WO2017169845A1 - 二次電池用セパレータおよび二次電池 - Google Patents

二次電池用セパレータおよび二次電池 Download PDF

Info

Publication number
WO2017169845A1
WO2017169845A1 PCT/JP2017/010651 JP2017010651W WO2017169845A1 WO 2017169845 A1 WO2017169845 A1 WO 2017169845A1 JP 2017010651 W JP2017010651 W JP 2017010651W WO 2017169845 A1 WO2017169845 A1 WO 2017169845A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluororesin
secondary battery
resin
melting point
porous layer
Prior art date
Application number
PCT/JP2017/010651
Other languages
English (en)
French (fr)
Inventor
甲斐信康
佃明光
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to CN201780016505.9A priority Critical patent/CN108780866A/zh
Priority to EP17774389.5A priority patent/EP3439073B1/en
Priority to US16/086,539 priority patent/US10777796B2/en
Priority to JP2017515850A priority patent/JP7151082B2/ja
Priority to KR1020187024714A priority patent/KR102335587B1/ko
Priority to CN202211553378.5A priority patent/CN115939668A/zh
Publication of WO2017169845A1 publication Critical patent/WO2017169845A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/446Composite material consisting of a mixture of organic and inorganic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4235Safety or regulating additives or arrangements in electrodes, separators or electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/42Acrylic resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/426Fluorocarbon polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/443Particulate material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/491Porosity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/403Manufacturing processes of separators, membranes or diaphragms
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a separator for a secondary battery and a secondary battery.
  • Secondary batteries such as lithium ion batteries are widely used in portable digital devices such as mobile phones, notebook computers, digital cameras, digital video cameras, and portable game machines.
  • portable digital devices such as mobile phones, notebook computers, digital cameras, digital video cameras, and portable game machines.
  • the use as a power source of a hybrid vehicle, an electric vehicle, a plug-in hybrid vehicle, etc. has been expanded as an automobile application.
  • a secondary battery separator and an electrolyte are interposed between a positive electrode in which a positive electrode active material is laminated on a positive electrode current collector and a negative electrode in which a negative electrode active material is laminated on a negative electrode current collector. It has a configuration.
  • a polyolefin porous substrate is used as a separator for a secondary battery.
  • the characteristics required for secondary battery separators include electrolytes in the porous structure that allow ion migration, and the porous structure is closed by melting with heat when the lithium ion battery abnormally generates heat. In addition, the power generation is stopped by stopping the ion movement.
  • the secondary battery separator is required to have adhesiveness (wet adhesiveness) with the electrode in a state impregnated with the electrolytic solution.
  • secondary battery separators are required to have high safety.
  • the secondary battery separator is required to have dimensional stability.
  • the laminated body of the rolled positive electrode, separator, and negative electrode is cylindrical.
  • the separator for the secondary battery is bonded to the electrode before impregnation with the electrolyte (dry bonding). Sex) is required.
  • it is required to reduce the manufacturing cost of secondary batteries, and cost reduction is required for secondary battery separators.
  • Patent Documents 1 and 2 by laminating a porous layer mainly composed of polyvinylidene fluoride resin having wet adhesion on a porous substrate made of polyolefin, Secondary battery separators with improved wet adhesion have been proposed.
  • Patent Document 3 improves wet adhesion with an electrode by laminating a porous layer mainly composed of polyvinylidene fluoride resin having wet adhesion on a porous substrate made of polyolefin. Secondary battery separators have been proposed.
  • Patent Document 4 wet adhesion to an electrode is obtained by laminating a porous layer composed of particles made of polyvinylidene fluoride resin having adhesive properties and inorganic particles on a porous substrate made of polyolefin. Secondary battery separators with improved dimensional stability have been proposed.
  • Patent Documents 1 and 2 as a production method, a fluororesin dissolved in an organic solvent is coated on a release film or a porous substrate, and is immersed in a coagulation tank to form a porous layer.
  • wet adhesion with the electrode of the secondary battery separator is improved, but it is a high-cost manufacturing method, and there is a demand for cost reduction of the current secondary battery separator. I can not respond to.
  • the dry adhesion with the electrode in a state not impregnated with the electrolytic solution is not sufficient.
  • Patent Documents 3 and 4 since the molecular weight of the polyvinylidene fluoride resin to be used is not appropriate, sufficient wet adhesion with an electrode cannot be obtained. Also, the dry adhesion with the electrode in a state not impregnated with the electrolytic solution is not sufficient.
  • an object of the present invention is to provide a separator for a secondary battery that exhibits wet adhesion, dry adhesion, and dimensional stability with an electrode at low cost.
  • the present inventors have made extensive studies in order to make the secondary battery separator exhibit wet adhesion with the electrode, dry adhesion, and dimensional stability at a low cost. As a result, it has been found that if a fluororesin and an organic resin having a melting point in a specific range are used, wet adhesion and dry adhesion with an electrode are exhibited. Furthermore, by applying a coating material mixed with inorganic particles using a general-purpose coating method by making fluororesin particles into particles, wet adhesion with electrodes, dry adhesion, and dimensional stability can be achieved at low cost. Allowed to express.
  • the secondary battery separator of the present invention has the following configuration.
  • the porous layer has a melting point of 130 ° C. or higher and 20 ° C. or higher and lower than 130 ° C.
  • B The porous layer has a melting point of 130 ° C.
  • C) The porous layer has a melting point of 130 ° C. or higher and lower than 180 ° C. and 20 ° C. or higher and lower than 130 ° C.
  • the porous layer has a melting point of 130 ° C. or higher and lower than 180 ° C.
  • the fluororesin is a polyvinylidene fluoride resin having a vinylidene fluoride content of 80 mol% or more and 100 mol% or less.
  • the porous layer is mainly composed of two or more kinds of organic resins having different melting points, at least one kind is a fluororesin, and the following (A) and / or (B) is satisfied.
  • Wet adhesion and dry adhesion with an electrode can be imparted, and dimensional stability can be imparted by containing inorganic particles in the porous layer.
  • the porous layer has a melting point of 130 ° C. or higher and 20 ° C. or higher and lower than 130 ° C.
  • the porous layer has a melting point of 130 ° C. or higher and has an amorphous organic resin.
  • the separator for a secondary battery of the present invention is a separator in which a porous layer mainly composed of inorganic particles and two or more organic resins having different melting points is laminated on at least one surface of a porous substrate, At least one of the organic resins is a fluororesin, and is a secondary battery separator that satisfies the following (A) and / or (B).
  • the porous layer has a melting point of 130 ° C. or more and 20 ° C. or more and less than 130 ° C.
  • the porous layer has a melting point of 130 ° C. or more and has an amorphous organic resin.
  • the porous layer of the present invention is mainly composed of inorganic particles and two or more organic resins having different melting points. At least one of the organic resins is a fluororesin.
  • the melting point is an endothermic peak at the second temperature rise after first heating and cooling in differential scanning calorimetry (DSC) according to the provisions of “JIS K7121: 2012 Plastic Transition Temperature Measurement Method”.
  • the temperature of the peak top (hereinafter sometimes referred to as “peak top”) is the melting point.
  • the melting point is different from the case where each organic resin has a melting point and one of the organic resins has a melting point, and the other organic resin is an amorphous organic. Including the case of resin.
  • organic resin constituting the porous layer of the present invention in addition to fluororesin, olefin resin such as polyethylene and polypropylene, acrylic resin, styrene-butadiene resin, cross-linked polystyrene, methyl methacrylate-styrene copolymer, polyimide, melamine resin , Phenol resin, polyacrylonitrile, silicon resin, urethane resin, polycarbonate, carboxymethyl cellulose resin, and the like.
  • the main component means that the ratio of the inorganic particles and two or more organic resins having different melting points to the total porous layer is 70% by mass or more.
  • two or more types of fluororesins having different melting points may be used.
  • One or more organic resins other than a fluororesin and a fluororesin having a melting point different from that of the fluororesin may be used.
  • Two or more organic resins having different melting points from the fluororesin may be used.
  • One embodiment of the porous layer of the present invention has a melting point of 130 ° C. or higher and 20 ° C. or higher and lower than 130 ° C. That is, the porous layer of the present invention has at least one melting point at 130 ° C. or higher and 20 ° C. or higher and lower than 130 ° C. when the melting point of the porous layer is measured by the method described in the Examples section. It may have two or more melting points independently at 130 ° C or higher and 20 ° C or higher and lower than 130 ° C. That is, it may have one melting point at 130 ° C. or more, two melting points at 20 ° C. or more and less than 130 ° C., two or more melting points at 130 ° C.
  • melting point at 20 ° C. or more and less than 130 ° C. It may be 130 ° C. or higher and 20 ° C. or higher and lower than 130 ° C., and each may have two or more melting points at the same time.
  • the porous layer of the present invention preferably has a melting point of 130 ° C. or higher and lower than 180 ° C. and 30 ° C. or higher and lower than 120 ° C. More preferably, the melting point is 140 ° C. or higher and lower than 180 ° C. and 40 ° C. or higher and lower than 100 ° C.
  • an organic resin having a melting point of 130 ° C. or higher and an organic resin having a melting point of 20 ° C. or higher and lower than 130 ° C. are preferably used. More preferably, an organic resin having a melting point of 130 ° C. or higher and lower than 180 ° C. and an organic resin having a melting point of 30 ° C. or higher and lower than 120 ° C. are used. More preferably, an organic resin having a melting point of 140 ° C. or higher and lower than 180 ° C. and an organic resin having a melting point of 40 ° C. or higher and lower than 100 ° C. are used. An organic resin having a melting point of 130 ° C.
  • the melting point is less than 130 ° C., sufficient wet adhesion may not be obtained.
  • an organic resin having a melting point of 20 ° C. or higher and lower than 130 ° C. is used, for example, to obtain dry adhesion with an electrode.
  • the melting point is less than 20 ° C., battery characteristics may be deteriorated due to deformation and elution into the electrolyte when the secondary battery is repeatedly charged and discharged.
  • the melting point is 130 ° C. or higher, sufficient dry adhesion with the electrode may not be obtained.
  • porous layer of the present invention has a melting point of 130 ° C. or higher and an amorphous organic resin.
  • amorphous organic resin refers to a resin that does not have a melting point, that is, does not have an endothermic peak, as measured by a differential scanning calorimeter. That is, the porous layer of the present invention has at least one melting point at 130 ° C. or higher when the melting point of the porous layer is measured by the method described in the Examples section. You may have two or more melting
  • the porous layer of the present invention preferably has a melting point of 130 ° C. or higher and lower than 180 ° C., more preferably 140 ° C. or higher and lower than 180 ° C.
  • At least one of the organic resins preferably has an acidic functional group in order to improve wet adhesion with the electrode. Moreover, when it has an acidic functional group, the productivity improvement and battery characteristic improvement in manufacturing a secondary battery are also attained by affinity improvement with electrolyte solution.
  • An acidic functional group is a functional group capable of releasing protons (H + ). Specific examples of the acidic functional group include a carboxylic acid group, a sulfonic acid group, a phosphoric acid group, a hydroxyl group, and a phenolic hydroxyl group. One of these may be used, or two or more may be combined.
  • a carboxylic acid group is particularly preferable, and monomers having a carboxylic acid group include monocarboxylic acids such as acrylic acid, methacrylic acid, and crotonic acid, and derivatives thereof, and maleic acid, fumaric acid, and itacone.
  • monocarboxylic acids such as acrylic acid, methacrylic acid, and crotonic acid, and derivatives thereof
  • maleic acid fumaric acid, and itacone.
  • examples include acids, dicarboxylic acids such as citraconic acid, and acid anhydrides or derivatives thereof. These may be used alone or in combination of two or more. Among these, dicarboxylic acid is preferable and maleic acid is particularly preferable.
  • the shape of the organic resin may be a particle shape or may not have a particle shape.
  • the shape of the particles include a spherical shape, a plate shape, a needle shape, a rod shape, and an oval shape. Any shape may be used, and among them, a spherical shape is preferable from the viewpoint of surface modification, dispersibility, and coatability. It is preferable that Moreover, it is a particle shape in the state of the coating liquid before forming a porous layer, and it forms into a film by a heat
  • fluororesin constituting the porous layer of the present invention examples include homopolymers such as polyvinylidene fluoride, polytetrafluoroethylene, polyvinyl fluoride, and polychlorotrifluoroethylene, ethylene / tetrafluoroethylene polymer, and ethylene-chlorotrifluoroethylene. And copolymers such as polymers. Further, a copolymer of a homopolymer with tetrafluoroethylene, hexafluoropropylene, trifluoroethylene, or the like can be given.
  • a polyvinylidene fluoride resin in particular, a resin made of a copolymer of vinylidene fluoride and hexafluoropropylene is preferably used from the viewpoint of electrical stability and oxidation resistance.
  • the polyvinylidene fluoride content of the polyvinylidene fluoride resin is preferably 80 mol% or more and 100 mol% or less. More preferably, it is 85 mol% or more and 99 mol% or less. More preferably, it is 90 mol% or more and 98 mol% or less. If the vinylidene fluoride content is less than 80 mol%, sufficient mechanical strength may not be obtained.
  • the melting point of the polyvinylidene fluoride resin is preferably 130 ° C. or higher. More preferably, the melting point is 130 ° C. or more and less than 180 ° C., and still more preferably, the melting point is 140 ° C. or more and less than 180 ° C.
  • the weight average molecular weight of the fluororesin is preferably 100,000 or more and 5 million or less. More preferably, it is 300,000 or more and 4 million or less. More preferably, it is 600,000 or more and 3 million or less. Particularly preferably, it is 800,000 or more and 2.5 million or less.
  • the weight average molecular weight is less than 100,000, sufficient adhesion with the electrode may not be obtained.
  • handling property and coating property may become low by a viscosity increase.
  • the fluororesin of the present invention may be a mixture of a plurality of types of fluororesins.
  • the weight average molecular weight of the plurality of types of fluororesins is preferably 100,000 or more and 5 million or less.
  • the weight average molecular weight of the other fluororesin may not be 100,000 or more and 5 million or less.
  • the fluororesin may have a particle shape, and a preferable average particle diameter is 0.01 ⁇ m or more and 1.00 ⁇ m or less. More preferably, it is 0.02 ⁇ m or more and 0.40 ⁇ m or less. More preferably, it is 0.04 ⁇ m or more and 0.20 ⁇ m or less.
  • the average particle size is smaller than 0.01 ⁇ m, the fluororesin particles are densely stacked, and the increase in air permeability may be increased. Further, when the average particle size is larger than 1.00 ⁇ m, the contact area with the electrode becomes small, and sufficient wet adhesion may not be obtained. Moreover, since the distance between inorganic particles becomes large, dimensional stability may also fall.
  • the average particle diameter in this case is, as described in Examples, one side of a square or a long side of a rectangle (major axis diameter) in which the fluororesin particles observed by microscopic observation of the surface of the porous layer are completely surrounded. ) was measured and the number average was calculated. A detailed measurement method will be described later.
  • the shape of the fluororesin particles includes a spherical shape, a plate shape, a needle shape, a rod shape, an oval shape, and the like, and any shape may be used.
  • spherical and plate shapes are particularly preferable from the viewpoints of dispersibility, coatability, and porosity.
  • the aspect ratio of the fluororesin particles is preferably 100 or less, more preferably 50 or less, and even more preferably 30 or less. When the aspect ratio is larger than 100, the handleability of the fluororesin particles may be lowered.
  • the aspect ratio is a square or rectangle in which the particles are completely surrounded on the image of the particles obtained by an electron microscope, and the long side (major axis diameter) of the rectangle is drawn. It is the value divided by the short side (short axis diameter). In the case of a square, the aspect ratio is 1.
  • the fluororesin particles As a method for producing the fluororesin particles, known production methods such as emulsion polymerization, suspension polymerization, and dispersion polymerization can be used. Further, the fluororesin particles obtained by the above production method may be further processed in order to obtain a target average particle size and shape. Examples thereof include a coagulation method, a phase separation method, a dry pulverization method, a wet pulverization method, and a spray dryer method.
  • Examples of the coagulation method include a method of precipitating the fluororesin particles by dissolving the fluororesin in a solvent or a solvent and water and adding the fluororesin solution to a poor solvent.
  • the solvent used for dissolving the fluororesin may be any solvent that dissolves the fluororesin and is miscible with water.
  • N-alkylpyrrolidone solvents such as N-methyl-2-pyrrolidone (hereinafter also abbreviated as NMP), 1,3-dimethyl-2-imidazolidinone (hereinafter referred to as DMI).
  • Urea solvents such as N, N-dimethylacetamide (hereinafter sometimes abbreviated as DMAc), chain amides such as N, N-dimethylformamide (hereinafter also abbreviated as DMF) Solvents, dimethyl sulfoxide (hereinafter sometimes abbreviated as DMSO), sulfur oxide polar solvents such as dimethyl sulfone and tetramethylene sulfone, ketone solvents such as acetone and methyl ethyl ketone, nitriles such as acetonitrile and propionitrile A solvent is mentioned.
  • NMP, DMI, acetone, methyl ethyl ketone, and acetonitrile are preferable, and NMP and acetonitrile are more preferable because of the stability of the solvent and ease of industrial handling.
  • the atmosphere of the dissolution tank is preferably a low oxygen gas concentration in order to suppress decomposition and deterioration of the fluororesin. Therefore, it is preferable to arrange the dissolution tank in an inert gas atmosphere.
  • the inert gas include nitrogen gas, carbon dioxide gas, helium gas, and argon gas. Nitrogen gas, argon gas, and carbon dioxide gas are preferable in consideration of economy and availability. Particularly preferably, nitrogen gas or argon gas is used.
  • the dissolution method is not particularly limited, but when making a fluororesin solution, the fluororesin, solvent and water are placed in a predetermined container and dissolved while stirring. If not dissolved at room temperature, dissolve by heating.
  • water After dissolving the fluororesin in a solvent, water may be added.
  • a fluororesin solution is prepared in a predetermined container, and then water is added to the fluororesin solution.
  • a liquid feed pump, Komagome pipette, or the like can be used for the addition of water.
  • a large amount of water is added at a time, the fluororesin precipitates and it takes a long time to dissolve the fluororesin, so it is preferable to gradually add water.
  • the amount of water to be added depends on the concentration of the fluororesin to be dissolved and the type of solvent.
  • the amount of water to be added is preferably 1% by mass or more and 25% by mass or less in a total amount of 100% by mass of the solvent and the water to be added. If the amount of water added is too small, irregularly shaped particles may be generated, and if the amount of water added is too large, the fluororesin may be precipitated.
  • the dissolution temperature varies depending on the type of solvent used and the concentration of the fluororesin. Usually, the temperature is from room temperature to 200 ° C., preferably from room temperature to 100 ° C., or below the boiling point of the solvent.
  • the dissolution time varies depending on the type of solvent, fluororesin concentration, and dissolution temperature. Usually, it is in the range of 5 minutes to 50 hours, preferably in the range of 10 minutes to 40 hours.
  • fluororesin concentration is high, fusion of the fluororesin particles may occur when the fluororesin solution is added to a poor solvent and the fluororesin particles are precipitated. Therefore, fluororesin particles having a small particle size or fluororesin particles having a uniform particle size may not be obtained.
  • the amount of the fluororesin in the fluororesin solution is 100% by mass of the solvent when water is not included, and 0.1% by mass or more when the total of 100% by mass of the solvent and water is included when water is included. It is preferable to set it as mass% or less. More preferably, it is 0.5 mass% or more and 10 mass% or less.
  • the fluororesin is preferably 0.1% by mass or more and 15% by mass or less because the applicability to industrial production is improved.
  • the fluororesin solution is subjected to the precipitation step.
  • Step a1 Step of adding fluororesin solution to poor solvent to precipitate fluororesin particles
  • step a2) Step of precipitating fluororesin particles by flash crystallization of fluororesin solution to poor solvent
  • a fluororesin solution is added to a poor solvent for the fluororesin to precipitate fluororesin particles.
  • the fluororesin solution may be added from above the poor solvent via the gas phase. In view of obtaining fine particles having a uniform particle size, it is preferable to directly put in a poor solvent.
  • a fluororesin solution is added to a receiving tank containing a poor solvent to produce a granulated liquid, and then the granulated liquid is extracted and the next step
  • a method batch method
  • a continuous flow method sometimes abbreviated simply as a continuous method
  • the reactor used for the continuous flow type includes a continuous tank reactor (continuous tank reactor, abbreviated as CSTR) and a tube reactor (plug flow reactor, abbreviated as PFR). Any reactor can be applied to the formation of fluororesin particles.
  • a poor solvent is put into a receiving tank (sometimes called a reactor in a continuous type), a fluororesin solution is added to produce fluororesin particles, and then the fluororesin solution is added to the granulated liquid. And a poor solvent are dripped at the same time, and the fluororesin granulated liquid is continuously extracted from the receiving tank and continuously granulated.
  • the fluororesin solution and the poor solvent may be simultaneously dropped into the fluororesin particleized solution prepared by batch method, and the fluororesin particleized solution may be continuously extracted from the receiving tank to prepare the granulated solution. it can.
  • the fluororesin solution and the poor solvent are dropped simultaneously.
  • the dropping rate ratio of the poor solvent to the dropping rate of the fluororesin solution is not particularly limited as long as the fluororesin particles can be generated. From the viewpoint of productivity, the dropping rate ratio of the poor solvent to the dropping rate of the fluororesin solution is 0.1 to 100 is preferable, and 0.2 to 50 is more preferable.
  • the ratio of the mass of the particleized liquid in the receiving tank to the flow rate of the particleized liquid extracted from the receiving tank (reactor) is defined as the residence time.
  • the residence time is not particularly limited as long as fine particles having a uniform particle diameter can be obtained, preferably 1 second to 10 hours, and more preferably 1 minute to 1 hour.
  • a mixing device may be installed in the receiving tank in order to maintain the uniformity of the granulated liquid.
  • the mixing device include a stirring blade, a biaxial mixer, a homogenizer, and ultrasonic irradiation.
  • the fluororesin solution and the poor solvent are passed through the pipe at a constant speed, and the fluororesin solution and the poor solvent are mixed in the pipe to form particles.
  • This is a method of taking out, and various pipes can be used.
  • the fluororesin solution may be passed through the inner tube and the poor solvent through the outer tube at a constant speed, and the fluororesin solution and the poor solvent may be mixed in the outer tube to form particles. it can.
  • the fluororesin solution may be passed through the outer tube and the poor solvent may be passed through the inner tube.
  • a poor solvent is passed from 90 degrees with respect to the flow of the fluororesin solution to bring the fluororesin solution and the poor solvent into contact with each other. Can also be made into particles.
  • the PFR method is not limited to the above.
  • the flow rate of the fluororesin solution and the flow rate of the poor solvent are not particularly limited as long as the fluororesin particles can be generated.
  • the ratio of the fluororesin solution flow rate to the poor solvent flow rate is preferably 0.1 to 100, more preferably 0.2 to 50.
  • the mixing portion of the fluororesin solution and the poor solvent may be only a pipe, or a tubular mixing device may be installed.
  • the tubular mixing device include a tubular mixing device in which a static mixing structure such as the above-described mixing device or static mixer is stored.
  • the mixing time of the fluororesin solution and the poor solvent may be in the same range as the above residence time.
  • the inner diameter of the pipe is not particularly limited as long as the fluororesin solution and the poor solvent are mixed. From the viewpoint of productivity, it is preferably 0.1 mm to 1 m, and more preferably 1 mm to 1 m.
  • the ratio of the inner pipe diameter to the outer pipe diameter is not particularly limited as long as a particle liquid can be produced.
  • Examples of poor solvents for fluororesin particles include aliphatic hydrocarbon solvents such as pentane, hexane, heptane, octane, nonane and decane, and aromatics such as benzene, toluene, o-xylene, m-xylene, p-xylene and naphthalene.
  • aliphatic hydrocarbon solvents such as pentane, hexane, heptane, octane, nonane and decane
  • aromatics such as benzene, toluene, o-xylene, m-xylene, p-xylene and naphthalene.
  • Hydrocarbon solvents such as ethyl acetate, methyl acetate, butyl acetate and butyl propionate, ether solvents such as diethyl ether, diisopropyl ether, tetrahydrofuran and dioxane, methanol, ethanol, 1-propanol and 2-propanol Alcohol-based solvents, water and the like.
  • alcohol solvents such as methanol, ethanol, 1-propanol and 2-propanol, water, and the like. Particularly preferred are methanol, ethanol and water.
  • the poor solvent of the fluororesin is preferably a solvent that is uniformly mixed with the solvent used for dissolution.
  • evenly mixed means that an interface does not appear even when two or more solvents are mixed and allowed to stand for one day.
  • NMP, DMF, DMAc, acetone, DMSO, tetrahydrofuran, acetonitrile, methanol, ethanol, and the like can be mentioned as a solvent in which they are uniformly mixed.
  • the poor solvent of the fluororesin may be a single solvent or a mixture of two or more solvents as long as it is uniformly mixed with the solvent used for dissolution.
  • a mixed solvent containing water such as a mixed solvent of water-alcohols and water-nitriles, from the viewpoint that fine particles having a uniform particle diameter can be easily obtained.
  • the amount of the poor solvent for the fluororesin is not particularly limited, and examples thereof include a range of 0.1 parts by mass or more and 100 parts by mass or less with respect to 1 part by mass of the solvent used for dissolution. Preferably they are 0.1 mass part or more and 50 mass parts or less, More preferably, they are 0.1 mass part or more and 10 mass parts or less.
  • the receiving tank temperature can be set to 0 ° C. or higher and lower than the boiling point of the poor solvent.
  • the temperature of the receiving tank immediately before the addition is preferably 0 ° C. or higher and 40 ° C. or lower.
  • the dissolved fluororesin solution is flash crystallized to deposit fluororesin particles. That is, in the method of adding a fluororesin solution to a poor solvent, a flash crystallization method is used. Flash crystallization refers to a method of rapidly solidifying and crystallizing a fluororesin solution.
  • the fluororesin solution under heating and pressurization is less than the boiling point at normal pressure of the solvent used for dissolution (may be room temperature or less) and less than the pressure at which the fluororesin solution is pressurized (A method of spraying and transferring the liquid through a nozzle into another container (which may be referred to as a receiving tank hereinafter) which may be under reduced pressure, or crystallizing, or a fluororesin solution under pressure,
  • the liquid is ejected through a nozzle into another container (hereinafter sometimes referred to as a receiving tank) that is less than the pressurized pressure (may be under reduced pressure), transferred, and crystallized.
  • the flash crystallization it is preferable to spray the fluororesin solution directly into the poor solvent. It is preferable to perform flash crystallization with the tip of the nozzle from which the fluororesin solution is jetted placed in a poor solvent on the receiving tank side. The tip of the nozzle may be separated from the poor solvent, and flash crystallization may be performed from above the poor solvent via the gas phase.
  • a fluororesin particle can be obtained by pressurizing a dissolution tank to arbitrary pressures and carrying out flash crystallization toward the poor solvent of a fluororesin.
  • the amount of the poor solvent for the fluororesin used is not particularly limited, and examples thereof include a range of 0.1 to 100 parts by mass with respect to 1 part by mass of the solvent used for dissolution. Preferably they are 0.1 mass part or more and 50 mass parts or less. More preferably, they are 0.1 mass part or more and 10 mass parts or less.
  • a method of performing flash crystallization in one stage or a method of performing flash crystallization in multiple stages in a vessel having a lower pressure than the inside of a tank containing a solution can be employed.
  • the inside of the container is pressurized by a self-produced pressure by heating (pressure increase by heating) (inert gas such as nitrogen) May be further pressurized).
  • the pressurized solution is flushed toward an atmospheric pressure receiving tank containing a poor fluororesin solvent, or flushed toward a reduced pressure receiving tank.
  • the dissolved solution pressurized to an arbitrary pressure is flushed toward an atmospheric pressure receiving tank containing a fluorocarbon poor solvent. Or flush towards a receiving tank under reduced pressure.
  • the pressure (gauge pressure) of the solution for flash crystallization is preferably 0.2 MPa or more and 4 MPa or less. It is preferable to perform flash crystallization of the solution in this environment toward a receiving tank under atmospheric pressure.
  • the temperature of the receiving tank varies depending on the poor solvent of the fluororesin placed in the receiving tank, and the temperature at which the poor solvent of the fluororesin does not solidify is 50 to 50 ° C. Specifically, in the case of water, the temperature immediately before flash crystallization is 0 to 50 ° C. preferable.
  • Examples of the flash crystallization method include a method in which the outlet of the connecting pipe from the dissolution tank is placed in the atmosphere of the receiving tank or in a poor solvent of a fluororesin and flash crystallization is performed. It is preferable to put it in a poor solvent because finer fluororesin particles can be obtained.
  • the fluororesin particles obtained by the precipitation step (a1 step), in particular (a2 step), can be obtained in the state of a dispersion or suspension.
  • coarse particles such as an undissolved part of the prepared fluororesin, are included, it can be removed by filtration or the like.
  • fluororesin particles particularly polyvinylidene fluoride resin particles made of a copolymer of vinylidene fluoride and hexafluoropropylene, the wet adhesion can be improved without lowering the air permeability.
  • phase separation method examples include a method in which a fluororesin is dissolved in a solvent, a fluororesin solution is emulsified using a non-solvent or the like, and contacted with a poor solvent to form fluororesin particles.
  • Examples of the dry pulverization method include a pulverization method by causing the fluororesin particles to collide with each other and a pulverization method by causing them to collide with a metal wall.
  • Examples of the wet pulverization method include a method in which beads such as zirconia are added to a dispersion medium in which fluorine resin particles are dispersed, and the particles are pulverized by causing the beads and the fluorine resin particles to collide with each other.
  • the material and bead diameter of the beads can be used according to the shape and size of the target fluororesin particles.
  • the spray dryer method there is a method in which a fluororesin is dissolved in a solvent, a solution is sprayed from a nozzle, droplets are produced, and dried to form particles.
  • the solvent used in the spray dryer method is not particularly limited as long as the fluororesin is dissolved, but a solvent having a boiling point lower than the melting point of the fluororesin is preferable.
  • acetone methyl ethyl ketone, methyl isobutyl ketone, methanol, ethanol 1-propanol, 2-propanol, 1-butanol, ethyl acetate, propyl acetate, butyl acetate, tetrahydrofuran, cyclohexanone and the like.
  • the porous layer preferably contains inorganic particles.
  • the dimensional stability required for the secondary battery separator is preferably 130 ° C. and heat shrinkage within 10% at 1 hour.
  • the inorganic particles are required to be electrically stable in the battery, have electrical insulation, and heat resistance as an example.
  • the inorganic particles include inorganic oxide particles such as aluminum oxide, boehmite, silica, titanium oxide, zirconium oxide, iron oxide, and magnesium oxide, inorganic nitride particles such as aluminum nitride and silicon nitride, calcium fluoride, fluorine.
  • inorganic oxide particles such as aluminum oxide, boehmite, silica, titanium oxide, zirconium oxide, iron oxide, and magnesium oxide
  • inorganic nitride particles such as aluminum nitride and silicon nitride, calcium fluoride, fluorine.
  • sparingly soluble ionic crystal particles such as barium fluoride and barium sulfate, and magnesium hydroxide. These particles may be used alone or in combination of two or more.
  • the average particle size of the inorganic particles used is preferably 0.10 ⁇ m or more and 5.0 ⁇ m or less. More preferably, they are 0.20 micrometer or more and 3.0 micrometers or less, More preferably, they are 0.30 micrometer or more and 1.0 micrometers or less. If it is smaller than 0.10 ⁇ m, the air permeability may increase due to the dense porous layer. In addition, since the pore diameter is reduced, the impregnation property of the electrolytic solution is lowered, which may affect the productivity. If it exceeds 5.0 ⁇ m, sufficient dimensional stability may not be obtained, and the film thickness of the porous layer may increase, leading to deterioration of battery characteristics.
  • Examples of the shape of the particles to be used include a spherical shape, a plate shape, a needle shape, a rod shape, and an oval shape, and any shape may be used.
  • the spherical shape is preferable from the viewpoints of surface modification, dispersibility, and coatability.
  • binder The fluororesins, the organic resins, the inorganic particles, the fluororesin and the organic resin, the fluororesin and the inorganic particles, the organic resin and the inorganic particles, and the fluororesin, the organic resin, If necessary, a binder may be used to bind each of the inorganic particles and the porous substrate. Moreover, wet adhesion with an electrode, dry adhesion with an electrode, and dimensional stability may be improved by adding a binder.
  • Resins used for the binder include fluororesin, acrylic resin, styrene-butadiene resin, cross-linked polystyrene, methyl methacrylate-styrene copolymer, polyamide, polyamideimide, polyimide, melamine resin, phenol resin, polyacrylonitrile, silicon resin, polycarbonate. , Carboxymethyl cellulose resin, and the like. These resins may be used alone or in combination of two or more. Of the binder resins, fluororesins, acrylic resins, styrene-butadiene resins, and carboxymethylcellulose are preferably used from the viewpoint of electrical stability and oxidation resistance, and fluororesins and acrylic resins are particularly preferable.
  • the heat resistant resin means a resin having a melting point of 150 ° C. or higher, or a resin having substantially no melting point.
  • the resin having a melting point of 150 ° C. or higher refers to a resin having the peak top at 150 ° C. or higher.
  • the resin having no melting point means a resin having no peak top in the measurement temperature range of ⁇ 20 to 230 ° C.
  • the binder used may be a binder that dissolves in a solvent or a particle-shaped binder, and the form is not particularly limited.
  • the particle-shaped binder a part or all of the binder may be formed when the porous layer is formed, or a binder that does not form a film may be used.
  • the film is formed by heat at the time of drying the solvent, N-methyl-2-pyrrolidone, dimethylacetamide, dipropylene glycol methyl ether, butyl glycol, propylene glycol, 2,2
  • the film may be formed by adding a film-forming aid such as 1,4-trimethyl-1,3-pentanediol monoisobutyrate.
  • the average particle size of the particle-shaped binder is preferably 1 ⁇ m or less. If it is larger than 1 ⁇ m, the amount of the binder necessary for binding increases, so the battery performance may be lowered.
  • the content of the binder is preferably 0.1 parts by mass or more and 100 parts by mass or less, and more preferably 0.2 parts by mass or more with respect to 100 parts by mass of the total amount of the fluororesin, the organic resin, and the inorganic particles. . Moreover, More preferably, it is 50 mass parts or less, More preferably, it is 30 mass parts or less.
  • the content of the binder is larger than 100 parts by mass, the content of the fluororesin and the organic resin is decreased, the contact area with the electrode is decreased, and the wet adhesion and the dry adhesion may be weakened. In addition, the increase in air permeability increases, and the battery characteristics may deteriorate.
  • the binder content is less than 0.1 parts by mass, it becomes difficult to express the binding property, and the fluororesin and inorganic particles laminated on the porous substrate are missing and it is difficult to form a porous layer. There is.
  • the separator for a secondary battery of the present invention is a separator in which a porous layer mainly composed of inorganic particles and two or more organic resins having different melting points is laminated on at least one surface of a porous substrate, At least one of the organic resins is a fluororesin and can be obtained by a method for producing a separator for a secondary battery, which satisfies the following (A) and / or (B). The method will be described below. To do. (A) The porous layer has a melting point of 130 ° C. or more and 20 ° C. or more and less than 130 ° C. (B) The porous layer has a melting point of 130 ° C. or more and has an amorphous organic resin.
  • a fluororesin produced by a known production method such as emulsion polymerization, suspension polymerization, or dispersion polymerization, or a fluororesin and inorganic particles that have been processed into a desired average particle size and shape after polymerization are dispersed in a solvent. Adjust the working fluid.
  • the solvent to be dispersed is preferably a solvent containing water as a main component from the viewpoint of suppressing impregnation of the porous substrate with the solvent.
  • the main component means that 50% by mass or more is contained in 100% by mass of the solvent.
  • the proportion of water in the water-based solvent is preferably 50% by mass or more, more preferably 60% by mass or more, and further preferably 70% by mass or more.
  • the coating liquid may be impregnated into the base material when it is applied to the porous base material, and a desired porous layer may not be formed. Further, the impregnation with the coating liquid makes it difficult to transport the porous substrate, and wrinkles may occur during the transport.
  • a dispersant When dispersing the fluororesin, organic resin and inorganic particles, a dispersant may be used if necessary.
  • cationic surfactants such as an alkylamine salt and a quaternary ammonium salt, alkyl sulfate ester salt, polyoxyethylene alkyl ether sulfate ester salt, alkylbenzene sulfonate, fatty acid
  • Anionic surfactants such as salts, nonionic surfactants such as polyoxyethylene alkyl ethers, polyoxyethylene alkylphenols, glycerin fatty acid esters, polyoxyethylene fatty acid esters, amphoteric surfactants such as alkylbetaines, alkylamine oxides, And the above cationic, anionic, nonionic, amphoteric fluorine-based surfactants, silicon-based surfactants, and the like.
  • polymer compounds such as polyvinylpyrroli
  • the addition amount of the dispersant is preferably 0.1 parts by mass or more and 40 parts by mass or less, more preferably 0.2 parts by mass or more, with respect to 100 parts by mass in total of the fluororesin, organic resin, and inorganic particles to be dispersed. More preferably, it is 0.5 mass part or more. Moreover, Preferably it is 30 mass parts or less, More preferably, it is 20 mass parts or less.
  • the added amount of the dispersant is more than 40 parts by mass, the wet adhesive property and the dry adhesive property may be deteriorated due to a decrease in the content of the fluororesin with respect to the porous layer.
  • a known method may be used as a method for dispersing the fluororesin, the organic resin, and the inorganic particles. Examples thereof include a ball mill, a bead mill, a sand mill, a roll mill, a homogenizer, an ultrasonic homogenizer, a high pressure homogenizer, an ultrasonic device, and a paint shaker. These plural mixing and dispersing machines may be combined to perform dispersion stepwise.
  • the order of preparing the coating liquid is not particularly limited. From the viewpoint of improving the efficiency of the dispersion process, a dispersant is added to and mixed with a solvent containing water as a main component, and a fluororesin, an organic resin, and inorganic particles are added to the solution to prepare a coating solution. Is preferred.
  • the binder may be added to the coating solution in order to bind the particles to each other or the particles and the porous substrate. Further, if necessary, an antioxidant, a stabilizer, an antifoaming agent, a leveling agent, etc. may be added to the coating solution.
  • the type of the leveling agent is not particularly limited.
  • cationic surfactants such as alkylamine salts and quaternary ammonium salts, alkyl sulfate salts, polyoxyethylene alkyl ether sulfate salts, alkylbenzene sulfonates, fatty acids
  • Anionic surfactants such as salts, nonionic surfactants such as polyoxyethylene alkyl ethers, polyoxyethylene alkylphenols, glycerin fatty acid esters, polyoxyethylene fatty acid esters, amphoteric surfactants such as alkylbetaines, alkylamine oxides,
  • polymer compounds such as the above cationic, anionic, nonionic, amphoteric fluorine surfactants, silicon surfactants, polyvinylpyrrolidone, polycarboxylates, polysulfonates, polyethers, etc. And the like.
  • the addition amount of the leveling agent is preferably 20 parts by mass or less, more preferably 10 parts by mass or less, and further preferably 5 parts by mass or less with respect to 100 parts by mass in total of the fluororesin, the organic resin, and the inorganic particles.
  • the addition amount of the leveling agent is more than 20 parts by mass, the adhesive properties may be deteriorated and the battery characteristics may be deteriorated due to side reactions in the secondary battery.
  • the obtained coating solution is applied onto a porous substrate, dried, and a porous layer is laminated.
  • a coating method for example, gravure coating, slit die coating, knife coating, kiss coating, roll coating, bar coating, spray coating, dip coating, spin coating, screen printing, inkjet printing, pad printing, and other types of printing can be used. It is not limited to these,
  • the coating method should just be selected according to preferable conditions, such as a fluororesin used, organic resin, an inorganic particle, a binder, a dispersing agent, a leveling agent, the solvent to be used, and a base material.
  • laminating a porous layer on both sides provides better wet adhesion and dry adhesion on both sides of the positive electrode and negative electrode than laminating a porous layer only on one side. Therefore, it is preferable because cycle characteristics are excellent.
  • the proportion of the organic resin having a melting point of 130 ° C. or higher in the porous layer is preferably 1% by mass or more and 90% by mass or less, more preferably 5% by mass or more, and 70% by mass in 100% by mass of the entire porous layer. % Or less. More preferably, it is 10 mass% or more and 50 mass% or less.
  • the ratio of the fluororesin in the porous layer is less than 1% by mass, sufficient wet adhesion may not be obtained.
  • the content is larger than 90% by mass, the dimensional stability may not be obtained because the content of the inorganic particles decreases.
  • the proportion of the organic resin having a melting point of 20 ° C. or more and less than 130 ° C. in the porous layer is preferably 1% by mass or more and 90% by mass or less, more preferably 5% by mass or more, in 100% by mass of the entire porous layer. Moreover, it is 70 mass% or less. More preferably, it is 10 mass% or more and 50 mass% or less.
  • the ratio of the organic resin having a melting point in the porous layer of 20 ° C. or higher and lower than 130 ° C. is smaller than 1% by mass, sufficient dry adhesion may not be obtained.
  • the content is larger than 90% by mass, the dimensional stability may not be obtained because the content of the inorganic particles decreases.
  • the fluororesin and the organic resin are the same structural unit, for example, a state in which the fluororesin and the organic resin are mixed in the same particle, but are independent structural units, for example, the fluororesin particle and the organic resin particle, or
  • the fluororesin particles and the organic resin film are preferable from the viewpoints of wet adhesion to the electrode and dry adhesion.
  • the film thickness of the porous layer is preferably 0.10 ⁇ m or more and 5.0 ⁇ m or less. More preferably, it is 0.3 ⁇ m or more and 4.0 ⁇ m or less. More preferably, it is 0.5 ⁇ m or more and 3.0 ⁇ m or less.
  • the thickness of the porous layer is less than 0.10 ⁇ m, sufficient wet adhesion and dry adhesion with the electrode may not be obtained.
  • it is thicker than 5.0 ⁇ m the increase in air permeability may be increased, or wet adhesion and dry adhesion may not be sufficient.
  • the curling may be remarkable when laminated on only one side, it is preferable to laminate a porous layer on both sides of the porous substrate.
  • the film thickness difference of the porous layer of each surface shall be 1 micrometer or less.
  • the increase in air permeability due to the lamination of the porous layer is preferably 5 times or less. More preferably, it is 3 times or less. If the air permeability becomes greater than 5 times due to the lamination of the porous layer, the overall air permeability as a secondary battery separator also increases, and sufficient ion mobility cannot be obtained, resulting in deterioration of battery characteristics. There is a case.
  • porous substrate examples include a porous membrane having pores therein, a nonwoven fabric, or a porous membrane sheet made of a fibrous material.
  • the material constituting the porous substrate is preferably composed of a resin that is electrically insulating, electrically stable, and stable to an electrolyte solution.
  • the resin used from the viewpoint of providing a shutdown function is preferably a thermoplastic resin having a melting point of 200 ° C. or lower.
  • the shutdown function is a function to stop power generation by closing the porous structure by melting with heat and stopping ion movement when the lithium ion battery abnormally generates heat.
  • thermoplastic resin examples include polyolefin resins
  • the porous substrate is preferably a polyolefin porous substrate.
  • the polyolefin porous substrate is more preferably a polyolefin-based porous substrate having a melting point of 200 ° C. or lower.
  • Specific examples of the polyolefin resin include polyethylene, polypropylene, copolymers thereof, and mixtures thereof.
  • a method for producing a porous substrate a method of making a porous material by drawing a polyolefin resin into a sheet and then making it porous, or dissolving a polyolefin resin in a solvent such as liquid paraffin to form a sheet and then extracting the solvent to make it porous There is a method of quality improvement.
  • the thickness of the porous substrate is preferably 5 ⁇ m or more and 50 ⁇ m or less, more preferably 5 ⁇ m or more and 30 ⁇ m or less.
  • the thickness of the porous substrate is greater than 50 ⁇ m, the internal resistance of the porous substrate may increase.
  • the thickness of the porous substrate is less than 5 ⁇ m, the production becomes difficult, and sufficient mechanical properties may not be obtained.
  • the air permeability of the porous substrate is preferably 50 seconds / 100 cc or more and 1,000 seconds / 100 cc or less. More preferably, it is 50 seconds / 100 cc or more and 500 seconds / 100 cc or less. If the air permeability is greater than 1,000 seconds / 100 cc, sufficient ion mobility cannot be obtained, and battery characteristics may be deteriorated. If it is less than 50 seconds / 100 cc, sufficient mechanical properties may not be obtained.
  • the separator for a secondary battery according to the present invention is a separator in which a porous layer mainly composed of inorganic particles and two or more organic resins having different melting points is laminated on at least one surface of a porous substrate as described above. And at least 1 sort (s) of the said organic resin is a fluororesin, and is a separator for secondary batteries satisfy
  • the porous layer has a melting point of 130 ° C. or more and 20 ° C. or more and less than 130 ° C.
  • the porous layer has a melting point of 130 ° C. or more and has an amorphous organic resin.
  • the laminated porous layer is preferably sufficiently porous to have ion permeability, and the air permeability of the secondary battery separator is 50 seconds / 100 cc or more and 1,000 seconds / 100 cc or less. Preferably there is. More preferably, it is 50 seconds / 100 cc or more and 500 seconds / 100 cc or less. If the air permeability is greater than 1,000 seconds / 100 cc, sufficient ion mobility cannot be obtained, and battery characteristics may be deteriorated. If it is less than 50 seconds / 100 cc, sufficient mechanical properties may not be obtained.
  • the separator for a secondary battery of the present invention can be suitably used for a secondary battery such as a lithium ion battery.
  • a lithium ion battery has a configuration in which a secondary battery separator and an electrolyte are interposed between a positive electrode in which a positive electrode active material is laminated on a positive electrode current collector and a negative electrode in which a negative electrode active material is laminated on a negative electrode current collector. Yes.
  • the positive electrode is obtained by laminating a positive electrode material made of an active material, a binder resin, and a conductive additive on a current collector.
  • the active material include LiCoO 2 , LiNiO 2 , Li (NiCoMn) O 2 , and the like.
  • examples thereof include lithium-containing transition metal oxides having a layered structure, spinel-type manganese oxides such as LiMn 2 O 4 , and iron-based compounds such as LiFePO 4 .
  • the binder resin a resin having high oxidation resistance may be used. Specific examples include a fluororesin, an acrylic resin, and a styrene-butadiene resin.
  • the conductive assistant carbon materials such as carbon black and graphite are used.
  • As the current collector a metal foil is suitable, and in particular, aluminum is often used.
  • the negative electrode is made by laminating a negative electrode material made of an active material and a binder resin on a current collector.
  • the active material include carbon materials such as artificial graphite, natural graphite, hard carbon, and soft carbon, tin, silicon, etc.
  • Lithium metal materials such as Li, metal materials such as Li, and lithium titanate (Li 4 Ti 5 O 12 ).
  • the binder resin fluorine resin, acrylic resin, styrene-butadiene resin, or the like is used.
  • a metal foil is suitable, and in particular, a copper foil is often used.
  • the electrolytic solution is a place where ions are moved between the positive electrode and the negative electrode in the secondary battery, and the electrolyte is dissolved in an organic solvent.
  • an organic solvent As the electrolyte, LiPF 6, LiBF 4, and the like LiClO 4 and the like, solubility in organic solvents, LiPF 6 is preferably used in view of ion conductivity.
  • the organic solvent include ethylene carbonate, propylene carbonate, fluoroethylene carbonate, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, gamma butyrolactone, sulfolane, and the like. Good.
  • a method for producing a secondary battery first, an active material and a conductive additive are dispersed in a binder solution to prepare a coating solution for an electrode, and this coating solution is applied onto a current collector and the solvent is dried. Thus, a positive electrode and a negative electrode are obtained.
  • the thickness of the coating film after drying is preferably 50 ⁇ m or more and 500 ⁇ m or less.
  • a separator for a secondary battery is placed between the obtained positive electrode and negative electrode so as to be in contact with the active material layer of each electrode, sealed in an exterior material such as an aluminum laminate film, and hot-pressed after injecting an electrolyte solution. . Then, a negative electrode lead and a safety valve are installed, and the exterior material is sealed.
  • the secondary battery thus obtained has excellent adhesion between the electrode and the secondary battery separator, and therefore has excellent cycle characteristics, excellent dimensional stability, and can be manufactured at low cost. .
  • the average particle diameter a square or rectangle having the smallest area completely surrounding one particle is drawn on the obtained image, that is, a square in which the end of the particle is in contact with four sides of the square or rectangle or A rectangle was drawn, and in the case of a square, the length of one side, and in the case of a rectangle, the length of the long side (major axis diameter) was taken as the particle size.
  • the particle size of each of 100 arbitrary particles was measured, and the number average value was defined as the average particle size.
  • the average particle diameter is defined as the number average of arbitrary 100 particle diameters in the image, and 100 particles are not observed in the image. In this case, a plurality of images were taken, and the number average of a total of 100 particles was defined as the average particle size.
  • Weight average molecular weight The weight average molecular weight of the fluororesin was calculated using a gel permeation chromatography method in comparison with a calibration curve using polystyrene.
  • Apparatus LC-10A series manufactured by Shimadzu Corporation Column: KD-806M x 2 manufactured by Showa Denko KK Mobile phase: Dimethylformamide Flow rate: 1.0 ml / min Detection: differential refractometer Column temperature: 40 ° C.
  • Thickness of porous layer A sample cross section is cut out with a microtome, and the cross section is observed with an electrolytic emission scanning electron microscope (S-3400N, manufactured by Hitachi, Ltd.). The highest point was selected from the interface with the substrate, and the thickness was measured as the thickness of the porous layer. Each sample was observed, selected, and measured at an arbitrary five points from a 100 mm ⁇ 100 mm sample, and averaged.
  • Air permeability Select any one place from 3 samples of 100 mm x 100 mm size, and use JIS using an Oken type air permeability measuring device (EG01-5-1MR manufactured by Asahi Seiko Co., Ltd.). P was measured in accordance with P 8117 (2009), and the average value was defined as the air permeability (seconds / 100 cc).
  • wet adhesion strength between the negative electrode and the secondary battery separator, in which the active material is graphite, the binder is vinylidene fluoride resin, and the conductive additive is carbon black is measured, and each of the positive electrode and the negative electrode is evaluated.
  • Strength. ⁇ Wet adhesive strength S Electrode and secondary battery separator side peeled off with strong force
  • ⁇ Wet adhesive strength A Electrode and secondary battery separator peeled off with slightly strong force
  • Wet adhesive strength B Electrode with weak force The secondary battery separator peeled off. • Wet adhesive strength C: The electrode and secondary battery separator peeled off with a very weak force.
  • Dry adhesive strength A positive electrode 15 mm ⁇ 100 mm in which the active material is LiCoO 2 , the binder is vinylidene fluoride resin, and the conductive additive is carbon black, and the separator for the secondary battery are placed so that the active material and the porous layer are in contact with each other. Then, hot pressing was performed at 0.5 MPa, 80 ° C. and 0.4 m / min with a hot roll press machine, and the film was manually peeled off using tweezers, and the dry adhesive strength was evaluated in the following four stages.
  • the dry adhesion strength between the negative electrode and the secondary battery separator, in which the active material is graphite, the binder is vinylidene fluoride resin, and the conductive additive is carbon black, is measured, and the positive electrode and the negative electrode are evaluated separately.
  • Dry adhesion strength C The electrode and the secondary battery separator were peeled off with a very weak force.
  • Example 1 Fluororesin comprising a copolymer of vinylidene fluoride and hexafluoropropylene (polyvinylidene fluoride resin, vinylidene fluoride content 95 mol%, containing carboxylic acid groups as acidic functional groups, melting point 160 ° C.)
  • a polyvinylidene fluoride resin solution is prepared by dissolving in 9,000 parts by weight of acetonitrile at 80 ° C. with respect to 100 parts by weight of a copolymer with fluoropropylene, adding 11 parts by weight of water to 100 parts by weight of acetonitrile. Was made.
  • the polyvinylidene fluoride resin solution at 76 ° C.
  • particle formation tank is 5,000 parts by weight of a water bath at normal temperature (hereinafter referred to as “particle formation tank”) with respect to 100 parts by weight of the copolymer of vinylidene fluoride and hexafluoropropylene. ) was continuously added to obtain a granulated liquid.
  • the polyvinylidene fluoride resin solution (76 ° C.) prepared separately and 5,000 parts by mass of water (room temperature) with respect to 100 parts by mass of the copolymer were each formed into particles at a rate of finishing dropping in 6 minutes each. While dripping simultaneously into the tank, the particleized liquid was extracted from the bottom of the particleizing tank so as to keep the level of the particleized liquid (particulated liquid A). Subsequently, 5,000 parts by mass of water (at room temperature) with respect to 100 parts by mass of the separately prepared polyvinylidene fluoride resin solution (76 ° C.) and the copolymer is made into particles at a rate of finishing dropping in 6 minutes each. While dripping into the tank at the same time, the granulated liquid was extracted from the bottom of the granulated tank so as to keep the level of the granulated liquid (particulated liquid B).
  • the particle formation liquid A, the particle formation liquid B, and the particle formation liquid C remaining in the particle formation tank were combined, acetonitrile was distilled off under reduced pressure, and then the residue was subjected to centrifugal filtration.
  • 500 parts by mass of ion-exchanged water was added to 100 parts by mass of the obtained hydrous cake, and the slurry was washed and centrifuged.
  • ion-exchanged water was added so that the concentration of the fluororesin was 6% by mass, and preliminary dispersion was performed with a homomixer.
  • the preliminary dispersion was treated with ultrasonic waves (output 120 W), and then the coarse particles were separated by centrifugal sedimentation to obtain an aqueous dispersion composed of fluororesin particles having an average particle diameter of 0.10 ⁇ m. It was 2.2 million when the weight average molecular weight of the obtained fluororesin was measured.
  • organic resin polyethylene (melting point: 80 ° C.) as an organic resin (hereinafter sometimes referred to as “organic resin”) different from the fluororesin, and aluminum oxide particles (average particle size of 0.50 ⁇ m) as inorganic particles
  • organic resin organic resin
  • aluminum oxide particles average particle size of 0.50 ⁇ m
  • acrylic resin acrylic resin
  • a perfluoroalkyl compound as a surfactant was added in an amount of 0.7 parts by mass with respect to a total of 100 parts by mass of the fluororesin and the aluminum oxide particles to prepare a coating solution.
  • This coating solution is applied to both sides of a polyethylene porous substrate (thickness 7 ⁇ m, air permeability 120 sec / 100 cc) by gravure coating, and dried until the solvent contained volatilizes to form a porous layer
  • a separator for a secondary battery of the present invention was obtained.
  • Example 2 A separator for a secondary battery of the present invention was obtained in the same manner as in Example 1 except that polyvinylidene fluoride (melting point: 90 ° C.) was used as the organic resin.
  • Example 3 Polyethylene (melting point 80 ° C.) and polyvinylidene fluoride (melting point 90 ° C.) are used as the organic resin in a mass ratio of 1: 4, and the ratio of the fluororesin to the total of the fluororesin, organic resin, and inorganic particles is 19
  • a secondary battery separator of the present invention was obtained in the same manner as in Example 1 except that the mass% and the organic resin ratio were 23 mass%.
  • Example 4 A secondary battery separator of the present invention was obtained in the same manner as in Example 1 except that polypropylene (melting point: 100 ° C.) was used as the organic resin.
  • Example 5 Polypropylene (melting point 100 ° C.) and polyvinylidene fluoride (melting point 90 ° C.) are used as the organic resin so that the mass ratio is 1: 4, and the ratio of the fluororesin to the total of the fluororesin, organic resin, and inorganic particles is 19
  • a secondary battery separator of the present invention was obtained in the same manner as in Example 1 except that the mass% and the organic resin ratio were 23 mass%.
  • Example 6 A secondary battery separator of the present invention was obtained in the same manner as in Example 1 except that polyethylene (melting point: 120 ° C.) was used as the organic resin.
  • Example 7 A secondary battery separator of the present invention was obtained in the same manner as in Example 1 except that a fluororesin having a melting point of 130 ° C. and a weight average molecular weight of 500,000 was used.
  • Example 8 A secondary battery separator of the present invention was obtained in the same manner as in Example 1 except that an acrylic resin (melting point: 80 ° C.) was used as the organic resin.
  • Example 9 A secondary battery separator of the present invention was obtained in the same manner as in Example 1 except that a fluororesin having a melting point of 180 ° C. was used.
  • Example 10 Example 10 except that a resin made of a copolymer of vinylidene fluoride and hexafluoropropylene (polyvinylidene fluoride resin, vinylidene fluoride content 95 mol%, no acidic functional group, melting point 160 ° C.) was used as the fluororesin. In the same manner, a separator for a secondary battery of the present invention was obtained.
  • a resin made of a copolymer of vinylidene fluoride and hexafluoropropylene polyvinylidene fluoride resin, vinylidene fluoride content 95 mol%, no acidic functional group, melting point 160 ° C.
  • Example 11 A separator for a secondary battery of the present invention was obtained in the same manner as in Example 1 except that polyvinylidene fluoride (amorphous), which is an amorphous organic resin, was used as the organic resin.
  • Example 12 Polyethylene (melting point 80 ° C.) and polyvinylidene fluoride (amorphous), which is an amorphous organic resin, are used in an organic resin in a mass ratio of 3: 2, and the total of fluororesin, organic resin, and inorganic particles A separator for a secondary battery of the present invention was obtained in the same manner as in Example 1 except that the ratio of the fluororesin was 19 mass% and the ratio of the organic resin was 23 mass%.
  • Example 13 A separator for a secondary battery of the present invention was obtained in the same manner as in Example 1 except that a fluororesin having a melting point of 190 ° C., a weight average molecular weight of 2 million and an average particle size of 0.25 ⁇ m was used.
  • Example 14 A secondary battery separator of the present invention was obtained in the same manner as in Example 1 except that the ratio of the fluororesin was changed to 10% by mass.
  • Example 15 A secondary battery separator of the present invention was obtained in the same manner as in Example 3 except that the ratio of the fluororesin was changed to 10% by mass.
  • Example 16 A secondary battery separator of the present invention was obtained in the same manner as in Example 14 except that the ratio of the organic resin having a melting point different from that of the fluororesin was changed to 5% by mass.
  • Comparative Example 2 A separator for a secondary battery of the present invention was obtained in the same manner as in Example 1 except that a melting point of 100 ° C. and a weight average molecular weight of 400,000 were used for the fluororesin.
  • Example 3 A secondary battery separator of the present invention was obtained in the same manner as in Example 1 except that polyethylene (melting point: 150 ° C.) was used as the organic resin.
  • Examples 1 to 10 and 13 to 16 of the present invention are all separators in which a porous layer mainly composed of inorganic particles and two or more organic resins having different melting points is laminated. And at least one of the organic resins is a fluororesin, and (A) the porous layer has a melting point of 130 ° C. or higher and 20 ° C. or higher and lower than 130 ° C. Adhesive strength is obtained, and low heat shrinkability (high dimensional stability) is obtained.
  • Examples 11 and 12 are both separators in which a porous layer mainly composed of inorganic particles and two or more organic resins having different melting points is laminated, and at least one of the organic resins is (B) Since the porous layer has a melting point of 130 ° C. or higher and an amorphous organic resin, good wet bond strength and dry bond strength with the electrode can be obtained and low. Heat shrinkability (high dimensional stability) is obtained.
  • Comparative Example 1 does not contain a fluororesin, sufficient wet bond strength with the electrode cannot be obtained.
  • Comparative Example 2 since the melting point of the fluororesin is low, sufficient wet bond strength with the electrode cannot be obtained.
  • Comparative Example 3 since the melting point of the organic resin is high, sufficient dry adhesion strength with the electrode cannot be obtained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Cell Separators (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

本発明の目的は、低コストで、電極との接着性と、寸法安定性を発現する二次電池用セパレータを提供することにある。本発明は、多孔質基材の少なくとも片面に、無機粒子と、融点の異なる2種類以上の有機樹脂とを主成分とする多孔質層が積層されたセパレータであって、前記有機樹脂の少なくとも1種がフッ素樹脂であり、以下の(A)および/または(B)を満たすことを特徴とする二次電池用セパレータである。 (A)前記多孔質層が130℃以上および20℃以上130℃未満に融点を有する (B)前記多孔質層が130℃以上に融点を有し、かつ非晶性有機樹脂を有する

Description

二次電池用セパレータおよび二次電池
 本発明は、二次電池用セパレータおよび二次電池に関するものである。
 リチウムイオン電池のような二次電池は、携帯電話、ノートパソコン、デジタルカメラ、デジタルビデオカメラ、携帯ゲーム機などのポータブルデジタル機器に広く用いられている。近年は自動車用途として、ハイブリッド車、電気自動車、プラグインハイブリッド車などの電源としての使用が拡大してきている。
 リチウムイオン電池は、一般的に、正極活物質を正極集電体に積層した正極と、負極活物質を負極集電体に積層した負極との間に、二次電池用セパレータと電解質が介在した構成を有している。
 二次電池用セパレータとしては、ポリオレフィン多孔質基材が用いられている。二次電池用セパレータに求められる特性としては、多孔構造中に電解液を含み、イオン移動を可能にする特性と、リチウムイオン電池が異常発熱した場合に、熱で溶融することで多孔構造が閉鎖され、イオン移動を停止させることで、発電を停止させる特性が挙げられる。
 しかしながら、近年のリチウムイオン電池の高容量化、高出力化に伴い、前記特性のみならず、充放電を繰り返すことで電極と二次電池用セパレータの間に隙間が発生しサイクル特性が悪化することを防ぐために、二次電池用セパレータには、電解液を含浸した状態での電極との接着性(ウェット接着性)が求められている。また、近年のリチウムイオン電池の高容量化、高出力化に伴い、二次電池用セパレータには高い安全性が求められている。また、高温時に二次電池用セパレータが熱収縮することで発生する正極と負極の接触による短絡を防ぐために、二次電池用セパレータには寸法安定性が求められている。また、二次電池の製造工程において、正極、セパレータ、負極を積層した積層体を運搬する際に積層体の形を維持するために、または、捲回した正極、セパレータ、負極の積層体を円筒型、角型などの型に挿入する前にプレスする際に積層体の形が崩れないように、二次電池用セパレータには電解液を含浸する前のセパレータと電極との接着性(ドライ接着性)が求められている。さらには、二次電池の普及に伴い、二次電池の製造コストを下げることが求められており、二次電池用セパレータには低コスト化が求められている。
 これらの要求に対して、特許文献1、2では、ウェット接着性を有するポリフッ化ビニリデン樹脂を主成分とする多孔質層を、ポリオレフィンからなる多孔質基材上に積層することで、電極とのウェット接着性が向上した二次電池用セパレータが提案されている。特許文献3では、ウェット接着性を有するポリフッ化ビニリデン樹脂からなる粒子を主成分とする多孔質層を、ポリオレフィンからなる多孔質基材上に積層することで、電極とのウェット接着性を向上させた二次電池用セパレータが提案されている。また、特許文献4では、接着性を有するポリフッ化ビニリデン樹脂からなる粒子と無機粒子で構成される多孔質層を、ポリオレフィンからなる多孔質基材上に積層することで、電極とのウェット接着性と寸法安定性が向上した二次電池用セパレータが提案されている。
特開2004-146190号公報 特開2012-221741号公報 特許第5355823号公報 国際公開第2013/133074号パンフレット
 しかしながら、特許文献1、2では、製造方法として、有機溶媒に溶解させたフッ素樹脂を離型フィルムや多孔質基材上にコーティングし、それを凝固槽に浸漬させて多孔質層を形成することが提案されているが、この製造方法では、二次電池用セパレータの電極とのウェット接着性は向上するが、高コストの製法となり、現在の二次電池用セパレータへの低コスト化への要求には応えられない。また、電解液を含浸していない状態での電極とのドライ接着性も十分ではない。特許文献3、4では、用いるポリフッ化ビニリデン樹脂の分子量が適切ではないため、十分な電極とのウェット接着性が得られない。また、電解液を含浸していない状態での電極とのドライ接着性も十分ではない。
 従って、本発明の目的は、上記問題に鑑み、低コストで、電極とのウェット接着性、ドライ接着性、および寸法安定性を発現する二次電池用セパレータを提供することである。
 そこで、本発明者らは、低コストで二次電池用セパレータに電極とのウェット接着性、ドライ接着性、および寸法安定性を発現させるために、鋭意検討を重ねた。その結果、特定範囲の融点を有するフッ素樹脂と有機樹脂を用いれば電極とのウェット接着性、ドライ接着性が発現することを見出した。さらには、フッ素樹脂の粒子化によって、無機粒子と混合した塗剤を汎用的な塗工方式により塗工することで、低コストで電極とのウェット接着性、ドライ接着性、および寸法安定性が発現することを可能にした。
 上記課題を解決するため本発明の二次電池用セパレータは次の構成を有する。
(1)多孔質基材の少なくとも片面に、無機粒子と、融点の異なる2種類以上の有機樹脂とを主成分とする多孔質層が積層されたセパレータであって、前記有機樹脂の少なくとも1種がフッ素樹脂であり、以下の(A)および/または(B)を満たす、二次電池用セパレータ。
(A)前記多孔質層が130℃以上および20℃以上130℃未満に融点を有する
(B)前記多孔質層が130℃以上に融点を有し、かつ非晶性有機樹脂を有する
(2)多孔質基材の少なくとも片面に、無機粒子と、融点の異なる2種類以上の有機樹脂とを主成分とする多孔質層が積層されたセパレータであって、前記有機樹脂の少なくとも1種がフッ素樹脂であり、前記多孔質層が130℃以上および20℃以上130℃未満に融点を有する、二次電池用セパレータ。
(3)以下の(C)および/または(D)を満たす、(1)または(2)に記載の二次電池用セパレータ。
(C)前記多孔質層が130℃以上180℃未満および20℃以上130℃未満に融点を有する
(D)前記多孔質層が130℃以上180℃未満に融点を有し、かつ非晶性有機樹脂を有する
(4)前記有機樹脂として、アクリル樹脂および/またはオレフィン樹脂を含む、(1)~(3)のいずれかに記載の二次電池用セパレータ。
(5)前記有機樹脂のうち少なくとも1種類が酸性官能基を有する、(1)~(4)のいずれかに記載の二次電池用セパレータ。
(6)前記フッ素樹脂が、フッ化ビニリデン含有率が80mol%以上100mol%以下のポリフッ化ビニリデン樹脂である、(1)~(5)のいずれかに記載の二次電池用セパレータ。
(7)前記ポリフッ化ビニリデン樹脂の融点が130℃以上である、(6)に記載の二次電池用セパレータ。
(8)前記ポリフッ化ビニリデン樹脂が粒子形状であり、平均粒径が0.01μm以上1.00μm未満である、(6)または(7)に記載の二次電池用セパレータ。
(9)(1)~(8)のいずれかに記載の二次電池用セパレータを用いる二次電池。
 本発明によれば、多孔質層が融点の異なる2種類以上の有機樹脂を主成分とし、少なくとも1種がフッ素樹脂であり、以下の(A)および/または(B)を満たすことで、十分な電極とのウェット接着性とドライ接着性が付与でき、多孔質層に無機粒子を含有することで寸法安定性を付与することができる。
(A)前記多孔質層が130℃以上および20℃以上130℃未満に融点を有する
(B)前記多孔質層が130℃以上に融点を有し、かつ非晶性有機樹脂を有する
 本発明の二次電池用セパレータを用いることで、高容量、高出力、長寿命、低コストのリチウムイオン電池等の二次電池を提供することが可能となる。
 本発明の二次電池用セパレータは、多孔質基材の少なくとも片面に、無機粒子と、融点の異なる2種類以上の有機樹脂とを主成分とする多孔質層が積層されたセパレータであって、前記有機樹脂の少なくとも1種がフッ素樹脂であり、以下の(A)および/または(B)を満たす、二次電池用セパレータである。
(A)前記多孔質層が130℃以上および20℃以上130℃未満に融点を有する
(B)前記多孔質層が130℃以上に融点を有し、かつ非晶性有機樹脂を有する
 以下、本発明について詳細に説明する。
 [多孔質層]
 (有機樹脂)
 本発明の多孔質層は無機粒子と融点の異なる2種類以上の有機樹脂とを主成分とする。有機樹脂の少なくとも1種がフッ素樹脂である。ここで融点とは、「JIS K7121:2012 プラスチックの転移温度測定方法」の規定に準じた示差走査熱量測定(DSC)において、初めに昇温、冷却した後の2回目の昇温時の吸熱ピークのピークトップ(以下「ピークトップ」という場合がある。)の温度を融点とする。また、融点が異なるとは、お互いの有機樹脂が融点を有し、それらの融点が異なっている場合だけでなく、一方の有機樹脂が融点を有し、もう一方の有機樹脂が非晶性有機樹脂である場合も含む。
 本発明の多孔質層を構成する有機樹脂としては、フッ素樹脂に加え、ポリエチレン、ポリプロピレンなどのオレフィン樹脂、アクリル樹脂、スチレン-ブタジエン樹脂、架橋ポリスチレン、メチルメタクリレート-スチレン共重合体、ポリイミド、メラミン樹脂、フェノール樹脂、ポリアクリロニトリル、シリコン樹脂、ウレタン樹脂、ポリカーボネート、カルボキシメチルセルロース樹脂などが挙げられる。主成分とするとは、無機粒子と融点の異なる2種類以上の有機樹脂の合計の多孔質層に占める割合が70質量%以上であることを示す。
 これらの樹脂のうち、融点の異なるフッ素樹脂を2種類以上用いてもよい。また、フッ素樹脂と、該フッ素樹脂と融点が異なるフッ素樹脂以外の有機樹脂を1種類以上用いてもよい。また、該フッ素樹脂と融点が異なる有機樹脂を2種類以上用いてもよい。特に該フッ素樹脂と融点が異なる他の有機樹脂としては、電気的安定性と耐酸化性の点から、アクリル樹脂および/またはオレフィン樹脂を用いるのが好ましい。
 本発明の多孔質層の一つの態様は、130℃以上および20℃以上130℃未満に融点を有する。すなわち本発明の多孔質層は、多孔質層の融点を実施例の項に記載の方法で測定したとき、130℃以上および20℃以上130℃未満それぞれに少なくとも1つの融点を有する。130℃以上および20℃以上130℃未満それぞれ独立に2つ以上の融点を有していてもよい。すなわち130℃以上に1つ、20℃以上130℃未満に2つ以上の融点を有していてもよく、130℃以上に2つ以上、20℃以上130℃未満に1つの融点を有していてもよく、130℃以上および20℃以上130℃未満それぞれ同時に2つ以上の融点を有していてもよい。
 また、本発明の多孔質層は130℃以上180℃未満および30℃以上120℃未満に融点を有することが好ましい。140℃以上180℃未満および40℃以上100℃未満に融点を有することがより好ましい。
 本発明の多孔質層には、融点が130℃以上の有機樹脂と融点が20℃以上130℃未満の有機樹脂が用いられることが好ましい。より好ましくは、融点が130℃以上180℃未満の有機樹脂と融点が30℃以上120℃未満の有機樹脂が用いられる。さらに好ましくは、融点が140℃以上180℃未満の有機樹脂と融点が40℃以上100℃未満の有機樹脂が用いられる。融点が130℃以上の有機樹脂は、一例として電極とのウェット接着性を得るために用いられる。融点が130℃未満の場合、十分なウェット接着性を得ることができない場合がある。また、融点が20℃以上130℃未満の有機樹脂は、一例として電極とのドライ接着性を得るために用いられる。融点が20℃未満の場合、二次電池の充放電を繰り返した際に変形、および電解液中への溶出により電池特性を劣化させる場合がある。また、融点が130℃以上の場合、十分な電極とのドライ接着性が得られない場合がある。
 本発明の多孔質層の一つの態様は、130℃以上に融点を有し、かつ非晶性有機樹脂を有する。ここでいう非晶性有機樹脂とは、示差走査熱量分析装置での測定において、融点を有さない、すなわち、吸熱ピークを有さない樹脂のことを示す。すなわち本発明の多孔質層は、多孔質層の融点を実施例の項に記載の方法で測定したとき、130℃以上に少なくとも1つの融点を有する。130℃以上に2つ以上の融点を有していてもよい。また、本発明の多孔質層は130℃以上180℃未満に融点を有することが好ましく、140℃以上180℃未満に融点を有することがさらに好ましい。
 前記有機樹脂のうち少なくとも1種類は、電極とのウェット接着性を向上させるために酸性官能基を有することが好ましい。また、酸性官能基を有する場合、電解液との親和性向上により、二次電池を製造する上での生産性向上、電池特性の向上も可能となる。酸性官能基とは、プロトン(H)を放出可能な官能基である。酸性官能基として、具体的には、カルボン酸基、スルホン酸基、リン酸基、水酸基、フェノール性水酸基などが挙げられる。これらのうちの1種類を使用してもよく、2種類以上で組み合わせてもよい。
 酸性官能基として、特にカルボン酸基が好ましく、カルボン酸基を有する単量体としては、アクリル酸、メタクリル酸、クロトン酸などのモノカルボン酸、およびその誘導体、また、マレイン酸、フマル酸、イタコン酸、シトラコン酸などのジカルボン酸、およびその酸無水物、またはその誘導体が挙げられる。これらは、1種類を使用してもよく、2種類以上で組み合わせてもよい。これらの中でも、ジカルボン酸が好ましく、マレイン酸が特に好ましい。
 有機樹脂の形状は、粒子形状であってもよく、粒子形状を有していなくともよい。粒子の形状としては、球状、板状、針状、棒状、楕円状などが挙げられ、いずれの形状であってもよいが、その中でも、表面修飾性、分散性、塗工性の観点から球状であることが好ましい。また、多孔質層を形成する前の塗液の状態では粒子形状であり、形成時に熱により造膜し、粒子形状を有さず、膜状となってもよい。または、部分的に造膜し、隣接する粒子間が膜でつながっていてもよい。
 (フッ素樹脂)
 本発明の多孔質層を構成するフッ素樹脂としては、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、ポリフッ化ビニル、ポリクロロトリフルオロエチレンなどのホモポリマー、エチレン・テトラフルオロエチレンポリマー、エチレン-クロロトリフルオロエチレンポリマー、などのコポリマーが挙げられる。また、ホモポリマーとテトラフルオロエチレン、ヘキサフルオロプロピレン、トリフルオロエチレンなどとのコポリマーなども挙げられる。これらのフッ素樹脂の中でもポリフッ化ビニリデン樹脂、特には、フッ化ビニリデンとヘキサフルオロプロピレンとの共重合体からなる樹脂が、電気的安定性と耐酸化性の点から好適に用いられる。
 また、ポリフッ化ビニリデン樹脂のフッ化ビニリデン含有率は、80mol%以上100mol%以下が好ましい。より好ましくは、85mol%以上であり、また99mol%以下である。さらに好ましくは、90mol%以上であり、また98mol%以下である。フッ化ビニリデン含有率が80mol%より小さいと、十分な力学的強度が得られない場合がある。
 ポリフッ化ビニリデン樹脂の融点が130℃以上であることが好ましい。より好ましくは、融点が130℃以上180℃未満、さらに好ましくは、融点が140℃以上180℃未満である。
 前記フッ素樹脂の重量平均分子量は、好ましくは10万以上500万以下である。より好ましくは、30万以上であり、また400万以下である。さらに好ましくは、60万以上であり、また300万以下である。特に好ましくは、80万以上であり、また250万以下である。重量平均分子量が10万より小さい場合、十分な電極との接着性が得られない場合がある。また、500万より大きい場合、粘度上昇によりハンドリング性、塗工性が低くなる場合がある。
 また、本発明のフッ素樹脂は、複数種類のフッ素樹脂が混合されていてもよい。複数種類のフッ素樹脂が混合されている場合、複数種類のフッ素樹脂を合わせた重量平均分子量が10万以上500万以下であることが好ましい。しかし、例えばコアシェル型の粒子であって、シェルが本発明のフッ素樹脂、コアが別のフッ素樹脂の場合等は、別のフッ素樹脂の重量平均分子量は10万以上500万以下でなくとも構わない。
 前記フッ素樹脂は粒子形状であってもよく、好ましい平均粒径は、0.01μm以上1.00μm以下である。より好ましくは0.02μm以上であり、また0.40μm以下である。さらに好ましくは0.04μm以上であり、また0.20μm以下である。平均粒径が0.01μmより小さい場合、フッ素樹脂粒子が密に積層されてしまい透気度上昇が大きくなる場合がある。また、平均粒径が1.00μmより大きくなる場合、電極との接触面積が小さくなり十分なウェット接着性が得られない場合がある。また、無機粒子間の距離が大きくなるため、寸法安定性も低下する場合がある。
 なお、この場合の平均粒径とは、実施例に記載のとおり、多孔質層表面の顕微鏡観察により観察されたフッ素樹脂粒子が完全に囲まれる正方形の1辺または長方形の長辺(長軸径)の長さを測定し、数平均を算出したものである。詳細の測定方法については後述する。
 前記フッ素樹脂粒子の形状としては、球状、板状、針状、棒状、楕円状などが挙げられ、いずれの形状であってもよい。その中でも、分散性、塗工性、多孔質化の観点から球状、板状が特に好ましい。
 前記フッ素樹脂粒子のアスペクト比としては、好ましくは100以下、より好ましくは50以下、さらに好ましくは30以下である。アスペクト比が100よりも大きい場合、フッ素樹脂粒子の取り扱い性が低下する場合がある。
 なお、ここでアスペクト比とは、実施例に記載のとおり、電子顕微鏡にて得られた粒子の画像上で粒子が完全に囲まれる正方形または長方形を描き、長方形の長辺(長軸径)を短辺(短軸径)で除した値のことである。なお、正方形の場合は、アスペクト比が1となる。
 前記フッ素樹脂粒子の製法としては、乳化重合、懸濁重合、分散重合などの公知の製法を用いることができる。また、上記製法で得られたフッ素樹脂粒子を、目的の平均粒径および形状にするために、さらに加工を加えてもよい。例えば、凝固法、相分離法、乾式粉砕法、湿式粉砕法、スプレードライヤー法、などが挙げられる。
 凝固法としては、フッ素樹脂を溶媒、あるいは溶媒と水に溶解し、フッ素樹脂溶液を貧溶媒に添加することでフッ素樹脂粒子を析出させる方法が挙げられる。
 例えば、フッ素樹脂の溶解に使用する溶媒は、フッ素樹脂を溶解する溶媒で、水と混じり合う溶媒であればよい。
 具体的な溶媒には、N-メチル-2-ピロリドン(以下、NMPと略することもある)等のN-アルキルピロリドン系溶媒、1,3-ジメチル-2-イミダゾリジノン(以下、DMIと略すこともある)等のウレア系溶媒、N,N-ジメチルアセトアミド(以下、DMAcと略すこともある)、N,N-ジメチルホルムアミド(以下、DMFと略することもある)等の鎖状アミド系溶媒、ジメチルスルホキシド(以下、DMSOと略することもある)、ジメチルスルホン、テトラメチレンスルホン等のイオウ酸化物系極性溶媒、アセトン、メチルエチルケトン等のケトン系溶媒、アセトニトリル、プロピオニトリル等のニトリル系溶媒が挙げられる。中でも、溶媒の安定性と工業的取り扱いのしやすさから、NMP、DMI、アセトン、メチルエチルケトン、アセトニトリルが好ましく、より好ましくはNMP、アセトニトリルである。
 溶解槽の雰囲気は、フッ素樹脂の分解、劣化を抑制するため、酸素ガス濃度を低くする方が好ましい。よって、不活性ガス雰囲気下に溶解槽を配置することが好ましい。不活性ガスとしては、窒素ガス、二酸化炭素ガス、ヘリウムガス、アルゴンガスなどが挙げられる。経済性、入手容易性を勘案して、窒素ガス、アルゴンガス、二酸化炭素ガスが好ましい。特に好ましくは窒素ガスあるいはアルゴンガスが用いられる。
 溶解方法は特に限定しないが、フッ素樹脂溶液を作る場合、所定の容器にフッ素樹脂、溶媒と水を入れ、撹拌しながら溶解する。常温で溶解しない場合、加熱することにより溶解させる。
 フッ素樹脂を溶媒に溶解した後、水を添加してもよい。溶解後に水を添加する方法では、所定の容器でフッ素樹脂溶液を作製した後、フッ素樹脂溶液に水を添加する。水の添加には、送液ポンプ、駒込ピペット等を用いることができる。一度に大量の水を入れるとフッ素樹脂が析出し、フッ素樹脂の溶解に長時間を要するので、徐々に水を加えることが好ましい。粒径の揃ったフッ素樹脂粒子を製造するにはフッ素樹脂を溶媒に完全溶解させてから貧溶媒へ添加すること、もしくはフラッシュ晶析して析出させることが好ましい。未溶解のフッ素樹脂が存在していてもよい。
 添加する水の量は、溶解させるフッ素樹脂濃度、溶媒の種類によって異なる。添加する水の量は、溶媒と添加する水との合計量100質量%において、好ましくは、1質量%以上25質量%以下である。添加する水の量が少なすぎると異形粒子が生成する場合があり、添加する水の量が多すぎるとフッ素樹脂が析出する場合がある。
 溶解温度は使用する溶媒の種類やフッ素樹脂の濃度によって異なる。通常は常温~200℃、好ましくは常温~100℃、または溶媒の沸点以下である。
 溶解時間は溶媒の種類、フッ素樹脂の濃度、溶解温度によって異なる。通常、5分~50時間の範囲であり、好ましくは、10分~40時間の範囲である。
 フッ素樹脂濃度が高いと、フッ素樹脂溶液を貧溶媒へ添加してフッ素樹脂粒子を析出させる際にフッ素樹脂粒子同士の融着等が生じる場合がある。よって、粒径の小さなフッ素樹脂粒子や粒径の揃ったフッ素樹脂粒子が得られない場合がある。
 そのため、フッ素樹脂溶液中のフッ素樹脂の量は、水を含まない場合は溶媒100質量%、水を含む場合は、溶媒と水との合計100質量%においてフッ素樹脂が0.1質量%以上15質量%以下とすることが好ましい。より好ましくは0.5質量%以上10質量%以下である。
 貧溶媒については後で詳述する。
 溶媒と水との合計100質量%においてフッ素樹脂が0.1質量%以上15質量%以下であれば、工業生産への適用可能性が向上するので好ましい。本実施態様においては前記溶媒、あるいは溶媒と水にフッ素樹脂を溶解させた後、フッ素樹脂溶液を析出工程に供する。
 析出工程としては、下記(a1工程)、特には(a2工程)が挙げられる。
(a1工程)貧溶媒へフッ素樹脂溶液を添加してフッ素樹脂粒子を析出させる工程
(a2工程)貧溶媒へフッ素樹脂溶液をフラッシュ晶析してフッ素樹脂粒子を析出させる工程
 (a1工程)では、フッ素樹脂の貧溶媒へフッ素樹脂溶液を添加してフッ素樹脂粒子を析出させる。フッ素樹脂溶液をフッ素樹脂の貧溶媒へ添加するにあたっては、フッ素樹脂溶液を入れた容器からフッ素樹脂の貧溶媒を入れた容器(以下「受槽」と称することがある)に連続的に注入してもよいし、滴下してもよい。また、フッ素樹脂溶液を貧溶媒の上から気相を介して添加してもよい。微細で粒径の揃った粒子が得られる点から直接貧溶媒中に入れることが好ましい。
 フッ素樹脂と貧溶媒とを接触させてフッ素樹脂粒子を作製する方法には、貧溶媒を入れた受槽へフッ素樹脂溶液を添加して粒子化液を作製した後、粒子化液を抜き出し、次工程に供する方法(回分式)と連続流通式(単に連続式と略することがある)の2つの方法がある。連続流通式に用いる反応器には、連続槽型反応器(continuous stirred tank reactor、略称:CSTR)と管型反応器(plug flow reactor、略称:PFR)とがある。フッ素樹脂の粒子化には、いずれの反応器も適応可能である。
 CSTRを用いる方法は、受槽(連続式では反応器ということがある)に貧溶媒を入れ、フッ素樹脂溶液を添加してフッ素樹脂粒子を作製した後、続いて、その粒子化液にフッ素樹脂溶液と貧溶媒とを同時に滴下しつつ、受槽からフッ素樹脂の粒子化液を連続的に抜き出して、連続的に粒子化する方法である。また、回分式により作製したフッ素樹脂の粒子化液に、フッ素樹脂溶液と貧溶媒とを同時に滴下しつつ、受槽からフッ素樹脂の粒子化液を連続的に抜き出して粒子化液を作製することもできる。
 CSTRを用いる場合、フッ素樹脂溶液と貧溶媒とを同時に滴下することが好ましい。フッ素樹脂溶液滴下速度に対する貧溶媒の滴下速度比は、フッ素樹脂粒子が生成できればよく、特に限定されないが、生産性の観点からフッ素樹脂溶液滴下速度に対する貧溶媒の滴下速度比は、0.1~100が好ましく、0.2~50がより好ましい。
 受槽(反応器)からの粒子化液抜き出し流量に対する受槽内の粒子化液質量の比を滞留時間とする。滞留時間は、微細で粒径の揃った粒子が得られれば特に限定されず、1秒間~10時間が好ましく、1分間~1時間がより好ましい。
 受槽には粒子化液の均一性を保持するために混合装置を設置してもよい。混合装置の例として攪拌羽や2軸混合機、ホモジナイザー、超音波照射等を挙げることができる。
 PFRを用いる方法は、フッ素樹脂溶液と貧溶媒とを配管の中へ一定速度で通液して配管中でフッ素樹脂溶液と貧溶媒を混合させて粒子化を行い、連続的に粒子化液を取り出す方法であり、種々の配管を使用することができる。例えば、2つの配管を使用する場合、フッ素樹脂溶液を内管、貧溶媒を外管に一定速度で通液し、外管中でフッ素樹脂溶液と貧溶媒とを混合させて粒子化することもできる。また、フッ素樹脂溶液を外管、貧溶媒を内管に通液してもよい。
 1つの配管を用いて連続粒子化する場合、例えば、T字型配管では、フッ素樹脂溶液の流れに対して90度の方向から貧溶媒を通液してフッ素樹脂溶液と貧溶媒とを接触させて粒子化することもできる。
 種々の配管を用いてフッ素樹脂溶液と貧溶媒とを混合させて連続的に粒子化することができるので、PFRの方法は、上記に限定されるものではない。
 PFRを用いる場合、フッ素樹脂溶液通液速度と貧溶媒との通液速度は、フッ素樹脂粒子が生成できればよく、特に限定されない。生産性の観点から貧溶媒の通液速度に対するフッ素樹脂溶液通液速度の比は、0.1~100が好ましく、0.2~50がより好ましい。
 また、フッ素樹脂溶液と貧溶媒との混合部分は配管のみでもよく、管状混合装置を設置してもよい。管状混合装置として上記混合装置やスタティックミキサー等の静的混合構造物を格納した管状混合装置等を挙げることができる。
 フッ素樹脂溶液と貧溶媒の混合時間は上記滞留時間と同じ範囲内であればよい。配管の内径はフッ素樹脂溶液と貧溶媒とが混合すればよく、特に限定されない。生産性の観点から0.1mm~1mが好ましく、1mm~1mがより好ましい。
 2つの配管を内管と外管として用いる場合、内管径と外管径との比は、粒子化液ができれば特に限定しない。外管径/内管径=1.1~500が好ましく、外管径/内管径=1.1~100がより好ましい。
 フッ素樹脂粒子の貧溶媒としては、ペンタン、ヘキサン、ヘプタン、オクタン、ノナン、デカンなどの脂肪族炭化水素系溶媒、ベンゼン、トルエン、o-キシレン、m-キシレン、p-キシレン、ナフタレンなどの芳香族炭化水素系溶媒、酢酸エチル、酢酸メチル、酢酸ブチル、プロピオン酸ブチル等のエステル系溶媒、ジエチルエーテル、ジイソプロピルエーテル、テトラヒドロフラン、ジオキサンなどのエーテル系溶媒、メタノール、エタノール、1-プロパノール、2-プロパノールなどのアルコール系溶媒、水などが挙げられる。
 好ましくは、メタノール、エタノール、1-プロパノール、2-プロパノールなどのアルコール系溶媒、水などである。特に好ましくは、メタノール、エタノールおよび水である。
 また、フッ素樹脂粒子を貧溶媒中に均一に分散させる観点からは、フッ素樹脂の貧溶媒は溶解に使用する溶媒と均一に混ざり合う溶媒であることが好ましい。ここで均一に混ざり合うとは、2つ以上の溶媒を混合して1日静置しても界面が現れないことをいう。例えば、水に対しては、NMP、DMF、DMAc、アセトン、DMSO、テトラヒドロフラン、アセトニトリル、メタノール、エタノール等が均一に混ざり合う溶媒として挙げることができる。
 また、フッ素樹脂の貧溶媒は、溶解で使用する溶媒と均一に混ざり合うならば、単一の溶媒を用いてもよいし、2種類以上の溶媒を混合して用いてもよい。特に微細かつ粒径の揃った粒子が得られやすい点から、水-アルコール類、水-ニトリル類の混合溶媒等、水を含む混合溶媒を用いるのが好ましい。
 フッ素樹脂の貧溶媒の使用量は特に限定されず、溶解に用いる溶媒1質量部に対して0.1質量部以上100質量部以下の範囲を例示することができる。好ましくは0.1質量部以上50質量部以下、更に好ましくは0.1質量部以上10質量部以下である。
 フッ素樹脂の貧溶媒中にフッ素樹脂溶液を添加する場合の受槽温度は、0℃以上で貧溶媒の沸点以下まで設定できる。用いる溶媒によっては、粒子同士の融着が起こり、粒子が得られない場合があるので、添加直前の受槽温度として0℃以上40℃以下が好ましい。この添加によりフッ素樹脂溶液からフッ素樹脂粒子が析出し、フッ素樹脂粒子の分散した液もしくは懸濁した液が得られる。また、フッ素樹脂溶液を加える際に、フッ素樹脂の貧溶媒を攪拌することが好ましい。
 (a2工程)では、溶解させたフッ素樹脂溶液をフラッシュ晶析してフッ素樹脂粒子を析出させる。すなわち、貧溶媒へフッ素樹脂溶液を添加する方法において、フラッシュ晶析方法を用いるものである。フラッシュ晶析とは、フッ素樹脂溶液を急速に固化・結晶化させる方法のことをいう。より具体的には、加熱・加圧下にあるフッ素樹脂溶液を、溶解に用いた溶媒の常圧での沸点未満(常温以下でもよい)であり、フッ素樹脂溶液が加圧されている圧力未満(減圧下でもよい)である他の容器(以下受槽と称する場合もある)中にノズルを介して噴出させて移液し、晶析させる方法、または加圧下にあるフッ素樹脂溶液を、フッ素樹脂が加圧されている圧力未満(減圧下でもよい)の他の容器(以下受槽と称する場合もある)中にノズルを介して噴出させて移液し、晶析させる方法である。
 フラッシュ晶析する際、直接貧溶媒中にフッ素樹脂溶液を噴出させることが好ましい。フッ素樹脂溶液が噴出するノズルの先端を受槽側の貧溶媒中に入れた状態でフラッシュ晶析させることが好ましい。ノズル先端を貧溶媒から離し、気相を介して貧溶媒の上からフラッシュ晶析させてもよい。
 具体的に説明する。加熱・加圧下、または加圧下に保持した容器からフッ素樹脂溶液を大気圧下(減圧下でもよい)の受槽に向けて噴出させることによりフラッシュ晶析を行うことが好ましい。例えば前記溶解工程において、オートクレーブ等の耐圧容器中で加熱・溶解させると容器内は加熱による自製圧により加圧状態となる(窒素等の不活性ガスでさらに加圧してもよい)。この状態から放圧して大気圧下の受槽に放出させることにより、より一層簡便に行うことができる。また、常温で溶解させた場合、溶解槽を任意の圧力に加圧し、フッ素樹脂の貧溶媒中に向けてフラッシュ晶析することによりフッ素樹脂粒子を得ることができる。
 貧溶媒中にフラッシュ晶析する場合に用いる貧溶媒としては、特に制限はなく、(a1工程)で説明した貧溶媒と同様のものを用いることができる。
 フッ素樹脂の貧溶媒の使用量は特に限定せず、溶解に用いた溶媒1質量部に対して0.1質量部以上100質量部以下の範囲を例示することができる。好ましくは0.1質量部以上50質量部以下である。更に好ましくは0.1質量部以上10質量部以下である。
 フラッシュ晶析時の操作条件としては、通常、常温~200℃、好ましくは常温~100℃の範囲で溶解させた溶液を、後述する範囲で加圧されている圧力未満、あるいは減圧下の容器に1段でフラッシュ晶析する方法、または溶解液を入れた槽内よりも圧力の低い容器に多段でフラッシュ晶析する方法等が採用できる。具体的には、例えば前記溶解工程において、オートクレーブ等の耐圧容器中で加熱・溶解させると、容器内は加熱による自製圧(加熱による圧力上昇)により加圧状態となる(窒素等の不活性ガスでさらに加圧してもよい)。この加圧状態とした溶解液を、フッ素樹脂の貧溶媒を入れた大気圧の受槽に向けてフラッシュさせるか、減圧下の受槽に向けてフラッシュさせる。また、オートクレーブ等の耐圧容器中で加熱しないで溶解させた場合、任意の圧力に加圧して加圧状態とした溶解液を、フッ素樹脂の貧溶媒を入れた大気圧の受槽に向けてフラッシュさせるか、減圧下の受槽に向けてフラッシュさせる。フラッシュ晶析する溶解液の圧力(ゲージ圧)は0.2MPa以上4MPa以下であることが好ましい。この環境にある溶解液を大気圧下の受槽に向けてフラッシュ晶析することが好ましい。
 受槽の温度は、受槽に入れるフッ素樹脂の貧溶媒により異なり、フッ素樹脂の貧溶媒が凝固しない温度~50℃、具体的には水の場合、フラッシュ晶析直前の温度として0℃~50℃が好ましい。
 フラッシュ晶析方法では、溶解槽からの連結管出口を受槽の大気中、またはフッ素樹脂の貧溶媒中に入れ、フラッシュ晶析する方法が挙げられる。貧溶媒中に入れる方がより微細なフッ素樹脂粒子が得られるので好ましい。
 上記析出工程(a1工程)、特には(a2工程)により得られるフッ素樹脂粒子は、分散液もしくは懸濁液の状態で得ることができる。なお、仕込んだフッ素樹脂の未溶解分等の粗粒を含む場合には、ろ過等により除くことも可能である。
 本実施態様の方法を採用することにより、微細で、粒度の揃ったフッ素樹脂粒子を安定的に製造することができる。フッ素樹脂粒子、特にはフッ化ビニリデンとヘキサフルオロプロピレンとの共重合体からなるポリフッ化ビニリデン樹脂粒子を用いることで、透気度を低下させることなく、かつウェット接着性を向上させることができる。
 相分離法としては、フッ素樹脂を溶媒に溶解し、非溶媒などを利用して、フッ素樹脂溶液をエマルジョン化させ、貧溶媒と接触させることでフッ素樹脂粒子を形成させる方法が挙げられる。
 乾式粉砕法としては、フッ素樹脂粒子同士を衝突させることで粉砕する方式や、金属壁に衝突させることで粉砕する方式が挙げられる。
 湿式粉砕法としては、フッ素樹脂粒子を分散させた分散媒にジルコニア等のビーズを添加し、攪拌してビーズとフッ素樹脂粒子を衝突させることで粉砕する方式が挙げられる。ビーズの材質およびビーズ径は目的のフッ素樹脂粒子の形状、サイズに合わせて用いることができる。
 また、スプレードライヤー法としては、フッ素樹脂を溶媒に溶解させ、溶かした溶液をノズルから噴霧することで液滴を作製し、乾燥することで粒子化する方式が挙げられる。スプレードライヤー方式に用いる溶媒としては、フッ素樹脂を溶解すれば特に限定はされないが、フッ素樹脂の融点よりも沸点が低い溶媒が好ましく、具体的には、アセトン、メチルエチルケトン、メチルイソブチルケトン、メタノール、エタノール、1-プロパノール、2-プロパノール、1-ブタノール、酢酸エチル、酢酸プロピル、酢酸ブチル、テトラヒドロフラン、シクロヘキサノン等が挙げられる。
 (無機粒子)
 二次電池用セパレータの寸法安定性を向上するため、前記多孔質層に無機粒子を含有することが好ましい。二次電池用セパレータに求められる寸法安定性は、130℃、1時間での熱収縮が10%以内であれば好ましい。無機粒子としては、一例として電池内で電気的に安定であること、電気絶縁性を有すること、および耐熱性が求められる。
 具体的に無機粒子としては、酸化アルミニウム、ベーマイト、シリカ、酸化チタン、酸化ジルコニウム、酸化鉄、酸化マグネシウムなどの無機酸化物粒子、窒化アルミニウム、窒化硅素などの無機窒化物粒子、フッ化カルシウム、フッ化バリウム、硫酸バリウムなどの難溶性のイオン結晶粒子、および水酸化マグネシウムなどが挙げられる。これらの粒子を1種類で用いてもよく、2種類以上を混合して用いてもよい。
 用いる無機粒子の平均粒径は、0.10μm以上5.0μm以下であることが好ましい。より好ましくは、0.20μm以上3.0μm以下、さらに好ましくは0.30μm以上1.0μm以下である。0.10μmより小さいと、多孔質層が緻密になることで透気度が高くなる場合がある。また、空孔径が小さくなることから電解液の含浸性が低下し生産性に影響を与える場合がある。5.0μmより大きくなると、十分な寸法安定性が得られない場合があり、また多孔質層の膜厚が増大し、電池特性の低下をもたらす場合がある。
 用いる粒子の形状としては、球状、板状、針状、棒状、楕円状などが挙げられ、いずれの形状であってもよい。その中でも、表面修飾性、分散性、塗工性の観点から球状であることが好ましい。
 (バインダー)
 前記フッ素樹脂同士、前記有機樹脂同士、前記無機粒子同士、また前記フッ素樹脂と前記有機樹脂、前記フッ素樹脂と前記無機粒子、前記有機樹脂と前記無機粒子、および前記フッ素樹脂、前記有機樹脂、前記無機粒子のそれぞれと多孔質基材とを結着させるために必要であればバインダーを用いてもよい。また、バインダーを添加することで電極とのウェット接着性、電極とのドライ接着性および寸法安定性が向上する場合もある。
 バインダーに用いられる樹脂としては、フッ素樹脂、アクリル樹脂、スチレン-ブタジエン樹脂、架橋ポリスチレン、メチルメタクリレート-スチレン共重合体、ポリアミド、ポリアミドイミド、ポリイミド、メラミン樹脂、フェノール樹脂、ポリアクリロニトリル、シリコン樹脂、ポリカーボネート、カルボキシメチルセルロース樹脂などが挙げられ、これらの樹脂を1種類で用いてもよく、2種類以上を混合して用いてもよい。また、前記バインダー樹脂の中でも、電気的安定性と耐酸化性の点から、フッ素樹脂、アクリル樹脂、スチレン-ブタジエン樹脂、およびカルボキシメチルセルロースを用いるのが好ましく、特にフッ素樹脂とアクリル樹脂が好ましい。
 また、寸法安定性を向上させる目的で、ポリアミド、ポリアミドイミド、ポリイミド、ポリエーテルイミド、ポリフッ化ビニリデン、フッ化ビニリデン-ヘキサフルオロプロピレン共重合体、ポリテトラフルオロエチレン、ポリスルホン、ポリケトン、ポリエーテルケトン、ポリカーボネート、ポリアセタールなどの耐熱樹脂を添加してもよい。ここで耐熱樹脂とは、融点を150℃以上に有する樹脂、または実質的に融点を有さない樹脂を意味する。融点を150℃以上に有する樹脂とは、150℃以上に上記ピークトップを有する樹脂をいう。融点を有さない樹脂とは、測定温度範囲-20~230℃において、上記ピークトップを有さない樹脂のことをいう。
 また、用いるバインダーは溶媒に溶解するバインダーでも、粒子形状のバインダーでもよく、特にその形態は限定されない。
 粒子形状のバインダーとしては、多孔質層形成時に一部またはすべてが造膜するものでもよく、また造膜しないものを用いてもよい。粒子形状のバインダーを造膜させる方法としては、溶媒を乾燥させる際の熱による造膜や、N-メチル-2-ピロリドン、ジメチルアセトアミド、ジプロピレングリコールメチルエーテル、ブチルグリコール、プロピレングリコール、2,2,4-トリメチル-1,3-ペンタンジオールモノイソブチレートなどの造膜助剤を添加することで造膜させてもよい。
 粒子形状のバインダーの平均粒径は、1μm以下が好ましい。1μmより大きい場合は、結着させるのに必要なバインダーの量が増加するため、電池性能を低下させる場合がある。
 バインダーの含有量としては、前記フッ素樹脂、前記有機樹脂、および前記無機粒子の合計量100質量部に対して0.1質量部以上100質量部以下が好ましく、0.2質量部以上がより好ましい。また、より好ましくは50質量部以下、さらに好ましくは30質量部以下である。バインダーの含有量が100質量部よりも大きい場合、フッ素樹脂、有機樹脂の含有量が少なくなり、電極との接触面積が小さくなり、ウェット接着性およびドライ接着性が弱くなる場合がある。また、透気度の上昇も大きくなり、電池特性が低下する場合がある。バインダーの含有量が0.1質量部未満の場合、結着性を発現しにくくなり、多孔質基材上に積層されたフッ素樹脂および無機粒子が欠落して多孔質層を形成しにくくなる場合がある。
 (多孔質層の形成)
 本発明の二次電池用セパレータは、多孔質基材の少なくとも片面に、無機粒子と、融点の異なる2種類以上の有機樹脂とを主成分とする多孔質層が積層されたセパレータであって、前記有機樹脂の少なくとも1種がフッ素樹脂であり、以下の(A)および/または(B)を満たすことを特徴とする二次電池用セパレータの製造方法で得られるが、その方法について以下に説明する。
(A)前記多孔質層が130℃以上および20℃以上130℃未満に融点を有する
(B)前記多孔質層が130℃以上に融点を有し、かつ非晶性有機樹脂を有する。
 乳化重合、懸濁重合、分散重合などの公知の製法により製造されたフッ素樹脂、もしくは重合後に目的の平均粒径、形状に加工されたフッ素樹脂と無機粒子を、溶媒中に分散させることで塗工液を調整する。ここで、分散させる溶媒としては、多孔質基材への溶媒の含浸を抑制させる点から、水を主成分とする溶媒が好ましい。なお、ここで主成分とは溶媒100質量%中、50質量%以上含まれていることをいう。
 この水を主成分とする溶媒中に占める水の割合は50質量%以上が好ましく、より好ましくは60質量%以上、さらに好ましくは70質量%以上である。水の割合が50質量%未満の場合は、多孔質基材へ塗工する際に基材に塗工液が含浸し所望の多孔質層を形成することができない場合がある。また、塗工液が含浸されることで多孔質基材の搬送が困難になり搬送中にシワが発生する場合がある。
 フッ素樹脂、有機樹脂および無機粒子を分散させる場合、必要であれば分散剤を用いてもよい。分散剤の種類としては特に限定されないが、例えば、アルキルアミン塩、第四級アンモニウム塩などのカチオン系界面活性剤、アルキル硫酸エステル塩、ポリオキシエチレンアルキルエーテル硫酸エステル塩、アルキルベンゼンスルホン酸塩、脂肪酸塩などのアニオン系界面活性剤、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルフェノール、グリセリン脂肪酸エステル、ポリオキシエチレン脂肪酸エステルなどのノニオン系界面活性剤、アルキルベタイン、アルキルアミンオキサイドなどの両性界面活性剤、および上記カチオン系、アニオン系、ノニオン系、両性のフッ素系界面活性剤、シリコン系界面活性剤などが挙げられる。他にもポリビニルピロリドン、ポリカルボン酸塩、ポリスルホン酸塩、ポリエーテルなどの高分子化合物などが挙げられる。これらの分散剤を1種類で用いてもよく、2種類以上を混合して用いてもよい。
 分散剤の添加量としては、分散させるフッ素樹脂、有機樹脂、および無機粒子の合計100質量部に対して0.1質量部以上40質量部以下が好ましく、より好ましくは0.2質量部以上、さらに好ましくは0.5質量部以上である。また、好ましくは30質量部以下、さらに好ましくは20質量部以下である。分散剤の添加量が40質量部よりも多くなると、多孔質層に対するフッ素樹脂の含有量が小さくなることで、ウェット接着性およびドライ接着性が低下する場合がある。
 フッ素樹脂、有機樹脂、および無機粒子を分散させる方法としては、公知の手法を用いればよい。ボールミル、ビーズミル、サンドミル、ロールミル、ホモジナイザー、超音波ホモジナイザー、高圧ホモジナイザー、超音波装置、ペイントシェーカーなどが挙げられる。これら複数の混合分散機を組み合わせて段階的に分散を行ってもよい。
 塗工液を調製する順序としては特に限定はされない。分散工程の効率化の観点から、水を主成分とする溶媒に分散剤を添加、混合し、その溶液の中にフッ素樹脂、有機樹脂、および無機粒子を添加して塗工液を調製することが好ましい。
 塗工液には、粒子同士や粒子と多孔質基材とを結着させるために、必要であれば前記バインダーを添加してもよい。また、必要であれば適宜、酸化防止剤、安定化剤、消泡剤、レベリング剤等を塗工液に添加してもよい。
 レベリング剤の種類としては特に限定されないが、例えば、アルキルアミン塩、第四級アンモニウム塩などのカチオン系界面活性剤、アルキル硫酸エステル塩、ポリオキシエチレンアルキルエーテル硫酸エステル塩、アルキルベンゼンスルホン酸塩、脂肪酸塩などのアニオン系界面活性剤、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルフェノール、グリセリン脂肪酸エステル、ポリオキシエチレン脂肪酸エステルなどのノニオン系界面活性剤、アルキルベタイン、アルキルアミンオキサイドなどの両性界面活性剤、および上記カチオン系、アニオン系、ノニオン系、両性のフッ素系界面活性剤、シリコン系界面活性剤、ポリビニルピロリドン、ポリカルボン酸塩、ポリスルホン酸塩、ポリエーテルなどの高分子化合物などが挙げられる。
 レベリング剤の添加量としては、フッ素樹脂、有機樹脂、および無機粒子の合計100質量部に対して20質量部以下が好ましく、より好ましくは10質量部以下、さらに好ましくは5質量部以下である。レベリング剤の添加量が20質量部よりも多くなると、接着性の低下および二次電池内での副反応による電池特性の低下をもたらす場合がある。
 次に、得られた塗工液を多孔質基材上に塗工し、乾燥を行い、多孔質層を積層する。塗工方法としては、公知の方法で塗工すればよい。例えば、グラビアコーティング、スリットダイコーティング、ナイフコーティング、キスコーティング、ロールコーティング、バーコーティング、吹き付け塗装、浸漬コーティング、スピンコーティング、スクリーン印刷、インクジェット印刷、パット印刷、他の種類の印刷などが利用できる。これらに限定されることはなく、用いるフッ素樹脂、有機樹脂、無機粒子、バインダー、分散剤、レベリング剤、使用する溶媒、基材などの好ましい条件に合わせて塗工方法を選択すればよい。また、塗工性を向上させるために、例えば、多孔質基材にコロナ処理、プラズマ処理などの塗工面の表面処理を行ってもよい。
 多孔質基材の両面に多孔質層を積層させる場合は、片面ずつ塗工して乾燥させてもよい。両面同時に塗工して乾燥させる方が、生産性が良く好ましい。
 また、ウェット接着性およびドライ接着性の観点から、片面のみに多孔質層を積層するよりも両面に多孔質層を積層した方が、正極、負極の両面でウェット接着性およびドライ接着性が得られることから、サイクル特性が優れるため好ましい。
 多孔質層における融点が130℃以上の有機樹脂の割合は、多孔質層全体の100質量%において、1質量%以上90質量%以下が好ましく、より好ましくは5質量%以上であり、また70質量%以下である。さらに好ましくは、10質量%以上であり、50質量%以下である。多孔質層におけるフッ素樹脂の割合が1質量%より小さい場合、十分なウェット接着性が得られない場合がある。また、90質量%より大きい場合、無機粒子の含有率が下がるために十分な寸法安定性が得られない場合がある。
 多孔質層における融点が20℃以上130℃未満である有機樹脂の割合は、多孔質層全体の100質量%において、1質量%以上90質量%以下が好ましく、より好ましくは5質量%以上であり、また70質量%以下である。さらに好ましくは、10質量%以上であり、50質量%以下である。多孔質層における融点が20℃以上130℃未満である有機樹脂の割合が1質量%より小さい場合、十分なドライ接着性が得られない場合がある。また、90質量%より大きい場合、無機粒子の含有率が下がるために十分な寸法安定性が得られない場合がある。
 フッ素樹脂と有機樹脂は、同一の構成単位、例えば同一粒子内にフッ素樹脂と有機樹脂が混合されている状態であるよりも、それぞれ独立した構成単位、例えば、フッ素樹脂粒子と有機樹脂粒子、もしくはフッ素樹脂粒子と有機樹脂膜であることが、電極とのウェット接着性、およびドライ接着性の観点から好ましい。
 多孔質層の膜厚は、0.10μm以上5.0μm以下であることが好ましい。より好ましくは、0.3μm以上であり、また4.0μm以下である。さらに好ましくは0.5μm以上であり、また3.0μm以下である。多孔質層の厚みが0.10μmよりも薄い場合、電極との十分なウェット接着性およびドライ接着性が得られない場合がある。また、5.0μmより厚い場合、透気度の上昇が大きくなる、あるいはウェット接着性およびドライ接着性が十分でなくなる場合がある。また、片面のみに積層した場合、カールが著しくなる場合があるため、多孔質基材の両面に多孔質層を積層させることが好ましい。また、同様の理由で両面に積層する場合は、それぞれの面の多孔質層の膜厚差は、1μm以下にすることが好ましい。
 多孔質層の積層による透気度の上昇は5倍以下であることが好ましい。より好ましくは3倍以下である。多孔質層の積層により透気度が5倍よりも大きくなると、二次電池用セパレータとしての全体の透気度も大きくなり、十分なイオン移動性が得られず、電池特性が低下してしまう場合がある。
 [多孔質基材]
 本発明において、多孔質基材としては、内部に空孔を有する多孔膜、不織布、または繊維状物からなる多孔膜シートなどが挙げられる。多孔質基材を構成する材料としては、電気絶縁性であり、電気的に安定で、電解液にも安定である樹脂から構成されていることが好ましい。また、シャットダウン機能を付与する観点から用いる樹脂は融点が200℃以下の熱可塑性樹脂が好ましい。ここでのシャットダウン機能とは、リチウムイオン電池が異常発熱した場合に、熱で溶融することで多孔構造を閉鎖し、イオン移動を停止させて、発電を停止させる機能のことである。
 熱可塑性樹脂としては、例えばポリオレフィン樹脂が挙げられ、前記多孔質基材はポリオレフィン多孔質基材であることが好ましい。また、前記ポリオレフィン多孔質基材は融点が200℃以下であるポリオレフィン系多孔質基材であることがより好ましい。ポリオレフィン樹脂としては、具体的にはポリエチレン、ポリプロピレン、その共重合体、およびこれらを組み合わせた混合物などが挙げられ、例えばポリエチレンを90質量%以上含有する単層の多孔質基材、ポリエチレンとポリプロピレンからなる多層の多孔質基材などが挙げられる。
 多孔質基材の製造方法としては、ポリオレフィン樹脂をシートにした後に延伸することで多孔質化する方法やポリオレフィン樹脂を流動パラフィンなどの溶剤に溶解させてシートにした後に溶剤を抽出することで多孔質化する方法が挙げられる。
 多孔質基材の厚みは、5μm以上50μm以下が好ましく、より好ましくは5μm以上30μm以下である。多孔質基材の厚みが50μmより厚くなると多孔質基材の内部抵抗が高くなる場合がある。また、多孔質基材の厚みが5μmより薄くなると製造が困難になり、また十分な力学特性が得られない場合がある。
 多孔質基材の透気度は、50秒/100cc以上1,000秒/100cc以下であることが好ましい。より好ましくは50秒/100cc以上500秒/100cc以下である。透気度が1,000秒/100ccよりも大きいと、十分なイオン移動性が得られず、電池特性が低下してしまう場合がある。50秒/100ccよりも小さい場合は、十分な力学特性が得られない場合がある。
 [二次電池用セパレータ]
 本発明の二次電池用セパレータは、上記のように多孔質基材の少なくとも片面に、無機粒子と、融点の異なる2種類以上の有機樹脂とを主成分とする多孔質層が積層されたセパレータであって、前記有機樹脂の少なくとも1種がフッ素樹脂であり、以下の(A)および/または(B)を満たす二次電池用セパレータである。
(A)前記多孔質層が130℃以上および20℃以上130℃未満に融点を有する
(B)前記多孔質層が130℃以上に融点を有し、かつ非晶性有機樹脂を有する。
 積層された多孔質層は、イオン透過性を有するために十分に多孔化されていることが好ましく、二次電池用セパレータの透気度として、50秒/100cc以上1,000秒/100cc以下であることが好ましい。より好ましくは50秒/100cc以上500秒/100cc以下である。透気度が1,000秒/100ccよりも大きいと、十分なイオン移動性が得られず、電池特性が低下してしまう場合がある。50秒/100ccよりも小さい場合は、十分な力学特性が得られない場合がある。
 [二次電池]
 本発明の二次電池用セパレータは、リチウムイオン電池等の二次電池に好適に用いることができる。リチウムイオン電池は、正極活物質を正極集電体に積層した正極と、負極活物質を負極集電体に積層した負極との間に、二次電池用セパレータと電解質が介在した構成となっている。
 正極は、活物質、バインダー樹脂、および導電助剤からなる正極材が集電体上に積層されたものであり、活物質としては、LiCoO、LiNiO、Li(NiCoMn)O、などの層状構造のリチウム含有遷移金属酸化物、LiMnなどのスピネル型マンガン酸化物、およびLiFePOなどの鉄系化合物などが挙げられる。バインダー樹脂としては、耐酸化性が高い樹脂を使用すればよい。具体的にはフッ素樹脂、アクリル樹脂、スチレン-ブタジエン樹脂などが挙げられる。導電助剤としては、カーボンブラック、黒鉛などの炭素材料が用いられている。集電体としては、金属箔が好適であり、特にアルミニウムが用いられることが多い。
 負極は、活物質およびバインダー樹脂からなる負極材が集電体上に積層されたものであり、活物質としては、人造黒鉛、天然黒鉛、ハードカーボン、ソフトカーボンなどの炭素材料、スズやシリコンなどのリチウム合金系材料、Liなどの金属材料、およびチタン酸リチウム(LiTi12)などが挙げられる。バインダー樹脂としては、フッ素樹脂、アクリル樹脂、スチレン-ブタジエン樹脂などが用いられる。集電体としては、金属箔が好適であり、特に銅箔が用いられることが多い。
 電解液は、二次電池の中で正極と負極との間でイオンを移動させる場となっており、電解質を有機溶媒にて溶解させた構成をしている。電解質としては、LiPF、LiBF、およびLiClOなどが挙げられるが、有機溶媒への溶解性、イオン電導度の観点からLiPFが好適に用いられている。有機溶媒としては、エチレンカーボネート、プロピレンカーボネート、フルオロエチレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート、ガンマブチロラクトン、およびスルホランなどが挙げられ、これらの有機溶媒を2種類以上混合して使用してもよい。
 二次電池の作製方法としては、まず活物質と導電助剤をバインダー溶液中に分散して電極用塗布液を調製し、この塗布液を集電体上に塗工して、溶媒を乾燥させることで正極、負極がそれぞれ得られる。乾燥後の塗工膜の膜厚は50μm以上500μm以下とすることが好ましい。得られた正極と負極の間に二次電池用セパレータを、それぞれの電極の活物質層と接するように配置し、アルミラミネートフィルム等の外装材に封入し、電解液を注入した後に熱プレスする。その後、負極リードや安全弁を設置し、外装材を封止する。このようにして得られた二次電池は、電極と二次電池用セパレータとの接着性が良いため、サイクル特性に優れ、かつ寸法安定性に優れ、また、低コストでの製造が可能となる。
 以下、本発明を実施例により具体的に説明するが、本発明はこれにより何ら制限されるものではない。本実施例で用いた測定法を以下に示す。
 [測定方法]
 (1)融点
 「JIS K7121:2012 プラスチックの転移温度測定方法」の規定に準じた示差走査熱量測定(DSC)において、PerkinElmer製DSC(示差走査熱量分析装置)にて、測定パンに6~7mgの樹脂または多孔質層を入れ測定用試料とし、以下の条件にて測定した。初めに昇温、冷却した後、2回目の昇温時の吸熱ピークのピークトップの温度を融点とした。
昇温、冷却速度  : ±10℃/min
測定温度範囲   : -20~230℃。
 (2)平均粒径
 電解放射型走査電子顕微鏡((株)日立製作所製S-3400N)を用いて、多孔質層の表面を倍率5万倍にて観察した。その際の画像サイズは2.5μm×1.8μmである。なお、画素数は1,280画素×960画素であり、1画素の大きさは2.0nm×1.9nmであった。
 また、平均粒径については、得られた画像上で1つの粒子を完全に囲む面積が最も小さい正方形または長方形を描き、すなわち、正方形または長方形の4辺に粒子の端部が接している正方形または長方形を描き、正方形の場合は1辺の長さ、長方形の場合は長辺の長さ(長軸径)を粒径とした。任意の100個の粒子についてそれぞれの粒径を測定し、その数平均値を平均粒径とした。なお、撮影した画像中に100個以上の粒子が観察された場合は、当該画像中の任意の100個の粒径の数平均を平均粒径とし、画像中に100個の粒子が観察されなかった場合は、複数の画像を撮影し、合計100個の粒径の数平均を平均粒径とした。
 (3)重量平均分子量
 フッ素樹脂の重量平均分子量は、ゲルパーミエーションクロマトグラフィー法を用い、ポリスチレンによる校正曲線と対比させて算出した。
 装置 :株式会社島津製作所製 LC-10Aシリーズ
 カラム:昭和電工株式会社製 KD-806M × 2本
 移動相:ジメチルホルムアミド
 流量 :1.0ml/min
 検出 :示差屈折率計
 カラム温度:40℃。
 (4)多孔質層の膜厚
 ミクロトームにてサンプル断面を切り出し、その断面を電解放射型走査電子顕微鏡((株)日立製作所製S-3400N)にて観察して、その観察領域内において多孔質基材との界面から最も高いところを選択し、多孔質層の膜厚として計測した。100mm×100mmサイズのサンプルから任意の5箇所についてそれぞれ観察、選択、計測し平均した。
 (5)透気度
 100mm×100mmサイズの試料3枚からそれぞれ任意の一箇所を選び、王研式透気度測定装置(旭精工(株)社製EG01-5-1MR)を用いて、JIS P 8117(2009)に準拠して測定し、その平均値を透気度(秒/100cc)とした。
 (6)ウェット接着強度
 ジエチルカーボネートとエチレンカーボネートを質量比で7:3に混合した溶媒を調整し、その溶媒中に下記実施例にて作製した二次電池用セパレータフィルム15mm×100mmと、活物質がLiCoO、バインダーがフッ化ビニリデン樹脂、導電助剤がカーボンブラックの正極15mm×100mmを10分間浸漬させ、取り出した後に、活物質と多孔質層が接触するように設置し、熱プレス機にて0.5MPa、100℃、2分で熱プレスを行い、ピンセットを用いて手動で剥離させ、ウェット接着強度を下記4段階にて評価を行った。同様に、活物質が黒鉛、バインダーがフッ化ビニリデン樹脂、導電助剤がカーボンブラックの負極と二次電池用セパレータとのウェット接着強度も測定し、正極および負極のそれぞれの評価を行い、ウェット接着強度とした。
・ウェット接着強度S: 強い力で電極と二次電池用セパレータ側が剥離した
・ウェット接着強度A: やや強い力で電極と二次電池用セパレータが剥離した
・ウェット接着強度B: 弱い力で電極と二次電池用セパレータが剥離した
・ウェット接着強度C: 極弱い力で電極と二次電池用セパレータが剥離した。
 (7)ドライ接着強度
 活物質がLiCoO、バインダーがフッ化ビニリデン樹脂、導電助剤がカーボンブラックの正極15mm×100mmと二次電池用セパレータを、活物質と多孔質層が接触するように設置し、熱ロールプレス機にて0.5MPa、80℃、0.4m/分で熱プレスを行い、ピンセットを用いて手動で剥離させ、ドライ接着強度を下記4段階にて評価を行った。同様に、活物質が黒鉛、バインダーがフッ化ビニリデン樹脂、導電助剤がカーボンブラックの負極と二次電池用セパレータとのドライ接着強度も測定し、正極および負極のそれぞれの評価を行い、ドライ接着強度とした。
・ドライ接着強度S: 強い力で電極と二次電池用セパレータ側が剥離した
・ドライ接着強度A: やや強い力で電極と二次電池用セパレータが剥離した
・ドライ接着強度B: 弱い力で電極と二次電池用セパレータが剥離した
・ドライ接着強度C: 極弱い力で電極と二次電池用セパレータが剥離した。
 (8)熱収縮率(寸法安定性)
 100mm×100mmサイズの試料の一辺の中点から対辺の中点の長さを測定し、130℃のオーブン中に無張力下で1時間熱処理を行った。熱処理後に試料を取り出し、熱処理前と同一箇所の中点間の長さを測定し、以下の式より熱収縮率を算出した。1枚の試料より同時に2ヶ所算出し、その平均値を熱収縮率とした。
熱収縮率(%)=[(熱処理前の中点間の長さ-熱処理後の中点間の長さ)/(熱処理前の中点間の長さ)]×100。
 (実施例1)
 フッ化ビニリデンとヘキサフルオロプロピレンとの共重合体からなるフッ素樹脂(ポリフッ化ビニリデン樹脂、フッ化ビニリデン含有率95mol%、酸性官能基としてカルボン酸基含有、融点160℃)を該フッ化ビニリデンとヘキサフルオロプロピレンとの共重合体100質量部に対して9,000質量部のアセトニトリルに80℃で溶解させ、その溶液にアセトニトリル100質量部に対して11質量部の水を加え、ポリフッ化ビニリデン樹脂溶液を作製した。76℃の前記ポリフッ化ビニリデン樹脂溶液を該フッ化ビニリデンとヘキサフルオロプロピレンとの共重合体100質量部に対して5,000質量部の常温の水の槽(以下、「粒子化槽」という。)へ連続添加し、粒子化液を得た。
 次に、別途調整したポリフッ化ビニリデン樹脂溶液(76℃)と該共重合体100質量部に対して5,000質量部の水(常温)を、各々6分間で滴下終了する速度で前記粒子化槽へ同時に滴下しながら、粒子化液の液面を保つように、粒子化槽底部から粒子化液を抜き出した(粒子化液A)。続いて、別途調整したポリフッ化ビニリデン樹脂溶液(76℃)と該共重合体100質量部に対して5,000質量部の水(常温)を、各々6分間で滴下終了する速度で前記粒子化槽へ同時に滴下しながら、粒子化液の液面を保つように、粒子化槽底部から粒子化液を抜き出した(粒子化液B)。
 粒子化液A、粒子化液B、および前記粒子化槽に残っている粒子化液Cをまとめて、アセトニトリルを減圧留去した後、残渣を遠心ろ過した。得られた含水ケーク100質量部に対して500質量部のイオン交換水を加えてスラリー洗浄し、遠心ろ過した。含水ケーク中のフッ素樹脂100質量部に対して、分散剤としてポリビニルピロリドンを4質量部添加後、フッ素樹脂の濃度が6質量%となるようにイオン交換水を加えてホモミキサーで予備分散した。その予備分散液を超音波(出力120W)で処理した後、粗粒を遠心沈降により分離して平均粒径が0.10μmのフッ素樹脂粒子からなる水分散液を得た。得られたフッ素樹脂の重量平均分子量を測定したところ220万であった。
 上記フッ素樹脂水分散液に、上記フッ素樹脂と異なる有機樹脂(以下「有機樹脂」と言う場合がある。)としてポリエチレン(融点80℃)、無機粒子として酸化アルミニウム粒子(平均粒径0.50μm)を不揮発性固形分の質量比で1:1:3になるように混合し、またバインダーとしてアクリル樹脂をフッ素樹脂、有機樹脂、および無機粒子の合計100質量部に対して0.95質量部添加し、界面活性剤としてパーフルオロアルキル化合物をフッ素樹脂と酸化アルミニウム粒子の合計100質量部に対して0.7質量部添加して塗工液を調製した。この塗工液をグラビアコーティングにてポリエチレン多孔質基材(厚み7μm、透気度120秒/100cc)の両面に塗工し、含有される溶媒が揮発するまで乾燥することで多孔質層を形成し、本発明の二次電池用セパレータを得た。
 フッ素樹脂の融点、フッ素樹脂の重量平均分子量、フッ素樹脂粒子の平均粒径、フッ素樹脂のフッ化ビニリデン含有率、フッ素樹脂の酸性官能基の有無、フッ素樹脂、有機樹脂、および無機粒子の合計におけるフッ素樹脂の割合(表中では「フッ素樹脂の割合」)、上記フッ素樹脂と異なる有機樹脂(以下「有機樹脂」と言う場合がある。)の種類、有機樹脂の融点、フッ素樹脂、有機樹脂、および無機粒子の合計における有機樹脂の割合(表中では「有機樹脂の割合」)について、表1に示す。フッ素樹脂の割合は19質量%であり、有機樹脂の割合は19質量%であった。
 得られた二次電池セパレータについて、多孔質層の膜厚、多孔質層の融点、透気度、ウェット接着強度、ドライ接着強度、および熱収縮率を測定した。測定結果を表2に示す。
 (実施例2)
 有機樹脂にポリフッ化ビニリデン(融点90℃)を用いた以外は、実施例1と同様にして本発明の二次電池用セパレータを得た。
 (実施例3)
 有機樹脂にポリエチレン(融点80℃)とポリフッ化ビニリデン(融点90℃)を質量比で1:4となるように用いて、フッ素樹脂、有機樹脂、および無機粒子の合計におけるフッ素樹脂の割合を19質量%、有機樹脂の割合を23質量%にした以外は、実施例1と同様にして本発明の二次電池用セパレータを得た。
 (実施例4)
 有機樹脂にポリプロピレン(融点100℃)を用いた以外は、実施例1と同様にして本発明の二次電池用セパレータを得た。
 (実施例5)
 有機樹脂にポリプロピレン(融点100℃)とポリフッ化ビニリデン(融点90℃)を質量比で1:4となるように用いて、フッ素樹脂、有機樹脂、および無機粒子の合計におけるフッ素樹脂の割合を19質量%、有機樹脂の割合を23質量%にした以外は、実施例1と同様にして本発明の二次電池用セパレータを得た。
 (実施例6)
 有機樹脂にポリエチレン(融点120℃)を用いた以外は、実施例1と同様にして本発明の二次電池用セパレータを得た。
 (実施例7)
 融点130℃、重量平均分子量50万のフッ素樹脂を用いた以外は、実施例1と同様にして本発明の二次電池用セパレータを得た。
 (実施例8)
 有機樹脂にアクリル樹脂(融点80℃)を用いた以外は、実施例1と同様にして本発明の二次電池用セパレータを得た。
 (実施例9)
 融点180℃のフッ素樹脂を用いた以外は、実施例1と同様にして本発明の二次電池用セパレータを得た。
 (実施例10)
 フッ素樹脂にフッ化ビニリデンとヘキサフルオロプロピレンとの共重合体からなる樹脂(ポリフッ化ビニリデン樹脂、フッ化ビニリデン含有率95mol%、酸性官能基なし、融点160℃)を用いた以外は、実施例1と同様にして本発明の二次電池用セパレータを得た。
 (実施例11)
 有機樹脂に非晶性有機樹脂であるポリフッ化ビニリデン(非晶質)を用いた以外は、実施例1と同様にして本発明の二次電池用セパレータを得た。
 (実施例12)
 有機樹脂にポリエチレン(融点80℃)と非晶性有機樹脂であるポリフッ化ビニリデン(非晶質)を質量比で3:2となるように用いて、フッ素樹脂、有機樹脂、および無機粒子の合計におけるフッ素樹脂の割合を19質量%、有機樹脂の割合を23質量%にした以外は、実施例1と同様にして本発明の二次電池用セパレータを得た。
 (実施例13)
 融点190℃、重量平均分子量200万、平均粒径0.25μmのフッ素樹脂を用いた以外は、実施例1と同様にして本発明の二次電池用セパレータを得た。
 (実施例14)
 フッ素樹脂の割合を10質量%にした以外は、実施例1と同様にして本発明の二次電池用セパレータを得た。
 (実施例15)
 フッ素樹脂の割合を10質量%にした以外は、実施例3と同様にして本発明の二次電池用セパレータを得た。
 (実施例16)
 フッ素樹脂と融点が異なる有機樹脂の割合を5質量%にした以外は、実施例14と同様にして本発明の二次電池用セパレータを得た。
 (比較例1)
 フッ素樹脂を用いない以外は、実施例1と同様にして本発明の二次電池用セパレータを得た。
 (比較例2)
 フッ素樹脂に融点100℃、重量平均分子量40万を用いた以外は、実施例1と同様にして本発明の二次電池用セパレータを得た。
 (比較例3)
 有機樹脂にポリエチレン(融点150℃)を用いた以外は、実施例1と同様にして本発明の二次電池用セパレータを得た。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 表1、2から、本発明の実施例1~10、13~16は、いずれも、無機粒子と融点の異なる2種類以上の有機樹脂とを主成分とする多孔質層が積層されたセパレータであって、前記有機樹脂の少なくとも1種がフッ素樹脂であり、(A)前記多孔質層が130℃以上および20℃以上130℃未満に融点を有するため、電極との良好なウェット接着強度およびドライ接着強度が得られ、かつ低い熱収縮性(高い寸法安定性)が得られる。
 また、実施例11、12は、いずれも、無機粒子と融点の異なる2種類以上の有機樹脂とを主成分とする多孔質層が積層されたセパレータであって、前記有機樹脂の少なくとも1種がフッ素樹脂であり、(B)前記多孔質層が130℃以上に融点を有し、かつ非晶性有機樹脂を有するため、電極との良好なウェット接着強度およびドライ接着強度が得られ、かつ低い熱収縮性(高い寸法安定性)が得られる。
 一方、比較例1は、フッ素樹脂が含有されていないため、電極との十分なウェット接着強度が得られない。比較例2は、フッ素樹脂の融点が低いため、電極との十分なウェット接着強度が得られない。比較例3は、有機樹脂の融点が高いため、電極との十分なドライ接着強度が得られない。
 

Claims (9)

  1.  多孔質基材の少なくとも片面に、無機粒子と、融点の異なる2種類以上の有機樹脂とを主成分とする多孔質層が積層されたセパレータであって、前記有機樹脂の少なくとも1種がフッ素樹脂であり、以下の(A)および/または(B)を満たす、二次電池用セパレータ。
    (A)前記多孔質層が130℃以上および20℃以上130℃未満に融点を有する
    (B)前記多孔質層が130℃以上に融点を有し、かつ非晶性有機樹脂を有する
  2.  多孔質基材の少なくとも片面に、無機粒子と、融点の異なる2種類以上の有機樹脂とを主成分とする多孔質層が積層されたセパレータであって、前記有機樹脂の少なくとも1種がフッ素樹脂であり、前記多孔質層が130℃以上および20℃以上130℃未満に融点を有する、二次電池用セパレータ。
  3.  以下の(C)および/または(D)を満たす、請求項1または2に記載の二次電池用セパレータ。
    (C)前記多孔質層が130℃以上180℃未満および20℃以上130℃未満に融点を有する
    (D)前記多孔質層が130℃以上180℃未満に融点を有し、かつ非晶性有機樹脂を有する
  4.  前記有機樹脂として、アクリル樹脂および/またはオレフィン樹脂を含む、請求項1~3のいずれかに記載の二次電池用セパレータ。
  5.  前記有機樹脂のうち少なくとも1種類が酸性官能基を有する、請求項1~4のいずれかに記載の二次電池用セパレータ。
  6.  前記フッ素樹脂が、フッ化ビニリデン含有率が80mol%以上100mol%以下のポリフッ化ビニリデン樹脂である、請求項1~5のいずれかに記載の二次電池用セパレータ。
  7.  前記ポリフッ化ビニリデン樹脂の融点が130℃以上である、請求項6に記載の二次電池用セパレータ。
  8.  前記ポリフッ化ビニリデン樹脂が粒子形状であり、平均粒径が0.01μm以上1.00μm未満である、請求項6または7に記載の二次電池用セパレータ。
  9.  請求項1~8のいずれかに記載の二次電池用セパレータを用いる二次電池。
     
PCT/JP2017/010651 2016-03-29 2017-03-16 二次電池用セパレータおよび二次電池 WO2017169845A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN201780016505.9A CN108780866A (zh) 2016-03-29 2017-03-16 二次电池用隔膜和二次电池
EP17774389.5A EP3439073B1 (en) 2016-03-29 2017-03-16 Secondary-battery separator and secondary battery
US16/086,539 US10777796B2 (en) 2016-03-29 2017-03-16 Secondary battery separator and secondary battery
JP2017515850A JP7151082B2 (ja) 2016-03-29 2017-03-16 二次電池用セパレータおよび二次電池
KR1020187024714A KR102335587B1 (ko) 2016-03-29 2017-03-16 이차전지용 세퍼레이터 및 이차전지
CN202211553378.5A CN115939668A (zh) 2016-03-29 2017-03-16 二次电池用隔膜和二次电池

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016065131 2016-03-29
JP2016-065131 2016-03-29
JP2016248745 2016-12-22
JP2016-248745 2016-12-22

Publications (1)

Publication Number Publication Date
WO2017169845A1 true WO2017169845A1 (ja) 2017-10-05

Family

ID=59964433

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/010651 WO2017169845A1 (ja) 2016-03-29 2017-03-16 二次電池用セパレータおよび二次電池

Country Status (7)

Country Link
US (1) US10777796B2 (ja)
EP (1) EP3439073B1 (ja)
JP (1) JP7151082B2 (ja)
KR (1) KR102335587B1 (ja)
CN (2) CN108780866A (ja)
TW (1) TWI714744B (ja)
WO (1) WO2017169845A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018179698A1 (ja) * 2017-03-31 2018-10-04 株式会社クレハ コアシェル型粒子ならびにその用途および製造方法
WO2019112283A1 (ko) * 2017-12-07 2019-06-13 에스케이이노베이션 주식회사 이차전지용 다공성 복합분리막 및 이를 포함하는 리튬이차전지
WO2020060310A1 (ko) * 2018-09-21 2020-03-26 주식회사 엘지화학 세퍼레이터 및 이를 포함하는 전기화학소자
EP3675229A4 (en) * 2018-01-30 2020-12-30 Lg Chem, Ltd. SEPARATOR FOR ELECTROCHEMICAL DEVICE AND SEPARATOR PREPARATION PROCESS
JP2022540696A (ja) * 2019-09-11 2022-09-16 エルジー エナジー ソリューション リミテッド 電解液含浸性に優れた二次電池用分離膜
JP2022545812A (ja) * 2019-08-22 2022-10-31 ジー‐マテリアルズ・カンパニー・リミテッド リチウム二次電池用複合分離膜およびその製造方法
WO2023053821A1 (ja) * 2021-09-30 2023-04-06 東レ株式会社 多孔性フィルム、二次電池用セパレータおよび二次電池

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019065660A1 (ja) * 2017-09-26 2019-04-04 東レ株式会社 多孔性フィルム、二次電池用セパレータおよび二次電池
US11469476B2 (en) * 2017-10-20 2022-10-11 Lg Energy Solution, Ltd. Separator and electrochemical device comprising same
WO2019169217A2 (en) * 2018-03-02 2019-09-06 Arkema Inc. Fluoropolymer binder coating for use in electrochemical devices
CN109935770A (zh) * 2018-12-29 2019-06-25 深圳中兴新材技术股份有限公司 一种聚合物涂层隔膜及其制备方法
US20220094019A1 (en) 2019-01-04 2022-03-24 Ceigard, LLC Coated microporous membranes, and battery separators, batteries, vehicles, and devices comprising the same
JPWO2021172214A1 (ja) * 2020-02-28 2021-09-02
KR102629464B1 (ko) * 2020-04-13 2024-01-25 삼성에스디아이 주식회사 세퍼레이터 및 이를 채용한 리튬 전지

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004146190A (ja) 2002-10-24 2004-05-20 Tomoegawa Paper Co Ltd リチウムイオン二次電池用セパレータおよびこれを備えたリチウムイオン二次電池
JP2012221741A (ja) 2011-04-08 2012-11-12 Teijin Ltd 非水系二次電池用セパレータおよび非水系二次電池
WO2013133074A1 (ja) 2012-03-09 2013-09-12 帝人株式会社 非水系二次電池用セパレータ、その製造方法および非水系二次電池
JP2013187074A (ja) * 2012-03-08 2013-09-19 Nissan Motor Co Ltd 非水電解質二次電池およびその製造方法
JP5355823B1 (ja) 2011-11-15 2013-11-27 帝人株式会社 非水系二次電池用セパレータ及びその製造方法、並びに非水系二次電池
JP2016072162A (ja) * 2014-09-30 2016-05-09 旭化成イーマテリアルズ株式会社 蓄電デバイス用セパレータ

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2085380C (en) * 1991-12-27 2005-11-29 Celgard Inc. Porous membrane having single layer structure, battery separator made thereof, preparations thereof and battery equipped with same battery separator
JP2006120462A (ja) * 2004-10-21 2006-05-11 Sanyo Electric Co Ltd 非水電解質電池
JP2010244875A (ja) * 2009-04-07 2010-10-28 Panasonic Corp リチウム二次電池用セパレータ、およびそれを用いたリチウム二次電池
KR101055536B1 (ko) * 2009-04-10 2011-08-08 주식회사 엘지화학 다공성 코팅층을 포함하는 세퍼레이터, 그 제조방법 및 이를 구비한 전기화학소자
CN103947032B (zh) * 2011-11-15 2017-04-19 丰田自动车株式会社 非水电解质二次电池
JP5709008B2 (ja) * 2011-11-15 2015-04-30 トヨタ自動車株式会社 非水電解質二次電池とその製造方法
JP2014049279A (ja) * 2012-08-31 2014-03-17 Toyota Industries Corp 蓄電装置
JP5657177B2 (ja) * 2012-11-30 2015-01-21 帝人株式会社 非水系二次電池用セパレータ及び非水系二次電池
KR102151509B1 (ko) * 2013-03-19 2020-09-03 데이진 가부시키가이샤 비수계 이차전지용 세퍼레이터 및 비수계 이차전지
US20160204432A1 (en) * 2013-09-05 2016-07-14 Ishihara Sangyo Kaisha, Ltd. Non-aqueous electrolyte secondary battery and method for manufacturing the same
JP5708872B1 (ja) * 2013-09-24 2015-04-30 東洋インキScホールディングス株式会社 非水二次電池用バインダー、非水二次電池用樹脂組成物、非水二次電池セパレータ、非水二次電池電極および非水二次電池
JP5844950B2 (ja) * 2013-12-26 2016-01-20 帝人株式会社 非水系二次電池用セパレータ及び非水系二次電池
WO2016093146A1 (ja) * 2014-12-09 2016-06-16 東レ株式会社 二次電池用セパレータ、二次電池用セパレータの製造方法および二次電池

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004146190A (ja) 2002-10-24 2004-05-20 Tomoegawa Paper Co Ltd リチウムイオン二次電池用セパレータおよびこれを備えたリチウムイオン二次電池
JP2012221741A (ja) 2011-04-08 2012-11-12 Teijin Ltd 非水系二次電池用セパレータおよび非水系二次電池
JP5355823B1 (ja) 2011-11-15 2013-11-27 帝人株式会社 非水系二次電池用セパレータ及びその製造方法、並びに非水系二次電池
JP2013187074A (ja) * 2012-03-08 2013-09-19 Nissan Motor Co Ltd 非水電解質二次電池およびその製造方法
WO2013133074A1 (ja) 2012-03-09 2013-09-12 帝人株式会社 非水系二次電池用セパレータ、その製造方法および非水系二次電池
JP2016072162A (ja) * 2014-09-30 2016-05-09 旭化成イーマテリアルズ株式会社 蓄電デバイス用セパレータ

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018179698A1 (ja) * 2017-03-31 2018-10-04 株式会社クレハ コアシェル型粒子ならびにその用途および製造方法
WO2019112283A1 (ko) * 2017-12-07 2019-06-13 에스케이이노베이션 주식회사 이차전지용 다공성 복합분리막 및 이를 포함하는 리튬이차전지
US11843125B2 (en) 2017-12-07 2023-12-12 Sk Innovation Co., Ltd. Porous composite separator for secondary battery, and lithium secondary battery comprising same
EP3675229A4 (en) * 2018-01-30 2020-12-30 Lg Chem, Ltd. SEPARATOR FOR ELECTROCHEMICAL DEVICE AND SEPARATOR PREPARATION PROCESS
US11658365B2 (en) 2018-01-30 2023-05-23 Lg Energy Solution, Ltd. Separator for electrochemical device and method for manufacturing the same
WO2020060310A1 (ko) * 2018-09-21 2020-03-26 주식회사 엘지화학 세퍼레이터 및 이를 포함하는 전기화학소자
US11784377B2 (en) 2018-09-21 2023-10-10 Lg Energy Solution, Ltd. Separator including porous coating layer with amorphous adhesive binder polymer and fluorinated binder polymer and electrochemical device including the same
JP2022545812A (ja) * 2019-08-22 2022-10-31 ジー‐マテリアルズ・カンパニー・リミテッド リチウム二次電池用複合分離膜およびその製造方法
JP7475081B2 (ja) 2019-08-22 2024-04-26 ジー‐マテリアルズ・カンパニー・リミテッド リチウム二次電池用複合分離膜およびその製造方法
JP2022540696A (ja) * 2019-09-11 2022-09-16 エルジー エナジー ソリューション リミテッド 電解液含浸性に優れた二次電池用分離膜
JP7483299B2 (ja) 2019-09-11 2024-05-15 エルジー エナジー ソリューション リミテッド 電解液含浸性に優れた二次電池用分離膜
WO2023053821A1 (ja) * 2021-09-30 2023-04-06 東レ株式会社 多孔性フィルム、二次電池用セパレータおよび二次電池

Also Published As

Publication number Publication date
EP3439073B1 (en) 2023-10-18
US20190103593A1 (en) 2019-04-04
KR102335587B1 (ko) 2021-12-06
EP3439073A1 (en) 2019-02-06
JPWO2017169845A1 (ja) 2019-02-07
US10777796B2 (en) 2020-09-15
KR20180127970A (ko) 2018-11-30
TWI714744B (zh) 2021-01-01
EP3439073A4 (en) 2019-11-27
CN115939668A (zh) 2023-04-07
TW201810771A (zh) 2018-03-16
CN108780866A (zh) 2018-11-09
JP7151082B2 (ja) 2022-10-12

Similar Documents

Publication Publication Date Title
JP7151082B2 (ja) 二次電池用セパレータおよび二次電池
JP6447129B2 (ja) 二次電池用セパレータおよび二次電池
JP6724364B2 (ja) 二次電池用セパレータの製造方法
JP6356937B1 (ja) アルミナ粉末、アルミナスラリー、アルミナ含有コート層、積層分離膜及び二次電池
JP6002292B2 (ja) 積層体、非水電解液二次電池用セパレータ、非水電解液二次電池用部材及び非水電解液二次電池
US20160204407A1 (en) Secondary battery separator and secondary battery
WO2019107219A1 (ja) 多孔性フィルム、二次電池用セパレータおよび二次電池
JP2016072150A (ja) 電池用セパレータ
JP2020077618A (ja) 多孔性フィルム、二次電池用セパレータおよび二次電池
WO2019065660A1 (ja) 多孔性フィルム、二次電池用セパレータおよび二次電池
CN108539110B (zh) 非水电解液二次电池用间隔件
CN111834598A (zh) 非水电解液二次电池用层叠隔膜
JP2020001249A (ja) 多孔性フィルム、二次電池用セパレータおよび二次電池
JP2021057338A (ja) 電気化学素子用セパレータの製造方法
KR20240007116A (ko) 다공성 필름, 이차 전지용 세퍼레이터 및 이차 전지
KR20240006493A (ko) 다공성 필름, 이차 전지용 세퍼레이터 및 이차 전지

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2017515850

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20187024714

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2017774389

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017774389

Country of ref document: EP

Effective date: 20181029

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17774389

Country of ref document: EP

Kind code of ref document: A1