WO2010113835A1 - イミド酸化合物の製造方法 - Google Patents

イミド酸化合物の製造方法 Download PDF

Info

Publication number
WO2010113835A1
WO2010113835A1 PCT/JP2010/055508 JP2010055508W WO2010113835A1 WO 2010113835 A1 WO2010113835 A1 WO 2010113835A1 JP 2010055508 W JP2010055508 W JP 2010055508W WO 2010113835 A1 WO2010113835 A1 WO 2010113835A1
Authority
WO
WIPO (PCT)
Prior art keywords
organic base
formula
group
mol
salt
Prior art date
Application number
PCT/JP2010/055508
Other languages
English (en)
French (fr)
Inventor
孝敬 森中
勉 南明
Original Assignee
セントラル硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by セントラル硝子株式会社 filed Critical セントラル硝子株式会社
Priority to CN201080014846.0A priority Critical patent/CN102378755B/zh
Priority to KR1020117024925A priority patent/KR101317294B1/ko
Priority to EP10758606.7A priority patent/EP2415757B1/en
Priority to US13/258,988 priority patent/US8815199B2/en
Publication of WO2010113835A1 publication Critical patent/WO2010113835A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C303/00Preparation of esters or amides of sulfuric acids; Preparation of sulfonic acids or of their esters, halides, anhydrides or amides
    • C07C303/34Preparation of esters or amides of sulfuric acids; Preparation of sulfonic acids or of their esters, halides, anhydrides or amides of amides of sulfuric acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/06Phosphorus compounds without P—C bonds
    • C07F9/22Amides of acids of phosphorus
    • C07F9/26Amides of acids of phosphorus containing P-halide groups
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0234Nitrogen-, phosphorus-, arsenic- or antimony-containing compounds
    • B01J31/0235Nitrogen containing compounds
    • B01J31/0252Nitrogen containing compounds with a metal-nitrogen link, e.g. metal amides, metal guanidides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/082Compounds containing nitrogen and non-metals and optionally metals
    • C01B21/086Compounds containing nitrogen and non-metals and optionally metals containing one or more sulfur atoms
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/082Compounds containing nitrogen and non-metals and optionally metals
    • C01B21/087Compounds containing nitrogen and non-metals and optionally metals containing one or more hydrogen atoms
    • C01B21/093Compounds containing nitrogen and non-metals and optionally metals containing one or more hydrogen atoms containing also one or more sulfur atoms
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/082Compounds containing nitrogen and non-metals and optionally metals
    • C01B21/097Compounds containing nitrogen and non-metals and optionally metals containing phosphorus atoms
    • C01B21/0975Compounds containing nitrogen and non-metals and optionally metals containing phosphorus atoms containing also one or more sulfur atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C209/00Preparation of compounds containing amino groups bound to a carbon skeleton
    • C07C209/04Preparation of compounds containing amino groups bound to a carbon skeleton by substitution of functional groups by amino groups
    • C07C209/06Preparation of compounds containing amino groups bound to a carbon skeleton by substitution of functional groups by amino groups by substitution of halogen atoms
    • C07C209/12Preparation of compounds containing amino groups bound to a carbon skeleton by substitution of functional groups by amino groups by substitution of halogen atoms with formation of quaternary ammonium compounds

Definitions

  • the present invention relates to an imidic acid compound useful as a pharmaceutical, an agrochemical intermediate, a battery electrolyte, and an acid catalyst, specifically, a method for producing a bis (halogenated sulfonyl) imide or a bis (dihalogenated phosphonyl) imidic acid compound.
  • a bis (halogenated sulfonyl) imide or a bis (dihalogenated phosphonyl) imidic acid compound is about.
  • the bis (halogenated sulfonyl) imide and bis (dihalogenated phosphonyl) imidic acid compounds that have been widely known are useful substances as battery electrolyte solvents, acid catalysts, ionic liquids, and antistatic agents.
  • Patent Document 1 discloses a method for producing bis (fluorosulfonyl) imide acid by reacting urea (NH 2 —CO—NH 2 ) with fluorosulfonic acid
  • non-patent Document 1 discloses a production method for obtaining bis (fluorosulfonyl) imidic acid by reacting bis (chlorosulfonyl) imidic acid with a metal fluoride.
  • Patent Document 2 discloses a method in which chloro (sulfonic acid) (ClSO 3 H) and chlorosulfonyl isocyanate (ClSO 2 NCO) are reacted to obtain bis (chlorosulfonyl) imidic acid.
  • Non-Patent Document 3 discloses a method of reacting chlorosulfonic acid (ClSO 3 H) and N-sulfonyltrichlorophosphazene (ClSO 2 NPCl 3 ) to obtain bis (chlorosulfonyl) imidic acid.
  • Non-Patent Document 4 discloses reacting LiN (SiMe 3 ) 2 which is a silazane metal compound with phosphoryl trifluoride (POF 3 ) to produce bis (difluorophosphonyl).
  • LiN (SiMe 3 ) 2 which is a silazane metal compound with phosphoryl trifluoride (POF 3 ) to produce bis (difluorophosphonyl).
  • PPF 3 phosphoryl trifluoride
  • Non-patent documents 5 and 6 are reacted with sulfuryl chloride or sulfuryl fluoride and anhydrous ammonia to obtain sulfamide (H 2 NSO 2 NH 2 ).
  • Patent Document 3 discloses a production method in which a tertiary amine such as a silazane derivative and a halogenated sulfuryl are reacted to obtain a bis (halogenated sulfonyl) imidic acid derivative.
  • Patent Document 1 In the method of Patent Document 1, it is difficult to separate bis (fluorosulfonyl) imidic acid and fluorosulfonic acid obtained by this reaction using fluorosulfonic acid having high toxicity and corrosivity, and low yield. Therefore, it is difficult to adopt as an industrial manufacturing method.
  • the methods of Non-Patent Documents 1 and 2 are disadvantageous for industrial mass production because they use arsenic trifluoride and antimony trifluoride, which are highly toxic and expensive.
  • Patent Document 2 and Non-Patent Document 3 are disadvantageous in that relatively expensive chlorosulfonyl isocyanate (ClSO 2 NCO) or N-sulfonyltrichlorophosphazene (ClSO 2 NPCl 3 ) is used.
  • chlorosulfonyl isocyanate ClSO 2 NCO
  • N-sulfonyltrichlorophosphazene ClSO 2 NPCl 3
  • R is a halosulfonyl group (—SO 2 X 1 ; X 1 is a halogen (fluorine, chlorine, bromine, iodine)) or a dihalophosphoryl group (—POX 2 X 3 ; X 2 , X 3 represents the same or different halogen (fluorine, chlorine, bromine, iodine)).
  • B represents an organic base.
  • X 6 X 7 X 8 : X 6 , X 7 , X 8 represent the same or different halogen (fluorine, chlorine, bromine, iodine) And the same or different from the above-mentioned X 2 and X 3 ), and by reacting with ammonia, the “salt or complex comprising imide acid and organic base” represented by the formula [1] is highly selective. And the knowledge which can be manufactured with a high yield was acquired, and this invention was completed.
  • [Invention 1] A process for producing a “salt or complex comprising an imide acid and an organic base” represented by the formula [1], characterized by reacting sulfuryl halide or phosphoryl halide with ammonia in the presence of an organic base.
  • the organic base is a tertiary amine represented by the formula [2]
  • R 1 , R 2 , and R 3 are the same or different and each represents a linear or branched alkyl group having 1 to 6 carbon atoms, a cycloalkyl group having 3 to 8 carbon atoms, or an aryl group (aryl A part or all of the hydrogen atoms of the group are halogen (fluorine, chlorine, bromine, iodine), an alkyl group having 1 to 10 carbon atoms, a haloalkyl group having 1 to 10 carbon atoms, a cycloalkyl group having 3 to 8 carbon atoms, And may be substituted with an amino group, a nitro group, an acetyl group, a cyano group, or a hydroxyl group. ], Nitrogen-containing aromatic heterocyclic compound, or the following imine skeleton —C ⁇ N—C— The method according to any one of
  • Invention 5 The method according to any one of Inventions 1 to 4, wherein the organic base is trimethylamine, triethylamine, diisopropylethylamine, tri-n-propylamine, tributylamine, or pyridine.
  • invention 6 6. The method according to any one of inventions 1 to 5, wherein the amount of the organic base is 1 to 50 mol with respect to 1 mol of ammonia.
  • invention 7 The method according to any one of inventions 1 to 3, wherein the amount of the sulfuryl halide or phosphoryl halide used is 1 mol to 10 mol with respect to 1 mol of ammonia.
  • the “salt or complex comprising imide acid and organic base” obtained by the method according to any one of Inventions 1 to 8 includes an alkali metal hydroxide or carbonate, or an alkaline earth metal hydroxide.
  • a metal imidate represented by the formula [3], characterized by reacting with a carbonate [In the formula [3], R is the same as defined above.
  • M represents an alkali metal or an alkaline earth metal.
  • n represents an integer equal to the valence of the corresponding metal. ] Manufacturing method.
  • the present invention is characterized by “reacting halogenated sulfuryl or halogenated phosphoryl and ammonia in the presence of an organic base”.
  • a compound called “sulfamide” is produced.
  • This document also discloses that a large amount of by-products are produced in addition to sulfamide (see Scheme 1).
  • Patent Document 3 discloses that a corresponding imide compound can be produced by reacting a sulfuryl halide with an amine such as a silazane derivative.
  • the method of Patent Document 3 is applied to the present invention.
  • SO 2 F 2 sulfuryl fluoride
  • the target product “salt or complex composed of bisfluorosulfonylimide acid and organic base” is hardly obtained, and by-products such as sulfamide are obtained. (See scheme 2 below).
  • the present inventors coexisted with an organic base in addition to ammonia in the reaction system, so that almost no sulfamide was produced, and a high conversion rate and high selectivity were obtained with a “salt comprising imidic acid and an organic base or It was found that a “complex” was obtained (see Scheme 3 below).
  • the present invention has found preferable conditions for the method of introducing the reagent into the reaction system in carrying out the present invention.
  • the order of addition into the reaction system that is, by adding an organic base and sulfuryl fluoride into the system, and then introducing ammonia into the reaction system, high selectivity and high yield can be obtained.
  • the present inventors have found extremely useful knowledge that the object can be obtained.
  • the “salt or complex comprising bis (halogenated sulfonyl) imidic acid and an organic base” can be easily expressed by reacting an alkali metal hydroxide or an alkaline earth metal hydroxide with the formula [3]. It was also found that a bis (halogenated sulfonyl) imidic acid metal salt represented by
  • the present invention is capable of producing a target imidic acid derivative in a high yield while significantly suppressing the production of by-products, using sulfuryl halide or phosphoryl halide that is inexpensive and suitable for handling a large amount. There is an effect.
  • the present invention is a process for producing a “salt or complex comprising an imidic acid and an organic base” represented by the formula [1], wherein sulfuryl halide or phosphoryl halide and ammonia are reacted in the presence of an organic base. It is the manufacturing method of "the salt or complex which consists of an imide acid and an organic base” characterized by the above-mentioned.
  • halogenated sulfuryl examples include sulfuryl fluoride, sulfuryl chloride, sulfuryl bromide and sulfuryl iodide
  • halogenated phosphoryl examples include phosphoryl fluoride, phosphoryl chloride, phosphoryl bromide and phosphoryl iodide.
  • sulfuryl fluoride, sulfuryl chloride, phosphoryl fluoride, and phosphoryl chloride are particularly preferred.
  • the amount of sulfuryl halide or phosphoryl halide is usually 1 to 10 mol, preferably 1 to 8 mol, more preferably 1 to 5 mol per mol of ammonia.
  • the organic base used in the present invention is a tertiary amine represented by the formula [2], a nitrogen-containing aromatic heterocyclic compound, or the following imine skeleton —C ⁇ N—C— Specific examples of each compound will be described below.
  • (A) Tertiary amine trimethylamine, triethylamine, N-ethyldiisopropylamine, tri-n-propylamine, triisopropylamine, tri-n-butylamine, trioctylamine, tridecylamine, triphenylamine, tribenzylamine, Tris (2-ethylhexyl) amine, N, N-dimethyldecylamine, N-benzyldimethylamine, N-butyldimethylamine, N, N-dimethylcyclohexylamine, N, N, N ′, N′-tetramethyl Ethylenediamine, N, N-dimethylaniline, N, N-diethylaniline, 1,4-diazabicyclo [2.2.2] octane, N-methylpyrrolidine, N-methylpiperidine, N-methylmorpholine, N-ethylmorpholine, N, N'-dimethyl
  • Nitrogen-containing aromatic heterocyclic compounds pyridine, 2,4,6-trimethylpyridine, 4-dimethylaminopyridine, lutidine, pyrimidine, pyridazine, pyrazine, oxazole, isoxazole, thiazole, isothiazole, imidazole, 1 , 2-dimethylimidazole, 3- (dimethylamino) propylimidazole, pyrazole, furazane, pyrazine, quinoline, isoquinoline, purine, 1H-indazole, quinazoline, cinnoline, quinoxaline, phthalazine, pteridine, phenanthridine, 2,6-di -T-butylpyridine, 2,2'-bipyridine, 4,4'-dimethyl-2,2'-bipyridyl, 4,4'-dimethyl-2,2'-bipyridyl, 5,5'
  • tertiary amines such as trimethylamine, triethylamine, diisopropylethylamine, tripropylamine, tributylamine, secondary amines such as diisopropylamine, pyridine, 2,3-lutidine, 2,4-lutidine, 2,6-lutidine, Nitrogen-containing aromatic heterocyclic compounds such as 3,4-lutidine, 3,5-lutidine, 2,4,6-collidine, 3,5,6-collidine and the like are preferable, trimethylamine, triethylamine, diisopropylethylamine, tripropylamine , Tributylamine, pyridine and the like are more preferable.
  • the amount of organic base used is stoichiometrically 3 moles per mole of ammonia and 1.5 moles per mole of sulfuryl halide or phosphoryl halide. As shown, it is preferable to use more than the stoichiometric amount in order to allow the reaction to proceed smoothly.
  • the organic base is used in an amount of 1 to 50 moles (preferably 1 to 10 moles) per mole of ammonia, and 1.5 to 10 moles (preferably 1 mole of the sulfuryl or phosphoryl). Is 2 to 5 mol).
  • the reaction can be carried out in the presence of an organic solvent or water.
  • the organic solvent means an inert organic compound that does not directly participate in the reaction of the present invention.
  • Reaction solvents include aliphatic hydrocarbons such as n-hexane, cyclohexane and n-heptane, aromatic hydrocarbons such as benzene, toluene, xylene and mesitylene, halogens such as methylene chloride, chloroform and 1,2-dichloroethane.
  • Hydrocarbons such as diethyl ether, tetrahydrofuran and tert-butyl methyl ether, esters such as ethyl acetate and butyl acetate, N, N-dimethylformamide, N, N-dimethylacetamide, N-methylpyrrolidone and the like
  • esters such as ethyl acetate and butyl acetate, N, N-dimethylformamide, N, N-dimethylacetamide, N-methylpyrrolidone and the like
  • Examples include amides, nitriles such as acetonitrile and propionitrile, and dimethyl sulfoxide.
  • esters such as ethyl acetate and butyl acetate, amides such as N, N-dimethylformamide, N, N-dimethylacetamide and N-methylpyrrolidone, nitriles such as acetonitrile and propionitrile, and dimethyl sulfoxide are preferable. Nitriles such as acetonitrile and propionitrile are more preferable.
  • the amount of the organic solvent or water used is not particularly limited, but it is sufficient to use 0.1 L (liter) or more with respect to 1 mol of ammonia, usually 0.1 to 20 L is preferable, particularly 0.1 to 10L is more preferable.
  • organic base when the above-mentioned organic base is a liquid, since these organic bases (for example, triethylamine etc.) also serve as a solvent, they can be used in excess to function as a solvent.
  • organic bases for example, triethylamine etc.
  • the temperature condition is not particularly limited, but may be in the range of ⁇ 50 to 150 ° C. Usually, ⁇ 20 to 100 ° C. is preferable, and ⁇ 10 to 70 ° C. is more preferable. If the temperature is lower than ⁇ 50 ° C., the reaction rate is slow, and if the temperature exceeds 150 ° C., decomposition of the product may occur.
  • the pressure condition is not particularly limited, and can be performed under normal pressure conditions (0.1 MPa (absolute pressure; the same applies hereinafter)) or under reduced pressure conditions or pressurized conditions using a reactor that can withstand the pressure. . That is, it may be performed in the range of 0.01 MPa to 2 MPa, but is preferably 0.01 MPa to 1.5 MPa, more preferably 0.1 MPa to 1 MPa.
  • reaction vessel used in the reaction examples include a pressure-resistant reaction vessel lined with Monel, Hastelloy, nickel, or a fluorine resin such as these metals, polytetrafluoroethylene, or perfluoropolyether resin.
  • the reaction time is not particularly limited, but may be in the range of 0.1 to 48 hours. Since the reaction time varies depending on the substrate and reaction conditions, the progress of the reaction can be performed by analytical means such as gas chromatography, liquid chromatography, and NMR. It is preferable that the end point is the time when the raw material is almost disappeared by tracking the situation.
  • a “salt or complex consisting of an imidic acid and an organic base” represented by the formula [1] is obtained.
  • an organic solvent, an organic base, a halogenated sulfuryl or a halogenated phosphoryl is added to a pressure-resistant reaction vessel such as an autoclave, and then add ammonia, and then close the vessel for reaction.
  • the reaction is preferably performed with 2 to 5 mol of sulfuryl halide or phosphoryl halide and 3 to 10 mol of organic base with respect to 1 mol of ammonia.
  • the amount of the organic solvent used is preferably 0.1 to 20 L with respect to 1 mol of ammonia, and the temperature condition is preferably 0 to 100 ° C.
  • the pressure condition is preferably 0.1 MPa to 1.5 MPa.
  • the “salt or complex consisting of imido acid and an organic base”, which is the target product is itself a compound insoluble in water, but the following by-product in the reaction system, XSO 2 NHSO 2 NHSO 2 X May be produced in trace amounts.
  • by-products can be removed by a simple operation (such as washing with water).
  • the operation of adding water and washing is one of the preferred embodiments from the viewpoint of improving the chemical purity of the “salt or complex comprising imide acid and organic base” which is the target product.
  • alkali metal hydroxide examples include lithium hydroxide (LiOH), potassium hydroxide (KOH), rubidium hydroxide (RbOH), and cesium hydroxide (CsOH).
  • alkali metal carbonate examples include lithium carbonate (Li 2).
  • alkali metal hydroxides or carbonates, or alkaline earth metal hydroxides or carbonates may be used alone or in combination of two or more.
  • a combination of the same alkali metal hydroxide and carbonate for example, potassium hydroxide and potassium carbonate
  • the same alkaline earth metal hydroxide and carbonate for example, hydroxide
  • the amount of alkali metal hydroxide or carbonate, or alkaline earth metal hydroxide or carbonate used is preferably 1 to 5 moles per mole of “salt or complex comprising imide acid and organic base” More preferably, it is 1 mol to 3 mol.
  • an amount exceeding 5 mol that is, an excessive amount of base is reacted, the reaction proceeds, but the “salt or complex composed of imido acid and organic base” is decomposed, and the yield may be reduced. For this reason, it is not preferable to use an excessive amount of base.
  • the amount is less than 1 mol, the conversion rate decreases, which is not preferable.
  • a solvent When reacting an alkali metal hydroxide or carbonate or an alkaline earth metal hydroxide or carbonate, a solvent can be used.
  • water when water is used as a solvent, water is added so that the base concentration is usually 10% by mass to 70% by mass, preferably 20% by mass to 60% by mass, more preferably 30% by mass to 60% by mass. And good. If the amount of water is too small, stirring in the reaction system becomes difficult, and if it is too large, processing after the reaction becomes complicated and a reaction container larger than usual is required.
  • An organic solvent other than water can also be used.
  • Solvents such as ethers such as diethyl ether, dioxane, tetrahydrofuran and ethylene glycol dimethyl ether can be used. It can also be used in combination with water.
  • the amount of the solvent to be used is appropriately selected from the range of usually 0.5 to 10 times, preferably 1 to 7 times the volume of “a salt or complex comprising imide acid and organic base”. However, since the reaction proceeds sufficiently even if water is used, there is little merit in using an organic solvent other than water.
  • the reaction temperature is not particularly limited, but is usually ⁇ 10 ° C. to 110 ° C., preferably 25 to 80 ° C. If the temperature is lower than ⁇ 10 ° C., the reaction does not proceed sufficiently and causes a decrease in yield, which is economically disadvantageous, or causes a problem that the reaction rate decreases and it takes a long time to complete the reaction. There is a case. On the other hand, when the temperature exceeds 110 ° C., by-products are likely to be generated, and excessive heating is not energy efficient.
  • the reaction time is not particularly limited, but it may usually be within a range of 24 hours.
  • the progress of the reaction is traced by an analytical means such as ion chromatography or NMR, and the end point when the raw material substrate has almost disappeared. Is preferable.
  • the reactor used in this process is made of metal containers such as stainless steel, Hastelloy, Monel, tetrafluoroethylene resin, chlorotrifluoroethylene resin, vinylidene fluoride resin, PFA resin, polypropylene resin, polyethylene resin, and glass.
  • a reactor capable of sufficiently performing a reaction under normal pressure or pressure can be used, such as one lined inside.
  • a liter autoclave was charged with 184 g of acetonitrile and 184 g (1.82 mol) of triethylamine, cooled to 5 ° C. with ice water, and 153 g (1.50 mol) of sulfuryl fluoride was introduced. After introducing sulfuryl fluoride, 9.1 g (0.53 mol) of anhydrous ammonia was subsequently introduced over 1 hour. The reactor was warmed to room temperature and stirred for 48 hours. The production ratio of this reaction was 99.2%, and 0.8% of FSO 2 NHSO 2 NHSO 2 F was produced. The solvent of this reaction solution was distilled off, and ether and water were added to the residue, followed by extraction and washing with water.
  • a 1 L autoclave was charged with 384 g of acetonitrile and 158 g (2.00 mol) of pyridine, cooled to 5 ° C. with ice water, and 132 g (1.29 mol) of sulfuryl fluoride was introduced. After introducing sulfuryl fluoride, 9.8 g (0.58 mol) of anhydrous ammonia was introduced over 1 hour. The reactor was warmed to room temperature and stirred for 48 hours. The production ratio of this reaction was 99.0%, and 1.0% of FSO 2 NHSO 2 NHSO 2 F was produced. The solvent of this reaction solution was distilled off, and ether and water were added to the residue, followed by extraction and washing with water. Next, the organic layer was separated and the solvent was distilled off to obtain 127 g of bisfluorosulfonylimide pyridine salt (note that the pyridine salt was used in the next reaction as it was without isolation and purification). .
  • a 200 mL autoclave was charged with 105 g of acetonitrile and 21.2 g (210 mmol) of triethylamine, cooled to 5 ° C. with ice water, and 1.2 g (70 mmol) of anhydrous ammonia was added. Next, 15.5 g (152 mmol) of sulfuryl fluoride was introduced. The reactor was warmed to room temperature and stirred for 12 hours. The production ratio of this reaction was 82.3%, and 17.7% of FSO 2 NHSO 2 NHSO 2 F was produced. The solvent of this reaction solution was distilled off, and ether and water were added to the residue, followed by extraction and washing with water.
  • a 1 L autoclave was charged with 200 g of acetonitrile and 72 g (0.71 mol) of triethylamine, cooled to 5 ° C. with ice water, and 57.4 g (0.374 mol) of phosphoryl chloride was introduced. Subsequently, anhydrous ammonia (3.0 g, 0.176 mol) was introduced over 1 hour. The reactor was warmed to room temperature and stirred for 48 hours. The production ratio of this reaction was 98% for the production of bis (dichlorophosphoryl) imide, and 2% of the intermediate chlorophosphorylamide remained.
  • this white solid was sulfamide (H 2 NSO 2 NH 2 ), and this white solid contained 3 wt% of fluorosulfonylamide (FSO 2 NH 2 ), and the bisfluorosulfonylimide ammonium salt was It contained only 0.3 wt%. (Yield 0.1%) Thus, it can be seen that when the organic base is not present, the target ammonium salt is hardly obtained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)

Abstract

 開示されているのは、有機塩基存在下、ハロゲン化スルフリルもしくはハロゲン化ホスホリル、及びアンモニアを反応させることを特徴とする、「イミド酸と有機塩基からなる塩又は錯体」の製造方法である。この方法によれば、副生物の生成を大幅に抑制しつつ、高収率で目的とするイミド酸化合物を製造できる。また、得られた該イミド酸化合物をアルカリ金属の水酸化物、又はアルカリ土類金属の水酸化物を反応させることにより、容易にイミド酸金属塩に誘導できる。

Description

イミド酸化合物の製造方法
 本発明は、医薬、農薬の中間体、電池電解質、そして酸触媒として有用なイミド酸化合物、具体的には、ビス(ハロゲン化スルホニル)イミド、又はビス(ジハロゲン化ホスホニル)イミド酸化合物の製造方法に関する。
発明の背景
 従来から広く知られているビス(ハロゲン化スルホニル)イミド、ビス(ジハロゲン化ホスホニル)イミド酸化合物は、電池電解質用溶媒や酸触媒、イオン液体や帯電防止剤としても有用な物質である。ビス(フルオロスルホニル)イミド化合物の製造方法として、特許文献1に尿素(NH2-CO-NH2)とフルオロスルホン酸と反応させてビス(フルオロスルホニル)イミド酸を得る製造方法が、そして非特許文献1にビス(クロロスルホニル)イミド酸に金属フッ化物を反応させて、ビス(フルオロスルホニル)イミド酸を得る製造方法が知られている。
 ビス(クロロスルホニル)イミド酸化合物の製造方法として、特許文献2に クロロスルホン酸(ClSO3H)とクロロスルホニルイソシアネート(ClSO2NCO)を反応させてビス(クロロスルホニル)イミド酸を得る方法が、非特許文献3にクロロスルホン酸(ClSO3H)とN-スルホニルトリクロロホスファゼン(ClSO2NPCl3)を反応させてビス(クロロスルホニル)イミド酸を得る方法が知られている。
 ビス(ジフルオロホスホニル)イミド酸化合物の製造方法に関して、非特許文献4に、シラザン金属化合物であるLiN(SiMe3)2とホスホリルトリフルオリド(POF3)を反応させて、ビス(ジフルオロホスホニル)イミドリチウムを得る方法が知られている。
 なお、本願発明で用いているハロゲン化スルフリルを用いた例として、非特許文献5、6に塩化スルフリルまたは、フッ化スルフリルと無水アンモニアを反応させて、スルファミド(H2NSO2NH2)を得る製造方法が、特許文献3に、シラザン誘導体等の3級アミンとハロゲン化スルフリルを反応させて、ビス(ハロゲン化スルホニル)イミド酸誘導体を得る製造方法が開示されている。
 一方、本願発明のように有機塩基存在下、ハロゲン化スルフリル又はハロゲン化ホスホリルとアンモニアを反応させることにより、ビス(ハロゲン化スルホニル)イミド酸、又はビス(ハロゲン化ホスホニル)イミド酸化合物を得る製造方法は知られていない。
米国特許第3379509号明細書 米国特許第4315935号明細書 国際公開2007/022624号公報
Inorganic Chemistry,37(24),6295-6303頁(1998年) Inorganic Syntheses,11,138-143頁(1968年) Inorganic Chemistry Communications, 2(6), 261-264 (1999年) Z. Anorg. Allg. Chem. 412(1), 65-70, (1975年) Ind.Eng.Chem.751-753頁(1943年) Ber., 56, B, 1656 (1923年)
 特許文献1の方法では、毒性・腐食性の高いフルオロスルホン酸を使用していること、また、この反応で得られるビス(フルオロスルホニル)イミド酸とフルオロスルホン酸の分離が困難であり、低収率となることから、工業的な製造法として採用するには難がある。また、非特許文献1および2の方法は、毒性が高く、高価である三フッ化砒素や三フッ化アンチモンを使用することから、工業的に量産を行うには不利である。
 また特許文献2、非特許文献3の方法では、比較的高価なクロロスルホニルイソシアネート(ClSO2NCO) や、N-スルホニルトリクロロホスファゼン(ClSO2NPCl3)を用いる点で不利であり、特許文献3、非特許文献4の方法では、窒素源に高価なシラザン誘導体を用いるため、安価な製造法とは言えない。
 このように、医薬、農薬の中間体、電池電解質用溶媒、そして酸触媒として有用な、ビス(ハロスルホニル)イミド酸化合物の既知の製造方法は、いずれも小規模で目的物を得るには適しているものの、大量規模の製造法としては、十分満足のいくものではなかった。
 そこで本発明者らは、上記課題に鑑み、鋭意検討したところ、式[1]で表される、「イミド酸と有機塩基からなる塩又は錯体」
Figure JPOXMLDOC01-appb-C000005
[式[1]中、Rはハロスルホニル基(-SO21;X1はハロゲン(フッ素、塩素、臭素、ヨウ素))、又はジハロホスホリル基(-POX23;X2、X3は同一、又は異なるハロゲン(フッ素、塩素、臭素、ヨウ素))を表す。Bは有機塩基を表す。]
の製造方法であって、有機塩基存在下、ハロゲン化スルフリル(SO245、:X4、X5は同一、又は異なるハロゲン(フッ素、塩素、臭素、ヨウ素)を表し、前述のX1と同一、又は異なる。)もしくはハロゲン化ホスホリル(P(=O)X678:X6、X7、X8は同一、又は異なるハロゲン(フッ素、塩素、臭素、ヨウ素)を表し、前述のX2、X3と同一、又は異なる。)、及びアンモニアを反応させることにより、式[1]で表される、「イミド酸と有機塩基からなる塩又は錯体」を、高選択率かつ高収率で製造できる知見を得、本発明を完成した。
 すなわち、以下の[発明1]-[発明9]に記載する発明を提供する。
[発明1]
式[1]で表される、「イミド酸と有機塩基からなる塩又は錯体」の製造方法であって、有機塩基存在下、ハロゲン化スルフリルもしくはハロゲン化ホスホリル、及びアンモニアを反応させることを特徴とする、式[1]で表される、「イミド酸と有機塩基からなる塩又は錯体」の製造方法。
[発明2]
式[1]で表される、「イミド酸と有機塩基からなる塩又は錯体」の製造方法であって、有機塩基存在下、ハロゲン化スルフリル、及びアンモニアを反応させることを特徴とする、式[1]で表される、「イミド酸と有機塩基からなる塩又は錯体」の製造方法。
[発明3]
有機塩基、及びハロゲン化スルフリルもしくはハロゲン化ホスホリルを反応系内に共存させた後、続けてアンモニアを反応させることにより行うことを特徴とする、発明1又は2に記載の方法。
[発明4]
有機塩基が、式[2]で表される3級アミン
Figure JPOXMLDOC01-appb-C000006
[式[2]中、R1、R2、R3は同一又は異なり、炭素数1~6の直鎖又は分岐鎖のアルキル基、炭素数3~8のシクロアルキル基、又はアリール基(アリール基の水素原子の一部又は全てが、ハロゲン(フッ素、塩素、臭素、ヨウ素)、炭素数1~10のアルキル基、炭素数1~10のハロアルキル基、炭素数3~8のシクロアルキル基、アミノ基、ニトロ基、アセチル基、シアノ基もしくはヒドロキシル基で置換されていても良い。)を示す。]、含窒素芳香族複素環式化合物、又は次のイミン骨格
-C=N-C-
を有する化合物である、発明1乃至3の何れか1つに記載の方法。
[発明5]
有機塩基がトリメチルアミン、トリエチルアミン、ジイソプロピルエチルアミン、トリn-プロピルアミン、トリブチルアミン、又はピリジンである、発明1乃至4の何れか1つに記載の方法。
[発明6]
有機塩基の量が、アンモニア1モルに対して、1モル~50モルであることを特徴とする、発明1乃至5の何れか1つに記載の方法。
[発明7]
ハロゲン化スルフリルもしくはハロゲン化ホスホリルの使用量が、アンモニア1モルに対して、1モル~10モルであることを特徴とする、発明1乃至3の何れか1つに記載の方法。
[発明8]
有機塩基存在下、ハロゲン化スルフリルもしくはハロゲン化ホスホリル、及びアンモニアを反応させる際、反応温度が、-50℃~150℃であることを特徴とする、発明1乃至7の何れか1つに記載の方法。
[発明9]
発明1乃至8の何れか1つに記載の方法で得られた「イミド酸と有機塩基からなる塩又は錯体」に、アルカリ金属の水酸化物もしくは炭酸塩、又はアルカリ土類金属の水酸化物もしくは炭酸塩を反応させることを特徴とする、式[3]で表されるイミド酸金属塩
Figure JPOXMLDOC01-appb-C000007
[式[3]中、Rは前記に同じ。Mはアルカリ金属又はアルカリ土類金属を示す。nは該当する金属の価数と同数の整数を示す。]
の製造方法。
 本願発明は、「有機塩基存在下、ハロゲン化スルフリルもしくはハロゲン化ホスホリル、及びアンモニアを反応させる」というところに特徴がある。例えば非特許文献5,6に示すように、ハロゲン化スルフリルと無水アンモニアを反応させた場合、「スルファミド」と呼ばれる化合物が生成することが古くから知られている。また、この文献では、スルファミド以外にも副生成物が多く生成することも開示している(スキーム1参照)。
Figure JPOXMLDOC01-appb-C000008
 一方、特許文献3には、ハロゲン化スルフリルとシラザン誘導体などのアミンを反応させることで、対応するイミド化合物が製造できることが開示されているが、ここで、特許文献3の方法を本願発明に適用させた場合、例えばフッ化スルフリル(SO22)を用いたところ、目的物である「ビスフルオロスルホニルイミド酸と有機塩基からなる塩又は錯体」はほとんど得られず、スルファミド等の副生成物が多く得られることが判った(以下、スキーム2参照)。
Figure JPOXMLDOC01-appb-C000009
ここで本発明者らは、反応系内に、アンモニアとは別に有機塩基を共存させることで、スルファミドが殆ど生成せず、高変換率及び高選択率で「イミド酸と有機塩基からなる塩又は錯体」が得られることを見出した(下記スキーム3参照)。
Figure JPOXMLDOC01-appb-C000010
 なお、目的物である「ビスフルオロスルホニルイミド酸と有機塩基からなる塩又は錯体」は、これ自身、水に難溶の化合物であるため、以下の副生成物、
FSO2NHSO2NHSO2
が微量得られることもあるが、簡便な水洗操作により完全に除去することが可能である。
 また、本願発明は、本願発明を実施するにあたり、反応系内への試剤の導入方法に、好ましい条件を見出した。反応系内へ加える順序を変更する操作、すなわち、有機塩基、及びフッ化スルフリルを系内に加えた後に、アンモニアを反応系内に導入させる方法を取ることで、高選択率かつ高収率で当該目的物が得られるという、極めて有用な知見を見出した。
 なお、「ビス(ハロゲン化スルホニル)イミド酸と有機塩基からなる塩又は錯体」は、アルカリ金属の水酸化物、又はアルカリ土類金属の水酸化物を反応させることにより、容易に式[3]で表されるビス(ハロゲン化スルホニル)イミド酸金属塩が得られることも見出した。
 このように、本発明では、イミド酸化合物を製造するにあたり、好適な反応条件を適宜採用することで、従来技術と比べて工業的かつ容易に製造することが可能になった。
詳細な説明
 本発明は、安価で、大量の取り扱いにも好適なハロゲン化スルフリル又はハロゲン化ホスホリルを用いて、副生物の生成を大幅に抑制しつつ、高収率で目的とするイミド酸誘導体を製造できるという効果を奏する。
 以下、本発明を詳細に説明する。本発明は、式[1]で表される、「イミド酸と有機塩基からなる塩又は錯体」の製造方法であって、有機塩基存在下、ハロゲン化スルフリルもしくはハロゲン化ホスホリル、及びアンモニアを反応させることを特徴とする、「イミド酸と有機塩基からなる塩又は錯体」の製造方法である。
 続いて、得られた「イミド酸と有機塩基からなる塩又は錯体」をアルカリ金属の水酸化物もしくは炭酸塩、又はアルカリ土類金属の水酸化物もしくは炭酸塩を反応させ、式[3]で表されるビスフルオロスルホニルイミド酸金属塩を得る製造方法も含め、以下にスキーム4としてまとめる。
Figure JPOXMLDOC01-appb-C000011
 本発明で用いるハロゲン化スルフリルとしては、フッ化スルフリル、塩化スルフリル、臭化スルフリル、ヨウ化スルフリルが、ハロゲン化ホスホリルとしては、フッ化ホスホリル、塩化ホスホリル、臭化ホスホリル、ヨウ化ホスホリルが挙げられるが、これらの中で、フッ化スルフリル、塩化スルフリル、フッ化ホスホリル、塩化ホスホリルが特に好ましい。
 ハロゲン化スルフリル又はハロゲン化ホスホリルの量が、アンモニア1モルに対して、通常、1~10モルで行い、好ましくは1~8モル、より好ましくは1~5モルで行う。
 本発明で使用する有機塩基は、式[2]で表される3級アミン、含窒素芳香族複素環式化合物、又は次のイミン骨格
-C=N-C-
を有する化合物であるが、それぞれの化合物の具体的な例を、以下、明示する。
 (a)三級アミン:トリメチルアミン、トリエチルアミン、N-エチルジイソプロピルアミン、トリ-n-プロピルアミン、トリイソプロピルアミン、トリ-n-ブチルアミン、トリオクチルアミン、トリデシルアミン、トリフェニルアミン、トリベンジルアミン、トリス(2-エチルへキシル)アミン、N,N-ジメチルデシルアミン、N-ベンジルジメチルアミン、N-ブチルジメチルアミン、N,N-ジメチルシクロヘキシルアミン、N,N,N’,N’-テトラメチルエチレンジアミン、N,N-ジメチルアニリン、N,N-ジエチルアニリン、1,4-ジアザビシクロ[2.2.2]オクタン、N-メチルピロリジン、N-メチルピペリジン、N-メチルモルホリン、N-エチルモルホリン、N,N′-ジメチルピペラジン、N-メチルピペコリン、N-メチルピロリドン、N-ビニル-ピロリドン、ビス(2-ジメチルアミノ-エチル)エーテル、N,N,N,N',N''-ペンタメチル-ジエチレントリアミン、トリエタノールアミン、トリプロパノールアミン、ジメチルエタノールアミン、ジメチルアミノエトキシエタノール、N,N-ジメチルアミノプロピルアミン、N,N,N',N',N''-ペンタメチルジプロピレントリアミン、トリス(3-ジメチルアミノプロピル)アミン、テトラメチルイミノ-ビス(プロピルアミン)、N-ジエチル-エタノールアミンなど。
 (b)含窒素芳香族複素環式化合物:ピリジン、2,4,6-トリメチルピリジン、4-ジメチルアミノピリジン、ルチジン、ピリミジン、ピリダジン、ピラジン、オキサゾール、イソオキサゾール、チアゾール、イソチアゾール、イミダゾール、1,2-ジメチルイミダゾール、3-(ジメチルアミノ)プロピルイミダゾール、ピラゾール,フラザン、ピラジン、キノリン、イソキノリン、プリン、1H-インダゾール、キナゾリン、シンノリン、キノキサリン、フタラジン、プテリジン、フェナントリジン、2,6-ジ-t-ブチルピリジン、2,2'-ビピリジン、4,4'-ジメチル-2,2'-ビピリジル、4,4'-ジメチル-2,2'-ビピリジル、5,5'-ジメチル-2,2'-ビピリジル、6,6'-t-ブチル-2,2'-ジピリジル、4,4'-ジフェニル-2,2'-ビピリジル、1,10-フェナントロリン、2,7-ジメチル-1,10-フェナントロリン、5,6-ジメチル-1,10-フェナントロリン、4,7-ジフェニル-1,10-フェナントロリンなど。
 (c)イミン系塩基:1,8-ジアザビシクロ[5.4.0]ウンデカ-7-エン、1,5-ジアザビシクロ[4.3.0]ノン-5-エンなど。
 これらの中でもトリメチルアミン、トリエチルアミン、ジイソプロピルエチルアミン、トリプロピルアミン、トリブチルアミン等の3級アミン、ジイソプロピルアミン等の2級アミン、ピリジン、2,3-ルチジン、2,4-ルチジン、2,6-ルチジン、3,4-ルチジン、3,5-ルチジン、2,4,6-コリジン、3,5,6-コリジン等の含窒素芳香族複素環式化合物が好ましく、トリメチルアミン、トリエチルアミン、ジイソプロピルエチルアミン、トリプロピルアミン、トリブチルアミン、ピリジン等がより好ましい。
 有機塩基の使用量としては、化学量論的には、アンモニア1モルに対して3モルであり、ハロゲン化スルフリルもしくはハロゲン化ホスホリル1モルに対して1.5モルであるが、前述のスキームで示すように、反応を円滑に進行させる為には、化学量論量より多く用いることが好ましい。
 従って、有機塩基の使用量として、アンモニア1モルに対し1~50モル(好ましくは1~10モル)であり、又、該スルフリルもしくは該ホスホリル1モルに対して1.5モル~10モル(好ましくは2~5モル)である。
 なお、有機塩基が該スルフリルもしくは該ホスホリル1モルに対して1.5モル未満の場合、反応自体は進行するが、この場合、反応系内にアンモニアの割合が多くなり、スルファミドが多く生成し、変換率が低下することもあるので、前述の当量で反応を行うことが好ましい。
 また、本発明は、有機溶媒又は水を共存させて反応を行うこともできる。ここで有機溶媒とは、本発明の反応に直接関与しない不活性な有機化合物のことを言う。反応溶媒としては、n-ヘキサン、シクロヘキサン、n-ヘプタン等の脂肪族炭化水素類、ベンゼン、トルエン、キシレン、メシチレン等の芳香族炭化水素類、塩化メチレン、クロロホルム、1,2-ジクロロエタン等のハロゲン化炭化水素類、ジエチルエーテル、テトラヒドロフラン、tert-ブチルメチルエーテル等のエーテル類、酢酸エチル、酢酸ブチル等のエステル類、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチルピロリドン等のアミド類、アセトニトリル、プロピオニトリル等のニトリル類、ジメチルスルホキシド等が挙げられる。
 その中でも酢酸エチル、酢酸ブチル等のエステル類、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチルピロリドン等のアミド類、アセトニトリル、プロピオニトリル等のニトリル類、ジメチルスルホキシドが好ましく、アセトニトリル、プロピオニトリル等のニトリル類がより好ましい。これらの反応溶媒は単独又は組み合わせて使用することができる。
 有機溶媒又は水の使用量としては、特に制限はないが、アンモニア1モルに対して0.1L(リットル)以上を使用すればよく、通常は0.1~20Lが好ましく、特に0.1~10Lがより好ましい。
 なお、上述の有機塩基が液体である場合には、これら有機塩基(例えばトリエチルアミンなど)が溶媒としての役割も兼ねるため、これらを過剰に用いて溶媒として機能させることもできる。
 温度条件としては、特に制限はないが、-50~150℃の範囲で行えばよい。通常は-20~100℃が好ましく、特に-10~70℃がより好ましい。-50℃よりも低い温度であれば反応速度が遅くなり、150℃を超える温度であれば、生成物の分解等が生じることもある。
 圧力条件としては、特に制限はなく、常圧条件(0.1MPa(絶対圧。以下同じ。))、又は圧力に耐えられる反応器を用いて減圧条件もしくは加圧条件の下で行うことができる。すなわち、0.01MPa~2MPaの範囲で行えば良いが、0.01MPa~1.5MPaが好ましく、0.1MPa~1MPaがより好ましい。
 反応に使われる反応容器としては、モネル、ハステロイ、ニッケル、又はこれらの金属やポリテトラフルオロエチレン、パーフルオロポリエーテル樹脂などのフッ素樹脂でライニングされた耐圧反応容器などが挙げられる。
 反応時間としては、特に制限はないが、0.1~48時間の範囲で行えばよく、基質および反応条件により異なるため、ガスクロマトグラフィー、液体クロマトグラフィー、NMR等の分析手段により、反応の進行状況を追跡して原料が殆ど消失した時点を終点とすることが好ましい。
 本発明において、「好ましい反応条件」を以下、述べる。
 有機塩基存在下、ハロゲン化スルフリルもしくはハロゲン化ホスホリル、及びアンモニアを反応させることで、式[1]で表される、「イミド酸と有機塩基からなる塩又は錯体」が得られるが、例えば、反応器への仕込みの順番として、オートクレーブ等の耐圧反応容器に有機溶媒、有機塩基、ハロゲン化スルフリルもしくはハロゲン化ホスホリルを加えた後に、アンモニアを加えた後、容器を密閉して反応させることが好ましい。また、反応させる際、アンモニア1モルに対して、ハロゲン化スルフリルもしくはハロゲン化ホスホリルが2~5モル、有機塩基が3~10モルで行うのが好ましい。
 また、有機溶媒の使用量として、アンモニア1モルに対して0.1~20Lが好ましく、温度条件として、0~100℃が好ましい。また、圧力条件としては、0.1MPa~1.5MPaが好ましい。
 このような条件で行うことで、高選択率で「イミド酸と有機塩基からなる塩又は錯体」が得られる。
 なお、目的物である「イミド酸と有機塩基からなる塩又は錯体」は、これ自身、水に不溶の化合物であるが、反応系内に以下の副生成物、
XSO2NHSO2NHSO2
が微量、生成することがある。その際、簡便な操作(水洗など)により副生成物を除去することが可能である。例えば、本実施例に示すように、水を加えて洗浄する操作は、該目的物である「イミド酸と有機塩基からなる塩又は錯体」の化学純度を向上させるという点でも、好ましい態様の一つである。
 次に、得られた「イミド酸と有機塩基からなる塩又は錯体」をアルカリ金属の水酸化物もしくは炭酸塩、又はアルカリ土類金属の水酸化物もしくは炭酸塩を反応させ、式[3]で表されるビスハロゲン化スルホニルイミド酸金属塩を得る方法について説明する。
 アルカリ金属の水酸化物としては、水酸化リチウム(LiOH)、水酸化カリウム(KOH)、水酸化ルビジウム(RbOH)、水酸化セシウム(CsOH)が、アルカリ金属の炭酸塩としては炭酸リチウム(Li2CO3)、炭酸カリウム(K2CO3)、炭酸ルビジウム(Rb2CO3)、炭酸セシウム(Cs2CO3)が、アルカリ土類金属の水酸化物としては、水酸化マグネシウム(Mg(OH)2)、水酸化カルシウム(Ca(OH)2)、水酸化バリウム(Ba(OH)2)、水酸化ストロンチウム(Sr(OH)2)、アルカリ土類金属の炭酸塩としては炭酸マグネシウム(MgCO3)、炭酸カルシウム(CaCO3)、炭酸バリウム(BaCO3)、炭酸ストロンチウム(SrCO3)が挙げられ、好ましくは水酸化リチウム(LiOH)、水酸化カリウム(KOH)、水酸化ルビジウム(RbOH)、水酸化セシウム(CsOH)、水酸化マグネシウム(Mg(OH)2)、水酸化カルシウム(Ca(OH)2)、水酸化バリウム(Ba(OH)2)、水酸化ストロンチウム(Sr(OH)2)が挙げられる。また、これらのアルカリ金属の水酸化物もしくは炭酸塩、又はアルカリ土類金属の水酸化物もしくは炭酸塩は1種または2種以上を組み合わせて用いることもできる。2種以上を用いる場合、同一のアルカリ金属の水酸化物と炭酸塩(例えば、水酸化カリウムと炭酸カリウム)の組み合わせ、又は同一のアルカリ土類金属の水酸化物と炭酸塩(例えば、水酸化マグネシウムと炭酸マグネシウム)の組み合わせを用いることが好ましい。
 アルカリ金属の水酸化物もしくは炭酸塩、又はアルカリ土類金属の水酸化物もしくは炭酸塩の使用量は、「イミド酸と有機塩基からなる塩又は錯体」1モルあたり1モル~5モルが好ましく、より好ましくは1モル~3モルである。5モルを超える量、すなわち過剰量の塩基を反応させた場合、反応は進行するが、「イミド酸と有機塩基からなる塩又は錯体」が分解してしまい、収率が低下してしまうことがある為、過剰量の塩基を用いることは好ましくない。また、1モルよりも少ないと、変換率が低下することからも、好ましくない。
 アルカリ金属の水酸化物もしくは炭酸塩、又はアルカリ土類金属の水酸化物もしくは炭酸塩を反応させる際、溶媒を用いることができる。例えば水を溶媒として用いた場合、塩基の濃度を、通常10質量%~70質量%、好ましくは20質量%~60質量%、より好ましくは30質量%~60質量%となるように水を加えると良い。水の量が少なすぎると反応系内における攪拌が困難になり、また多すぎる場合は、反応後の処理が煩雑になることや、通常よりも大きな反応容器が必要となる。
 なお、本実施例において、水酸化カリウム水溶液の濃度を48質量%で加えることは好ましい態様の一つである。
 なお、水以外の有機溶媒を用いることもできる。ジエチルエーテル、ジオキサン、テトラヒドロフラン、エチレングリコールジメチルエーテルなどのエーテル類等の溶媒が使用できる。また、水と共に組み合わせて使用することもできる。溶媒の使用量としては、「イミド酸と有機塩基からなる塩又は錯体」に対して通常0.5~10倍容量、好ましくは1~7倍容量の範囲から適宜選択される。しかしながら、水を用いても十分反応が進行する為、水以外の有機溶媒を特に用いるメリットは少ない。
 反応温度に特別に制限はないが、通常-10℃~110℃、好ましくは25~80℃である。-10℃未満であると反応が充分に進行せず、収率低下の原因となり、経済的に不利となる、あるいは、反応速度が低下して反応終了までに長時間を要するなどの問題を生ずる場合がある。一方、110℃を超えると、副生物が生じやすく、また過剰な加熱はエネルギー効率が悪い。
 反応時間としては、特に制限はないが、通常は24時間以内の範囲で行えばよく、イオンクロマトグラフィー、NMR等の分析手段により反応の進行状況を追跡し、原料基質が殆ど消失した時点を終点とするのが好ましい。
 本工程に用いられる反応器は、ステンレス鋼、ハステロイ、モネルなどの金属製容器や、四フッ化エチレン樹脂、クロロトリフルオロエチレン樹脂、フッ化ビニリデン樹脂、PFA樹脂、ポリプロピレン樹脂、ポリエチレン樹脂、そしてガラスなどを内部にライニングしたもの等、常圧又は加圧下で十分反応を行うことができる反応器を使用することができる。
[実施例]
 以下、実施例により本発明を詳細に説明するが、本発明はこれらの実施例に限定されるものではない。ここで、組成分析値の「%」とは、特に記述のない場合、反応混合物を核磁気共鳴スペクトル(NMR)によって得られた組成の「モル%」を表す。
 1Lオートクレーブにアセトニトリルを184g、トリエチルアミンを184g(1.82 mol)仕込み、氷水で5℃に冷却し、フッ化スルフリルを153g(1.50 mol)導入した。フッ化スルフリルを導入した後、続いて、無水アンモニアを9.1g(0.53 mol)、1時間掛けて導入した。反応器を室温まで昇温させ、48時間攪拌した。この反応の生成比は、99.2%であり、FSO2NHSO2NHSO2Fが0.8%生成していた。この反応液の溶媒を留去し、残渣にエーテルおよび水を加え、抽出及び水洗を行った。次に有機層を分取し、溶媒を留去することでビスフルオロスルホニルイミドトリエチルアンモニウム塩を128g得た(なお、該アンモニウム塩をここでは単離精製せずに、このまま次の反応に用いた)。
 次に、該アンモニウム塩と水酸化カリウム25.2gを含む水溶液とを1時間、室温で混合した。反応混合物のトリエチルアミンおよび水を留去して、ビスフルオロスルホニルイミドカリウムを得た。さらにこれにアセトニトリルを加え未溶解成分を濾別し、アセトニトリルを留去させて、純度99%以上のビスフルオロスルホニルイミドカリウムを96.2g、収率83%で得た。
 1Lオートクレーブにアセトニトリルを384g、ピリジンを158g(2.00 mol)仕込み、氷水で5℃に冷却し、フッ化スルフリルを132g(1.29 mol)導入した。フッ化スルフリルを導入した後、続いて、無水アンモニアを9.8g(0.58 mol)、1時間掛けて導入した。反応器を室温まで昇温させ、48時間攪拌した。この反応の生成比は、99.0%であり、FSO2NHSO2NHSO2Fが1.0%生成していた。この反応液の溶媒を留去し、残渣にエーテルおよび水を加え、抽出及び水洗を行った。次に有機層を分取し、溶媒を留去することでビスフルオロスルホニルイミドピリジン塩を127g得た(なお、該ピリジン塩をここでは単離精製せずに、このまま次の反応に用いた)。
 次に、該ピリジン塩と水酸化リチウム11.6gを含む水溶液とを1時間、室温で混合した。混合した後、実施例1と同様の手法を用いて、ビスフルオロスルホニルイミドリチウムを86.3g得た。純度は99%以上、収率81%であった。
 200mLオートクレーブにアセトニトリルを45.0g、トリエチルアミンを45.0g(445 mmol)仕込み、氷水で5℃に冷却し、無水アンモニアを2.4g(140 mmol)加えた。次に、フッ化スルフリルを28.7g(286 mmol)導入し、反応器を室温まで昇温させ、24時間攪拌した。この反応の生成比は、70.2%であり、FSO2NHSO2NHSO2Fが29.8%生成していた。この反応液の溶媒を留去し、残渣にエーテルおよび水を加え、抽出及び水洗を行った。次に有機層を分取し、溶媒を留去することでビスフルオロスルホニルイミドトリエチルアンモニウム塩を13.3g得た。(なお、該アンモニウム塩をここでは単離精製せずに、このまま次の反応に用いた)。
 次に、該アンモニウム塩と水酸化カリウム2.7gを含む水溶液とを混合した。混合した後、実施例1と同様の手法を用いて、ビスフルオロスルホニルイミドカリウムを9.9g得た。収率は32%であった。
 200mLオートクレーブにアセトニトリルを105g、トリエチルアミンを21.2g(210 mmol)仕込み、氷水で5℃に冷却し、無水アンモニアを1.2g(70 mmol)加えた。次に、フッ化スルフリルを15.5g(152 mmol)導入した。反応器を室温まで昇温させ、12時間攪拌した。この反応の生成比は、82.3%であり、FSO2NHSO2NHSO2Fが17.7%生成していた。この反応液の溶媒を留去し、残渣にエーテルおよび水を加え、抽出及び水洗を行った。次に有機層を分取し、溶媒を留去することでビスフルオロスルホニルイミドトリエチルアンモニウム塩を13.0g得た(なお、該アンモニウム塩をここでは単離精製せずに、このまま次の反応に用いた)。
 次に、該アンモニウム塩と水酸化カリウム2.6gを含む水溶液とを1時間、室温で混合した。混合した後、実施例1と同様の手法を用いて、ビスフルオロスルホニルイミドカリウムを9.6g得た。純度は99%以上、収率は63%であった。
このように、有機溶媒を実施例3より多く加えることで、収率をより向上させることが可能である。
 1Lオートクレーブにアセトニトリルを200g、トリエチルアミンを200g(1.97 mol)仕込み、氷水で5℃に冷却し、塩化スルフリルを202g(1.50 mol)導入した。塩化スルフリルを導入した後、続いて、無水アンモニアを8.5g(0.50 mol)、1時間掛けて導入した。反応器を室温まで昇温させ、48時間攪拌した。この反応液の溶媒を留去し、残渣にエーテルおよび水を加え、抽出及び水洗を行った。次に有機層を分取し、溶媒を留去することでビス(クロロスルホニル)イミドトリエチルアンモニウム塩を126g得た(なお、該アンモニウム塩をここでは単離精製せずに、このまま次の反応に用いた)。
次に、該アンモニウム塩と水酸化カリウム22.4gを含む水溶液とを1時間、室温で混合した。反応混合物のトリエチルアミンおよび水を留去して、ビス(クロロスルホニル)イミドカリウムを得た。さらにこれにアセトニトリルを加え未溶解成分を濾別し、アセトニトリルを留去させて、純度99%以上のビス(クロロスルホニル)イミドカリウムを79.6g、収率79%で得た。
1Lオートクレーブにアセトニトリルを210g、トリエチルアミンを210g(2.08 mol)仕込み、氷水で5℃に冷却し、フッ化ホスホリルを155g(1.56 mol)導入した。続いて、無水アンモニアを10.4g(0.61 mol)、1時間掛けて導入した。反応器を室温まで昇温させ、48時間攪拌した。この反応の生成比は、ビス(ジフルオロホスホリル)イミドの生成が100%であり、F2P(=O)NPF(=O)NP(=O)F2の生成は確認できなかった。
1Lオートクレーブにアセトニトリルを200g、トリエチルアミンを72g(0.71 mol)仕込み、氷水で5℃に冷却し、塩化ホスホリルを57.4g(0.374 mol)導入した。続いて、無水アンモニアを3.0g(0.176 mol)、1時間掛けて導入した。反応器を室温まで昇温させ、48時間攪拌した。この反応の生成比は、ビス(ジクロロホスホリル)イミドの生成が98%であり、中間体のクロロホスホリルアミドが2%残存していた。
[比較例1]
 200mLオートクレーブにアセトニトリルを50g仕込み、氷水で5℃に冷却し、無水アンモニアを12.4g(729 mol)導入した。続いて、フッ化スルフリルを23.3g(228 mmol)導入した。反応器を室温まで昇温させ、48時間攪拌した。この反応液を濾過し、溶媒を留去して、白色固体を10.1 g得た。この白色固体の主成分はスルファミド(H2NSO2NH2)であることを確認し、この白色固体にフルオロスルホニルアミド(FSO2NH2)が3wt%含まれ、ビスフルオロスルホニルイミドアンモニウム塩は、0.3wt%しか含有していなかった。(収率0.1%)
 このように、有機塩基を共存させない場合、目的物である該アンモニウム塩が殆ど得られないことがわかる。
[比較例2]
 200mLオートクレーブにアセトニトリルを50g仕込み、氷水で5℃に冷却し、塩化スルフリルを27.0g(200 mmol)導入した。続いて、無水アンモニアを12.0g(705 mmol)導入した。反応器を室温まで昇温させ、48時間攪拌した。この反応液を濾過し、溶媒を留去して、白色固体を9.8 g得た。この白色固体の主成分はスルファミド(H2NSO2NH2)であることを確認し、この白色固体に、ビス(クロロスルホニル)イミドアンモニウム塩は、含有していなかった。
 このように、有機塩基を共存させない場合、目的物である該アンモニウム塩が得られないことがわかる。

Claims (9)

  1. 式[1]で表される、「イミド酸と有機塩基からなる塩又は錯体」
    Figure JPOXMLDOC01-appb-C000001
    [式[1]中、Rはハロスルホニル基(-SO21;X1はハロゲン(フッ素、塩素、臭素、ヨウ素))、又はジハロホスホリル基(-POX23;X2、X3は同一、又は異なるハロゲン(フッ素、塩素、臭素、ヨウ素))を表す。Bは有機塩基を表す。]
    の製造方法において、有機塩基存在下、ハロゲン化スルフリル(SO245、:X4、X5は同一、又は異なるハロゲン(フッ素、塩素、臭素、ヨウ素)を表し、前述のX1と同一、又は異なる。)もしくはハロゲン化ホスホリル(P(=O)X678:X6、X7、X8は同一、又は異なるハロゲン(フッ素、塩素、臭素、ヨウ素)を表し、前述のX2、X3と同一、又は異なる。)と、アンモニアとを反応させることを特徴とする、式[1]で表される、「イミド酸と有機塩基からなる塩又は錯体」の製造方法。
  2. 式[1]で表される、「イミド酸と有機塩基からなる塩又は錯体」
    Figure JPOXMLDOC01-appb-C000002
    [式[1]中、R、Bは前記に同じ。]
    の製造方法であって、有機塩基存在下、ハロゲン化スルフリル(SO245、:X45は前記に同じ。)、及びアンモニアを反応させることを特徴とする、式[1]で表される、「イミド酸と有機塩基からなる塩又は錯体」の製造方法。
  3. 有機塩基、及びハロゲン化スルフリルもしくはハロゲン化ホスホリルを反応系内に共存させた後、続けてアンモニアを反応させることにより行うことを特徴とする、請求項1又は2に記載の方法。
  4. 有機塩基が、式[2]で表される3級アミン
    Figure JPOXMLDOC01-appb-C000003
    [式[2]中、R1、R2、R3は同一又は異なり、炭素数1~6の直鎖又は分岐鎖のアルキル基、炭素数3~8のシクロアルキル基、又はアリール基(アリール基の水素原子の一部又は全てが、ハロゲン(フッ素、塩素、臭素、ヨウ素)、炭素数1~10のアルキル基、炭素数1~10のハロアルキル基、炭素数3~8のシクロアルキル基、アミノ基、ニトロ基、アセチル基、シアノ基もしくはヒドロキシル基で置換されていても良い。)を示す。]、含窒素芳香族複素環式化合物、又は次のイミン骨格
    -C=N-C-
    を有する化合物である、請求項1乃至3の何れか1項に記載の方法。
  5. 有機塩基がトリメチルアミン、トリエチルアミン、ジイソプロピルエチルアミン、トリn-プロピルアミン、トリブチルアミン、又はピリジンである、請求項1乃至4の何れか1項に記載の方法。
  6. 有機塩基の量が、アンモニア1モルに対して、1モル~50モルであることを特徴とする、請求項1乃至5の何れか1項に記載の方法。
  7. ハロゲン化スルフリルもしくはハロゲン化ホスホリルの使用量が、アンモニア1モルに対して、1モル~10モルであることを特徴とする、請求項1乃至3の何れか1項に記載の方法。
  8. 有機塩基存在下、ハロゲン化スルフリルもしくはハロゲン化ホスホリル、及びアンモニアを反応させる際、反応温度が、-50℃~150℃であることを特徴とする、請求項1乃至7の何れか1項に記載の方法。
  9. 請求項1乃至8の何れか1項に記載の方法で得られた「イミド酸と有機塩基からなる塩又は錯体」に、アルカリ金属の水酸化物もしくは炭酸塩、又はアルカリ土類金属の水酸化物もしくは炭酸塩を反応させることを特徴とする、式[3]で表されるイミド酸金属塩
    Figure JPOXMLDOC01-appb-C000004
    [式[3]中、Rは前記に同じ。Mはアルカリ金属又はアルカリ土類金属を示す。nは該当する金属の価数と同数の整数を示す。]
    の製造方法。 
PCT/JP2010/055508 2009-03-31 2010-03-29 イミド酸化合物の製造方法 WO2010113835A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201080014846.0A CN102378755B (zh) 2009-03-31 2010-03-29 酰亚胺化合物的制造方法
KR1020117024925A KR101317294B1 (ko) 2009-03-31 2010-03-29 이미드 화합물의 제조 방법
EP10758606.7A EP2415757B1 (en) 2009-03-31 2010-03-29 Method for producing imidic acid compound
US13/258,988 US8815199B2 (en) 2009-03-31 2010-03-29 Method for producing imide compound

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2009-085353 2009-03-31
JP2009085353 2009-03-31
JP2010-071231 2010-03-26
JP2010071231A JP5630048B2 (ja) 2009-03-31 2010-03-26 イミド酸化合物の製造方法

Publications (1)

Publication Number Publication Date
WO2010113835A1 true WO2010113835A1 (ja) 2010-10-07

Family

ID=42828125

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/055508 WO2010113835A1 (ja) 2009-03-31 2010-03-29 イミド酸化合物の製造方法

Country Status (6)

Country Link
US (1) US8815199B2 (ja)
EP (1) EP2415757B1 (ja)
JP (1) JP5630048B2 (ja)
KR (1) KR101317294B1 (ja)
CN (1) CN102378755B (ja)
WO (1) WO2010113835A1 (ja)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012099184A1 (ja) * 2011-01-21 2012-07-26 セントラル硝子株式会社 フルオロアミン類の製造方法
US20120245386A1 (en) * 2011-03-21 2012-09-27 Trinapco, Inc. Synthesis of tetrabutylammonium bis(fluorosulfonyl)imide and related salts
WO2012128964A1 (en) * 2011-03-08 2012-09-27 Trinapco, Inc. Method of making fluorosulfonylamine
WO2012160280A2 (fr) 2011-05-24 2012-11-29 Arkema France Procede de preparation de bis(fluorosulfonyl)imidure de lithium ou sodium
WO2013083894A1 (fr) 2011-12-06 2013-06-13 Arkema France Utilisation de melanges de sels de lithium comme electrolytes de batteries li-ion
WO2015158979A1 (fr) 2014-04-18 2015-10-22 Arkema France Preparation d'imides contenant un groupement fluorosulfonyle
US20160031806A1 (en) * 2012-11-16 2016-02-04 Trinapco, Inc. Synthesis of tetrabutylammonium bis(fluorosulfonyl)imide and related salts
WO2016088766A1 (ja) * 2014-12-01 2016-06-09 セントラル硝子株式会社 2価のアニオンを有するイミド酸化合物及びその製造方法
JP2016117636A (ja) * 2014-12-01 2016-06-30 セントラル硝子株式会社 2価のアニオンを有するイミド酸化合物及びその製造方法
CN115140716A (zh) * 2022-06-17 2022-10-04 九江天赐高新材料有限公司 双(氟磺酰)亚胺化合物的制备方法、双(氟磺酰)亚胺离子液体和双(氟磺酰)亚胺锂
KR20220135281A (ko) 2021-03-29 2022-10-07 주식회사 천보 나트륨 비스(플루오로설포닐)이미드의 제조방법
KR20220135283A (ko) 2021-03-29 2022-10-07 주식회사 천보 나트륨 비스(플루오로설포닐)이미드의 제조방법

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5928149B2 (ja) * 2012-05-18 2016-06-01 セントラル硝子株式会社 イミド酸化合物の製造方法
US8377406B1 (en) 2012-08-29 2013-02-19 Boulder Ionics Corporation Synthesis of bis(fluorosulfonyl)imide
ES2545898T3 (es) * 2013-07-11 2015-09-16 Lonza Ltd Método para la preparación de compuestos de imidodisulfurilo
US8722005B1 (en) * 2013-07-26 2014-05-13 Boulder Ionics Corporation Synthesis of hydrogen bis(fluorosulfonyl)imide
FR3014439B1 (fr) * 2013-12-05 2018-03-23 Rhodia Operations Procede de preparation de l'acide bis-fluorosulfonylimide et de ses sels.
CN104477861B (zh) * 2014-11-24 2017-02-22 中国船舶重工集团公司第七一八研究所 一种双氟磺酰亚胺盐的制备方法
KR101667165B1 (ko) 2015-10-21 2016-10-17 김대근 의료 레이저 장치용 줌 핸드피스
CN105731398B (zh) * 2016-01-25 2018-01-23 苏州氟特电池材料股份有限公司 一种双氟磺酰亚胺的碱金属盐的制备方法
JP2019089663A (ja) * 2016-03-31 2019-06-13 セントラル硝子株式会社 ビス(ハロゲン化スルホニル)イミド酸金属塩の製造方法
US10707531B1 (en) 2016-09-27 2020-07-07 New Dominion Enterprises Inc. All-inorganic solvents for electrolytes
CN106800280B (zh) * 2016-12-29 2018-11-27 衢州康鹏化学有限公司 一种双(氟磺酰基)亚胺盐的制备方法
JP2019043849A (ja) * 2017-08-29 2019-03-22 セントラル硝子株式会社 パーフルオロアルカンスルホニルイミド酸金属塩の製造方法
EP3761435B1 (en) * 2018-03-27 2022-09-28 Daikin Industries, Ltd. Electrolyte solution, electrochemical device, lithium-ion secondary battery, module and compound
CN108946686A (zh) * 2018-07-31 2018-12-07 九江天赐高新材料有限公司 一种双氟磺酰亚胺锂的制备方法
KR102571720B1 (ko) 2018-08-16 2023-08-28 샌트랄 글래스 컴퍼니 리미티드 비수계 전해액, 및 비수계 전해액 이차 전지
US10734664B1 (en) * 2019-03-01 2020-08-04 Ses Holdings Pte. Ltd. Purified hydrogen bis(fluorosulfonyl)imide (HFSI) products, methods of purifying crude HFSI, and uses of purified HFSI products
CN109721037B (zh) * 2019-03-11 2019-12-24 上海如鲲新材料有限公司 一种双氟磺酰亚胺盐的新工艺
CN110697668B (zh) 2019-11-20 2021-08-06 上海如鲲新材料有限公司 一种高纯度双氟磺酰亚胺盐的制备方法
CN112279224A (zh) * 2020-11-26 2021-01-29 周峰 一种磺酰亚胺盐的制备方法
CN112897488B (zh) * 2021-03-19 2023-10-24 常州高优纳米新材料有限公司 一种微通道反应器制备双氟磺酰亚胺的方法
CN117981134A (zh) 2021-09-17 2024-05-03 中央硝子株式会社 非水溶液、保持方法、及非水电池
CN113880735A (zh) * 2021-11-08 2022-01-04 湖北九宁化学科技有限公司 一种双氟磺酰二乙胺锂的制备方法
CN114380305A (zh) * 2022-01-29 2022-04-22 宁德时代新能源科技股份有限公司 一种在双氟磺酰亚胺锂的生产中回收原辅材料的方法
WO2023142026A1 (zh) * 2022-01-29 2023-08-03 宁德时代新能源科技股份有限公司 双氟磺酰亚胺锂及其制备方法、电解液和二次电池
CN114408884A (zh) * 2022-01-29 2022-04-29 宁德时代新能源科技股份有限公司 双氟磺酰亚胺锂及其制备方法、电解液和二次电池
WO2023142023A1 (zh) * 2022-01-29 2023-08-03 宁德时代新能源科技股份有限公司 双氟磺酰亚胺锂及其制备方法、电解液和二次电池
CN114348978A (zh) * 2022-01-29 2022-04-15 宁德时代新能源科技股份有限公司 双氟磺酰亚胺锂及其制备方法、电解液和二次电池
WO2023142028A1 (zh) * 2022-01-29 2023-08-03 宁德时代新能源科技股份有限公司 一种在双氟磺酰亚胺锂的生产中回收原辅材料的方法
WO2024061955A1 (en) 2022-09-22 2024-03-28 Specialty Operations France Method for manufacturing bis(halogeno sulfonyl)imide
WO2024075777A1 (ja) * 2022-10-07 2024-04-11 セントラル硝子株式会社 イミド酸又はイミド酸塩の製造方法
CN115974013A (zh) * 2022-12-30 2023-04-18 浙江研一新能源科技有限公司 双氟磺酰亚胺的制备方法和双氟磺酰亚胺盐的制备方法
CN115959637A (zh) * 2022-12-30 2023-04-14 浙江研一新能源科技有限公司 一种双(氟磺酰)亚胺钠的制备方法
CN115872370A (zh) * 2022-12-30 2023-03-31 浙江研一新能源科技有限公司 一种双氟磺酰亚胺及双氟磺酰亚胺盐的制备方法
CN116040593A (zh) * 2022-12-30 2023-05-02 浙江研一新能源科技有限公司 一种双氟磺酰亚胺的制备方法、一种双氟磺酰亚胺锂及其制备方法和应用
CN115893338B (zh) * 2023-01-04 2024-10-01 杭州江美新材料科技股份有限公司 一种双氟磺酰亚胺的制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06157563A (ja) * 1992-11-27 1994-06-03 Sumitomo Chem Co Ltd N−クロロメチル n−メチルリン酸アミドジクロリドの製造法
JPH08217745A (ja) * 1995-02-13 1996-08-27 Central Glass Co Ltd イミド類、その塩類およびそれらの製造法
WO2007022624A1 (en) * 2005-08-22 2007-03-01 Transfert Plus, S.E.C. Process for preparing sulfonylimides and derivatives thereof
WO2007104144A1 (en) * 2006-03-10 2007-09-20 Transfert Plus, S.E.C. Compounds, ionic liquids, molten salts and uses thereof

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1143494B (de) 1961-12-09 1963-02-14 Dr Rolf Appel Verfahren zur Herstellung von Imidobisschwefelsaeurechlorid
US4315935A (en) 1980-04-14 1982-02-16 Smithkline Corporation N,N'-Bis[substituted-1,2,3,4-tetrahydroisoquinolinolyl]disulfonylimides and antiallergic compositions and method of use
JPS6360969A (ja) * 1986-09-01 1988-03-17 Mitsui Petrochem Ind Ltd イミダゾ−ル誘導体の製造方法
JP3117369B2 (ja) * 1994-09-12 2000-12-11 セントラル硝子株式会社 スルホンイミドの製造方法
DE69934170T2 (de) * 1998-02-03 2007-09-27 Acep Inc., Montreal Neue als elektrolytische solubilisate geeignete werkstoffe
US6252111B1 (en) 1999-02-16 2001-06-26 Central Glass Company, Limited Method for producing sulfonimide or its salt
CA2322099A1 (en) 2000-01-31 2001-07-31 Yoshitaka Sakamoto Process for producing sulfonylimide compound
US8134027B2 (en) * 2008-03-31 2012-03-13 Nippon Shokubai Co., Ltd. Sulfonylimide salt and method for producing the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06157563A (ja) * 1992-11-27 1994-06-03 Sumitomo Chem Co Ltd N−クロロメチル n−メチルリン酸アミドジクロリドの製造法
JPH08217745A (ja) * 1995-02-13 1996-08-27 Central Glass Co Ltd イミド類、その塩類およびそれらの製造法
WO2007022624A1 (en) * 2005-08-22 2007-03-01 Transfert Plus, S.E.C. Process for preparing sulfonylimides and derivatives thereof
WO2007104144A1 (en) * 2006-03-10 2007-09-20 Transfert Plus, S.E.C. Compounds, ionic liquids, molten salts and uses thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2415757A4 *

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012162517A (ja) * 2011-01-21 2012-08-30 Central Glass Co Ltd フルオロアミン類の製造方法
WO2012099184A1 (ja) * 2011-01-21 2012-07-26 セントラル硝子株式会社 フルオロアミン類の製造方法
WO2012128964A1 (en) * 2011-03-08 2012-09-27 Trinapco, Inc. Method of making fluorosulfonylamine
CN103502209A (zh) * 2011-03-21 2014-01-08 特里纳普克公司 四丁铵二(氟磺酰基)亚胺盐及相关盐的合成的改进
EP2688869A1 (en) * 2011-03-21 2014-01-29 Trinapco, Inc Improved synthesis of tetrabutylammonium bis(fluorosulfonyl)imide and related salts
EP2688869A4 (en) * 2011-03-21 2014-08-27 Trinapco Inc IMPROVED SYNTHESIS OF TETRABUTYLAMMONIAK-BIS (FLUORSULFONYL) IMID AND CORRESPONDING SALTS
US20120245386A1 (en) * 2011-03-21 2012-09-27 Trinapco, Inc. Synthesis of tetrabutylammonium bis(fluorosulfonyl)imide and related salts
WO2012160280A2 (fr) 2011-05-24 2012-11-29 Arkema France Procede de preparation de bis(fluorosulfonyl)imidure de lithium ou sodium
EP3620433A1 (fr) 2011-05-24 2020-03-11 Arkema France Bis(fluorosulfonyl)imidure de lithium
US9394172B2 (en) 2011-05-24 2016-07-19 Arkema France Process for the preparation of lithium or sodium bis(fluorosulphonyl)imide
JP2014516907A (ja) * 2011-05-24 2014-07-17 アルケマ フランス リチウムまたはナトリウムビス(フルオロスルホニル)イミダイドを製造する方法
US10547084B2 (en) 2011-05-24 2020-01-28 Arkema France Process for the preparation of lithium or sodium bis(fluorosulphonyl)imide
JP2015205815A (ja) * 2011-05-24 2015-11-19 アルケマ フランス リチウムまたはナトリウムビス(フルオロスルホニル)イミダイドを製造する方法
US9440852B2 (en) 2011-05-24 2016-09-13 Arkema France Method for producing lithium or sodium bis(fluorosulfonyl)imide
EP2947714A1 (fr) 2011-12-06 2015-11-25 Arkema France Utilisation de melanges de sels de lithium comme electrolytes de batteries li-ion
WO2013083894A1 (fr) 2011-12-06 2013-06-13 Arkema France Utilisation de melanges de sels de lithium comme electrolytes de batteries li-ion
US20160031806A1 (en) * 2012-11-16 2016-02-04 Trinapco, Inc. Synthesis of tetrabutylammonium bis(fluorosulfonyl)imide and related salts
US9475764B2 (en) * 2012-11-16 2016-10-25 Trinapco, Inc. Synthesis of tetrabutylammonium bis(fluorosulfonyl)imide and related salts
WO2015158979A1 (fr) 2014-04-18 2015-10-22 Arkema France Preparation d'imides contenant un groupement fluorosulfonyle
JP2016117636A (ja) * 2014-12-01 2016-06-30 セントラル硝子株式会社 2価のアニオンを有するイミド酸化合物及びその製造方法
WO2016088766A1 (ja) * 2014-12-01 2016-06-09 セントラル硝子株式会社 2価のアニオンを有するイミド酸化合物及びその製造方法
KR20220135281A (ko) 2021-03-29 2022-10-07 주식회사 천보 나트륨 비스(플루오로설포닐)이미드의 제조방법
KR20220135283A (ko) 2021-03-29 2022-10-07 주식회사 천보 나트륨 비스(플루오로설포닐)이미드의 제조방법
CN115140716A (zh) * 2022-06-17 2022-10-04 九江天赐高新材料有限公司 双(氟磺酰)亚胺化合物的制备方法、双(氟磺酰)亚胺离子液体和双(氟磺酰)亚胺锂
CN115140716B (zh) * 2022-06-17 2023-08-29 九江天赐高新材料有限公司 双(氟磺酰)亚胺化合物的制备方法、双(氟磺酰)亚胺离子液体和双(氟磺酰)亚胺锂

Also Published As

Publication number Publication date
CN102378755B (zh) 2014-04-16
US8815199B2 (en) 2014-08-26
JP5630048B2 (ja) 2014-11-26
EP2415757A1 (en) 2012-02-08
EP2415757A4 (en) 2013-04-10
US20120020867A1 (en) 2012-01-26
KR20110130505A (ko) 2011-12-05
EP2415757B1 (en) 2014-07-23
JP2010254554A (ja) 2010-11-11
KR101317294B1 (ko) 2013-10-14
CN102378755A (zh) 2012-03-14

Similar Documents

Publication Publication Date Title
JP5630048B2 (ja) イミド酸化合物の製造方法
JP5471045B2 (ja) イミド酸塩の製造方法
WO2017169874A1 (ja) ビス(ハロゲン化スルホニル)イミド酸金属塩の製造方法
JP5928149B2 (ja) イミド酸化合物の製造方法
JP5146149B2 (ja) トリフルオロメタンスルホニルフルオリドの精製方法
JP6631534B2 (ja) (フルオロスルホニル)パーフルオロアルカンスルホニルイミド塩の製造方法
EP3452437B1 (en) Method for aromatic fluorination
KR20150031307A (ko) 비스(할로술포닐)아민의 제조 방법
US8759578B2 (en) Method for manufacturing fluorine-containing imide compound
WO2012026360A1 (ja) ビス(フルオロスルホニル)イミドの製造方法
CN111051278B (zh) 全氟烷基磺酰亚胺酸金属盐的制造方法
JP2012162470A (ja) ビス(フルオロスルホニル)アミド塩、及びペルフルオロ−n−(フルオロスルホニル)アルカンスルホニルアミド塩の製造方法
CN109641845B (zh) 用于芳香族氟化的方法
JP2012056872A (ja) 過フッ化無機酸リチウム塩の安定化溶媒溶液
WO2019240671A4 (es) Método de manufactura para la producción de benznidazol y su escalado industrial
JP2002284709A (ja) 有機フッ素化合物の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080014846.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10758606

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13258988

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2010758606

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20117024925

Country of ref document: KR

Kind code of ref document: A