WO2010116887A1 - 絶縁ゲート型電界効果トランジスタ - Google Patents

絶縁ゲート型電界効果トランジスタ Download PDF

Info

Publication number
WO2010116887A1
WO2010116887A1 PCT/JP2010/054951 JP2010054951W WO2010116887A1 WO 2010116887 A1 WO2010116887 A1 WO 2010116887A1 JP 2010054951 W JP2010054951 W JP 2010054951W WO 2010116887 A1 WO2010116887 A1 WO 2010116887A1
Authority
WO
WIPO (PCT)
Prior art keywords
region
oxide film
substrate
mosfet
main surface
Prior art date
Application number
PCT/JP2010/054951
Other languages
English (en)
French (fr)
Other versions
WO2010116887A9 (ja
Inventor
原田 真
和田 圭司
透 日吉
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Priority to CA2739576A priority Critical patent/CA2739576A1/en
Priority to EP10761587.4A priority patent/EP2418683A4/en
Priority to US13/122,377 priority patent/US8502236B2/en
Priority to JP2011508320A priority patent/JPWO2010116887A1/ja
Priority to CN2010800028219A priority patent/CN102171832A/zh
Publication of WO2010116887A1 publication Critical patent/WO2010116887A1/ja
Publication of WO2010116887A9 publication Critical patent/WO2010116887A9/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7827Vertical transistors
    • H01L29/7828Vertical transistors without inversion channel, e.g. vertical ACCUFETs, normally-on vertical MISFETs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/0445Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising crystalline silicon carbide
    • H01L21/048Making electrodes
    • H01L21/049Conductor-insulator-semiconductor electrodes, e.g. MIS contacts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/04Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their crystalline structure, e.g. polycrystalline, cubic or particular orientation of crystalline planes
    • H01L29/045Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their crystalline structure, e.g. polycrystalline, cubic or particular orientation of crystalline planes by their particular orientation of crystalline planes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic System
    • H01L29/1608Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/51Insulating materials associated therewith
    • H01L29/518Insulating materials associated therewith the insulating material containing nitrogen, e.g. nitride, oxynitride, nitrogen-doped material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66053Multistep manufacturing processes of devices having a semiconductor body comprising crystalline silicon carbide
    • H01L29/66068Multistep manufacturing processes of devices having a semiconductor body comprising crystalline silicon carbide the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7838Field effect transistors with field effect produced by an insulated gate without inversion channel, e.g. buried channel lateral MISFETs, normally-on lateral MISFETs, depletion-mode lateral MISFETs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Definitions

  • an object of the present invention is to provide a MOSFET capable of reducing on-resistance by reducing channel mobility even when the gate voltage is high.
  • the present inventor has studied a measure for reducing the channel mobility of the storage MOSFET when the gate voltage is high. As a result, the following knowledge was obtained and the present invention was conceived.
  • the ⁇ 11-20> direction is a typical off orientation in the SiC substrate. Then, by setting the variation in the off orientation due to slicing variations in the substrate manufacturing process to ⁇ 5 °, the formation of an epitaxial layer on the SiC substrate is facilitated, and the MOSFET is easily manufactured. be able to.
  • the ⁇ 01-10> direction is a typical off orientation in the SiC substrate, similar to the ⁇ 11-20> direction. Then, by setting the variation in the off orientation due to slicing variations in the substrate manufacturing process to ⁇ 5 °, the formation of an epitaxial layer on the SiC substrate is facilitated, and the MOSFET is easily manufactured. be able to.
  • the main surface of the substrate may have an off angle of ⁇ 3 ° to + 5 ° with respect to the (0-33-8) plane in the ⁇ 01-10> direction.
  • Channel region 17 is arranged between well region 14 and gate oxide film 18 so as to be in contact with well region 14 and gate oxide film 18, and connects n-type contact region 15 and breakdown voltage holding layer 13. . Further, the channel region 17 has an n-type conductivity by containing an n-type impurity at a lower concentration than the n-type contact region 15. From another viewpoint, the channel region 17 is arranged along the gate oxide film 18 so as to extend from the n-type contact region 15 to the side opposite to the p-type contact region 16 adjacent to the n-type contact region 15. The n-type contact region 15 and the breakdown voltage holding layer 13 are connected.
  • the maximum value of the nitrogen concentration in a region within 10 nm from the interface between the channel region 17 and the gate oxide film 18 is 1 ⁇ 10 21 cm ⁇ 3 or more. Thereby, channel mobility can be further improved.
  • a SiC layer into which n-type impurities are introduced at a concentration of about 5 ⁇ 10 17 cm ⁇ 3 is formed to a thickness of about 0.5 ⁇ m to form the buffer layer 12, and then the concentration of the n-type impurities to be introduced is changed.
  • the SiC layer can be formed with a thickness of about 10 ⁇ m to form the breakdown voltage holding layer 13.
  • a well region forming step is performed as a step (S30).
  • the first main surface 13A which is the main surface on the substrate 11 side, is on the opposite side.
  • a pair of well regions 14 are formed by ion implantation in a region including the second main surface 13B which is the main surface.
  • a second activation annealing step is performed as a step (S80).
  • step (S80) referring to FIG. 6, activation annealing is performed by heating the breakdown voltage holding layer 13 in which the ion implantation is performed in steps (S60) and (S70).
  • the activation annealing can be performed, for example, in the same manner as in the step (S40).
  • channel mobility was measured by fabricating a TEG (Test Element Group) -MOSFET.
  • ion implantation is performed to thereby correspond to the source region 35A and the drain region 35B corresponding to the n-type contact region 15 and the p-type contact region 16.
  • a p-type contact region 36 and a channel region 37 corresponding to the channel region 17 are formed in the same manner, a gate oxide film 38 corresponding to the gate oxide film 18, an ohmic contact electrode 39 corresponding to the ohmic contact electrode 19, and a gate A gate electrode 40 corresponding to the electrode 20, a source electrode 41A and a drain electrode 41B corresponding to the source electrode 21 were formed (storage type MOSFET on (03-38) and storage type MOSFET on (0001)).
  • the channel length L was 100 ⁇ m
  • the channel width the width of the channel in the direction perpendicular to the paper surface in FIG. 9 was 150 ⁇ m.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

 ゲート電圧が高い場合でも、チャネル移動度を低減することによりオン抵抗を低減することが可能なMOSFET(1)は、SiCからなり、{0001}面に対するオフ角が50°~65°の主面を有するn型の基板(11)と、SiCからなり、基板(11)の主面(11A)上に形成されたn型の耐圧保持層(13)と、耐圧保持層(13)において、第1の主面(13A)から離れて形成されたp型のウェル領域(14)と、ウェル領域(14)上に形成されたゲート酸化膜(18)と、ウェル領域(14)とゲート酸化膜(18)との間に配置されたn型コンタクト領域(15)と、n型コンタクト領域(15)と耐圧保持層(13)とを接続するチャネル領域(17)と、ゲート酸化膜(18)上に配置されたゲート電極(20)とを備えている。そして、チャネル領域(17)とゲート酸化膜(18)との界面を含む領域には、高窒素濃度領域(23)が形成されている。

