WO2013094287A1 - 半導体装置 - Google Patents

半導体装置 Download PDF

Info

Publication number
WO2013094287A1
WO2013094287A1 PCT/JP2012/076488 JP2012076488W WO2013094287A1 WO 2013094287 A1 WO2013094287 A1 WO 2013094287A1 JP 2012076488 W JP2012076488 W JP 2012076488W WO 2013094287 A1 WO2013094287 A1 WO 2013094287A1
Authority
WO
WIPO (PCT)
Prior art keywords
wall surface
side wall
semiconductor device
substrate
silicon carbide
Prior art date
Application number
PCT/JP2012/076488
Other languages
English (en)
French (fr)
Inventor
増田 健良
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Priority to CN201280054320.4A priority Critical patent/CN103930996B/zh
Priority to EP12859841.4A priority patent/EP2797118B1/en
Publication of WO2013094287A1 publication Critical patent/WO2013094287A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7813Vertical DMOS transistors, i.e. VDMOS transistors with trench gate electrode, e.g. UMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/0445Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising crystalline silicon carbide
    • H01L21/0475Changing the shape of the semiconductor body, e.g. forming recesses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/0445Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising crystalline silicon carbide
    • H01L21/048Making electrodes
    • H01L21/049Conductor-insulator-semiconductor electrodes, e.g. MIS contacts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/3065Plasma etching; Reactive-ion etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/04Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their crystalline structure, e.g. polycrystalline, cubic or particular orientation of crystalline planes
    • H01L29/045Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their crystalline structure, e.g. polycrystalline, cubic or particular orientation of crystalline planes by their particular orientation of crystalline planes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/30Semiconductor bodies ; Multistep manufacturing processes therefor characterised by physical imperfections; having polished or roughened surface
    • H01L29/34Semiconductor bodies ; Multistep manufacturing processes therefor characterised by physical imperfections; having polished or roughened surface the imperfections being on the surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66053Multistep manufacturing processes of devices having a semiconductor body comprising crystalline silicon carbide
    • H01L29/66068Multistep manufacturing processes of devices having a semiconductor body comprising crystalline silicon carbide the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7827Vertical transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
    • H01L29/1608Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42356Disposition, e.g. buried gate electrode
    • H01L29/4236Disposition, e.g. buried gate electrode within a trench, e.g. trench gate electrode, groove gate electrode

