WO2010116886A9 - 絶縁ゲート型バイポーラトランジスタ - Google Patents

絶縁ゲート型バイポーラトランジスタ Download PDF

Info

Publication number
WO2010116886A9
WO2010116886A9 PCT/JP2010/054950 JP2010054950W WO2010116886A9 WO 2010116886 A9 WO2010116886 A9 WO 2010116886A9 JP 2010054950 W JP2010054950 W JP 2010054950W WO 2010116886 A9 WO2010116886 A9 WO 2010116886A9
Authority
WO
WIPO (PCT)
Prior art keywords
main surface
region
substrate
oxide film
igbt
Prior art date
Application number
PCT/JP2010/054950
Other languages
English (en)
French (fr)
Other versions
WO2010116886A1 (ja
Inventor
真 原田
圭司 和田
透 日吉
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Priority to CN2010800028223A priority Critical patent/CN102171828A/zh
Priority to US13/122,353 priority patent/US8525187B2/en
Priority to CA2739570A priority patent/CA2739570A1/en
Priority to EP10761586A priority patent/EP2418680A4/en
Priority to JP2011508319A priority patent/JPWO2010116886A1/ja
Publication of WO2010116886A1 publication Critical patent/WO2010116886A1/ja
Publication of WO2010116886A9 publication Critical patent/WO2010116886A9/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • H01L29/7393Insulated gate bipolar mode transistors, i.e. IGBT; IGT; COMFET
    • H01L29/7395Vertical transistors, e.g. vertical IGBT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/04Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their crystalline structure, e.g. polycrystalline, cubic or particular orientation of crystalline planes
    • H01L29/045Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their crystalline structure, e.g. polycrystalline, cubic or particular orientation of crystalline planes by their particular orientation of crystalline planes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
    • H01L29/1608Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66053Multistep manufacturing processes of devices having a semiconductor body comprising crystalline silicon carbide
    • H01L29/66068Multistep manufacturing processes of devices having a semiconductor body comprising crystalline silicon carbide the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate

Definitions

  • the present invention relates to an insulated gate bipolar transistor, and more particularly to an insulated gate bipolar transistor capable of improving channel mobility.
  • silicon carbide (SiC) is being adopted as a material constituting a semiconductor device in order to enable a semiconductor device to have a high breakdown voltage, low loss, and use in a high temperature environment.
  • Silicon carbide is a wide band gap semiconductor having a larger band gap than silicon (Si) that has been widely used as a material for forming semiconductor devices. Therefore, by adopting silicon carbide as a material constituting the semiconductor device, it is possible to achieve a high breakdown voltage and a low on-resistance of the semiconductor device.
  • a semiconductor device that employs silicon carbide as a material has an advantage that a decrease in characteristics when used in a high temperature environment is small as compared with a semiconductor device that employs silicon as a material.
  • Non-Patent Document 1 cannot be said to have a sufficiently high channel mobility and cannot be said to have a sufficiently reduced on-resistance. There was a problem.
  • an object of the present invention is to provide an IGBT with reduced on-resistance by improving channel mobility.
  • An insulated gate bipolar transistor (IGBT) includes a substrate, a breakdown voltage holding layer, a well region, an emitter region, an oxide film, and an electrode.
  • the substrate is made of silicon carbide, has a main surface with an off angle of 50 ° or more and 65 ° or less with respect to the plane orientation ⁇ 0001 ⁇ , and is of the first conductivity type.
  • the breakdown voltage holding layer is made of silicon carbide, is formed on the main surface of the substrate, and has a second conductivity type different from the first conductivity type.
  • the well region is formed in the breakdown voltage holding layer so as to include a second main surface which is a main surface opposite to the first main surface which is the main surface on the substrate side, and has a first conductivity type. .
  • the emitter region is formed so as to include the second main surface in the well region, and has the second conductivity type by including the second conductivity type impurity having a higher concentration than the breakdown voltage holding layer.
  • the oxide film is formed on the breakdown voltage holding layer so as to be in contact with the second main surface and is made of an oxide.
  • the electrode is formed on the oxide film. In the region including the interface between the well region and the oxide film, a high nitrogen concentration region having a higher nitrogen concentration than the well region and the oxide film is formed.
  • a SiC substrate generally used in an IGBT adopting SiC as a material has a main surface with an off angle of about 8 ° with respect to the plane orientation ⁇ 0001 ⁇ .
  • a breakdown voltage holding layer, a well region, an emitter region, an oxide film, an electrode, and the like are formed on the main surface, and an IGBT is obtained.
  • the off-angle with respect to the plane orientation ⁇ 0001 ⁇ of the main surface of the substrate is about 8 °, so that the well region functioning as a channel has an interface with the oxide film. Many interface states are formed in the vicinity, which hinders the travel of electrons. Therefore, channel mobility has been reduced.
  • an SiC substrate having a main surface with an off angle with respect to the plane orientation ⁇ 0001 ⁇ of 50 ° or more and 65 ° or less is adopted, so that the formation of the interface state is reduced, Channel mobility is improved.
  • the channel mobility is improved by forming a high nitrogen concentration region in the region including the interface between the well region and the oxide film. Therefore, channel mobility is further improved in the IGBT of the present invention.
  • an IGBT with reduced on-resistance can be provided by improving channel mobility.
  • the lower limit of the off angle is set to 50 °.
  • the off angle is 51.5 ° from the (01-14) plane having the off angle of 43.3 °.
  • a significant increase in channel mobility was observed with an increase in the off-angle toward the (01-13) plane, and in the range of the off-angle between the (01-14) plane and the (01-13) plane. Is based on the fact that there is no natural aspect.
  • the upper limit of the off-angle is 65 ° because the off-angle increases and the carrier mobility increases from the (01-12) plane with an off-angle of 62.1 ° to the (01-10) plane with an off-angle of 90 °. This is based on the fact that there was a significant decrease in the above and that there is no natural surface in the range of the off angle between the (01-12) surface and the (01-10) surface.
  • the maximum value of nitrogen concentration in a region within 10 nm from the interface between the well region and the oxide film is 1 ⁇ 10 21 cm ⁇ 3 or more.
  • the maximum value of the nitrogen concentration in a region within 10 nm from the interface between the well region and the oxide film is important for improving the channel mobility. It was also found that the channel mobility can be significantly improved by setting the maximum value of nitrogen concentration in the region to 1 ⁇ 10 21 cm ⁇ 3 or more. Therefore, the channel mobility can be further improved by the above configuration.
  • the off orientation of the main surface of the substrate may be in the range of ⁇ 11-20> direction ⁇ 5 ° or less.
  • the ⁇ 11-20> direction is a typical off orientation in the SiC substrate. Then, by setting the variation in off orientation caused by slicing variations in the substrate manufacturing process to be ⁇ 5 °, it is easy to form an epitaxial layer on the SiC substrate, and to easily manufacture the IGBT. be able to.
  • the off orientation of the main surface of the substrate may be in a range of ⁇ 01-10> direction ⁇ 5 ° or less.
  • the ⁇ 01-10> direction is a typical off orientation in the SiC substrate, similar to the ⁇ 11-20> direction. Then, by setting the variation in off orientation caused by slicing variations in the substrate manufacturing process to be ⁇ 5 °, it is easy to form an epitaxial layer on the SiC substrate, and to easily manufacture the IGBT. be able to.
  • the surface orientation of the main surface of the substrate can be set to an off angle of ⁇ 3 ° to + 5 ° with respect to the surface orientation ⁇ 03-38 ⁇ .
  • the channel mobility can be further improved.
  • the off angle with respect to the plane orientation ⁇ 03-38 ⁇ is set to ⁇ 3 ° or more and + 5 ° or less.
  • the channel mobility is particularly high within this range. Is based on the obtained.
  • the state that “the off angle is ⁇ 3 ° or more and + 5 ° or less with respect to the plane orientation ⁇ 03-38 ⁇ ” means that the ⁇ 0001> direction and the ⁇ 01-10> direction as a reference for the off orientation are stretched.
  • This means that the angle formed between the normal projection of the principal surface to the plane and the normal of the ⁇ 03-38 ⁇ plane is -3 ° or more and + 5 ° or less, and the sign is The case where it approaches parallel to the ⁇ 01-10> direction is positive, and the case where the orthographic projection approaches parallel to the ⁇ 0001> direction is negative.
  • the surface orientation of the main surface is more preferably ⁇ 03-38 ⁇ , and the surface orientation of the main surface is more preferably ⁇ 03-38 ⁇ .
  • the surface orientation of the main surface is substantially ⁇ 03-38 ⁇ , taking into account the processing accuracy of the substrate, etc., the substrate is within an off-angle range where the surface orientation can be substantially regarded as ⁇ 03-38 ⁇ .
  • the off angle range is, for example, a range of ⁇ 2 ° with respect to ⁇ 03-38 ⁇ .
  • the main surface of the substrate may have an off angle of not less than ⁇ 3 ° and not more than + 5 ° with respect to the (0-33-8) plane in the ⁇ 01-10> direction.
  • the (0001) plane of hexagonal single crystal silicon carbide is defined as the silicon plane
  • the (000-1) plane is defined as the carbon plane.
  • the “off angle with respect to the (0-33-8) plane in the ⁇ 01-10> direction” refers to the above described plane extending in the ⁇ 01-10> direction as a reference for the ⁇ 000-1> direction and the off orientation. This is the angle formed between the orthogonal projection of the normal of the principal surface and the normal of the (0-33-8) surface, and the sign is that the orthogonal projection may approach parallel to the ⁇ 01-10> direction. It is positive and negative when the orthographic projection approaches parallel to the ⁇ 000-1> direction.
  • the main surface having an off angle with respect to the (0-33-8) plane in the ⁇ 01-10> direction of -3 ° or more and + 5 ° or less is a carbon surface satisfying the above conditions in a silicon carbide crystal. It means the side surface.
  • the (0-33-8) plane includes an equivalent carbon plane-side plane whose expression differs depending on the setting of an axis for defining a crystal plane, and does not include a silicon plane-side plane.
  • IGBT 1 in the present embodiment includes a substrate 11, a buffer layer 12, a breakdown voltage holding layer 13, a well region 14, an emitter region 15, and a contact region 16.
  • the substrate 11 is made of hexagonal SiC, such as 4H—SiC, and has a main surface (main surface) 11A having an off angle of 50 ° to 65 ° with respect to the plane orientation ⁇ 0001 ⁇ , for example, the plane orientation (03-38).
  • the conductivity type is n-type (first conductivity type).
  • the resistivity of the substrate 11 is, for example, about 0.02 ⁇ cm.
  • the buffer layer 12 is a SiC layer having a thickness of about 0.5 ⁇ m formed by epitaxial growth on the main surface 11A of the substrate 11, for example, and contains p-type impurities at a concentration of about 5 ⁇ 10 17 cm ⁇ 3.
  • the type is p-type (second conductivity type).
  • the breakdown voltage holding layer 13 is made of SiC, is formed on the main surface 11A of the substrate 11 with the buffer layer 12 interposed therebetween, and includes p-type impurities at a concentration of about 4 ⁇ 10 14 cm ⁇ 3 so that the conductivity type is p-type. It has become. Moreover, the thickness of the pressure
  • the well region 14 is formed so as to include a second main surface 13B that is a main surface opposite to the first main surface 13A that is the main surface on the substrate 11 side in the breakdown voltage holding layer 13, and an n-type impurity As a result, the conductivity type is n-type.
  • the emitter region 15 is formed so as to include the second main surface 13B in the well region 14, and has a p-type conductivity by containing a higher concentration of p-type impurities than the breakdown voltage holding layer 13.
  • Contact region 16 includes second main surface 13 ⁇ / b> B in well region 14 and is disposed adjacent to emitter region 15, and includes an n-type impurity at a higher concentration than other regions in well region 14.
  • the conductivity type is n-type.
  • the IGBT 1 in the present embodiment includes a gate oxide film 17, a gate electrode 19, an ohmic contact electrode 18, an emitter electrode 21, and a collector electrode 20.
  • Gate oxide film 17 is formed on breakdown voltage holding layer 13 so as to be in contact with second main surface 13B, and is made of, for example, an oxide having a thickness of 40 nm, specifically, silicon dioxide (SiO 2 ).
  • the gate electrode 19 is disposed in contact with the gate oxide film 17, extends from the region on the emitter region 15 to the side opposite to the contact region 16 when viewed from the emitter region 15, and the well region 14 has a well region 14. It is formed so as to reach a region on the breakdown voltage holding layer 13 that is not formed, and is made of a conductor such as Al (aluminum) or polysilicon.
  • the ohmic contact electrode 18 is disposed on the second main surface 13B so as to extend from a region in contact with the emitter region 15 to a region in contact with the contact region 16.
  • the ohmic contact electrode 18 is made of a conductor such as Ni (nickel) that can secure an ohmic contact with the emitter region 15 by siliciding at least a part thereof.
  • the emitter electrode 21 is disposed in contact with the ohmic contact electrode 18 and is made of a conductor such as Al.
  • the collector electrode 20 is disposed in contact with the main surface of the substrate 11 opposite to the side on which the breakdown voltage holding layer 13 is formed, and at least a part thereof such as Ni (nickel) is silicided. Thus, it is made of a conductor capable of ensuring ohmic contact with the substrate 11.
  • a high nitrogen concentration region 22 having a higher nitrogen concentration than the other regions of the well region 14 and the gate oxide film 17 is formed.
  • the operation of the IGBT 1 in this embodiment will be described.
  • a negative voltage is applied to gate electrode 19 and the negative voltage exceeds a threshold value
  • an inversion layer is formed in channel region 14 ⁇ / b> A of well region 14 in contact with gate oxide film 17 under gate electrode 19.
  • the emitter region 15 and the withstand voltage holding layer 13 are electrically connected. Thereby, holes are injected from the emitter region 15 into the breakdown voltage holding layer 13, and electrons are supplied from the substrate 11 to the breakdown voltage holding layer 13 via the buffer layer 12 correspondingly.
  • the IGBT 1 is turned on, conductivity modulation occurs in the breakdown voltage holding layer 13, and a current flows in a state where the resistance between the emitter electrode 21 and the collector electrode 20 is lowered.
  • the negative voltage applied to the gate electrode 19 is equal to or lower than the threshold value, an inversion layer is not formed in the channel region 14A, so that a reverse bias state is maintained between the breakdown voltage holding layer 13 and the well region 14. .
  • the IGBT 1 is turned off and no current flows.
  • the substrate 11 having the main surface 11A having an off angle with respect to the plane orientation ⁇ 0001 ⁇ of 50 ° or more and 65 ° or less is employed.
  • the buffer layer 12 and the breakdown voltage holding layer 13 (including the region where the well region 14 is formed) are formed by epitaxial growth on the main surface 11A. Therefore, the formation of the interface state of the channel region 14A in the vicinity of the interface with the gate oxide film 17 is reduced, and the channel mobility is improved.
  • the channel mobility can be further improved by setting the plane orientation of the main surface 11A to (0-33-8).
  • the channel mobility is further improved. This is considered to be due to the following reasons. That is, when the gate oxide film 17 is formed by thermal oxidation or the like, many interface states are formed at the interface between the gate oxide film 17 and the channel region 14A made of a semiconductor. As it is, the channel mobility in the channel region 14A is greatly reduced compared to the theoretical value. In contrast, by introducing nitrogen into the region including the interface between the gate oxide film 17 and the channel region 14A as described above, the influence of the above-described interface state is reduced.
  • the IGBT 1 in the present embodiment is an IGBT with reduced on-resistance by improving channel mobility.
  • the maximum value of the nitrogen concentration in a region within 10 nm from the interface between the well region 14 (channel region 14A) and the gate oxide film 17 is 1 ⁇ 10 21 cm ⁇ 3 or more. It is desirable to be. Thereby, channel mobility can be further improved.
  • a substrate having a main surface having an off orientation in the ⁇ 11-20> direction ⁇ 5 ° or less is used instead of the substrate 11 having the main surface having a plane orientation of (03-38). It may be adopted. This facilitates the formation of an epitaxial layer on the SiC substrate, and makes it possible to easily manufacture the IGBT.
  • the off orientation of the main surface 11A of the substrate 11 may be in the range of ⁇ 01-10> direction ⁇ 5 ° or less. This facilitates the formation of an epitaxial layer on the SiC substrate, and makes it possible to easily manufacture the IGBT.
  • the channel mobility can be further improved by setting the surface orientation of the main surface 11A of the substrate 11 to be not less than ⁇ 3 ° and not more than + 5 ° with respect to the surface orientation ⁇ 03-38 ⁇ . Further, it is most preferable that the surface orientation of the main surface 11A of the substrate 11 is the surface orientation ⁇ 03-38 ⁇ .
  • a substrate preparation step is first performed as a step (S10).
  • step (S10) referring to FIG. 3, main surface 11A made of, for example, 4H—SiC and having an off angle with respect to surface orientation ⁇ 0001 ⁇ of 50 ° or more and 65 ° or less, eg, surface orientation (03-38).
  • the substrate 11 having the n-type conductivity is prepared by containing n-type impurities. From the viewpoint of further improving the channel mobility of the manufactured IGBT 1, a substrate 11 having a main surface 11A having a plane orientation of (0-33-8) may be prepared.
  • an epitaxial growth step is performed as a step (S20).
  • buffer layer 12 and breakdown voltage holding layer 13 are formed by epitaxial growth on main surface 11A of substrate 11 prepared in step (S10).
  • Epitaxial growth can be performed, for example, by using a mixed gas of SiH 4 (silane) and C 3 H 8 (propane) as a source gas.
  • a SiC layer into which a p-type impurity is introduced at a concentration of about 5 ⁇ 10 17 cm ⁇ 3 is formed with a thickness of about 0.5 ⁇ m to form the buffer layer 12, and then the concentration of the p-type impurity to be introduced is changed.
  • the SiC layer can be formed with a thickness of about 120 ⁇ m to form the breakdown voltage holding layer 13.
  • an ion implantation step is performed as a step (S30).
  • this step (S30) referring to FIG. 3 and FIG. 4, in the breakdown voltage holding layer 13 formed in step (S20), the first main surface 13A, which is the main surface on the substrate 11 side, is on the opposite side.
  • a well region 14, an emitter region 15 and a contact region 16 are sequentially formed by ion implantation in a region including the second main surface 13B which is the main surface.
  • an oxide film made of SiO 2 is formed on second main surface 13B by, for example, CVD. Then, after a resist is applied on the oxide film, exposure and development are performed, and a resist film having an opening in a region corresponding to the shape of the desired well region 14 is formed. Then, using the resist film as a mask, the oxide film is partially removed by, for example, RIE (Reactive Ion Etching), so that an opening pattern corresponding to the shape of the desired well region 14 is obtained. A mask layer made of an oxide film is formed. Then, after removing the resist film, n-type impurities are ion-implanted using the mask layer as a mask, and the well region 14 is formed.
  • RIE Reactive Ion Etching
  • a mask layer having an opening pattern corresponding to a desired shape of the emitter region 15 is formed by a similar procedure, and p-type impurities are ion-implanted. It is formed. Further, after the mask layer is removed, a mask layer having an opening pattern corresponding to the shape of the desired contact region 16 is formed by the same procedure, and n-type impurities are ion-implanted, whereby the contact region 16 Is formed.
  • an activation annealing step is performed as a step (S40).
  • This step (S40) is a heat treatment for activating the impurities introduced by the ion implantation by heating the breakdown voltage holding layer 13 in which the ion implantation is performed in the step (S30) with reference to FIG.
  • Activation annealing is performed.
  • the activation annealing can be performed, for example, by performing a heat treatment that is held at 1700 ° C. for 30 minutes in an argon gas atmosphere.
  • a gate oxide film forming step is performed as a step (S50).
  • steps (S10) to (S40) are carried out to form substrate 11 on which breakdown voltage holding layer 13 including a desired ion implantation layer is formed.
  • Dry oxidation is performed by heating to 1200 ° C. in an oxidizing atmosphere and holding for 30 minutes.
  • a thermal oxide film 17A to be the gate oxide film 17 is formed on the second main surface 13B.
  • the thickness of the thermal oxide film 17A is, for example, about 40 nm.
  • a high nitrogen concentration region forming step is performed as a step (S60).
  • this step (S60) referring to FIG. 5, for example, heat treatment is performed in which heating is performed at 1200 ° C. in a nitrogen monoxide (NO) gas atmosphere and held for 120 minutes.
  • NO nitrogen monoxide
  • the high breakdown voltage holding region 13, the well region 14, the emitter region 15, and the region including the interface between the contact region 16 and the thermal oxide film 17A have a high nitrogen concentration region 22 having a higher nitrogen concentration than the region adjacent to the region. Is formed.
  • an inert gas annealing step is performed as a step (S70).
  • heat treatment is performed by heating to 1200 ° C. in an inert gas atmosphere such as Ar (argon) and holding for 60 minutes.
  • an ohmic electrode forming step is performed.
  • this step (S80) referring to FIGS. 5 and 6, first, the desired shape of ohmic contact electrode 18 is formed on thermal oxide film 17A formed on second main surface 13B by photolithography. A resist film having an opening corresponding to is formed. Next, using this resist film as a mask, the thermal oxide film 17A exposed from the opening and the thermal oxide film 17A formed on the main surface of the substrate 11 opposite to the withstand voltage holding layer 13 are removed. Further, for example, a nickel (Ni) film is formed on the second main surface 13B and on the main surface of the substrate 11 opposite to the withstand voltage holding layer 13 by vapor deposition.
  • Ni nickel
  • the thermal oxide film 17A remaining on the second main surface 13B becomes the gate oxide film 17.
  • an electrode formation process is implemented as process (S90).
  • step (S90) referring to FIG. 6 and FIG. 1, gate electrode 19 made of, for example, Al or polysilicon as a conductor is formed on gate oxide film 17, and ohmic contact electrode 18 is formed. Then, an emitter electrode 21 made of, for example, Al as a conductor is formed.
  • the IGBT 1 in the present embodiment is completed through the above steps.
  • Example 1 Embodiment 1 of the present invention will be described below. Experiments were conducted to confirm improvement in channel mobility and reduction in on-resistance in the IGBT of the present invention. The experimental procedure is as follows.
  • the on-resistance was measured by actually manufacturing an IGBT using the manufacturing method described in the above embodiment.
  • a substrate 11 n-type, resistivity 0.02 ⁇ cm
  • the buffer layer 12 p-type, impurity concentration 5 ⁇ 10 17 cm ⁇ 3 , thickness 0.5 ⁇ m
  • the breakdown voltage holding layer 13 p-type, impurity concentration 4 ⁇ 10 14 cm ⁇ 3 , thickness 120 ⁇ m are prepared on the substrate. ) was grown epitaxially.
  • the well region 14, the emitter region 15 and the contact region 16 were formed by ion implantation, and then activation annealing was performed by holding at 1700 ° C. for 30 minutes in an Ar atmosphere. Further, by performing dry oxidation that is held at 1200 ° C. for 30 minutes in an oxidizing atmosphere, a thermal oxide film 17A to be the gate oxide film 17 having a thickness of 40 nm is formed, and then held at 1200 ° C. for 120 minutes in a NO gas atmosphere. As a result, a high nitrogen concentration region 22 was formed. Then, after performing heat treatment held at 1200 ° C.
  • the ohmic contact electrode 18, the collector electrode 20, the gate electrode 19 and the emitter electrode 21 were formed to complete the IGBT 1 (Example) .
  • the cell pitch (the width of the substrate 11 in the direction along the main surface 11A in FIG. 1) is 20 ⁇ m
  • the channel length is 2 ⁇ m. did.
  • a substrate 11 (n-type, resistivity 0.02 ⁇ cm) made of 4H—SiC having a main surface 11A having an off angle of 8 ° with respect to the plane orientation (0001) was prepared.
  • Other IGBT1 was produced on the same conditions (comparative example).
  • the channel mobility was measured by fabricating a TEG (Test Element Group) -MOSFET.
  • a substrate 31 similar to the above-described on-resistance measurement example and comparative example is prepared, and the same example and comparison as the above-mentioned IGBT having the same impurity concentration and thickness as the above-mentioned IGBT are prepared.
  • An example TEG-MOSFET 3 was fabricated. That is, after the epitaxial growth of the buffer layer 32 corresponding to the buffer layer 12 and the p-type layer 33 corresponding to the withstand voltage holding layer 13 having the same impurity concentration, thickness, etc. as the IGBT, corresponding to the well region 14.
  • the source region 35A and the drain region 35B corresponding to the n-type layer 34 and the emitter region 15 were formed in the same manner. Further, a gate oxide film 37 corresponding to the gate oxide film 17, an ohmic contact electrode 38 corresponding to the ohmic contact electrode 18, a gate electrode 39 corresponding to the gate electrode 19, a source electrode 41A and a drain electrode 41B corresponding to the emitter electrode 21 are provided. Formed.
  • the channel length L was 100 ⁇ m
  • the channel width (the width of the channel in the direction perpendicular to the paper surface in FIG. 7) was 150 ⁇ m.
  • the channel mobility was measured by operating the TEG-MOSFETs of this example and the comparative example.
  • Table 1 shows the measurement results of the channel mobility and on-resistance. Note that when the breakdown voltage of the IGBT in the examples and comparative examples was measured, it was confirmed that both had a sufficient breakdown voltage of 10 kV or more.
  • Example 2 Next, Example 2 of the present invention will be described.
  • An experiment was conducted to investigate the relationship between the maximum value of nitrogen concentration (peak concentration of nitrogen) and channel mobility in a region within 10 nm from the interface between the well region and the oxide film.
  • the experimental procedure is as follows.
  • a lateral MOSFET 71 shown in FIG. 8 was prepared as a sample. More specifically, an epitaxial layer 73 having a thickness of 10 ⁇ m was formed on an n-type silicon carbide substrate 72 having a thickness of 400 ⁇ m, and a p-type layer 74 having a thickness of 1 ⁇ m was formed on the epitaxial layer 73. Then, phosphorus (P) was implanted as an n-type impurity into the p-type layer 74 to form n + regions 75 and 76 having an n-type impurity concentration of 1 ⁇ 10 20 cm ⁇ 3 .
  • the gate length (channel length L g ), which is the distance between the n + regions 75 and 76, was 100 ⁇ m.
  • the gate width (channel width) was 200 ⁇ m.
  • the distribution of the nitrogen concentration in the depth direction in the vicinity of the interface between the oxide film 78 and the p-type layer 74 (region within 10 nm from the interface) was measured.
  • the measurement was performed by SIMS (secondary ion mass spectrometry).
  • the horizontal axis indicates the peak value of nitrogen concentration (nitrogen peak concentration) measured in each sample, and the vertical axis indicates the measured channel mobility.
  • the channel mobility increases as the nitrogen peak concentration in the region within 10 nm from the interface between oxide film 78 and p-type layer 74 increases.
  • the channel mobility is preferably set to 50 cm 2 / Vs or more. Therefore, referring to FIG. 9, it is preferable to set the peak concentration of nitrogen to 1 ⁇ 10 21 cm ⁇ 3 or more in consideration of variations in the manufacturing process. In this example, an experiment was performed using an n-channel type MOSFET, but the channel mobility also depends on the peak concentration of nitrogen in the p-channel type as described above.
  • the maximum value of the nitrogen concentration in the region within 10 nm from the interface between the well region and the oxide film is set regardless of whether the channel is n-type or p-type. It can be said that it is preferably 1 ⁇ 10 21 cm ⁇ 3 or more.
  • a sample was manufactured using the same manufacturing method as that of the sample having the highest channel mobility in Example 2 described above. Specifically, four types of samples as comparative examples and three types of samples as examples of the present invention were prepared using substrates having different surface orientations of the main surface.
  • Comparative Example A a silicon carbide substrate (8 ° off substrate of (0001)) having a main surface with an off angle of 8 ° with respect to the plane orientation (0001), as Comparative Example B
  • a substrate using a substrate whose main surface is represented by (01-15) as Comparative Example C, a substrate using a substrate whose main surface is represented by (01-14), and a comparative example As D, a substrate using a substrate having a main surface with an off angle of 70 ° with respect to the plane orientation (0001) was prepared.
  • Example A a substrate in which the plane orientation of the main surface of the substrate is represented by (01-13) is used as Example A, and a plane orientation of the main surface of the substrate is (03) as Example B.
  • channel mobility was measured about each above-mentioned sample.
  • the channel mobility measurement method the same method as the channel mobility measurement method in Example 2 was used.
  • the horizontal axis indicates the off angle of the main surface of the substrate constituting each sample with respect to the plane orientation ⁇ 0001 ⁇
  • the vertical axis indicates the channel mobility
  • the channel mobility value is larger than that of the comparative example. It can be seen that it has improved.
  • an experiment was performed using an n-channel MOSFET, but the channel mobility also depends on the off-angle in the same manner as described above even in the p-channel type. Therefore, in order to reduce the on-resistance of the IGBT, regardless of whether the channel is n-type or p-type, it has a main surface (main surface) having an off angle of 50 ° or more and 65 ° or less with respect to the plane orientation ⁇ 0001 ⁇ . It can be said that it is effective to employ a substrate.
  • the insulated gate bipolar transistor of the present invention can be particularly advantageously applied to an insulated gate bipolar transistor that requires a reduction in on-resistance.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

 チャネル移動度を低減することによりオン抵抗を低減することが可能なIGBT(1)は、SiCからなり、面方位{0001}に対するオフ角が50°以上65°以下である主面(11A)を有するn型の基板(11)と、SiCからなり、基板(11)の主面(11A)上に形成されたp型の耐圧保持層(13)と、耐圧保持層(13)の第2の主面(13B)を含むように形成されたn型のウェル領域(14)と、ウェル領域(14)内に第2の主面(13B)を含むように形成され、耐圧保持層(13)よりも高濃度のp型不純物を含むエミッタ領域(15)と、耐圧保持層(13)上に形成されたゲート酸化膜(17)と、ゲート酸化膜(17)上に形成されたゲート電極(19)とを備えている。そして、ウェル領域(14)とゲート酸化膜(17)との界面を含む領域には、ウェル領域(14)およびゲート酸化膜(17)よりも窒素濃度の高い高窒素濃度領域(22)が形成されている。

Description

絶縁ゲート型バイポーラトランジスタ
 本発明は絶縁ゲート型バイポーラトランジスタに関し、より特定的には、チャネル移動度を向上させることが可能な絶縁ゲート型バイポーラトランジスタに関するものである。
 近年、半導体装置の高耐圧化、低損失化、高温環境下での使用などを可能とするため、半導体装置を構成する材料として炭化珪素(SiC)の採用が進められつつある。炭化珪素は、従来から半導体装置を構成する材料として広く使用されている珪素(Si)に比べてバンドギャップが大きいワイドバンドギャップ半導体である。そのため、半導体装置を構成する材料として炭化珪素を採用することにより、半導体装置の高耐圧化、オン抵抗の低減などを達成することができる。また、炭化珪素を材料として採用した半導体装置は、珪素を材料として採用した半導体装置に比べて、高温環境下で使用された場合の特性の低下が小さいという利点も有している。
 たとえば、半導体装置である絶縁ゲート型バイポーラトランジスタ(Insulated Gate Bipolar Transistor;IGBT)においては、材料としてSiCを採用し、耐圧9kV、ゲート電圧20Vにおけるオン抵抗88mΩcmが得られたとの報告がある(Qingchun Zhang et al.、“9kV 4H-SiC IGBTs with 88mΩcm of Rdiff,on”、Materials Science Forum、2007年、 Vols.556-557、p771-774(非特許文献1)参照)。
Qingchun Zhang et al.、"9kV 4H-SiC IGBTs with 88mΩcm2 of Rdiff,on"、Materials Science Forum、2007年、 Vols.556-557、p771-774
 しかしながら、近年、IGBTの特性に対する要求は益々高くなっている。そして、上記要求を考慮すると、上記非特許文献1に開示のIGBTを含め、従来のIGBTはチャネル移動度が十分に高いとはいえず、オン抵抗が十分に低減されているとはいえないという問題があった。
[規則91に基づく訂正 12.11.2010] 
 そこで、本発明の目的は、チャネル移動度を向上させることによりオン抵抗を低減したIGBTを提供することである。
 本発明に従った絶縁ゲート型バイポーラトランジスタ(IGBT)は、基板と、耐圧保持層と、ウェル領域と、エミッタ領域と、酸化膜と、電極とを備えている。基板は、炭化珪素からなり、面方位{0001}に対するオフ角が50°以上65°以下である主面を有し、第1導電型となっている。耐圧保持層は、炭化珪素からなり、基板の主面上に形成され、第1導電型とは導電型の異なる第2導電型となっている。ウェル領域は、耐圧保持層において、基板側の主面である第1の主面とは反対側の主面である第2の主面を含むように形成され、第1導電型となっている。エミッタ領域は、ウェル領域内に第2の主面を含むように形成され、耐圧保持層よりも高濃度の第2導電型の不純物を含むことにより、第2導電型となっている。酸化膜は、第2の主面に接触するように耐圧保持層上に形成され、酸化物からなっている。電極は、酸化膜上に形成されている。そして、上記ウェル領域と酸化膜との界面を含む領域には、ウェル領域および酸化膜よりも窒素濃度の高い高窒素濃度領域が形成されている。
[規則91に基づく訂正 12.11.2010] 
 本発明者は、IGBTのチャネル移動度を向上させる方策について検討を行なった。その結果、以下の知見が得られ、本発明に想到した。
 すなわち、一般的にSiCを材料として採用したIGBTにおいて用いられるSiC基板は、面方位{0001}に対するオフ角が8°程度である主面を有している。そして、当該主面上に耐圧保持層、ウェル領域、エミッタ領域、酸化膜、電極などが形成され、IGBTが得られる。しかし、このような構造を有するIGBTにおいては、基板の主面の面方位{0001}に対するオフ角が8°程度であることに起因して、チャネルとして機能するウェル領域の、酸化膜との界面付近において多くの界面準位が形成され、電子の走行の妨げとなる。そのため、チャネル移動度が低下していた。
 これに対し、本発明のIGBTにおいては、面方位{0001}に対するオフ角が50°以上65°以下である主面を有するSiC基板が採用されるため、上記界面準位の形成が低減され、チャネル移動度が向上する。
 さらに、ウェル領域と酸化膜との界面を含む領域に高窒素濃度領域を形成することにより、チャネル移動度が向上することが明らかとなった。そのため、本発明のIGBTにおいては、チャネル移動度が一層向上する。
[規則91に基づく訂正 12.11.2010] 
 以上のように、本発明のIGBTによれば、チャネル移動度を向上させることによりオン抵抗を低減したIGBTを提供することができる。
 ここで、オフ角の下限を50°としたのは、オフ角とチャネル移動度との関係を検討した結果、オフ角が43.3°の(01-14)面からオフ角が51.5°の(01-13)面にかけてオフ角の増大とともにチャネル移動度の顕著な増大が見られたこと、および上記(01-14)面から(01-13)面の間のオフ角の範囲には自然面が存在しないこと、に基づいている。また、オフ角の上限を65°としたのは、オフ角が62.1°の(01-12)面からオフ角が90°の(01-10)面にかけてオフ角の増大とともにキャリア移動度の顕著な減少が見られたこと、および上記(01-12)面から(01-10)面の間のオフ角の範囲には自然面が存在しないこと、に基づいている。
 上記IGBTにおいて好ましくは、上記ウェル領域と酸化膜との界面から10nm以内の領域における窒素濃度の最大値が1×1021cm-3以上である。
 本発明者による検討の結果、チャネル移動度の向上には、ウェル領域と酸化膜との界面から10nm以内の領域における窒素濃度の最大値が重要であることが明らかとなった。そして、当該領域における窒素濃度の最大値を1×1021cm-3以上とすることにより、チャネル移動度の顕著な向上が得られることが分かった。したがって、上記構成により、チャネル移動度を一層向上させることができる。
 上記IGBTにおいては、上記基板の主面のオフ方位が<11-20>方向±5°以下の範囲であってもよい。
 <11-20>方向は、SiC基板における代表的なオフ方位である。そして、基板の製造工程におけるスライス加工のばらつき等に起因したオフ方位のばらつきを±5°とすることにより、SiC基板上へのエピタキシャル層の形成などを容易とし、IGBTの製造を容易に実施することができる。
 上記IGBTにおいては、上記基板の主面のオフ方位が<01-10>方向±5°以下の範囲であってもよい。
 <01-10>方向は、上記<11-20>方向と同様に、SiC基板における代表的なオフ方位である。そして、基板の製造工程におけるスライス加工のばらつき等に起因したオフ方位のばらつきを±5°とすることにより、SiC基板上へのエピタキシャル層の形成などを容易とし、IGBTの製造を容易に実施することができる。
 上記IGBTにおいては、基板の上記主面の面方位は、面方位{03-38}に対してオフ角が-3°以上+5°以下とすることができる。
 これにより、チャネル移動度をより一層向上させることができる。ここで、面方位{03-38}に対するオフ角を-3°以上+5°以下としたのは、チャネル移動度と当該オフ角との関係を調査した結果、この範囲内で特に高いチャネル移動度が得られたことに基づいている。
 ここで、「面方位{03-38}に対してオフ角が-3°以上+5°以下である」状態とは、<0001>方向およびオフ方位の基準としての<01-10>方向の張る平面への上記主面の法線の正射影と、{03-38}面の法線とのなす角度が-3°以上+5°以下である状態を意味し、その符号は、上記正射影が<01-10>方向に対して平行に近づく場合が正であり、上記正射影が<0001>方向に対して平行に近づく場合が負である。
 なお、上記主面の面方位は、実質的に{03-38}であることがより好ましく、上記主面の面方位は{03-38}であることがさらに好ましい。ここで、主面の面方位が実質的に{03-38}であるとは、基板の加工精度などを考慮して実質的に面方位が{03-38}とみなせるオフ角の範囲に基板の主面の面方位が含まれていることを意味し、この場合のオフ角の範囲としてはたとえば{03-38}に対してオフ角が±2°の範囲である。これにより、上述したチャネル移動度をより一層向上させることができる。
 上記IGBTにおいては、基板の上記主面は、<01-10>方向における(0-33-8)面に対するオフ角が-3°以上+5°以下であってもよい。
 {03-38}面の中でも特にC(カーボン)面側の面である(0-33-8)面に近い面上に半導体層および絶縁膜を形成する構造を採用することにより、キャリア移動度が大幅に向上する。
 ここで、本願において、六方晶の単結晶炭化珪素の(0001)面はシリコン面、(000-1)面はカーボン面と定義される。また、「<01-10>方向における(0-33-8)面に対するオフ角」とは、<000-1>方向およびオフ方位の基準としての<01-10>方向の張る平面への上記主面の法線の正射影と、(0-33-8)面の法線とのなす角度であり、その符号は、上記正射影が<01-10>方向に対して平行に近づく場合が正であり、上記正射影が<000-1>方向に対して平行に近づく場合が負である。そして、上記<01-10>方向における(0-33-8)面に対するオフ角が-3°以上+5°以下である主面とは、当該主面が炭化珪素結晶において上記条件を満たすカーボン面側の面であることを意味する。なお、本願において(0-33-8)面は、結晶面を規定するための軸の設定により表現が異なる等価なカーボン面側の面を含むとともに、シリコン面側の面を含まない。
[規則91に基づく訂正 12.11.2010] 
 以上の説明から明らかなように、本発明のIGBTによれば、チャネル移動度を向上させることによりオン抵抗を低減したIGBTを提供することができる。
IGBTの構造を示す概略断面図である。 IGBTの製造方法の概略を示すフローチャートである。 IGBTの製造方法を説明するための概略断面図である。 IGBTの製造方法を説明するための概略断面図である。 IGBTの製造方法を説明するための概略断面図である。 IGBTの製造方法を説明するための概略断面図である。 TEG-MOSFETの構造を示す概略断面図である。 実験の試料として用いた横型MOSFETの構造を示す概略断面図である。 窒素のピーク濃度とチャネル移動度との関係を示す図である。 基板主面の面方位{0001}に対するオフ角とチャネル移動度との関係を示す図である。
 以下、図面に基づいて本発明の実施の形態を説明する。なお、以下の図面において同一または相当する部分には同一の参照番号を付し、その説明は繰返さない。
 まず、本発明の一実施の形態におけるIGBTの構造について説明する。図1を参照して、本実施の形態におけるIGBT1は、基板11と、バッファ層12と、耐圧保持層13と、ウェル領域14と、エミッタ領域15と、コンタクト領域16とを備えている。
 基板11は、六方晶SiC、たとえば4H-SiCからなり、面方位{0001}に対するオフ角が50°以上65°以下、たとえば面方位(03-38)である主面(主表面)11Aを有し、n型不純物を含有することにより、導電型がn型(第1導電型)となっている。また、基板11の抵抗率は、たとえば0.02Ωcm程度である。
 バッファ層12は、たとえば基板11の主面11A上にエピタキシャル成長により形成された厚み0.5μm程度のSiC層であり、p型不純物を5×1017cm-3程度の濃度で含むことにより、導電型がp型(第2導電型)となっている。
 耐圧保持層13は、SiCからなり、基板11の主面11A上にバッファ層12を挟んで形成され、p型不純物を4×1014cm-3程度の濃度で含むことにより導電型がp型となっている。また、耐圧保持層13の厚みは、たとえば120μm程度である。
 ウェル領域14は、耐圧保持層13において、基板11側の主面である第1の主面13Aとは反対側の主面である第2の主面13Bを含むように形成され、n型不純物を含むことにより、導電型がn型となっている。
 エミッタ領域15は、ウェル領域14内に第2の主面13Bを含むように形成され、耐圧保持層13よりも高濃度のp型不純物を含むことにより、導電型がp型となっている。
 コンタクト領域16は、ウェル領域14内に、第2の主面13Bを含むとともにエミッタ領域15に隣接して配置され、ウェル領域14内の他の領域よりも高濃度のn型不純物を含むことにより、導電型がn型となっている。
 さらに、本実施の形態におけるIGBT1は、ゲート酸化膜17と、ゲート電極19と、オーミックコンタクト電極18と、エミッタ電極21と、コレクタ電極20とを備えている。
 ゲート酸化膜17は、第2の主面13Bに接触するように耐圧保持層13上に形成され、たとえば厚み40nmの酸化物、具体的には二酸化珪素(SiO)からなっている。また、ゲート電極19は、ゲート酸化膜17上に接触して配置され、かつエミッタ領域15上の領域から、エミッタ領域15から見てコンタクト領域16とは反対側に延在するとともにウェル領域14が形成されていない耐圧保持層13上の領域に至るように形成され、たとえばAl(アルミニウム)やポリシリコンなどの導電体からなっている。
 オーミックコンタクト電極18は、第2の主面13B上においてエミッタ領域15に接触する領域からコンタクト領域16に接触する領域にまで延在するように配置されている。また、オーミックコンタクト電極18は、たとえばNi(ニッケル)など、少なくともその一部がシリサイド化することによりエミッタ領域15との間でオーミックコンタクトを確保可能な導電体からなっている。
 エミッタ電極21は、オーミックコンタクト電極18上に接触して配置され、たとえばAlなどの導電体からなっている。また、コレクタ電極20は、基板11において耐圧保持層13が形成される側とは反対側の主面上に接触して配置され、たとえばNi(ニッケル)など、少なくともその一部がシリサイド化することにより基板11との間でオーミックコンタクトを確保可能な導電体からなっている。
 そして、ウェル領域14とゲート酸化膜17との界面を含む領域には、ウェル領域14およびゲート酸化膜17の他の領域よりも窒素濃度の高い高窒素濃度領域22が形成されている。
 次に、本実施の形態におけるIGBT1の動作について説明する。図1を参照して、ゲート電極19に負の電圧を印加し、当該負の電圧が閾値を超えると、ゲート電極19下のゲート酸化膜17に接するウェル領域14のチャネル領域14Aに反転層が形成され、エミッタ領域15と耐圧保持層13とが電気的に接続される。これにより、エミッタ領域15から耐圧保持層13に正孔が注入され、これに対応して基板11からバッファ層12を介して電子が耐圧保持層13に供給される。その結果、IGBT1がオン状態となり、耐圧保持層13に伝導度変調が生じてエミッタ電極21-コレクタ電極20間の抵抗が低下した状態で電流が流れる。一方、ゲート電極19に印加される上記負の電圧が閾値以下の場合、チャネル領域14Aに反転層が形成されないため、耐圧保持層13とウェル領域14との間が逆バイアスの状態が維持される。その結果、IGBT1がオフ状態となり、電流は流れない。
 ここで、本実施の形態におけるIGBT1においては、面方位{0001}に対するオフ角が50°以上65°以下である主面11Aを有する基板11が採用されている。そして、バッファ層12および耐圧保持層13(ウェル領域14が形成された領域を含む)は、当該主面11A上にエピタキシャル成長により形成されている。そのため、ゲート酸化膜17との界面付近におけるチャネル領域14Aの界面準位の形成が低減され、チャネル移動度が向上している。なお、主面11Aの面方位を(0-33-8)とすることにより、チャネル移動度を一層向上させることができる。
 さらに、チャネル領域14Aとゲート酸化膜17との界面を含む領域に高窒素濃度領域22が形成されていることにより、チャネル移動度が一層向上している。これは以下のような理由によると考えられる。すなわち、ゲート酸化膜17を熱酸化などによって形成した場合、ゲート酸化膜17と半導体からなるチャネル領域14Aとの界面において、界面準位が多く形成される。そして、そのままではチャネル領域14Aにおけるチャネル移動度は、理論値に比べて大幅に低下する。これに対し、上述のようにゲート酸化膜17とチャネル領域14Aとの界面を含む領域に窒素を導入することにより、上述した界面準位の影響が低減される。
[規則91に基づく訂正 12.11.2010] 
 以上のように、本実施の形態におけるIGBT1は、チャネル移動度を向上させることによりオン抵抗を低減したIGBTとなっている。
 ここで、上記本実施の形態におけるIGBT1においては、ウェル領域14(チャネル領域14A)とゲート酸化膜17との界面から10nm以内の領域における窒素濃度の最大値が1×1021cm-3以上であることが望ましい。これにより、チャネル移動度を一層向上させることができる。
 なお、上記実施の形態においては、主面の面方位が(03-38)である基板11に代えて、主面のオフ方位が<11-20>方向±5°以下の範囲である基板を採用してもよい。これにより、SiC基板上へのエピタキシャル層の形成などを容易とし、IGBTの製造を容易に実施することができる。
 また、上記実施の形態においては、基板11の主面11Aのオフ方位が<01-10>方向±5°以下の範囲であってもよい。これにより、SiC基板上へのエピタキシャル層の形成などを容易とし、IGBTの製造を容易に実施することができる。そして、基板11の主面11Aの面方位を、面方位{03-38}に対してオフ角が-3°以上+5°以下とすることにより、チャネル移動度をより一層向上させることができる。さらに、基板11の主面11Aの面方位を、面方位{03-38}とすることが最も好ましい。
 次に、図2~図6を参照して、本実施の形態におけるIGBT1の製造方法について説明する。図2を参照して、本実施の形態におけるIGBT1の製造方法においては、まず、工程(S10)として基板準備工程が実施される。この工程(S10)では、図3を参照して、たとえば4H-SiCからなり、面方位{0001}に対するオフ角が50°以上65°以下、たとえば面方位(03-38)である主面11Aを有し、n型不純物を含有することにより、導電型がn型となっている基板11が準備される。なお、製造されるIGBT1のチャネル移動度を一層向上させる観点から、面方位が(0-33-8)である主面11Aを有する基板11が準備されてもよい。
 次に、図2を参照して、工程(S20)としてエピタキシャル成長工程が実施される。この工程(S20)では、図3を参照して、工程(S10)において準備された基板11の主面11A上に、エピタキシャル成長によりバッファ層12および耐圧保持層13が形成される。エピタキシャル成長は、たとえば原料ガスとしてSiH(シラン)とC(プロパン)との混合ガスを採用して実施することができる。このとき、まず、たとえばp型不純物を5×1017cm-3程度の濃度で導入したSiC層を0.5μm程度の厚みで形成してバッファ層12とし、その後導入するp型不純物の濃度を4×1014cm-3程度に変更してSiC層を120μm程度の厚みで形成して耐圧保持層13とすることができる。
 次に、図2を参照して、工程(S30)としてイオン注入工程が実施される。この工程(S30)では、図3および図4を参照して、工程(S20)において形成された耐圧保持層13において、基板11側の主面である第1の主面13Aとは反対側の主面である第2の主面13Bを含む領域に、ウェル領域14、エミッタ領域15およびコンタクト領域16がイオン注入により順次形成される。
 具体的には、まず、第2の主面13B上に、たとえばCVDによりSiOからなる酸化膜が形成される。そして、酸化膜の上にレジストが塗布された後、露光および現像が行なわれ、所望のウェル領域14の形状に応じた領域に開口を有するレジスト膜が形成される。そして、当該レジスト膜をマスクとして用いて、たとえばRIE(Reactive Ion Etching;反応性イオンエッチング)により酸化膜が部分的に除去されることにより、所望のウェル領域14の形状に応じた開口パターンを有する酸化膜からなるマスク層が形成される。その後、上記レジスト膜を除去した上で、このマスク層をマスクとして用いてn型不純物がイオン注入され、ウェル領域14が形成される。
 その後、当該マスク層が除去された上で、同様の手順により所望のエミッタ領域15形状に応じた開口パターンを有するマスク層が形成され、p型不純物がイオン注入されることにより、エミッタ領域15が形成される。さらに、当該マスク層が除去された上で、同様の手順により所望のコンタクト領域16の形状に応じた開口パターンを有するマスク層が形成され、n型不純物がイオン注入されることにより、コンタクト領域16が形成される。
 次に、図2を参照して、工程(S40)として活性化アニール工程が実施される。この工程(S40)では、図4を参照して、工程(S30)においてイオン注入が実施された耐圧保持層13を加熱することにより、上記イオン注入によって導入された不純物を活性化させる熱処理である活性化アニールが実施される。活性化アニールは、たとえばアルゴンガス雰囲気中において、1700℃に30分間保持する熱処理を実施することにより行なうことができる。
 次に、図2を参照して、工程(S50)としてゲート酸化膜形成工程が実施される。この工程(S50)では、図4および図5を参照して、工程(S10)~(S40)までが実施されて所望のイオン注入層を含む耐圧保持層13が形成された基板11が、たとえば酸化雰囲気中で1200℃に加熱されて30分間保持されることによりドライ酸化される。これにより、ゲート酸化膜17(図1参照)となるべき熱酸化膜17Aが第2の主面13B上に形成される。熱酸化膜17Aの厚みは、たとえば40nm程度である。
 次に、図2を参照して、工程(S60)として高窒素濃度領域形成工程が実施される。この工程(S60)では、図5を参照して、たとえば一酸化窒素(NO)ガス雰囲気中において1200℃に加熱し、120分間保持する熱処理が実施される。これにより、耐圧保持層13、ウェル領域14、エミッタ領域15およびコンタクト領域16と熱酸化膜17Aとの界面を含む領域に、当該領域に隣接する領域に比べて窒素濃度の高い高窒素濃度領域22が形成される。
 次に、図2を参照して、工程(S70)として不活性ガスアニール工程が実施される。この工程(S70)では、たとえばAr(アルゴン)などの不活性ガス雰囲気中において1200℃に加熱し、60分間保持する熱処理が実施される。
 次に、工程(S80)として、オーミック電極形成工程が実施される。この工程(S80)では、図5および図6を参照して、まず、フォトリソグラフィ法により、第2の主面13B上に形成された熱酸化膜17A上に、所望のオーミックコンタクト電極18の形状に応じた開口を有するレジスト膜を形成する。次に、このレジスト膜をマスクとして用いて、上記開口から露出する熱酸化膜17Aおよび基板11において耐圧保持層13とは反対側の主面上に形成された熱酸化膜17Aが除去される。さらに、たとえば蒸着法によりニッケル(Ni)膜を第2の主面13B上および基板11において耐圧保持層13とは反対側の主面上に形成する。そして、レジスト膜を当該レジスト膜上のNi膜とともに除去(リフトオフ)することにより、オーミックコンタクト電極18およびコレクタ電極20を形成すべき領域にNi膜が形成される。その後、たとえばAr雰囲気中で950℃に加熱し2分間保持する熱処理を実施することにより、Ni膜の少なくとも一部がシリサイド化され、オーミックコンタクト電極18およびコレクタ電極20が完成する。なお、このとき第2の主面13B上に残存した熱酸化膜17Aが、ゲート酸化膜17となる。
 そして、図2を参照して、工程(S90)として電極形成工程が実施される。この工程(S90)では、図6および図1を参照して、ゲート酸化膜17上に、たとえば導電体であるAl、ポリシリコンなどからなるゲート電極19が形成されるとともに、オーミックコンタクト電極18上に、たとえば導電体であるAlからなるエミッタ電極21が形成される。以上の工程により、本実施の形態におけるIGBT1が完成する。
 (実施例1)
 以下、本発明の実施例1について説明する。本発明のIGBTにおけるチャネル移動度の向上およびオン抵抗の低減を確認する実験を行なった。実験の手順は以下の通りである。
 まず、実験方法について説明する。オン抵抗は、上記実施の形態において説明した製造方法を用いてIGBTを実際に作製し、測定した。具体的には、図1~図6を参照して、まず、面方位が(03-38)である主面11Aを有する4H-SiCからなる基板11(n型、抵抗率0.02Ωcm)を準備し、当該基板上にバッファ層12(p型、不純物濃度5×1017cm-3、厚み0.5μm)および耐圧保持層13(p型、不純物濃度4×1014cm-3、厚み120μm)をエピタキシャル成長させた。その後、ウェル領域14、エミッタ領域15およびコンタクト領域16をイオン注入により形成した後、Ar雰囲気中において1700℃に30分間保持することにより活性化アニールを実施した。さらに、酸化雰囲気中において1200℃に30分間保持するドライ酸化を実施することにより厚み40nmのゲート酸化膜17となるべき熱酸化膜17Aを形成した後、NOガス雰囲気中において1200℃に120分間保持することにより、高窒素濃度領域22を形成した。そして、Arガス雰囲気中において1200℃に60分間保持する熱処理を行なった後、オーミックコンタクト電極18、コレクタ電極20、ゲート電極19およびエミッタ電極21を形成することによりIGBT1を完成させた(実施例)。ここで、セルピッチ(図1において、主面11Aに沿った方向における基板11の幅)は20μm、チャネル長(図1において、第2の主面13Bに沿ったチャネル領域14Aの幅)は2μmとした。
 また、比較のため、面方位(0001)に対するオフ角が8°である主面11Aを有する4H-SiCからなる基板11(n型、抵抗率0.02Ωcm)を準備し、以下上記作製方法と同条件で他のIGBT1を作製した(比較例)。
 そして、上記実施例および比較例のIGBTを実際に動作させ、オン抵抗の測定を行なった。
 一方、チャネル移動度は、TEG(Test Element Group)-MOSFETを作製して測定した。具体的には、図7を参照して、上記オン抵抗測定用の実施例および比較例と同様の基板31を準備し、上記IGBTと同時に不純物濃度、厚み等が上記IGBTと同じ実施例および比較例のTEG-MOSFET3を作製した。つまり、不純物濃度、厚み等が上記IGBTと同じであってバッファ層12対応するバッファ層32、耐圧保持層13に対応するp型層33を基板31上にエピタキシャル成長させた後、ウェル領域14に対応するn型層34、エミッタ領域15に対応するソース領域35Aおよびドレイン領域35Bを同様に形成した。さらに、ゲート酸化膜17に対応するゲート酸化膜37、オーミックコンタクト電極18に対応するオーミックコンタクト電極38、ゲート電極19に対応するゲート電極39、エミッタ電極21に対応するソース電極41Aおよびドレイン電極41Bを形成した。ここで、図7を参照して、チャンネル長Lは100μm、チャネル幅(図7において、紙面に垂直な方向におけるチャネルの幅)は150μmとした。
 そして、この実施例および比較例のTEG-MOSFETを動作させて、チャネル移動度の測定を行なった。
 次に、実験結果について説明する。上記チャネル移動度およびオン抵抗の測定結果を表1に示す。なお、実施例および比較例におけるIGBTの耐圧を測定したところ、いずれも10kV以上という十分な耐圧を有していることが確認された。
Figure JPOXMLDOC01-appb-T000001
[規則91に基づく訂正 12.11.2010] 
 表1を参照して、本発明の実施例においては、本発明の範囲外である比較例の7倍を超えるチャネル移動度が達成されていることが分かる。そして、実施例のオン抵抗は、比較例に対して30%程度抑制されている。この結果から、本発明のIGBTによれば、チャネル移動度を向上させることによりオン抵抗を低減したIGBTを提供できることが確認された。
 (実施例2)
 次に、本発明の実施例2について説明する。ウェル領域と酸化膜との界面から10nm以内の領域における窒素濃度の最大値(窒素のピーク濃度)とチャネル移動度との関係を調査する実験を行なった。実験の手順は以下の通りである。
 まず、試料として図8に示す横型のMOSFET71を作製した。より具体的には、厚みが400μmのn型炭化珪素基板72上に、厚みが10μmのエピタキシャル層73を形成し、当該エピタキシャル層73上に厚みが1μmのp型層74を形成した。そして、p型層74にn型不純物としてリン(P)を注入し、n型不純物濃度1×1020cm-3のn領域75、76を形成した。このn領域75、76の間の距離であるゲート長(チャネル長L)は100μmとした。また、ゲート幅(チャネル幅)は200μmとした。
 そして、ドライ酸化処理により酸化膜を形成した後、NOガス雰囲気中において加熱することにより窒素アニールを行なった。このとき、加熱時間を変化させることにより、導入される窒素量を変化させた。その後、上記酸化膜をエッチングすることにより当該酸化膜の形状を酸化膜77,78に合わせた形状とするとともに、ソース電極81、ドレイン電極82およびゲート酸化膜である酸化膜78上のゲート電極80を形成した。ソース電極81およびドレイン電極82の材料はニッケル(Ni)であり、その厚みは0.1μmとした。また、ゲート電極80の材料としてはアルミニウム(Al)を用いて、その厚みは1μmとした。以上の手順により、試料としての横型のMOSFET71を完成させた。また、比較のため、上記手順から窒素アニールを省略した試料も作製した。
 次に、チャネル移動度の測定方法を説明する。ソース-ドレイン間電圧VDS=0.1Vとし、ゲート電圧Vを印加してソース-ドレイン間電流IDSを測定した(ゲート電圧依存性を測定した)。そして、g=(δIDS)/(δV)として、
チャネル移動度μ=g×(L×d)/(W×ε×VDS
(ここで、L:ゲート長、d:酸化膜厚、W:ゲート幅、ε:酸化膜の誘電率)
という式からチャネル移動度のゲート電圧に対する最大値を求めた。
 また、上記各試料について、酸化膜78とp型層74との界面近傍(界面から10nm以内の領域)における窒素濃度の深さ方向での分布を測定した。測定は、SIMS(二次イオン質量分析)により実施した。
 次に、実験の結果について図9を参照して説明する。図9において、横軸は、各試料において測定された窒素濃度のピーク値(窒素のピーク濃度)を示しており、縦軸は、測定されたチャネル移動度を示している。
 図9を参照して、酸化膜78とp型層74との界面から10nm以内の領域における窒素のピーク濃度が高くなるに従って、チャネル移動度が高くなっている。
 ここで、素材として珪素を用いた従来のIGBTよりもオン抵抗を低減するためには、チャネル移動度を50cm/Vs以上とすることが好ましい。そのため、図9を参照して、製造プロセスのばらつきなどを考慮すると、窒素のピーク濃度は1×1021cm-3以上とすることが好ましいといえる。なお、本実施例においては、nチャネル型のMOSFETを用いて実験を行なったが、チャネル移動度は、pチャネル型においても上述と同様に窒素のピーク濃度に依存する。そのため、本発明のIGBTのオン抵抗を十分に低減するためには、チャネルがn型かp型かに関わらず、ウェル領域と酸化膜との界面から10nm以内の領域における窒素濃度の最大値を1×1021cm-3以上とすることが好ましいといえる。
 (実施例3)
 次に、本発明の実施例3について説明する。基板のオフ角とチャネル移動度との関係を調査する実験を行なった。実験の手順は以下の通りである。
 まず、上述した実施例2において最もチャネル移動度が高かった試料の製造方法と同様の製造方法を用いて、試料を作製した。具体的には、主表面の面方位が異なる基板を用いて、比較例としての試料を4種類、本発明の実施例としての試料を3種類作製した。すなわち、比較例Aとして、面方位(0001)に対してオフ角が8°となっている主表面を有する炭化珪素基板((0001)の8°オフ基板)を用いたもの、比較例Bとして基板の主表面の面方位が(01-15)で表わされる基板を用いたもの、比較例Cとして基板の主表面の面方位が(01-14)で表わされる基板を用いたもの、比較例Dとして、面方位(0001)に対してオフ角が70°となっている主表面を有する基板を用いたものを準備した。また、本発明の実施例としては、実施例Aとして基板の主表面の面方位が(01-13)で表わされる基板を用いたもの、実施例Bとして基板の主表面の面方位が(03-38)で表わされる基板を用いたもの、実施例Cとして基板の主表面の面方位が(01-12)で表わされる基板を用いたものを準備した。
 そして、上記各試料について、チャネル移動度を測定した。チャネル移動度の測定方法は、上記実施例2におけるチャネル移動度の測定方法と同様の方法を用いた。
 次に、実験結果について図10を参照して説明する。ここで、図10において、横軸は各試料を構成する基板の主表面の、面方位{0001}に対するオフ角度を示しており、縦軸はチャネル移動度を示している。
 図10を参照して、本発明の実施例に対応するオフ角度(50°以上65°以下)の範囲の実施例A~Cの試料においては、チャネル移動度の値が比較例に比べて大きく向上していることがわかる。ここで、本実施例においては、nチャネル型のMOSFETを用いて実験を行なったが、チャネル移動度は、pチャネル型においても上述と同様に上記オフ角に依存する。そのため、IGBTのオン抵抗を低減するためには、チャネルがn型かp型かに関わらず、面方位{0001}に対するオフ角が50°以上65°以下である主面(主表面)を有する基板を採用することが有効であるといえる。
 なお、上記実施例においては、シリコン面側の主面上に半導体層および絶縁膜を形成する構造を採用した実験を行ない、(03-38)面に近い主面の採用によりキャリア移動度(チャネル移動度)が向上するとの結果が得られたことについて説明した。一方、発明者はカーボン面側の主面上に半導体層および絶縁膜を形成する構造を採用した実験も行ない、(0-33-8)面に近い主面の採用によりキャリア移動度(チャネル移動度)が一層向上するとの知見を有している。
 今回開示された実施の形態および実施例はすべての点で例示であって、制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味、および範囲内でのすべての変更が含まれることが意図される。
 本発明の絶縁ゲート型バイポーラトランジスタは、オン抵抗の低減が求められる絶縁ゲート型バイポーラトランジスタに、特に有利に適用され得る。
 1 IGBT、3 TEG-MOSFET、11 基板、11A 主面、12 バッファ層、13 耐圧保持層、13A 第1の主面、13B 第2の主面、14 ウェル領域、14A チャネル領域、15 エミッタ領域、16 コンタクト領域、17 ゲート酸化膜、17A 熱酸化膜、18 オーミックコンタクト電極、19 ゲート電極、20 コレクタ電極、21 エミッタ電極、22 高窒素濃度領域、31 基板、32 バッファ層、33 p型層、34 n型層、35A ソース領域、35B ドレイン領域、37 ゲート酸化膜、38 オーミックコンタクト電極、39 ゲート電極、41A ソース電極、41B ドレイン電極、71 MOSFET、72 n型炭化珪素基板、73 エピタキシャル層、74 p型層、75,76 n領域、77,78 酸化膜、80 ゲート電極、81 ソース電極、82 ドレイン電極。

Claims (6)

  1.  炭化珪素からなり、面方位{0001}に対するオフ角が50°以上65°以下である主面(11A)を有する第1導電型の基板(11)と、
     炭化珪素からなり、前記基板(11)の前記主面(11A)上に形成された前記第1導電型とは導電型の異なる第2導電型の耐圧保持層(13)と、
     前記耐圧保持層(13)において、前記基板(11)側の主面である第1の主面(13A)とは反対側の主面である第2の主面(13B)を含むように形成された、前記第1導電型のウェル領域(14)と、
     前記ウェル領域(14)内に前記第2の主面(13B)を含むように形成され、前記耐圧保持層(13)よりも高濃度の前記第2導電型の不純物を含むエミッタ領域(15)と、
     前記第2の主面(13B)に接触するように前記耐圧保持層(13)上に形成され、酸化物からなる酸化膜(17)と、
     前記酸化膜(17)上に形成された電極(19)とを備え、
     前記ウェル領域(14)と前記酸化膜(17)との界面を含む領域には、前記ウェル領域(14)および前記酸化膜(17)よりも窒素濃度の高い高窒素濃度領域(22)が形成されている、絶縁ゲート型バイポーラトランジスタ(1)。
  2.  前記ウェル領域(14)と前記酸化膜(17)との界面から10nm以内の領域における窒素濃度の最大値が1×1021cm-3以上である、請求の範囲第1項に記載の絶縁ゲート型バイポーラトランジスタ(1)。
  3.  前記基板(11)の前記主面(11A)のオフ方位が<11-20>方向±5°以下の範囲である、請求の範囲第1項に記載の絶縁ゲート型バイポーラトランジスタ(1)。
  4.  前記基板(11)の前記主面(11A)のオフ方位が<01-10>方向±5°以下の範囲である、請求の範囲第1項に記載の絶縁ゲート型バイポーラトランジスタ(1)。
  5.  前記基板(11)の前記主面(11A)の面方位は、面方位{03-38}に対してオフ角が-3°以上+5°以下である、請求の範囲第4項に記載の絶縁ゲート型バイポーラトランジスタ(1)。
  6.  前記基板(11)の前記主面(11A)は、<01-10>方向における(0-33-8)面に対するオフ角が-3°以上+5°以下である、請求の範囲第4項に記載の絶縁ゲート型バイポーラトランジスタ(1)。
PCT/JP2010/054950 2009-04-10 2010-03-23 絶縁ゲート型バイポーラトランジスタ WO2010116886A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN2010800028223A CN102171828A (zh) 2009-04-10 2010-03-23 绝缘栅双极型晶体管
US13/122,353 US8525187B2 (en) 2009-04-10 2010-03-23 Insulated gate bipolar transistor
CA2739570A CA2739570A1 (en) 2009-04-10 2010-03-23 Insulated gate bipolar transistor
EP10761586A EP2418680A4 (en) 2009-04-10 2010-03-23 ISOLATED GRID BIPOLAR TRANSISTOR
JP2011508319A JPWO2010116886A1 (ja) 2009-04-10 2010-03-23 絶縁ゲート型バイポーラトランジスタ

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009095481 2009-04-10
JP2009-095481 2009-04-10

Publications (2)

Publication Number Publication Date
WO2010116886A1 WO2010116886A1 (ja) 2010-10-14
WO2010116886A9 true WO2010116886A9 (ja) 2011-04-07

Family

ID=42936172

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/054950 WO2010116886A1 (ja) 2009-04-10 2010-03-23 絶縁ゲート型バイポーラトランジスタ

Country Status (8)

Country Link
US (1) US8525187B2 (ja)
EP (1) EP2418680A4 (ja)
JP (1) JPWO2010116886A1 (ja)
KR (1) KR20110137279A (ja)
CN (1) CN102171828A (ja)
CA (1) CA2739570A1 (ja)
TW (1) TW201108414A (ja)
WO (1) WO2010116886A1 (ja)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011199132A (ja) * 2010-03-23 2011-10-06 Sumitomo Electric Ind Ltd 半導体装置およびその製造方法
US9117740B2 (en) 2010-08-27 2015-08-25 National University Corporation NARA Institute of Science and Technology SiC semiconductor element
JP2012209422A (ja) * 2011-03-30 2012-10-25 Sumitomo Electric Ind Ltd Igbt
JP5668576B2 (ja) 2011-04-01 2015-02-12 住友電気工業株式会社 炭化珪素半導体装置
CN102983162A (zh) * 2011-09-05 2013-03-20 旺宏电子股份有限公司 半导体装置及其制造方法
KR101366982B1 (ko) * 2012-08-14 2014-02-24 삼성전기주식회사 트렌치 게이트형 전력 반도체 소자
JP5811969B2 (ja) * 2012-08-27 2015-11-11 住友電気工業株式会社 炭化珪素半導体装置の製造方法
KR101388706B1 (ko) 2012-08-30 2014-04-24 삼성전기주식회사 전력 반도체 소자 및 그 제조방법
US8890264B2 (en) * 2012-09-26 2014-11-18 Intel Corporation Non-planar III-V field effect transistors with conformal metal gate electrode and nitrogen doping of gate dielectric interface
KR20140067445A (ko) 2012-11-26 2014-06-05 삼성전기주식회사 전력 반도체 소자
US9245986B2 (en) 2012-11-29 2016-01-26 Samsung Electro-Mechanics Co., Ltd. Power semiconductor device and method of manufacturing the same
KR101420528B1 (ko) * 2012-12-07 2014-07-16 삼성전기주식회사 전력 반도체 소자
US9590067B2 (en) * 2012-12-18 2017-03-07 Global Power Technologies Group, Inc. Silicon carbide semiconductor devices having nitrogen-doped interface
JP6206012B2 (ja) * 2013-09-06 2017-10-04 住友電気工業株式会社 炭化珪素半導体装置
JP6300262B2 (ja) 2013-09-18 2018-03-28 株式会社東芝 半導体装置及びその製造方法
JP2017108060A (ja) 2015-12-11 2017-06-15 富士電機株式会社 縦型mosfet
US11239079B2 (en) 2020-03-19 2022-02-01 Kabushiki Kaisha Toshiba Semiconductor device, method for manufacturing semiconductor device, inverter circuit, drive device, vehicle, and elevator

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4568930B2 (ja) 1998-10-16 2010-10-27 株式会社デンソー 炭化珪素半導体装置の製造方法
EP1215730B9 (en) 1999-09-07 2007-08-01 Sixon Inc. SiC WAFER, SiC SEMICONDUCTOR DEVICE AND PRODUCTION METHOD OF SiC WAFER
JP4450123B2 (ja) 1999-11-17 2010-04-14 株式会社デンソー 炭化珪素半導体装置
JP4581270B2 (ja) 2001-03-05 2010-11-17 住友電気工業株式会社 SiC半導体のイオン注入層及びその製造方法
JP4843854B2 (ja) 2001-03-05 2011-12-21 住友電気工業株式会社 Mosデバイス
WO2005053034A1 (ja) * 2003-11-25 2005-06-09 Matsushita Electric Industrial Co., Ltd. 半導体素子
JP2005183943A (ja) * 2003-11-25 2005-07-07 Matsushita Electric Ind Co Ltd 半導体素子
JP2005166930A (ja) 2003-12-02 2005-06-23 Matsushita Electric Ind Co Ltd SiC−MISFET及びその製造方法
WO2005122273A1 (ja) 2004-06-11 2005-12-22 Matsushita Electric Industrial Co., Ltd. パワー素子
JP2007096263A (ja) * 2005-08-31 2007-04-12 Denso Corp 炭化珪素半導体装置およびその製造方法。
JP5306193B2 (ja) * 2006-06-29 2013-10-02 クリー インコーポレイテッド p型チャネルを含む炭化シリコンスイッチングデバイスおよびその形成方法

Also Published As

Publication number Publication date
KR20110137279A (ko) 2011-12-22
EP2418680A4 (en) 2012-12-12
CN102171828A (zh) 2011-08-31
US20110180813A1 (en) 2011-07-28
US8525187B2 (en) 2013-09-03
TW201108414A (en) 2011-03-01
CA2739570A1 (en) 2010-10-14
WO2010116886A1 (ja) 2010-10-14
JPWO2010116886A1 (ja) 2012-10-18
EP2418680A1 (en) 2012-02-15

Similar Documents

Publication Publication Date Title
WO2010116886A9 (ja) 絶縁ゲート型バイポーラトランジスタ
WO2010116887A1 (ja) 絶縁ゲート型電界効果トランジスタ
US8686439B2 (en) Silicon carbide semiconductor element
US8513673B2 (en) MOSFET and method for manufacturing MOSFET
WO2012014617A1 (ja) 半導体装置
WO2015040966A1 (ja) 炭化珪素半導体装置および炭化珪素半導体装置の製造方法
WO2014083943A1 (ja) 炭化珪素半導体装置およびその製造方法
WO2014083969A1 (ja) 炭化珪素半導体装置およびその製造方法
WO2015015926A1 (ja) 炭化珪素半導体装置およびその製造方法
WO2010095538A1 (ja) 炭化珪素基板および炭化珪素基板の製造方法
US20130134442A1 (en) Semiconductor device and method for manufacturing same
US8536583B2 (en) MOSFET and method for manufacturing MOSFET
WO2012066820A1 (ja) 炭化珪素半導体装置
JP2009182240A (ja) 半導体装置の製造方法および半導体装置
EP2937905B1 (en) Silicon carbide semiconductor device

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080002822.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10761586

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011508319

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20117007499

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2010761586

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13122353

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2739570

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE