A1460)とウレタン成分由来の1530cm−1付近の吸光度(A1530)との比率(A1460/A1530)が0.50〜1.55であることを特徴とする太陽電池用易接着性ポリエステルフィルム。
  9. 少なくとも片面に塗布層を有するポリエステルフィルムであって、
    前記ポリエステルフィルムは、下記一般式(5)で表される化合物から選択される少なくとも1種を含有する重縮合触媒を用いて重合されたポリエステルを主たる構成成分とし、
    前記ポリエステルフィルムの厚みが10〜500μmであり、
    前記フィルムのカルボキシル末端濃度がポリエステルに対し25eq/ton以下であり、
    前記フィルムの固有粘度(IV)が0.60〜0.90dl/gであり、
    前記塗布層が脂肪族系ポリカーボネートポリオールを構成成分とするポリウレタン樹脂と架橋剤を主成分とし、
    前記架橋剤が、イソシアネート系架橋剤またはカルボジイミド系架橋剤であり、
    赤外分光スペクトルにおいて脂肪族系ポリカーボネート成分由来の1460cm−1付近の吸光度(A1460)とウレタン成分由来の1530cm−1付近の吸光度(A1530)との比率(A1460/A1530)が0.50〜1.55であることを特徴とする太陽電池用易接着性ポリエステルフィルム。
    (式(7)中、R、Rはそれぞれ独立に水素、炭素数1〜30の炭化水素基を表す。Rは、水素、炭素数1〜50の炭化水素基、水酸基またはアルコキシル基を含む炭素数1〜50の炭化水素基を表す。Rは、水素、炭素数1〜50の炭化水素基、水酸基またはアルコキシル基またはカルボニルを含む炭素数1〜50の炭化水素基を表す。lは1以上の整数、mは0または1以上の整数を表し、(l+m)は4以下である。nは1以上の整数を表す。炭化水素基は脂環構造や分岐構造や芳香環構造を含んでいてもよい。)
  10. 160℃での耐熱テストにおける破断伸度保持率半減期が700時間以上であることを特徴とする請求項1〜のいずれかに記載の太陽電池用易接着性ポリエステルフィルム。
  11. フィルムの密度が1.38〜1.41g/cmであることを特徴とする請求項1〜10のいずれかに記載の太陽電池用易接着性ポリエステルフィルム。
  12. フィルムの150℃における熱収縮率が長手方向、幅方向ともに−0.5%以上、2.0%以下であることを特徴とする請求項1〜11のいずれかに記載の太陽電池用易接着性ポリエステルフィルム。
  13. フィルムの150℃における熱収縮率が長手方向、幅方向ともに−0.5%以上、0.5%以下であることを特徴とする請求項1〜12のいずれかに記載の太陽電池用易接着性ポリエステルフィルム。
  14. フィルム厚みを50μmに換算したときのMORの値(MOR−C)が1.0〜2.0であることを特徴とする請求項1〜13のいずれかに記載の太陽電池用易接着性ポリエステルフィルム。
  15. 請求項1〜14のいずれかに記載する太陽電池用易接着性ポリエステルフィルムを積層した太陽電池用裏面封止シート。
JP2010000521A 2010-01-05 2010-01-05 太陽電池用易接着性ポリエステルフィルム Active JP5651954B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010000521A JP5651954B2 (ja) 2010-01-05 2010-01-05 太陽電池用易接着性ポリエステルフィルム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010000521A JP5651954B2 (ja) 2010-01-05 2010-01-05 太陽電池用易接着性ポリエステルフィルム

Publications (2)

Publication Number Publication Date
JP2011140529A JP2011140529A (ja) 2011-07-21
JP5651954B2 true JP5651954B2 (ja) 2015-01-14

Family

ID=44456627

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010000521A Active JP5651954B2 (ja) 2010-01-05 2010-01-05 太陽電池用易接着性ポリエステルフィルム

Country Status (1)

Country Link
JP (1) JP5651954B2 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012069835A (ja) * 2010-09-27 2012-04-05 Mitsubishi Plastics Inc 太陽電池裏面保護材用ポリエステルフィルム
JP5728986B2 (ja) * 2011-02-09 2015-06-03 東洋紡株式会社 易接着性ポリエステルフィルム
JP5686691B2 (ja) * 2011-07-25 2015-03-18 三菱樹脂株式会社 太陽電池裏面封止材用ポリエステルフィルム
JP2014089995A (ja) * 2012-10-29 2014-05-15 Mitsubishi Plastics Inc 太陽電池裏面封止材
JP6464723B2 (ja) * 2014-12-20 2019-02-06 三菱ケミカル株式会社 電子部材用封止フィルム
JP7314484B2 (ja) * 2018-07-20 2023-07-26 東洋紡株式会社 フレキシブルディスプレイの表面保護フィルム用ポリエステルフィルム

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2544792B2 (ja) * 1988-12-12 1996-10-16 ダイアホイルヘキスト株式会社 積層フィルム
JP5028713B2 (ja) * 2001-02-23 2012-09-19 東洋紡績株式会社 配向ポリエステルフィルム
JP2008004691A (ja) * 2006-06-21 2008-01-10 Toppan Printing Co Ltd 太陽電池裏面封止用シート
JP4798156B2 (ja) * 2008-03-17 2011-10-19 三菱樹脂株式会社 積層フィルム
WO2009125701A1 (ja) * 2008-04-08 2009-10-15 東レ株式会社 太陽電池用熱可塑性樹脂シートおよびその製造方法、太陽電池

Also Published As

Publication number Publication date
JP2011140529A (ja) 2011-07-21

Similar Documents

Publication Publication Date Title
JP5243997B2 (ja) 太陽電池用ポリエステルフィルムおよびその製造方法
JP5581831B2 (ja) 太陽電池用ポリエステルフィルムおよびその製造方法
EP2827379B1 (en) Sealing sheet for back surface of solar cell, and solar cell module
JP5471451B2 (ja) 太陽電池用易接着性白色ポリエステルフィルム
JP5651954B2 (ja) 太陽電池用易接着性ポリエステルフィルム
JP6068802B2 (ja) 太陽電池用ポリエステルフィルム、太陽電池用易接着性ポリエステルフィルム及びそれを用いたフロントシート
JP5651955B2 (ja) 太陽電池用易接着性ポリエステルフィルム
KR101787778B1 (ko) 태양전지 이면 보호막용 폴리에스테르 필름
EP2607427B1 (en) Hydrolysis-resistant polyester film
WO2010123087A1 (ja) 太陽電池用二軸延伸ポリエステルフィルム
JP5434602B2 (ja) 太陽電池用易接着性白色ポリエステルフィルム
WO2011068132A1 (ja) 太陽電池用易接着性ポリエステルフィルム
EP2524940A1 (en) Biaxially oriented polyester film for backside sealing of solar cell
JP2010260903A (ja) ポリエステルフィルム
WO2013051661A1 (ja) 太陽電池用白色ポリエステルフィルム、これを用いた太陽電池裏面封止シートおよび太陽電池モジュール
JP5348279B2 (ja) 太陽電池用ポリエステルフィルムおよびその製造方法
JP5594082B2 (ja) 太陽電池用易接着性白色ポリエステルフィルムおよびそれを用いたバックシート
JP4803317B2 (ja) 太陽電池用易接着性ポリエステルフィルムおよびそれを用いたバックシート
JP6111525B2 (ja) 太陽電池裏面封止シートおよび太陽電池モジュール
JP5633278B2 (ja) 太陽電池用ポリエステルフィルム
JP2014065858A (ja) 太陽電池裏面保護用ポリエステルフィルム
JP2012064926A (ja) 太陽電池用易接着性黒色ポリエステルフィルムおよびそれを用いたバックシート

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121113

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140310

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141021

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141103

R151 Written notification of patent or utility model registration

Ref document number: 5651954

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350