Definitions

  • the present invention relates to a semiconductor device, and more particularly to a trench gate type semiconductor device in which a channel region is formed in a region including a trench wall surface.
  • silicon carbide has been increasingly adopted as a material constituting semiconductor devices in order to enable higher breakdown voltage, lower loss, and use in high-temperature environments.
  • Silicon carbide is a wide band gap semiconductor having a larger band gap than silicon that has been widely used as a material for forming semiconductor devices. Therefore, by adopting silicon carbide as a material constituting the semiconductor device, it is possible to achieve a high breakdown voltage and a low on-resistance of the semiconductor device.
  • a semiconductor device that employs silicon carbide as a material has an advantage that a decrease in characteristics when used in a high temperature environment is small as compared with a semiconductor device that employs silicon as a material.
  • the present invention has been made to address such problems, and an object of the present invention is to provide a semiconductor device capable of suppressing the channel resistance of a trench gate type semiconductor device and further reducing the on-resistance. Is to provide.
  • a semiconductor device has an opening on one main surface side, a trench having a sidewall surface is formed, a substrate made of silicon carbide, a gate insulating film formed in contact with the sidewall surface, And a gate electrode formed in contact with the gate insulating film.
  • the substrate is disposed on the side opposite to the main surface when viewed from the source region, exposed to the source region, and exposed on the side wall surface.
  • a second conductivity type body region is 1.0 nm or less by RMS.
  • the present inventor has investigated the cause of the channel resistance of the trench gate type semiconductor device not being able to be sufficiently reduced even when damage to the channel formation surface due to ion implantation is avoided.
  • the channel resistance can be reduced by reducing the surface roughness of the sidewall surface of the trench in which the channel region is to be formed as compared with the conventional case. More specifically, the channel resistance can be effectively reduced by setting the RMS to 1.0 nm or less in a microscopic range where the surface roughness of the side wall surface is calculated in a square region having a side of 100 nm. it can.
  • the microscopic surface roughness of the side wall surface of the trench is reduced to 1.0 nm or less by RMS.
  • RMS Read Only Memory
  • the surface roughness of the side wall surface may be smaller than the surface roughness of the main surface.
  • channel resistance can be more reliably suppressed by reducing the surface roughness of the side wall surface to less than the surface roughness of the main surface.
  • the trench may further include a bottom wall surface formed so as to intersect the side wall surface, and the surface roughness of the side wall surface may be smaller than the surface roughness of the bottom wall surface.
  • channel resistance can be more reliably suppressed by reducing the surface roughness of the side wall surface to less than the surface roughness of the bottom wall surface of the trench.
  • the angle formed by the side wall surface with respect to the ⁇ 01-12 ⁇ plane of silicon carbide constituting the substrate is such that the main surface is relative to the ⁇ 0001 ⁇ plane of silicon carbide constituting the substrate. It may be smaller than the angle formed.
  • the channel resistance can be reduced by bringing the side wall surface closer to the ⁇ 01-12 ⁇ plane.
  • the angle formed by the side wall surface with respect to the ⁇ 01-12 ⁇ plane to such an extent that the main surface is smaller than the angle formed with respect to the ⁇ 0001 ⁇ plane, that is, the off angle with respect to the ⁇ 0001 ⁇ plane of the substrate main surface By reducing the channel resistance, the channel resistance can be more reliably suppressed.
  • an angle formed by the main surface with respect to the ⁇ 0001 ⁇ plane of silicon carbide constituting the substrate may be 8 ° or less.
  • the side wall surface may be a specific crystal plane of silicon carbide constituting the substrate.
  • the microscopic surface roughness of the side wall surface can be easily reduced to 1.0 nm or less by RMS.
  • the side wall surface may be a (0-11-2) plane including a (0-33-8) plane of silicon carbide constituting the substrate.
  • the channel resistance can be further reduced by configuring the side wall surface with a crystal plane composed of the (0-11-2) plane.
  • This (0-11-2) plane is chemically stable by microscopically forming a (0-11-2) plane including (0-33-8). Can be formed easily. More specifically, the (0-11-2) plane is connected to the (0-33-8) plane and the (0-33-8) plane and is different from the (0-33-8) plane.
  • a plane for example, a plane constituted by alternately providing (0-11-1) planes, it can be formed relatively easily.
  • “microscopically” means that the dimensions are so detailed that at least a dimension about twice the atomic spacing is taken into consideration.
  • the side wall surface may be formed by thermal etching. Thereby, it becomes easy to comprise the said side wall surface in the specific crystal plane of the said silicon carbide.
  • the semiconductor device of the present invention it is possible to provide a semiconductor device capable of suppressing the channel resistance of the trench gate type semiconductor device and further reducing the on-resistance. .
  • the individual orientation is indicated by []
  • the collective orientation is indicated by ⁇ >
  • the individual plane is indicated by ()
  • the collective plane is indicated by ⁇ .
  • “ ⁇ ” (bar) is added on the number in crystallography, but in the present specification, a negative sign is attached before the number.
  • the Si (silicon) plane of hexagonal silicon carbide is defined as the (0001) plane
  • the C (carbon) plane is defined as the (000-1) plane.
  • the Si plane side plane is expressed as (01-12) plane
  • the C plane side plane is expressed as (0-11-2) plane.
  • the surface on the Si surface side is a surface having an angle with the Si surface of less than 90 °
  • the surface on the C surface side is a surface having an angle with the C surface of less than 90 °.
  • MOSFET 1 Metal Oxide Field Effect Transistor
  • MOSFET 1 includes a silicon carbide substrate 11 having a conductivity type of n type (first conductivity type), a drift layer 12 made of silicon carbide and having a conductivity type of n type, and a conductivity type of p type.
  • Silicon carbide substrate 11, drift layer 12, p-type body region 14, n + region 15 and p + region 16 constitute substrate 10.
  • Drift layer 12 is formed on one main surface 11A of silicon carbide substrate 11 and has an n-type conductivity by including an n-type impurity.
  • the n-type impurity contained in drift layer 12 is N (nitrogen), for example, and is contained at a lower concentration (density) than the n-type impurity contained in silicon carbide substrate 11.
  • Drift layer 12 is an epitaxially grown layer formed on one main surface 11 ⁇ / b> A of silicon carbide substrate 11.
  • Drift layer 12 may include a buffer layer with an increased impurity concentration in the vicinity of the interface with silicon carbide substrate 11.
  • Substrate 10 has a tapered side wall surface 19A that gradually decreases in width from main surface 10A opposite to silicon carbide substrate 11 toward silicon carbide substrate 11 and crosses side wall surface 19A.
  • a trench 19 having a flat bottom wall surface 19B extending along the surface 10A is formed.
  • Side wall surface 19 ⁇ / b> A of trench 19 may be formed at an angle of 45 ° or more and 90 ° or less with respect to the ⁇ 0001 ⁇ surface of silicon carbide constituting substrate 10.
  • P-type body region 14 includes a sidewall of trench 19 in substrate 10 (configures a part of the sidewall of trench 19) and extends along main surface 11 ⁇ / b> A in a direction away from the sidewall of trench 19.
  • the p-type body region 14 has a p-type conductivity by containing a p-type impurity.
  • the p-type impurity contained in the p-type body region 14 is, for example, Al (aluminum), B (boron), or the like.
  • N + region 15 as a source region includes sidewalls of trench 19 in substrate 10 and is formed from p-type body region 14 to main surface 10A. That is, n + region 15 is formed to contact p-type body region 14 and include the side wall of trench 19 and main surface 10A.
  • the n + region 15 contains an n-type impurity such as P (phosphorus) at a higher concentration (density) than the n-type impurity contained in the drift layer 12.
  • the p + region 16 includes the main surface 10A and is formed inside the substrate 10 so as to be adjacent to (in contact with) the n + region 15.
  • the p + region 16 contains a p-type impurity such as Al at a higher concentration (density) than the p-type impurity contained in the p-type body region 14.
  • the trench 19 is formed so as to penetrate the n + region 15 and the p-type body region 14 and reach the drift layer 12.
  • the substrate 10 is an n + region 15 as placed source regions so as to be exposed at the side wall surface 19A of the trench 19, the main surface 10A as viewed from the n + region 15 is disposed on the opposite side, n + P-type body region 14 that is in contact with region 15 and exposed at side wall surface 19A.
  • MOSFET 1 includes a gate oxide film 21 as a gate insulating film, a gate electrode 23, a source contact electrode 22, an interlayer insulating film 24, a source wiring 25, a drain electrode 26, And a back surface protective electrode 27.
  • Gate oxide film 21 covers the surface of trench 19 and is formed to extend onto main surface 10A, and is made of, for example, silicon dioxide (SiO 2 ).
  • the gate electrode 23 is disposed in contact with the gate oxide film 21 so as to fill the trench 19.
  • the gate electrode 23 is made of a conductor such as polysilicon or Al to which impurities are added, for example.
  • the source contact electrode 22 extends from the n + region 15 to the p + region 16 so as to be in contact with the n + region 15 and the p + region 16. Further, the source contact electrode 22 is, for example, Ni x Si y (nickel silicide), Ti x Si y (titanium silicide), Al x Si y (aluminum silicide), Ti x Al y Si z (titanium aluminum silicide), etc. It is made of a material that can make ohmic contact with the n + region 15 and the p + region 16.
