WO2010106698A1 - リン原子含有フェノール類の製造方法、新規リン原子含有フェノール類、硬化性樹脂組成物、その硬化物、プリント配線基板、及び半導体封止材料 - Google Patents

リン原子含有フェノール類の製造方法、新規リン原子含有フェノール類、硬化性樹脂組成物、その硬化物、プリント配線基板、及び半導体封止材料 Download PDF

Info

Publication number
WO2010106698A1
WO2010106698A1 PCT/JP2009/063858 JP2009063858W WO2010106698A1 WO 2010106698 A1 WO2010106698 A1 WO 2010106698A1 JP 2009063858 W JP2009063858 W JP 2009063858W WO 2010106698 A1 WO2010106698 A1 WO 2010106698A1
Authority
WO
WIPO (PCT)
Prior art keywords
phenol
group
atom
resin
carbon atoms
Prior art date
Application number
PCT/JP2009/063858
Other languages
English (en)
French (fr)
Inventor
弘司 林
芳行 高橋
小椋 一郎
Original Assignee
Dic株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dic株式会社 filed Critical Dic株式会社
Priority to JP2009552602A priority Critical patent/JP4548547B1/ja
Priority to KR1020117021592A priority patent/KR101310697B1/ko
Priority to CN200980158126.9A priority patent/CN102356088B/zh
Priority to US13/256,724 priority patent/US8288003B2/en
Priority to EP09841900.5A priority patent/EP2409979B1/en
Publication of WO2010106698A1 publication Critical patent/WO2010106698A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic System
    • C07F9/02Phosphorus compounds
    • C07F9/547Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom
    • C07F9/6564Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having phosphorus atoms, with or without nitrogen, oxygen, sulfur, selenium or tellurium atoms, as ring hetero atoms
    • C07F9/6571Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having phosphorus atoms, with or without nitrogen, oxygen, sulfur, selenium or tellurium atoms, as ring hetero atoms having phosphorus and oxygen atoms as the only ring hetero atoms
    • C07F9/6574Esters of oxyacids of phosphorus
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/032Organic insulating material consisting of one material
    • H05K1/0326Organic insulating material consisting of one material containing O
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic System
    • C07F9/02Phosphorus compounds
    • C07F9/28Phosphorus compounds with one or more P—C bonds
    • C07F9/30Phosphinic acids R2P(=O)(OH); Thiophosphinic acids, i.e. R2P(=X)(XH) (X = S, Se)
    • C07F9/32Esters thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic System
    • C07F9/02Phosphorus compounds
    • C07F9/547Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom
    • C07F9/6564Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having phosphorus atoms, with or without nitrogen, oxygen, sulfur, selenium or tellurium atoms, as ring hetero atoms
    • C07F9/6571Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having phosphorus atoms, with or without nitrogen, oxygen, sulfur, selenium or tellurium atoms, as ring hetero atoms having phosphorus and oxygen atoms as the only ring hetero atoms
    • C07F9/657163Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having phosphorus atoms, with or without nitrogen, oxygen, sulfur, selenium or tellurium atoms, as ring hetero atoms having phosphorus and oxygen atoms as the only ring hetero atoms the ring phosphorus atom being bound to at least one carbon atom
    • C07F9/657172Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having phosphorus atoms, with or without nitrogen, oxygen, sulfur, selenium or tellurium atoms, as ring hetero atoms having phosphorus and oxygen atoms as the only ring hetero atoms the ring phosphorus atom being bound to at least one carbon atom the ring phosphorus atom and one oxygen atom being part of a (thio)phosphinic acid ester: (X = O, S)
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/62Alcohols or phenols
    • C08G59/621Phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G8/00Condensation polymers of aldehydes or ketones with phenols only
    • C08G8/28Chemically modified polycondensates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L61/00Compositions of condensation polymers of aldehydes or ketones; Compositions of derivatives of such polymers
    • C08L61/04Condensation polymers of aldehydes or ketones with phenols only
    • C08L61/06Condensation polymers of aldehydes or ketones with phenols only of aldehydes with phenols
    • C08L61/14Modified phenol-aldehyde condensates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/01Dielectrics
    • H05K2201/0104Properties and characteristics in general
    • H05K2201/012Flame-retardant; Preventing of inflammation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31511Of epoxy ether

Definitions

  • phosphorus atoms can be easily introduced into the molecular structure of phenols, and the obtained phosphorus atom-containing phenols / phenol resins have both excellent flame retardancy and heat resistance in their cured products.
  • the present invention relates to a method for producing phosphorus atom-containing phenols, novel phosphorus atom-containing phenols, a curable resin composition using the same, a cured product thereof, a printed wiring board, and a semiconductor sealing material.
  • An epoxy resin composition containing an epoxy resin and a curing agent as an essential component is excellent in various physical properties such as high heat resistance and moisture resistance, and is used for electronic components such as semiconductor encapsulants and printed circuit boards, electronic component fields, and conductive pastes. It is widely used in conductive adhesives such as, other adhesives, matrix for composite materials, paints, photoresist materials, developer materials, and the like.
  • a halogen-based flame retardant such as bromine is blended with an antimony compound in order to impart flame retardancy.
  • environmentally and flame-resistant flame retardants that do not use halogen-based flame retardants that may cause dioxins and do not use antimony compounds that are suspected of carcinogenicity.
  • the use of halogenated flame retardants is a factor that impairs reliability at high temperatures.
  • Patent Document 1 discloses 9,10-dihydro-9- as a curing agent for epoxy resins.
  • Oxa-10-phosphaphenanthrene-10-oxide hereinafter abbreviated as “HCA”
  • HCA Oxa-10-phosphaphenanthrene-10-oxide
  • formaldehyde or acetone are reacted to obtain a phosphorus compound containing a hydroxyl group, which is obtained by reacting this with a phenol resin.
  • a technique using a phenol resin containing a resin is disclosed.
  • a phosphorus atom-containing phenol resin has a low reactivity between polyfunctional phenol, HCA and aldehydes in the production process, and a reaction product of HCA and aldehydes is an unreacted component in the generated phenol resin.
  • the cured product exhibits high flame retardancy, it is inferior in thermal decomposability and has recently been abbreviated as “T288 test”, which has been regarded as important for lead-free solder mounting in recent years. )).
  • T288 test thermal decomposability
  • the types of polyfunctional phenols that can be used are limited, and the design range of phosphorus atom-containing phenol resins is significantly limited.
  • Patent Document 2 discloses a compound obtained by reacting a reaction product of HCA and hydroxybenzaldehyde with phenol as an intermediate phenol compound of a phosphorus atom-containing epoxy resin.
  • this phenolic compound also has a low degree of freedom in resin design due to insufficient reactivity between the reaction product of HCA and hydroxybenzaldehyde and phenol, and the final melting point of the phenolic compound is 200 ° C or higher.
  • the phenolic compound itself is a crystalline substance and is poor in solubility in an organic solvent, so that it is inferior in handling workability.
  • Patent Document 3 flame retardancy is obtained by using a phosphorus-modified epoxy resin obtained by reacting HCA with a phenol novolac type epoxy resin or a cresol novolak type epoxy resin as a main ingredient and blending with a curing agent for epoxy resin.
  • An epoxy resin composition is disclosed.
  • the epoxy resin composition described in Patent Document 3 reacts with an epoxy group that originally becomes a crosslinking point as a means for introducing phosphorus atoms into the epoxy resin structure, a sufficient crosslinking density is obtained. In other words, the glass transition temperature of the cured product was lowered, so that it could not withstand lead-free solder mounting.
  • the problem to be solved by the present invention is to provide a method for producing phosphorus atom-containing phenols which are remarkably excellent in reacting a phosphorus atom-containing compound with an aromatic nucleus of phenols, Novel phenol atom-containing phenols that give excellent heat resistance to a cured product as a curing agent for an epoxy resin when using a monohydric phenol or a phenol resin, a curable resin composition using the same, and a cured product thereof, and It is an object of the present invention to provide a printed wiring board using a novel phosphorus atom-containing phenol and a semiconductor sealing material.
  • the present inventors first made an alkoxy group on the phosphorus atom-containing compound when the phosphorus atom-containing compound represented by the HCA was reacted with the aromatic nucleus of the phenol.
  • an aromatic aldehyde having a substituent on the aromatic nucleus is reacted and then this reaction product is reacted with phenols, the reactivity is dramatically improved.
  • phenol or a phenol resin was used, it was found that the heat resistance of the finally obtained cured product of a novel phosphorus atom-containing phenol was significantly improved, and the present invention was completed.
  • the present invention reacts an aromatic aldehyde (a1) having an alkoxy group as a substituent on an aromatic nucleus and an organophosphorus compound (a2) having a PH group or a P—OH group in the molecular structure.
  • the present invention relates to a method for producing a phosphorus atom-containing phenol, which comprises reacting the obtained reaction product with a phenol (a3).
  • the present invention further relates to novel phosphorus atom-containing phenols obtained by the above production method.
  • the present invention further includes the following structural formula (I)
  • Ar is a benzene ring or a naphthalene ring
  • Fc is a hydrogen atom or a hydroxyl group
  • Z is a structural formula z1 to z4 below.
  • R 1 , R 2 , R 3 and R 4 are each independently a hydrogen atom, an alkyl group having 1 to 5 carbon atoms, a chlorine atom, a bromine atom, a phenyl group, or an aralkyl group.
  • R 5 represents a hydrogen atom or an alkyl group having 1 to 5 carbon atoms
  • R represents an alkyl group having 1 to 4 carbon atoms
  • n is the number of substituents OR on the aromatic nucleus, and 1 to 3
  • the present invention further has a novolac type phenolic resin structure, and as substituents on the aromatic nucleus, the following structural formulas z1 to z4
  • R 1 , R 2 , R 3 and R 4 are each independently a hydrogen atom, an alkyl group having 1 to 5 carbon atoms, a chlorine atom, a bromine atom, a phenyl group, or an aralkyl group.
  • R 5 represents a hydrogen atom or an alkyl group having 1 to 5 carbon atoms
  • R represents an alkyl group having 1 to 4 carbon atoms
  • n is the number of substituents OR on the aromatic nucleus, and 1 to 3
  • the present invention relates to a novel phenol resin characterized by having a structural moiety represented by the formula:
  • the present invention further includes the following structural formula (II)
  • R 6 is a hydrogen atom or an alkyl group having 1 to 6 carbon atoms
  • Z is a hydrogen atom.
  • R 1 , R 2 , R 3 and R 4 are each independently a hydrogen atom, an alkyl group having 1 to 5 carbon atoms, a chlorine atom, a bromine atom, a phenyl group, or an aralkyl group.
  • R 5 represents a hydrogen atom or an alkyl group having 1 to 5 carbon atoms
  • R represents an alkyl group having 1 to 4 carbon atoms
  • n is the number of substituents OR on the aromatic nucleus, and 1 to 3
  • at least one of Z has a structural moiety selected from the partial structures represented by the structural formulas z1 to z4. .
  • the present invention is further a curable resin composition containing phenols (A) and an epoxy resin (B) as essential components, wherein the phenols (A) are the above-described novel phenols. It relates to a curable resin composition.
  • the present invention further relates to a cured product obtained by curing the curable resin composition.
  • the present invention further relates to a printed wiring board obtained by curing a composition containing the phenols (A), the epoxy resin (B), a curing accelerator (C), and an organic solvent (D).
  • the present invention further relates to a semiconductor sealing material containing the phenols (A), the epoxy resin (B), a curing accelerator (C), and an inorganic filler.
  • a method for producing phosphorus atom-containing phenols that are remarkably excellent in reacting a phosphorus atom-containing compound with an aromatic nucleus of phenols, and polyphenols or phenol resins are used as the phenols.
  • Novel phosphorus atom-containing phenols that give excellent heat resistance to cured products as curing agents for epoxy resins when used, curable resin compositions and cured products using the same, and novel phosphorus atom-containing phenols
  • a printed wiring board using semiconductor and a semiconductor sealing material can be provided.
  • FIG. 1 is a GPC chart of the phenol resin (A-1) obtained in Example 1.
  • FIG. 2 is a 13 C-NMR spectrum of the phenol resin (A-1) obtained in Example 1.
  • FIG. 3 is a mass spectrum of the phenol resin (A-1) obtained in Example 1.
  • FIG. 4 is a GPC chart of the phenol resin (A-2) obtained in Example 2.
  • FIG. 5 is a GPC chart of the phenol resin (A-3) obtained in Example 3.
  • FIG. 6 is a GPC chart of the phenol resin (A-4) obtained in Example 4.
  • FIG. 7 is a GPC chart of the phenol resin (A-5) obtained in Example 5.
  • FIG. 8 is a GPC chart of the phenol compound (A-6) obtained in Example 6.
  • FIG. 1 is a GPC chart of the phenol resin (A-1) obtained in Example 1.
  • FIG. 2 is a 13 C-NMR spectrum of the phenol resin (A-1) obtained in Example 1.
  • FIG. 3 is a mass spectrum of
  • FIG. 9 is a GPC chart of the phenol compound (A-7) obtained in Example 7.
  • FIG. 10 is a GPC chart of the phenol compound (A-8) obtained in Example 8.
  • FIG. 11 is a GPC chart of the phenol resin (A-9) obtained in Synthesis Example 2.
  • FIG. 12 is a GPC chart of the phenol compound (A-10) obtained in Synthesis Example 3.
  • FIG. 13 is a GPC chart of the phenol resin (A-11) obtained in Synthesis Example 4.
  • the production method of the present invention comprises reacting an aromatic aldehyde (a1) having an alkoxy group as a substituent on the aromatic nucleus and an organophosphorus compound (a2) having a P—H group or a P—OH group. Then, the obtained reaction product is reacted with phenols (a3).
  • the aromatic aldehyde (a1) having an alkoxy group as a substituent on the aromatic nucleus used here is, for example, benzaldehyde, o-tolualdehyde, p-tolualdehyde, o-ethylaldehyde, p-ethylaldehyde, p-isopropyl.
  • substituent for aromatic aldehydes such as benzaldehyde, naphthaldehyde, anthracene aldehyde, etc. include those having an alkoxy group. Specifically, the following structural formula (A1-a)
  • R 5 represents a hydrogen atom or an alkyl group having 1 to 3 carbon atoms
  • R represents an alkyl group having 1 to 4 carbon atoms
  • n represents the number of substituents OR on the aromatic nucleus, and 1 to 3 .
  • R 5 represents a hydrogen atom or an alkyl group having 1 to 3 carbon atoms
  • R represents an alkyl group having 1 to 4 carbon atoms
  • n represents the number of substituents OR on the aromatic nucleus, and 1 to 3 .
  • the aromatic aldehyde (a1) since the aromatic aldehyde (a1) has an alkoxy group as a nucleus substituent, the aromatic aldehyde (a1), an organophosphorus compound (a2) having a P—H group or a P—OH group, The reactivity of the hydroxyl group produced in the reaction product is excellent, and the product reacts with the aromatic nucleus in the phenols (a3) even if almost no catalyst is used.
  • the alkoxy group is preferably a methoxy group or an ethoxy group from the standpoint of such features, and the aromatic aldehyde is preferably benzaldehyde or naphthaldehyde.
  • the organophosphorus compound (a2) having the aromatic aldehyde (a1) and the reaction P—H group or P—OH group in the molecular structure includes the following structural formula (A2-a) or structural formula (A2- b)
  • Xa is a hydrogen atom or a hydroxyl group
  • R 1 , R 2 , R 3 and R 4 are independently a hydrogen atom or a carbon atom.
  • examples of the alkyl group having 1 to 5 carbon atoms constituting R 1 , R 2 , R 3 and R 4 include a methyl group, an ethyl group, an n-propyl group, an i-propyl group, a t-butyl group, An n-pentyl group may be mentioned.
  • the structural formula (A2-a) or the structural formula is preferable in that the reactivity of the compound (X) produced by the reaction with the aromatic aldehyde (a1) with the phenol (a3) is extremely good.
  • Xa in (A2-b) is preferably a hydrogen atom, and the compound represented by the structural formula (A2-a) is particularly preferred from the viewpoint of excellent flame retardancy of a cured product of phosphorus atom-containing phenols.
  • reaction conditions of the aromatic aldehyde (a1) having an alkoxy group as a substituent on the aromatic nucleus and the organophosphorus compound (a2) having a P—H group or a P—OH group are, for example, 80 to 180. It can be performed under the temperature condition of ° C. The reaction can be performed without a catalyst, or can be performed in the presence of a non-ketone organic solvent such as an alcohol organic solvent or a hydrocarbon organic solvent.
  • the compound (X) produced by such a reaction is, for example, a compound represented by the structural formula (a1-1) as the aromatic aldehyde (a1), a structural formula (a2-1) or the organic phosphorus compound (a2)
  • the compound represented by the structural formula (a2-2) is used, the following structural formulas x1 to x4
  • R 1 , R 2 , R 3 and R 4 are each independently a hydrogen atom, an alkyl group having 1 to 5 carbon atoms, a chlorine atom, a bromine atom, a phenyl group, or an aralkyl group.
  • R 5 represents a hydrogen atom or an alkyl group having 1 to 5 carbon atoms
  • R represents an alkyl group having 1 to 4 carbon atoms
  • n is the number of substituents OR on the aromatic nucleus, and 1 to 3
  • the compounds represented by the structural formulas x1 and x2 are preferable from the viewpoint of excellent reactivity with the phenols (a3), and particularly the flame retardancy of the cured product of the phosphorus atom-containing phenols finally obtained.
  • a compound represented by the structural formula x1 is preferable from the viewpoint of superiority.
  • the phenols (a3) used in the present invention are phenol, cresol, xylenol, ethylphenol, isopropylphenol, t-butylphenol, octylphenol, nonylphenol, vinylphenol, isopropenylphenol, allylphenol, phenylphenol, benzylphenol, chloro.
  • Monohydric phenols such as phenol, bromophenol, naphthol; dihydric phenols such as catechol, resorcinol, hydroquinone, 1,5-dihydroxynaphthalene, 1,6-dihydroxynaphthalene, 2,7-dihydroxynaphthalene; bisphenol A, bisphenol F Bisphenols such as bisphenol S; phenol novolac resins, cresol novolac resins, bisphenol A novolac trees , Bisphenol S novolak resin, alpha-naphthol novolak resin, beta-naphthol novolak resin, dihydroxynaphthalene novolak resin, other structural formula (A3-a)
  • a novolac-type phenolic resin such as a novolac resin represented by:
  • Phenols are knotted via an aliphatic cyclic hydrocarbon group selected from the group consisting of dicyclopentadiene, tetrahydroindene, 4-vinylcyclohexene, 5-vinylnorborn-2-ene, ⁇ -pinene, ⁇ -pinene, and limonene.
  • Phenolic resin having a defined molecular structure; structural formula (A3-b)
  • Rb is a hydrogen atom or a hydrocarbon group having 1 to 6 carbon atoms, and lb is an integer of 0 to 10 in terms of repeating units);
  • A3-c The following structural formula (A3-c),
  • Rg is a hydrogen atom or a hydrocarbon group having 1 to 6 carbon atoms, and lg is an integer of 0 to 10 in terms of a repeating unit);
  • A3-h The following structural formula (A3-h)
  • each Rh is independently a hydrogen atom or an alkyl group having 1 to 4 carbon atoms.
  • each Ri is independently a hydrogen atom or an alkyl group having 1 to 4 carbon atoms.
  • Multivalent naphthols represented by:
  • polyfunctional phenols containing the structural portion represented by the partial structural formula A3-h in the molecular structure are represented by the following structural formulas (A3-j2) and (A3-j3). Structure,
  • the alternating copolymer structure which makes the structure represented by repeating unit a repeating unit is mentioned.
  • the phenolic hydroxyl group-containing aromatic hydrocarbon group (Ph) can have various structures, specifically, phenol, naphthol, and the following structural formulas Ph1 to Ph16:
  • An aromatic hydrocarbon group formed from a compound having an alkyl group as a substituent on these aromatic nuclei is preferable from the viewpoint of excellent dielectric performance.
  • each structure is a monovalent aromatic hydrocarbon group when the structure is located at the molecular end.
  • those having two or more bonding positions with other structural sites on the naphthalene skeleton may be on the same nucleus or on different nuclei. There may be.
  • the alkoxy group-containing condensed polycyclic aromatic hydrocarbon group (An) contained in the phenol resin structure is a monovalent or polyvalent aromatic having an alkoxy group as a substituent on the condensed polycyclic aromatic nucleus.
  • a hydrocarbon group specifically, an alkoxyquinaphthalene structure represented by the following structural formulas An1 to An12.
  • each structure is a monovalent aromatic hydrocarbon group when the structure is located at the molecular end.
  • those having two or more bonding positions with other structural sites on the naphthalene skeleton may be on the same nucleus or on different nuclei. There may be.
  • the divalent hydrocarbon group (M) selected from the methylene group, the alkylidene group, and the aromatic hydrocarbon structure-containing methylene group is, for example, an methylene group or an alkylidene group as an ethylidene group.
  • 1,1-propylidene group, 2,2-propylidene group, dimethylene group, propane-1,1,3,3-tetrayl group, n-butane-1,1,4,4-tetrayl group, n-pentane- A 1,1,5,5-tetrayl group may be mentioned.
  • Examples of the methylene group containing an aromatic hydrocarbon structure include those having the following structures M1 to M8.
  • a methylene group is preferable from the viewpoint of excellent dielectric effect.
  • dihydric phenols, bisphenols, novolac-type phenol resins, and aralkyl-type phenol resins are particularly curable and soluble in organic solvents when the reaction product is used as a curing agent for epoxy resins. Is preferable from the point that it becomes good, especially when the phenol resin finally obtained is used as a curing agent for epoxy resin of an epoxy resin composition for printed wiring boards, it has excellent solvent solubility and is moisture resistant.
  • a novolak type phenol resin and an aralkyl type phenol resin are preferable from the viewpoint of excellent flame retardancy.
  • the novolac type phenolic resin preferably has a melt viscosity at 150 ° C.
  • the melt viscosity in the range of 0.1 to 300 dPa ⁇ s is excellent in moisture resistance, heat resistance and heat reliability in the finally obtained cured product of phosphorus atom-containing phenols.
  • the dihydric phenol heat resistance in a cured product of a phosphorus atom-containing phenol that finally yields dihydroxynaphthalene such as 1,5-dihydroxynaphthalene, 1,6-dihydroxynaphthalene, 2,7-dihydroxynaphthalene, etc. From the point which is excellent in it.
  • the reaction of the compound (X), which is a reaction product of the aromatic aldehyde (a1) with the organophosphorus compound (a2) having a P—H group or a P—OH group, and the phenols (a3) is carried out as follows: It can be carried out under a temperature condition of ⁇ 200 ° C. As described above, in the present invention, the reaction between the compound (X) and the phenols (a3) is extremely high in reactivity and does not require a catalyst, but may be used as appropriate.
  • catalysts examples include inorganic acids such as hydrochloric acid, sulfuric acid, and phosphoric acid, organic acids such as methanesulfonic acid, p-toluenesulfonic acid, and oxalic acid, boron trifluoride, anhydrous aluminum chloride, and zinc chloride. Lewis acid etc. are mentioned.
  • the amount used is preferably less than 5.0% by mass with respect to the total weight of the charged raw materials.
  • the reaction ratio between the compound (X) and the phenols (a3) is not particularly limited. Rather, because of its good reactivity, the intended flame retardancy and heat resistance performance.
  • the modification amount of the compound (X) with respect to the phenols (a3) can be arbitrarily controlled according to the level or use.
  • the compound (X) is allowed to react at a ratio such that the compound (X) does not remain in the reaction product, specifically, at a ratio that is equal to or less than the equivalent to the reaction point on the aromatic nucleus of the phenol (a3). preferable.
  • the phosphorus atom content is 4.0 to 7.0% by mass. It is preferable that it is the range which becomes the ratio from the point which is excellent in heat resistance and flame retardance.
  • the desired product can be obtained by dehydration and drying if necessary.
  • the compound (X) that is an unreacted component hardly remains substantially.
  • the compound (X ) when the compound (X) is modified into a novolac-type phenol resin or an aralkyl-type phenol resin and the phosphorus atom content is adjusted to a range of 4.0 to 7.0% by mass, the compound (X ) Is less than the detection limit of GPC in the phosphorus atom-containing phenol resin.
  • the phosphorus atom-containing phenol resin of the present invention has a molecular structure obtained by the production method described above.
  • the specific molecular structure can be arbitrarily designed by selecting the respective raw material components described above. For example, the following structural formula (I)
  • Fc represents a hydrogen atom or a hydroxyl group
  • Z represents the following structural formulas z1 to z4.
  • R 1 , R 2 , R 3 and R 4 are each independently a hydrogen atom, an alkyl group having 1 to 5 carbon atoms, a chlorine atom, a bromine atom, a phenyl group, or an aralkyl group.
  • R 5 represents a hydrogen atom or an alkyl group having 1 to 5 carbon atoms
  • R represents an alkyl group having 1 to 4 carbon atoms
  • n is the number of substituents OR on the aromatic nucleus
  • a novel phenol (np1) characterized by being a structural moiety selected from the partial structure represented by: As a substituent on the aromatic nucleus having the novolak type phenol resin structure, the following structural formulas z1 to z4, and as a substituent on the aromatic nucleus, the following structural formulas z1 to z4
  • R 1 , R 2 , R 3 and R 4 are each independently a hydrogen atom, an alkyl group having 1 to 5 carbon atoms, a chlorine atom, a bromine atom, a phenyl group, or an aralkyl group.
  • R 5 represents a hydrogen atom or an alkyl group having 1 to 5 carbon atoms
  • R represents an alkyl group having 1 to 4 carbon atoms
  • n is the number of substituents OR on the aromatic nucleus, and 1 to 3
  • R 6 is a hydrogen atom or an alkyl group having 1 to 6 carbon atoms
  • Z is a hydrogen atom.
  • R 1 , R 2 , R 3 and R 4 are each independently a hydrogen atom, an alkyl group having 1 to 5 carbon atoms, a chlorine atom, a bromine atom, a phenyl group, or an aralkyl group.
  • R 5 represents a hydrogen atom or an alkyl group having 1 to 5 carbon atoms
  • R represents an alkyl group having 1 to 4 carbon atoms
  • n is the number of substituents OR on the aromatic nucleus, and 1 to 3)
  • a novel phenol resin characterized in that, in the novel phenol resin, at least one of Z has a structural moiety selected from the partial structures represented by the structural formulas z1 to z4 ( np3) and the like.
  • phenol resins having two or more phenolic hydroxyl groups the novel phenols (np2) and the novel phenols (np3), and the following structural formula (I ′)
  • Z represents the following structural formulas z1 to z4.
  • R 1 , R 2 , R 3 and R 4 are each independently a hydrogen atom, an alkyl group having 1 to 5 carbon atoms, a chlorine atom, a bromine atom, a phenyl group, or an aralkyl group.
  • R 5 represents a hydrogen atom or an alkyl group having 1 to 5 carbon atoms
  • R represents an alkyl group having 1 to 4 carbon atoms
  • n is the number of substituents OR on the aromatic nucleus, and 1 to 3
  • Novel phenols np1 ′
  • the partial structures represented by the structural formulas z1 to z4 are preferable from the viewpoint of excellent heat resistance of the cured product, and a structure represented by the structural formula z1 is particularly preferable.
  • the curable resin composition of the present invention is a curable resin composition containing the above-described phenols (A) and epoxy resin (B) as essential components.
  • epoxy resin (B) used here for example, bisphenol type epoxy resins such as bisphenol A type epoxy resin and bisphenol F type epoxy resin; biphenyl type epoxy resin, tetramethylbiphenyl type Biphenyl type epoxy resins such as epoxy resins; phenol novolak type epoxy resins, cresol novolak type epoxy resins, bisphenol A novolak type epoxy resins, epoxidized products of condensates of phenols and aromatic aldehydes having phenolic hydroxyl groups, biphenyl novolak type Novolak type epoxy resin such as epoxy resin; triphenylmethane type epoxy resin; tetraphenylethane type epoxy resin; dicyclopentadiene-phenol addition reaction type epoxy resin; Ruaralkyl type epoxy resin; naphthol novolak type epoxy resin, naphthol aralkyl type epoxy resin, naphthol-phenol co-condensed novolac type epoxy resin, naphthol-cresol co
  • an epoxidized product of 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (hereinafter abbreviated as “HCA”), HCA and quinones
  • HCA 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide
  • HCA 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide
  • HCA 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide
  • novolak type epoxy resins and epoxy resins having a naphthalene skeleton are preferable in the molecular structure from the viewpoint of heat resistance, and bisphenol type epoxy resins and novolaks from the viewpoint of solvent solubility.
  • Type epoxy resin is preferred.
  • curing agent (A ') of the said phenol resin (A) as a hardening
  • other curing agents (A ′) include amine compounds, amide compounds, acid anhydride compounds, phenol compounds, and the like.
  • the amine compound include diaminodiphenylmethane, diethylenetriamine, triethylenetetramine, diaminodiphenylsulfone, isophoronediamine, imidazole, BF 3 -amine complex, and guanidine derivative.
  • the amide compound include dicyandiamide.
  • polyamide resins synthesized from dimer of linolenic acid and ethylenediamine examples include acid anhydride compounds include phthalic anhydride, trimellitic anhydride, pyromellitic anhydride, maleic anhydride, and tetrahydrophthalic anhydride.
  • phenolic compounds include phenol novolac resin, cresol novolac resin Aromatic hydrocarbon formaldehyde resin modified phenolic resin, dicyclopentadiene phenol addition type resin, phenol aralkyl resin (Zyrock resin), naphthol aralkyl resin, trimethylol methane resin, tetraphenylol ethane resin, naphthol novolak resin, naphthol-phenol co-condensation Novolac resin, naphthol-cresol co-condensed novolak resin, biphenyl-modified phenol resin (polyhydric phenol compound with phenol nucleus linked by bismethylene group), biphenyl-modified naphthol resin (polyvalent naphthol compound with phenol nucleus linked by bism
  • those containing a large amount of an aromatic skeleton in the molecular structure are preferred from the viewpoint of low thermal expansion, and specifically, phenol novolac resins, cresol novolac resins, aromatic hydrocarbon formaldehyde resin-modified phenol resins, phenol aralkyls.
  • Resin naphthol aralkyl resin, naphthol novolak resin, naphthol-phenol co-condensed novolak resin, naphthol-cresol co-condensed novolak resin, biphenyl-modified phenol resin, biphenyl-modified naphthol resin, aminotriazine-modified phenol resin, alkoxy group-containing aromatic ring-modified novolak resin (Polyhydric phenol compound in which a phenol nucleus and an alkoxy group-containing aromatic ring are connected with formaldehyde) is preferable because of its low thermal expansion.
  • the above-described aminotriazine-modified phenol resin that is, a compound having a phenol skeleton, a triazine ring and a primary amino group in the molecular structure is a molecule obtained by condensation reaction of a triazine compound, a phenol and an aldehyde. What has a structure is preferable from the point which the flame retardance of hardened
  • the linear expansion coefficient in the cured product is obtained by using the compound (A′-b) having a nitrogen atom content of 10 to 25% by mass, preferably 15 to 25% by mass. Is significantly reduced, and excellent dimensional stability can be exhibited.
  • the compound (A′-b) is a mixture of various compounds.
  • it is preferably used as “mixture (A′-b)”.
  • the nitrogen atom content in the mixture (A′-b) is in the range of 10 to 25% by mass, particularly 15 to 25% by mass.
  • the phenol skeleton represents a phenol structure site caused by phenols
  • the triazine skeleton represents a triazine structure site caused by a triazine compound.
  • phenols used here are not particularly limited.
  • phenol, o-cresol, m-cresol, p-cresol, xylenol, ethylphenol, butylphenol, nonylphenol, octylphenol and other alkylphenols bisphenol A Polyphenols such as bisphenol F, bisphenol S, bisphenol AD, tetramethylbisphenol A, resorcin, and catechol, naphthols such as monohydroxynaphthalene and dihydroxynaphthalene, and other phenylphenols and aminophenols. These phenols can be used alone or in combination of two or more. Phenols are preferred because the final cured product is excellent in flame retardancy and excellent in reactivity with amino group-containing triazine compounds.
  • the compound containing a triazine ring is not particularly limited, but the following structural formula
  • R ′ 1 , R ′ 2 and R ′ 3 are any of amino group, alkyl group, phenyl group, hydroxyl group, hydroxylalkyl group, ether group, ester group, acid group, unsaturated group and cyano group. Represents.) Or a compound represented by isocyanuric acid is preferred.
  • melamine and acetoguanamine in which any two or three of R ′ 1 , R ′ 2 , and R ′ 3 are amino groups from the viewpoint of excellent reactivity.
  • An amino group-containing triazine compound represented by a guanamine derivative such as benzoguanamine is preferable.
  • aldehydes are not particularly limited, but formaldehyde is preferable from the viewpoint of ease of handling.
  • formaldehyde is not limited, Formalin, paraformaldehyde, etc. are mentioned as a typical supply source.
  • an epoxy resin ( The amount of active hydrogen in the phenol resin (A) is preferably 0.7 to 1.5 equivalents with respect to 1 equivalent of the total epoxy groups of B).
  • a curing accelerator can be appropriately used in combination with the curable resin composition of the present invention.
  • Various curing accelerators can be used, and examples thereof include phosphorus compounds, tertiary amines, imidazoles, organic acid metal salts, Lewis acids, and amine complex salts.
  • phosphorus compounds tertiary amines, imidazoles, organic acid metal salts, Lewis acids, and amine complex salts.
  • triphenylphosphine is a phosphorus compound and 2-ethyl 4-methyl is an amine compound. Imidazole is preferred.
  • the curable resin composition of the present invention described in detail above is characterized by exhibiting excellent solvent solubility. Therefore, the curable resin composition preferably contains an organic solvent (C) in addition to the above components.
  • organic solvent (C) examples include methyl ethyl ketone, acetone, dimethylformamide, methyl isobutyl ketone, methoxypropanol, cyclohexanone, methyl cellosolve, ethyl diglycol acetate, propylene glycol monomethyl ether acetate and the like.
  • a polar solvent having a boiling point of 160 ° C.
  • the organic solvent (C) for example, ketones such as acetone, methyl ethyl ketone, cyclohexanone, acetic acid such as ethyl acetate, butyl acetate, cellosolve acetate, propylene glycol monomethyl ether acetate, carbitol acetate, etc.
  • esters such as cellosolve and butyl carbitol
  • aromatic hydrocarbons such as toluene and xylene
  • dimethylformamide dimethylacetamide
  • N-methylpyrrolidone etc.
  • nonvolatile content 30 to 60 mass. It is preferable to use it at a ratio of%.
  • thermosetting resin composition is a non-halogen flame retardant that substantially does not contain a halogen atom in order to exert flame retardancy, for example, in the field of printed wiring boards, as long as the reliability is not lowered. May be blended.
  • non-halogen flame retardants examples include phosphorus flame retardants, nitrogen flame retardants, silicone flame retardants, inorganic flame retardants, and organic metal salt flame retardants.
  • the flame retardants may be used alone or in combination, and a plurality of flame retardants of the same system may be used, or different types of flame retardants may be used in combination.
  • the phosphorus flame retardant either inorganic or organic can be used.
  • the inorganic compounds include red phosphorus, monoammonium phosphate, diammonium phosphate, triammonium phosphate, ammonium phosphates such as ammonium polyphosphate, and inorganic nitrogen-containing phosphorus compounds such as phosphate amide. .
  • the red phosphorus is preferably subjected to a surface treatment for the purpose of preventing hydrolysis and the like.
  • the surface treatment method include (i) magnesium hydroxide, aluminum hydroxide, zinc hydroxide, water A method of coating with an inorganic compound such as titanium oxide, bismuth oxide, bismuth hydroxide, bismuth nitrate or a mixture thereof; (ii) an inorganic compound such as magnesium hydroxide, aluminum hydroxide, zinc hydroxide, titanium hydroxide; and A method of coating with a mixture of a thermosetting resin such as a phenol resin, (iii) thermosetting of a phenol resin or the like on a coating of an inorganic compound such as magnesium hydroxide, aluminum hydroxide, zinc hydroxide, or titanium hydroxide
  • a method of double coating with a resin may be used.
  • general-purpose organic phosphorus compounds such as phosphate ester compounds, phosphonic acid compounds, phosphinic acid compounds, phosphine oxide compounds, phospholane compounds, organic nitrogen-containing phosphorus compounds, and 9,
  • the blending amount thereof is appropriately selected depending on the type of the phosphorus-based flame retardant, the other components of the curable resin composition, and the desired degree of flame retardancy.
  • 0.1 to 2.0 parts by mass of red phosphorus is used as the non-halogen flame retardant.
  • an organophosphorus compound it is preferably blended in the range of 0.1 to 10.0 parts by mass, particularly in the range of 0.5 to 6.0 parts by mass. It is preferable to do.
  • the phosphorous flame retardant when using the phosphorous flame retardant, may be used in combination with hydrotalcite, magnesium hydroxide, boric compound, zirconium oxide, black dye, calcium carbonate, zeolite, zinc molybdate, activated carbon, etc. Good.
  • nitrogen-based flame retardant examples include triazine compounds, cyanuric acid compounds, isocyanuric acid compounds, and phenothiazines, and triazine compounds, cyanuric acid compounds, and isocyanuric acid compounds are preferable.
  • triazine compound examples include melamine, acetoguanamine, benzoguanamine, melon, melam, succinoguanamine, ethylene dimelamine, melamine polyphosphate, triguanamine, and the like, for example, guanylmelamine sulfate, melem sulfate, melam sulfate, etc.
  • examples thereof include an aminotriazine sulfate compound, aminotriazine-modified phenol resin, and aminotriazine-modified phenol resin further modified with tung oil, isomerized linseed oil, and the like.
  • cyanuric acid compound examples include cyanuric acid and melamine cyanurate.
  • the compounding amount of the nitrogen-based flame retardant is appropriately selected according to the type of the nitrogen-based flame retardant, the other components of the curable resin composition, and the desired degree of flame retardancy.
  • an epoxy resin It is preferable to add in the range of 0.05 to 10 parts by mass in 100 parts by mass of the curable resin composition containing all of the curing agent, non-halogen flame retardant and other fillers and additives. It is preferable to blend in the range of 1 to 5 parts by mass.
  • a metal hydroxide, a molybdenum compound or the like may be used in combination.
  • the silicone flame retardant is not particularly limited as long as it is an organic compound containing a silicon atom, and examples thereof include silicone oil, silicone rubber, and silicone resin.
  • the amount of the silicone-based flame retardant is appropriately selected depending on the type of the silicone-based flame retardant, the other components of the curable resin composition, and the desired degree of flame retardancy.
  • an epoxy resin It is preferable to add in the range of 0.05 to 20 parts by mass in 100 parts by mass of the curable resin composition containing all of the curing agent, non-halogen flame retardant and other fillers and additives.
  • inorganic flame retardant examples include metal hydroxide, metal oxide, metal carbonate compound, metal powder, boron compound, and low melting point glass.
  • metal hydroxide examples include aluminum hydroxide, magnesium hydroxide, dolomite, hydrotalcite, calcium hydroxide, barium hydroxide, zirconium hydroxide and the like.
  • the metal oxide include, for example, zinc molybdate, molybdenum trioxide, zinc stannate, tin oxide, aluminum oxide, iron oxide, titanium oxide, manganese oxide, zirconium oxide, zinc oxide, molybdenum oxide, and cobalt oxide.
  • metal carbonate compound examples include zinc carbonate, magnesium carbonate, calcium carbonate, barium carbonate, basic magnesium carbonate, aluminum carbonate, iron carbonate, cobalt carbonate, and titanium carbonate.
  • the metal powder examples include aluminum, iron, titanium, manganese, zinc, molybdenum, cobalt, bismuth, chromium, nickel, copper, tungsten, and tin.
  • boron compound examples include zinc borate, zinc metaborate, barium metaborate, boric acid, and borax.
  • the low-melting-point glass include, for example, Shipley (Bokusui Brown), hydrated glass SiO 2 —MgO—H 2 O, PbO—B 2 O 3 system, ZnO—P 2 O 5 —MgO system, P 2 O 5 —B 2 O 3 —PbO—MgO system, P—Sn—O—F system, PbO—V 2 O 5 —TeO 2 system, Al 2 O 3 —H 2 O system, lead borosilicate system, etc.
  • the glassy compound can be mentioned.
  • the amount of the inorganic flame retardant is appropriately selected depending on the type of the inorganic flame retardant, the other components of the curable resin composition, and the desired degree of flame retardancy.
  • an epoxy resin It is preferable to add in the range of 0.05 to 20 parts by mass in 100 parts by mass of the curable resin composition containing all of the curing agent, non-halogen flame retardant and other fillers and additives. It is preferable to blend in the range of 5 to 15 parts by mass.
  • organic metal salt flame retardant examples include ferrocene, acetylacetonate metal complex, organic metal carbonyl compound, organic cobalt salt compound, organic sulfonic acid metal salt, metal atom and aromatic compound or heterocyclic compound or an ionic bond or Examples thereof include a coordinated compound.
  • the amount of the organic metal salt flame retardant is appropriately selected depending on the type of the organic metal salt flame retardant, the other components of the curable resin composition, and the desired degree of flame retardancy. , Preferably in the range of 0.005 to 10 parts by mass in 100 parts by mass of the curable resin composition containing all of epoxy resin, curing agent, non-halogen flame retardant and other fillers and additives. .
  • an inorganic filler can be blended as necessary.
  • the inorganic filler include fused silica, crystalline silica, alumina, silicon nitride, and aluminum hydroxide.
  • fused silica When particularly increasing the blending amount of the inorganic filler, it is preferable to use fused silica.
  • the fused silica can be used in either a crushed shape or a spherical shape.
  • the filling rate is preferably higher in consideration of flame retardancy, and particularly preferably 20% by mass or more with respect to the total amount of the curable resin composition.
  • electroconductive fillers such as silver powder and copper powder, can be used.
  • various compounding agents such as a silane coupling agent, a release agent, a pigment, and an emulsifier can be added as necessary.
  • the curable resin composition of the present invention can be obtained by uniformly mixing the above-described components.
  • the curable resin composition of the present invention in which the epoxy resin of the present invention, a curing agent, and further, if necessary, a curing accelerator are blended can be easily made into a cured product by a method similar to a conventionally known method.
  • Examples of the cured product include molded cured products such as laminates, cast products, adhesive layers, coating films, and films.
  • curable resin composition of the present invention include hard printed wiring board materials, flexible wiring board resin compositions, printed wiring board materials such as build-up board interlayer insulating materials, semiconductor sealing materials, and conductive materials. Examples thereof include pastes, build-up adhesive films, resin casting materials, and adhesives.
  • hard printed wiring board materials insulating materials for electronic circuit boards, and adhesive film for build-up
  • passive parts such as capacitors and active parts such as IC chips are embedded in so-called electronic parts. It can be used as an insulating material for a substrate.
  • printed wiring such as hard printed wiring board materials, resin compositions for flexible wiring boards, interlayer insulation materials for build-up boards, etc. due to properties such as high flame resistance, high heat resistance, low thermal expansion, and solvent solubility It is preferably used for a substrate material and a semiconductor sealing material.
  • the printed wiring board of the present invention can be manufactured by molding the above-described printed wiring board material according to each application. Specifically, in order to produce a hard printed circuit board, the varnish-like curable resin composition containing the organic solvent (D) is further blended with an organic solvent (D) to form a varnish, which is then used as a reinforcing substrate. There is a method of impregnating the material and stacking the copper foil to heat-press.
  • the reinforcing substrate that can be used here include paper, glass cloth, glass nonwoven fabric, aramid paper, aramid cloth, glass mat, and glass roving cloth.
  • the varnish-like curable resin composition described above is first heated at a heating temperature corresponding to the solvent type used, preferably 50 to 170 ° C., so that a prepreg as a cured product is obtained. Get.
  • the mass ratio of the resin composition and the reinforcing substrate used at this time is not particularly limited, but it is usually preferable that the resin content in the prepreg is adjusted to 20 to 60% by mass.
  • the prepreg obtained as described above is laminated by a conventional method, and a copper foil is appropriately stacked, and heat-pressed at 170 to 250 ° C. for 10 minutes to 3 hours under a pressure of 1 to 10 MPa, A desired printed circuit board can be obtained.
  • the reverse roll is prepared by blending the phenols, the epoxy resin (B), the curing accelerator (C), and the organic solvent (D). Using an applicator such as a coater or comma coater, it is applied to the electrically insulating film. Subsequently, it is heated at 60 to 170 ° C. for 1 to 15 minutes using a heater to volatilize the solvent, and the adhesive composition is B-staged. Next, the metal foil is thermocompression bonded to the adhesive using a heating roll or the like.
  • the pressure for pressure bonding is preferably 2 to 200 N / cm, and the temperature for pressure bonding is preferably 40 to 200 ° C.
  • the process may be completed here. However, if complete curing is required, post-curing is preferably performed at 100 to 200 ° C. for 1 to 24 hours.
  • the thickness of the adhesive composition film after final curing is preferably in the range of 5 to 100 ⁇ m.
  • the curable resin composition appropriately blended with rubber, filler, etc. is spray-coated on a wiring board on which a circuit is formed. After applying using a curtain coating method or the like, it is cured. Then, after drilling a predetermined through-hole part etc. as needed, it treats with a roughening agent, forms the unevenness
  • the plating method electroless plating or electrolytic plating treatment is preferable, and examples of the roughening agent include an oxidizing agent, an alkali, and an organic solvent.
  • a build-up base can be obtained by alternately building up and forming the resin insulating layer and the conductor layer having a predetermined circuit pattern.
  • the through-hole portion is formed after the outermost resin insulating layer is formed.
  • a resin-coated copper foil obtained by semi-curing the resin composition on a copper foil is heat-pressed at 170 to 250 ° C. on a wiring board on which a circuit is formed, thereby forming a roughened surface and performing plating treatment. It is also possible to produce a build-up substrate by omitting the process.
  • the semiconductor encapsulating material of the present invention includes the phenols (A), the epoxy resin (B), the curing accelerator (C), and compounding agents such as an inorganic filler, if necessary, an extruder, It can be obtained by sufficiently melt-mixing using a kneader, a roll or the like until uniform.
  • silica is usually used as the inorganic filler, and the filler is preferably used in the range of 30 to 95% by mass per 100 parts by mass of the epoxy resin composition, and particularly, flame retardant. 70 parts by mass or more is particularly preferable in order to improve the moisture resistance and solder crack resistance and decrease the linear expansion coefficient, and 80 parts by mass or more is more effective in order to significantly increase these effects. Can be increased.
  • the composition is molded by casting or using a transfer molding machine, injection molding machine, etc., and further heated at 50 to 200 ° C. for 2 to 10 hours to form a semiconductor device as a molded product. There is a way to get it.
  • the method for producing an adhesive film for buildup from the curable resin composition of the present invention is, for example, a multilayer printed wiring board in which the curable resin composition of the present invention is applied on a support film to form a resin composition layer. And an adhesive film for use.
  • the adhesive film is softened under the lamination temperature condition (usually 70 ° C. to 140 ° C.) in the vacuum laminating method, It is important to show fluidity (resin flow) that allows resin filling in via holes or through holes present in a circuit board, and it is preferable to blend the above-described components so as to exhibit such characteristics.
  • lamination temperature condition usually 70 ° C. to 140 ° C.
  • the diameter of the through hole of the multilayer printed wiring board is usually 0.1 to 0.5 mm and the depth is usually 0.1 to 1.2 mm, and it is preferable that the resin can be filled in this range.
  • the method for producing the adhesive film described above is, after preparing the varnish-like curable resin composition of the present invention, coating the varnish-like composition on the surface of the support film, further heating, Or it can manufacture by drying an organic solvent by hot air spraying etc. and forming the layer ((alpha)) of a curable resin composition.
  • the thickness of the layer ( ⁇ ) to be formed is usually not less than the thickness of the conductor layer. Since the thickness of the conductor layer of the circuit board is usually in the range of 5 to 70 ⁇ m, the thickness of the resin composition layer is preferably 10 to 100 ⁇ m.
  • the said layer ((alpha)) may be protected with the protective film mentioned later.
  • a protective film By protecting with a protective film, it is possible to prevent dust and the like from being attached to the surface of the resin composition layer and scratches.
  • the above-mentioned support film and protective film are made of polyolefin such as polyethylene, polypropylene and polyvinyl chloride, polyethylene terephthalate (hereinafter sometimes abbreviated as “PET”), polyester such as polyethylene naphthalate, polycarbonate, polyimide, and further. Examples thereof include metal foil such as pattern paper, copper foil, and aluminum foil.
  • the support film and the protective film may be subjected to a release treatment in addition to the mud treatment and the corona treatment.
  • the thickness of the support film is not particularly limited, but is usually 10 to 150 ⁇ m, preferably 25 to 50 ⁇ m.
  • the thickness of the protective film is preferably 1 to 40 ⁇ m.
  • the support film described above is peeled off after being laminated on a circuit board or after forming an insulating layer by heat curing. If the support film is peeled after the adhesive film is heat-cured, adhesion of dust and the like in the curing process can be prevented. In the case of peeling after curing, the support film is usually subjected to a release treatment in advance.
  • the method for producing a multilayer printed wiring board using the adhesive film obtained as described above is, for example, when the layer ( ⁇ ) is protected with a protective film, Lamination is performed on one or both sides of the circuit board by, for example, vacuum laminating so that ⁇ ) is in direct contact with the circuit board.
  • the laminating method may be a batch method or a continuous method using a roll. Further, the adhesive film and the circuit board may be heated (preheated) as necessary before lamination.
  • the lamination conditions are such that the pressure bonding temperature (laminating temperature) is preferably 70 to 140 ° C., the pressure bonding pressure is preferably 1 to 11 kgf / cm 2 (9.8 ⁇ 10 4 to 107.9 ⁇ 10 4 N / m 2), Lamination is preferably performed under reduced pressure with an air pressure of 20 mmHg (26.7 hPa) or less.
  • the curable resin composition of the present invention is used as a conductive paste, for example, a method of dispersing fine conductive particles in the curable resin composition to obtain a composition for anisotropic conductive film, liquid at room temperature And a paste resin composition for circuit connection and an anisotropic conductive adhesive.
  • the method for obtaining the cured product of the present invention may be appropriately selected depending on the type and application of the curing agent combined with the heating temperature condition, etc.
  • the composition obtained by the above method is about 20 to 250 ° C.
  • a method of curing in a temperature range is exemplified.
  • the solvent solubility is dramatically improved as compared with conventional phenol resins modified with phosphorus, and when cured products are obtained, flame retardancy and It can exhibit heat resistance and heat reliability, and can be applied to the latest printed wiring board materials.
  • the phenol resin can be easily and efficiently produced by the production method of the present invention, and molecular design according to the intended level of performance described above becomes possible.
  • melt viscosity at 180 ° C. was measured under the following conditions.
  • Measuring device “HLC-8220 GPC” manufactured by Tosoh Corporation Column: Guard column “HXL-L” manufactured by Tosoh Corporation + “TSK-GEL G2000HXL” manufactured by Tosoh Corporation + “TSK-GEL G2000HXL” manufactured by Tosoh Corporation + Tosoh Corporation “TSK-GEL G3000HXL” + “TSK-GEL G4000HXL” manufactured by Tosoh Corporation Detector: RI (Differential refraction diameter)
  • Data processing “GPC-8020 Model II version 4.10” manufactured by Tosoh Corporation Measurement conditions: Column temperature 40 ° C Developing solvent Tetrahydrofuran Flow rate 1.0 ml / min Standard: The following monodisperse polystyrene having a known molecular weight was used according to the measurement manual of “GPC-8020 model II version 4.10”.
  • Example 1 [Synthesis of phenolic resin (A-1)]
  • 192.4 g (1.85 mol) of phenol novolac resin and 68.0 g (0.50 mol) of p-anisaldehyde were obtained.
  • Charged 108.0 g (0.50 mol) of 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (hereinafter abbreviated as “HCA”) heated to 180 ° C. and heated to 180 ° C. For 8 hours. Subsequently, water is removed under reduced pressure by heating, and the following structural units A and B
  • Example 2 Synthesis of phenol resin (A-2)
  • the following structural unit A and structural unit B were obtained in the same manner as in Example 1 except that the phenol novolac resin was changed to 136.6 g (1.31 mol).
  • Example 3 Synthesis of phenol resin (A-3)
  • the bisphenol A novolak resin was changed to 330.4 g (2.80 mol) instead of the phenol novolak resin, the following structural unit C and structural unit D were used.
  • Example 4 Synthesis of phenol resin (A-4) In the same manner as in Example 1 except that the phenyl aralkyl resin was changed to 392.9 g (2.35 mol) instead of the phenol novolak resin in Example 1, the following structural units E and F
  • a phenol resin (A-4) having a repeating unit was obtained.
  • the obtained phenol resin had a softening point of 102 ° C. (B & R method), a melt viscosity (measurement method: ICI viscometer method, measurement temperature: 150 ° C.) of 2.5 dPa ⁇ s, and a hydroxyl group equivalent of 232 g / eq.
  • the phosphorus content was 2.7% by mass.
  • a GPC chart of the resulting phenol resin (A-4) is shown in FIG.
  • Example 5 Synthesis of phenol resin (A-5)
  • the weight part of the phenylaralkyl resin was changed to 211.25 g (1.25 mol)
  • Example 7 Synthesis of Phenol Compound (A-7)
  • Example 6 in place of bisphenol F, except that it was changed to resorcinol 110 g (1.0 mol), in the same manner as in Example 6,
  • Example 8 Synthesis of Phenol Compound (A-8)
  • Example 6 the same procedure as in Example 6 was performed except that 160 g (1.0 mol) of 2,7-dihydroxynaphthalene was used instead of bisphenol F.
  • Synthesis Example 1 [Synthesis of Compound described in Patent Document 1 (Patent No. 364783)] 216 g (1.0 mol) of HCA and 71 g (1.0 mol) of 42 mass% formalin aqueous solution were charged into a reaction vessel, heated to 100 ° C., and reacted for 4 hours. The precipitated solid was then filtered off and washed with acetone to give 2- (6-oxide-6H-dibenz ⁇ c, e> ⁇ 1,2oxa-phosphorin-6-yl) methanol (hereinafter referred to as ODOPM). 245 g was obtained. The obtained compound had a melting point of 152-154 ° C.
  • a phenol resin (A-11) having a repeating unit was obtained.
  • the softening point of the obtained phenol resin is 150 ° C. (B & R method)
  • the melt viscosity (measurement method: ICI viscometer method, measurement temperature: 150 ° C.) is 120 dPa ⁇ s
  • the hydroxyl equivalent is 164 g / eq
  • the phosphorus content is 3. It was 7 mass%.
  • a GPC chart of the resulting phenol resin (A-11) is shown in FIG.
  • Test method conforms to UL-94 vertical test.
  • Heat to peel test (Time to Delamination): In accordance with IPC TM650, heat-resistant peelability evaluation (with copper foil) at 288 ° C. was performed.
  • Thermal decomposition temperature Measured temperature at 5% weight loss with TGA. Temperature rising speed 10 ° C./min (in dry air atmosphere).

Abstract

リン原子含有化合物をフェノール類の芳香核に反応させる際の反応性に著しく優れるリン原子含有フェノール類の製造方法を提供すると共に、該フェノール類として多価フェノール又はフェノール樹脂を用いた場合にはエポキシ樹脂用硬化剤として硬化物に優れた耐熱性を与える新規リン原子含有フェノール類、これを用いた硬化性樹脂組成物及びその硬化物、並びに、プリント配線基板、及び半導体封止材料を提供する。アルコキシ基を芳香核上の置換基として有する芳香族アルデヒド(a1)、及び、P-H基又はP-OH基を分子構造中に有する有機リン化合物(a2)を反応させ、次いで、得られた反応生成物をフェノール類(a3)と反応させる。

Description

リン原子含有フェノール類の製造方法、新規リン原子含有フェノール類、硬化性樹脂組成物、その硬化物、プリント配線基板、及び半導体封止材料
 本発明は、フェノール類の分子構造中に容易にリン原子を導入でき、然も得られたリン原子含有フェノール類・フェノール樹脂がその硬化物において優れた難燃性と耐熱性とを兼備したものとなる、リン原子含有フェノール類の製造方法、新規リン原子含有フェノール類、これを用いた硬化性樹脂組成物、その硬化物、プリント配線基板、及び半導体封止材料に関する。
 エポキシ樹脂及びその硬化剤を必須成分とするエポキシ樹脂組成物は、高耐熱性、耐湿性等の諸物性に優れる点から半導体封止材やプリント回路基板等の電子部品、電子部品分野、導電ペースト等の導電性接着剤、その他接着剤、複合材料用マトリックス、塗料、フォトレジスト材料、顕色材料等で広く用いられている。
 近年、これら各種用途、とりわけ先端材料用途において、耐熱性、耐湿性、耐半田性に代表される性能の一層の向上が求められている。特に高い信頼性が求められる車載用の電子機器は、設置場所がキャビン内からより高温のエンジンルームへと移行することに加え、鉛フリー半田への対応によりリフロー処理温度が高温化するに至り、よって、これまでに増して耐熱性に優れた材料が求められている。
 一方、エポキシ樹脂組成物をプリント配線板材料とする場合には、難燃性を付与するために臭素等のハロゲン系難燃剤がアンチモン化合物とともに配合されている。しかしながら、近年の環境・安全への取り組みのなかで、ダイオキシン発生が懸念されるハロゲン系難燃剤を用いず、且つ発ガン性が疑われているアンチモン化合物を用いない環境・安全対応型の難燃化方法の開発が強く要求されている。また、プリント配線板材料の分野ではハロゲン系難燃剤の使用が高温放置信頼性を損なう要因となっていることから非ハロゲン化への期待が高い。
 このような要求特性に応え、難燃性と高耐熱性とを兼備したエポキシ樹脂組成物として、例えば、下記特許文献1には、エポキシ樹脂用の硬化剤として、9,10-ジヒドロ-9-オキサ-10-ホスファフェナントレン-10-オキサイド(以下、「HCA」と略記する。)とホルムアルデヒド又はアセトンとを反応させて水酸基含有のリン化合物を得、これをフェノール樹脂に反応させ得られるリン原子含有フェノール樹脂を用いる技術が開示されている。しかしながら、かかるリン原子含有フェノール樹脂は、その製造工程において、多官能フェノールと、HCAとアルデヒド類との反応性が低く、HCAとアルデヒド類との反応生成物が未反応成分として生成フェノール樹脂中に残存するため、その硬化物は高い難燃性は示すものの、熱分解性に劣り、近年、鉛フリー半田実装の判定として重要視されている耐熱剥離性試験(以下、「T288試験」と略記する。)に耐えることができないものであった。加えて、前記した原料の反応性の低さのために、使用可能な多官能フェノールの種類が限られてしまい、リン原子含有フェノール樹脂の設計の幅が著しく制限されるものあった。
 また、下記特許文献2には、リン原子含有エポキシ樹脂の中間体フェノール化合物として、HCAとヒドロキシベンズアルデヒドとの反応生成物をフェノールに反応させて得られる化合物が開示されている。
 しかしこのフェノール化合物も、やはりHCAとヒドロキシベンズアルデヒドとの反応生成物と、フェノールとの反応性が不十分で樹脂設計上の自由度が低い他、最終的に得られるフェノール化合物の融点が200℃以上となり、工業的に製造するのが困難であるばかりか、該フェノール化合物自体が結晶性の物質であって有機溶剤への溶解性に劣るため、取扱上作業性に劣るものであった。
 また、下記特許文献3には、フェノールノボラック型エポキシ樹脂やクレゾールノボラック型エポキシ樹脂にHCAを反応させて得られるリン変性エポキシ樹脂を主剤として用い、エポキシ樹脂用硬化剤と配合してなる難燃性のエポキシ樹脂組成物が開示されている。しかしながら、この特許文献3記載のエポキシ樹脂組成物は、リン原子をエポキシ樹脂構造中に導入する手段として、HCAを本来架橋点となるエポキシ基と反応させるものであるため、十分な架橋密度が得られず、硬化物のガラス転移温度が低下し、鉛フリー半田実装に耐えられないものとなっていた。
 このように樹脂成分自体に難燃性を付与する手段として、フェノール樹脂又はエポキシ樹脂の変性剤としてHCAを使用する技術は知られているものの、HCAとアルデヒド又はケトンとの反応生成物をフェノール構造中の芳香核に反応させることにより、フェノール構造中にリン原子を導入しようとする場合、該反応生成物の反応性が低いために得られるリン原子含有フェノール樹脂の硬化物の耐熱性が十分なものとならず、耐熱剥離性試験(以下、「T288試験」と略記する。)に耐えうる性能が発現されないものとなっていた。加えて、HCAとアルデヒド又はケトンとの反応生成物の反応性が低いことから、該反応生成物との反応に使用可能なフェノール類が制限されるものであった。他方、エポキシ樹脂中のエポキシ基にHCAを反応させる場合にはエポキシ基濃度が低下することからやはり十分な耐熱性が得られないものであった。
特許3464783号公報 特許3476780号公報 特許3613724号公報
 従って、本発明が解決しようとする課題は、リン原子含有化合物をフェノール類の芳香核に反応させる際の反応性に著しく優れるリン原子含有フェノール類の製造方法を提供すると共に、該フェノール類として多価フェノール又はフェノール樹脂を用いた場合にはエポキシ樹脂用硬化剤として硬化物に優れた耐熱性を与える新規リン原子含有フェノール類、これを用いた硬化性樹脂組成物及びその硬化物、並びに、該新規リン原子含有フェノール類を用いたプリント配線基板、及び半導体封止材料を提供することにある。
 本発明者らは、上記課題を解決するため、鋭意検討した結果、フェノール類の芳香核に前記HCAに代表されるリン原子含有化合物を反応させる際、先ず、該リン原子含有化合物にアルコキシ基を芳香核上の置換基として有する芳香族アルデヒドを反応させて、次いで、この反応生成物をフェノール類と反応させた場合に、その反応性が飛躍的に向上し、然も該フェノール類として多価フェノール又はフェノール樹脂を用いた場合に、最終的に得られる新規リン原子含有フェノール類の硬化物の耐熱性が飛躍的に向上することを見出し、本発明を完成するに至った。
 即ち、本発明は、アルコキシ基を芳香核上の置換基として有する芳香族アルデヒド(a1)、及び、P-H基又はP-OH基を分子構造中に有する有機リン化合物(a2)を反応させ、次いで、得られた反応生成物をフェノール類(a3)と反応させることを特徴とするリン原子含有フェノール類の製造方法に関する。
 本発明は、更に、前記製造方法によって得られたものである新規リン原子含有フェノール類に関する。
 本発明は、更に、下記構造式(I)
Figure JPOXMLDOC01-appb-C000007

で表される化学構造を有しており、前記構造式(I)中、Arはベンゼン環又はナフタレン環を、Fcは水素原子又は水酸基であり、Zは下記構造式z1~z4
Figure JPOXMLDOC01-appb-C000008

(上記構造式z1~z4中、R、R、R、Rは、それぞれ独立的に、水素原子、炭素原子数1~5のアルキル基、塩素原子、臭素原子、フェニル基、アラルキル基を表し、Rは水素原子又は炭素原子数1~5のアルキル基を表し、Rは炭素原子1~4のアルキル基を表し、nは芳香核上の置換基ORの数であり1~3である。)
で表される構造部位であることを特徴とする新規フェノール類に関する。
 本発明は、更に、ノボラック型フェノール樹脂構造を有し、かつ、その芳香核上の置換基として、下記構造式z1~z4
Figure JPOXMLDOC01-appb-C000009


(上記構造式z1~z4中、R、R、R、Rは、それぞれ独立的に、水素原子、炭素原子数1~5のアルキル基、塩素原子、臭素原子、フェニル基、アラルキル基を表し、Rは水素原子又は炭素原子数1~5のアルキル基を表し、Rは炭素原子1~4のアルキル基を表し、nは芳香核上の置換基ORの数であり1~3である。)
で表される構造部位を有することを特徴とする新規フェノール樹脂に関する。
 本発明は、更に、下記構造式(II)
Figure JPOXMLDOC01-appb-C000010


で表される構造を繰り返し単位とする新規フェノール樹脂であって、前記構造式(II)中、Rが水素原子又は炭素原子数1~6のアルキル基であり、かつ、Zが、水素原子、下記構造式z1~z4
Figure JPOXMLDOC01-appb-C000011

(上記構造式z1~z4中、R、R、R、Rは、それぞれ独立的に、水素原子、炭素原子数1~5のアルキル基、塩素原子、臭素原子、フェニル基、アラルキル基を表し、Rは水素原子又は炭素原子数1~5のアルキル基を表し、Rは炭素原子1~4のアルキル基を表し、nは芳香核上の置換基ORの数であり1~3である。)
からなる群から選択され、かつ、該新規フェノール樹脂中、Zの少なくとも一つは前記構造式z1~z4で表される部分構造から選択される構造部位を有することを特徴とする新規フェノール類に関する。
 本発明は、更に、フェノール類(A)とエポキシ樹脂(B)とを必須成分とする硬化性樹脂組成物であって、前記フェノール類(A)が、前記した新規フェノール類であることを特徴とする硬化性樹脂組成物に関する。
 本発明は、更に、前記硬化性樹脂組成物を硬化させてなる硬化物に関する。
 本発明は、更に、前記フェノール類(A)、前記エポキシ樹脂(B)、硬化促進剤(C)、及び有機溶剤(D)を含有する組成物を硬化させてなるプリント配線基板に関する。
 本発明は、更に、前記フェノール類(A)、前記エポキシ樹脂(B)、硬化促進剤(C)、及び無機充填剤を含有する半導体封止材料に関する。
 本発明によれば、リン原子含有化合物をフェノール類の芳香核に反応させる際の反応性に著しく優れるリン原子含有フェノール類の製造方法を提供すると共に、該フェノール類として多価フェノール又はフェノール樹脂を用いた場合にはエポキシ樹脂用硬化剤として硬化物に優れた耐熱性を与える新規リン原子含有フェノール類、これを用いた硬化性樹脂組成物及びその硬化物、並びに、該新規リン原子含有フェノール類を用いたプリント配線基板、及び半導体封止材料を提供できる。
図1は実施例1で得られたフェノール樹脂(A-1)のGPCチャートである。 図2は実施例1で得られたフェノール樹脂(A-1)の13C-NMRスペクトルである。 図3は実施例1で得られたフェノール樹脂(A-1)のマススペクトルである。 図4は実施例2で得られたフェノール樹脂(A-2)のGPCチャートである。 図5は実施例3で得られたフェノール樹脂(A-3)のGPCチャートである。 図6は実施例4で得られたフェノール樹脂(A-4)のGPCチャートである。 図7は実施例5で得られたフェノール樹脂(A-5)のGPCチャートである。 図8は実施例6で得られたフェノール化合物(A-6)のGPCチャートである。 図9は実施例7で得られたフェノール化合物(A-7)のGPCチャートである。 図10は実施例8で得られたフェノール化合物(A-8)のGPCチャートである。 図11は合成例2で得られたフェノール樹脂(A-9)のGPCチャートである。 図12は合成例3で得られたフェノール化合物(A-10)のGPCチャートである。 図13は合成例4で得られたフェノール樹脂(A-11)のGPCチャートである。
 以下、本発明を詳細に説明する。
 本発明の製造方法は、前記した通り、アルコキシ基を芳香核上の置換基として有する芳香族アルデヒド(a1)、及び、P-H基又はP-OH基を有する有機リン化合物(a2)を反応させ、次いで、得られた反応生成物をフェノール類(a3)と反応させることを特徴とするものである。
 ここで用いるアルコキシ基を芳香核上の置換基として有する芳香族アルデヒド(a1)とは、例えば、ベンズアルデヒド、o-トルアルデヒド、p-トルアルデヒド、o-エチルアルデヒド、p-エチルアルデヒド、p-イソプロピルベンズアルデヒド、ナフトアルデヒド、アントラセンアルデヒド等の芳香族アルデヒドの置換基としてアルコキシ基を有するものが挙げられ、具体的には下記構造式(A1-a)
Figure JPOXMLDOC01-appb-C000012

(式中、Rは水素原子又は炭素原子1~3のアルキル基であり、Rは炭素原子1~4のアルキル基を表し、nは芳香核上の置換基ORの数であり1~3である。)
で表される化合物(a1-1)、或いは、下記構造式(A1-b)
Figure JPOXMLDOC01-appb-C000013

(式中、Rは水素原子又は炭素原子1~3のアルキル基であり、Rは炭素原子1~4のアルキル基を表し、nは芳香核上の置換基ORの数であり1~3である。)
で表される化合物(a1-2)が挙げられる。
 本発明ではこれらのなかでも特に1分子中におけるリンの含有率が高い点から前記化合物(A1-a)が好ましく、とりわけn=1のものが好ましい。
 本発明ではこのような芳香族アルデヒド(a1)の核置換基としてアルコキシ基を有することから、該芳香族アルデヒド(a1)とP-H基又はP-OH基を有する有機リン化合物(a2)との反応生成物中に生成する水酸基の反応性が優れたものとなり、殆ど触媒を用いなくとも、該生成物はフェノール類(a3)中の芳香核に反応する。このような特長がより顕著に現れる点からアルコキシ基はメトキシ基又はエトキシ基であることが好ましく、また、芳香族アルデヒドとしてはベンズアルデヒド、ナフトアルデヒドが好ましい。
 芳香族アルデヒド(a1)と反応P-H基又はP-OH基を分子構造中に有する有機リン化合物(a2)は、具体的には、下記構造式(A2-a)又は構造式(A2-b)
Figure JPOXMLDOC01-appb-C000014

(上記構造式(A2-a)又は構造式(A2-b)中、Xaは水素原子又は水酸基であり、R、R、R、Rはそれぞれ独立的に、水素原子、炭素原子数1~5のアルキル基、塩素原子、臭素原子、フェニル基、アラルキル基を表す。)
で表される化合物が挙げられる。ここで、R、R、R、Rを構成する炭素原子数1~5のアルキル基としては、メチル基、エチル基、n-プロピル基、i-プロピル基、t-ブチル基、n-ペンチル基が挙げられる。
 本発明では、芳香族アルデヒド(a1)との反応によって生成する化合物(X)のフェノール類(a3)との反応性が極めて良好なものとなる点から前記構造式(A2-a)又は構造式(A2-b)におけるXaが水素原子のものが好ましく、特にリン原子含有フェノール類の硬化物の難燃性に優れる点から前記構造式(A2-a)で表される化合物が好ましい。とりわけ、構造式(A2-a)においてR、R、R、Rの全てが水素原子であって、かつ、Xaが水素原子である、9,10-ジヒドロ-9-オキサ-10-ホスファフェナントレン-10-オキサイドであることが前記化合物(X)の反応性と、最終的に得られるリン原子含有フェノール類の硬化物の難燃性及び耐熱性が極めて良好なものとなる点から好ましい。
 ここで、アルコキシ基を芳香核上の置換基として有する芳香族アルデヒド(a1)と、P-H基又はP-OH基を有する有機リン化合物(a2)との反応条件は、例えば、80~180℃の温度条件下に行うことができる。該反応は無触媒で行うことができ、または、アルコール系有機溶媒、炭化水素系有機溶媒などの非ケトン系有機溶媒の存在下で行うことができる。
かかる反応によって生成する化合物(X)は、例えば、前記芳香族アルデヒド(a1)として構造式(a1-1)で表される化合物、前記有機リン化合物(a2)として構造式(a2-1)又は構造式(a2-2)で表される化合物を用いた場合、下記の構造式x1~x4
Figure JPOXMLDOC01-appb-C000015

(上記構造式x1~x4中、R、R、R、Rは、それぞれ独立的に、水素原子、炭素原子数1~5のアルキル基、塩素原子、臭素原子、フェニル基、アラルキル基を表し、Rは水素原子又は炭素原子数1~5のアルキル基を表し、Rは炭素原子1~4のアルキル基を表し、nは芳香核上の置換基ORの数であり1~3である。)
が挙げられる。
 これらの中でも特にフェノール類(a3)との反応性に優れる点から前記構造式x1及びx2で表される化合物が好ましく、特に最終的に得られるリン原子含有フェノール類の硬化物の難燃性に優れる点から前記構造式x1で表される化合物が好ましい。
 次に、本発明で用いるフェノール類(a3)はフェノール、クレゾール、キシレノール、エチルフェノール、イソプロピルフェノール、t-ブチルフェノール、オクチルフェノール、ノニルフェノール、ビニルフェノール、イソプロペニルフェノール、アリルフェノール、フェニルフェノール、ベンジルフェノール、クロルフェノール、ブロムフェノール、ナフトール等の1価フェノール類;カテコール、レゾルシノール、ハイドロキノン、1,5-ジヒドロキシナフタレン、1,6-ジヒドロキシナフタレン、2,7-ジヒドロキシナフタレン等の2価フェノール;ビスフェノールA、ビスフェノールF、ビスフェノールS等のビスフェノール類;フェノールノボラック樹脂、クレゾールノボラック樹脂、ビスフェノールAノボラック樹脂、ビスフェノールSノボラック樹脂、α-ナフトールノボラック樹脂、β-ナフトールノボラック樹脂、ジヒドロキシナフタレンノボラック樹脂、その他下記構造式(A3-a)
Figure JPOXMLDOC01-appb-C000016
(式中、Raは水素原子又は炭素原子数1~6の炭化水素基を表し、laは繰り返し単位で0~10の整数である。)
で表されるノボラック樹脂等のノボラック型フェノール樹脂;
ジシクロペンタジエン、テトラヒドロインデン、4-ビニルシクロヘキセン、5-ビニルノルボナ-2-エン、α-ピネン、β-ピネン、及びリモネンからなる群から選択される脂肪族環状炭化水素基を介してフェノール類が結節された分子構造をもつフェノール樹脂;下記構造式(A3-b)
Figure JPOXMLDOC01-appb-C000017

(前記式中、Rbは水素原子又は炭素原子数1~6の炭化水素基、lbは繰り返し単位で0~10の整数である。)で表されるアラルキル型フェノール樹脂;
下記構造式(A3-c)、
Figure JPOXMLDOC01-appb-C000018

(前記式中、Rcは水素原子又は炭素原子数1~6の炭化水素基、lcは繰り返し単位で0~10の整数である。)で表されるアラルキル型フェノール樹脂;
下記構造式(A3-d)
Figure JPOXMLDOC01-appb-C000019

(前記式中、Rdは水素原子又は炭素原子数1~6の炭化水素基、ldは繰り返し単位で0~10の整数である。)で表されるアラルキル型フェノール樹脂;
下記構造式(A3-e)
Figure JPOXMLDOC01-appb-C000020

(前記式中、Reは水素原子又は炭素原子数1~6の炭化水素基、leは繰り返し単位で0~10の整数である。)で表されるアラルキル型フェノール樹脂;
下記構造式(A3-f)
Figure JPOXMLDOC01-appb-C000021

(前記式中、Reは水素原子又は炭素原子数1~6の炭化水素基、lfは繰り返し単位で0~10の整数である。)で表されるアラルキル型フェノール樹脂;
下記構造式(A3-g)
Figure JPOXMLDOC01-appb-C000022

(前記式中、Rgは水素原子又は炭素原子数1~6の炭化水素基、lgは繰り返し単位で0~10の整数である。)で表される化合物等のアラルキル型フェノール樹脂;
下記構造式(A3-h)
Figure JPOXMLDOC01-appb-C000023

(式中、Rhはそれぞれ独立的に水素原子、炭素原子数1~4のアルキル基である。)
で表されるビフェノール;及び
下記構造式A3-i
Figure JPOXMLDOC01-appb-C000024

(式中、Riはそれぞれ独立的に水素原子、炭素原子数1~4のアルキル基である。)
で表される多価ナフトール類;
フェノール性水酸基含有芳香族炭化水素基(Ph)、アルコキシ基含有縮合多環式芳香族炭化水素基(An)、並びに、メチレン基、アルキリデン基、及び芳香族炭化水素構造含有メチレン基から選択される2価の炭化水素基(M)(以下、これを単に「メチレン基等(M)」と略記する)の各構造単位をそれぞれ、「Ph」、「An」、「M」で表した場合、下記部分構造式(A3-j)
Figure JPOXMLDOC01-appb-C000025

であらわされる構造部位を分子構造内に含む多官能フェノール類等が挙げられる。
 ここで、前記部分構造式A3-hであらわされる構造部位を分子構造内に含む多官能フェノール類は、更に具体的には、下記構造式(A3-j2)及び(A3-j3)で表される構造、
Figure JPOXMLDOC01-appb-C000026
下記構造式(A3-j4)又は(A3-j5)
Figure JPOXMLDOC01-appb-C000027

で表される構造を繰り返し単位とするノボラック構造の分子末端に、下記構造式(A3-j6)
Figure JPOXMLDOC01-appb-C000028

で表される構造を有する構造、その他下記構造式(A3-j7)~(A3-j10)
Figure JPOXMLDOC01-appb-C000029

で表される構造を繰り返し単位とする交互共重合体構造が挙げられる。
 ここで、前記フェノール性水酸基含有芳香族炭化水素基(Ph)は、様々な構造をとり得るものであり、具体的には、以下のPh1~Ph16の構造式で表されるフェノール、ナフトール、及びこれらの芳香核上の置換基としてアルキル基を有する化合物から形成される芳香族炭化水素基であることが誘電性能に優れる点から好ましい。
Figure JPOXMLDOC01-appb-C000030
 ここで、前記各構造は、該構造が分子末端に位置する場合には、1価の芳香族炭化水素基となる。また、上掲した構造のうちナフタレン骨格上に他の構造部位との結合位置を二つ以上有するものは、それらの結合位置は同一核上であってもよいし、或いは、それぞれ異核上にあってもよい。
 次に、フェノール樹脂構造中に含まれる前記アルコキシ基含有縮合多環式芳香族炭化水素基(An)は、縮合多環式芳香核上の置換基としてアルコキシ基を有する1価又は多価の芳香族炭化水素基であり、具体的には下記構造式An1~An12で表されるアルコシキナフタレン型の構造が挙げられる。
Figure JPOXMLDOC01-appb-C000031
 ここで、前記各構造は、該構造が分子末端に位置する場合には、1価の芳香族炭化水素基となる。また、上掲した構造のうちナフタレン骨格上に他の構造部位との結合位置を二つ以上有するものは、それらの結合位置は同一核上であってもよいし、或いは、それぞれ異核上にあってもよい。
 次に、前記した、メチレン基、アルキリデン基、及び芳香族炭化水素構造含有メチレン基から選択される2価の炭化水素基(M)は、例えば、メチレン基の他、アルキリデン基としては、エチリデン基、1,1-プロピリデン基、2,2-プロピリデン基、ジメチレン基、プロパン-1,1,3,3-テトライル基、n-ブタン-1,1,4,4-テトライル基、n-ペンタン-1,1,5,5-テトライル基が挙げられる。また、芳香族炭化水素構造含有メチレン基は、下記M1~M8の構造のものが挙げられる。
Figure JPOXMLDOC01-appb-C000032

これらの中でも特に誘電効果に優れる点からメチレン基であることが好ましい。
 本発明では、これらのなかでも特に2価フェノール、ビスフェノール類、ノボラック型フェノール樹脂、アラルキル型フェノール樹脂が、反応生成物をエポキシ樹脂用硬化剤として用いたときの硬化性や有機溶剤への溶解性が良好なものとなる点から好ましく、特に最終的に得られるフェノール樹脂をプリント配線基板用エポキシ樹脂組成物のエポキシ樹脂用硬化剤として用いる場合には、溶剤溶解性に優れ、かつ、耐湿性・難燃性に優れる点からノボラック型フェノール樹脂、アラルキル型フェノール樹脂が好ましい。この場合、ノボラック型フェノール樹脂は150℃における溶融粘度が0.5~300dPa・sの範囲であることが耐湿性、耐熱性及び耐熱信頼性の点から好ましく、一方、アラルキル型フェノール樹脂は150℃における溶融粘度が0.1~300dPa・sの範囲であることが、最終的に得られるリン原子含有フェノール類の硬化物における耐湿性、耐熱性及び耐熱信頼性に優れる点から好ましい。また、前記2価フェノールとしては、1,5-ジヒドロキシナフタレン、1,6-ジヒドロキシナフタレン、2,7-ジヒドロキシナフタレン等のジヒドロキシナフタレンが最終的に得られるリン原子含有フェノール類の硬化物における耐熱性に優れる点から好ましい。
 該芳香族アルデヒド(a1)とP-H基又はP-OH基を有する有機リン化合物(a2)との反応生成物である化合物(X)と、前記フェノール類(a3)との反応は、140~200℃の温度条件下で行うことができる。前記した通り、本発明ではこの化合物(X)と前記フェノール類(a3)との反応は、極めて反応性が高く、特に触媒を必要としないが、適宜、用いても構わない。ここで使用し得る触媒としては、塩酸、硫酸、リン酸などの無機酸、メタンスルホン酸、p-トルエンスルホン酸、シュウ酸などの有機酸、三弗化ホウ素、無水塩化アルミニウム、塩化亜鉛などのルイス酸などが挙げられる。その使用量は仕込み原料の総重量に対して、5.0質量%未満であることが好ましい。
 また、本発明ではこの化合物(X)と前記フェノール類(a3)との反応割合は特に限定されることがなく、寧ろ、その良好な反応性ゆえ、目的とする難燃性や耐熱性の性能レベル、或いは、用途に応じて任意に前記フェノール類(a3)に対する化合物(X)の変性量をコントロールすることができる。但し、前記化合物(X)が反応生成物中に残存しないような割合、具体的には、フェノール類(a3)の芳香核上の反応点に対して、当量以下となる割合で反応させることが好ましい。更に、前記フェノール類(a3)として好ましく用いられるノボラック型フェノール樹脂、アラルキル型フェノール樹脂に前記化合物(X)を変性する場合、リン原子の含有率が質量基準で4.0~7.0質量%となる割合となる範囲であることが耐熱性及び難燃性に優れる点から好ましい。
 反応後は、必要により、脱水・乾燥して目的物を得ることができる。この様にして得られるリン原子含有フェノール樹脂には、未反応成分である前記化合物(X)が実質的に殆ど残存することがない。例えば、ノボラック型フェノール樹脂、アラルキル型フェノール樹脂に前記化合物(X)を変性し、リン原子の含有率を質量基準で4.0~7.0質量%の範囲に調節した場合、前記化合物(X)の残存量は、リン原子含有フェノール樹脂中GPCでの検出限界以下となる。
 本発明のリン原子含有フェノール樹脂は上記した製造方法によって得られる分子構造を有するものである。具体的な分子構造は前記した各原料成分の選択により任意に設計することが可能であるが、例えば、下記構造式(I)
Figure JPOXMLDOC01-appb-C000033

で表される化学構造を有しており、かつ、前記構造式(I)中、Fcは水素原子又は水酸基であり、Zは下記構造式z1~z4
Figure JPOXMLDOC01-appb-C000034

(上記構造式z1~z4中、R、R、R、Rは、それぞれ独立的に、水素原子、炭素原子数1~5のアルキル基、塩素原子、臭素原子、フェニル基、アラルキル基を表し、Rは水素原子又は炭素原子数1~5のアルキル基を表し、Rは炭素原子1~4のアルキル基を表し、nは芳香核上の置換基ORの数であり1~3である。)
で表される部分構造から選択される構造部位であることを特徴とする新規フェノール類(np1);
ノボラック型フェノール樹脂構造を有し、かつ、その芳香核上の置換基として、下記構造式z1~z4であって、その芳香核上の置換基として、下記構造式z1~z4
Figure JPOXMLDOC01-appb-C000035


(上記構造式z1~z4中、R、R、R、Rは、それぞれ独立的に、水素原子、炭素原子数1~5のアルキル基、塩素原子、臭素原子、フェニル基、アラルキル基を表し、Rは水素原子又は炭素原子数1~5のアルキル基を表し、Rは炭素原子1~4のアルキル基を表し、nは芳香核上の置換基ORの数であり1~3である。)
で表される部分構造からなる群から選択される構造部位を有する新規フェノール類(np2);
下記構造式(II)
Figure JPOXMLDOC01-appb-C000036


で表される構造を繰り返し単位とする新規フェノール類であって、前記構造式(II)中、Rが水素原子又は炭素原子数1~6のアルキル基であり、かつ、Zが、水素原子、下記構造式z1~z4
Figure JPOXMLDOC01-appb-C000037

(上記構造式z1~z4中、R、R、R、Rは、それぞれ独立的に、水素原子、炭素原子数1~5のアルキル基、塩素原子、臭素原子、フェニル基、アラルキル基を表し、Rは水素原子又は炭素原子数1~5のアルキル基を表し、Rは炭素原子1~4のアルキル基を表し、nは芳香核上の置換基ORの数であり1~3である。)
からなる群から選択され、かつ、該新規フェノール樹脂中、Zの少なくとも一つは前記構造式z1~z4で表される部分構造から選択される構造部位を有することを特徴とする新規フェノール類(np3)等が挙げられる。
 これらの中でも特にフェノール性水酸基を2つ以上有するフェノール樹脂、前記新規フェノール類(np2)及び前記新規フェノール類(np3)、及び、下記構造式(I’)
Figure JPOXMLDOC01-appb-C000038

で表される化学構造を有しており、かつ、前記構造式(I’)中、Zは下記構造式z1~z4
Figure JPOXMLDOC01-appb-C000039

(上記構造式z1~z4中、R、R、R、Rは、それぞれ独立的に、水素原子、炭素原子数1~5のアルキル基、塩素原子、臭素原子、フェニル基、アラルキル基を表し、Rは水素原子又は炭素原子数1~5のアルキル基を表し、Rは炭素原子1~4のアルキル基を表し、nは芳香核上の置換基ORの数であり1~3である。)
で表される構造部位である新規フェノール類(np1’)が好ましい。
 また、前記新規フェノール類(np1)、新規フェノール類(np2)、前記新規フェノール類(np3)、及び、前記新規フェノール類(np1’)において、前記構造式z1~z4で表される部分構造のなかでも特に、硬化物の耐熱性に優れる点から前記構造式z1又はz2で表される部分構造が好ましく、特に前記前記構造式z1で表されるものが好ましい。
 本発明の硬化性樹脂組成物は、前記したフェノール類(A)とエポキシ樹脂(B)とを必須成分とする硬化性樹脂組成物である。
 ここで用いるエポキシ樹脂(B)は、種々のエポキシ樹脂を用いることができるが、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂等のビスフェノール型エポキシ樹脂;ビフェニル型エポキシ樹脂、テトラメチルビフェニル型エポキシ樹脂等のビフェニル型エポキシ樹脂;フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビスフェノールAノボラック型エポキシ樹脂、フェノール類とフェノール性水酸基を有する芳香族アルデヒドとの縮合物のエポキシ化物、ビフェニルノボラック型エポキシ樹脂等のノボラック型エポキシ樹脂;トリフェニルメタン型エポキシ樹脂;テトラフェニルエタン型エポキシ樹脂;ジシクロペンタジエン-フェノール付加反応型エポキシ樹脂;フェノールアラルキル型エポキシ樹脂;ナフトールノボラック型エポキシ樹脂、ナフトールアラルキル型エポキシ樹脂、ナフトール-フェノール共縮ノボラック型エポキシ樹脂、ナフトール-クレゾール共縮ノボラック型エポキシ樹脂、ジグリシジルオキシナフタレン、1,1-ビス(2,7-ジグリシジルオキシ-1-ナフチル)アルカン等の分子構造中にナフタレン骨格を有するエポキシ樹脂;リン原子含有エポキシ樹脂等が挙げられる。また、これらのエポキシ樹脂は単独で用いてもよく、2種以上を混合してもよい。
 ここで、リン原子含有エポキシ樹脂としては、9,10-ジヒドロ-9-オキサ-10-ホスファフェナントレン-10-オキサイド(以下、「HCA」と略記する。)のエポキシ化物、HCAとキノン類とを反応させて得られるフェノール樹脂のエポキシ化物、フェノールノボラック型エポキシ樹脂をHCAで変性したエポキシ樹脂、クレゾールノボラック型エポキシ樹脂をHCAで変性したエポキシ樹脂、また、ビスフェノールA型エポキシ樹脂を、HCAとキノン類とを反応させて得られるフェノール樹脂で変成して得られるエポキシ樹脂、及びビスフェノールF型エポキシ樹脂を、HCAとキノン類とを反応させて得られるフェノール樹脂で変成して得られるエポキシ樹脂等が挙げられる。
 上記したエポキシ樹脂(B)のなかでも、特に耐熱性の点から、分子構造中にノボラック型エポキシ樹脂、ナフタレン骨格を有するエポキシ樹脂が好ましく、また、溶剤溶解性の点からビスフェノール型エポキシ樹脂、ノボラック型エポキシ樹脂が好ましい。
 本発明の硬化性樹脂組成物では、エポキシ樹脂(B)の硬化剤として前記フェノール樹脂(A)の他の硬化剤(A’)を併用してもよい。かかる他の硬化剤(A’)は、アミン系化合物、アミド系化合物、酸無水物系化合物、フェノ-ル系化合物などが挙げられる。具体的には、アミン系化合物としてはジアミノジフェニルメタン、ジエチレントリアミン、トリエチレンテトラミン、ジアミノジフェニルスルホン、イソホロンジアミン、イミダゾ-ル、BF-アミン錯体、グアニジン誘導体等が挙げられ、アミド系化合物としては、ジシアンジアミド、リノレン酸の2量体とエチレンジアミンとより合成されるポリアミド樹脂等が挙げられ、酸無水物系化合物としては、無水フタル酸、無水トリメリット酸、無水ピロメリット酸、無水マレイン酸、テトラヒドロ無水フタル酸、メチルテトラヒドロ無水フタル酸、無水メチルナジック酸、ヘキサヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸等が挙げられ、フェノール系化合物としては、フェノールノボラック樹脂、クレゾールノボラック樹脂、芳香族炭化水素ホルムアルデヒド樹脂変性フェノール樹脂、ジシクロペンタジエンフェノール付加型樹脂、フェノールアラルキル樹脂(ザイロック樹脂)、ナフトールアラルキル樹脂、トリメチロールメタン樹脂、テトラフェニロールエタン樹脂、ナフトールノボラック樹脂、ナフトール-フェノール共縮ノボラック樹脂、ナフトール-クレゾール共縮ノボラック樹脂、ビフェニル変性フェノール樹脂(ビスメチレン基でフェノール核が連結された多価フェノール化合物)、ビフェニル変性ナフトール樹脂(ビスメチレン基でフェノール核が連結された多価ナフトール化合物)、アミノトリアジン変性フェノール樹脂(フェノール骨格、トリアジン環及び1級アミノ基を分子構造中に有する化合物)やアルコキシ基含有芳香環変性ノボラック樹脂(ホルムアルデヒドでフェノール核及びアルコキシ基含有芳香環が連結された多価フェノール化合物)等の多価フェノール化合物が挙げられる。
 これらの中でも、特に芳香族骨格を分子構造内に多く含むものが低熱膨張性の点から好ましく、具体的には、フェノールノボラック樹脂、クレゾールノボラック樹脂、芳香族炭化水素ホルムアルデヒド樹脂変性フェノール樹脂、フェノールアラルキル樹脂、ナフトールアラルキル樹脂、ナフトールノボラック樹脂、ナフトール-フェノール共縮ノボラック樹脂、ナフトール-クレゾール共縮ノボラック樹脂、ビフェニル変性フェノール樹脂、ビフェニル変性ナフトール樹脂、アミノトリアジン変性フェノール樹脂、アルコキシ基含有芳香環変性ノボラック樹脂(ホルムアルデヒドでフェノール核及びアルコキシ基含有芳香環が連結された多価フェノール化合物)が低熱膨張性に優れることから好ましい。
 ここで、前記したアミノトリアジン変性フェノール樹脂、すなわちフェノール骨格、トリアジン環及び1級アミノ基を分子構造中に有する化合物は、トリアジン化合物と、フェノール類と、アルデヒド類とを縮合反応させて得られる分子構造を有するものが硬化物の難燃性が良好となる点から好ましい。また、本発明では、該化合物(A’-b)中の窒素原子含有率が10~25質量%となるもの、好ましくは15~25質量%となるものを用いることにより硬化物における線膨張係数が著しく低下し、優れた寸法安定性を発現させることができる。
 更に、上記したトリアジン化合物と、フェノール類と、アルデヒド類とを縮合反応させた場合には、実際には、種々の化合物の混合物となるため、該化合物(A’-b)は、この混合物(以下、これを「混合物(A’-b)」と略記する)として用いることが好ましい。更に、本発明では、低先膨張係数の点から前記混合物(A’-b)中の窒素原子含有率が10~25質量%となる範囲、なかでも15~25質量%であることが好ましい。
 ここで、フェノール骨格とはフェノール類に起因するフェノール構造部位を現し、また、トリアジン骨格とはトリアジン化合物に起因するトリアジン構造部位を現す。
 ここで用いられるフェノール類としては、特に限定されるものではなく、例えば、フェノール、o-クレゾール、m-クレゾール、p-クレゾール、キシレノール、エチルフェノール、ブチルフェノール、ノニルフェノール、オクチルフェノール等のアルキルフェノール類、ビスフェノールA、ビスフェノールF、ビスフェノールS、ビスフェノールAD、テトラメチルビスフェノールA、レゾルシン、カテコール等の多価フェノール類、モノヒドロキシナフタレン、ジヒドロキシナフタレン当のナフトール類、その他フェニルフェノール、アミノフェノール等が挙げられる。これらのフェノール類は、単独又は2種類以上併用で使用可能であるが、最終的な硬化物が難燃性に優れ、且つアミノ基含有トリアジン化合物との反応性に優れる点からフェノールが好ましい。
 次に、トリアジン環を含む化合物としては、特に限定されるものではないが、下記構造式
Figure JPOXMLDOC01-appb-C000040

(式中、R’、R’、R’は、アミノ基、アルキル基、フェニル基、ヒドロキシル基、ヒドロキシルアルキル基、エーテル基、エステル基、酸基、不飽和基、シアノ基のいずれかを表わす。)
で表される化合物又はイソシアヌル酸が好ましい。
 前記構造式で示される化合物のなかでも特に、反応性に優れる点から前記中、R’、R’、R’のうちのいずれか2つ又は3つがアミノ基であるメラミン、アセトグアナミン、ベンゾグアナミンなどのグアナミン誘導体に代表されるアミノ基含有トリアジン化合物が好ましい。
 これらの化合物も使用にあたって1種類のみに限定されるものではなく2種以上を併用することも可能である。
 次に、アルデヒド類は、特に限定されるものではないが、取扱いの容易さの点からホルムアルデヒドが好ましい。ホルムアルデヒドとしては、限定するものではないが、代表的な供給源としてホルマリン、パラホルムアルデヒド等が挙げられる。
 本発明の硬化性樹脂組成物におけるエポキシ樹脂(B)とフェノール樹脂(A)の配合量としては、特に制限されるものではないが、得られる硬化物特性が良好である点から、エポキシ樹脂(B)のエポキシ基の合計1当量に対して、フェノール樹脂(A)中の活性水素が0.7~1.5当量になる量が好ましい。
 また必要に応じて本発明の硬化性樹脂組成物に硬化促進剤を適宜併用することもできる。前記硬化促進剤としては種々のものが使用できるが、例えば、リン系化合物、第3級アミン、イミダゾール、有機酸金属塩、ルイス酸、アミン錯塩等が挙げられる。特に半導体封止材料用途として使用する場合には、硬化性、耐熱性、電気特性、耐湿信頼性等に優れる点から、リン系化合物ではトリフェニルフォスフィン、アミン系化合物では2-エチル4-メチルイミダゾールが好ましい。
 以上詳述した本発明の硬化性樹脂組成物は、前記した通り、優れた溶剤溶解性を発現することを特徴としている。従って、該硬化性樹脂組成物は、上記各成分の他に有機溶剤(C)を配合することが好ましい。ここで使用し得る前記有機溶剤(C)としては、メチルエチルケトン、アセトン、ジメチルホルムアミド、メチルイソブチルケトン、メトキシプロパノール、シクロヘキサノン、メチルセロソルブ、エチルジグリコールアセテート、プロピレングリコールモノメチルエーテルアセテート等が挙げられ、その選択や適正な使用量は用途によって適宜選択し得るが、例えば、プリント配線板用途では、メチルエチルケトン、アセトン、1-メトキシ-2-プロパノール等の沸点が160℃以下の極性溶剤であることが好ましく、また、不揮発分40~80質量%となる割合で使用することが好ましい。一方、ビルドアップ用接着フィルム用途では、有機溶剤(C)として、例えば、アセトン、メチルエチルケトン、シクロヘキサノン等のケトン類、酢酸エチル、酢酸ブチル、セロソルブアセテート、プロピレングリコールモノメチルエーテルアセテート、カルビトールアセテート等の酢酸エステル類、セロソルブ、ブチルカルビトール等のカルビトール類、トルエン、キシレン等の芳香族炭化水素類、ジメチルホルムアミド、ジメチルアセトアミド、N-メチルピロリドン等を用いることが好ましく、また、不揮発分30~60質量%となる割合で使用することが好ましい。
 また、上記熱硬化性樹脂組成物は、難燃性を発揮させるために、例えばプリント配線板の分野においては、信頼性を低下させない範囲で、実質的にハロゲン原子を含有しない非ハロゲン系難燃剤を配合してもよい。
 前記非ハロゲン系難燃剤としては、例えば、リン系難燃剤、窒素系難燃剤、シリコーン系難燃剤、無機系難燃剤、有機金属塩系難燃剤等が挙げられ、それらの使用に際しても何等制限されるものではなく、単独で使用しても、同一系の難燃剤を複数用いても良く、また、異なる系の難燃剤を組み合わせて用いることも可能である。
 前記リン系難燃剤としては、無機系、有機系のいずれも使用することができる。無機系化合物としては、例えば、赤リン、リン酸一アンモニウム、リン酸二アンモニウム、リン酸三アンモニウム、ポリリン酸アンモニウム等のリン酸アンモニウム類、リン酸アミド等の無機系含窒素リン化合物が挙げられる。
 また、前記赤リンは、加水分解等の防止を目的として表面処理が施されていることが好ましく、表面処理方法としては、例えば、(i)水酸化マグネシウム、水酸化アルミニウム、水酸化亜鉛、水酸化チタン、酸化ビスマス、水酸化ビスマス、硝酸ビスマス又はこれらの混合物等の無機化合物で被覆処理する方法、(ii)水酸化マグネシウム、水酸化アルミニウム、水酸化亜鉛、水酸化チタン等の無機化合物、及びフェノール樹脂等の熱硬化性樹脂の混合物で被覆処理する方法、(iii)水酸化マグネシウム、水酸化アルミニウム、水酸化亜鉛、水酸化チタン等の無機化合物の被膜の上にフェノール樹脂等の熱硬化性樹脂で二重に被覆処理する方法等が挙げられる。
 前記有機リン系化合物としては、例えば、リン酸エステル化合物、ホスホン酸化合物、ホスフィン酸化合物、ホスフィンオキシド化合物、ホスホラン化合物、有機系含窒素リン化合物等の汎用有機リン系化合物の他、9,10-ジヒドロ-9-オキサ-10-ホスファフェナントレン=10-オキシド、10-(2,5―ジヒドロオキシフェニル)-10H-9-オキサ-10-ホスファフェナントレン=10-オキシド、10-(2,7-ジヒドロオキシナフチル)-10H-9-オキサ-10-ホスファフェナントレン=10-オキシド等の環状有機リン化合物及びそれをエポキシ樹脂やフェノール樹脂等の化合物と反応させた誘導体等が挙げられる。
 それらの配合量としては、リン系難燃剤の種類、硬化性樹脂組成物の他の成分、所望の難燃性の程度によって適宜選択されるものであるが、例えば、エポキシ樹脂、硬化剤、非ハロゲン系難燃剤及びその他の充填材や添加剤等全てを配合した硬化性樹脂組成物100質量部中、赤リンを非ハロゲン系難燃剤として使用する場合は0.1~2.0質量部の範囲で配合することが好ましく、有機リン化合物を使用する場合は同様に0.1~10.0質量部の範囲で配合することが好ましく、特に0.5~6.0質量部の範囲で配合することが好ましい。
 また前記リン系難燃剤を使用する場合、該リン系難燃剤にハイドロタルサイト、水酸化マグネシウム、ホウ化合物、酸化ジルコニウム、黒色染料、炭酸カルシウム、ゼオライト、モリブデン酸亜鉛、活性炭等を併用してもよい。
 前記窒素系難燃剤としては、例えば、トリアジン化合物、シアヌル酸化合物、イソシアヌル酸化合物、フェノチアジン等が挙げられ、トリアジン化合物、シアヌル酸化合物、イソシアヌル酸化合物が好ましい。
 前記トリアジン化合物としては、例えば、メラミン、アセトグアナミン、ベンゾグアナミン、メロン、メラム、サクシノグアナミン、エチレンジメラミン、ポリリン酸メラミン、トリグアナミン等の他、例えば、硫酸グアニルメラミン、硫酸メレム、硫酸メラムなどの硫酸アミノトリアジン化合物、前記アミノトリアジン変性フェノール樹脂、及び該アミノトリアジン変性フェノール樹脂を更に桐油、異性化アマニ油等で変性したもの等が挙げられる。
 前記シアヌル酸化合物の具体例としては、例えば、シアヌル酸、シアヌル酸メラミン等を挙げることができる。
 前記窒素系難燃剤の配合量としては、窒素系難燃剤の種類、硬化性樹脂組成物の他の成分、所望の難燃性の程度によって適宜選択されるものであるが、例えば、エポキシ樹脂、硬化剤、非ハロゲン系難燃剤及びその他の充填材や添加剤等全てを配合した硬化性樹脂組成物100質量部中、0.05~10質量部の範囲で配合することが好ましく、特に0.1~5質量部の範囲で配合することが好ましい。
 また前記窒素系難燃剤を使用する際、金属水酸化物、モリブデン化合物等を併用してもよい。
 前記シリコーン系難燃剤としては、ケイ素原子を含有する有機化合物であれば特に制限がなく使用でき、例えば、シリコーンオイル、シリコーンゴム、シリコーン樹脂等が挙げられる。
 前記シリコーン系難燃剤の配合量としては、シリコーン系難燃剤の種類、硬化性樹脂組成物の他の成分、所望の難燃性の程度によって適宜選択されるものであるが、例えば、エポキシ樹脂、硬化剤、非ハロゲン系難燃剤及びその他の充填材や添加剤等全てを配合した硬化性樹脂組成物100質量部中、0.05~20質量部の範囲で配合することが好ましい。また前記シリコーン系難燃剤を使用する際、モリブデン化合物、アルミナ等を併用してもよい。
 前記無機系難燃剤としては、例えば、金属水酸化物、金属酸化物、金属炭酸塩化合物、金属粉、ホウ素化合物、低融点ガラス等が挙げられる。
 前記金属水酸化物の具体例としては、例えば、水酸化アルミニウム、水酸化マグネシウム、ドロマイト、ハイドロタルサイト、水酸化カルシウム、水酸化バリウム、水酸化ジルコニウム等を挙げることができる。
 前記金属酸化物の具体例としては、例えば、モリブデン酸亜鉛、三酸化モリブデン、スズ酸亜鉛、酸化スズ、酸化アルミニウム、酸化鉄、酸化チタン、酸化マンガン、酸化ジルコニウム、酸化亜鉛、酸化モリブデン、酸化コバルト、酸化ビスマス、酸化クロム、酸化ニッケル、酸化銅、酸化タングステン等を挙げることができる。
 前記金属炭酸塩化合物の具体例としては、例えば、炭酸亜鉛、炭酸マグネシウム、炭酸カルシウム、炭酸バリウム、塩基性炭酸マグネシウム、炭酸アルミニウム、炭酸鉄、炭酸コバルト、炭酸チタン等を挙げることができる。
 前記金属粉の具体例としては、例えば、アルミニウム、鉄、チタン、マンガン、亜鉛、モリブデン、コバルト、ビスマス、クロム、ニッケル、銅、タングステン、スズ等を挙げることができる。
 前記ホウ素化合物の具体例としては、例えば、ホウ酸亜鉛、メタホウ酸亜鉛、メタホウ酸バリウム、ホウ酸、ホウ砂等を挙げることができる。
 前記低融点ガラスの具体例としては、例えば、シープリー(ボクスイ・ブラウン社)、水和ガラスSiO-MgO-HO、PbO-B系、ZnO-P-MgO系、P-B-PbO-MgO系、P-Sn-O-F系、PbO-V-TeO系、Al-HO系、ホウ珪酸鉛系等のガラス状化合物を挙げることができる。
 前記無機系難燃剤の配合量としては、無機系難燃剤の種類、硬化性樹脂組成物の他の成分、所望の難燃性の程度によって適宜選択されるものであるが、例えば、エポキシ樹脂、硬化剤、非ハロゲン系難燃剤及びその他の充填材や添加剤等全てを配合した硬化性樹脂組成物100質量部中、0.05~20質量部の範囲で配合することが好ましく、特に0.5~15質量部の範囲で配合することが好ましい。
 前記有機金属塩系難燃剤としては、例えば、フェロセン、アセチルアセトナート金属錯体、有機金属カルボニル化合物、有機コバルト塩化合物、有機スルホン酸金属塩、金属原子と芳香族化合物又は複素環化合物がイオン結合又は配位結合した化合物等が挙げられる。
 前記有機金属塩系難燃剤の配合量としては、有機金属塩系難燃剤の種類、硬化性樹脂組成物の他の成分、所望の難燃性の程度によって適宜選択されるものであるが、例えば、エポキシ樹脂、硬化剤、非ハロゲン系難燃剤及びその他の充填材や添加剤等全てを配合した硬化性樹脂組成物100質量部中、0.005~10質量部の範囲で配合することが好ましい。
 本発明の硬化性樹脂組成物には、必要に応じて無機質充填材を配合することができる。前記無機質充填材としては、例えば、溶融シリカ、結晶シリカ、アルミナ、窒化珪素、水酸化アルミ等が挙げられる。前記無機充填材の配合量を特に大きくする場合は溶融シリカを用いることが好ましい。前記溶融シリカは破砕状、球状のいずれでも使用可能であるが、溶融シリカの配合量を高め且つ成形材料の溶融粘度の上昇を抑制するためには、球状のものを主に用いる方が好ましい。更に球状シリカの配合量を高めるためには、球状シリカの粒度分布を適当に調整することが好ましい。その充填率は難燃性を考慮して、高い方が好ましく、硬化性樹脂組成物の全体量に対して20質量%以上が特に好ましい。また導電ペーストなどの用途に使用する場合は、銀粉や銅粉等の導電性充填剤を用いることができる。
 本発明の硬化性樹脂組成物は、必要に応じて、シランカップリング剤、離型剤、顔料、乳化剤等の種々の配合剤を添加することができる。
 本発明の硬化性樹脂組成物は、上記した各成分を均一に混合することにより得られる。本発明のエポキシ樹脂、硬化剤、更に必要により硬化促進剤の配合された本発明の硬化性樹脂組成物は従来知られている方法と同様の方法で容易に硬化物とすることができる。該硬化物としては積層物、注型物、接着層、塗膜、フィルム等の成形硬化物が挙げられる。
 本発明の硬化性樹脂組成物が用いられる用途としては、硬質プリント配線板材料、フレキシルブル配線基板用樹脂組成物、ビルドアップ基板用層間絶縁材料等のプリント配線基板材料、半導体封止材料、導電ペースト、ビルドアップ用接着フィルム、樹脂注型材料、接着剤等が挙げられる。これら各種用途のうち、硬質プリント配線板材料、電子回路基板用絶縁材料、ビルドアップ用接着フィルム用途では、コンデンサ等の受動部品やICチップ等の能動部品を基板内に埋め込んだ所謂電子部品内蔵用基板用の絶縁材料として用いることができる。これらの中でも、高難燃性、高耐熱性、低熱膨張性、及び溶剤溶解性といった特性から硬質プリント配線板材料、フレキシルブル配線基板用樹脂組成物、ビルドアップ基板用層間絶縁材料等のプリント配線基板用材料、及び、半導体封止材料に用いることが好ましい。
 ここで、本発明のプリント配線基板は、前記したプリント配線基板用材料を各用途に応じて成形することによる製造することがきる。具体的には、硬質プリント配線基板を製造するには、前記有機溶剤(D)を含むワニス状の硬化性樹脂組成物を、更に有機溶剤(D)を配合してワニス化し、これを補強基材に含浸し銅箔を重ねて加熱圧着させる方法が挙げられる。ここで使用し得る補強基材は、紙、ガラス布、ガラス不織布、アラミド紙、アラミド布、ガラスマット、ガラスロービング布などが挙げられる。かかる方法を更に詳述すれば、先ず、前記したワニス状の硬化性樹脂組成物を、用いた溶剤種に応じた加熱温度、好ましくは50~170℃で加熱することによって、硬化物であるプリプレグを得る。この時用いる樹脂組成物と補強基材の質量割合としては、特に限定されないが、通常、プリプレグ中の樹脂分が20~60質量%となるように調製することが好ましい。次いで、上記のようにして得られたプリプレグを、常法により積層し、適宜銅箔を重ねて、1~10MPaの加圧下に170~250℃で10分~3時間、加熱圧着させることにより、目的とするプリント回路基板を得ることができる。
 本発明の硬化性樹脂組成物からフレキシルブル配線基板を製造するには、前記フェノール類、前記エポキシ樹脂(B)、硬化促進剤(C)、及び有機溶剤(D)を配合して、リバースロールコータ、コンマコータ等の塗布機を用いて、電気絶縁性フィルムに塗布する。次いで、加熱機を用いて60~170℃で1~15分間加熱し、溶媒を揮発させて、接着剤組成物をB-ステージ化する。次いで、加熱ロール等を用いて、接着剤に金属箔を熱圧着する。その際の圧着圧力は2~200N/cm、圧着温度は40~200℃が好ましい。それで十分な接着性能が得られれば、ここで終えても構わないが、完全硬化が必要な場合は、さらに100~200℃で1~24時間の条件で後硬化させることが好ましい。最終的に硬化させた後の接着剤組成物膜の厚みは、5~100μmの範囲が好ましい。
 本発明の硬化性樹脂組成物からビルドアップ基板用層間絶縁材料を得る方法としては、例えば、ゴム、フィラーなどを適宜配合した当該硬化性樹脂組成物を、回路を形成した配線基板にスプレーコーティング法、カーテンコーティング法等を用いて塗布した後、硬化させる。その後、必要に応じて所定のスルーホール部等の穴あけを行った後、粗化剤により処理し、その表面を湯洗することによって、凹凸を形成させ、銅などの金属をめっき処理する。前記めっき方法としては、無電解めっき、電解めっき処理が好ましく、また前記粗化剤としては酸化剤、アルカリ、有機溶剤等が挙げられる。このような操作を所望に応じて順次繰り返し、樹脂絶縁層及び所定の回路パターンの導体層を交互にビルドアップして形成することにより、ビルドアップ基盤を得ることができる。但し、スルーホール部の穴あけは、最外層の樹脂絶縁層の形成後に行う。また、銅箔上で当該樹脂組成物を半硬化させた樹脂付き銅箔を、回路を形成した配線基板上に、170~250℃で加熱圧着することで、粗化面を形成、メッキ処理の工程を省き、ビルドアップ基板を作製することも可能である。
 次に、本発明の半導体封止材料は、前記フェノール類(A)、前記エポキシ樹脂(B)、硬化促進剤(C)、及び無機充填剤等の配合剤とを必要に応じて押出機、ニ-ダ、ロ-ル等を用いて均一になるまで充分に溶融混合して得ることができる。その際、無機充填剤としては、通常シリカが用いられるが、その充填率はエポキシ樹脂組成物100質量部当たり、充填剤を30~95質量%の範囲が用いることが好ましく、中でも、難燃性や耐湿性や耐ハンダクラック性の向上、線膨張係数の低下を図るためには、70質量部以上が特に好ましく、それらの効果を格段に上げるためには、80質量部以上が一層その効果を高めることができる。半導体パッケージ成形としては、該組成物を注型、或いはトランスファー成形機、射出成形機などを用いて成形し、さらに50~200℃で2~10時間に加熱することにより成形物である半導体装置を得る方法がある。
 本発明の硬化性樹脂組成物からビルドアップ用接着フィルムを製造する方法は、例えば、本発明の硬化性樹脂組成物を、支持フィルム上に塗布し樹脂組成物層を形成させて多層プリント配線板用の接着フィルムとする方法が挙げられる。
 本発明の硬化性樹脂組成物をビルドアップ用接着フィルムに用いる場合、該接着フィルムは、真空ラミネート法におけるラミネートの温度条件(通常70℃~140℃)で軟化し、回路基板のラミネートと同時に、回路基板に存在するビアホール或いはスルーホール内の樹脂充填が可能な流動性(樹脂流れ)を示すことが肝要であり、このような特性を発現するよう上記各成分を配合することが好ましい。
 ここで、多層プリント配線板のスルホールの直径は通常0.1~0.5mm、深さは通常0.1~1.2mmであり、通常この範囲で樹脂充填を可能とするのが好ましい。なお回路基板の両面をラミネートする場合はスルーホールの1/2程度充填されることが望ましい。
 上記した接着フィルムを製造する方法は、具体的には、ワニス状の本発明の硬化性樹脂組成物を調製した後、支持フィルムの表面に、このワニス状の組成物を塗布し、更に加熱、あるいは熱風吹きつけ等により有機溶剤を乾燥させて硬化性樹脂組成物の層(α)を形成させることにより製造することができる。
 形成される層(α)の厚さは、通常、導体層の厚さ以上とする。回路基板が有する導体層の厚さは通常5~70μmの範囲であるので、樹脂組成物層の厚さは10~100μmの厚みを有するのが好ましい。
 なお、前記層(α)は、後述する保護フィルムで保護されていてもよい。保護フィルムで保護することにより、樹脂組成物層表面へのゴミ等の付着やキズを防止することができる。
 前記した支持フィルム及び保護フィルムは、ポリエチレン、ポリプロピレン、ポリ塩化ビニル等のポリオレフィン、ポリエチレンテレフタレート(以下「PET」と略称することがある。)、ポリエチレンナフタレート等のポリエステル、ポリカーボネート、ポリイミド、更には離型紙や銅箔、アルミニウム箔等の金属箔などを挙げることができる。なお、支持フィルム及び保護フィルムはマッド処理、コロナ処理の他、離型処理を施してあってもよい。
 支持フィルムの厚さは特に限定されないが、通常10~150μmであり、好ましくは25~50μmの範囲で用いられる。また保護フィルムの厚さは1~40μmとするのが好ましい。
 上記した支持フィルムは、回路基板にラミネートした後に、或いは加熱硬化することにより絶縁層を形成した後に、剥離される。接着フィルムを加熱硬化した後に支持フィルムを剥離すれば、硬化工程でのゴミ等の付着を防ぐことができる。硬化後に剥離する場合、通常、支持フィルムには予め離型処理が施される。
 次に、上記のようして得られた接着フィルムを用いて多層プリント配線板を製造する方法は、例えば、層(α)が保護フィルムで保護されている場合はこれらを剥離した後、層(α)を回路基板に直接接するように、回路基板の片面又は両面に、例えば真空ラミネート法によりラミネートする。ラミネートの方法はバッチ式であってもロールでの連続式であってもよい。またラミネートを行う前に接着フィルム及び回路基板を必要により加熱(プレヒート)しておいてもよい。
 ラミネートの条件は、圧着温度(ラミネート温度)を好ましくは70~140℃、圧着圧力を好ましくは1~11kgf/cm(9.8×10~107.9×10N/m2)とし、空気圧20mmHg(26.7hPa)以下の減圧下でラミネートすることが好ましい。
 本発明の硬化性樹脂組成物を導電ペーストとして使用する場合には、例えば、微細導電性粒子を該硬化性樹脂組成物中に分散させ異方性導電膜用組成物とする方法、室温で液状である回路接続用ペースト樹脂組成物や異方性導電接着剤とする方法が挙げられる。
 本発明の硬化物を得る方法は、加熱温度条件等を組み合わせる硬化剤の種類や用途等によって、適宜選択すればよいが、例えば、上記方法によって得られた組成物を、20~250℃程度の温度範囲で硬化させる方法が挙げられる。
 以上詳述した通り、本発明のリン原子含有フェノール類を用いることによって、従来のリンで変性したフェノール樹脂に比べ溶剤溶解性が飛躍的に向上し、さらに硬化物とした際、難燃性と耐熱性及び耐熱信頼性が発現でき、最先端のプリント配線板材料に適用できる。また、該フェノール樹脂は、本発明の製造方法にて容易に効率よく製造する事が出来、目的とする前述の性能のレベルに応じた分子設計が可能となる。
 次に本発明を実施例、比較例により具体的に説明する。尚、180℃における溶融粘度及びGPC測定、NMR、MSスペクトルは以下の条件にて測定した。
1)180℃における溶融粘度:ASTM D4287に準拠
2)軟化点測定法:JIS K7234
3)GPC:測定条件は以下の通り。
 測定装置 :東ソー株式会社製「HLC-8220 GPC」、
 カラム:東ソー株式会社製ガードカラム「HXL-L」
    +東ソー株式会社製「TSK-GEL G2000HXL」
    +東ソー株式会社製「TSK-GEL G2000HXL」
    +東ソー株式会社製「TSK-GEL G3000HXL」
    +東ソー株式会社製「TSK-GEL G4000HXL」
 検出器: RI(示差屈折径)
 データ処理:東ソー株式会社製「GPC-8020モデルIIバージョン4.10」
 測定条件: カラム温度  40℃
       展開溶媒   テトラヒドロフラン
       流速     1.0ml/分
 標準  : 前記「GPC-8020モデルIIバージョン4.10」の測定マニュアルに準拠して、分子量が既知の下記の単分散ポリスチレンを用いた。
  (使用ポリスチレン)
   東ソー株式会社製「A-500」
   東ソー株式会社製「A-1000」
   東ソー株式会社製「A-2500」
   東ソー株式会社製「A-5000」
   東ソー株式会社製「F-1」
   東ソー株式会社製「F-2」
   東ソー株式会社製「F-4」
   東ソー株式会社製「F-10」
   東ソー株式会社製「F-20」
   東ソー株式会社製「F-40」
   東ソー株式会社製「F-80」
   東ソー株式会社製「F-128」
 試料  : 樹脂固形分換算で1.0質量%のテトラヒドロフラン溶液をマイクロフィルターでろ過したもの(50μl)。
5)NMR:日本電子株式会社製 NMR GSX270
6)MS :日本電子株式会社製 二重収束型質量分析装置 AX505H(FD505H)
 実施例1〔フェノール樹脂(A-1)の合成〕
 温度計、冷却管、分留管、窒素ガス導入管、撹拌器を取り付けたフラスコに、フェノールノボラック樹脂192.4g(1.85モル)とp-アニスアルデヒド68.0g(0.50モル)と9,10-ジヒドロ-9-オキサ-10-ホスファフェナントレン-10-オキサイド(以下、「HCA」と略記する。)108.0g(0.50モル)を仕込み、180℃まで昇温し180℃で8時間反応させた。次いで、水を加熱減圧下に除去し、下記構造単位A及び構造単位B
Figure JPOXMLDOC01-appb-C000041


を繰り返し単位とするフェノール樹脂(A-1)355gを得た。得られたフェノール樹脂の軟化点は125℃(B&R法)、溶融粘度(測定法:ICI粘度計法、測定温度:180℃)は13dPa・s、水酸基当量は190g/eq.リン含有量4.2質量%であった。
得られたフェノール樹脂(A-1)のGPCチャートを図1に、C13 NMRチャートを図2に、MSスペクトルを図3に示す。
 実施例2〔フェノール樹脂(A-2)の合成〕
 実施例1において、フェノールノボラック樹脂を136.6g(1.31モル)に変えた以外は実施例1と同様にして、下記構造単位A及び構造単位B
Figure JPOXMLDOC01-appb-C000042

を繰り返し単位とするフェノール樹脂(A-2)290gを得た。これの軟化点は148℃(B&R法)、溶融粘度(測定法:ICI粘度計法、測定温度:180℃)は400dPa・s、水酸基当量は230g/eq.リン含有量4.9質量%であった。
得られたフェノール樹脂(A-2)のGPCチャートを図4に示す。
 実施例3〔フェノール樹脂(A-3)の合成〕
 実施例1において、フェノールノボラック樹脂の代わりにビスフェノールAノボラック樹脂330.4g(2.80モル)に変えた以外は実施例1と同様にして、下記構造単位C及び構造単位D
Figure JPOXMLDOC01-appb-C000043

を繰り返し単位とするフェノール樹脂(A-3)490gを得た。これの軟化点は139℃(B&R法)、溶融粘度(測定法:ICI粘度計法、測定温度:180℃)は65dPa・s、水酸基当量は232g/eq.リン含有量3.1質量%であった。
得られたフェノール樹脂(A-3)のGPCチャートを図5に示す。
 実施例4〔フェノール樹脂(A-4)の合成〕
 実施例1において、フェノールノボラック樹脂の代わりにフェニルアラルキル樹脂392.9g(2.35モル)に変えた以外は実施例1と同様にして、下記構造単位E及び構造単位F
Figure JPOXMLDOC01-appb-C000044

を繰り返し単位とするフェノール樹脂(A-4)550gを得た。得られたフェノール樹脂の軟化点は102℃(B&R法)、溶融粘度(測定法:ICI粘度計法、測定温度:150℃)は2.5dPa・s、水酸基当量は232g/eq.リン含有量2.7質量%であった。得られたフェノール樹脂(A-4)のGPCチャートを図6に示す。
 実施例5〔フェノール樹脂(A-5)の合成〕
 実施例4において、フェニルアラルキル樹脂の重量部を211.25g(1.25モル)に変えた以外は実施例4と同様にして、下記構造単位E及び構造単位F
Figure JPOXMLDOC01-appb-C000045

を繰り返し単位とするフェノール樹脂(A-5)370gを得た。これの軟化点は140℃(B&R法)、溶融粘度(測定法:ICI粘度計法、測定温度:150℃)は50dPa・s、水酸基当量は303g/eq.リン含有量4.5質量%であった。
得られたフェノール樹脂(A-5)のGPCチャートを図7に示す。
 実施例6〔フェノール化合物(A-6)の合成〕
 温度計、冷却管、分留管、窒素ガス導入管、撹拌器を取り付けたフラスコに、ビスフェノールF200g(1.0モル)とp-アニスアルデヒド136g(1.0モル)とHCA216g(1.0モル)を仕込み、180℃まで昇温し180℃で8時間反応させた。次いで、水を加熱減圧下に除去し、下記構造式
Figure JPOXMLDOC01-appb-C000046

で表される構造単位を有するフェノール化合物(A-6)520gを得た。得られた多価ヒドロキシ化合物のGPCチャートを図8に示す。リン含有量は5.6質量%であった。
 実施例7〔フェノール化合物(A-7)の合成〕
 実施例6において、ビスフェノールFの代わりに、レゾルシノール110g(1.0モル)に変えた以外は実施例6と同様にして、
Figure JPOXMLDOC01-appb-C000047

で表される構造単位を有するフェノール化合物(A-7)440gを得た。
得られたフェノール化合物(A-7)のGPCチャートを図9に示す。リン含有量は6.7質量%であった。
 実施例8〔フェノール化合物(A-8)の合成〕
 実施例6において、ビスフェノールFの代わりに、2,7-ジヒドロキシナフタレン160g(1.0モル)に変えた以外は実施例6と同様にして
Figure JPOXMLDOC01-appb-C000048

で表される構造単位を有するフェノール化合物(A-8)490gを得た。得られたフェノール化合物(A-8)のGPCチャートを図10に示す。リン含有量は6.3質量%であった。
 合成例1〔前記特許文献1(特許第3464783号公報)記載の化合物の合成〕
 HCA216g(1.0mol)と42質量%ホルマリン水溶液71g(1.0mol)を反応容器に仕込み、100℃まで昇温し、4時間反応させた。次いで析出した固体をろ別し、アセトンで洗浄して2-(6-オキシド-6H-ジベンズ<c,e><1,2>オキサ-ホスフォリン-6-イル)メタノール(以下、ODOPMと称する)245gを得た。得られた化合物は、融点152~154℃であった。
 合成例2〔前記特許文献1(特許第3464783号公報)記載の化合物(フェノール樹脂(A-9))の合成〕
 ナスフラスコに、フェノールノボラック樹脂144g(1.0モル)を仕込み、窒素気流下、攪拌しながら100℃に昇温した。昇温後、ODOPM230g(1.0モル)を添加して、140℃に加熱して、12時間維持した。次いで、その混合物は室温に冷却されて、ろ過、乾燥を経て、フェノール樹脂(A-9)を得た。得られたフェノール樹脂(A-9)のGPCチャートを図11に示す。
 合成例3〔前記特許文献2(特許第3476780号公報)記載のフェノール化合物(フェノール化合物(A-10))の合成〕
 温度計、冷却管、分留管、窒素ガス導入管、撹拌器を取り付けたフラスコに、HCA216g(1.0モル)とトルエン216gを仕込み、110℃まで昇温して加熱溶解させる。次いで、p-ヒドロキシベンズアルデヒド122g(1.0モル)を仕込み、180℃まで昇温し180℃で8時間反応させた後、ろ過、乾燥を経て、下記構造式
Figure JPOXMLDOC01-appb-C000049

で表されるフェノール化合物(A-10)を335g得た。得られたフェノール化合物(A-11)の融点は286℃であった。得られたフェノール化合物のGPCチャートを図12に示す。
 合成例4〔フェノール樹脂(A-11)の合成〕
 温度計、冷却管、分留管、窒素ガス導入管、撹拌器を取り付けたフラスコに、フェノールノボラック樹脂457.6g(4.4モル)と216g(1.0モル)とp-ヒドロキシベンズアルデヒド122g(1.0モル)を仕込み、180℃まで昇温し180℃で8時間反応させた。ついで、水を加熱減圧下で除去し、下記構造単位G及び構造単位H
Figure JPOXMLDOC01-appb-C000050

を繰り返し単位とするフェノール樹脂(A-11)750gを得た。得られたフェノール樹脂の軟化点は150℃(B&R法)、溶融粘度(測定法:ICI粘度計法、測定温度:150℃)は120dPa・s、水酸基当量は164g/eq、リン含有量3.7質量%であった。得られたフェノール樹脂(A-11)のGPCチャートを図13に示す。
 実施例9~13、比較例1~4
 表1に示した配合に従い、下記の方法でエポキシ樹脂組成物を調整、次いで、下記の条件で硬化させて、積層板を試作し、各種評価を行った。結果を表1に示す。
[エポキシ樹脂組成物の調整]
 下記表1記載の組成に従い、エポキシ樹脂、硬化剤及びその他の各成分を配合た後、最終的に組成物の不揮発分(N.V.)が58質量%となるように調整した。
[積層板作製条件]
基材:100μm;日東紡績株式会社製ガラスクロス「#2116」
プライ数:6
プリプレグ化条件:160℃/2分
銅箔::18μm;日鉱金属株式会社製 JTC箔
硬化条件:200℃、40kg/cm2で1.5時間
成型後板厚:0.8mm
[物性試験条件]
ガラス転移温度:エッチング処理を施し銅箔除去した後、TMA法(圧縮荷重法)にて測定。昇温スピード10℃/分。
燃焼試験:試験方法はUL-94垂直試験に準拠。
耐熱剥離性試験(Time to Delamination):
IPC TM650に準拠し、288℃における耐熱剥離性評価(銅箔付)を実施した。
熱分解温度:TGAにて5%重量減少時の温度を測定。
昇温スピード10℃/分(乾燥空気雰囲気下)。
Figure JPOXMLDOC01-appb-T000051

表1中の略号は下記の通りである。
「A-1」:実施例1で得られたフェノール樹脂(A-1)
「A-2」:実施例2で得られたフェノール樹脂(A-2)
「A-3」:実施例3で得られたフェノール樹脂(A-3)
「A-4」:実施例4で得られたフェノール樹脂(A-4)
「A-5」:実施例5で得られたフェノール樹脂(A-5)
「A-9」:合成例2で得られたフェノール樹脂(A-9)
「A-10」:合成例3で得られたフェノール化合物(A-10)
「A-11」:合成例4で得られたフェノール樹脂(A-11)
「TD-2090」:フェノールノボラック樹脂(DIC製「TD-2090」水酸基当量:105g/eq)、
「N-770」:フェノールノボラック型エポキシ樹脂(DIC製「N-770」、エポキシ当量185g/eq)、
「FX-289BER75」:リン変性エポキシ樹脂(東都化成製「FX-289BER75」:クレゾールノボラック型エポキシ樹脂に9,10-ジヒドロ-9-オキサ-10-ホスファフェナントレン-10-オキサイドを反応させて得られたエポキシ樹脂、エポキシ当量330g/eq.、リン含有量3.0質量%)

Claims (17)

  1. アルコキシ基を芳香核上の置換基として有する芳香族アルデヒド(a1)、及び、P-H基又はP-OH基を分子構造中に有する有機リン化合物(a2)を反応させ、次いで、得られた反応生成物をフェノール類(a3)と反応させることを特徴とするリン原子含有フェノール類の製造方法。
  2. 前記芳香族アルデヒド(a1)が、該芳香族アルデヒド(a1)中のアルコキシ基としてメトキシ基又はエトキシ基を有するものである請求項1記載の製造方法。
  3. 前記P-H基又はP-OH基を分子構造中に有する有機リン化合物(a2)が、下記構造式(A2-a)又は構造式(A2-b)
    Figure JPOXMLDOC01-appb-C000001

    (上記構造式(A2-a)又は構造式(A2-b)中、R、R、R、Rはそれぞれ独立的に、水素原子、炭素原子数1~5のアルキル基、塩素原子、臭素原子、フェニル基、アラルキル基を、Xaは水素原子又は水酸基を表す。)
    で表されるものである請求項1記載の製造方法。
  4. 前記フェノール類(a3)が、2価フェノール、又は多官能型フェノール樹脂である請求項1記載の製造方法。
  5. 前記多官能型フェノール樹脂が、ノボラック型フェノール樹脂又はアラルキル型フェノール樹脂である請求項4記載の製造方法。
  6. 前記2価フェノールが、ジヒドロキシナフタレンである請求項4記載の製造方法。
  7. 請求項1~6の何れか1つに記載の製造方法によって得られた分子構造を有することを特徴とする新規リン原子含有フェノール類。
  8. 下記構造式(I)
    Figure JPOXMLDOC01-appb-C000002

    で表される化学構造を有しており、前記構造式(I)中、Arはベンゼン環又はナフタレン環を、Fcは水素原子又は水酸基を表し、かつ、Zは下記構造式z1~z4
    Figure JPOXMLDOC01-appb-C000003

    (上記構造式z1~z4中、R、R、R、Rは、それぞれ独立的に、水素原子、炭素原子数1~5のアルキル基、塩素原子、臭素原子、フェニル基、アラルキル基を表し、Rは水素原子又は炭素原子数1~5のアルキル基を表し、Rは炭素原子1~4のアルキル基を表し、nは芳香核上の置換基ORの数であり1~3である。)
    で表される部分構造からなる群から選択される構造部位であることを特徴とする新規フェノール樹脂。
  9. ノボラック型フェノール樹脂構造を有し、かつ、その芳香核上の置換基として、下記構造式z1~z4
    Figure JPOXMLDOC01-appb-C000004

    (上記構造式z1~z4中、R、R、R、Rは、それぞれ独立的に、水素原子、炭素原子数1~5のアルキル基、塩素原子、臭素原子、フェニル基、アラルキル基を表し、Rは水素原子又は炭素原子数1~5のアルキル基を表し、Rは炭素原子1~4のアルキル基を表し、nは芳香核上の置換基ORの数であり1~3である。)
    で表される部分構造からなる群から選択される構造部位を有することを特徴とする新規フェノール類。
  10. 下記構造式(II)
    Figure JPOXMLDOC01-appb-C000005


    で表される構造を繰り返し単位とする新規フェノール類であって、前記構造式(II)中、Rが水素原子又は炭素原子数1~6のアルキル基であり、かつ、Zが、水素原子、下記構造式z1~z4
    Figure JPOXMLDOC01-appb-C000006

    (上記構造式z1~z4中、R、R、R、Rは、それぞれ独立的に、水素原子、炭素原子数1~5のアルキル基、塩素原子、臭素原子、フェニル基、アラルキル基を表し、Rは水素原子又は炭素原子数1~5のアルキル基を表し、Rは炭素原子1~4のアルキル基を表し、nは芳香核上の置換基ORの数であり1~3である。)
    からなる群から選択され、かつ、該新規フェノール樹脂中、Zの少なくとも一つは前記構造式z1~z4で表される部分構造から選択される構造部位を有することを特徴とする新規フェノール類。
  11. フェノール類(A)とエポキシ樹脂(B)とを必須成分とする硬化性樹脂組成物であって、前記フェノール類(A)が、請求項7、8、9、又は10記載の新規フェノール類であることを特徴とする硬化性樹脂組成物。
  12. 前記フェノール類(A)と、前記エポキシ樹脂(B)との配合比率が、エポキシ樹脂(B)のエポキシ基の合計1当量に対して、フェノール類(A)中の活性水素が0.7~1.5当量となる割合である請求項11記載の硬化性樹脂組成物。
  13. 前記フェノール類(A)及び前記エポキシ樹脂(B)に加え、更に硬化促進剤(C)を配合する請求項11記載の硬化性樹脂組成物。
  14. (A)成分~(C)成分に加え、更に、有機溶剤(D)を含有する請求項13記載の硬化性樹脂組成物。
  15. 請求項11記載の硬化性樹脂組成物を硬化させてなる硬化物。
  16. 請求項14記載の組成物を硬化させてなるプリント配線基板。
  17. 請求項13記載の組成物に加え、更に無機充填剤を含有する半導体封止材料。
PCT/JP2009/063858 2009-03-18 2009-08-05 リン原子含有フェノール類の製造方法、新規リン原子含有フェノール類、硬化性樹脂組成物、その硬化物、プリント配線基板、及び半導体封止材料 WO2010106698A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2009552602A JP4548547B1 (ja) 2009-03-18 2009-08-05 リン原子含有フェノール類の製造方法、新規リン原子含有フェノール類、硬化性樹脂組成物、その硬化物、プリント配線基板、及び半導体封止材料
KR1020117021592A KR101310697B1 (ko) 2009-03-18 2009-08-05 인 원자 함유 페놀류의 제조 방법, 신규 인 원자 함유 페놀류, 경화성 수지 조성물, 그 경화물, 프린트 배선 기판, 및 반도체 봉지 재료
CN200980158126.9A CN102356088B (zh) 2009-03-18 2009-08-05 含有磷原子的酚类的制造方法、含有磷原子的酚类、固化性树脂组合物、其固化物、印刷布线基板、以及半导体密封材料
US13/256,724 US8288003B2 (en) 2009-03-18 2009-08-05 Method for producing phosphorus-containing phenolic compound, novel phosphorus-containing phenol, curable resin composition, cured product of the same, printed wiring board, and semiconductor sealing material
EP09841900.5A EP2409979B1 (en) 2009-03-18 2009-08-05 Process for production of phosphorus-atom-containing phenol, novel phosphorus-atom-containing phenol, curable resin composition, cured product thereof, printed circuit board, and semiconductor sealing material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009066083 2009-03-18
JP2009-066083 2009-03-18

Publications (1)

Publication Number Publication Date
WO2010106698A1 true WO2010106698A1 (ja) 2010-09-23

Family

ID=42739364

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/063858 WO2010106698A1 (ja) 2009-03-18 2009-08-05 リン原子含有フェノール類の製造方法、新規リン原子含有フェノール類、硬化性樹脂組成物、その硬化物、プリント配線基板、及び半導体封止材料

Country Status (7)

Country Link
US (1) US8288003B2 (ja)
EP (1) EP2409979B1 (ja)
JP (1) JP4548547B1 (ja)
KR (1) KR101310697B1 (ja)
CN (1) CN102356088B (ja)
TW (1) TWI466927B (ja)
WO (1) WO2010106698A1 (ja)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010215842A (ja) * 2009-03-18 2010-09-30 Dic Corp リン原子含有フェノール類の製造方法、新規リン原子含有フェノール類、新規フェノール樹脂、硬化性樹脂組成物、その硬化物、プリント配線基板用樹脂組成物、プリント配線基板、フレキシブル配線基板用樹脂組成物、半導体封止材料用樹脂組成物、及びビルドアップ基板用層間絶縁材料用樹脂組成物
JP2011157434A (ja) * 2010-01-29 2011-08-18 Dic Corp リン原子含有フェノール類の製造方法、リン原子含有フェノール類、硬化性樹脂組成物、その硬化物、プリント配線基板用樹脂組成物、プリント配線基板、フレキシブル配線基板用樹脂組成物、半導体封止材料用樹脂組成物、及びビルドアップ基板用層間絶縁材料用樹脂組成物
JP2011195748A (ja) * 2010-03-23 2011-10-06 Dic Corp 硬化性樹脂組成物、その硬化物、リン原子含有フェノール類の製造方法、プリント配線基板用樹脂組成物、プリント配線基板、フレキシブル配線基板用樹脂組成物、半導体封止材料用樹脂組成物、及びビルドアップ基板用層間絶縁材料用樹脂組成物
WO2011152412A1 (ja) * 2010-05-31 2011-12-08 日立化成工業株式会社 エポキシ樹脂組成物、このエポキシ樹脂組成物を用いたプリプレグ、支持体付き樹脂フィルム、金属箔張り積層板及び多層プリント配線板
JP2012012589A (ja) * 2010-05-31 2012-01-19 Hitachi Chem Co Ltd エポキシ樹脂組成物、このエポキシ樹脂組成物を用いたプリプレグ、支持体付き樹脂フィルム、金属箔張り積層板及び多層プリント配線板
JP2012012588A (ja) * 2010-05-31 2012-01-19 Hitachi Chem Co Ltd エポキシ樹脂組成物、このエポキシ樹脂組成物を用いたプリプレグ、支持体付き樹脂フィルム、金属箔張り積層板及び多層プリント配線板
JP2012057058A (ja) * 2010-09-09 2012-03-22 Dic Corp リン原子含有エポキシ樹脂の製造方法、硬化性樹脂組成物、その硬化物、プリント配線基板用樹脂組成物、プリント配線基板、フレキシブル配線基板用樹脂組成物、半導体封止材料用樹脂組成物、及びビルドアップ基板用層間絶縁材料用樹脂組成物
WO2012070202A1 (ja) * 2010-11-24 2012-05-31 パナソニック株式会社 高耐熱性エポキシ樹脂組成物、プリプレグ、金属張積層板およびプリント配線板
CN102532490A (zh) * 2010-11-25 2012-07-04 新日铁化学株式会社 含磷酚醛树脂、该树脂组合物及固化物
JP2012158708A (ja) * 2011-02-02 2012-08-23 Dic Corp 新規リン原子含有エポキシ樹脂、その製造方法、硬化性樹脂組成物、その硬化物、プリント配線基板用樹脂組成物、プリント配線基板、フレキシブル配線基板用樹脂組成物、半導体封止材料用樹脂組成物、及びビルドアップ基板用層間絶縁材料用樹脂組成物
JP2012251133A (ja) * 2011-05-10 2012-12-20 Ajinomoto Co Inc 樹脂組成物
JP2013087253A (ja) * 2011-10-21 2013-05-13 Panasonic Corp エポキシ樹脂組成物、プリプレグ、金属張積層板およびプリント配線板
WO2013141247A1 (ja) * 2012-03-21 2013-09-26 Dic株式会社 活性エステル樹脂、熱硬化性樹脂組成物、その硬化物、半導体封止材料、プリプレグ、回路基板、及びビルドアップフィルム
JP2013203856A (ja) * 2012-03-28 2013-10-07 Dic Corp 難燃性ポリアミド樹脂組成物、及びその成形体
JP2014043486A (ja) * 2012-08-24 2014-03-13 Dic Corp 難燃性ポリアミド樹脂組成物、及びその成形体
US20140296452A1 (en) * 2013-03-28 2014-10-02 Nan Ya Plastics Corporation Halogen-free, nonflammable and high glass transition temperature phenolic resin-based curing agent and process for producing the same
JP2014227428A (ja) * 2013-05-17 2014-12-08 明和化成株式会社 リン含有フェノール樹脂、その製造方法及びその使用
JP5637418B1 (ja) * 2013-06-10 2014-12-10 Dic株式会社 リン原子含有活性エステル樹脂、エポキシ樹脂組成物、その硬化物、プリプレグ、回路基板、及びビルドアップフィルム
JP5651169B2 (ja) * 2010-04-23 2015-01-07 パナソニック株式会社 エポキシ樹脂組成物、プリプレグ、金属張積層板およびプリント配線板
JP2016094504A (ja) * 2014-11-12 2016-05-26 Dic株式会社 難燃性樹脂組成物、成形体およびそれらの製造方法

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5532307B2 (ja) * 2010-01-29 2014-06-25 Dic株式会社 リン原子含有多官能フェノールの製造方法、リン原子含有多官能フェノール、硬化性樹脂組成物、その硬化物、プリント配線基板用樹脂組成物、プリント配線基板、フレキシブル配線基板用樹脂組成物、半導体封止材料用樹脂組成物、及びビルドアップ基板用層間絶縁材料用樹脂組成物。
JP4657369B1 (ja) * 2010-02-24 2011-03-23 エンパイア テクノロジー ディベロップメント エルエルシー 配線基板及びその製造方法、並びに配線基板の分解方法
WO2011158751A1 (ja) * 2010-06-14 2011-12-22 住友ベークライト株式会社 ノボラック型フェノール樹脂の製造方法
JP5910866B2 (ja) * 2012-03-06 2016-04-27 Dic株式会社 活性エステル樹脂、熱硬化性樹脂組成物、その硬化物、半導体封止材料、プリプレグ、回路基板、及びビルドアップフィルム
JP5924185B2 (ja) * 2012-08-14 2016-05-25 Dic株式会社 ビニルエステル化合物、ビニルエステル樹脂、その製造方法、感光性樹脂組成物、その硬化物、及びレジストインキ
WO2014141740A1 (ja) * 2013-03-14 2014-09-18 Dic株式会社 変性ノボラック型フェノール樹脂、レジスト材料、塗膜及びレジスト永久膜
CN103382242B (zh) 2013-06-25 2015-06-24 江苏雅克科技股份有限公司 含磷阻燃酚醛树脂及以其为原料制备的阻燃环氧树脂固化物
CN103554441B (zh) * 2013-09-18 2016-08-17 南亚塑胶工业股份有限公司 一种无卤难燃及高玻璃化转变温度的酚醛树脂硬化剂及其制备方法
KR101718107B1 (ko) * 2015-08-21 2017-03-20 영창케미칼 주식회사 그 재질로 형성된 패턴 상에 후속 유기물 패턴공정 수행이 가능한특성을 갖는 네거티브 포토레지스트 조성물, 그 조성물을 이용한 광센서 제조방법 및 그 방법으로 제조된 광센서
TWI731986B (zh) * 2016-06-29 2021-07-01 日商迪愛生股份有限公司 苯酚酚醛清漆樹脂、硬化性樹脂組成物及其硬化物
CN106001394B (zh) * 2016-07-06 2018-01-16 宁夏共享化工有限公司 一种3d型砂打印热硬酚醛树脂用硬化促进剂及其制备方法
WO2018180267A1 (ja) 2017-03-29 2018-10-04 新日鉄住金化学株式会社 リン含有フェノール化合物、リン含有エポキシ樹脂、その硬化性樹脂組成物又はエポキシ樹脂組成物及びその硬化物
JP7010288B2 (ja) * 2017-06-21 2022-01-26 Dic株式会社 活性エステル樹脂並びにこれを用いた組成物および硬化物
WO2022040633A1 (en) 2020-08-21 2022-02-24 The University Of Southern Mississippi Phenylphosphine oxide and oxygen stable epoxy polymers and methods of synthesis

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11166035A (ja) * 1997-09-09 1999-06-22 Toto Kasei Co Ltd リン含有エポキシ樹脂組成物
JP2001220427A (ja) * 2000-01-04 2001-08-14 National Science Council リン含有硬化剤およびそれを用いた難燃性硬化エポキシ樹脂
JP2002037852A (ja) * 2000-07-19 2002-02-06 Choshun Jinzo Jushisho Kofun Yugenkoshi 難燃性樹脂とその樹脂の組成物

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60126293A (ja) * 1983-12-09 1985-07-05 Sanko Kaihatsu Kagaku Kenkyusho:Kk 環状有機りん化合物及びその製造方法
JPH0784509B2 (ja) * 1991-08-02 1995-09-13 北興化学工業株式会社 リン含有エポキシ樹脂の製造方法
JP2000080251A (ja) 1998-09-03 2000-03-21 Matsushita Electric Works Ltd リン変性難燃性エポキシ樹脂組成物およびその製造方法およびそのリン変性難燃性エポキシ樹脂組成物を用いた成形品および積層体
JP2001354685A (ja) * 2000-06-16 2001-12-25 Dainippon Ink & Chem Inc 燐原子含有フェノール化合物とその製造方法
CN101027336B (zh) * 2004-09-01 2010-12-08 大日本油墨化学工业株式会社 环氧树脂组合物、其固化物、半导体封装材料、新型酚醛树脂、新型环氧树脂、新型酚醛树脂的制造方法及新型环氧树脂的制造方法
JP5321057B2 (ja) * 2006-03-31 2013-10-23 住友ベークライト株式会社 半導体封止用樹脂組成物及び半導体装置
JP2008214498A (ja) * 2007-03-05 2008-09-18 Dic Corp アルデヒド基含有フェノール系樹脂組成物、これを含有するフェノール樹脂組成物及び成形材料

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11166035A (ja) * 1997-09-09 1999-06-22 Toto Kasei Co Ltd リン含有エポキシ樹脂組成物
JP3613724B2 (ja) 1997-09-09 2005-01-26 東都化成株式会社 リン含有エポキシ樹脂組成物
JP2001220427A (ja) * 2000-01-04 2001-08-14 National Science Council リン含有硬化剤およびそれを用いた難燃性硬化エポキシ樹脂
JP3464783B2 (ja) 2000-01-04 2003-11-10 行政院國家科學委員會 リン含有硬化剤およびそれを用いた難燃性硬化エポキシ樹脂
JP2002037852A (ja) * 2000-07-19 2002-02-06 Choshun Jinzo Jushisho Kofun Yugenkoshi 難燃性樹脂とその樹脂の組成物
JP3476780B2 (ja) 2000-07-19 2003-12-10 長春人▲造▼樹脂廠股▲分▼有限公司 難燃性樹脂とその樹脂の組成物

Cited By (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010215842A (ja) * 2009-03-18 2010-09-30 Dic Corp リン原子含有フェノール類の製造方法、新規リン原子含有フェノール類、新規フェノール樹脂、硬化性樹脂組成物、その硬化物、プリント配線基板用樹脂組成物、プリント配線基板、フレキシブル配線基板用樹脂組成物、半導体封止材料用樹脂組成物、及びビルドアップ基板用層間絶縁材料用樹脂組成物
JP2011157434A (ja) * 2010-01-29 2011-08-18 Dic Corp リン原子含有フェノール類の製造方法、リン原子含有フェノール類、硬化性樹脂組成物、その硬化物、プリント配線基板用樹脂組成物、プリント配線基板、フレキシブル配線基板用樹脂組成物、半導体封止材料用樹脂組成物、及びビルドアップ基板用層間絶縁材料用樹脂組成物
JP2011195748A (ja) * 2010-03-23 2011-10-06 Dic Corp 硬化性樹脂組成物、その硬化物、リン原子含有フェノール類の製造方法、プリント配線基板用樹脂組成物、プリント配線基板、フレキシブル配線基板用樹脂組成物、半導体封止材料用樹脂組成物、及びビルドアップ基板用層間絶縁材料用樹脂組成物
JP5651169B2 (ja) * 2010-04-23 2015-01-07 パナソニック株式会社 エポキシ樹脂組成物、プリプレグ、金属張積層板およびプリント配線板
US8980424B2 (en) 2010-05-31 2015-03-17 Hitachi Chemical Company, Ltd. Prepreg, metal-clad laminate, and printed circuit board
JP2012012589A (ja) * 2010-05-31 2012-01-19 Hitachi Chem Co Ltd エポキシ樹脂組成物、このエポキシ樹脂組成物を用いたプリプレグ、支持体付き樹脂フィルム、金属箔張り積層板及び多層プリント配線板
JP2012012588A (ja) * 2010-05-31 2012-01-19 Hitachi Chem Co Ltd エポキシ樹脂組成物、このエポキシ樹脂組成物を用いたプリプレグ、支持体付き樹脂フィルム、金属箔張り積層板及び多層プリント配線板
WO2011152413A1 (ja) * 2010-05-31 2011-12-08 日立化成工業株式会社 プリプレグ、金属張積層板及び印刷配線板
WO2011152412A1 (ja) * 2010-05-31 2011-12-08 日立化成工業株式会社 エポキシ樹脂組成物、このエポキシ樹脂組成物を用いたプリプレグ、支持体付き樹脂フィルム、金属箔張り積層板及び多層プリント配線板
JP2016153497A (ja) * 2010-05-31 2016-08-25 日立化成株式会社 エポキシ樹脂組成物、このエポキシ樹脂組成物を用いたプリプレグ、支持体付き樹脂フィルム、金属箔張り積層板及び多層プリント配線板
CN102918076A (zh) * 2010-05-31 2013-02-06 日立化成工业株式会社 环氧树脂组合物、使用此环氧树脂组合物的预浸料、带支撑体树脂膜、贴金属箔层叠板和多层印刷电路板
US9215803B2 (en) 2010-05-31 2015-12-15 Hitachi Chemical Company, Ltd. Epoxy resin composition and pre-preg, support-provided resin film, metallic foil clad laminate plate and multilayer printed circuit board utilizing said composition
JP2016104891A (ja) * 2010-05-31 2016-06-09 日立化成株式会社 エポキシ樹脂組成物、このエポキシ樹脂組成物を用いたプリプレグ、支持体付き樹脂フィルム、金属箔張り積層板及び多層プリント配線板
JP2012057058A (ja) * 2010-09-09 2012-03-22 Dic Corp リン原子含有エポキシ樹脂の製造方法、硬化性樹脂組成物、その硬化物、プリント配線基板用樹脂組成物、プリント配線基板、フレキシブル配線基板用樹脂組成物、半導体封止材料用樹脂組成物、及びビルドアップ基板用層間絶縁材料用樹脂組成物
WO2012070202A1 (ja) * 2010-11-24 2012-05-31 パナソニック株式会社 高耐熱性エポキシ樹脂組成物、プリプレグ、金属張積層板およびプリント配線板
JP2012111828A (ja) * 2010-11-24 2012-06-14 Panasonic Corp 高耐熱性エポキシ樹脂組成物、プリプレグ、金属張積層板およびプリント配線板
CN102532490A (zh) * 2010-11-25 2012-07-04 新日铁化学株式会社 含磷酚醛树脂、该树脂组合物及固化物
JP2012158708A (ja) * 2011-02-02 2012-08-23 Dic Corp 新規リン原子含有エポキシ樹脂、その製造方法、硬化性樹脂組成物、その硬化物、プリント配線基板用樹脂組成物、プリント配線基板、フレキシブル配線基板用樹脂組成物、半導体封止材料用樹脂組成物、及びビルドアップ基板用層間絶縁材料用樹脂組成物
JP2017110228A (ja) * 2011-05-10 2017-06-22 味の素株式会社 樹脂組成物
JP2012251133A (ja) * 2011-05-10 2012-12-20 Ajinomoto Co Inc 樹脂組成物
JP2013087253A (ja) * 2011-10-21 2013-05-13 Panasonic Corp エポキシ樹脂組成物、プリプレグ、金属張積層板およびプリント配線板
KR20140138183A (ko) * 2012-03-21 2014-12-03 디아이씨 가부시끼가이샤 활성 에스테르 수지, 열경화성 수지 조성물, 그 경화물, 반도체 봉지 재료, 프리프레그, 회로 기판, 및 빌드업 필름
CN104204031A (zh) * 2012-03-21 2014-12-10 Dic株式会社 活性酯树脂、热固性树脂组合物、其固化物、半导体密封材料、预浸料、电路基板、和积层薄膜
WO2013141247A1 (ja) * 2012-03-21 2013-09-26 Dic株式会社 活性エステル樹脂、熱硬化性樹脂組成物、その硬化物、半導体封止材料、プリプレグ、回路基板、及びビルドアップフィルム
TWI574989B (zh) * 2012-03-21 2017-03-21 Dainippon Ink & Chemicals 活性酯樹脂、熱硬化性樹脂組成物、其硬化物、半導體封裝材料、預浸體、電路基板以及組合膜
KR101703719B1 (ko) * 2012-03-21 2017-02-07 디아이씨 가부시끼가이샤 활성 에스테르 수지, 열경화성 수지 조성물, 그 경화물, 반도체 봉지 재료, 프리프레그, 회로 기판, 및 빌드업 필름
CN104204031B (zh) * 2012-03-21 2015-10-21 Dic株式会社 活性酯树脂、热固性树脂组合物、其固化物、半导体密封材料、预浸料、电路基板、和积层薄膜
JP5500408B2 (ja) * 2012-03-21 2014-05-21 Dic株式会社 活性エステル樹脂、熱硬化性樹脂組成物、その硬化物、半導体封止材料、プリプレグ、回路基板、及びビルドアップフィルム
US9217053B2 (en) 2012-03-21 2015-12-22 Dic Corporation Active ester resin, thermosetting resin composition, cured product of same, semiconductor encapsulation material, prepreg, circuit board, and build-up film
JP2013203856A (ja) * 2012-03-28 2013-10-07 Dic Corp 難燃性ポリアミド樹脂組成物、及びその成形体
JP2014043486A (ja) * 2012-08-24 2014-03-13 Dic Corp 難燃性ポリアミド樹脂組成物、及びその成形体
US9512257B2 (en) * 2013-03-28 2016-12-06 Nan Ya Plastics Corporation Halogen-free, nonflammable and high glass transition temperature phenolic resin-based curing agent and process for producing the same
US20140296452A1 (en) * 2013-03-28 2014-10-02 Nan Ya Plastics Corporation Halogen-free, nonflammable and high glass transition temperature phenolic resin-based curing agent and process for producing the same
JP2014227428A (ja) * 2013-05-17 2014-12-08 明和化成株式会社 リン含有フェノール樹脂、その製造方法及びその使用
KR20160018507A (ko) * 2013-06-10 2016-02-17 디아이씨 가부시끼가이샤 인 원자 함유 활성 에스테르 수지, 에폭시 수지 조성물, 그 경화물, 프리프레그, 회로 기판, 및 빌드업 필름
JP5637418B1 (ja) * 2013-06-10 2014-12-10 Dic株式会社 リン原子含有活性エステル樹脂、エポキシ樹脂組成物、その硬化物、プリプレグ、回路基板、及びビルドアップフィルム
WO2014199655A1 (ja) * 2013-06-10 2014-12-18 Dic株式会社 リン原子含有活性エステル樹脂、エポキシ樹脂組成物、その硬化物、プリプレグ、回路基板、及びビルドアップフィルム
US9963544B2 (en) 2013-06-10 2018-05-08 Dic Corporation Active ester resin containing phosphorus atom, epoxy resin composition and cured product thereof, prepreg, circuit board, and build-up film
KR102046767B1 (ko) 2013-06-10 2019-11-20 디아이씨 가부시끼가이샤 인 원자 함유 활성 에스테르 수지, 에폭시 수지 조성물, 그 경화물, 프리프레그, 회로 기판, 및 빌드업 필름
JP2016094504A (ja) * 2014-11-12 2016-05-26 Dic株式会社 難燃性樹脂組成物、成形体およびそれらの製造方法

Also Published As

Publication number Publication date
EP2409979A1 (en) 2012-01-25
KR101310697B1 (ko) 2013-09-25
EP2409979A4 (en) 2013-12-18
US20120095156A1 (en) 2012-04-19
US8288003B2 (en) 2012-10-16
CN102356088B (zh) 2014-09-03
TWI466927B (zh) 2015-01-01
TW201035179A (en) 2010-10-01
EP2409979B1 (en) 2019-06-26
CN102356088A (zh) 2012-02-15
JP4548547B1 (ja) 2010-09-22
KR20110129899A (ko) 2011-12-02
JPWO2010106698A1 (ja) 2012-09-20

Similar Documents

Publication Publication Date Title
JP4548547B1 (ja) リン原子含有フェノール類の製造方法、新規リン原子含有フェノール類、硬化性樹脂組成物、その硬化物、プリント配線基板、及び半導体封止材料
JP4953039B2 (ja) リン原子含有オリゴマー、その製造方法、硬化性樹脂組成物、その硬化物、及びプリント配線基板
WO2011096273A1 (ja) フェノール樹脂組成物、その製造方法、硬化性樹脂組成物、その硬化物、及びプリント配線基板
JP5458916B2 (ja) リン原子含有フェノール類の製造方法、リン原子含有フェノール類、硬化性樹脂組成物、その硬化物、プリント配線基板用樹脂組成物、プリント配線基板、フレキシブル配線基板用樹脂組成物、半導体封止材料用樹脂組成物、及びビルドアップ基板用層間絶縁材料用樹脂組成物
JP5500408B2 (ja) 活性エステル樹脂、熱硬化性樹脂組成物、その硬化物、半導体封止材料、プリプレグ、回路基板、及びビルドアップフィルム
JP5557033B2 (ja) リン原子含有オリゴマー、その製造方法、硬化性樹脂組成物、その硬化物、及びプリント配線基板
JP5146793B2 (ja) リン原子含有オリゴマー組成物、硬化性樹脂組成物、その硬化物、及びプリント配線基板
JP5402091B2 (ja) 硬化性樹脂組成物、その硬化物、プリント配線基板、新規フェノール樹脂、及びその製造方法
JP5640588B2 (ja) リン原子含有エポキシ樹脂の製造方法、硬化性樹脂組成物、その硬化物、プリント配線基板用樹脂組成物、プリント配線基板、フレキシブル配線基板用樹脂組成物、半導体封止材料用樹脂組成物、及びビルドアップ基板用層間絶縁材料用樹脂組成物
JP5344226B2 (ja) リン原子含有フェノール類の製造方法、新規リン原子含有フェノール類、新規フェノール樹脂、硬化性樹脂組成物、その硬化物、プリント配線基板用樹脂組成物、プリント配線基板、フレキシブル配線基板用樹脂組成物、半導体封止材料用樹脂組成物、及びビルドアップ基板用層間絶縁材料用樹脂組成物
JP5910866B2 (ja) 活性エステル樹脂、熱硬化性樹脂組成物、その硬化物、半導体封止材料、プリプレグ、回路基板、及びビルドアップフィルム
JP5532307B2 (ja) リン原子含有多官能フェノールの製造方法、リン原子含有多官能フェノール、硬化性樹脂組成物、その硬化物、プリント配線基板用樹脂組成物、プリント配線基板、フレキシブル配線基板用樹脂組成物、半導体封止材料用樹脂組成物、及びビルドアップ基板用層間絶縁材料用樹脂組成物。
JP5402761B2 (ja) 硬化性樹脂組成物、その硬化物、リン原子含有フェノール類の製造方法、プリント配線基板用樹脂組成物、プリント配線基板、フレキシブル配線基板用樹脂組成物、半導体封止材料用樹脂組成物、及びビルドアップ基板用層間絶縁材料用樹脂組成物
JP5590405B2 (ja) 新規リン原子含有エポキシ樹脂、その製造方法、硬化性樹脂組成物、その硬化物、プリント配線基板用樹脂組成物、プリント配線基板、フレキシブル配線基板用樹脂組成物、半導体封止材料用樹脂組成物、及びビルドアップ基板用層間絶縁材料用樹脂組成物
JP5637367B2 (ja) 硬化性樹脂組成物、その硬化物、リン原子含有フェノール樹脂の製造方法、プリント配線基板用樹脂組成物、プリント配線基板、フレキシブル配線基板用樹脂組成物、半導体封止材料用樹脂組成物、及びビルドアップ基板用層間絶縁材料用樹脂組成物
JP5516980B2 (ja) 新規リン原子含有フェノール樹脂、その製造方法、硬化性樹脂組成物、その硬化物、プリント配線基板用樹脂組成物、プリント配線基板、フレキシブル配線基板用樹脂組成物、半導体封止材料用樹脂組成物、及びビルドアップ基板用層間絶縁材料用樹脂組成物
JP5637368B2 (ja) 硬化性樹脂組成物、その硬化物、リン原子含有フェノール化合物の製造方法、プリント配線基板用樹脂組成物、プリント配線基板、フレキシブル配線基板用樹脂組成物、半導体封止材料用樹脂組成物、及びビルドアップ基板用層間絶縁材料用樹脂組成物
JP5929660B2 (ja) ビフェノール−ナフトール樹脂、硬化性樹脂組成物、その硬化物、及びプリント配線基板
JP5516979B2 (ja) 新規リン原子含有フェノール樹脂、その製造方法、硬化性樹脂組成物、その硬化物、プリント配線基板用樹脂組成物、プリント配線基板、フレキシブル配線基板用樹脂組成物、半導体封止材料用樹脂組成物、及びビルドアップ基板用層間絶縁材料用樹脂組成物
JP5713045B2 (ja) エポキシ樹脂組成物、その硬化物、及びプリント配線基板
JP5598373B2 (ja) 硬化性樹脂組成物、その硬化物、プリント配線基板用樹脂組成物、プリント配線基板、フレキシブル配線基板用樹脂組成物、半導体封止材料用樹脂組成物、及びビルドアップ基板用層間絶縁材料用樹脂組成物
JP2014065829A (ja) クレゾール−ナフトール樹脂、硬化性樹脂組成物、その硬化物、及びプリント配線基板

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980158126.9

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2009552602

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09841900

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20117021592

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2009841900

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13256724

Country of ref document: US