Description

絶縁ゲート型電界効果トランジスタ
 本発明は絶縁ゲート型電界効果トランジスタに関し、より特定的には、チャネル移動度を向上させることが可能な絶縁ゲート型電界効果トランジスタに関するものである。
 近年、半導体装置の高耐圧化、低損失化、高温環境下での使用などを可能とするため、半導体装置を構成する材料として炭化珪素(SiC)の採用が進められつつある。炭化珪素は、従来から半導体装置を構成する材料として広く使用されている珪素(Si)に比べてバンドギャップが大きいワイドバンドギャップ半導体である。そのため、半導体装置を構成する材料として炭化珪素を採用することにより、半導体装置の高耐圧化、オン抵抗の低減などを達成することができる。また、炭化珪素を材料として採用した半導体装置は、珪素を材料として採用した半導体装置に比べて、高温環境下で使用された場合の特性の低下が小さいという利点も有している。
 しかし、近年の半導体装置への要求特性は高く、たとえばMOSFET(Metal Oxide Semiconductor Field Effect Transistor)において、SiCを材料として採用した場合でも、さらなるオン抵抗の低減が求められている。ここで、オン抵抗の低減には、チャネル移動度の向上が有効である。
 これに対し、MOSFETにおける動作モードを蓄積モードとするMOSFETの構造が提案されている。これにより、チャネル移動度を向上させ、オン抵抗を低減することができるとされている(たとえば、特開平10-308510号公報(特許文献1)および特開平11-330464号公報(特許文献2)参照)。
特開平10-308510号公報 特開平11-330464号公報
 しかしながら、近年、MOSFETの特性に対する要求は益々高くなっている。そして、上記要求を考慮すると、上記特許文献1および2に開示のMOSFETを含め、従来のMOSFETはチャネル移動度が十分に高いとはいえず、オン抵抗が十分に低減されていないという問題があった。より具体的には、ゲート電圧が低い場合、上記特許文献1および2に開示された蓄積型MOSFETのチャネル移動度は大きい。しかし、ゲート電圧が高くなるとチャネルを形成するSiCとゲート酸化膜であるSiOとの界面の影響が大きくなり、従来の反転型MOSFETと同等の移動度となる(S.Harada et al.、“Improved Channel Mobility in Normally-Off 4H-SiC MOSFETs with Buried Channel Structure”、Materials Science Forum、2002年、 Vols.389-393、p1069-1072参照)。そのため、ゲート電圧が高い場合におけるチャネル移動度の向上が不十分であるという問題があった。
 そこで、本発明の目的は、ゲート電圧が高い場合でも、チャネル移動度を低減することによりオン抵抗を低減することが可能なMOSFETを提供することである。
 本発明に従った絶縁ゲート型電界効果トランジスタであるMOSFETは、基板と、耐圧保持層と、ウェル領域と、酸化膜と、第1導電型コンタクト領域と、チャネル領域と、電極とを備えている。基板は、炭化珪素(SiC)からなり、{0001}面に対するオフ角が50°以上65°以下である主面を有し、第1導電型となっている。耐圧保持層は、SiCからなり、基板の上記主面上に形成され、第1導電型となっている。ウェル領域は、耐圧保持層において、基板側の主面である第1の主面から離れて形成され、第1導電型とは導電型の異なる第2導電型となっている。
 酸化膜は、ウェル領域上に形成され、酸化物からなっている。第1導電型コンタクト領域は、ウェル領域と酸化膜との間に配置され、耐圧保持層よりも高濃度の第1導電型の不純物を含むことにより、第1導電型となっている。チャネル領域は、ウェル領域と酸化膜との間に、ウェル領域および酸化膜に接触するように配置され、第1導電型コンタクト領域と耐圧保持層とを接続し、第1導電型コンタクト領域よりも低濃度の第1導電型の不純物を含むことにより第1導電型となっている。電極は、酸化膜上に配置されている。そして、チャネル領域と酸化膜との界面を含む領域には、チャネル領域および酸化膜よりも窒素濃度の高い高窒素濃度領域が形成されている。
 本発明者は、ゲート電圧が高い場合における蓄積型MOSFETのチャネル移動度を低減する方策について検討を行なった。その結果、以下の知見が得られ、本発明に想到した。
 すなわち、SiCを材料として採用した蓄積型MOSFETにおいて用いられるSiC基板は、面方位{0001}に対するオフ角が8°程度である主面を有していることが一般的である。そして、当該主面上に耐圧保持層、ウェル領域、チャネル領域、酸化膜、電極などが形成され、蓄積型MOSFETが得られる。しかし、このような構造を有する蓄積型MOSFETにおいては、基板の主面の面方位{0001}に対するオフ角が8°程度であることに起因して、チャネル領域と酸化膜との界面付近において多くの界面準位が形成され、電子の走行の妨げとなる。低ゲート電圧下では界面準位の影響が小さいため、高いチャネル移動度が得られるが、高ゲート電圧下では界面準位の影響を受け、チャネル移動度が低下していた。
 これに対し、本発明のMOSFETにおいては、面方位{0001}に対するオフ角が50°以上65°以下である主面を有するSiC基板が採用されるため、上記界面準位の形成が低減され、高ゲート電圧下でのチャネル移動度が向上する。
 さらに、チャネル領域と酸化膜との界面を含む領域に高窒素濃度領域を形成することにより、高ゲート電圧下におけるチャネル移動度が向上することが明らかとなった。そのため、本発明のMOSFETにおいては、チャネル移動度が一層向上する。
 以上のように、本発明のMOSFETによれば、ゲート電圧が高い場合でも、チャネル移動度を低減することによりオン抵抗を低減することが可能なMOSFETを提供することができる。
 ここで、オフ角の下限を50°としたのは、オフ角と、蓄積型MOSFETにおける高ゲート電圧下でのチャネル移動度を決める反転型MOSFETのチャネル移動度との関係を検討した結果、オフ角が43.3°の(01-14)面からオフ角が51.5°の(01-13)面にかけてオフ角の増大とともにチャネル移動度の顕著な増大が見られたこと、および上記(01-14)面から(01-13)面の間のオフ角の範囲には自然面が存在しないこと、に基づいている。また、オフ角の上限を65°としたのは、オフ角が62.1°の(01-12)面からオフ角が90°の(01-10)面にかけてオフ角の増大とともにキャリア移動度の顕著な減少が見られたこと、および上記(01-12)面から(01-10)面の間のオフ角の範囲には自然面が存在しないこと、に基づいている。
 上記MOSFETにおいて好ましくは、上記チャネル領域と酸化膜との界面から10nm以内の領域における窒素濃度の最大値が1×1021cm-3以上である。
 本発明者による検討の結果、蓄積型MOSFETの高ゲート電圧下でのチャネル移動度の向上には、反転型MOSFETのチャネル移動度の向上が必要であり、反転型MOSFETのチャネル移動度の向上には、ウェル領域と酸化膜との界面から10nm以内の領域における窒素濃度の最大値が重要であることが明らかとなった。そして、当該領域における窒素濃度の最大値を1×1021cm-3以上とすることにより、チャネル移動度の顕著な向上が得られることが分かった。したがって、上記構成により、チャネル移動度を一層向上させることができる。
 上記MOSFETにおいては、上記基板の主面のオフ方位が<11-20>方向±5°以下の範囲であってもよい。
 <11-20>方向は、SiC基板における代表的なオフ方位である。そして、基板の製造工程におけるスライス加工のばらつき等に起因したオフ方位のばらつきを±5°とすることにより、SiC基板上へのエピタキシャル層の形成などを容易とし、MOSFETの製造を容易に実施することができる。
 上記MOSFETにおいては、上記基板の主面のオフ方位が<01-10>方向±5°以下の範囲であってもよい。
 <01-10>方向は、上記<11-20>方向と同様に、SiC基板における代表的なオフ方位である。そして、基板の製造工程におけるスライス加工のばらつき等に起因したオフ方位のばらつきを±5°とすることにより、SiC基板上へのエピタキシャル層の形成などを容易とし、MOSFETの製造を容易に実施することができる。
 上記MOSFETにおいては、基板の上記主面の面方位は、面方位{03-38}に対してオフ角が-3°以上+5°以下とすることができる。
 これにより、チャネル移動度をより一層向上させることができる。ここで、面方位{03-38}に対するオフ角を-3°以上+5°以下としたのは、チャネル移動度と当該オフ角との関係を調査した結果、この範囲内で特に高いチャネル移動度が得られたことに基づいている。
 ここで、「面方位{03-38}に対してオフ角が-3°以上+5°以下である」状態とは、<0001>方向およびオフ方位の基準としての<01-10>方向の張る平面への上記主面の法線の正射影と、{03-38}面の法線とのなす角度が-3°以上+5°以下である状態を意味し、その符号は、上記正射影が<01-10>方向に対して平行に近づく場合が正であり、上記正射影が<0001>方向に対して平行に近づく場合が負である。
 なお、上記主面の面方位は、実質的に{03-38}であることがより好ましく、上記主面の面方位は{03-38}であることがさらに好ましい。ここで、主面の面方位が実質的に{03-38}であるとは、基板の加工精度などを考慮して実質的に面方位が{03-38}とみなせるオフ角の範囲に基板の主面の面方位が含まれていることを意味し、この場合のオフ角の範囲としてはたとえば{03-38}に対してオフ角が±2°の範囲である。これにより、上述したチャネル移動度をより一層向上させることができる。
 上記MOSFETにおいては、基板の上記主面は、<01-10>方向における(0-33-8)面に対するオフ角が-3°以上+5°以下であってもよい。
 {03-38}面の中でも特にC(カーボン)面側の面である(0-33-8)面に近い面上に半導体層および絶縁膜を形成する構造を採用することにより、キャリア移動度が大幅に向上する。
 ここで、本願において、六方晶の単結晶炭化珪素の(0001)面はシリコン面、(000-1)面はカーボン面と定義される。また、「<01-10>方向における(0-33-8)面に対するオフ角」とは、<000-1>方向およびオフ方位の基準としての<01-10>方向の張る平面への上記主面の法線の正射影と、(0-33-8)面の法線とのなす角度であり、その符号は、上記正射影が<01-10>方向に対して平行に近づく場合が正であり、上記正射影が<000-1>方向に対して平行に近づく場合が負である。そして、上記<01-10>方向における(0-33-8)面に対するオフ角が-3°以上+5°以下である主面とは、当該主面が炭化珪素結晶において上記条件を満たすカーボン面側の面であることを意味する。なお、本願において(0-33-8)面は、結晶面を規定するための軸の設定により表現が異なる等価なカーボン面側の面を含むとともに、シリコン面側の面を含まない。
 以上の説明から明らかなように、本発明のMOSFETによれば、ゲート電圧が高い場合でも、チャネル移動度を低減することによりオン抵抗を低減することが可能なMOSFETを提供することができる。
MOSFETの構造を示す概略断面図である。 MOSFETの製造方法の概略を示すフローチャートである。 MOSFETの製造方法を説明するための概略断面図である。 MOSFETの製造方法を説明するための概略断面図である。 MOSFETの製造方法を説明するための概略断面図である。 MOSFETの製造方法を説明するための概略断面図である。 MOSFETの製造方法を説明するための概略断面図である。 MOSFETの製造方法を説明するための概略断面図である。 TEG-MOSFETの構造を示す概略断面図である。 ゲート電圧とチャネル移動度との関係を示す図である。 実験の試料として用いた反転型MOSFETの構造を示す概略断面図である。 窒素のピーク濃度と反転型MOSチャネル移動度との関係を示す図である。 基板主面の面方位{0001}に対するオフ角と反転型MOSチャネル移動度との関係を示す図である。
 以下、図面に基づいて本発明の実施の形態を説明する。なお、以下の図面において同一または相当する部分には同一の参照番号を付し、その説明は繰返さない。
 まず、本発明の一実施の形態におけるMOSFETの構造について説明する。図1を参照して、本実施の形態におけるMOSFET1は、基板11と、バッファ層12と、耐圧保持層13と、ウェル領域14と、n型コンタクト領域15と、p型コンタクト領域16と、チャネル領域17と、ゲート酸化膜18とを備えている。
 基板11は、六方晶SiC、たとえば4H-SiCからなり、面方位{0001}に対するオフ角が50°以上65°以下、たとえば面方位(03-38)である主面11Aを有し、n型不純物を含有することにより、導電型がn型(第1導電型)となっている。また、基板11の抵抗率は、たとえば0.02Ωcm程度である。
 バッファ層12は、たとえば基板11の主面11A上にエピタキシャル成長により形成された厚み0.5μm程度のSiC層であり、n型不純物を5×1017cm-3程度の濃度で含むことにより、導電型がn型(第1導電型)となっている。
 耐圧保持層13は、SiCからなり、基板11の主面11A上にバッファ層12を挟んで形成され、n型不純物を5×1015cm-3程度の濃度で含むことにより導電型がn型となっている。また、耐圧保持層13の厚みは、たとえば10μm程度である。
 ウェル領域14は、耐圧保持層13において、基板11側の主面である第1の主面13Aから離れて一対形成され、p型不純物を含むことにより、導電型がp型(第2導電型)となっている。
 ゲート酸化膜18は、ウェル領域14上(耐圧保持層13上)に形成され、酸化物である二酸化珪素(SiO)からなっている。ゲート酸化膜18の厚みは、たとえば40nm程度である。
 第1導電型コンタクト領域としてのn型コンタクト領域15は、ウェル領域14とゲート酸化膜18との間に、ウェル領域14およびゲート酸化膜18に接触するように一対配置され、耐圧保持層13よりも高濃度のn型不純物を含むことにより、導電型がn型となっている。このn型コンタクト領域15は、平面的に見て、ウェル領域14に含まれるように配置されている。すなわち、基板11の主面11Aに垂直に上側(ゲート酸化膜18側)から見た場合、n型コンタクト領域15はウェル領域14に含まれている。
 第2導電型コンタクト領域としてのp型コンタクト領域16は、n型コンタクト領域15に隣接して配置され、ウェル領域14よりも高濃度のp型不純物を含むことにより導電型がp型となっている。より具体的には、p型コンタクト領域16は、一対のn型コンタクト領域15のうち一方のn型コンタクト領域15から見て他方のn型コンタクト領域15とは反対側のそれぞれに隣接して一対配置されている。また、p型コンタクト領域16は、ウェル領域14とオーミックコンタクト電極19(後述する)との間に、ウェル領域14およびオーミックコンタクト電極19に接触して配置されている。
 チャネル領域17は、ウェル領域14とゲート酸化膜18との間に、ウェル領域14およびゲート酸化膜18に接触するように配置され、n型コンタクト領域15と耐圧保持層13とを接続している。また、チャネル領域17は、n型コンタクト領域15よりも低濃度のn型の不純物を含むことにより、導電型がn型となっている。別の観点から説明すると、チャネル領域17は、ゲート酸化膜18に沿って、n型コンタクト領域15から、当該n型コンタクト領域15に隣接するp型コンタクト領域16とは反対側に延びるように配置され、n型コンタクト領域15と耐圧保持層13とを接続している。
 さらに、本実施の形態におけるMOSFET1は、ゲート電極20と、オーミックコンタクト電極19と、ソース電極21と、ドレイン電極22とを備えている。
 ゲート電極20は、ゲート酸化膜18上に接触して配置され、かつn型コンタクト領域15上の領域から、n型コンタクト領域15から見てp型コンタクト領域16とは反対側に延在することにより、ゲート酸化膜18を挟んでチャネル領域17に対向している。ゲート電極20は、たとえばAl(アルミニウム)やポリシリコンなどの導電体からなっている。
 オーミックコンタクト電極19は、n型コンタクト領域15に接触する領域からp型コンタクト領域16に接触する領域にまで延在するように、n型コンタクト領域15およびp型コンタクト領域16上に配置されている。また、オーミックコンタクト電極19は、たとえばNi(ニッケル)など、少なくともその一部がシリサイド化することによりn型コンタクト領域15との間でオーミックコンタクトを確保可能な導電体からなっている。
 ソース電極21は、オーミックコンタクト電極19上に接触して配置され、たとえばAlなどの導電体からなっている。また、ドレイン電極22は、基板11において耐圧保持層13が形成される側とは反対側の主面上に接触して配置され、たとえばNi(ニッケル)など、少なくともその一部がシリサイド化することにより基板11との間でオーミックコンタクトを確保可能な導電体からなっている。
 そして、チャネル領域17とゲート酸化膜18との界面を含む領域には、チャネル領域17およびゲート酸化膜18よりも窒素濃度の高い高窒素濃度領域23が形成されている。
 次に、本実施の形態におけるMOSFET1の動作について説明する。図1を参照して、ゲート電極20に印加される電圧が閾値未満の状態においては、ウェル領域14とゲート電極20とに挟まれたチャネル領域17には空乏層が形成される。その結果、n型コンタクト領域15と耐圧保持層13との間が電気的に接続されず、MOSFET1はオフ状態となる。一方、ゲート電極20に印加される電圧が閾値以上になると、ゲート酸化膜18下のチャネル領域17における空乏層が縮小してn型コンタクト領域15と耐圧保持層13との間が電気的に接続される。その結果、MOSFET1はオン状態となり、ソース電極21とドレイン電極22との間に電流が流れる。
 ここで、本実施の形態におけるMOSFET1においては、面方位{0001}に対するオフ角が50°以上65°以下である主面11Aを有する基板11が採用されている。そして、バッファ層12、耐圧保持層13およびチャネル領域17は、当該主面11A上にエピタキシャル成長により形成されている。そのため、ゲート酸化膜18とチャネル領域17との界面付近におけるの界面準位の形成が低減され、高ゲート電圧下におけるチャネル移動度が向上している。なお、主面11Aの面方位を(0-33-8)とすることにより、チャネル移動度を一層向上させることができる。
 さらに、チャネル領域17とゲート酸化膜18との界面を含む領域に高窒素濃度領域23が形成されていることにより、高ゲート電圧下におけるチャネル移動度が一層向上している。これは以下のような理由によると考えられる。すなわち、ゲート酸化膜18を熱酸化などによって形成した場合、ゲート酸化膜18とチャネル領域17との界面付近には、界面準位が多く形成される。そして、そのままでは、高ゲート電圧下において問題となる当該界面付近におけるチャネル移動度は、理論値に比べて大幅に低下する。これに対し、上述のようにゲート酸化膜18とチャネル領域17との界面を含む領域に窒素を導入することにより、上述した界面準位の影響が低減される。
 以上のように、本実施の形態におけるMOSFET1は、ゲート電圧が高い場合においても、チャネル移動度を低減することによりオン抵抗を低減したMOSFETとなっている。
 ここで、上記本実施の形態におけるMOSFETにおいては、チャネル領域17とゲート酸化膜18との界面から10nm以内の領域における窒素濃度の最大値が1×1021cm-3以上であることが望ましい。これにより、チャネル移動度を一層向上させることができる。
 なお、上記実施の形態においては、主面の面方位が(03-38)である基板11に代えて、主面のオフ方位が<11-20>方向±5°以下の範囲である基板を採用してもよい。これにより、SiC基板上へのエピタキシャル層の形成などを容易とし、MOSFETの製造を容易に実施することができる。
 また、上記実施の形態においては、基板11の主面11Aのオフ方位が<01-10>方向±5°以下の範囲であってもよい。これにより、SiC基板上へのエピタキシャル層の形成などを容易とし、MOSFETの製造を容易に実施することができる。そして、基板11の主面11Aの面方位を、面方位{03-38}に対してオフ角が-3°以上+5°以下とすることにより、チャネル移動度をより一層向上させることができる。さらに、基板11の主面11Aの面方位を、面方位{03-38}とすることが最も好ましい。
 次に、図2~図8を参照して、本実施の形態におけるMOSFET1の製造方法について説明する。図2を参照して、本実施の形態におけるMOSFET1の製造方法においては、まず、工程(S10)として基板準備工程が実施される。この工程(S10)では、図3を参照して、たとえば4H-SiCからなり、面方位{0001}に対するオフ角が50°以上65°以下、たとえば面方位(03-38)である主面11Aを有し、n型不純物を含有することにより、導電型がn型となっている基板11が準備される。なお、製造されるMOSFET1のチャネル移動度を一層向上させる観点から、面方位が(0-33-8)である主面11Aを有する基板11が準備されてもよい。
 次に、図2を参照して、工程(S20)として第1エピタキシャル成長工程が実施される。この工程(S20)では、図3を参照して、工程(S10)において準備された基板11の主面11A上に、エピタキシャル成長によりバッファ層12および耐圧保持層13が形成される。エピタキシャル成長は、たとえば原料ガスとしてSiH(シラン)とC(プロパン)との混合ガスを採用し、n型不純物を導入しつつ実施することができる。このとき、まず、たとえばn型不純物を5×1017cm-3程度の濃度で導入したSiC層を0.5μm程度の厚みで形成してバッファ層12とし、その後導入するn型不純物の濃度を5×1015cm-3程度に変更してSiC層を10μm程度の厚みで形成して耐圧保持層13とすることができる。
 次に、図2を参照して、工程(S30)としてウェル領域形成工程が実施される。この工程(S30)では、図3および図4を参照して、工程(S20)において形成された耐圧保持層13において、基板11側の主面である第1の主面13Aとは反対側の主面である第2の主面13Bを含む領域に、一対のウェル領域14がイオン注入により形成される。
 具体的には、まず、第2の主面13B上に、たとえばCVDによりSiOからなる酸化膜が形成される。そして、酸化膜の上にレジストが塗布された後、露光および現像が行なわれ、所望のウェル領域14の形状に応じた領域に開口を有するレジスト膜が形成される。そして、当該レジスト膜をマスクとして用いて、たとえばRIE(Reactive Ion Etching;反応性イオンエッチング)により酸化膜が部分的に除去されることにより、所望のウェル領域14の形状に応じた開口パターンを有する酸化膜からなるマスク層が形成される。その後、上記レジスト膜を除去した上で、このマスク層をマスクとして用いてp型不純物がイオン注入され、ウェル領域14が形成される。
 次に、図2を参照して、工程(S40)として第1活性化アニール工程が実施される。この工程(S40)では、図4を参照して、工程(S30)においてイオン注入が実施された耐圧保持層13を加熱することにより、上記イオン注入によって導入された不純物を活性化させる熱処理である活性化アニールが実施される。活性化アニールは、たとえばアルゴンガス雰囲気中において、1700℃に30分間保持する熱処理を実施することにより行なうことができる。
 次に、図2を参照して、工程(S50)として第2エピタキシャル成長工程が実施される。この工程(S50)では、図4および図5を参照して、耐圧保持層13の第2の主面13B上に、エピタキシャル成長によりチャネル領域17(図1参照)となるべきn型SiC層17Aが形成される。エピタキシャル成長は、たとえば工程(S20)と同様の原料ガスを用い、n型不純物を導入しつつ実施することができる。
 次に、工程(S60)および(S70)として、n型コンタクト領域形成工程およびp型コンタクト領域形成工程が実施される。具体的には、図5および図6を参照して、まず工程(S60)において、工程(S30)と同様の手順により所望のn型コンタクト領域15の形状に応じた開口パターンを有するマスク層が形成され、n型不純物がイオン注入されることにより、n型コンタクト領域15が形成される。さらに、工程(S70)では、当該マスク層が除去された上で、同様の手順により所望のp型コンタクト領域16の形状に応じた開口パターンを有するマスク層が形成され、p型不純物がイオン注入されることにより、p型コンタクト領域16が形成される。このとき、イオン注入が実施されることなく残存したn型SiC層17A、すなわち一対のn型コンタクト領域15に挟まれた領域に位置するn型SiC層17Aが、チャネル領域17となる。
 次に、図2を参照して、工程(S80)として第2活性化アニール工程が実施される。この工程(S80)では、図6を参照して、工程(S60)および(S70)においてイオン注入が実施された耐圧保持層13を加熱することにより、活性化アニールが実施される。活性化アニールは、たとえば工程(S40)と同様に実施することができる。
 次に、図2を参照して、工程(S90)としてゲート酸化膜形成工程が実施される。この工程(S90)では、図6および図7を参照して、工程(S10)~(S80)までが実施されて所望のイオン注入層を含む耐圧保持層13およびチャネル領域17が形成された基板11が、たとえば酸化雰囲気中で1200℃に加熱されて30分間保持されることによりドライ酸化される。これにより、ゲート酸化膜18(図1参照)となるべき熱酸化膜18Aが、チャネル領域17上、n型コンタクト領域15上およびp型コンタクト領域16上に延在するように形成される。熱酸化膜18Aの厚みは、たとえば40nm程度である。
 次に、図2を参照して、工程(S100)として高窒素濃度領域形成工程が実施される。この工程(S100)では、図7を参照して、たとえば一酸化窒素(NO)ガス雰囲気中において1200℃に加熱し、120分間保持する熱処理が実施される。これにより、チャネル領域17、n型コンタクト領域15およびp型コンタクト領域16と熱酸化膜18Aとの界面を含む領域に、当該領域に隣接する領域に比べて窒素濃度の高い高窒素濃度領域23が形成される。
 次に、図2を参照して、工程(S110)として不活性ガスアニール工程が実施される。この工程(S110)では、たとえばAr(アルゴン)などの不活性ガス雰囲気中において1200℃に加熱し、60分間保持する熱処理が実施される。
 次に、工程(S120)として、オーミック電極形成工程が実施される。この工程(S120)では、図7および図8を参照して、まず、フォトリソグラフィ法により、熱酸化膜18A上に、所望のオーミックコンタクト電極19の形状に応じた開口を有するレジスト膜を形成する。次に、このレジスト膜をマスクとして用いて、上記開口から露出する熱酸化膜18Aおよび基板11において耐圧保持層13とは反対側の主面上に形成された熱酸化膜18Aが除去される。さらに、たとえば蒸着法によりニッケル(Ni)膜を熱酸化膜18A上、熱酸化膜18Aから露出するn型コンタクト領域15およびp型コンタクト領域16上、ならびに基板11において耐圧保持層13とは反対側の主面上に、上記レジスト膜を除去することなく形成する。そして、レジスト膜を当該レジスト膜上のNi膜とともに除去(リフトオフ)することにより、オーミックコンタクト電極19およびドレイン電極22を形成すべき領域にNi膜が形成される。その後、たとえばAr雰囲気中で950℃に加熱し2分間保持する熱処理を実施することにより、Ni膜の少なくとも一部がシリサイド化され、オーミックコンタクト電極19およびドレイン電極22が完成する。なお、このときチャネル領域17上およびn型コンタクト領域15上に残存した熱酸化膜18Aが、ゲート酸化膜18となる。
 そして、図2を参照して、工程(S130)として電極形成工程が実施される。この工程(S130)では、図8および図1を参照して、ゲート酸化膜18上に、たとえば導電体であるAl、ポリシリコンなどからなるゲート電極20が形成されるとともに、オーミックコンタクト電極19上に、たとえば導電体であるAlからなるソース電極21が形成される。以上の工程により、本実施の形態におけるMOSFET1が完成する。
 (実施例1)
 以下、本発明の実施例1について説明する。本発明のMOSFETにおけるチャネル移動度の向上およびオン抵抗の低減を確認する実験を行なった。実験の手順は以下の通りである。
 まず、実験方法について説明する。オン抵抗は、上記実施の形態において説明した製造方法を用いてMOSFETを実際に作製し、測定した。具体的には、図1~図8を参照して、まず、面方位が(03-38)である主面11Aを有する4H-SiCからなる基板11(n型、抵抗率0.02Ωcm)を準備し、当該基板上にバッファ層12(n型、不純物濃度5×1017cm-3、厚み0.5μm)および耐圧保持層13(n型、不純物濃度5×1015cm-3、厚み10μm)をエピタキシャル成長させた。その後、ウェル領域14をイオン注入により形成した後、Ar雰囲気中において1700℃に30分間保持することにより活性化アニールを実施した。
 さらに、n型SiC層17Aをエピタキシャル成長させた後、n型コンタクト領域15およびp型コンタクト領域16をイオン注入により形成し、その後Ar雰囲気中において1700℃に30分間保持することにより活性化アニールを実施した。
 次に、酸化雰囲気中において1200℃に30分間保持するドライ酸化を実施することにより厚み40nmのゲート酸化膜18となるべき熱酸化膜18Aを形成した後、NOガス雰囲気中において1200℃に120分間保持することにより、高窒素濃度領域23を形成した。そして、Arガス雰囲気中において1200℃に60分間保持する熱処理を行なった後、オーミックコンタクト電極19、ドレイン電極22、ゲート電極20およびソース電極21を形成することによりMOSFET1を完成させた(実施例)。ここで、セルピッチ(図1において、主面11Aに沿った方向における基板11の幅)は20μm、チャネル長(図1において、ゲート酸化膜18とウェル領域14に挟まれた領域におけるチャネル領域17のゲート酸化膜18に沿った長さ)は2μmとした。
 また、比較のため、面方位(0001)に対するオフ角が8°である主面11Aを有する4H-SiCからなる基板11(n型、抵抗率0.02Ωcm)を準備し、以下上記作製方法と同条件で他のMOSFET1を作製した(比較例)。
 そして、上記実施例および比較例のMOSFETを実際に動作させ、ゲート電圧15Vにおけるオン抵抗の測定を行なった。
 一方、チャネル移動度は、TEG(Test Element Group)-MOSFETを作製して測定した。具体的には、図9を参照して、上記オン抵抗測定用のMOSFETの作製に用いた面方位(03-38)の基板および面方位(0001)オフ角8°の基板と同様の基板31を準備し、上記MOSFETと同時に不純物濃度、厚み等が上記MOSFETと同じ蓄積型TEG-MOSFET3を作製した。つまり、不純物濃度、厚み等が上記MOSFETと同じであってバッファ層12対応するバッファ層32、耐圧保持層13に対応するn型層33を基板31上にエピタキシャル成長させた後、ウェル領域14に対応するp型層34を同様に形成した。
 さらに、p型層34上にn型SiC層を形成した上で、イオン注入を実施することによりn型コンタクト領域15に対応するソース領域35Aおよびドレイン領域35Bと、p型コンタクト領域16に対応するp型コンタクト領域36と、チャネル領域17に対応するチャネル領域37とを同様に形成した、さらに、ゲート酸化膜18に対応するゲート酸化膜38、オーミックコンタクト電極19に対応するオーミックコンタクト電極39、ゲート電極20に対応するゲート電極40、ソース電極21に対応するソース電極41Aおよびドレイン電極41Bを形成した(蓄積型MOSFET on (03-38)および蓄積型MOSFET on (0001))。ここで、図9を参照して、チャンネル長Lは100μm、チャネル幅(図9において、紙面に垂直な方向におけるチャネルの幅)は150μmとした。
 また、比較のため、上記面方位(03-38)の基板31および面方位(0001)オフ角8°の基板31と同様の基板31を準備し、反転型TEG-MOSFETも作製した。すなわち、図9のTEG-MOSFETにおいて、チャネル領域37の領域が省略され、当該領域がp型層34で埋められたTEG-MOSFETも作製した(反転型MOSFET on (03-38)および反転型MOSFET on (0001))。
 そして、上記4種類のTEG-MOSFETを動作させて、ゲート電圧とチャネル移動度との関係を調査した。
 次に、実験結果について説明する。上記オン抵抗の測定結果を表1に示す。また、ゲート電圧とチャネル移動度との関係を図10に示す。図10において、横軸はゲート電圧、縦軸はチャネル移動度を示している。また、図10において、太破線、太実線および細破線は、それぞれ(0001)面8°オフの基板を用いた蓄積型MOSFET、(0001)面8°オフの基板を用いた反転型MOSFETおよび(03-38)面の基板を用いた反転型MOSFET(いずれも本発明の範囲外である比較例)に関する測定結果、細実線は(03-38)面の基板を用いた蓄積型MOSFET(本発明の実施例)の測定結果を示している。なお、オン抵抗の測定に用いた実施例および比較例におけるMOSFETの耐圧を測定したところ、いずれも1.2kV以上という十分な耐圧を有していることが確認された。
 図10を参照して、同じ基板を用いたMOSFET同士を比較すると、蓄積型は反転型に比べてゲート電圧を上昇させていった際のチャネル移動度の立ち上がりが大きく、低ゲート電圧下におけるチャネル移動度において優れていることが確認される。そして、蓄積型同士を比較すると、比較例である(0001)面8°オフの基板を用いた蓄積型MOSFETのチャネル移動度は、たとえばゲート電圧20Vにおけるチャネル移動度が30cm/Vs程度であるのに対し、本発明の実施例である(03-38)面の基板を用いた蓄積型MOSFETのチャネル移動度は100cm/Vs程度となっている。これは、実施例のMOSFETでは、(03-38)面の基板が採用されたことにより、チャネル領域とゲート酸化膜との界面付近における界面準位の形成が低減されていることに起因するものと考えられる。
Figure JPOXMLDOC01-appb-T000001
 さらに、表1を参照して、本発明の実施例である(03-38)面の基板を用いた蓄積型MOSFETのオン抵抗は、比較例である(0001)面8°オフの基板を用いた蓄積型MOSFETの40%にまで抑制されている。
 以上の実験結果から、本発明のMOSFETによれば、ゲート電圧が高い場合でも、チャネル移動度を低減することによりオン抵抗を低減することが可能なMOSFETを提供できることが確認された。
 (実施例2)
 次に、本発明の実施例2について説明する。チャネル領域と酸化膜との界面から10nm以内の領域における窒素濃度の最大値(窒素のピーク濃度)と反転型MOSFETチャネル移動度との関係を調査する実験を行なった。実験の手順は以下の通りである。
 まず、試料として図11に示す横型の反転型MOSFET71を作製した。より具体的には、厚みが400μmのn型炭化珪素基板72上に、厚みが10μmのエピタキシャル層73を形成し、当該エピタキシャル層73上に厚みが1μmのp型層74を形成した。そして、p型層74にn型不純物としてリン(P)を注入し、n型不純物濃度1×1020cm-3のn領域75、76を形成した。このn領域75、76の間の距離であるゲート長(チャネル長L)は100μmとした。また、ゲート幅(チャネル幅)は200μmとした。
 そして、ドライ酸化処理により酸化膜を形成した後、NOガス雰囲気中において加熱することにより窒素アニールを行なった。このとき、加熱時間を変化させることにより、導入される窒素量を変化させた。その後、上記酸化膜をエッチングすることにより当該酸化膜の形状を酸化膜77,78に合わせた形状とするとともに、ソース電極81、ドレイン電極82およびゲート酸化膜である酸化膜78上のゲート電極80を形成した。ソース電極81およびドレイン電極82の材料はニッケル(Ni)であり、その厚みは0.1μmとした。また、ゲート電極80の材料としてはアルミニウム(Al)を用いて、その厚みは1μmとした。以上の手順により、試料としての横型の反転型MOSFET71を完成させた。また、比較のため、上記手順から窒素アニールを省略した試料も作製した。
 次に、チャネル移動度の測定方法を説明する。ソース-ドレイン間電圧VDS=0.1Vとし、ゲート電圧Vを印加してソース-ドレイン間電流IDSを測定した(ゲート電圧依存性を測定した)。そして、g=(δIDS)/(δV)として、
チャネル移動度μ=g×(L×d)/(W×ε×VDS
(ここで、L:ゲート長、d:酸化膜厚、W:ゲート幅、ε:酸化膜の誘電率)
という式からチャネル移動度のゲート電圧に対する最大値を求めた。
 また、上記各試料について、酸化膜78とp型層74との界面近傍(界面から10nm以内の領域)における窒素濃度の深さ方向での分布を測定した。測定は、SIMS(二次イオン質量分析)により実施した。
 次に、実験の結果について図12を参照して説明する。図12において、横軸は、各試料において測定された窒素濃度のピーク値(窒素のピーク濃度)を示しており、縦軸は、測定された反転型MOSFETのチャネル移動度を示している。
 図12を参照して、酸化膜78とp型層74との界面から10nm以内の領域における窒素のピーク濃度が高くなるに従って、チャネル移動度が高くなっている。
 ここで、素材として珪素を用いた従来のMOSFETよりもオン抵抗を低減するためには、チャネル移動度を50cm/Vs以上とすることが好ましい。したがって、図12を参照して、製造プロセスのばらつきなどを考慮すると、反転型MOSFETのチャネル移動度を50cm/Vs以上とするためには、窒素のピーク濃度を1×1021cm-3以上とすることが好ましいといえる。そして、反転型MOSFETのチャネル移動度を上述のように向上させることにより、蓄積型MOSFETの高ゲート電圧下でのチャネル移動度を十分に向上させることができる。したがって、蓄積型MOSFETの高ゲート電圧下でのチャネル移動度を十分に向上させるためには、チャネル領域と酸化膜との界面から10nm以内の領域における窒素濃度の最大値を1×1021cm-3以上とすることが好ましいといえる。
 (実施例3)
 次に、本発明の実施例3について説明する。基板のオフ角と反転型MOSFETチャネル移動度との関係を調査する実験を行なった。実験の手順は以下の通りである。
 まず、上述した実施例2において最もチャネル移動度が高かった試料の製造方法と同様の製造方法を用いて、試料を作製した。具体的には、主表面の面方位が異なる基板を用いて、比較例としての試料を4種類、本発明の実施例としての試料を3種類作製した。すなわち、比較例Aとして、面方位(0001)に対してオフ角が8°となっている主表面を有する炭化珪素基板((0001)の8°オフ基板)を用いたもの、比較例Bとして基板の主表面の面方位が(01-15)で表わされる基板を用いたもの、比較例Cとして基板の主表面の面方位が(01-14)で表わされる基板を用いたもの、比較例Dとして、面方位(0001)に対してオフ角が70°となっている主表面を有する基板を用いたものを準備した。また、本発明の実施例としては、実施例Aとして基板の主表面の面方位が(01-13)で表わされる基板を用いたもの、実施例Bとして基板の主表面の面方位が(03-38)で表わされる基板を用いたもの、実施例Cとして基板の主表面の面方位が(01-12)で表わされる基板を用いたものを準備した。
 そして、上記各試料について、チャネル移動度を測定した。チャネル移動度の測定方法は、上記実施例2におけるチャネル移動度の測定方法と同様の方法を用いた。
 次に、実験結果について図13を参照して説明する。ここで、図13において、横軸は各試料を構成する基板の主表面の、面方位{0001}に対するオフ角度を示しており、縦軸は反転型MOSFETチャネル移動度を示している。
 図13を参照して、本発明の実施例に対応するオフ角度(50°以上65°以下)の範囲の実施例A~Cの試料においては、反転型MOSFETのチャネル移動度の値が比較例に比べて大きく向上していることがわかる。
 ここで、反転型MOSFETのチャネル移動度を上述のように向上させることにより、蓄積型MOSFETの高ゲート電圧下でのチャネル移動度を十分に向上させることができる。したがって、蓄積型MOSFETの高ゲート電圧下でのチャネル移動度を十分に向上させるためには、面方位{0001}に対するオフ角が50°以上65°以下である主面(主表面)を有する基板を採用することが有効であるといえる。
 なお、上記実施例においては、シリコン面側の主面上に半導体層および絶縁膜を形成する構造を採用した実験を行ない、(03-38)面に近い主面の採用によりキャリア移動度(チャネル移動度)が向上するとの結果が得られたことについて説明した。一方、発明者はカーボン面側の主面上に半導体層および絶縁膜を形成する構造を採用した実験も行ない、(0-33-8)面に近い主面の採用によりキャリア移動度(チャネル移動度)が一層向上するとの知見を有している。
 今回開示された実施の形態および実施例はすべての点で例示であって、制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味、および範囲内でのすべての変更が含まれることが意図される。
 本発明の絶縁ゲート型電界効果トランジスタは、オン抵抗の低減が求められる絶縁ゲート型電界効果トランジスタに、特に有利に適用され得る。
 1 MOSFET、3 TEG-MOSFET、11 基板、11A 主面、12 バッファ層、13 耐圧保持層、13A 第1の主面、13B 第2の主面、14 ウェル領域、15 n型コンタクト領域、16 p型コンタクト領域、17 チャネル領域、17A n型SiC層、18 ゲート酸化膜、18A 熱酸化膜、19 オーミックコンタクト電極、20 ゲート電極、21 ソース電極、22 ドレイン電極、23 高窒素濃度領域、31 基板、32 バッファ層、33 n型層、34 p型層、35A ソース領域、35B ドレイン領域、36 p型コンタクト領域、37 チャネル領域、38 ゲート酸化膜、39 オーミックコンタクト電極、40 ゲート電極、41A ソース電極、41B ドレイン電極、71 反転型MOSFET、72 n型炭化珪素基板、73 エピタキシャル層、74 p型層、75,76 n領域、77,78 酸化膜、80 ゲート電極、81 ソース電極、82 ドレイン電極。

Claims (6)

  1.  炭化珪素からなり、{0001}面に対するオフ角が50°以上65°以下である主面(11A)を有する第1導電型の基板(11)と、
     炭化珪素からなり、前記基板(11)の前記主面上(11A)に形成された前記第1導電型の耐圧保持層(13)と、
     前記耐圧保持層(13)において、前記基板(11)側の主面である第1の主面(13A)から離れて形成された、前記第1導電型とは導電型の異なる第2導電型のウェル領域(14)と、
     前記ウェル領域(14)上に形成され、酸化物からなる酸化膜(18)と、
     前記ウェル領域(14)と前記酸化膜(18)との間に配置され、前記耐圧保持層(13)よりも高濃度の前記第1導電型の不純物を含む第1導電型コンタクト領域(15)と、
     前記ウェル領域(14)と前記酸化膜(18)との間に、前記ウェル領域(14)および前記酸化膜(18)に接触するように配置され、前記第1導電型コンタクト領域(15)と前記耐圧保持層(13)とを接続し、前記第1導電型コンタクト領域(15)よりも低濃度の前記第1導電型の不純物を含むことにより、前記第1導電型となっているチャネル領域(17)と、
     前記酸化膜(18)上に配置された電極(20)とを備え、
     前記チャネル領域(17)と前記酸化膜(18)との界面を含む領域には、前記チャネル領域(17)および前記酸化膜(18)よりも窒素濃度の高い高窒素濃度領域(23)が形成されている、絶縁ゲート型電界効果トランジスタ(1)。
  2.  前記チャネル領域(17)と前記酸化膜(18)との界面から10nm以内の領域における窒素濃度の最大値が1×1021cm-3以上である、請求の範囲第1項に記載の絶縁ゲート型電界効果トランジスタ(1)。
  3.  前記基板(11)の前記主面(11A)のオフ方位が<11-20>方向±5°以下の範囲である、請求の範囲第1項に記載の絶縁ゲート型電界効果トランジスタ(1)。
  4.  前記基板(11)の前記主面(11A)のオフ方位が<01-10>方向±5°以下の範囲である、請求の範囲第1項に記載の絶縁ゲート型電界効果トランジスタ(1)。
  5.  前記基板(11)の前記主面(11A)の面方位は、面方位{03-38}に対してオフ角が-3°以上+5°以下である、請求の範囲第4項に記載の絶縁ゲート型電界効果トランジスタ(1)。
  6.  前記基板(11)の前記主面(11A)は、<01-10>方向における(0-33-8)面に対するオフ角が-3°以上+5°以下である、請求の範囲第4項に記載の絶縁ゲート型電界効果トランジスタ(1)。
PCT/JP2010/054951 2009-04-10 2010-03-23 絶縁ゲート型電界効果トランジスタ WO2010116887A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CA2739576A CA2739576A1 (en) 2009-04-10 2010-03-23 Insulated gate field effect transistor
EP10761587.4A EP2418683A4 (en) 2009-04-10 2010-03-23 FIELD EFFECT TRANSISTOR WITH INSULATED GATE
US13/122,377 US8502236B2 (en) 2009-04-10 2010-03-23 Insulated gate field effect transistor
JP2011508320A JPWO2010116887A1 (ja) 2009-04-10 2010-03-23 絶縁ゲート型電界効果トランジスタ
CN2010800028219A CN102171832A (zh) 2009-04-10 2010-03-23 绝缘栅场效应晶体管

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009095482 2009-04-10
JP2009-095482 2009-04-10

Publications (2)

Publication Number Publication Date
WO2010116887A1 true WO2010116887A1 (ja) 2010-10-14
WO2010116887A9 WO2010116887A9 (ja) 2011-04-07

Family

ID=42936173

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/054951 WO2010116887A1 (ja) 2009-04-10 2010-03-23 絶縁ゲート型電界効果トランジスタ

Country Status (8)

Country Link
US (1) US8502236B2 (ja)
EP (1) EP2418683A4 (ja)
JP (1) JPWO2010116887A1 (ja)
KR (1) KR20110137280A (ja)
CN (1) CN102171832A (ja)
CA (1) CA2739576A1 (ja)
TW (1) TW201108388A (ja)
WO (1) WO2010116887A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120313112A1 (en) * 2011-06-07 2012-12-13 Sumitomo Electric Industries, Ltd. Semiconductor device
JP2013162118A (ja) * 2012-02-01 2013-08-19 Sumitomo Electric Ind Ltd 炭化珪素半導体装置
JP2014120662A (ja) * 2012-12-18 2014-06-30 Sumitomo Electric Ind Ltd 炭化珪素半導体装置

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5668576B2 (ja) * 2011-04-01 2015-02-12 住友電気工業株式会社 炭化珪素半導体装置
JP5646570B2 (ja) * 2012-09-26 2014-12-24 株式会社東芝 半導体装置及びその製造方法
CN103811546B (zh) * 2012-11-13 2016-11-23 上海华虹宏力半导体制造有限公司 带面结型场效应管的ldmos复合管
CN102969359A (zh) * 2012-12-11 2013-03-13 深港产学研基地 独立栅控制的纳米线隧穿场效应器件及其制造方法
JP2015053462A (ja) * 2013-08-06 2015-03-19 住友電気工業株式会社 炭化珪素半導体装置およびその製造方法
JP6206012B2 (ja) * 2013-09-06 2017-10-04 住友電気工業株式会社 炭化珪素半導体装置
JP6098447B2 (ja) * 2013-09-06 2017-03-22 住友電気工業株式会社 炭化珪素半導体装置およびその製造方法
US20160056283A1 (en) * 2014-08-21 2016-02-25 Kabushiki Kaisha Toshiba Semiconductor device and method for manufacturing the same
CN104282766A (zh) * 2014-11-06 2015-01-14 株洲南车时代电气股份有限公司 一种新型碳化硅mosfet及其制造方法
CN104319292A (zh) * 2014-11-06 2015-01-28 株洲南车时代电气股份有限公司 一种新型碳化硅mosfet及其制造方法
DE102016205331A1 (de) 2016-03-31 2017-10-05 Robert Bosch Gmbh Vertikaler SiC-MOSFET
CN110350035A (zh) * 2019-05-30 2019-10-18 上海功成半导体科技有限公司 SiC MOSFET功率器件及其制备方法
JP7187620B1 (ja) * 2021-07-13 2022-12-12 昭和電工株式会社 SiCエピタキシャルウェハ及びSiCエピタキシャルウェハの製造方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10308510A (ja) 1997-03-05 1998-11-17 Denso Corp 炭化珪素半導体装置及びその製造方法
JPH11330464A (ja) 1998-05-15 1999-11-30 Denso Corp 炭化珪素半導体装置及びその製造方法
JP2000188399A (ja) * 1998-10-16 2000-07-04 Denso Corp 炭化珪素半導体装置及びその製造方法
JP2001144288A (ja) * 1999-11-17 2001-05-25 Denso Corp 炭化珪素半導体装置
JP2002261275A (ja) * 2001-03-05 2002-09-13 Shikusuon:Kk Mosデバイス
JP2002261041A (ja) * 2001-03-05 2002-09-13 Shikusuon:Kk SiC半導体のイオン注入層及びその製造方法
JP2005166930A (ja) * 2003-12-02 2005-06-23 Matsushita Electric Ind Co Ltd SiC−MISFET及びその製造方法
JP2005183943A (ja) * 2003-11-25 2005-07-07 Matsushita Electric Ind Co Ltd 半導体素子
JP3854508B2 (ja) * 1999-09-07 2006-12-06 株式会社シクスオン SiCウエハ、SiC半導体デバイス、およびSiCウエハの製造方法
JP4064436B2 (ja) * 2004-06-11 2008-03-19 松下電器産業株式会社 パワー素子

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1323185B1 (en) 2000-10-03 2011-07-27 Cree, Inc. Method of fabricating an oxide layer on a silicon carbide layer utilizing n2o
US7074643B2 (en) 2003-04-24 2006-07-11 Cree, Inc. Silicon carbide power devices with self-aligned source and well regions and methods of fabricating same
KR20070000386A (ko) 2003-11-25 2007-01-02 마츠시타 덴끼 산교 가부시키가이샤 반도체소자

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10308510A (ja) 1997-03-05 1998-11-17 Denso Corp 炭化珪素半導体装置及びその製造方法
JPH11330464A (ja) 1998-05-15 1999-11-30 Denso Corp 炭化珪素半導体装置及びその製造方法
JP2000188399A (ja) * 1998-10-16 2000-07-04 Denso Corp 炭化珪素半導体装置及びその製造方法
JP3854508B2 (ja) * 1999-09-07 2006-12-06 株式会社シクスオン SiCウエハ、SiC半導体デバイス、およびSiCウエハの製造方法
JP2001144288A (ja) * 1999-11-17 2001-05-25 Denso Corp 炭化珪素半導体装置
JP2002261275A (ja) * 2001-03-05 2002-09-13 Shikusuon:Kk Mosデバイス
JP2002261041A (ja) * 2001-03-05 2002-09-13 Shikusuon:Kk SiC半導体のイオン注入層及びその製造方法
JP2005183943A (ja) * 2003-11-25 2005-07-07 Matsushita Electric Ind Co Ltd 半導体素子
JP2005166930A (ja) * 2003-12-02 2005-06-23 Matsushita Electric Ind Co Ltd SiC−MISFET及びその製造方法
JP4064436B2 (ja) * 2004-06-11 2008-03-19 松下電器産業株式会社 パワー素子

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
S. HARADA ET AL.: "Improved Channel Mobility in Normally-Off4H-SiC MOSFETs with Buried Channel Structure", MATERIALS SCIENCE FORUM, vol. 389-393, 2002, pages 1069 - 1072
See also references of EP2418683A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120313112A1 (en) * 2011-06-07 2012-12-13 Sumitomo Electric Industries, Ltd. Semiconductor device
JP2013162118A (ja) * 2012-02-01 2013-08-19 Sumitomo Electric Ind Ltd 炭化珪素半導体装置
JP2014120662A (ja) * 2012-12-18 2014-06-30 Sumitomo Electric Ind Ltd 炭化珪素半導体装置
US9647072B2 (en) 2012-12-18 2017-05-09 Sumitomo Electric Industries, Ltd. Silicon carbide semiconductor device

Also Published As

Publication number Publication date
US20110180814A1 (en) 2011-07-28
JPWO2010116887A1 (ja) 2012-10-18
KR20110137280A (ko) 2011-12-22
EP2418683A4 (en) 2013-05-15
TW201108388A (en) 2011-03-01
CA2739576A1 (en) 2010-10-14
WO2010116887A9 (ja) 2011-04-07
EP2418683A1 (en) 2012-02-15
CN102171832A (zh) 2011-08-31
US8502236B2 (en) 2013-08-06

Similar Documents

Publication Publication Date Title
WO2010116887A1 (ja) 絶縁ゲート型電界効果トランジスタ
WO2010116886A9 (ja) 絶縁ゲート型バイポーラトランジスタ
US8748901B1 (en) Silicon carbide semiconductor element
US8513673B2 (en) MOSFET and method for manufacturing MOSFET
WO2015040966A1 (ja) 炭化珪素半導体装置および炭化珪素半導体装置の製造方法
US8941120B2 (en) Semiconductor device and method for manufacturing the same
JP2006066439A (ja) 半導体装置およびその製造方法
JP2009187966A (ja) 半導体装置の製造方法
WO2015015926A1 (ja) 炭化珪素半導体装置およびその製造方法
WO2010095538A1 (ja) 炭化珪素基板および炭化珪素基板の製造方法
WO2013073293A1 (ja) 半導体装置の製造方法および半導体装置
US8809945B2 (en) Semiconductor device having angled trench walls
US8536583B2 (en) MOSFET and method for manufacturing MOSFET
WO2013094287A1 (ja) 半導体装置
WO2009104299A1 (ja) 半導体装置および半導体装置の製造方法
WO2012066820A1 (ja) 炭化珪素半導体装置
JP2009194164A (ja) 絶縁ゲート型電界効果トランジスタおよびその製造方法
JP2009182240A (ja) 半導体装置の製造方法および半導体装置
JP2009200335A (ja) 基板、エピタキシャル層付基板および半導体装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080002821.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10761587

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011508320

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2010761587

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20117007711

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13122377

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2739576

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE