WO2010116729A1 - リチウム二次電池用セパレータ、およびそれを用いたリチウム二次電池 - Google Patents

リチウム二次電池用セパレータ、およびそれを用いたリチウム二次電池 Download PDF

Info

Publication number
WO2010116729A1
WO2010116729A1 PCT/JP2010/002519 JP2010002519W WO2010116729A1 WO 2010116729 A1 WO2010116729 A1 WO 2010116729A1 JP 2010002519 W JP2010002519 W JP 2010002519W WO 2010116729 A1 WO2010116729 A1 WO 2010116729A1
Authority
WO
WIPO (PCT)
Prior art keywords
separator
layer
lithium secondary
lubricating layer
electrode group
Prior art date
Application number
PCT/JP2010/002519
Other languages
English (en)
French (fr)
Inventor
柴野靖幸
山本典博
篠原泰雄
渡辺耕一郎
Original Assignee
パナソニック株式会社
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社, 住友化学株式会社 filed Critical パナソニック株式会社
Priority to US13/062,151 priority Critical patent/US20110159347A1/en
Priority to CN2010800026209A priority patent/CN102160212A/zh
Publication of WO2010116729A1 publication Critical patent/WO2010116729A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/423Polyamide resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/426Fluorocarbon polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/431Inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/443Particulate material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • H01M50/451Separators, membranes or diaphragms characterised by the material having a layered structure comprising layers of only organic material and layers containing inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • H01M50/457Separators, membranes or diaphragms characterised by the material having a layered structure comprising three or more layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/491Porosity
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a separator for a lithium secondary battery and a lithium secondary battery using the same. More specifically, the present invention relates to an improvement for facilitating the configuration of an electrode group of a lithium secondary battery.
  • lithium secondary batteries that can be repeatedly charged and discharged and have a high energy density have been used as power sources for mobile devices such as notebook computers and mobile phones.
  • the lithium secondary battery since the lithium secondary battery has a high energy density, if the lithium secondary battery is misused such as an external short circuit, the battery reaction may be abrupt and the battery temperature may increase. Therefore, the lithium secondary battery is provided with a safety mechanism such as a PTC (Positive Temperature Coefficient) element or an SU circuit (protection circuit).
  • a separator disposed between the positive electrode and the negative electrode, which are power storage units, is also provided with a safety mechanism against an increase in battery temperature.
  • a porous film containing polyolefin is used for the separator.
  • a sheet-like positive electrode, a negative electrode, and a separator are wound in a spiral shape so that the positive electrode and the negative electrode are alternately stacked with the separator in between. Make it.
  • a non-aqueous electrolyte is injected, and the opening of the battery case is sealed, thereby producing a lithium secondary battery.
  • the electrode group is formed by winding the positive electrode and the negative electrode together with the separator while rotating the two cores with the end of the separator sandwiched between the two metal cores. Is done. Winding is performed with separators disposed between the positive electrode and the negative electrode and in the innermost layer. After the winding is completed, the space between the two cores is widened and the core is removed from the electrode group.
  • the slipperiness of the separator with respect to the core is small, the core may not be removed from the electrode group, or the separator may be caught on the burr of the electrode and the separator may be damaged. For this reason, it is necessary to constantly monitor the extraction state of the core, resulting in an increase in manufacturing cost. If there is a hindrance to the winding core extraction process, the production line needs to be stopped and readjusted, resulting in a decrease in productivity.
  • Patent Document 1 proposes to improve the slipperiness of the separator by embedding a part of the particles in a protruding state on the surface of the separator.
  • Patent Document 2 proposes to use a porous film having an outer surface portion of polypropylene containing 50 ppm or more of calcium stearate as a separator.
  • Patent Document 1 there is a possibility that a portion of the porous film where the spherical particles do not protrude comes into contact with the core. If the surface of the porous film and the core are in direct contact, it will be difficult to smoothly pull out the core. Moreover, since spherical particles are embedded in the porous film, the slipperiness is insufficient.
  • a porous film is produced by extrusion molding.
  • it is necessary to add a large amount of particles in order to ensure a good release property by projecting a part of spherical particles from the surface.
  • the film formability deteriorates.
  • Patent Document 2 it is difficult to sufficiently improve the removability of the core in the battery only by adding calcium stearate. Furthermore, if the content of calcium stearate is increased, the film formability is reduced as described above.
  • the present invention has been made in view of the above problems, and provides a separator for a lithium secondary battery capable of smoothly pulling out a core from a wound electrode group.
  • One aspect of the present invention comprises a porous film including a polyolefin layer, and a lubricating layer including a particulate material disposed on the surface of the porous film, and the three-dimensional surface roughness of the lubricating layer is
  • the present invention relates to a separator for a lithium secondary battery having a thickness of 0.15 to 1.45 ⁇ m.
  • Another aspect of the present invention is a positive electrode, a negative electrode, and an electrode group including the separator interposed between the positive electrode and the negative electrode, a non-aqueous electrolyte, and a battery containing the electrode group and the non-aqueous electrolyte.
  • the present invention relates to a lithium secondary battery including a case.
  • the slipperiness of the separator with respect to the winding core can be remarkably improved.
  • the removability of the core from the electrode group is improved, and the core can be smoothly pulled out.
  • FIG. 1 is a schematic cross-sectional view of a lithium secondary battery according to an embodiment of the present invention. It is a top view which shows typically the arrangement
  • FIG. 1 is a schematic cross-sectional view of a prismatic lithium secondary battery showing an example of an embodiment of the present invention.
  • the battery 10 includes a thin box-shaped battery case 1, an electrode group 20 accommodated in the case 1, and a non-aqueous electrolyte (not shown).
  • the electrode group 20 includes a rectangular flat surface and side surfaces having curved surfaces located at both ends of the flat surface.
  • the electrode group 20 is configured by winding a long strip-shaped positive electrode 2 and a negative electrode 3 in a spiral shape with a long strip-shaped separator 4 interposed therebetween. At this time, the separator 4 is disposed on the innermost periphery of the electrode group 20. In the example of FIG. 1, the positive electrode 2, the negative electrode 3, and the separator 4 are wound so that the innermost separator 4 and the negative electrode 3 are in contact with each other.
  • FIG. 2 is a top view for schematically explaining the configuration of the electrode group 20 using a winding core.
  • two rectangular metal thin plates are used as the winding core 21, and the positive electrode 2 and the negative electrode 3 are wound with the separator 4 interposed therebetween.
  • the separator 4, one of the positive electrode 2 or the negative electrode 3, another separator 4, and the other of the positive electrode 2 or the negative electrode 3 are arranged in this order, and the end portions of the two separators 4 are The sheet is sandwiched between the cores 21.
  • the wound electrode group 20 is configured.
  • the space between the two cores 21 is widened to release the end of the separator 4 and the core 21 is extracted from the electrode group 20 in the direction of arrow A.
  • FIG. 3 is a schematic cross-sectional view of the separator 4.
  • the separator 4 includes a porous film 12 and a lubricating layer 14 containing particulate matter 22 disposed on the surface thereof.
  • the illustrated porous film 12 includes, for example, a porous polyolefin layer 16 mainly composed of polyethylene (PE), and a heat-resistant porous layer 18 interposed between the polyolefin layer 16 and the lubricating layer 14. To do.
  • the heat resistant porous layer 18 contains, for example, polyamide as a main component.
  • the heat-resistant porous layer 18 is formed only on one side of the polyolefin layer 16, and the lubricating layer 14 is formed on the surface of the heat-resistant porous layer 18.
  • the heat resistant porous layer 18 may be formed on both surfaces of the polyolefin layer 16.
  • the lubricating layer 14 may be formed on at least one surface of the porous film 12 or may be formed on both surfaces.
  • the heat resistant porous layer 18 may be formed on both surfaces of the polyolefin layer 16, and the lubricating layer 14 may be formed on the surface of one heat resistant porous layer 18.
  • FIG. 3 schematically shows an example of the arrangement of the heat-resistant porous layer 18 and the lubricating layer 14, and the ratio of the thickness of each layer does not necessarily match the actual one.
  • the lubricating layer 14 is provided on the surface of the base material 12 so that the core is smoothly extracted after the electrode group 20 is configured. Therefore, the lubricating layer 14 is not necessarily provided on the entire separator 14, and may be provided only on a portion that contacts the winding core when winding. In addition, a lubricating layer is disposed in a portion that contacts the core of the separator 4, for example, a portion that is disposed on the innermost periphery of the electrode group of the separator 4, and other than the innermost periphery (intervening between the positive electrode and the negative electrode). The lubricating layer does not have to be disposed in the portion).
  • the lubricating layer 14 may be formed only on the part of the separator 4 that contacts the side end of the core.
  • the lubricating layer 14 is formed by disposing, for example, a particulate material 22 such as polytetrafluoroethylene particles on the surface of the heat resistant porous layer 18.
  • the lubrication layer 14 is formed by applying a dispersion containing the particulate matter 22 to the surface of the heat resistant porous layer 18 and drying to adhere the particulate matter 22 to the surface of the heat resistant porous layer 18. May be.
  • a dispersion an aqueous dispersion containing a surfactant can be used as the dispersion.
  • the lubricating layer 14 does not contain a binder such as resin, and the particulate matter 22 adheres to the surface of the polyolefin layer 16 or the heat-resistant porous layer 18 due to the action of electrostatic force or surfactant. It is formed. The particles of the particulate substance 22 are aggregated with each other due to the electrostatic force or the action of the surfactant. Therefore, the lubricating layer 14 has high slipperiness due to the movement of the particulate matter 22 with an external force of rubbing with a finger. That is, the particulate matter 22 is disposed so as to be movable with respect to the porous film 12.
  • the lubricating layer 14 has a specific surface roughness due to the particulate matter 22 being disposed on the surface of the porous film 12.
  • the surface roughness of the lubricating layer 14 is set such that the surface roughness Sa (three-dimensional surface roughness) is 0.15 to 1.45 ⁇ m, for example, in the initial state immediately after drying or before constituting the electrode group. Yes.
  • L x is the measurement length in the X direction
  • Ly is the measurement length in the Y direction.
  • the three-dimensional surface roughness Sa of the lubricating layer is preferably 0.18 to 1.42 ⁇ m, more preferably 0.19 to 1.41 ⁇ m, and particularly 0.2 to 1.4 ⁇ m.
  • the surface roughness Sa is less than 0.15 ⁇ m, the slipperiness decreases as the contact area between the core 21 and the lubricating layer 14 increases.
  • the surface roughness Sa exceeds 1.45 ⁇ m, the amount of the particulate matter 22 falling from the lubricating layer 14 increases, or the distance between the positive electrode 2 and the negative electrode 3 arranged with the separator 4 interposed therebetween is increased. It becomes non-uniform. As a result, battery characteristics may be impaired.
  • the three-dimensional surface roughness can be adjusted by appropriately selecting the kind, shape, size (particle diameter, etc.) of the particulate matter, the weight of the particulate matter contained in the lubricating layer, and the like. For example, the size of the particulate matter and / or the weight of the particulate matter in the lubricating layer is adjusted.
  • the particulate material 22 is not limited to the polytetrafluoroethylene, and particulate materials such as organic polymer compounds and inorganic compounds can be used.
  • the particulate matter 22 is preferably electrochemically stable because the particulate matter 22 that has fallen may come into contact with the positive electrode 2 or the negative electrode 3 with the use of the secondary battery.
  • the particulate matter 22 contacts the nonaqueous electrolyte in the battery case 1, it is preferable that the particulate matter 22 is stable with respect to a solvent (such as an organic solvent) contained in the nonaqueous electrolyte.
  • the organic polymer compound constituting the particulate material 22 include, for example, a halogen atom-containing polymer such as a fluorine-containing polymer (a homopolymer or a copolymer containing a halogen atom-containing olefin such as vinyl halide as a constituent monomer) ), Polyolefins (olefins such as polyethylene, polypropylene, and ethylene-propylene copolymers, or copolymers), and polyesters (polyalkylene terephthalates such as polyethylene terephthalate and polybutylene terephthalate).
  • a halogen atom-containing polymer such as a fluorine-containing polymer (a homopolymer or a copolymer containing a halogen atom-containing olefin such as vinyl halide as a constituent monomer)
  • Polyolefins olefins such as polyethylene, polypropylene, and ethylene-propy
  • fluorine-containing polymers such as fluorine-containing polymers having a small wear coefficient
  • polyolefins are preferred.
  • Preferred fluorine-containing polymers include, for example, fluoroolefins such as polytetrafluoroethylene (PTFE) and perfluoroethylenepropylene copolymer (FEP), or olefins such as ethylene-tetrafluoroethylene copolymer (ETFE).
  • PTFE polytetrafluoroethylene
  • FEP perfluoroethylenepropylene copolymer
  • ETFE ethylene-tetrafluoroethylene copolymer
  • PFA perfluoroalkoxyalkane polymer
  • the inorganic compound examples include an oxide of at least one element selected from silicon, aluminum, titanium, magnesium, zirconium, calcium, and the like (for example, silica, alumina, titania, magnesia, zirconia, calcium oxide), the element And nitrides or carbonates, and silicate minerals such as talc and mica.
  • the oxides or carbonates for example, SiO 2 , Al 2 O 3 , TiO 2 , MgO, ZrO 2 , CaO, CaCO 3
  • talc, mica, and the like are exemplified. preferable.
  • the particulate matter organic polymer compound and / or inorganic compound
  • the particulate matter 22 may be, for example, a short fiber or needle shape, but is usually a granular material having a spherical shape, a spheroidal shape, a plate shape, a rod shape, or the like.
  • the particulate material 22 is preferably a spherical (such as a sphere having an average aspect ratio of 1 to 2 or a substantially spherical shape).
  • the average particle size (median diameter in the volume-based particle size distribution) of the particulate material 22 is, for example, 0.01 to 1 ⁇ m, preferably 0.02 to 0.9 ⁇ m, and more preferably 0.03 to 0.8 ⁇ m. . If the average particle size is too small, the surface of the lubricating layer 14 becomes flat and it becomes difficult to adjust the surface roughness Sa. If the average particle size of the particulate material 22 is too large, the surface roughness Sa increases, but the exposed portion of the porous film 12 increases, and the slipperiness due to the lubricating layer 14 may decrease.
  • the particulate matter 22 may be used by mixing two or more kinds of particles having different average particle diameters and / or materials.
  • the weight (dry weight) of the particulate material 22 of the lubricating layer 14 contained per 1 m 2 of the surface of the porous film 12 depends on the kind of the particulate material, but is, for example, in the range of 0.1 to 2 g. It can be selected, preferably 0.1 to 1.5 g, more preferably 0.2 to 1 g, especially 0.2 to 0.8 g. If the weight of the particulate matter 22 per unit area of the lubricating layer 14 is too small, the area in which the porous film 12 having a low slip property and the core 21 are in direct contact with each other increases, and the drawability of the core 21 decreases. There is a case.
  • the lubricating layer 14 only needs to be able to dispose the particulate material 22 on the surface of the porous film 12, and is not limited to the above-described application, and can also be formed by a printing method, a spray method, or the like.
  • the particulate matter 22 is usually disposed by applying a dispersion liquid in which the particulate matter is dispersed in a dispersion medium to the surface of the porous film 12 by the above-described method such as coating, and further drying the dispersion medium. Can do.
  • dispersion medium examples include water, alcohols such as methanol, ethanol, and ethylene glycol (such as C 2-4 alkanol or C 2-4 alkanediol); ketones such as acetone; ethers such as diethyl ether; nitriles such as acetonitrile; Examples thereof include N-methyl-2-pyrrolidone (NMP).
  • alcohols such as methanol, ethanol, and ethylene glycol (such as C 2-4 alkanol or C 2-4 alkanediol)
  • ketones such as acetone
  • ethers such as diethyl ether
  • nitriles such as acetonitrile
  • examples thereof include N-methyl-2-pyrrolidone (NMP).
  • NMP N-methyl-2-pyrrolidone
  • the dispersion may contain a surfactant if necessary.
  • Surfactants include anionic surfactants such as alkyl sulfate esters, nonionic surfactants such as polyoxyethylene alkyl ethers, polyoxyalkylene derivatives, sorbitan fatty acid esters, and cationic surfactants such as alkylamine salts. Examples thereof include amphoteric surfactants such as surfactants and alkylbetaines. Surfactants can be used singly or in combination of two or more.
  • the ratio of the surfactant is preferably 0.01 to 50 parts by weight with respect to 100 parts by weight of the particulate matter in terms of solid content.
  • the drying temperature and time can be appropriately selected according to the volatility of the dispersion medium.
  • the average thickness of the lubricating layer 14 is, for example, 0.05 to 3 ⁇ m, preferably 0.05 to 2.5 ⁇ m, more preferably 0.05 to 2 ⁇ m, or 0.3 to 2 ⁇ m.
  • the average thickness can be determined by a known method, for example, non-contact surface shape measurement using a laser beam or an electron beam.
  • the separator of the present invention is particularly advantageous when producing an electrode group of a square battery. Deformation of the electrode group accompanying pulling of the winding core (the innermost part of the electrode group is dragged out together with the winding core and protrudes from the end portion, etc.) is suppressed. When the electrode group is greatly deformed by pulling out the winding core, a large frictional force acts between the winding core and the separator, and the possibility that the separator is damaged increases. Therefore, by suppressing the deformation of the electrode group, a highly reliable electrode group can be manufactured.
  • porous film 12 only needs to have a porous polyolefin layer 16, and does not necessarily have to include the heat resistant porous layer 18.
  • the porous film 12 is formed of only the polyolefin layer 16, the lubricating layer 14 is formed on at least one surface of the polyolefin layer 16.
  • the polyolefin layer 16 is a porous layer containing, in addition to the PE, for example, a polyolefin such as polypropylene (PP) or an ethylene-propylene copolymer, or a polyolefin such as a copolymer thereof.
  • a polyolefin such as polypropylene (PP) or an ethylene-propylene copolymer
  • PP polypropylene
  • ethylene-propylene copolymer ethylene-propylene copolymer
  • a polyolefin such as a copolymer thereof.
  • the polyolefin layer may contain other polymers together with the polyolefin. Softening, melting, or shrinkage of the polyolefin layer 16 may be prevented by selecting other polymer types and / or amounts used.
  • polystyrene rubber-containing polystyrene, styrene polymers such as acrylonitrile-styrene copolymers; polyesters such as polyethylene terephthalate; polyamides such as polyamide 6 and polyamide 12; acrylic polymers such as polymethyl methacrylate; cellulose derivatives; Examples thereof include thermoplastic polymers such as plastic elastomers.
  • the proportion of polyolefin in the porous film is, for example, 50 to 100% by weight.
  • the thickness of the polyolefin layer is preferably in the range of 5 to 200 ⁇ m.
  • the average pore size of the polyolefin layer is preferably 0.05 to 2 ⁇ m.
  • the porosity of the polyolefin layer is preferably 25 to 75% by volume, for example.
  • a commercially available porous film may be used, and a polymer material (polymer material including polyolefin) as a raw material by a known porous film molding method (extrusion molding, blow molding, inflation molding, coating method, etc.) ) May be formed and stretched.
  • the stretching process may be either uniaxial or biaxial stretching.
  • a known pore agent or the like may be used for film formation.
  • the porous film 12 may have a heat-resistant porous layer 18.
  • a heat-resistant porous layer 18 When the proportion of polyolefin contained in the polyolefin layer 16 is large, it is advantageous to form the heat-resistant porous layer 18 on the surface.
  • the heat resistant porous layer 18 (or a material constituting the heat resistant porous layer) has a higher melting point or heat distortion temperature than the polyolefin layer.
  • Such a heat-resistant porous layer usually contains a high heat-resistant polymer.
  • heat-resistant polymers include polyolefins having a melting point of 150 ° C. or higher such as PP; amide bond-containing polymers such as polyamides, polyamide copolymers, and aramids; polyvinylidene fluoride (PVDF), vinylidene fluoride and propylene hexafluoride (HFP) Fluorine-containing polymers such as copolymers (PVDF-HFP) and PTFE; Polymers containing imide bonds such as polyimide (PI), polyamideimide (PAI) and polyetherimide (PEI); polyethylene terephthalate (PET), polypropylene terephthalate (PPT) ), Polytrimethylene terephthalate (PTT), polybutylene terephthalate (PBT), polyethylene naphthalate (PEN), polybutylene naphthalate (PBN), etc.
  • PI polyimide
  • PAI polyamideimide
  • PPT polyetherimide
  • PET poly
  • Polyarylate polymers having sulfone groups such as polysulfone (PSF), polyethersulfone (PES); polyphenylene ether (PPE); polycarbonate (PC); polyphenylene sulfide (PPS); polyetherketone (PEK) and Aromatic polyether ketone polymers such as polyether ether ketone (PEEK); polyacetal (POM); polyether nitrile (PEN) and the like.
  • the heat resistant porous layer 18 may contain the above polymers alone or in combination of two or more thereof. In addition, you may use another polymer together with the said polymer.
  • at least one selected from the group consisting of an amide bond-containing polymer, a fluorine-containing polymer, an imide bond-containing polymer, and a polyolefin is preferable.
  • PP, PVDF, PVDF-HFP, PI, PAI, and aramid are preferable.
  • the melting point or heat distortion temperature of the polymer material constituting the heat resistant porous layer is, for example, greater than 150 ° C. and 800 ° C. or less.
  • the heat resistant porous layer 18 may contain an inorganic filler, if necessary.
  • an inorganic filler the inorganic compounds exemplified above can be used.
  • ceramic particles such as silica, alumina, titania, magnesia, zirconia are particularly preferable.
  • the average particle size of the inorganic filler is preferably 0.001 to 2 ⁇ m.
  • the proportion of the inorganic filler is 1 to 1000 parts by weight, preferably 10 to 700 parts by weight, and more preferably 50 to 500 parts by weight with respect to 100 parts by weight of the raw material polymer constituting the heat resistant porous layer 18.
  • the thickness of the heat-resistant porous layer 18 can be selected from the range of 0.01 to 50 ⁇ m, preferably 0.1 to 20 ⁇ m, more preferably 0.5 to 10 ⁇ m.
  • the average pore diameter and porosity of the heat-resistant porous layer 18 can be appropriately selected from the same range as that of the porous film.
  • the heat-resistant porous layer 18 can be formed by applying a coating liquid containing a raw material polymer to a porous polyolefin layer by a known coating method and drying.
  • a coating liquid a solution or dispersion containing a raw material polymer can be used.
  • the solvent for the coating solution examples include alcohols such as methanol, ethanol, and ethylene glycol (C 2-4 alkanol or C 2-4 alkanediol); ketones such as acetone; ethers such as diethyl ether and tetrahydrofuran; amides such as dimethylformamide Nitriles such as acetonitrile; sulfoxides such as dimethyl sulfoxide; N-methyl-2-pyrrolidone (NMP) and the like. These solvents can be used alone or in combination of two or more.
  • alcohols such as methanol, ethanol, and ethylene glycol (C 2-4 alkanol or C 2-4 alkanediol)
  • ketones such as acetone
  • ethers such as diethyl ether and tetrahydrofuran
  • amides such as dimethylformamide Nitriles such as acetonitrile
  • sulfoxides such as dimethyl sulfoxide
  • NMP N
  • the raw material polymer constituting the polyolefin layer 16 and the raw material polymer constituting the heat resistant porous layer 18 are coextruded and stretched to form a laminated film of the polyolefin layer 16 and the heat resistant porous layer 18. May be.
  • the total thickness of the separator is, for example, 5.05 to 250 ⁇ m, or 5.05 to 50 ⁇ m.
  • the positive electrode 2 includes a positive electrode current collector and a positive electrode active material layer carried thereon.
  • a known positive electrode current collector for non-aqueous secondary battery applications for example, a metal foil formed of aluminum, aluminum alloy, stainless steel, titanium, titanium alloy, or the like can be used.
  • the thickness of the positive electrode current collector is, for example, 1 to 100 ⁇ m, preferably 5 to 70 ⁇ m, and more preferably 10 to 50 ⁇ m.
  • any material that can occlude / release lithium ions can be used without particular limitation.
  • the positive electrode active material layer contains a conductive material, a binder and the like in addition to the positive electrode active material.
  • conductive materials include carbon blacks such as acetylene black, ketjen black, channel black, furnace black, lamp black, and thermal black; various graphites such as natural graphite and artificial graphite; and conductive fibers such as carbon fiber and metal fiber.
  • the binder for the positive electrode include, for example, polyvinylidene fluoride (PVdF), modified polyvinylidene fluoride, fluororesin such as polytetrafluoroethylene (PTFE); styrene butadiene copolymer rubber particles (SBR) or a modified product thereof.
  • Rubber particle binder having an acrylate unit; cellulose derivatives such as carboxymethylcellulose (CMC), and the like can be used.
  • the thickness of the positive electrode active material layer is not particularly limited, but is, for example, 0.1 to 150 ⁇ m, preferably 1 to 100 ⁇ m, and more preferably 10 to 90 ⁇ m.
  • the negative electrode 3 is composed of a negative electrode current collector and a negative electrode active material layer carried thereon.
  • a known negative electrode current collector for non-aqueous secondary battery applications for example, a metal foil formed of copper, copper alloy, nickel, nickel alloy, stainless steel, or the like can be used.
  • the thickness of the negative electrode current collector is, for example, 1 to 100 ⁇ m, preferably 2 to 50 ⁇ m, and more preferably 5 to 30 ⁇ m.
  • a metal including at least one selected from the group consisting of Li, Al, Zn, Sn, In, Si, Ta, and Nb, an alloy thereof, and an oxide (for example, SiO 0.3 , Ta 2 O 5 , Nb 2 O 5 ), carbon materials such as graphite and carbon nanotubes, lithium titanium oxide having a spinel structure such as Li 4 Ti 5 O 12 , Li 4 Fe 0.5 Ti 5 O 12 , Li 4 Zn 0.5 Ti 5 O 12 Products, sulfides such as TiS 2 , nitrogen compounds such as LiCo 2.6 O 0.4 N and Ta 3 N 5 , mixtures thereof, and those obtained by adding various metal elements to these materials.
  • any material that can occlude and release lithium ions can be used for the negative electrode without any particular limitation.
  • the negative electrode active material layer may include a negative electrode conductive material (such as the conductive material exemplified in the positive electrode conductive material) and / or a negative electrode binder (the positive electrode binder).
  • a negative electrode conductive material such as the conductive material exemplified in the positive electrode conductive material
  • a negative electrode binder the positive electrode binder
  • An exemplary binder may be contained.
  • the thickness of the negative electrode active material layer is not particularly limited, but is, for example, 0.1 to 150 ⁇ m, preferably 1 to 120 ⁇ m, and more preferably 10 to 100 ⁇ m.
  • the positive electrode 2 and the negative electrode 3 are not particularly limited, but the positive electrode active material or the negative electrode active material is supported on each current collector by a coating method, a sputtering method and a vapor deposition method, an aerosol vapor deposition method, a CVD method, a screen printing method, or the like. Can be produced.
  • the positive electrode or the negative electrode active material layer may be formed on one side of the current collector or on both sides.
  • Nonaqueous electrolyte It is desirable to use a non-aqueous solvent for the non-aqueous electrolyte in order to use lithium ions for charging and discharging. More preferably, the solvent has high ion conductivity when mixed with a lithium salt.
  • ethylene carbonate (EC), propylene carbonate (PC), ⁇ -butyrolactone (GBL), ethyl methyl carbonate (EMC), diethyl carbonate (DEC), dimethyl carbonate (DMC) and the like are preferable. You may use a solvent by 1 type or in mixture of 2 or more types. It is also more preferable to use a mixed solvent containing EC which is a high dielectric constant solvent.
  • the lithium salt used for the non-aqueous electrolyte is not particularly limited as long as it can be dissolved in the above non-aqueous solvent and can be used as an electrolyte for a lithium secondary battery.
  • the lithium salt for example, LiPF 6 , LiBF 4 , LiClO 4 , LiN (C 2 F 5 SO 2 ) 2 , and LiN (CF 3 SO 2 ) 2 are preferable. These lithium salts can be used alone or in combination of two or more. Since LiBF 4 has a lower ionic conductivity than LiPF 6 and LiClO 4 when dissolved in a non-aqueous solvent, it is preferably used in combination with other lithium salts.
  • the lithium salt concentration in the nonaqueous electrolyte is, for example, 0.1 to 3 mol / L, preferably 0.2 to 2.5 mol / L, and more preferably 0.5 to 2 mol / L.
  • the non-aqueous electrolyte has a low ionic conductivity when the concentration is low, and it becomes difficult to dissociate ions when the concentration is high. Accordingly, the ion conductivity tends to decrease if the lithium salt concentration is too high or too low.
  • Example 1 The separator 4 shown in FIG. 3 was produced according to the procedure shown below.
  • a porous film containing polyamide having a thickness of 3.5 ⁇ m was formed on one surface of the polyolefin layer 16.
  • the porous membrane containing polyamide was formed by applying a solution obtained by dissolving polyamide in N-methyl-2-pyrrolidone (NMP) to one side of the polyolefin layer 16 and drying.
  • NMP N-methyl-2-pyrrolidone
  • 200 parts by weight of inorganic oxide (alumina having an average particle diameter of 0.013 ⁇ m) was dispersed per 100 parts by weight of polyamide.
  • a PTFE spherical particle (particulate matter 22) having an average particle size of 0.2 ⁇ m is dispersed in a mixture of a surfactant and water to prepare a dispersion, and the dispersion is used as a heat resistant porous layer. 18 surfaces were coated. Thereafter, water was evaporated to form the lubricating layer 14.
  • the dry weight of the particulate matter 22 contained in the lubricating layer 14 was 0.5 g per 1 m 2 of the surface of the heat resistant porous layer 18 (that is, the surface of the porous film 12). Further, the surface roughness Sa of the lubricating layer 14 measured by an electron beam three-dimensional roughness analyzer (ERA-8800 manufactured by Elionix Co., Ltd.) was 1.0 ⁇ m. The acceleration voltage at this time was 5 kV, and the observation magnification was 200 times.
  • the positive electrode 2 was produced as follows. Lithium cobaltate (LiCoO 2 ) as a positive electrode active material, acetylene black (AB) as a conductive additive, and PVDF as a binder are mixed in a weight ratio of 100: 4: 3, and NMP is used as a solvent. A slurry was prepared.
  • This slurry was applied to both surfaces of an aluminum foil (thickness: 15 ⁇ m) as a positive electrode current collector, dried in an atmosphere at 110 ° C. for 30 minutes, and then rolled to produce positive electrode 2.
  • the thickness of the positive electrode 2 was 160 ⁇ m.
  • the negative electrode 3 was produced as follows. Artificial graphite as a negative electrode active material, a styrene-butadiene copolymer rubber particle binder as a binder, and carboxymethyl cellulose (CMC) as a thickener are mixed at a weight ratio of 100: 1: 1, A slurry was prepared using water as a dispersion medium.
  • CMC carboxymethyl cellulose
  • This slurry was applied to both sides of a copper foil (thickness 10 ⁇ m) as a current collector for the negative electrode, dried in an atmosphere of 110 ° C. for 30 minutes, and then rolled to prepare the negative electrode 3.
  • the thickness of the negative electrode 3 was 180 ⁇ m.
  • the space between the two cores 21 is widened, and as shown in FIG.
  • the core 21 was extracted in the direction A from the inside. At that time, whether or not the winding core 21 was smoothly removed was observed, and an appearance inspection of the produced electrode group 20 was performed.
  • the electrode group 20 was inserted into a bottomed square aluminum battery case having an opening. A non-aqueous electrolyte was injected into case 1 and the opening was sealed to produce 1,000 lithium secondary batteries. At this time, the electrode group 20 used only what passed the above-mentioned external appearance test.
  • a non-aqueous electrolyte a solution prepared by dissolving LiPF 6 as a lithium salt at a concentration of 1 mol / L in a solvent prepared by mixing ethylene carbonate (EC) and propylene carbonate (PC) at a volume ratio of 1: 3. It was used.
  • a charge / discharge test for evaluating battery characteristics was performed on the manufactured 1,000 lithium secondary batteries.
  • each battery was charged with a current of 2 hours until the voltage between the terminals reached 4.2V, and then discharged until the voltage between the terminals decreased to 3.0V.
  • the pause time between charging and discharging was 30 minutes.
  • the discharge capacity after repeating this charging / discharging 200 times was measured, the measured value was compared with the measured value of the initial discharge capacity, and the index with the initial discharge capacity being 100 was calculated. If the index was 70 or more, it was judged that the battery characteristics were good.
  • Example 2 As the particulate material 22, spherical particles of perfluoroethylenepropylene copolymer (FEP) having an average particle diameter of 0.2 ⁇ m are used, and the dry weight of the particulate material 22 in the lubricating layer 14 is 0.8 g / m 2 . Except for the change, 1,000 lithium secondary batteries were produced in the same manner as in Example 1. The surface roughness Sa of the formed lubricating layer 14 was 1.4 ⁇ m.
  • FEP perfluoroethylenepropylene copolymer
  • Example 1 In the same manner as in Example 1, when the electrode group 20 was configured, the state of extraction of the core 21 was observed, and an appearance inspection of the produced electrode group 20 was performed. Further, the battery characteristics were evaluated in the same procedure as in Example 1.
  • Example 3 Implementation was carried out except that spherical particles of SiO 2 having an average particle diameter of 0.1 ⁇ m were used as the particulate matter 22 and the dry weight of the particulate matter 22 in the lubricating layer 14 was changed to 0.3 g / m 2.
  • a lithium secondary battery was produced in the same manner as in Example 1.
  • the surface roughness Sa of the formed lubricating layer 14 was 0.2 ⁇ m.
  • Example 1 In the same manner as in Example 1, when the electrode group 20 was configured, the state of extraction of the core 21 was observed, and an appearance inspection of the produced electrode group 20 was performed. Further, the battery characteristics were evaluated in the same procedure as in Example 1.
  • Comparative Example 1 Except that PTFE spherical particles having an average particle diameter of 0.2 ⁇ m were used as the particulate matter 22 and the dry weight of the particulate matter 22 in the lubricating layer 14 was changed to 2.0 g / m 2. In the same manner as in Example 1, a lithium secondary battery was produced. The surface roughness Sa of the formed lubricating layer 14 was 1.5 ⁇ m.
  • Example 2 In the same manner as in Example 1, when forming the electrode group 20, the state of extraction of the core 21 was observed, and an appearance inspection of the manufactured electrode group 20 was performed. Further, the battery characteristics were evaluated in the same procedure as in Example 1.
  • Comparative Example 2 >> Except that PTFE spherical particles having an average particle diameter of 0.2 ⁇ m are used as the particulate matter 22 and the dry weight of the particulate matter 22 in the lubricating layer 14 is changed to 0.1 g / m 2. In the same manner as in Example 1, a lithium secondary battery was produced. The surface roughness Sa of the formed lubricating layer 14 was 0.1 ⁇ m.
  • Example 2 In the same manner as in Example 1, when forming the electrode group 20, the state of extraction of the core 21 was observed, and an appearance inspection of the manufactured electrode group 20 was performed. Further, the battery characteristics were evaluated in the same procedure as in Example 1.
  • Comparative Example 3 A lithium secondary battery was produced in the same manner as in Example 1 except that a separator composed only of the porous film 12 was produced without forming the lubricating layer 14.
  • Example 2 In the same manner as in Example 1, when forming the electrode group 20, the state of extraction of the core 21 was observed, and an appearance inspection of the manufactured electrode group 20 was performed. Further, the battery characteristics were evaluated in the same procedure as in Example 1.
  • Example 4 A lithium secondary battery was produced in the same manner as in Example 1 except that when the electrode group 20 was formed, the lubricating layer 14 was formed only on the portion of the porous film 12 that was in contact with the core 21.
  • Example 2 In the same manner as in Example 1, when forming the electrode group 20, the state of extraction of the core 21 was observed, and an appearance inspection of the manufactured electrode group 20 was performed. Further, the battery characteristics were evaluated in the same procedure as in Example 1.
  • Example 4 in which the lubricating layer 14 was formed only on the portion of the porous film 12 that was in contact with the core 21 when constituting the electrode group 20, the same results as in the other examples were obtained. From this, in order to achieve the effect of the present invention, it is understood that it is sufficient that the lubricating layer 14 is formed in a portion in contact with the core 21 of the separator 14.
  • Comparative Example 1 in which the surface roughness Sa of the lubricating layer 14 is 1.5 ⁇ m, the winding core 21 is smoothly extracted from the electrode group 20, and an electrode having an abnormality in the appearance inspection is also obtained. Group 20 did not exist. However, regarding the result of the charge / discharge test, there was a lithium secondary battery in which the charge / discharge cycle characteristics were lowered only in Comparative Example 1.
  • the lubricating layer 14 is formed so that the surface roughness Sa is in the range of more than 0.1 ⁇ m and less than 1.5 ⁇ m, so that sufficient slipping property with respect to the core 21 of the separator 4 is ensured.
  • the formation of the lubricating layer 14 is preferable from the viewpoint of not adversely affecting the battery characteristics.
  • the lithium secondary battery separator of the present invention exhibits good core pullability even when the electrode and separator are wound more closely when forming the electrode group. Therefore, it is useful as a separator for a lithium secondary battery in which high capacity and high output are particularly required as a power source for mobile devices and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Secondary Cells (AREA)
  • Cell Separators (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

 ポリオレフィン層16を含む多孔質フィルム12と、前記多孔質フィルム12の表面に配置された粒子状物質22を含む潤滑層14と、を具備するリチウム二次電池用セパレータ4において、前記潤滑層14の三次元表面粗さを0.15~1.45μmにする。前記粒子状物質22は、静電力により、前記多孔質フィルム12の表面に付着していてもよい。前記多孔質フィルム12は、更に、前記ポリオレフィン層16と前記潤滑層14との間に介在する耐熱性多孔質層18を具備していてもよい。このようなセパレータ4は、リチウム二次電池の巻芯の引き抜き性に優れている。

Description

リチウム二次電池用セパレータ、およびそれを用いたリチウム二次電池
 本発明は、リチウム二次電池用セパレータ、およびそれを用いたリチウム二次電池に関する。より詳細には、リチウム二次電池の電極群の構成を容易にするための改良に関する。
 近年、ノートパソコンや携帯電話等のモバイル機器の電源として、繰り返し充放電が可能で、高エネルギー密度を有するリチウム二次電池が利用されている。しかしながら、リチウム二次電池は、エネルギー密度が高いがために外部短絡などの誤使用があると電池反応が急激となり、電池温度が上昇する場合がある。そのため、リチウム二次電池にはPTC(Positive Temperture Coefficient:正温度特性)素子やSU回路(保護回路)などの安全機構が設けられる。さらに、蓄電体である正極と負極との間に配置されるセパレータにも、電池温度の上昇に対する安全機構が備えられている。セパレータには、ポリオレフィンを含む多孔質フィルムが使用される。
 リチウム二次電池では、正極と負極との間で、セパレータの孔中に含浸された非水電解質を通してリチウムイオンの移動が行われる。しかしながら、外部短絡などにより電池温度が上昇した場合には、その発生熱によりポリオレフィンが溶融し、セパレータが無孔化され、リチウムイオンの移動は行われなくなる。その結果、電池温度の上昇を抑制することができる。セパレータのこのような安全機能をシャットダウン機能という。シャットダウン機能が有効に発揮されるセパレータの材料としては、ポリエチレン(PE)およびポリプロピレン(PP)が広く知られている。
 リチウム二次電池の製造においては、まず、正極および負極がセパレータを間に挟んで交互に積層された状態となるように、シート状の正極、負極およびセパレータを渦巻状に巻回して電極群を作製する。次に、有底の電池ケースに、電極群を挿入した後に、非水電解質を注入し、電池ケースの開口部を封口することによりリチウム二次電池が作製される。
 ここで、電極群は、セパレータの端部を金属製の2つの巻芯の間に挟み込んだ状態で、その2つの巻芯を回転させながら、セパレータとともに、正極及び負極を巻回することにより形成される。巻回は、正極及び負極の間、並びに最内層に、それぞれセパレータを配した状態で行う。巻回終了後、2つの巻芯の間を広げて電極群の内部から巻芯を抜き取る。
 このとき、セパレータの巻芯に対するすべり性が小さいと、電極群から巻芯がうまく抜けなかったり、電極のバリにセパレータが引っかかって、セパレータが損傷したりすることがある。そのため、巻芯の抜き取り状態を常時監視する必要が生じ、製造コストの上昇を招く。巻芯の抜き取り工程に支障がある場合には、生産ラインを止めて、再調整を行う必要があり、生産性が低下する。
 したがって、セパレータの巻芯に対するすべり性を改善することは、製造コストを抑え、生産性を高めるとともに、信頼性の高い電極群、ひいては信頼性の高いリチウム二次電池を製造する上で重要である。
 特許文献1では、セパレータの表面に、粒子の一部を突出させた状態で埋め込むことにより、セパレータのすべり性を向上させることが提案されている。
 特許文献2では、ステアリン酸カルシウムを50ppm以上含有するポリプロピレンの外面部分を有する多孔質フィルムをセパレータとして用いることが提案されている。
特開平10-110052号公報 特開2003-157824号公報
 特許文献1では、球状粒子が突出していない部分の多孔質フィルムが、巻芯と接触する可能性がある。多孔質フィルムの表面と巻芯とが直に接触してしまうと、円滑に巻芯を引き抜くことが困難となる。また、多孔質フィルムに球状粒子が埋め込まれているため、滑り性が不十分である。
 さらに、上記従来技術はいずれも、主に円筒型電池における改善を想定したものであり、角型電池における改善は十分ではない。より具体的には、円筒型電池の電極群の巻芯は円柱状(棒状)であるために、セパレータの巻芯への力のかかり方は均一である。これに対して、角型電池の電極群の巻芯は、扁平状(板状)であるために、セパレータの巻芯への力は巻芯の端部に集中する。そのため、角型電池では、電極群から巻芯を引き抜くときに、円筒型電池の場合よりも巻芯が抜け難い。
 一般に、多孔質フィルムは押出成形により作製される。押出成形フィルムにおいて、その表面から球状粒子の一部を突出させることにより良好な抜け性を確保するためには、多量の粒子を添加することが必要となる。ところが、そのような粒子を多孔質フィルムの材料である樹脂に多量に添加すると、フィルム成形性が低下する。
 特許文献2のように、ステアリン酸カルシウムの添加だけでは、電池における巻芯の抜け性を十分に改善することは困難である。さらに、ステアリン酸カルシウムの含有量を多くすると、上記と同様にフィルム成形性が低下する。
 本発明では、上記問題点に鑑みてなされたものであり、巻回した電極群から巻芯を円滑に引き抜くことが可能なリチウム二次電池用セパレータを提供する。
 本発明の一局面は、ポリオレフィン層を含む多孔質フィルムと、前記多孔質フィルムの表面に配置された粒子状物質を含む潤滑層と、を具備し、前記潤滑層の三次元表面粗さが、0.15~1.45μmのリチウム二次電池用セパレータに関する。
 本発明の他の一局面は、正極、負極、および前記正極と前記負極との間に介在する上記セパレータを含む電極群、非水電解質、ならびに前記電極群と前記非水電解質とを収納する電池ケースを具備する、リチウム二次電池に関する。
 本発明の新規な特徴を添付の請求の範囲に記述するが、本発明は、構成および内容の両方に関し、本発明の他の目的および特徴と併せ、図面を照合した以下の詳細な説明によりさらによく理解されるであろう。
 本発明によれば、巻芯を用いて、正極および負極と、セパレータとを渦巻き状に巻回して電極群を構成する際に、巻芯に対するセパレータのすべり性を顕著に改善できる。その結果、巻芯の電極群からの抜け性が向上し、円滑に巻芯の引き抜き作業を進めることが可能となる。
本発明の一実施の形態におけるリチウム二次電池の概略横断面図である。 電極群を構成する際の巻芯および電極群の配置を模式的に示す平面図である。 本発明の一実施の形態におけるリチウム二次電池用セパレータの概略断面図である。
 以下、本発明の実施の形態を、図面を参照して説明する。
 図1は、本発明の実施形態の一例を示す角型のリチウム二次電池の概略横断面図である。
 電池10は、薄い箱形の電池ケース1と、ケース1内に収納された電極群20及び図示しない非水電解質とで構成されている。前記電極群20は、矩形の平坦面及びこの平坦面の両端に位置する湾曲面を有する側面を具備している。
 電極群20は、長尺帯状の正極2および負極3を、これらの間に長尺帯状のセパレータ4を介在させて、挟み込んだ状態で渦巻き状に巻回して構成される。このとき、電極群20の最内周にはセパレータ4が配置される。図1の例では、最内周のセパレータ4と前記負極3とが接するように、正極2と負極3とセパレータ4とが巻回されている。
 図2は、巻芯を使用した電極群20の構成を模式的に説明するための上面図である。角型電池の場合、2枚の長方形の金属製の薄い板を巻芯21として使用し、セパレータ4をこれらの間に介在させて正極2及び負極3を巻回する。より詳細には、セパレータ4と、正極2又は負極3の一方と、別のセパレータ4と、正極2又は負極3の他方とを、この順に配置し、2枚のセパレータ4の端部を、2枚の巻芯21に挟み込む。この状態で巻芯21を回転させることにより、巻回された積層状態の電極群20が構成される。構成後、2枚の巻芯21の間を広げて、セパレータ4の端部の挟み込みを解除し、巻芯21を電極群20から矢印Aの方向に抜き取る。
 図3は、上記セパレータ4の概略断面図である。セパレータ4は、多孔質フィルム12と、その表面に配置された粒子状物質22を含む潤滑層14とを具備する。
 図示例の多孔質フィルム12は、例えばポリエチレン(PE)を主成分とする多孔質のポリオレフィン層16と、ポリオレフィン層16と前記潤滑層14との間に介在する耐熱性多孔質層18とを具備する。耐熱性多孔質層18は、例えばポリアミドを主成分として含有する。
 図3の例では、耐熱性多孔質層18は、ポリオレフィン層16の片面にのみ形成され、前記耐熱性多孔質層18の表面に潤滑層14が形成されている。耐熱性多孔質層18は、ポリオレフィン層16の両面に形成してもよい。潤滑層14は、多孔質フィルム12の少なくとも一方の面に形成すればよく、両面に形成してもよい。また、ポリオレフィン層16の両面に耐熱性多孔質層18を形成し、一方の耐熱性多孔質層18の表面に潤滑層14を形成することもできる。なお、図3は、耐熱性多孔質層18および潤滑層14の配置の一例を模式的に示すものであり、各層の厚さの比率は、実際のものと必ずしも一致していない。
 潤滑層14は、電極群20の構成後に、巻芯の抜き取りが円滑に行われるように基材12の表面に設けられるものである。したがって、潤滑層14は、必ずしもセパレータ14の全体に設ける必要はなく、巻回するときに巻芯と接触する部分だけに設けてもよい。また、セパレータ4の巻芯と接触する部分、例えば、セパレータ4の前記電極群の最内周に配置される部分に、潤滑層を配置し、最内周以外(正極と負極との間に介在する部分)には潤滑層を配置しなくてもよい。
 角型電池の場合には、セパレータ4の最内周面とこの最内周面と接する巻芯21の側端部との間に特に大きな摩擦力が発生する。そのため巻芯の側端部と接触するセパレータ4の部分にだけ潤滑層14を形成するようにしてもよい。
 図3の例では、潤滑層14は、例えば、ポリテトラフルオロエチレン粒子などの粒子状物質22を耐熱性多孔質層18の表面に配置させることにより形成される。潤滑層14は、粒子状物質22を含む分散液を耐熱性多孔質層18の表面に塗布し、乾燥して、粒子状物質22を耐熱性多孔質層18の表面に付着させることにより形成してもよい。分散液としては、界面活性剤を含む水系分散液などが使用できる。
 潤滑層14は、樹脂などの結着剤を含んでおらず、静電力や界面活性剤の作用などにより、粒子状物質22がポリオレフィン層16又は耐熱性多孔質層18の表面に付着することにより形成される。粒子状物質22の各粒子は、互いに静電力や界面活性剤の作用などにより凝集している。したがって、潤滑層14は、指で擦る程度の外力で、粒子状物質22が移動し、高い滑り性を有する。すなわち、粒子状物質22は、多孔質フィルム12に対して移動可能に配置されている。
 潤滑層14は、粒子状物質22が多孔質フィルム12の表面に配置されることにより、特定の表面粗さを有している。
 潤滑層14の表面粗さは、例えば乾燥直後の初期状態又は電極群を構成する前で、表面粗さSa(三次元表面粗さ)が0.15~1.45μmとなるように設定されている。
 ここで、表面粗さSaは、潤滑層の表面の起伏カーブ(以下、表面起伏形態という)と起伏の平均面とで囲まれた部分の体積を、測定面積で割ることにより求められる。すなわち、平均面をX-Y平面とし、高さ方向をZ軸とし、測定された表面起伏形態の面積zをz=f(x,y)で表すとき、表面粗さSaは下記式(数1)により定義される。
Figure JPOXMLDOC01-appb-M000001
 ただし、式(数1)において、LxはX方向の測定長さ、LyはY方向の測定長である。この測定はレーザー光線や電子線による非接触表面形状測定により求められる。
[セパレータ]
 (潤滑層)
 潤滑層の前記三次元表面粗さSaは、好ましくは0.18~1.42μm、さらに好ましくは0.19~1.41μm、特に、0.2~1.4μmである。表面粗さSaが0.15μm未満では、巻芯21と潤滑層14との接触面積の増大に伴い、すべり性が低下する。
 一方、表面粗さSaが1.45μmを超えると、潤滑層14からの粒子状物質22の脱落量が増大したり、セパレータ4を挟んで配置される正極2と負極3との間の距離が不均一となる。この結果、電池特性を損なう可能性がある。
 三次元表面粗さは、粒子状物質の種類、形状、サイズ(粒子径など)、潤滑層中に含まれる粒子状物質の重量などを適宜選択することにより調節できる。例えば、粒子状物質のサイズ及び/又は潤滑層中の粒子状物質重量を調節する。
 粒子状物質22としては、前記ポリテトラフルオロエチレンに限らず、有機高分子化合物、無機化合物などの粒子状物質が使用できる。粒子状物質22は、二次電池の使用に伴い、脱落した粒子状物質22が正極2もしくは負極3と接触する可能性があることから、電気化学的に安定していることが好ましい。また、粒子状物質22は、電池ケース1内で非水電解質と接触するため、非水電解質に含まれる溶媒(有機溶媒など)に対して安定であることが好ましい。
 粒子状物質22を構成する有機高分子化合物としては、具体的には、例えば、フッ素含有ポリマーなどのハロゲン原子含有ポリマー(ビニルハライドなどのハロゲン原子含有オレフィンを構成モノマーとして含む単独又は共重合体など)、ポリオレフィン(ポリエチレン、ポリプロピレン、エチレン-プロピレン共重合体などのオレフィンの単独又は共重合体など)、ポリエステル(ポリエチレンテレフタレート、ポリブチレンテレフタレートなどのポリアルキレンテレフタレートなど)などの有機ポリマーが例示できる。これらの有機高分子化合物のうち、フッ素含有ポリマー(摩耗係数が小さなフッ素含有ポリマーなど)、ポリオレフィンが好ましい。好ましいフッ素含有ポリマーとしては、例えば、ポリテトラフルオロエチレン(PTFE)、パーフルオロエチレンプロピレンコポリマー(FEP)などのフルオロオレフィンの単独又は共重合体;エチレン・テトラフルオロエチレン共重合体(ETFE)などのオレフィン-フルオロオレフィン共重合体;パーフルオロアルコキシアルカンポリマー(PFA)などのフルオロオレフィン-フルオロアルキルビニルエーテル共重合体などが挙げられる。
 前記無機化合物としては、例えば、シリコン、アルミニウム、チタン、マグネシウム、ジルコニウムおよびカルシウムなどから選択された少なくとも一種の元素の酸化物(例えば、シリカ、アルミナ、チタニア、マグネシア、ジルコニア、酸化カルシウム)、前記元素の窒化物または炭酸塩、並びにタルクおよびマイカなどのケイ酸塩鉱物等が挙げられる。無機化合物のうち、前記酸化物又は炭酸塩(例えば、具体的な化学組成で例示すると、SiO2、Al23、TiO2、MgO、ZrO2、CaO、CaCO3)、タルク、マイカなどが好ましい。
 上記粒子状物質(有機高分子化合物及び/又は無機化合物)は、一種で又は二種以上組み合わせて使用できる。
 粒子状物質22は、例えば、長さの短い繊維状、針状などの形状であってもよいが、通常、球状、回転楕円球状、板状、棒状などの形状を有する粉粒体である。巻芯に対する潤滑層14の高いすべり性を達成するためには、粒子状物質22は、好ましくは球状(平均アスペクト比1~2程度の球状又は略球状など)の粉粒体である。
 粒子状物質22の平均粒径(体積基準の粒度分布におけるメディアン径)は、例えば、0.01~1μm、好ましくは0.02~0.9μm、さらに好ましくは0.03~0.8μmである。平均粒径が小さすぎると、潤滑層14の表面が平坦となり、表面粗さSaの調整が困難となる。粒子状物質22の平均粒径が大きすぎると、表面粗さSaは大きくなるが、多孔質フィルム12の露出部分が多くなり、潤滑層14によるすべり性が低下する場合がある。
 粒子状物質22は、平均粒径及び/又は材質の異なる2種類以上の粒子を混合して使用してもよい。
 多孔質フィルム12の表面の1m2あたりに含まれる、潤滑層14の粒子状物質22の重量(乾燥重量)は、粒子状物質の種類にもよるが、例えば、0.1~2gの範囲から選択でき、好ましくは0.1~1.5g、さらに好ましくは0.2~1g、特に0.2~0.8gである。
 潤滑層14の単位面積当たりの粒子状物質22の重量が小さすぎると、すべり性が小さい多孔質フィルム12と巻芯21とが直接に接触する面積が増大し、巻芯21の抜き取り性が低下する場合がある。
 潤滑層14は、粒子状物質22を多孔質フィルム12の表面に配置できればよく、上述の塗布に限らず、印刷法やスプレー法などにより形成することもできる。
 粒子状物質22は、通常、粒子状物質を分散媒に分散させた分散液を、多孔質フィルム12の表面に、塗布などの上記方法により適用し、さらに分散媒を乾燥することにより配置させることができる。
 分散媒としては、水の他、メタノール、エタノール、エチレングリコールなどのアルコール(C2-4アルカノール又はC2-4アルカンジオールなど);アセトンなどのケトン;ジエチルエーテルなどのエーテル;アセトニトリルなどのニトリル;N-メチル-2-ピロリドン(NMP)などが例示できる。これらの分散媒は一種で又は二種以上組み合わせて使用できる。
 分散液は、必要により、界面活性剤を含有してもよい。界面活性剤としては、アルキル硫酸エステル塩などの陰イオン性界面活性剤、ポリオキシエチレンアルキルエーテル、ポリオキシアルキレン誘導体、ソルビタン脂肪酸エステルなどの非イオン性界面活性剤、アルキルアミン塩などの陽イオン性界面活性剤、アルキルベタインなどの両性界面活性剤などが例示できる。界面活性剤は、一種で又は二種以上組み合わせて使用できる。
 界面活性剤の割合は、固形分換算で、粒子状物質100重量部に対して、例えば、0.01~50重量部が好ましい。
 乾燥温度及び時間は、分散媒の揮発性に応じて、適宜選択できる。
 潤滑層14の平均厚みは、例えば、0.05~3μm、好ましくは0.05~2.5μm、さらに好ましくは0.05~2μm、又は0.3~2μmである。
 平均厚みは、公知の方法、例えば、レーザー光線や電子線による非接触表面形状測定などにより求めることができる。
 本発明では、特定の三次元表面粗さを有する潤滑層を多孔質フィルム表面に形成するため、巻回された電極群から巻芯をスムーズに引き抜くことができる。そのため、本発明のセパレータは、角形電池の電極群を作製する場合に特に有利である。巻芯の引き抜きに伴う電極群の変形(電極群の最内の部分が巻芯とともに引きずり出されて端部から突出する等)が抑えられる。巻芯の引き抜きにより電極群に大きな変形が生じる場合には、それだけ大きな摩擦力が巻芯とセパレータとの間に働いていることになり、セパレータが損傷している可能性も増大する。したがって、電極群の変形を抑えることによって、信頼性の高い電極群を作製することが可能となる。
 また、巻芯の引き抜き工程が常に円滑に行われるようになるため、常時監視する必要がなくなり、製造コストが低減される。
 (多孔質フィルム)
 多孔質フィルム12は、多孔質のポリオレフィン層16を有していればよく、必ずしも耐熱多孔質層18を備える必要はない。多孔質フィルム12をポリオレフィン層16だけで形成する場合には、ポリオレフィン層16の少なくとも一方の表面に、潤滑層14が形成される。
 (1)ポリオレフィン層
 ポリオレフィン層16は、前記PEの他、例えば、ポリプロピレン(PP)、エチレン-プロピレン共重合体などのポリオレフィンもしくはそれらの共重合体などのポリオレフィンを含む多孔質層である。
 ポリオレフィンを用いると、電池温度が異常に上昇したときに120℃~150℃程度の温度で、ポリオレフィン層の孔が閉孔(シャットダウン)し、これにより電流が遮断され、電池反応が停止して更なる温度の上昇を抑制することができる。
 ポリオレフィン層は、ポリオレフィンとともに他のポリマーを含んでいてもよい。他のポリマーの種類及び/又は使用量を選択することにより、ポリオレフィン層16の軟化、溶融、または収縮を防止してもよい。
 他のポリマーとしては、ポリスチレン、ゴム含有ポリスチレン、アクリロニトリル-スチレン共重合体などのスチレンポリマー;ポリエチレンテレフタレートなどのポリエステル;ポリアミド6、ポリアミド12などのポリアミド;ポリメチルメタクリレートなどのアクリルポリマー;セルロース誘導体;熱可塑性エラストマーなどの熱可塑性ポリマーが例示できる。
 多孔質フィルム中のポリオレフィンの割合は、例えば、50~100重量%である。
 ポリオレフィン層の厚みは、5~200μmの範囲が好ましい。
 ポリオレフィン層の平均孔径は、0.05~2μmが好ましい。
 ポリオレフィン層の空孔率は、例えば、25~75体積%が好ましい。
 ポリオレフィン層としては、市販の多孔質フィルムを用いてもよく、公知の多孔質フィルム成形方法(押出成形、ブロー成形、インフレーション成形、コーティング法など)により、原料となるポリマー材料(ポリオレフィンを含むポリマー材料)を成膜し、延伸処理したフィルムを用いてもよい。延伸処理は、一軸又は二軸延伸処理のいずれであってもよい。フィルム成形には公知の孔剤などを使用してもよい。
 (2)耐熱性多孔質層
 ポリオレフィン層16の収縮を防止する観点から、多孔質フィルム12は、耐熱性多孔質層18を有してもよい。ポリオレフィン層16に含まれるポリオレフィンの割合が多い場合、耐熱性多孔質層18を表面に形成することが有利である。耐熱性多孔質層18(又は耐熱性多孔質層を構成する材料)は、前記ポリオレフィン層よりも高い融点又は熱変形温度を有する。このような耐熱性多孔質層は、通常、高い耐熱性ポリマーを含有する。
 耐熱性ポリマーとしては、PP等融点が150℃以上あるポリオレフィン;ポリアミド、ポリアミドコポリマー、およびアラミドなどのアミド結合含有ポリマー;ポリフッ化ビニリデン(PVDF)、フッ化ビニリデンと6フッ化プロピレン(HFP)との共重合体(PVDF-HFP)、PTFEなどのフッ素含有ポリマー;ポリイミド(PI)、ポリアミドイミド(PAI)およびポリエーテルイミド(PEI)などのイミド結合含有ポリマー;ポリエチレンテレフタレート(PET)、ポリプロピレンテレフタレート(PPT)、ポリトリメチレンテレフタレート(PTT)、ポリブチレンテレフタレート(PBT)、ポリエチレンナフタレート(PEN)、ポリブチレンナフタレート(PBN)などのポリアルキレンアリーレート;ポリアリレート(PAR);ポリスルフォン(PSF)、ポリエーテルスルフォン(PES)などのスルフォン基を有するポリマー;ポリフェニレンエーテル(PPE);ポリカーボネート(PC);ポリフェニレンスルフィド(PPS);ポリエーテルケトン(PEK)およびポリエーテルエーテルケトン(PEEK)等の芳香族ポリエーテルケトンポリマー;ポリアセタール(POM);ポリエーテルニトリル(PEN)などが挙げられる。
 耐熱性多孔質層18は、上記ポリマーを単独で又は二種以上組み合わせて含有してもよい。なお、上記ポリマーとともに、他のポリマーを併用してもよい。
 上記ポリマーのうち、アミド結合含有ポリマー、フッ素含有ポリマー、イミド結合含有ポリマー、およびポリオレフィンよりなる群から選択される少なくとも1種が好ましい。特に、PP、PVDF、PVDF-HFP、PI、PAI、およびアラミドなどが好ましい。
 耐熱性多孔質層を構成するポリマー材料の融点又は熱変形温度は、例えば、150℃より大きく、800℃以下である。
 耐熱性多孔質層18は、必要により、無機フィラーを含んでもよい。このような無機フィラーとしては、前記例示の無機化合物などが利用できる。無機フィラーのうち、特に、シリカ、アルミナ、チタニア、マグネシア、ジルコニアなどのセラミックス粒子が好ましい。
 無機フィラーの平均粒径は、0.001~2μmが好ましい。
 無機フィラーの割合は、耐熱性多孔質層18を構成する原料ポリマー100重量部に対して、1~1000重量部、好ましくは10~700重量部、さらに好ましくは50~500重量部である。
 耐熱性多孔質層18の厚みは、0.01~50μmの範囲から選択でき、好ましくは0.1~20μm、さらに好ましくは0.5~10μmである。
 耐熱性多孔質層18の平均孔径及び空孔率は、前記多孔質フィルムと同様の範囲から適宜選択できる。
 耐熱性多孔質層18は、原料ポリマーを含むコーティング液を公知のコーティング法により多孔質のポリオレフィン層に塗布し、乾燥することにより形成できる。コーティング液としては、原料ポリマーを含む溶液又は分散液が使用できる。コーティング液の溶媒としては、メタノール、エタノール、エチレングリコールなどのアルコール(C2-4アルカノール又はC2-4アルカンジオールなど);アセトンなどのケトン;ジエチルエーテル、テトラヒドロフランなどのエーテル;ジメチルホルムアミドなどのアミド;アセトニトリルなどのニトリル;ジメチルスルホキシドなどのスルホキシド;N-メチル-2-ピロリドン(NMP)などが例示できる。これらの溶媒は一種で又は二種以上組み合わせて使用できる。
 また、ポリオレフィン層16を構成する原料ポリマーと耐熱性多孔質層18を構成する原料ポリマーとを共押出成形し、延伸することにより、ポリオレフィン層16と耐熱性多孔質層18との積層フィルムを形成してもよい。
 セパレータ全体の厚みは、例えば、5.05~250μm、又は5.05~50μmである。
[リチウム二次電池]
(正極及び負極)
 正極2は、正極用の集電体と、それに担持される正極活物質層とから構成される。正極集電体としては、非水系二次電池用途で公知の正極集電体、例えば、アルミニウム、アルミニウム合金、ステンレス鋼、チタン、チタン合金などで形成された金属箔などが使用できる。正極集電体の厚みは、例えば、1~100μm、好ましくは5~70μm、さらに好ましくは10~50μmである。
 正極活物質としては、リチウムイオンを吸蔵・放出できる材料であれば、特に限定されることなく使用することができる。例えば、LiCoO2、LiNiO2、LiMn24、LiNi0.4Mn1.64、LiCo0.3Ni0.72、V25、MnO2、LiCoPO4、LiFePO4、LiCoPO4F、LiFePO4F、Li4Ti512、Li4Fe0.5Ti512、Li4Zn0.5Ti512等の遷移金属酸化物、TiS2、LiFeS2等の硫化物、およびこれらの混合物や各種金属元素が添加されたものを正極活物質として使用することができる。
 正極活物質層は、正極活物質の他、導電材、結着材などを含有する。導電材としては、アセチレンブラック、ケッチェンブラック、チャンネルブラック、ファーネスブラック、ランプブラック、サーマルブラック等のカーボンブラック;天然黒鉛、人造黒鉛などの各種グラファイト;炭素繊維、金属繊維などの導電性繊維などが使用できる。正極用結着材としては、例えば、ポリフッ化ビニリデン(PVdF)、ポリフッ化ビニリデンの変性体、ポリテトラフルオロエチレン(PTFE)などのフッ素樹脂;スチレンブタジエン共重合体ゴム粒子(SBR)又はその変性体、アクリレート単位を有するゴム粒子結着材;カルボキシメチルセルロース(CMC)等のセルロース誘導体等を用いることができる。
 正極活物質層の厚さは、特に限定されないが、例えば0.1~150μm、好ましくは1~100μm、さらに好ましくは10~90μmである。
 負極3は、負極用の集電体と、それに担持される負極活物質層とから構成される。負極集電体としては、非水二次電池用途で公知の負極集電体、例えば、銅、銅合金、ニッケル、ニッケル合金、ステンレス鋼などで形成された金属箔などが使用できる。負極集電体の厚みは、例えば、1~100μm、好ましくは2~50μm、さらに好ましくは5~30μmである。
 負極活物質としては、Li、Al、Zn、Sn、In、Si、Ta、およびNbよりなる群から選択される少なくとも1種を含む金属、その合金および酸化物(例えば、SiO0.3、Ta25、Nb25)、グラファイトやカーボンナノチューブ等の炭素材料、Li4Ti512、Li4Fe0.5Ti512、Li4Zn0.5Ti512などのスピネル構造を有するリチウムチタン酸化物、TiS2等の硫化物、LiCo2.60.4N、Ta35等の窒素化合物、およびこれらの混合物や、これらの物質に各種金属元素が添加されたものが用いられる。ただし、リチウムイオンを吸蔵・放出できる材料であれば、特に限定なく負極に用いることができる。
 負極活物質層は、負極活物質の他、必要に応じて、負極用導電材(前記正極用導電材で例示の導電材など)及び/又は負極用結着材(前記正極用結着材で例示の結着材)を含有してもよい。
 負極活物質層の厚さは、特に限定されないが、例えば0.1~150μm、好ましくは1~120μm、さらに好ましくは10~100μmである。
 正極2および負極3は、特に限定されないが、塗工法、スパッタリング法および蒸着法、エアロゾル蒸着法、CVD法、並びにスクリーン印刷法等により正極活物質または負極活物質を、それぞれの集電体に担持させることにより作製できる。
 正極又は負極活物質層は、それぞれ、集電体の片面に形成してもよく、両面に形成してもよい。
(非水電解質)
 非水電解質には、充放電にリチウムイオンを利用するために非水溶媒を用いることが望ましい。溶媒は、リチウム塩を混合したときのイオン伝導度が高くなるものがより好ましい。例えばエチレンカーボネート(EC)、プロピレンカーボネート(PC)、γ-ブチロラクトン(GBL)、エチルメチルカーボネート(EMC)、ジエチルカーボネート(DEC)、およびジメチルカーボネート(DMC)等が好ましい。溶媒は、一種で又は二種以上混合して使用してもよい。高誘電率溶媒であるECを含む混合溶媒を用いることも、より好ましい。
 非水電解質に使用するリチウム塩は、上記した非水溶媒に溶解できるとともにリチウム二次電池の電解質として使用できれば特に限定されない。リチウム塩としては、例えばLiPF6、LiBF4、LiClO4、LiN(C25SO22、およびLiN(CF3SO22が好ましい。これらのリチウム塩は1種、もしくは2種以上を混合して用いることができる。LiBF4は非水溶媒に溶解させたときに、LiPF6およびLiClO4と比べてイオン伝導率が低いので、他のリチウム塩と併用することが好ましい。
 非水電解質中のリチウム塩濃度は、例えば、0.1~3mol/L、好ましくは0.2~2.5mol/L、さらに好ましくは0.5~2mol/Lである。一般に、非水電解質は、濃度が低くなるとイオン伝導度が小さくなり、濃度が高くなるとイオンの解離が困難となる。したがって、リチウム塩濃度が高すぎても低すぎてもイオン伝導性は低下する傾向を示す。
 以下、本発明を、実施例を参照しながら説明する。ただし、本発明は、以下の実施例に限定されるものではない。
 以下に、本発明の各実施例を説明するが、本発明は、これらの実施例に限定されるものではない。
 《実施例1》
 以下に示す手順で、図3に示すセパレータ4を作製した。
 (1)ポリオレフィン層16として、厚さが20μmの多孔質ポリエチレンフィルムを使用した。このフィルムは、ポリエチレンを溶融押出しで成形し、得られた成形物を2軸延伸して作製したものである。その孔径は、正極2および負極3より脱離した活物質、結着剤および導電剤などが透過しないように0.1~1μmとした。
 (2)耐熱性多孔質層18として、厚さが3.5μmである、ポリアミドを含む多孔質膜をポリオレフィン層16の片側の表面に形成した。ポリアミドを含む多孔質膜は、ポリアミドをN-メチル-2-ピロリドン(NMP)に溶解させた溶液を、ポリオレフィン層16の片面に塗布し、乾燥することにより形成した。前記溶液には、ポリアミド100重量部あたり200重量部の無機酸化物(平均粒径0.013μmのアルミナ)を分散させた。
 (3)平均粒径0.2μmを有するPTFEの球状粒子(粒子状物質22)を、界面活性剤と水との混合物に分散させて分散液を調製し、その分散液を耐熱性多孔質層18の表面に塗布した。その後、水を蒸発させて、潤滑層14を形成した。
 潤滑層14に含まれる粒子状物質22の乾燥重量は、耐熱性多孔質層18の表面(すなわち、多孔質フィルム12の表面)の1m2当たり、0.5gであった。また、電子線三次元粗さ解析装置(エリオニクス(株)製のERA-8800)により測定した潤滑層14の表面粗さSaは、1.0μmであった。このときの加速電圧は5kV、観察倍率は200倍とした。
 (4)正極2は次のようにして作製した。正極活物質としてのコバルト酸リチウム(LiCoO2)と、導電助剤としてのアセチレンブラック(AB)と、バインダーとしてのPVDFとを、重量比100:4:3の比率で混合し、NMPを溶媒として、スラリーを調合した。
 このスラリーを、正極用の集電体としてのアルミニウム箔(厚み15μm)の両面に塗布し、110℃の雰囲気下で30分間乾燥した後圧延して、正極2を作製した。正極2の厚みは160μmであった。
 (5)負極3は次のようにして作製した。負極活物質としての人造黒鉛と、バインダーとしてのスチレン-ブタジエン共重合ゴム粒子結着剤と、増粘剤としてのカルボキシメチルセルロース(CMC)とを、重量比100:1:1の比率で混合し、水を分散媒としてスラリーを調合した。
 このスラリーを、負極用の集電体としての銅箔(厚み10μm)の両面に塗布し、110℃の雰囲気下で30分間乾燥した後圧延して、負極3を作製した。負極3の厚みは180μmであった。
 (6)図1に示す電極群20を次のようにして作製した。上記(1)~(3)の工程により作製した長尺帯状の2枚のセパレータ4の端部を、2枚の長方形の板状の巻芯21の間に挟み込み、500gf(=500×980.665dyn)の荷重で各セパレータ4を引っ張りながら、正極2および負極3とともに渦巻き状に巻回した。巻回は、負極3が、最内層を構成するセパレータ4と接するように重ねた状態で行った。
 規定の長さだけ正極2、負極3および2枚のセパレータ4を巻回して電極群20を構成した後、2枚の巻芯21の間を広げて、図2に示すように、電極群20の内部から巻芯21をAの方向に抜き取った。その際に、巻芯21の円滑な抜き取りが行われているかを観察するとともに、作製した電極群20の外観検査を行った。
 (7)リチウム二次電池の作製
 電極群20を、開口部を有する有底角型のアルミニウム製電池ケースに挿入した。ケース1に、非水電解質を注入し、開口部を封口して、1千個のリチウム二次電池を作製した。このとき、電極群20は、上記した外観検査に合格したもののみを使用した。非水電解質としては、エチレンカーボネート(EC)とプロピレンカーボネート(PC)とを体積比で1:3の割合で調合した溶媒に、リチウム塩としてのLiPF6を1mol/Lの濃度で溶解させたものを使用した。
 作製された1千個のリチウム二次電池について、電池特性を評価するための充放電試験を行った。この充放電試験においては、2時間率の電流で端子間電圧が4.2Vとなるまで各電池を充電し、その後、端子間電圧が3.0Vに低下するまで放電を行った。充電と放電との間の休止時間は30分間とした。この充放電を200回繰り返した後の放電容量を測定し、その測定値を初期の放電容量の測定値と比較し、初期の放電容量を100とする指数を計算した。その指数が70以上あれば電池特性が良好であると判断した。
 《実施例2》
 粒子状物質22として、平均粒径0.2μmを有するパーフルオロエチレンプロピレンコポリマー(FEP)の球状粒子を使用するとともに、潤滑層14中の粒子状物質22の乾燥重量を0.8g/m2に変更した以外は、実施例1と同様にして1千個のリチウム二次電池を作製した。形成された潤滑層14の表面粗さSaは、1.4μmであった。
 実施例1と同様に、電極群20を構成する際に、巻芯21の抜き取りの状態を観察するとともに、作製された電極群20の外観検査を行った。また、実施例1と同様の手順で電池特性の評価を行った。
 《実施例3》
 粒子状物質22として、平均粒径0.1μmを有するSiO2の球状粒子を使用するとともに、潤滑層14中の粒子状物質22の乾燥重量を0.3g/m2に変更した以外は、実施例1と同様にしてリチウム二次電池を作製した。形成された潤滑層14の表面粗さSaは、0.2μmであった。
 実施例1と同様に、電極群20を構成する際に、巻芯21の抜き取りの状態を観察するとともに、作製された電極群20の外観検査を行った。また、実施例1と同様の手順で電池特性の評価を行った。
 《比較例1》
 粒子状物質22として、平均粒径0.2μmを有するPTFEの球状粒子を使用するとともに、潤滑層14中の粒子状物質22の乾燥重量を2.0g/m2に変更した以外は、実施例1と同様にしてリチウム二次電池を作製した。形成された潤滑層14の表面粗さSaは1.5μmであった。
 実施例1と同様に、電極群20を形成する際に、巻芯21の抜き取りの状態を観察するとともに、作製された電極群20の外観検査を行った。また、実施例1と同様の手順で電池特性の評価を行った。
 《比較例2》
 粒子状物質22として、平均粒径0.2μmを有するPTFEの球状粒子を使用するとともに、潤滑層14中の粒子状物質22の乾燥重量を0.1g/m2に変更した以外は、実施例1と同様にしてリチウム二次電池を作製した。形成された潤滑層14の表面粗さSaは、0.1μmであった。
 実施例1と同様に、電極群20を形成する際に、巻芯21の抜き取りの状態を観察するとともに、作製された電極群20の外観検査を行った。また、実施例1と同様の手順で電池特性の評価を行った。
 《比較例3》
 潤滑層14を形成することなく、多孔質フィルム12のみからなるセパレータを作製した以外は、実施例1と同様にしてリチウム二次電池を作製した。
 実施例1と同様に、電極群20を形成する際に、巻芯21の抜き取りの状態を観察するとともに、作製された電極群20の外観検査を行った。また、実施例1と同様の手順で電池特性の評価を行った。
 《実施例4》
 電極群20を形成するときに、多孔質フィルム12の巻芯21と接触する部分のみに、潤滑層14を形成したこと以外は、実施例1と同様にしてリチウム二次電池を作製した。
 実施例1と同様に、電極群20を形成する際に、巻芯21の抜き取りの状態を観察するとともに、作製された電極群20の外観検査を行った。また、実施例1と同様の手順で電池特性の評価を行った。
 実施例及び比較例で得られたリチウム二次電池の評価結果を、潤滑層の表面粗さとともに、表1に示す。
 なお、抜き取り観察及び外観検査、電池特性は、下記の指標により評価した。
 (抜き取り観察及び外観検査)
 A:巻芯の抜き取りが円滑に行われ、抜き取りに追随してセパレータの最内部分が引き出されることはなかった。
 B:巻芯の抜き取りに伴い、セパレータの最内部分が引き出されていた。
 (電池特性)
 A:初期の放電容量を100としたとき、充放電の繰り返し後に測定した放電容量が70以上であった。
 B:初期の放電容量を100としたとき、充放電の繰り返し後に測定した放電容量が70未満であった。
Figure JPOXMLDOC01-appb-T000001
 《評価》
 表1に示すように、潤滑層14の表面粗さSaが特定の範囲にある実施例1~4においては、それぞれ約1千個の電極群20について、巻芯21の抜き取り状態を観察した結果、全ての実施例について円滑な抜き取りが行われていた。また、作製された電極群20の外観検査の結果も、巻芯21の抜き取りに追随して、最内の部分が1mm以上引き出されているような外観不良を有する電極群20は存在しなかった。この結果は、潤滑層14の表面粗さSaが適度な大きさを有するために、潤滑層14が十分なすべり性を発揮したからであると考えられる。
 また、多孔質フィルム12の、電極群20を構成するときに巻芯21と接触する部分にのみ潤滑層14を形成した実施例4においても他の実施例と同様の結果が得られた。このことから、本発明の効果を達成するためには、潤滑層14は、セパレータ14の巻芯21と接触する部分に形成されていれば十分であることが理解される。
 一方、潤滑層14の表面粗さSaが0.1μmである比較例2においては、電極群20から巻芯21を抜き取る際に最内のセパレータ4が引きずり出される様子が見られた。電極群20の外観検査においても、最大で1mm程度、最内のセパレータ4が引きずり出されているものが存在した。これは、潤滑層14の表面粗さSaが小さすぎるために、潤滑層14が十分なすべり性を発揮することができなかったからであると考えられる。
 また、潤滑層14の表面粗さSaが1.5μmである比較例1においては、電極群20からの巻芯21の抜き取りは円滑に行われており、外観検査においても異常を生じている電極群20は存在しなかった。しかしながら、充放電試験の結果に関し、この比較例1でのみ充放電のサイクル特性が低下しているリチウム二次電池が存在した。
 サイクル特性が低下した電池の電極群を分解して観察した結果、セパレータ4から多量の粒子状物質22が脱落しており、それらが正極2および負極3や、セパレータ4にめり込んでいるのが確認された。
 以上の結果によれば、潤滑層14は、表面粗さSaが0.1μmを超え1.5μm未満の範囲となるように形成するのが、セパレータ4の巻芯21に対する十分なすべり性を確保するとともに、潤滑層14の形成により電池特性に悪影響を及ぼさない、という観点から好ましいことが分かる。
 本発明のリチウム二次電池用セパレータは、電極群を構成する際に、電極およびセパレータをより緊密に巻回した場合にも良好な巻芯の引き抜き性を発揮する。そのため、モバイル機器等の電源として高容量・高出力が特に要求されるリチウム二次電池のセパレータとして有用である。
 1 電池ケース
 2 正極
 3 負極
 4 セパレータ
10 リチウム二次電池
12 多孔質フィルム
14 潤滑層
18 耐熱性多孔質層
20 電極群

Claims (15)

  1.  ポリオレフィン層を含む多孔質フィルムと、
     前記多孔質フィルムの表面に配置された粒子状物質を含む潤滑層と、を具備し、
     前記潤滑層の三次元表面粗さが、0.15~1.45μmである、リチウム二次電池用セパレータ。
  2.  前記潤滑層の三次元表面粗さが、0.2~1.4μmである、請求項1に記載のセパレータ。
  3.  前記粒子状物質は、静電力により、前記多孔質フィルムの表面に付着している、請求項1に記載のセパレータ。
  4.  前記潤滑層が、前記多孔質フィルムの表面の1m2あたり、前記粒子状物質0.1~2gを含む、請求項1に記載のセパレータ。
  5.  前記粒子状物質が、平均粒径0.01~1μmを有する、請求項1に記載のセパレータ。
  6.  前記粒子状物質が、有機高分子化合物及び無機化合物から選択される少なくとも1種を含む、請求項1記載のセパレータ。
  7.  前記有機高分子化合物が、フッ素含有ポリマーおよびポリオレフィンから選択される少なくとも1種を含む、請求項6記載のセパレータ。
  8.  前記無機化合物が、SiO2、Al23、TiO2、MgO、ZrO2、CaO、CaCO3、タルク、およびマイカよりなる群から選択される少なくとも1種を含む、請求項6記載のセパレータ。
  9.  前記多孔質フィルムが、更に、前記ポリオレフィン層と前記潤滑層との間に介在する耐熱性多孔質層を具備し、前記耐熱性多孔質層の融点又は熱変形温度が、前記ポリオレフィン層よりも高い、請求項1に記載のセパレータ。
  10.  前記耐熱性多孔質層が、アミド結合含有ポリマー、フッ素含有ポリマー、イミド結合含有ポリマー、およびポリオレフィンよりなる群から選択される少なくとも1種を含む、請求項1記載のセパレータ。
  11.  前記潤滑層が、平均厚み0.05~3μmを有し、前記ポリオレフィン層が、厚み5~200μmを有し、全体の厚みが5.05~250μmである、請求項1に記載のセパレータ。
  12.  正極、負極、および前記正極と前記負極との間に介在する請求項1に記載のセパレータを含む電極群、
     非水電解質、ならびに
     前記電極群と前記非水電解質とを収納する電池ケースを具備する、リチウム二次電池。
  13.  前記潤滑層が、前記セパレータの前記電極群の最内周に配置されている、請求項12記載のリチウム二次電池。
  14.  前記電極群が、矩形の平坦面および前記平坦面の両端に位置する湾曲面を有する側面を具備する、角形の請求項12記載のリチウム二次電池。
  15.  正極、負極、および前記正極と前記負極との間に介在するセパレータを含む電極群、
     非水電解質、ならびに
     前記電極群と前記非水電解質とを収納する電池ケースを具備し、
     前記セパレータが、ポリオレフィン層を含む多孔質フィルムと、前記多孔質フィルムの表面に配置された粒子状物質を含む潤滑層とを具備し、
     前記潤滑層が、前記セパレータの前記電極群の最内周に配置され、
     前記電極群が、矩形の平坦面および前記平坦面の両端に位置する湾曲面を有する側面を具備する、角形のリチウム二次電池。
PCT/JP2010/002519 2009-04-07 2010-04-06 リチウム二次電池用セパレータ、およびそれを用いたリチウム二次電池 WO2010116729A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US13/062,151 US20110159347A1 (en) 2009-04-07 2010-04-06 Separator for lithium secondary battery and lithium secondary battery using the same
CN2010800026209A CN102160212A (zh) 2009-04-07 2010-04-06 锂二次电池用隔膜及采用该隔膜的锂二次电池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-093037 2009-04-07
JP2009093037A JP2010244875A (ja) 2009-04-07 2009-04-07 リチウム二次電池用セパレータ、およびそれを用いたリチウム二次電池

Publications (1)

Publication Number Publication Date
WO2010116729A1 true WO2010116729A1 (ja) 2010-10-14

Family

ID=42936024

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/002519 WO2010116729A1 (ja) 2009-04-07 2010-04-06 リチウム二次電池用セパレータ、およびそれを用いたリチウム二次電池

Country Status (5)

Country Link
US (1) US20110159347A1 (ja)
JP (1) JP2010244875A (ja)
KR (1) KR20110049857A (ja)
CN (1) CN102160212A (ja)
WO (1) WO2010116729A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102569697A (zh) * 2010-12-29 2012-07-11 财团法人工业技术研究院 隔离膜材及其制备方法以及包含隔离膜的电化学电池
EP2485297A3 (en) * 2011-02-03 2015-06-03 Samsung SDI Co., Ltd. Separator for lithium secondary battery and lithium secondary battery including the same

Families Citing this family (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5422537B2 (ja) * 2010-10-29 2014-02-19 株式会社日立製作所 リチウムイオン二次電池
WO2012077226A1 (ja) * 2010-12-10 2012-06-14 日立ビークルエナジー株式会社 二次電池
JP5994354B2 (ja) * 2011-09-05 2016-09-21 ソニー株式会社 セパレータおよび非水電解質電池、並びに、電池パック、電子機器、電動車両、蓄電装置および電力システム
JP6336703B2 (ja) * 2011-10-05 2018-06-06 日産自動車株式会社 耐熱絶縁層付セパレータ
CN102501524A (zh) * 2011-11-03 2012-06-20 南京大学 具有均匀可调孔尺寸复合结构的隔膜及制备方法
WO2013073503A1 (ja) * 2011-11-15 2013-05-23 帝人株式会社 非水系二次電池用セパレータ及びその製造方法、並びに非水系二次電池
KR102144598B1 (ko) * 2011-11-18 2020-08-13 스미또모 가가꾸 가부시끼가이샤 적층 다공질 필름 및 그 제조 방법, 그리고 비수 전해액 2 차 전지용 세퍼레이터, 적층 전극 시트 및 비수 전해액 2 차 전지
CN102610775B (zh) * 2012-03-06 2014-06-18 宁德新能源科技有限公司 一种锂离子电池及其隔膜
CN108963165B (zh) 2012-03-09 2021-12-31 帝人株式会社 非水系二次电池用隔膜、其制造方法及非水系二次电池
KR101676446B1 (ko) * 2013-09-30 2016-11-15 주식회사 엘지화학 리튬 이차전지용 세퍼레이터의 제조방법, 그 방법에 의해 제조된 세퍼레이터, 및 이를 포함하는 리튬 이차전지
KR101396270B1 (ko) * 2013-12-16 2014-05-19 한밭대학교 산학협력단 이차전지용 복합 분리막 및 이의 제조방법
DE102013226743A1 (de) * 2013-12-19 2015-06-25 Robert Bosch Gmbh Wärmeleitender Polymerseparator
JP6284818B2 (ja) * 2014-04-24 2018-02-28 株式会社ダイセル 微細孔と取り扱い強度を有した多孔膜積層体及びその製造方法
HUE040360T2 (hu) * 2014-09-26 2019-03-28 Asahi Chemical Ind Szeparátor egy elektromosság tároló eszköz számára
WO2016056253A1 (ja) 2014-10-10 2016-04-14 住友化学株式会社 セパレータ原反の製造方法、セパレータの製造方法、セパレータ原反、及びセパレータ原反製造装置
JP2016081711A (ja) * 2014-10-16 2016-05-16 Tdk株式会社 セパレータ、及びそれを用いたリチイウムイオン二次電池
JP6413676B2 (ja) * 2014-11-13 2018-10-31 三菱ケミカル株式会社 積層多孔フィルムの製造方法
CN104362278B (zh) * 2014-11-19 2017-03-22 苏州大学 一种复合锂离子电池隔膜及其制备方法
WO2016152991A1 (ja) * 2015-03-24 2016-09-29 日本電気株式会社 高安全性・高エネルギー密度電池
JP6474329B2 (ja) * 2015-07-16 2019-02-27 日立オートモティブシステムズ株式会社 二次電池
KR102145534B1 (ko) 2015-09-02 2020-08-18 주식회사 엘지화학 점착력이 상이한 점착 코팅부들을 포함하는 분리막 및 이를 포함하는 전극조립체
JPWO2017130574A1 (ja) * 2016-01-25 2018-12-20 株式会社ダイセル 二次電池
JP6083478B2 (ja) * 2016-01-27 2017-02-22 ソニー株式会社 セパレータ、非水電解質電池、電池パック、電子機器、電動車両、蓄電装置および電力システム
US10777796B2 (en) * 2016-03-29 2020-09-15 Toray Industries, Inc. Secondary battery separator and secondary battery
CN107565080B (zh) * 2016-06-30 2022-06-07 住友化学株式会社 隔膜卷芯、隔膜卷绕体、以及隔膜卷绕体的制造方法
WO2018093214A1 (ko) * 2016-11-18 2018-05-24 주식회사 엘지화학 세퍼레이터 및 이를 포함하는 전기화학소자
JP6776162B2 (ja) * 2017-03-23 2020-10-28 株式会社東芝 電極複合体、二次電池、電池パック及び車両
JP6808667B2 (ja) * 2018-03-01 2021-01-06 株式会社東芝 積層体、積層体の製造方法及び二次電池
CN110299555A (zh) * 2018-03-22 2019-10-01 绵阳德远英科技有限责任公司 一种基于正极和电解质的快速充电锂离子电池
US11888178B2 (en) 2018-09-10 2024-01-30 Volkswagen Ag Method for producing an electric battery with separator material on a current collector base
KR20210129132A (ko) * 2019-03-20 2021-10-27 데이진 가부시키가이샤 비수계 이차전지용 세퍼레이터 및 비수계 이차전지
CN109956505B (zh) * 2019-04-08 2021-10-15 中国科学院过程工程研究所 一种富锂锰基正极材料及其制备方法和用途
CN111725569B (zh) * 2020-06-24 2022-05-13 珠海冠宇电池股份有限公司 一种卷芯和电池
CN111933877B (zh) * 2020-06-30 2021-12-21 江苏厚生新能源科技有限公司 一种涂覆用高粗糙度基膜及其制备方法
CN112002865A (zh) * 2020-08-25 2020-11-27 苏州捷力新能源材料有限公司 一种有机/无机复合多孔隔膜
WO2022186173A1 (ja) * 2021-03-04 2022-09-09 株式会社Gsユアサ 蓄電素子及びその製造方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09245762A (ja) * 1996-03-11 1997-09-19 Nitto Denko Corp 電池用セパレータおよびその製造方法
JP2000007819A (ja) * 1998-04-21 2000-01-11 Tokuyama Corp 多孔性フィルムおよびその製造方法
JP2000204174A (ja) * 1999-01-13 2000-07-25 Ube Ind Ltd 多孔質フイルム及び電池用セパレ―タ
JP2002117825A (ja) * 2000-10-06 2002-04-19 Denso Corp 扁平形状巻回型電極体の製造方法
JP2002151044A (ja) * 2000-08-30 2002-05-24 Sumitomo Chem Co Ltd 非水電解液二次電池用セパレータおよび非水電解液二次電池
JP2005171230A (ja) * 2003-11-05 2005-06-30 Toray Ind Inc 二軸配向微多孔フィルムおよびその製造方法
JP2009070726A (ja) * 2007-09-14 2009-04-02 Teijin Ltd 非水電解質電池の製造方法
JP2009238752A (ja) * 2008-03-27 2009-10-15 Samsung Sdi Co Ltd 電極組立体及びこれを具備する二次電池

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW595035B (en) * 2000-08-30 2004-06-21 Sumitomo Chemical Co Separator for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
US6692867B2 (en) * 2001-10-12 2004-02-17 Celgard Inc. Battery separator-pin removal
JP5095121B2 (ja) * 2006-04-28 2012-12-12 パナソニック株式会社 非水電解質二次電池用セパレータおよび非水電解質二次電池

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09245762A (ja) * 1996-03-11 1997-09-19 Nitto Denko Corp 電池用セパレータおよびその製造方法
JP2000007819A (ja) * 1998-04-21 2000-01-11 Tokuyama Corp 多孔性フィルムおよびその製造方法
JP2000204174A (ja) * 1999-01-13 2000-07-25 Ube Ind Ltd 多孔質フイルム及び電池用セパレ―タ
JP2002151044A (ja) * 2000-08-30 2002-05-24 Sumitomo Chem Co Ltd 非水電解液二次電池用セパレータおよび非水電解液二次電池
JP2002117825A (ja) * 2000-10-06 2002-04-19 Denso Corp 扁平形状巻回型電極体の製造方法
JP2005171230A (ja) * 2003-11-05 2005-06-30 Toray Ind Inc 二軸配向微多孔フィルムおよびその製造方法
JP2009070726A (ja) * 2007-09-14 2009-04-02 Teijin Ltd 非水電解質電池の製造方法
JP2009238752A (ja) * 2008-03-27 2009-10-15 Samsung Sdi Co Ltd 電極組立体及びこれを具備する二次電池

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102569697A (zh) * 2010-12-29 2012-07-11 财团法人工业技术研究院 隔离膜材及其制备方法以及包含隔离膜的电化学电池
JP2012142256A (ja) * 2010-12-29 2012-07-26 Industrial Technology Research Inst セパレータ、セパレータを含む電気化学セル、およびセパレータの製造方法
JP2014212136A (ja) * 2010-12-29 2014-11-13 インダストリアル テクノロジー リサーチインスティテュートIndustrial Technology Research Institute セパレータ、セパレータを含む電気化学セル、およびセパレータの製造方法
US9136516B2 (en) 2010-12-29 2015-09-15 Industrial Technology Research Institute Hybrid materials using ionic particles
EP2485297A3 (en) * 2011-02-03 2015-06-03 Samsung SDI Co., Ltd. Separator for lithium secondary battery and lithium secondary battery including the same

Also Published As

Publication number Publication date
KR20110049857A (ko) 2011-05-12
CN102160212A (zh) 2011-08-17
JP2010244875A (ja) 2010-10-28
US20110159347A1 (en) 2011-06-30

Similar Documents

Publication Publication Date Title
WO2010116729A1 (ja) リチウム二次電池用セパレータ、およびそれを用いたリチウム二次電池
KR101475791B1 (ko) 비수계 이차전지용 세퍼레이터, 그 제조 방법 및 비수계 이차전지
US8808923B2 (en) Separator for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using the same
JP6130845B2 (ja) セパレータ一体形電極及び非水電解質二次電池
JP5812364B2 (ja) 非水電解液型二次電池
KR101955061B1 (ko) 세퍼레이터, 전지, 전지 팩, 전자 기기, 전동 차량, 축전 장치 및 전력 시스템
CN112020784B (zh) 用于电化学装置的隔板和包含该隔板的电化学装置
US11329349B2 (en) Polyolefin micro porous film, separator film for power-storage device, and power-storage device
CN108370015B (zh) 隔膜及包含其的电化学装置
KR20110139224A (ko) 나트륨 이온 전지
JP2013175309A (ja) 密閉型非水電解質二次電池
CN112352344B (zh) 具有微细图案的分隔件、卷绕体及非水电解质电池
KR20170093606A (ko) 분리막 및 이의 제조방법
JP4581547B2 (ja) 非水電解液二次電池
JPWO2012049748A1 (ja) 非水電解液リチウム二次電池
CN112424991A (zh) 用于电化学装置的隔板和制造该隔板的方法
JP2009070726A (ja) 非水電解質電池の製造方法
KR101705307B1 (ko) 상 전환법을 이용한 전기화학소자용 세퍼레이터의 제조방법, 그로부터 형성된 세퍼레이터 및 그를 포함하는 전기화학소자
JP2012182084A (ja) 非水電解質二次電池
KR20160117315A (ko) 셀룰로오스계 다층 분리막
US10374203B2 (en) Heat-diffusible separation film and secondary cell comprising the same
US20200035973A1 (en) Secondary battery and method for manufacturing the same
WO2017051514A1 (ja) 円筒形非水電解質二次電池
JP5888079B2 (ja) セパレータ、及びそれを用いた非水系二次電池
WO2018078711A1 (ja) セパレータ、およびセパレータを含む二次電池

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080002620.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10761433

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20117005237

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10761433

Country of ref document: EP

Kind code of ref document: A1