  • Interlayer insulating film 24 is formed on main surface 10A of substrate 10 so as to surround gate electrode 23 together with gate oxide film 21, and to separate gate electrode 23 from source contact electrode 22 and source wiring 25, for example, an insulator. It is made of silicon dioxide (SiO 2 ).
  • Source wiring 25 is formed on main surface 10 ⁇ / b> A of substrate 10 so as to cover the surfaces of interlayer insulating film 24 and source contact electrode 22.
  • the source wiring 25 is made of a conductor such as Al and is electrically connected to the n + region 15 via the source contact electrode 22.
  • the drain electrode 26 is formed in contact with the main surface 11B on the opposite side of the silicon carbide substrate 11 from the side on which the drift layer 12 is formed.
  • the drain electrode 26 is made of a material capable of making ohmic contact with the silicon carbide substrate 11, for example, the same material as the source contact electrode 22, and is electrically connected to the silicon carbide substrate 11.
  • the back surface protective electrode 27 is formed so as to cover the drain electrode 26, and is made of, for example, Al which is a conductor.
  • MOSFET 1 in the state where the voltage of gate electrode 23 is lower than the threshold voltage, that is, in the off state, p-type body region 14 and drift layer are applied even when a voltage is applied between drain electrode 26 and source contact electrode 22.
  • the pn junction with 12 becomes a reverse bias and becomes non-conductive.
  • a voltage equal to or higher than the threshold voltage is applied to the gate electrode 23
  • an inversion layer is formed in the channel region in the vicinity of the p-type body region 14 in contact with the gate oxide film 21.
  • n + region 15 and drift layer 12 are electrically connected and turned on, and a current flows between source contact electrode 22 and drain electrode 26.
  • MOSFET 1 of the present embodiment the surface roughness in the square region of 100 nm on one side of the side wall 19A of the trench 19 is 1.0 nm or less in RMS.
  • MOSFET 1 of the present embodiment is a trench gate type semiconductor device that can achieve a reduction in on-resistance.
  • channel resistance can be more reliably suppressed by making the said surface roughness of the side wall surface 19A into 0.4 nm or less by RMS.
  • the surface roughness (RMS) of side wall surface 19A is preferably smaller than the surface roughness (RMS) of main surface 10A. Thereby, channel resistance can be more reliably suppressed.
  • the surface roughness (RMS) of the side wall surface 19A is smaller than the surface roughness (RMS) of the bottom wall surface. Therefore, channel resistance can be suppressed more reliably.
  • the angle formed by side wall surface 19 A with respect to the ⁇ 01-12 ⁇ plane of silicon carbide constituting substrate 10 is such that main surface 10 A is the ⁇ 0001 ⁇ plane of silicon carbide constituting substrate 10. It is preferable that the angle is smaller than the angle formed by. Thereby, channel resistance can be reduced more reliably.
  • the angle formed by main surface 10 ⁇ / b> A with respect to the ⁇ 0001 ⁇ plane of silicon carbide constituting substrate 10 is preferably 8 ° or less.
  • side wall surface 19 ⁇ / b> A may be a specific crystal plane of silicon carbide constituting substrate 10.
  • side wall surface 19 A may be a (0-11-2) plane including a (0-33-8) plane of silicon carbide constituting substrate 10. Thereby, the channel resistance can be further reduced.
  • the side wall surface 19A may be formed by thermal etching. Thereby, it becomes easy to comprise the said side wall surface 19A by the specific crystal plane of the said silicon carbide.
  • a silicon carbide substrate preparation step is performed as a step (S10).
  • silicon carbide substrate 11 made of, for example, 4H type hexagonal silicon carbide is prepared.
  • drift layer 12 made of silicon carbide is formed on one main surface 11A of silicon carbide substrate 11 by epitaxial growth.
  • a body region forming step is performed as a step (S30).
  • this step (S30) referring to FIGS. 3 and 4, for example, Al ions are implanted into drift layer 12 to form p-type body region.
  • p-type body region 14 is formed to a thickness that is the sum of the thicknesses of p-type body region 14 and n + region 15 in FIG. 4.
  • a source contact region forming step is performed as a step (S40).
  • n + region 15 is formed by implanting, for example, P ions into p type body region 14 formed in step (S30). As a result, the structure shown in FIG. 4 is obtained.
  • a mask formation step is performed as a step (S50).
  • a mask layer 90 having an opening 90A in a desired region where trench 19 is to be formed and made of silicon dioxide is formed.
  • an RIE process is performed as a process (S60).
  • RIE Reactive Ion Etching
  • the etching proceeds linearly along the arrow ⁇ , and a trench 19 having substantially the same shape as the opening 90A as viewed in plan is formed.
  • the trench 19 has been formed to remove a portion of the n + region 15, formed so as to penetrate the n + region 15, to reach the p-type body region 14 May be.
  • a thermal etching step is performed as a step (S70).
  • this step referring to FIGS. 5 and 6, for example, thermal etching using a halogen-based gas is performed.
  • the trench formed in the step (S60) spreads along the arrow ⁇ .
  • trench 19 that penetrates n + region 15 and p-type body region 14 and extends in the direction along main surface 11A of silicon carbide substrate 11 (the depth direction in FIG. 5) is formed.
  • main surface 10A of substrate 10 can have an off angle of 8 ° or less with respect to the (000-1) plane.
  • the side wall surface 19A of the trench 19 can be a chemically stable crystal plane, for example, a (0-11-2) plane including a (0-33-8) plane.
  • the mask layer 90 is removed as shown in FIG. 7 to complete the trench 19.
  • the microscopic surface roughness of the side wall surface 19A of the trench 19 is reduced to 1.0 nm or less by RMS, and the surface roughness of the side wall surface 19A is reduced between the main surface 10A and the bottom wall surface 19B. It can be made smaller than the surface roughness.
  • a potential holding region forming step is performed as a step (S80).
  • Al ions are implanted into n + region 15 formed in step (S40) to form p + region 16.
  • the ion implantation for forming the p + region 16 is made of, for example, silicon dioxide (SiO 2 ) on the surface of the n + region 15 and forms a mask layer having an opening in a desired region where the ion implantation is to be performed. Can be implemented. Thereby, the substrate 10 constituting the MOSFET 1 is completed.
  • an activation annealing step is performed as a step (S90).
  • the substrate 10 is heated to activate the impurities introduced in the steps (S30), (S40), and (S80). Specifically, the substrate 10 is heated to, for example, a temperature range of 1600 ° C. or more and 1900 ° C. or less and held for 1 minute or more and 30 minutes or less. As a result, desired carriers are generated in the region where the impurity is introduced.
  • a gate oxide film forming step is performed as a step (S100).
  • a gate oxide film 21 is formed by performing a heat treatment of heating to 1300 ° C. and holding for 60 minutes in an oxygen atmosphere.
  • a gate electrode forming step is performed as a step (S110).
  • a polysilicon film filling trench 19 is formed by LPCVD (Low Pressure Chemical Vapor Deposition), for example. Thereby, the gate electrode 23 is formed.
  • LPCVD Low Pressure Chemical Vapor Deposition
  • interlayer insulation film formation process is implemented as process (S120).
  • process (S120) referring to FIG. 10 and FIG. 11, interlayer insulating film 24 made of SiO 2 serving as an insulator is connected to gate electrode 23 and gate oxide film 21 by, for example, P (Plasma) -CVD. It is formed to cover.
  • P (Plasma) -CVD P (Plasma) -CVD
  • an ohmic electrode forming step is performed as a step (S130).
  • this step (S130) referring to FIG. 11, first, a hole that penetrates interlayer insulating film 24 and gate oxide film 21 is formed in a desired region where source contact electrode 22 is to be formed. Then, for example, a film made of Ni is formed so as to fill the hole. On the other hand, a film to be drain electrode 26, for example, a film made of Ni is formed so as to be in contact with the main surface of silicon carbide substrate 11 opposite to the drift layer 12 side. Thereafter, an alloy heat treatment is performed, and at least a part of the Ni film is silicided, whereby the source contact electrode 22 and the drain electrode 26 are completed.
  • a wiring formation step is performed as a step (S140).
  • step (S140) referring to FIGS. 11 and 1, for example, source wiring 25 made of Al as a conductor is deposited on main surface 10A over interlayer insulating film 24 and source contact electrode 22 by vapor deposition. It is formed so as to cover the surface. Further, similarly, a back surface protective electrode 27 made of Al is formed so as to cover the drain electrode 26. With the above procedure, the manufacture of MOSFET 1 as the semiconductor device in the present embodiment is completed.
  • the trench type MOSFET has been described as an example of the semiconductor device of the present invention.
  • the semiconductor device of the present invention is not limited thereto, and a trench such as a trench type IGBT (Insulated Gate Bipolar Transistor).
  • the present invention can be widely applied to semiconductor devices having gates.
  • the semiconductor device of the present invention can be applied particularly advantageously to a semiconductor device having a trench gate.
  • MOSFET MOSFET
  • 10 substrate 10A main surface, 11 silicon carbide substrate, 11A, 11B main surface, 12 drift layer, 14 p-type body region, 15 n + region, 16 p + region, 19 trench, 19A side wall surface, 19B bottom Wall surface, 21 Gate oxide film, 22 Source contact electrode, 23 Gate electrode, 24 Interlayer insulating film, 25 Source wiring, 26 Drain electrode, 27 Back surface protection electrode, 90 Mask layer, 90A Opening.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Plasma & Fusion (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

MOSFET(1)は、一方の主表面(10A)側に開口し、側壁面(19A)を有するトレンチ(19)が形成され、炭化珪素からなる基板(10)と、側壁面(19A)上に接触して形成されたゲート絶縁膜(21)と、ゲート絶縁膜(21)上に接触して形成されたゲート電極(23)とを備え、側壁面(19A)の一辺100nmの正方形領域内における表面粗さはRMSで1.0nm以下となっている。

Description

半導体装置
 本発明は半導体装置に関し、より特定的には、トレンチ壁面を含む領域にチャネル領域が形成されるトレンチゲート型の半導体装置に関するものである。
 近年、半導体装置の高耐圧化、低損失化、高温環境下での使用などを可能とするため、半導体装置を構成する材料として炭化珪素の採用が進められつつある。炭化珪素は、従来から半導体装置を構成する材料として広く使用されている珪素に比べてバンドギャップが大きいワイドバンドギャップ半導体である。そのため、半導体装置を構成する材料として炭化珪素を採用することにより、半導体装置の高耐圧化、オン抵抗の低減などを達成することができる。また、炭化珪素を材料として採用した半導体装置は、珪素を材料として採用した半導体装置に比べて、高温環境下で使用された場合の特性の低下が小さいという利点も有している。
 このような炭化珪素を材料として用いた半導体装置においては、単位セルの微細化等に有利なトレンチゲート型の採用が提案されている。そして、トレンチゲート型の半導体装置において、チャネル形成面のイオン注入によるダメージを回避することにより、スイッチング特性を向上させることが提案されている(たとえば、特開平9-74191号公報(特許文献1)参照)。
特開平9-74191号公報
 しかしながら、上記特許文献1に記載のようにイオン注入によるチャネル形成面のダメージを回避した場合でも、トレンチゲート型半導体装置のチャネル抵抗が高くなり、さらなるオン抵抗の低減が求められる場合がある。
 本発明はこのような問題に対応するためになされたものであって、その目的は、トレンチゲート型半導体装置のチャネル抵抗を抑制し、さらなるオン抵抗の低減を達成することが可能な半導体装置を提供することである。
 本発明に従った半導体装置は、一方の主表面側に開口し、側壁面を有するトレンチが形成され、炭化珪素からなる基板と、当該側壁面上に接触して形成されたゲート絶縁膜と、ゲート絶縁膜上に接触して形成されたゲート電極とを備えている。上記基板は、側壁面において露出するように配置された第1導電型のソース領域と、ソース領域から見て主表面とは反対側に配置され、ソース領域に接触し、上記側壁面において露出する第2導電型のボディ領域とを含んでいる。そして、上記側壁面の一辺100nmの正方形領域内における表面粗さはRMSで1.0nm以下である。
 本発明者は、イオン注入によるチャネル形成面のダメージを回避した場合でも、トレンチゲート型半導体装置のチャネル抵抗が十分に低減できない原因について検討を行なった。その結果、チャネル領域が形成されるべきトレンチの側壁面の表面粗さを、従来に比べて小さくすることにより、チャネル抵抗を低減できることが明らかとなった。より具体的には、上記側壁面の表面粗さを一辺100nmの正方形領域において算出するような微視的な範囲においてRMSで1.0nm以下とすることにより、チャネル抵抗を有効に低減することができる。
 本発明の半導体装置においては、トレンチの側壁面の上記微視的な表面粗さがRMSで1.0nm以下にまで低減されている。その結果、本発明の半導体装置によれば、チャネル抵抗を抑制し、さらなるオン抵抗の低減を達成することが可能なトレンチゲート型半導体装置を提供することができる。なお、上記微視的な表面粗さをRMSで0.4nm以下とすることにより、チャネル抵抗を一層低減することができる。一方、上記微視的な表面粗さは、炭化珪素結晶内の原子の配列に起因して、0.07nm以上となる。このような微視的な表面粗さは、たとえばAFM(Atomic Force Microscope)を用いて測定することができる。
 上記半導体装置においては、上記側壁面の表面粗さは、上記主表面の表面粗さよりも小さくなっていてもよい。このように、上記主表面の表面粗さ未満にまで上記側壁面の表面粗さを低減することにより、より確実に、チャネル抵抗を抑制することができる。
 上記半導体装置においては、上記トレンチは、上記側壁面に交差するように形成された底壁面をさらに有し、側壁面の表面粗さは、底壁面の表面粗さよりも小さくなっていてもよい。このように、トレンチの底壁面の表面粗さ未満にまで上記側壁面の表面粗さを低減することにより、より確実に、チャネル抵抗を抑制することができる。
 上記半導体装置においては、上記側壁面が、基板を構成する炭化珪素の{01-12}面に対してなす角は、上記主表面が、基板を構成する炭化珪素の{0001}面に対してなす角よりも小さくなっていてもよい。
 上記側壁面を{01-12}面に近づけることにより、チャネル抵抗を低減することができる。そして、主表面が{0001}面に対してなす角、すなわち基板主表面の{0001}面に対するオフ角よりも小さくなる程度にまで、上記側壁面が{01-12}面に対してなす角を小さくすることにより、一層確実に、チャネル抵抗を抑制することができる。
 上記半導体装置においては、上記主表面が基板を構成する炭化珪素の{0001}面に対してなす角は8°以下であってもよい。これにより、成長の容易な<0001>方向に成長させて作製された単結晶炭化珪素のインゴットからSiC基板を採取するに際して、高い歩留まりにて基板を採取し、基板の製造コストを低減することができる。
 上記半導体装置においては、上記側壁面は、基板を構成する炭化珪素の特定の結晶面であってもよい。上記側壁面を特定の結晶面にて構成することにより、側壁面の上記微視的な表面粗さをRMSで1.0nm以下にまで低減することが容易となる。
 上記半導体装置においては、上記側壁面は、基板を構成する炭化珪素の(0-33-8)面を含む(0-11-2)面であってもよい。
 上記側壁面を(0-11-2)面からなる結晶面で構成することにより、チャネル抵抗を一層低減することができる。この(0-11-2)面は、微視的に見て(0-33-8)を含む(0-11-2)面とすることにより、化学的に安定な面となるため、比較的容易に形成することができる。より具体的には、(0-11-2)面は、(0-33-8)面と、(0-33-8)面につながりかつ(0-33-8)面とは異なる他の面、たとえば(0-11-1)面とが交互に設けられることによって構成された面とすることにより、比較的容易に形成することができる。ここで「微視的に見て」とは、原子間隔の2倍程度の寸法を少なくとも考慮する程度に詳細に、ということを意味する。
 上記半導体装置においては、上記側壁面は、熱エッチングにより形成されていてもよい。これにより、上記側壁面を、上記炭化珪素の特定の結晶面にて構成すること容易となる。
 以上の説明から明らかなように、本発明の半導体装置によれば、トレンチゲート型半導体装置のチャネル抵抗を抑制し、さらなるオン抵抗の低減を達成することが可能な半導体装置を提供することができる。
MOSFETの構造を示す概略断面図である。 MOSFETの製造方法の概略を示すフローチャートである。 MOSFETの製造方法を説明するための概略断面図である。 MOSFETの製造方法を説明するための概略断面図である。 MOSFETの製造方法を説明するための概略断面図である。 MOSFETの製造方法を説明するための概略断面図である。 MOSFETの製造方法を説明するための概略断面図である。 MOSFETの製造方法を説明するための概略断面図である。 MOSFETの製造方法を説明するための概略断面図である。 MOSFETの製造方法を説明するための概略断面図である。 MOSFETの製造方法を説明するための概略断面図である。
 以下、図面に基づいて本発明の実施の形態を説明する。なお、以下の図面において同一または相当する部分には同一の参照番号を付し、その説明は繰返さない。また、本明細書中においては、個別方位を[]、集合方位を<>、個別面を()、集合面を{}でそれぞれ示す。また、負の指数については、結晶学上、”-”(バー)を数字の上に付けることになっているが、本明細書中では、数字の前に負の符号を付けている。さらに、六方晶炭化珪素のSi(シリコン)面を(0001)面、C(カーボン)面を(000-1)面と定義する。その結果、たとえば{01-12}面のうちSi面側の面は(01-12)面、C面側の面は(0-11-2)面と表現される。ここで、Si面側の面とはSi面とのなす角が90°未満の面、C面側の面とはC面とのなす角が90°未満の面をいう。
 まず、本発明の一実施の形態として、半導体装置であるトレンチ型MOSFET(Metal Oxide Semiconductor Field Effect Transistor)およびその製造方法について説明する。図1を参照して、MOSFET1は、導電型がn型(第1導電型)である炭化珪素基板11と、炭化珪素からなり導電型がn型であるドリフト層12と、導電型がp型(第2導電型)のp型ボディ領域14と、導電型がn型のn領域15と、導電型がp型のp領域16とを備えている。炭化珪素基板11、ドリフト層12、p型ボディ領域14、n領域15およびp領域16は、基板10を構成する。
 ドリフト層12は、炭化珪素基板11の一方の主表面11A上に形成され、n型不純物を含むことにより導電型がn型となっている。ドリフト層12に含まれるn型不純物は、たとえばN(窒素)であり、炭化珪素基板11に含まれるn型不純物よりも低い濃度(密度)で含まれている。ドリフト層12は、炭化珪素基板11の一方の主表面11A上に形成されたエピタキシャル成長層である。ドリフト層12は、炭化珪素基板11との界面付近に、不純物濃度を高めたバッファ層を含んでいてもよい。
 基板10には、炭化珪素基板11の側とは反対側の主表面10Aから炭化珪素基板11側に向けて幅が徐々に狭くなるテーパ状の側壁面19Aと、側壁面19Aに交差し、主表面10Aに沿って延在する平坦な底壁面19Bとを有するトレンチ19が形成されている。トレンチ19の側壁面19Aは、基板10を構成する炭化珪素の{0001}面に対して45°以上90°以下の角度をなすように形成されていてもよい。
 p型ボディ領域14は、基板10内においてトレンチ19の側壁を含む(トレンチ19の側壁の一部を構成する)とともに、当該トレンチ19の側壁から離れる向きに主表面11Aに沿って延びるように形成されている。p型ボディ領域14は、p型不純物を含むことにより、導電型がp型となっている。p型ボディ領域14に含まれるp型不純物は、たとえばAl(アルミニウム)、B(硼素)などである。
 ソース領域としてのn領域15は、基板10内においてトレンチ19の側壁を含むとともに、p型ボディ領域14から主表面10Aにわたって形成されている。つまり、n領域15は、p型ボディ領域14に接触するとともに、トレンチ19の側壁および主表面10Aを含むように形成されている。n領域15は、n型不純物、たとえばP(リン)などをドリフト層12に含まれるn型不純物よりも高い濃度(密度)で含んでいる。
 p領域16は、上記主表面10Aを含み、かつn領域15に隣接(接触)するように基板10の内部に形成されている。p領域16は、p型不純物、たとえばAlなどを、p型ボディ領域14に含まれるp型不純物よりも高い濃度(密度)で含んでいる。上記トレンチ19は、n領域15およびp型ボディ領域14を貫通し、ドリフト層12に至るように形成されている。
 すなわち、基板10は、トレンチ19の側壁面19Aにおいて露出するように配置されたソース領域としてのn領域15と、n領域15から見て主表面10Aとは反対側に配置され、n領域15に接触し、側壁面19Aにおいて露出するp型ボディ領域14とを含んでいる。
 さらに、図1を参照して、MOSFET1は、ゲート絶縁膜としてのゲート酸化膜21と、ゲート電極23と、ソースコンタクト電極22と、層間絶縁膜24と、ソース配線25と、ドレイン電極26と、裏面保護電極27とを備えている。
 ゲート酸化膜21は、トレンチ19の表面を覆うとともに、主表面10A上にまで延在するように形成され、たとえば二酸化珪素(SiO)からなっている。
 ゲート電極23は、トレンチ19を充填するように、ゲート酸化膜21に接触して配置されている。ゲート電極23は、たとえば不純物が添加されたポリシリコン、Alなどの導電体からなっている。
 ソースコンタクト電極22は、n領域15上からp領域16上にまで延在することによりn領域15およびp領域16に接触して配置されている。また、ソースコンタクト電極22は、たとえばNiSi(ニッケルシリサイド)、TiSi(チタンシリサイド)、AlSi(アルミシリサイド)や、TiAlSi(チタンアルミシリサイド)など、n領域15およびp領域16とオーミックコンタクト可能な材料からなっている。
 層間絶縁膜24は、基板10の主表面10A上において、ゲート酸化膜21とともにゲート電極23を取り囲み、ゲート電極23とソースコンタクト電極22およびソース配線25とを分離するように形成され、たとえば絶縁体である二酸化珪素(SiO)からなっている。
 ソース配線25は、基板10の主表面10A上において、層間絶縁膜24およびソースコンタクト電極22の表面を覆うように形成されている。また、ソース配線25は、Alなどの導電体からなり、ソースコンタクト電極22を介してn領域15と電気的に接続されている。
 ドレイン電極26は、炭化珪素基板11においてドリフト層12が形成される側とは反対側の主表面11Bに接触して形成されている。このドレイン電極26は、炭化珪素基板11とオーミックコンタクト可能な材料、たとえば上記ソースコンタクト電極22と同様の材料からなっており、炭化珪素基板11と電気的に接続されている。
 裏面保護電極27は、ドレイン電極26を覆うように形成されており、たとえば導電体であるAlなどからなっている。
 次に、MOSFET1の動作について説明する。図1を参照して、ゲート電極23の電圧が閾値電圧未満の状態、すなわちオフ状態では、ドレイン電極26とソースコンタクト電極22との間に電圧が印加されてもp型ボディ領域14とドリフト層12との間のpn接合が逆バイアスとなり、非導通状態となる。一方、ゲート電極23に閾値電圧以上の電圧を印加すると、p型ボディ領域14のゲート酸化膜21と接触する付近であるチャネル領域において、反転層が形成される。その結果、n領域15とドリフト層12とが電気的に接続されてオン状態となり、ソースコンタクト電極22とドレイン電極26との間に電流が流れる。
 ここで、本実施の形態のMOSFET1においては、トレンチ19の側壁面19Aの一辺100nmの正方形領域内における表面粗さはRMSで1.0nm以下となっている。これにより、p型ボディ領域14のゲート酸化膜21と接触する表面が平滑となり、チャネル抵抗が抑制される。その結果、本実施の形態のMOSFET1は、オン抵抗の低減を達成することが可能なトレンチゲート型半導体装置となっている。なお、側壁面19Aの上記表面粗さをRMSで0.4nm以下とすることにより、より確実にチャネル抵抗を抑制することができる。
 また、MOSFET1においては、側壁面19Aの表面粗さ(RMS)は、上記主表面10Aの表面粗さ(RMS)よりも小さくなっていることが好ましい。これにより、より確実に、チャネル抵抗を抑制することができる。
 さらに、MOSFET1においては、側壁面19Aの表面粗さ(RMS)は、底壁面の表面粗さ(RMS)よりも小さくなっていることが好ましい。これにより、一層確実に、チャネル抵抗を抑制することができる。
 また、MOSFET1においては、側壁面19Aが、基板10を構成する炭化珪素の{01-12}面に対してなす角は、上記主表面10Aが、基板10を構成する炭化珪素の{0001}面に対してなす角よりも小さくなっていることが好ましい。これにより、チャネル抵抗を一層確実に低減することができる。
 さらに、MOSFET1においては、主表面10Aが、基板10を構成する炭化珪素の{0001}面に対してなす角は8°以下であることが好ましい。これにより、成長の容易な<0001>方向に成長させて作製された単結晶炭化珪素のインゴットから炭化珪素基板11を採取するに際して、高い歩留まりにて炭化珪素基板11を採取し、炭化珪素基板11の製造コストを低減することができる。
 また、MOSFET1においては、側壁面19Aは、基板10を構成する炭化珪素の特定の結晶面であってもよい。上記側壁面19Aを特定の結晶面にて構成することにより、側壁面19Aの表面粗さを低減することが容易となる。
 さらに、MOSFET1においては、側壁面19Aは、基板10を構成する炭化珪素の(0-33-8)面を含む(0-11-2)面であってもよい。これにより、チャネル抵抗を一層低減することができる。
 また、MOSFET1においては、側壁面19Aは、熱エッチングにより形成されていてもよい。これにより、上記側壁面19Aを、上記炭化珪素の特定の結晶面にて構成することが容易となる。
 次に、本実施の形態におけるMOSFET1の製造方法の一例について、図2~図11を参照して説明する。図2を参照して、本実施の形態におけるMOSFET1の製造方法では、まず工程(S10)として炭化珪素基板準備工程が実施される。この工程(S10)では、図3を参照して、たとえば4H型の六方晶炭化珪素からなる炭化珪素基板11が準備される。
 次に、工程(S20)としてドリフト層形成工程が実施される。この工程(S20)では、図3を参照して、炭化珪素基板11の一方の主表面11A上に炭化珪素からなるドリフト層12がエピタキシャル成長により形成される。
 次に、工程(S30)としてボディ領域形成工程が実施される。この工程(S30)では、図3および図4を参照して、たとえばAlイオンがドリフト層12に注入されることにより、p型ボディ領域14が形成される。このとき、p型ボディ領域14は、図4におけるp型ボディ領域14およびn領域15の厚みを合わせた厚みに形成される。
 次に、工程(S40)としてソースコンタクト領域形成工程が実施される。この工程(S40)では、図4を参照して、工程(S30)において形成されたp型ボディ領域14に、たとえばPイオンが注入されることによりn領域15が形成される。その結果、図4に示す構造が得られる。
 次に、工程(S50)としてマスク形成工程が実施される。この工程(S50)では、図5を参照して、たとえばトレンチ19を形成すべき所望の領域に開口90Aを有し、二酸化珪素からなるマスク層90が形成される。
 次に、工程(S60)としてRIE工程が実施される。この工程(S60)では、工程(S50)において形成されたマスク層90をマスクとして用いて、RIE(Reactive Ion Etching)が実施される。これにより、矢印αに沿って直線的にエッチングが進行し、平面的に見て開口90Aとほぼ同一形状を有するトレンチ19が形成される。ここで、図5においては、トレンチ19は、n領域15の一部を除去するように形成されているが、n領域15を貫通し、p型ボディ領域14にまで到達するように形成されてもよい。
 次に、工程(S70)として熱エッチング工程が実施される。この工程では、図5および図6を参照して、たとえばハロゲン系ガスを用いた熱エッチングが実施される。これにより、工程(S60)において形成されたトレンチが矢印βに沿って広がる。その結果、n領域15およびp型ボディ領域14を貫通するとともに、炭化珪素基板11の主表面11Aに沿った方向(図5では紙面奥行き方向)に延在するトレンチ19が形成される。
 このとき、図6を参照して、たとえば基板10の主表面10Aを、(000-1)面に対して8°以下のオフ角を有するものとすることができる。これにより、トレンチ19の側壁面19Aを、化学的に安定な結晶面、たとえば(0-33-8)面を含む(0-11-2)面とすることができる。その結果、側壁面19Aの面粗さを大幅に低減するとともに、チャネル抵抗を低減することが可能となる。その後、図7に示すようにマスク層90を除去することにより、トレンチ19が完成する。このような手順により、トレンチ19の側壁面19Aの微視的な表面粗さをRMSで1.0nm以下にまで低減するとともに、側壁面19Aの表面粗さを、主表面10Aおよび底壁面19Bの表面粗さよりも小さくすることができる。
 次に、工程(S80)として電位保持領域形成工程が実施される。この工程(S80)では、図7および図8を参照して、工程(S40)において形成されたn領域15に、たとえばAlイオンが注入されることによりp領域16が形成される。このp領域16を形成するためのイオン注入は、たとえばn領域15の表面上に二酸化珪素(SiO)からなり、イオン注入を実施すべき所望の領域に開口を有するマスク層を形成して実施することができる。これにより、MOSFET1を構成する基板10が完成する。
 次に、工程(S90)として活性化アニール工程が実施される。この工程(S90)では、上記基板10を加熱することにより、工程(S30)、(S40)および(S80)において導入された不純物を活性化する。具体的には、基板10が、たとえば1600℃以上1900℃以下の温度域に加熱され、1分間以上30分間以下の時間保持される。これにより、不純物が導入された領域において所望のキャリアが生成する。
 次に、工程(S100)としてゲート酸化膜形成工程が実施される。この工程(S100)では、図9を参照して、たとえば酸素雰囲気中において1300℃に加熱して60分間保持する熱処理が実施されることにより、ゲート酸化膜21が形成される。
 次に、工程(S110)としてゲート電極形成工程が実施される。この工程(S110)では、図10を参照して、たとえばLPCVD(Low Pressure Chemical Vapor Deposition)法によりトレンチ19を充填するポリシリコン膜が形成される。これにより、ゲート電極23が形成される。
 次に、工程(S120)として層間絶縁膜形成工程が実施される。この工程(S120)では、図10および図11を参照して、たとえばP(Plasma)-CVD法により、絶縁体であるSiOからなる層間絶縁膜24が、ゲート電極23およびゲート酸化膜21を覆うように形成される。
 次に、工程(S130)としてオーミック電極形成工程が実施される。この工程(S130)では、図11を参照して、まずソースコンタクト電極22を形成すべき所望の領域に、層間絶縁膜24およびゲート酸化膜21を貫通する孔部が形成される。そして、当該孔部を充填するように、たとえばNiからなる膜が形成される。一方、炭化珪素基板11においてドリフト層12の側とは反対側の主表面に接触するように、ドレイン電極26となるべき膜、たとえばNiからなる膜が形成される。その後、合金加熱処理が実施され、上記Niからなる膜の少なくとも一部がシリサイド化されることにより、ソースコンタクト電極22およびドレイン電極26が完成する。
 次に、工程(S140)として配線形成工程が実施される。この工程(S140)では、図11および図1を参照して、たとえば蒸着法により導電体であるAlからなるソース配線25が、主表面10A上において、層間絶縁膜24およびソースコンタクト電極22の上部表面を覆うように形成される。さらに、同様にAlからなる裏面保護電極27が、ドレイン電極26を覆うように形成される。以上の手順により、本実施の形態における半導体装置としてのMOSFET1の製造が完了する。
 なお、上記実施の形態においては、本発明の半導体装置の一例としてトレンチ型のMOSFETについて説明したが、本発明の半導体装置はこれに限られず、トレンチ型のIGBT(Insulated Gate Bipolar Transistor)など、トレンチゲートを有する半導体装置に、広く適用することができる。
 今回開示された実施の形態はすべての点で例示であって、制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味、および範囲内でのすべての変更が含まれることが意図される。
 本発明の半導体装置は、トレンチゲートを有する半導体装置に、特に有利に適用され得る。
 1 MOSFET、10 基板、10A 主表面、11 炭化珪素基板、11A,11B 主表面、12 ドリフト層、14 p型ボディ領域、15 n領域、16 p領域、19 トレンチ、19A 側壁面、19B 底壁面、21 ゲート酸化膜、22 ソースコンタクト電極、23 ゲート電極、24 層間絶縁膜、25 ソース配線、26 ドレイン電極、27 裏面保護電極、90 マスク層、90A 開口。

Claims (8)

  1.  一方の主表面側に開口し、側壁面を有するトレンチが形成され、炭化珪素からなる基板と、
     前記側壁面上に接触して形成されたゲート絶縁膜と、
     前記ゲート絶縁膜上に接触して形成されたゲート電極とを備え、
     前記基板は、
     前記側壁面において露出するように配置された第1導電型のソース領域と、
     前記ソース領域から見て前記一方の主表面とは反対側に配置され、前記ソース領域に接触し、前記側壁面において露出する第2導電型のボディ領域とを含み、
     前記側壁面の一辺100nmの正方形領域内における表面粗さはRMSで1.0nm以下である、半導体装置。
  2.  前記側壁面の表面粗さは、前記主表面の表面粗さよりも小さい、請求項1に記載の半導体装置。
  3.  前記トレンチは、前記側壁面に交差するように形成された底壁面をさらに有し、
     前記側壁面の表面粗さは、前記底壁面の表面粗さよりも小さい、請求項1または2に記載の半導体装置。
  4.  前記側壁面が前記基板を構成する炭化珪素の{01-12}面に対してなす角は、前記主表面が前記基板を構成する炭化珪素の{0001}面に対してなす角よりも小さい、請求項1~3のいずれか1項に記載の半導体装置。
  5.  前記主表面が前記基板を構成する炭化珪素の{0001}面に対してなす角は8°以下である、請求項1~4のいずれか1項に記載の半導体装置。
  6.  前記側壁面は、前記基板を構成する炭化珪素の特定の結晶面である、請求項1~5のいずれか1項に記載の半導体装置。
  7.  前記側壁面は、前記基板を構成する炭化珪素の(0-33-8)面を含む(0-11-2)面である、請求項6に記載の半導体装置。
  8.  前記側壁面は、熱エッチングにより形成されている、請求項6または7に記載の半導体装置。
PCT/JP2012/076488 2011-12-19 2012-10-12 半導体装置 WO2013094287A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201280054320.4A CN103930996B (zh) 2011-12-19 2012-10-12 半导体器件
EP12859841.4A EP2797118B1 (en) 2011-12-19 2012-10-12 Semiconductor device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-277046 2011-12-19
JP2011277046A JP5870672B2 (ja) 2011-12-19 2011-12-19 半導体装置

Publications (1)

Publication Number Publication Date
WO2013094287A1 true WO2013094287A1 (ja) 2013-06-27

Family

ID=48609222

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/076488 WO2013094287A1 (ja) 2011-12-19 2012-10-12 半導体装置

Country Status (5)

Country Link
US (1) US20130153925A1 (ja)
EP (1) EP2797118B1 (ja)
JP (1) JP5870672B2 (ja)
CN (1) CN103930996B (ja)
WO (1) WO2013094287A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6136731B2 (ja) * 2013-08-06 2017-05-31 住友電気工業株式会社 炭化珪素半導体基板およびその製造方法、ならびに炭化珪素半導体装置の製造方法
CN106952876A (zh) * 2017-03-16 2017-07-14 浙江大学 一种金属叠层填沟槽阵列的碳化硅衬底结构
CN106960871A (zh) * 2017-03-16 2017-07-18 浙江大学 一种带沟槽阵列和空腔的碳化硅衬底结构
CN108735795B (zh) * 2017-04-21 2021-09-03 苏州能屋电子科技有限公司 (0001)面外延的六方相SiC晶圆、UMOSFET器件及其制作方法
US10749001B2 (en) 2017-12-06 2020-08-18 Fuji Electric Co., Ltd. Method of evaluating insulated-gate semiconductor device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0974191A (ja) 1995-09-06 1997-03-18 Denso Corp 炭化珪素半導体装置の製造方法
WO2005116307A1 (ja) * 2004-05-27 2005-12-08 Bridgestone Corporation 炭化ケイ素単結晶ウェハの製造方法
JP2007165657A (ja) * 2005-12-14 2007-06-28 Fuji Electric Holdings Co Ltd 半導体装置の製造方法および半導体装置
JP2007258465A (ja) * 2006-03-23 2007-10-04 Fuji Electric Holdings Co Ltd 半導体装置
JP2007281195A (ja) * 2006-04-06 2007-10-25 Sharp Corp パワーicデバイス及びその製造方法
JP2008135653A (ja) * 2006-11-29 2008-06-12 Sumitomo Electric Ind Ltd 炭化珪素半導体装置の製造方法
JP2009302510A (ja) * 2008-03-03 2009-12-24 Fuji Electric Device Technology Co Ltd トレンチゲート型半導体装置およびその製造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005012051A (ja) * 2003-06-20 2005-01-13 Toshiba Corp 高耐圧半導体装置及びその製造方法
JP2005150398A (ja) * 2003-11-14 2005-06-09 Fuji Electric Device Technology Co Ltd 半導体装置の製造方法および半導体の表面処理方法
JP5017768B2 (ja) * 2004-05-31 2012-09-05 富士電機株式会社 炭化珪素半導体素子
JP2006351744A (ja) * 2005-06-15 2006-12-28 Fuji Electric Holdings Co Ltd 炭化珪素半導体装置の製造方法
JP5017823B2 (ja) * 2005-09-12 2012-09-05 富士電機株式会社 半導体素子の製造方法
JP5509520B2 (ja) * 2006-12-21 2014-06-04 富士電機株式会社 炭化珪素半導体装置の製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0974191A (ja) 1995-09-06 1997-03-18 Denso Corp 炭化珪素半導体装置の製造方法
WO2005116307A1 (ja) * 2004-05-27 2005-12-08 Bridgestone Corporation 炭化ケイ素単結晶ウェハの製造方法
JP2007165657A (ja) * 2005-12-14 2007-06-28 Fuji Electric Holdings Co Ltd 半導体装置の製造方法および半導体装置
JP2007258465A (ja) * 2006-03-23 2007-10-04 Fuji Electric Holdings Co Ltd 半導体装置
JP2007281195A (ja) * 2006-04-06 2007-10-25 Sharp Corp パワーicデバイス及びその製造方法
JP2008135653A (ja) * 2006-11-29 2008-06-12 Sumitomo Electric Ind Ltd 炭化珪素半導体装置の製造方法
JP2009302510A (ja) * 2008-03-03 2009-12-24 Fuji Electric Device Technology Co Ltd トレンチゲート型半導体装置およびその製造方法

Also Published As

Publication number Publication date
CN103930996A (zh) 2014-07-16
EP2797118B1 (en) 2022-03-30
EP2797118A4 (en) 2015-08-12
CN103930996B (zh) 2017-02-15
JP2013128050A (ja) 2013-06-27
JP5870672B2 (ja) 2016-03-01
EP2797118A1 (en) 2014-10-29
US20130153925A1 (en) 2013-06-20

Similar Documents

Publication Publication Date Title
JP5759293B2 (ja) 半導体装置の製造方法
US9608074B2 (en) Silicon carbide semiconductor device and method for manufacturing silicon carbide semiconductor device
TW201216409A (en) Process for production of semiconductor device
TW201251023A (en) Semiconductor device
US8941120B2 (en) Semiconductor device and method for manufacturing the same
WO2013038862A1 (ja) 炭化珪素半導体装置の製造方法
JPWO2010116887A1 (ja) 絶縁ゲート型電界効果トランジスタ
JP2012243966A (ja) 半導体装置
JP5834801B2 (ja) 半導体装置の製造方法および半導体装置
JP5870672B2 (ja) 半導体装置
US8809945B2 (en) Semiconductor device having angled trench walls
KR20140031846A (ko) 반도체 장치의 제조 방법
JP5626037B2 (ja) 半導体装置の製造方法
WO2022270245A1 (ja) 炭化珪素半導体装置
JP7156313B2 (ja) 炭化珪素半導体装置
WO2015076020A1 (ja) 半導体装置
JP6070790B2 (ja) 半導体装置の製造方法および半導体装置
JP2023023614A (ja) 炭化珪素半導体装置
JP2023104657A (ja) 炭化珪素半導体装置
JP2015095511A (ja) 炭化珪素半導体装置およびその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12859841

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE