WO2010103733A1 - 電力変換装置及びその制御方法 - Google Patents

電力変換装置及びその制御方法 Download PDF

Info

Publication number
WO2010103733A1
WO2010103733A1 PCT/JP2010/000961 JP2010000961W WO2010103733A1 WO 2010103733 A1 WO2010103733 A1 WO 2010103733A1 JP 2010000961 W JP2010000961 W JP 2010000961W WO 2010103733 A1 WO2010103733 A1 WO 2010103733A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase
voltage command
voltage
value
minimum
Prior art date
Application number
PCT/JP2010/000961
Other languages
English (en)
French (fr)
Inventor
荒川陽一郎
永田浩一郎
荒尾祐介
青柳滋久
Original Assignee
株式会社日立産機システム
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立産機システム filed Critical 株式会社日立産機システム
Priority to CN201080008248.2A priority Critical patent/CN102326328B/zh
Priority to US13/147,807 priority patent/US8710781B2/en
Priority to EP10750492.0A priority patent/EP2408100B1/en
Publication of WO2010103733A1 publication Critical patent/WO2010103733A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • H02M7/53871Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/539Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters with automatic control of output wave form or frequency
    • H02M7/5395Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters with automatic control of output wave form or frequency by pulse-width modulation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0009Devices or circuits for detecting current in a converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/12Arrangements for reducing harmonics from ac input or output
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/14Arrangements for reducing ripples from dc input or output
    • H02M1/15Arrangements for reducing ripples from dc input or output using active elements

Definitions

  • the present invention relates to a power conversion device that detects DC bus current and obtains phase current information and a control method thereof.
  • a DC-AC conversion function or an AC-DC conversion function is realized by pulse width modulation (hereinafter referred to as “PWM”).
  • PWM pulse width modulation
  • the inverter is used in a drive system of an AC electric motor (hereinafter referred to as “electric motor”) such as a synchronous motor or an induction motor.
  • Patent Document 1 In a power conversion device that drives an electric motor, a means for detecting a phase current is required to realize accurate control.
  • Patent Document 2 In recent years, for example, in Patent Document 1, Patent Document 2, and Patent Document 3, there is a method for acquiring information on the alternating current flowing in the motor from the direct current bus current of the power converter without using an external current detecting means such as a current sensor. Proposed. These technologies eliminate the need to use a dedicated current sensor, reduce the number of parts of the device, and save space and reduce manufacturing costs.
  • the largest phase is called the maximum phase
  • the second largest phase is the intermediate phase
  • the third largest phase is called the minimum phase.
  • Patent Document 2 in order to acquire phase current information, one period of a triangular wave carrier signal for generating a PWM signal is divided into a first half and a second half, and a predetermined value is added to the phase voltage command value in either the first half or the second half, or By subtracting, the current passing time of the phase current flowing in a pulsed manner on the DC bus is temporarily increased. By doing so, the line voltage value is widened, and the passing time of the phase current (hereinafter referred to as pulsed current) flowing in a pulsed manner on the DC bus is temporarily increased to acquire phase current information. It is.
  • the correction for the voltage command has been the best embodiment in which the correction amount is added to the maximum phase or the correction amount is subtracted from the minimum phase.
  • an upper limit value and a lower limit value are provided for the voltage command value of each phase to be compared with the triangular wave carrier signal, and as a result of adding or subtracting the correction amount, the upper limit value or the lower limit value is exceeded. May end up. In such a case, a sufficient period of time for the pulsed current cannot be secured, and a period during which current cannot be detected occurs, resulting in a problem that the motor control accuracy deteriorates.
  • the above situation is necessary when the absolute value of the voltage command value before correction is large and the upper limit value or the lower limit value is exceeded even with a small correction amount, such as when the electric motor is rotating at high speed. Occurs when the correction amount becomes large.
  • the correction amount is large, there are a case where the carrier frequency is high, or a case where the duration of ringing noise which occurs at the rising edge of the pulsed current and causes detection error is long.
  • Patent Document 3 proposes a three-phase voltage command correction method for suppressing a detection error due to current ripple caused by PWM switching, but it cannot be detected by an upper limit and a lower limit of the voltage. There is no description of the state.
  • An object of the present invention is to realize phase current detection by a DC bus that does not become impossible to detect current due to restriction of the upper limit or lower limit of the voltage command value, and enable stable high-precision operation of the motor.
  • An object of the present invention is to provide a power converter and a control method thereof.
  • pulse width modulation means for converting a voltage command into a PWM pulse by comparing a three-phase voltage command and a triangular wave carrier signal, and driving a switch element based on the PWM pulse to drive a DC voltage and a three-phase A power converter for converting power to and from an AC voltage; current detection means for detecting a pulsed current flowing in a DC bus of the main circuit of the power converter; and an instantaneous value of the three-phase voltage command If the largest phase is the maximum phase, the second largest phase is the intermediate phase, and the third largest phase is the minimum phase, the line voltage between the largest phase and the middle phase and the middle phase and the smallest phase In a power conversion device including a voltage command correction unit that corrects the voltage command of the maximum phase and the minimum phase so that the line voltage becomes equal to or greater than a predetermined value, respectively, the maximum phase and / or the minimum is set under a predetermined condition Phase Not pressure command only, characterized by comprising a voltage command correcting means for
  • the predetermined condition is set when the voltage command value of the maximum phase or the minimum phase is corrected to deviate from the upper limit value or the lower limit value of the voltage command value.
  • the voltage command correction means corrects the voltage command using a half of the triangular wave carrier signal period as a unit period, and an average value of the correction amount of the voltage command in a period that is an integral multiple of the unit period is obtained. , Set to zero or nearly zero.
  • the period during which the average voltage command correction amount is zero or substantially zero is set to an odd multiple of the unit period, and the current is detected in the unit period corresponding to the center. To do.
  • a phase current by a DC bus without making it impossible to detect a current due to an upper limit or a lower limit of a voltage command value, and to realize stable and high-precision operation of an electric motor.
  • a power converter to be realized and a control method thereof can be provided.
  • FIG. 3 is a diagram illustrating the relationship between a DC bus current and a three-phase voltage in Example 1 of the present invention.
  • FIG. 6 is a diagram illustrating the relationship between a DC bus current and a three-phase voltage in Example 2 of the present invention.
  • FIG. 6 is a diagram illustrating the relationship between a DC bus current and a three-phase voltage in Example 3 of the present invention.
  • FIG. 6 is an explanatory diagram of a relationship between a DC bus current and a three-phase voltage in Example 4 of the present invention.
  • FIG. 3 is a diagram illustrating the relationship between a DC bus current and a three-phase voltage in Example 1 of the present invention.
  • FIG. 10 is a diagram for explaining the relationship between a voltage compensation amount and current harmonics resulting therefrom in Example 5 of the present invention.
  • FIG. 11 is a diagram illustrating the relationship between a DC bus current and a three-phase voltage in Example 6 of the present invention.
  • FIG. 10 is a diagram illustrating the relationship between a DC bus current and a three-phase voltage in Example 7 of the present invention. The processing flowchart of the voltage command correction amount calculating part in Example 9 of this invention.
  • FIG. 1 is an overall configuration diagram of a power conversion apparatus according to Embodiment 1 of the present invention.
  • the inside of the microcomputer 4 represents the flow of information, and the rest represents the electrical circuit (actual current flow).
  • a power converter main circuit 5 that converts the power of the DC power source 1 into AC power and an AC motor 2 that performs work by the converted power are provided.
  • the microcomputer 4 includes a current detector 7 that receives a DC bus current IDC signal detected by the current detector 3 and reproduces and outputs three-phase balanced currents Iuc, Ivc, and Iwc. Next, the three-phase balanced currents Iuc, Ivc, Iwc and the current commands Iu * , Iv * , Iw * (hereinafter, the symbol suffix “ * ” means the command value) arbitrarily given from the outside are input.
  • the voltage command calculation unit 8 calculates and outputs the first three-phase voltage commands Vu * , Vv * , Vw * .
  • the current commands Iu * , Iv * and Iw * they may be given as Id * and Iq * converted into a rotating coordinate system.
  • the voltage command correction amount calculation unit 10 for calculating the voltage command correction amounts ⁇ Vu, ⁇ Vv, ⁇ Vw from the first three-phase voltage commands Vu * , Vv * , Vw * , the first voltage command and the voltage command correction amount
  • a voltage command correction unit 9 that calculates the second three-phase voltage commands Vu ** , Vv ** , and Vw ** by addition.
  • PWM conversion means 11 for converting the finally obtained second three-phase voltage commands Vu ** , Vv ** , and Vw ** into switch signals by PWM.
  • the power converter main circuit 5 converts the power of the DC power source 1 into AC power by the switch signal, and flows three-phase balanced currents Iu, Iv, Iw to the AC motor. Since this phase current flows through the DC bus depending on the switch state of the power converter main circuit 5, the phase current flows in a pulse shape in the DC bus current.
  • the current detector 7 determines whether or not phase current detection can be detected from the second voltage command value, and if it can be detected, sets the timing for detecting the phase current and performs current detection. Iuc, Ivc, and Iwc are reproduced from the detected IDC.
  • FIG. 2 is an explanatory diagram of the relationship between the DC bus current and the three-phase voltage in Example 1 of the present invention, and schematically shows a triangular wave carrier signal and a DC bus current waveform.
  • One period of the triangular wave carrier is composed of half periods of a monotone increasing period and a monotonic decreasing period of the triangular wave.
  • phase current information for two phases appears in a pulse form per half cycle of a triangular wave carrier (hereinafter referred to as a unit cycle).
  • the obtained current phases are the maximum voltage phase and the minimum voltage phase in the unit cycle, and as shown in FIG.
  • V1 Vu
  • V2 Vv
  • V3 Vw
  • the duration of the maximum voltage phase current I1 and the minimum voltage phase current I3 appearing in the DC bus current (hereinafter referred to as current pulse width) is the line voltage value from the intermediate phase voltage V2 of V1 and V3.
  • current pulse width the line voltage value from the intermediate phase voltage V2 of V1 and V3.
  • the current pulse width In order to detect current from a pulsed current, the current pulse width needs to be a predetermined value or more.
  • the “predetermined value” here is a maximum time considering a dead time period for preventing an arm short circuit of a semiconductor element, a period during which ringing noise is generated, a sample hold time of an A / D converter, or the like. It can be considered to be narrow and determined by hardware constraints.
  • the minimum current pulse width that can be detected is defined as the minimum pulse width Tpw.
  • the necessary line voltage Vpw is a line voltage corresponding to the minimum pulse width Tpw.
  • the purpose of the voltage command correction unit 9 at the time of current detection is to correct the voltage command value so that the second voltage command satisfies the equation (1) when the first voltage command does not satisfy the equation (1). is there.
  • FIG. 3 is a process flow diagram of the voltage command correction amount calculation unit according to the first embodiment of the present invention.
  • the input first voltage commands Vu * , Vv * , Vw * are defined as V1 * , V2 * , V3 * in descending order. (Process 31).
  • the maximum phase voltage V1 * and the minimum phase voltage V3 * are corrected so as to satisfy the expression (1), it is checked whether the output voltage upper limit value Vmax or the voltage lower limit value Vmin is not exceeded.
  • Vmax and Vmin are given by the maximum voltage and the minimum voltage that can be output from the power converter main circuit 5 determined from the voltage of the DC power supply 1, for example.
  • ⁇ V1 and ⁇ V3 satisfying the expressions (2) and (3) may be calculated.
  • ⁇ V1 and ⁇ V3 are expressed by the expressions (2) and (3).
  • the minimum value to be satisfied is set (process 32).
  • V3 ** will be less than Vmin at any ⁇ V3 that satisfies equation (3), so V23 * cannot be secured above Vpw, and the minimum phase current can be detected. It becomes impossible.
  • V1 ** Vmax is set, and V12 * is secured by subtracting V2 * as much as Vpw (process 34).
  • the second three-phase voltage command satisfies all the expressions (1), (4), and (5), so that appropriate current detection can be realized and the voltage command correction amount can be minimized. .
  • the voltage command correction is performed in the direction in which the absolute value of the maximum phase voltage V1 * or the minimum phase voltage V3 * increases (from the intermediate phase voltage V2 *). It has been considered to be the best embodiment. This is because when V2 * is moved, one current pulse width increases, but the other current pulse width decreases.
  • V1 * or V3 * when the absolute value of V1 * or V3 * is large, or (2) when the line voltage Vpw necessary for securing the minimum pulse width Tpw is large, the voltage up to the upper limit value Vmax and the lower limit value Vmin. The margin becomes small and Vpw cannot be secured.
  • the case where the absolute value of (1) V1 * or V3 * is large includes, for example, a case where the speed of the AC motor 2 becomes high. At this time, since the internal counter electromotive force increases, the first voltage command increases. Thus, the present invention is particularly useful during high speed operation of the electric motor.
  • the situation (2) where Vpw is large may be, for example, a case where the carrier frequency is high.
  • the minimum line voltage Vpw increases even if the same minimum pulse width Tpw is used. This is self-evident when considering that the slope of the triangular wave carrier in FIG. 2 becomes steep as the carrier frequency increases.
  • the present invention is effective against the trend toward higher carrier frequencies due to the recent low loss of semiconductor elements and increasing user's need for noise reduction.
  • the voltage command correction unit 9 adds the correction amount to the maximum phase and the minimum phase of the voltage command value using the half cycle of the triangular wave carrier as a unit cycle, and as a result, exceeds the voltage upper limit or lower limit value.
  • the intermediate phase is added by the excess amount to ensure the line voltage necessary for current detection.
  • FIG. 4 is a diagram illustrating the relationship between the DC bus current and the three-phase voltage in Example 2 of the present invention.
  • the voltage command correction amount added at the time of current detection as in the first embodiment is compensated during a period in which current detection is not performed.
  • the second voltage command and the first voltage command can be made equivalent and normal operation can be maintained.
  • the compensation method as proposed in Patent Document 2 and Patent Document 3, a period N times the unit period is considered as the adjustment period, and the average correction amount of each phase during the adjustment period is zero or substantially zero.
  • the correction amount for the current non-detection period may be set so that However, in the present invention, the intermediate phase is also corrected, and there arises a problem that the voltage upper limit or lower limit is exceeded during compensation. In this embodiment, countermeasures will be described. N is a natural number.
  • the voltage command correction amount for each unit period is set to ⁇ V1 [k], ⁇ V2 [k], and ⁇ V3 [k]. Since current detection is performed in at least one of the N unit cycles, this unit cycle is called a detection period, and the remaining unit cycles are called compensation periods. Here, the detection period is once during the adjustment period.
  • the calculation method of V1 [k], V2 [k], and V3 [k] is as described in the first embodiment.
  • the voltage command correction amounts at the time of current detection are ⁇ V10, ⁇ V20, and ⁇ V30. Further, in order to set the time average of the voltage command correction amount during the adjustment period to zero or substantially zero, the voltage command correction amount needs to satisfy the following relationship for each phase.
  • ⁇ V1 [k] ⁇ ⁇ V10 / (N ⁇ 1) (13)
  • ⁇ V2 [k] ⁇ ⁇ V20 / (N ⁇ 1) (14)
  • ⁇ V3 [k] ⁇ ⁇ V30 / (N ⁇ 1) (15)
  • the values are different if Expressions (10) to (12) are satisfied. It may be.
  • the correction amount may be set to be large in the compensation period before the detection period, and the correction amount may be set to be small later.
  • N 2
  • FIG. 5 is an explanatory diagram of the relationship between the DC bus current and the three-phase voltage in Example 3 of the present invention.
  • the difference between the third embodiment and the second embodiment will be described with reference to FIG.
  • the detection is performed by temporarily increasing N until the expressions (16) to (18) are satisfied.
  • FIG. 6 is an explanatory diagram of the relationship between the DC bus current and the three-phase voltage in Example 4 of the present invention.
  • This embodiment is characterized in that the number N of unit cycles for determining the adjustment period is an odd number, and the unit cycle to be detected is arranged at the center of the adjustment period.
  • the voltage command correction amount calculation in each detection period is set using the method of the first embodiment, and the correction amount calculation in the compensation period is set as follows using the method described in the second embodiment.
  • the detection period is alternately assigned to the monotonically increasing period and the monotonically decreasing period of the triangular wave carrier, thereby reducing the influence of current detection errors due to current ripple caused by PWM.
  • highly accurate detection can be realized.
  • the detection is performed in the unit cycle corresponding to the center, the fluctuation range of the control amount within the range can be suppressed to be small, and the control with excellent stability can be realized.
  • the correction amount calculation in the compensation period is performed as in the equations (19) to (21), but in the fifth embodiment, the correction amount calculation is performed as follows. Is different.
  • FIG. 7 schematically shows the effect of the fifth embodiment in comparison with the fourth embodiment, and shows the harmonic component of the maximum phase current I1 generated by correcting the voltage maximum phase.
  • the resulting harmonic component is also symmetric. Since the current detection timing is at the end of the detection cycle, detection is performed at the peak of the harmonic component, resulting in an error.
  • FIG. 8 is an explanatory diagram of the relationship between the DC bus current and the three-phase voltage in the sixth embodiment of the present invention, and is an embodiment in which the present invention is applied to two-phase modulation.
  • two-phase modulation is realized by fixing the maximum voltage phase V1 in the switch ON state or fixing the minimum voltage phase in the switch OFF state.
  • the maximum phase or the minimum phase is set outside the amplitude range of the triangular wave carrier signal. These are referred to as “maximum cohesion” and “minimum cohesion”, respectively, from the waveform overview.
  • the voltage phase in which the switch state is fixed is referred to as “sticky phase”.
  • the waveform of the DC bus current IDC changes compared to the three-phase modulation method.
  • FIG. 8 shows a case where Vu has a maximum adhesion.
  • the maximum voltage phase current flows through the DC bus current IDC over the monotonically increasing period and the monotonically decreasing period of the triangular wave carrier signal.
  • the maximum phase current flow time is twice the value normally considered from the line voltage V12. Therefore, for the pulsed current of the stuck phase, the line voltage including the stuck phase is If it is more than half of the necessary condition Vpw, detection is possible.
  • the pulsating current in the sticking phase can be detected without performing voltage command correction.
  • the sixth embodiment it is possible to detect the phase current even in an environment where the pulsed current of the stuck phase cannot be detected in the two-phase modulation, and it is possible to reduce the loss of the power conversion device with high accuracy. Electric motor control becomes possible.
  • FIG. 9 is a diagram illustrating the relationship between the DC bus current and the three-phase voltage in Example 7 of the present invention.
  • the voltage command is set so as to satisfy the expression (1) around each unit without considering that the voltage maximum phase current flows over the monotonous increase period and the monotone decrease period of the triangular wave carrier signal. Determine the correction amount.
  • Vmax ⁇ Vmin ⁇ 2Vpw >........paper (28)
  • Vpw for the same Tpw can be reduced by lowering the triangular wave carrier frequency. Therefore, even when the equation (28) is satisfied, the motor can be controlled by setting a triangular wave carrier frequency that satisfies the equation (28).
  • FIG. 10 is a process flow diagram of the voltage command correction amount calculation unit according to the ninth embodiment of the present invention.
  • the ninth embodiment is different in that among the ⁇ V1 and ⁇ V3, a part of the correction amount on the side where the necessary correction amount becomes large is shared by the intermediate phase.
  • V12 * and V23 * are compared, and the side where the required correction amount becomes larger in the maximum phase and the minimum phase is determined.
  • V12 * is larger
  • This necessary correction amount ⁇ V3t is corrected by sharing the minimum phase and the intermediate phase.
  • This process disperses the voltage correction amount in three phases, thereby reducing the correction amount for each phase, reducing the high frequency ripple of the current, suppressing noise and increasing the operating efficiency of the motor.
  • SYMBOLS 1 DC power supply, 2 ... AC motor, 3 ... Current detection means, 4 ... Microcomputer, 5 ... Power conversion part main circuit, 7 ... Current detection part, 8 ... Voltage command calculating part, 9 ... Voltage command correction part, 10 ... Voltage command correction amount calculation unit, 11... PWM conversion means.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)
  • Control Of Ac Motors In General (AREA)

Abstract

 三相電圧指令と三角波キャリア信号とを比較するPWM変換手段と、PWMパルスに基づきスイッチ素子を駆動し直流電力と三相交流電力との間に電力を変換する電力変換器と、主回路の直流母線に流れるパルス状電流を検出する電流検出手段と、三相電圧指令を補正する電圧指令補正手段を備え、三相電圧指令の瞬間値をその大きさの順に並べて最大相,中間相,最小相とするとき、最大相と中間相の線間電圧値及び中間相と最小相の線間電圧値を所定値以上とするよう電圧指令補正手段が三相電圧指令を補正する電力変換装置において、電圧指令が許容上限値又は下限値から外れるとき、最大相電圧指令及び/又は最小相電圧指令のみならず、中間相電圧指令を補正する。  これにより、出力電圧の上下限の制約により電流検出が不可能となることを無くし、状況によらず高精度な電力変換装置の制御を実現する。

Description

電力変換装置及びその制御方法
 本発明は、直流母線電流を検出して相電流情報を得る電力変換装置及びその制御方法に関する。
 インバータに代表される電力変換装置では、パルス幅変調(以下、「PWM」と記す)により、直流-交流変換、あるいは交流-直流変換の機能を実現している。インバータは、同期モータや誘導モータ等の交流電動機(以下、「電動機」と記す)の駆動システムなどに用いられる。
 電動機を駆動する電力変換装置では、精度の良い制御を実現するために相電流の検出手段が必要となる。近年、たとえば、特許文献1、特許文献2及び特許文献3等において、電流センサなどの外部電流検出手段を用いずに電力変換装置の直流母線電流から電動機に流れる交流電流の情報を取得する方法が提案されている。これらの技術により、専用の電流センサを用いる必要がなくなり、装置の部品点数が減り、省スペース化と製造コストの低減が可能となる。
特開平8-19263号公報 特許第3664040号公報 特開2008-131770号公報
 まず、後の説明のため、三相電圧指令の瞬間値を大きい順に並べたとき最大となる相を最大相、2番目に大きい相を中間相、3番目に大きい相を最小相と呼称することとする。
 特許文献2では、相電流情報を取得するために、PWM信号を生成する三角波キャリア信号の1周期を前半と後半に分け、前後半いずれかの期間で相電圧指令値に所定値を加算、あるいは減算し、直流母線にパルス状に流れる相電流の通流時間を一時的に長くする。こうすることで、線間電圧値を広げ、直流母線にパルス状に流れる相電流(以下、これをパルス状電流と呼ぶ)の通流時間を一時的に長くして、相電流情報を取得するのである。
 ここで、前記の電圧指令に対する補正は、最大相に補正量を加算あるいは最小相に補正量を減算することが最良の実施形態とされてきた。
 しかし、一般にPWMパルス生成器において、三角波キャリア信号と比較される各相の電圧指令値には上限値及び下限値が設けられており、補正量を加減算した結果、前記上限値あるいは下限値を超過してしまうことがある。このような場合には、十分に前記パルス状電流の通流時間を確保できず、電流検出が出来ない期間が発生してしまい、電動機制御精度が悪化する問題となる。
 上記の状況は、例えば電動機が高速で回転している場合のように、補正前の電圧指令値の絶対値が大きく、小さい補正量でも上限値または下限値を超過してしまう場合や、必要となる補正量が大きい場合に発生する。補正量が大きい場合としては、キャリア周波数が高い場合、あるいは、パルス状電流の立ち上がり時に発生し、検出誤差原因となるリンギングノイズの持続時間が長い場合などがある。
 近年、電動機の高効率化・小型化・低騒音化の傾向が進み、電圧飽和領域の活用やキャリア周波数の高周波化など、上記の状況はますます発生し易くなっており、大きな問題となっている。
 また、特許文献3では、PWMのスイッチングに起因して発生する電流リプルによる検出誤差を抑制するための三相電圧指令の補正方法が提案されているが、やはり電圧の上限及び下限による検出不可能状態についての記述はない。
 本発明の目的は、電圧指令値の上限あるいは下限の制約のために電流検出が不可能となることのない直流母線による相電流の検出を実現し、電動機の安定した高精度運転を可能ならしめる電力変換装置及びその制御方法を提供することにある。
 本発明はその一面において、三相電圧指令と三角波キャリア信号とを比較することで電圧指令をPWMパルスに変換するパルス幅変調手段と、前記PWMパルスに基づきスイッチ素子を駆動し直流電圧と三相交流電圧との間に電力変換する電力変換器と、前記電力変換器の主回路の直流母線に流れるパルス状電流を検出する電流検出手段と、前記三相電圧指令の瞬間値をその大きさの順に並べた場合の最大となる相を最大相、2番目に大きい相を中間相、3番目に大きい相を最小相とするとき、最大相と中間相の線間電圧及び中間相と最小相の線間電圧がそれぞれ所定値以上となるように、前記最大相と最小相の電圧指令を補正する電圧指令補正手段とを備えた電力変換装置において、所定の条件において、前記最大相及び/又は最小相の電圧指令のみならず、前記中間相の電圧指令を補正する電圧指令補正手段を備えたことを特徴とする。
 本発明の望ましい実施態様においては、前記所定の条件を、前記最大相あるいは最小相の電圧指令値を補正することによって、電圧指令値の上限値又は下限値を逸脱する場合に設定する。
 また、本発明の望ましい実施態様においては、電圧指令補正手段により、三角波キャリア信号周期の半分を単位周期として電圧指令を補正し、単位周期の整数倍の期間における電圧指令の補正量の平均値が、零あるいは略零となるように設定する。
 さらに、本発明の望ましい実施態様においては、電圧指令補正量の平均を零または略零となる期間を、単位周期の奇数倍に設定するとともに、その中心に当たる単位周期で電流を検出するように設定する。
 本発明の望ましい実施態様によれば、電圧指令値の上限あるいは下限の制約のために電流検出が不可能となることなく直流母線による相電流の検出を実現し、電動機の安定した高精度運転を実現する電力変換装置及びその制御方法を提供することができる。
 本発明の望ましい実施態様によれば、従来方法では直流母線から電流検出が不可能となる高速運転時、三角波キャリア周波数が高い条件、リンギングノイズ持続時間が長い悪環境などの運転条件においても適切に電流検出を実現できる。
 本発明のその他と目的と特徴は、以下に述べる実施形態の中で明らかにする。
本発明の実施例1による電力変換装置の全体構成図である。 本発明の実施例1における直流母線電流と三相電圧の関係説明図。 本発明の実施例1における電圧指令補正量演算部の処理フロー図。 本発明の実施例2における直流母線電流と三相電圧の関係説明図。 本発明の実施例3における直流母線電流と三相電圧の関係説明図。 本発明の実施例4における直流母線電流と三相電圧の関係説明図。 本発明の実施例5における電圧補補償量とそれに起因する電流高調波の関係説明図。 本発明の実施例6における直流母線電流と三相電圧の関係説明図。 本発明の実施例7における直流母線電流と三相電圧の関係説明図。 本発明の実施例9における電圧指令補正量演算部の処理フロー図。
 以下、本発明の実施例を図面を参照して詳細に説明する。
 図1は、本発明の実施例1による電力変換装置の全体構成図である。図1では、マイコン4内部は情報の流れを、それ以外は電気回路(実際の電流の流れ)を表している。
 本実施例においては、直流電源1と、直流母線に接続された電流検出手段3と、前記電流検出手段3から得られた電流情報を基にPWM信号を出力するマイコン4と、前記PWM信号に従って前記直流電源1の電力を交流電力に変換する電力変換部主回路5と、変換された電力によって仕事を行う交流電動機2を備えている。
 前記マイコン4は、まず、前記電流検出手段3により検出される直流母線電流IDC信号が入力され、三相平衡電流Iuc,Ivc,Iwcを再現して出力する電流検出部7を備えている。次に、三相平衡電流Iuc,Ivc,Iwcと、外部から任意に与えられる電流指令Iu,Iv,Iw(以下、記号添字の「」は指令値を意味する)とが入力され、第1の三相電圧指令Vu、Vv、Vwを演算して出力する電圧指令演算部8を備える。ここで、電流指令Iu,Iv,Iwの代わりに、これを回転座標系に変換したId,Iqで与えることもある。また、第1の三相電圧指令Vu,Vv,Vwから電圧指令補正量ΔVu,ΔVv,ΔVwを演算する電圧指令補正量演算部10と、第1の電圧指令と電圧指令補正量を加算して第2の三相電圧指令Vu**,Vv**,Vw**を演算する電圧指令補正部9とを備えている。さらに、最終的に得られた第2の三相電圧指令Vu**,Vv**,Vw**を、PWMによりスイッチ信号へと変換するPWM変換手段11とを備える。
 前記電力変換部主回路5は、前記スイッチ信号により直流電源1の電力を交流電力に変換して交流電動機に三相平衡電流Iu,Iv,Iwを流す。この相電流は、電力変換部主回路5のスイッチ状態によっては直流母線を流れるため、直流母線電流にはパルス状に相電流が流れることになる。電流検出部7は、第2の電圧指令値から相電流検出が検出可能かどうかを判定し、検出可能ならば相電流を検出するタイミングを設定して電流検出を行い、検出した電流がどの相に当たるかを判定し、検出したIDCから、Iuc,Ivc,Iwcを再現する。
 次に、本実施例の特徴である電圧指令補正部9について述べる。
 図2は、本発明の実施例1における直流母線電流と三相電圧の関係説明図であり、三角波キャリア信号と直流母線電流波形を模式的に表す。三角波キャリアの一周期は、三角波の単調増加期間および単調減少期間の各半周期からなる。直流母線電流IDCには、三角波キャリアの半周期(以下、これを単位周期と呼ぶ。)につき、2相分の相電流情報がパルス状に現れることが知られている。得られる電流相は、単位周期における電圧最大相と電圧最小相であり、図2に示すように、三角波キャリアの単調増加期間k=1,3と単調減少期間k=2,4でパルスが現れる順番が変わる。図2では、前記電流検出手段3によって各単位周期に検出する2相分の電流値を、検出する順にIDC1,IDC2と表現している。
 直流母線電流から単位周期に得られる相電流情報は、三相交流電流のうち2相分のみであるが、三相交流電流Iu,Iv,Iwは平衡交流であるため、Iu+Iv+Iw=0が常に成り立っている。このため、残り1相分の情報は他の2相から求められる。
 ここで、各瞬間における三相の電圧指令のうち最大のものを最大相としてV1、最小のものを最小相としてV3、中間のものを中間相としてV2と記号で示し、対応した相電流をそれぞれ、I1,I2,I3と表記する。図2では、大小関係がVu>Vv>Vwとなっているため、V1=Vu,V2=Vv,V3=Vwである。
 各単位周期において、直流母線電流に現れる電圧最大相電流I1及び電圧最小相電流I3の通流時間(以下、電流パルス幅と呼ぶ)は、V1及びV3の中間相電圧V2からの線間電圧値に依存して決まる。すなわち、図2における補正前を表す単位周期k=1,2から明らかなように、例えば、最小相電流パルスの通流時間は、V23=V2-V3で決まり、最大相電流パルスの通流時間はV12=V1-V2により決まる。
 パルス状電流から電流検出を行うためには、電流パルス幅が所定値以上であることが必要となる。ここでいう「所定値」とは、半導体素子のアーム短絡を防止するためのデッドタイム期間や、リンギングノイズが発生している期間、あるいは、A/D変換器のサンプルホールド時間などを考慮した最小幅であり、ハード的な制約で決まると考えてよい。この電流検出可能な電流パルス幅の最小値を最小パルス幅Tpwと定義する。
 なお、図2では、k=2において、V12は十分大きいがV23が小さいため、IDC1の検出は可能であるが、IDC2の通流時間tが最小パルス幅Tpwより短く(t<Tpw)なり、電流検出が不可能となっている。
 まとめると、直流母線電流IDCから相電流検出が可能となる条件は、次の(1)式で表される。
 V12>=Vpw、かつ、V23>=Vpw……………(1)
 ここで、必要線間電圧Vpwは、最小パルス幅Tpwに相当する線間電圧である。電流検出時における電圧指令補正部9の目的は、第1の電圧指令が(1)式を満たさない場合、第2の電圧指令が(1)式を満たすように電圧指令値を補正することにある。
 次に、本発明の最も特徴的な電圧指令補正量演算の内容について説明する。
 図3は、本発明の実施例1における電圧指令補正量演算部の処理フロー図である。所定の周期毎に電流検出時の電圧指令補正量演算プロセス30が呼び出されると、入力された第1の電圧指令Vu,Vv,Vwを大きい順にV1,V2,V3と定義する(処理31)。続いて、(1)式を満たすように、最大相電圧V1及び最小相電圧V3を補正したとき、出力電圧上限値Vmaxあるいは電圧下限値Vminを超過しないかどうかチェックを行う。なお、Vmax及びVminは、例えば直流電源1の電圧から決まる電力変換部主回路5の出力可能な最大電圧及び最小電圧で与えられる。
 例えば(1)式を満たすように、V1に補正量ΔV1を加算するとき、(2)式と(3)式を満たすように、ΔV1及びΔV3を決定する。
 V1**-V2=(V1+ΔV1)-V2*>=Vpw………(2)
 V2-V3**=V2-(V3+ΔV3)>=Vpw………(3)
 しかし、このとき出力電圧の最大最小がVmax以上Vmin以下に制限されているとすると、
 V1**<Vmax………………………………………………………(4)
 V3**>Vmin………………………………………………………(5)
でなければならない。この条件をまとめると以下のようになる。
 V2+Vpw<Vmax……………………(6)
 V2-Vpw>Vmin……………………(7)
 (6)式を満たしていないとき、第2の電圧指令値V1**がVmaxを超過し、最大相電流を検出することができなくなる。同様に(7)式が満たされない場合、第2の電圧指令値V3**がVminを下回るため、最小相電流を検出することができなくなる。
 (6)式,(7)式が共に満たされる場合、(2)式,(3)式を満たすΔV1、ΔV3を計算すればよく、通常ΔV1及びΔV3は(2)式および(3)式を満たす最小の値に設定する(処理32)。
 (7)式のみが満たされない場合、(3)式を満たすいかなるΔV3でもV3**がVminを下回ってしまうため、V23がVpw以上確保することが出来ず、最小相電流を検出することが出来なくなる。
 そこで、本実施例では、V3**=Vminとし、V23がVpwに満たない分をV2に加算してやることでVpwを確保する。このとき、V2の増加に伴いV12が小さくなるため、(1)式を満たさなくなる可能性がある。そこでV1もV2**からVpwを確保できる値になるまで補正する(処理33)。
 同様に(6)式のみが満たされない場合、V1**=Vmaxとし、V12がVpwに満たない分、V2を減算することで確保する(処理34)。
 もし(6)式,(7)式共に満たされない場合は、ΔV1,ΔV2,ΔV3を零として電流検出を諦める(処理35)。
 以上のプロセスで演算されたΔV1及びΔV3が、(8)式,(9)式を満たす場合は、補正しなくても、もともと(数1)を満たしている条件である。
 ΔV1<0……………………………………………………………(8)
 ΔV3>0……………………………………………………………(9)
 このため、ΔV1=0、ΔV3=0としてよい(処理36,37)。
 処理31の逆の処理を行い、最後に演算したΔV1,ΔV2,ΔV3をΔVu,ΔVv,ΔVwに戻して引数に返して処理を終わる。
 これらの処理により、第2の三相電圧指令は(1),(4),(5)式を全て満たすため、適切な電流検出を実現し、かつ電圧指令補正量を最小に抑えることが出来る。
 以上の実施例1の動作の一例を、図2の単位周期k=4に示している。この例では、最小相電圧VW(V3)をΔV3で補正すると共に、本発明により、中間相電圧VV(V2)に対しても、ΔV2による補正を追加している。この結果、電流IDC2のパルス幅tが、t≧Tpwに延び、電流検出を可能にしている。
 次に、本実施例の効果について述べる。
 特許文献2で提案されているように、従来では(1)式を満たすため、電圧指令補正は最大相電圧V1または最小相電圧V3の絶対値が大きくなる方向(中間相電圧V2から離れる方向)に行うことが最良の実施形態であるとされてきた。これは、V2を動かすと一方の電流パルス幅は大きくなるが他方の電流パルス幅が小さくなるデメリットがあるためである。
 しかし(1)V1あるいはV3の絶対値が大きい場合や、(2)最小パルス幅Tpwを確保するために必要な線間電圧Vpwが大きい状況では、電圧上限値Vmax及び下限値Vminまでの余裕が小さくなり、Vpwを確保することができなくなる。
 前記(1)V1あるいはV3の絶対値が大きい場合とは、例えば交流電動機2の速度が高速になる場合が挙げられる。このとき内部逆起電力が大きくなるため、第1の電圧指令が大きくなる。このように、電動機の高速運転時に、本発明は特に有用である。
 また、前記(2)Vpwが大きい状況とは、例えばキャリア周波数が高い場合が考えられる。高周波キャリア条件では、同じ最小パルス幅Tpwであっても、最小線間電圧Vpwが大きくなる。これは、図2の三角波キャリアの傾きがキャリア周波数の増大に伴って急峻となることを考えれば自明である。近年の半導体素子の低損失化とユーザーの静音化ニーズの高まりによるキャリア周波数の高周波化傾向に対して、本発明は効果的である。
 その他に、Vpwが大きい状況として、リンギングノイズ環境の悪条件が考えられる。
半導体素子のスイッチ動作に伴ってパルス状電流に現れる高周波リンギングノイズは、装置の設置環境に依存して持続時間が変わるため、それに伴いVpwも変化することになる。多様な環境に対する適用性に関して、本発明は効果的である。
 本実施形態によれば、電圧指令補正部9は、三角波キャリアの半周期を単位周期として電圧指令値の最大相及び最小相に補正量を加算し、その結果、電圧上限や下限値を超過する場合には、その超過分だけ中間相を加算して電流検出に必要な線間電圧を確保する。これにより、電圧上限及び下限のために電流検出が不可能であった条件下でも、高精度な電流検出が可能となる。すなわち、電動機の高速運転時や三角波キャリア周波数の高周波条件、リンギングノイズ悪環境のような多様な環境に対しても高精度な制御が可能となる。
 図4は、本発明の実施例2における直流母線電流と三相電圧の関係説明図である。この図を用いて、本実施例2の特徴を説明する。本実施例では、実施例1のように電流検出時に加算された電圧指令補正量を、電流検出を行わない期間において補償を行う。これにより、第2の電圧指令と第1の電圧指令とを同等とし、正常な運転を維持することが出来る。補償の方法については、特許文献2及び特許文献3などで提案されている通り、単位周期のN倍の期間を調整期間として考え、調整期間中の各相の補正量の平均が零または略零となるように電流非検出期間の補正量を設定すればよい。しかし、本発明では中間相も補正しており、補償時に電圧上限あるいは下限を超過する問題が発生する。本実施例ではその対策について述べる。なお、Nは自然数とする。
 説明のため調整期間がNであったとき、調整期間内の各単位周期に序数k=1,2,3,・・・Nをつけて考える。このとき、各単位周期の電圧指令補正量をΔV1[k]、ΔV2[k]、ΔV3[k]とする。N個の単位周期のうち少なくとも一つでは電流検出を行うため、この単位周期を検出期間と呼び、残りの単位周期は補償期間と呼ぶ。ここでは検出期間を調整期間中1回とする。V1[k],V2[k],V3[k]の計算方法については実施例1で述べた通りである。この電流検出時の電圧指令補正量を、ここでは、ΔV10,ΔV20,ΔV30とする。また、調整期間における電圧指令補正量の時間平均を零または略零とするために、電圧指令補正量は各相について次の関係を満たす必要がある。
 Σ_k=1~NΔV1[k]=0…………………………(10)
 Σ_k=1~NΔV2[k]=0…………………………(11)
 Σ_k=1~NΔV3[k]=0…………………………(12)
 例えば、調整周期において検出が1回行われると仮定すると、補償期間の序数の単位周期においては、次式のように設定するものとする。
 ΔV1[k]=-ΔV10/(N-1)…………………(13)
 ΔV2[k]=-ΔV20/(N-1)…………………(14)
 ΔV3[k]=-ΔV30/(N-1)…………………(15)
 式(13)~(15)ではΔV1[k]、ΔV2[k]、ΔV3[k]を各kについて同値であるとしたが、式(10)~(12)を満たしていれば値が異なっていてもよい。例えば、検出期間の前の補償期間では補正量を大きく、後では補正量を小さく設定してもよい。
 更に、第2の電圧指令が電圧上限あるいは下限を超過する問題が発生する。これを防ぐためには、(16)~(18)式に示す条件を全ての序数kについて満たすようにΔV1[k],ΔV2[k],ΔV3[k]を設定する必要がある。
 V1+ΔV1[k]<Vmax、V1+ΔV1[k]>Vmin
                        ………………(16)
 V2+ΔV2[k]<Vmax、V2+ΔV2[k]>Vmin
                        ………………(17)
 V3+ΔV3[k]<Vmax、V3+ΔV3[k]>Vmin
                        ………………(18)
 ただし、検出期間(k=1のとき)については、実施例1で述べたように、電圧指令補正量を決定するため(16)~(18)式は満たされる。このため、ここで問題となるのは補償期間においてである。そこで、ΔV1[k],ΔV2[k],ΔV3[k]が(16)~(18)式を満たさない場合、検出不能と判断して電圧指令補正及び電流検出はしないものとする。
 具体的な例として、図4に示すように、N=2とした場合を説明する。図4では、V23(=V2-V3)<Vpwである。したがって、(1)式を満たさないため、このままでは相電流が検出できない。また、検出周期はk=1とする。
 単位周期k=1において、実施例1で説明したように、ΔV1[1]=ΔV10,ΔV2[1]=ΔV20,ΔV3[1]=ΔV30とすることで、ΔV23**=Vpwとし、相電流情報を得る(なお、ここではΔV10=0である)。ここでの補正量を保存しておき、続くk=2の単位周期において、電圧指令補正量ΔV2[2],ΔV3[2]を計算する。N=2より、ΔV1[2]=-ΔV10,ΔV2[2]=-ΔV20,ΔV3[2]=-ΔV30である。更に、ΔV1,ΔV2,ΔV3が(16)~(18)式を満たすかどうかの判定を行う。
 もし(16)~(18)式のいずれかを満たさない場合には、検出不可能と判断し、補正及び検出を行わないものとする。この処理により、事前に補償不可能な場合を判断し、補償不全による電動機の運転異常を回避することが出来る。
 なお、本実施例では、三角波キャリア信号の単調増加期間を検出期間(k=1)としたが、単調減少期間を検出期間としても良い。
 図5は、本発明の実施例3における直流母線電流と三相電圧の関係説明図である。この図を用いて、本実施例3について、実施例2と異なる点について説明する。本実施例3では、(16)~(18)式を満たさない場合には(16)~(18)式を満たすまで一時的にNを増加させて検出を実施する。
 図5では、補償量ΔV20が著しく大きく、k=2において、V2+ΔV2[2]がVminを下回ってしまう場合である。このとき、一時的に調整期間を延長し、次の単位周期(k=3)で補償し切れなかった残りの補償量を補償する。もし、N=3でも補償し切れない場合は、更に調整期間を延ばせばよい。このように調整期間を延長することで、実施例2では検出を諦めていた条件でも相電流検出を行うことが可能となる。
 図6は、本発明の実施例4における直流母線電流と三相電圧の関係説明図である。本実施例は、調整期間を決定する単位周期数Nを奇数とし、検出する単位周期を調整期間の中心に配置するところを特徴とする。図6ではN=3の場合を示している。k=2を検出期間とし、k=1及び3のときを補償期間としている。各検出期間における電圧指令補正量演算は実施例1の方法を用い、補償期間における補正量演算は実施例2で述べた方法を用いて次のように設定する。
 ΔV1[1]=ΔV1[3]=-ΔV10/2……………(19)
 ΔV2[1]=ΔV2[3]=-ΔV20/2……………(20)
 ΔV3[1]=ΔV3[3]=-ΔV30/2……………(21)
 また、補償期間において電圧指令がVmaxあるいはVminを超過する場合については実施例2による方法あるいは実施例3による方法を同様に適用できる。
 このように調整期間を単位周期の奇数倍としたことで、検出周期が三角波キャリアの単調増加期間と単調減少期間に交互に割り当てられるため、PWMに伴う電流リプルによる電流検出誤差の影響を減らすことが可能となり、高精度な検出が実現できるようになる。
 また、その中心に当たる単位周期で検出を行うようにしたことにより、その範囲内での制御量の変動幅を小さく抑えることができ、安定性に優れた制御を実現できる。
 次に、本発明の実施例5を説明する。図6に示した実施例4では、式(19)~(21)のように補償期間での補正量演算を行ったが、本実施例5では、以下のように補正量演算を行う点が異なっている。
 ΔV1[1]=-ΔV10×m………………………………(22)
 ΔV1[3]=-ΔV10×(1-m)……………………(23)
 ΔV2[1]=-ΔV20×m………………………………(24)
 ΔV2[3]=-ΔV20×(1-m)……………………(25)
 ΔV3[1]=-ΔV30×m………………………………(26)
 ΔV3[3]=-ΔV30×(1-m)……………………(27)
 ここで、mは0<m<1を満たす正の実数である。m=0.5とすれば、実施例4に一致する。本実施例5では、mを0.5より大きい値(例えば0.75)などの値とする。
 図7は、本実施例5の効果を実施例4と比較して模式的に示したもので、電圧最大相を補正したことによって生じる最大相電流I1の高調波成分を表している。実施例4の場合、補償量は検出周期に対して対称をなしているため、その結果現れる高調波成分も対称形をなす。電流検出タイミングは検出周期の末期となるため、結果として高調波成分のピークで検出することとなり、誤差が発生する。それに対して本実施例5では、k=1での補償量を大きめに取ることで検出点のピークの値を小さく抑えることが出来る。これによって、電流検出誤差を小さくすることが出来る。
 以上のように、補償期間の補償量を非対称とすることで、電圧補償による高調波成分に起因する電流検出誤差を抑制し、より精度良い電動機制御特性を得ることが出来る。
 図8は、本発明の実施例6における直流母線電流と三相電圧の関係説明図であり、本発明を、二相変調に適用した実施例である。
 電力変換部主回路のスイッチ素子の動作回数を減らして素子のエネルギー損失を低減するため、三相のうち一相のスイッチ動作を無くし、残りの2相のみのスイッチ動作により電動機を駆動することが知られており、これを二相変調と呼ぶ。これに対し、実施例1~4で述べたような通常の変調方式は「三相変調」と呼ばれる。
 一般的に、二相変調は、電圧最大相V1をスイッチON状態に固定するか、電圧最小相をスイッチOFF状態に固定することで実現される。マイコン6内部の動作としては、最大相あるいは最小相を三角波キャリア信号の振幅範囲外に設定する。これを波形の概観からそれぞれ「最大相張り付き」、「最小相張り付き」と呼ぶ。更に、スイッチ状態が固定されている電圧相を「張り付き相」と呼ぶ。
 二相変調では、直流母線電流IDCの波形が三相変調方式と比べて変化する。
 図8においては、Vuが最大相張り付きとなっている場合を示している。このとき、直流母線電流IDCには三角波キャリア信号の単調増加期間と単調減少期間にまたがって電圧最大相電流が流れる。このため、見かけ上、最大相電流の通流時間は、線間電圧V12から通常考えられる値の2倍となるため、張り付き相のパルス状電流については、張り付き相を含む線間電圧が、従来の必要条件Vpwの半分以上であれば検出が可能となる。
 そのため、通常の環境では張り付き相のパルス状電流は電圧指令補正を行わなくても検出が可能となる。
 しかし、Vpwが大きくなる環境では、張り付き相を含む線間電圧(図8では、V12**)が十分でなく、相電流が検出できない状況が現れる。このとき、実施例1と同じ処理によって中間相を補正することで電流検出が可能となる。また、補償期間における第2の電圧指令飽和の問題についても、実施例2及び3と同じ方法で対応することが出来る。
 以上のように、本実施例6により、2相変調において張り付き相のパルス状電流を検出できないような環境においても、相電流を検出することが可能となり、電力変換装置の損失を減らしつつ高精度な電動機制御が可能となる。
 図9は、本発明の実施例7における直流母線電流と三相電圧の関係説明図である。
 2相変調時においても、調整期間を単位周期の奇数倍とし、検出期間を調整期間の中心と設定することにより精度の向上が可能である。しかし、実施例6で述べたように、パルス状電流が単位周期を跨って流れることを考慮して電流検出を行うと、張り付き相の検出タイミングが実質的に三角波キャリアの単調増加期間あるいは単調減少期間に限られてしまう。このため、実施例4で得られた精度向上の効果が小さくなってしまう。
 そこで、本実施例7では、三角波キャリア信号の単調増加期間と単調減少期間に跨って電圧最大相電流が流れていることは考慮せず、各単位周囲において(1)式を満たすように電圧指令補正量を決定する。
 以上の方法によれば、電力変換装置の損失を減らしつつ、更なる高精度な電流検出を実現することが出来る。
 電圧上限値Vmaxと電圧下限値Vimの差が必要線間電圧Vpwの2倍より小さく、(28)式が成立する場合には、そもそも(1)式が満たされないため、直流母線電流IDCからの相電流検出は不可能である。
 Vmax-Vmin<2Vpw………………………………(28)
 図2から明らかなように、三角波キャリア周波数を下げることで、同じTpwに対するVpwを小さくすることができる。したがって、(28)式を満たす場合でも、(28)式を満たすような三角波キャリア周波数を設定することで電動機制御が可能となる。
 図10は、本発明の実施例9による電圧指令補正量演算部の処理フロー図である。これは、実施例1の異なる実施形態であり、実施例1では、電圧補正により2相共に検出可能な場合の処理32では、中間相は補正しない(ΔV2=0)としていた。しかし、本実施例9では、ΔV1及びΔV3のうち、必要な補正量が大きくなる側の補正量の一部を中間相に分担させる点が異なっている。以下、図10を用いて説明する。
 V12*とV23*を比較し、最大相と最小相で必要な補正量が大きくなる側を判定する。ここではV12*の方が大きい場合を例に説明する。このとき必要な補正量は最大相側Δ1に比べて最小相側ΔV3の方が大きくなる。このときの必要な補正量をV3tとすると、
 ΔV3t=(V2*-V3*)-Vpw……………………(29)
と求められる。この必要補正量ΔV3tを、最小相と中間相で分担して補正する。例えばある値a(0<a<1の定数。たとえば0.5)を用いて、
 ΔV2=-ΔV3t×(1-a)……………………………(30)
 ΔV3=ΔV3t×a…………………………………………(31)
とする。更に中間相を補正した分V12が小さくなるため、
 ΔV1=Vpw-(V1*-(V2*+V2))…………(32)
と最大相補正量を修正する。
 なお、ΔV3tが正の場合、電圧補正しなくてもΔV23>Vpwであり、さらにΔV12>ΔV23が分かっているため、全相電圧補正しなくても電流検出が可能である。
 また、図10には明示していないが、この処理により電圧補正を行った結果、最大相電圧指令値あるいは最小相電圧指令値が電圧上下限を逸脱した場合は、実施例1と同様に処理33または処理34のように補正量を決めればよい。
 この処理により、電圧補正量を三相に分散させることで、一相ごとの補正量が減り、電流の高周波リプルを軽減し、騒音の抑制及び電動機の運転効率を上げることが出来る。
 1…直流電源、2…交流電動機、3…電流検出手段、4…マイコン、5…電力変換部主回路、7…電流検出部、8…電圧指令演算部、9…電圧指令補正部、10…電圧指令補正量演算部、11…PWM変換手段。

Claims (12)

  1.  三相電圧指令と三角波キャリア信号とを比較することで電圧指令をPWMパルスに変換するパルス幅変調手段と、
     前記PWMパルスに基づきスイッチ素子を駆動し直流電圧と三相交流電圧との間に電力変換する電力変換器と、
     前記電力変換器の主回路の直流母線に流れるパルス状電流を検出する電流検出手段と、
     前記三相電圧指令の瞬間値をその大きさの順に並べた場合の最大となる相を最大相、2番目に大きい相を中間相、3番目に大きい相を最小相とするとき、最大相と中間相の線間電圧及び中間相と最小相の線間電圧の、2つの線間電圧がそれぞれ所定値以上となるように、前記最大相と最小相の電圧指令を補正する電圧指令補正手段とを備えた電力変換装置において、
     所定の条件において、前記最大相及び/又は最小相の電圧指令のみならず、前記中間相の電圧指令を補正する電圧指令補正手段を備えたことを特徴とする電力変換装置。
  2.  前記所定の条件を、前記最大相あるいは最小相の電圧指令値を補正するとき、補正後の最大相電圧指令あるいは補正後の最小相電圧指令のどちらかが電圧指令値の上限値あるいは下限値に達し、前記2つの線間電圧の一方が前記所定値以上確保できない場合とし、その場合には中間相を必要補正量の不足分だけ補正するよう設定したことを特徴とする請求項1に記載の電力変換装置。
  3.  三相電圧指令と三角波キャリア信号とを比較することで電圧指令をPWMパルスに変換するパルス幅変調手段と、
     前記PWMパルスに基づきスイッチ素子を駆動し直流電圧と三相交流電圧との間に電力変換する電力変換器と、
     前記電力変換器の主回路の直流母線に流れるパルス状電流を検出する電流検出手段と、
     前記三相電圧指令の瞬間値をその大きさの順に並べた場合の最大となる相を最大相、2番目に大きい相を中間相、3番目に大きい相を最小相とするとき、最大相と中間相の線間電圧及び中間相と最小相の線間電圧の、2つの線間電圧がそれぞれ所定値以上となるように、前記最大相と最小相の電圧指令を補正する電圧指令補正手段とを備えた電力変換装置において、
     前記最大相あるいは最小相の電圧指令値を補正するとき、電圧補正値の絶対値が大きい側の補正量を一定の割合で削減し、削減された補正量分だけ中間相を補正するよう設定したことを特徴とする電力変換装置。
  4.  前記電圧指令補正手段が確保する線間電圧値の前記所定値は、前記直流母線を流れる前記パルス状電流の通流時間を、前記電流検出手段が前記直流母線の電流を検出するに要する時間以上を確保するために必要な電圧値としたことを特徴とする請求項1または3に記載の電力変換装置。
  5.  前記電圧指令補正手段が確保する線間電圧の前記所定値は、前記直流母線を流れる前記パルス状電流の通流時間を、前記電流検出手段が前記直流母線の電流を検出するためのサンプルホールド時間と、前記電力変換器のスイッチ素子に起因するリンギングノイズ持続期間とを合計した時間以上を確保するために必要な電圧値としたことを特徴とする請求項1または3に記載の電力変換装置。
  6.  前記電圧指令補正手段により、前記三角波キャリア信号の半周期を単位周期として前記電圧指令を補正し、前記単位周期の整数倍の期間における前記電圧指令の補正量の平均値が、零あるいは略零となるように設定したことを特徴とする請求項1または3に記載の電力変換装置。
  7.  前記電圧指令の補正量の平均を零または略零となる期間を、前記単位周期の奇数倍に設定したことを特徴とする請求項6に記載の電力変換装置。
  8.  前記電圧指令補正量の平均を零または略零となる期間を、前記単位周期の奇数倍に設定するとともに、その中心に当たる単位周期で電流を検出するように設定したことを特徴とする請求項6に記載の電力変換装置。
  9.  前記パルス幅変調手段が、三相の内任意の一相のスイッチ動作を停止し、残りの二相のスイッチ素子を駆動させる2相変調手段であることを特徴とする請求項1または3に記載の電力変換装置。
  10.  前記電圧指令の上限値及び下限値の差が、前記所定値の2倍より小さいとき、前記三角波キャリア信号の周波数を低減するキャリア周波数切替え手段を備えたことを特徴とする請求項1または3に記載の電力変換装置。
  11.  三相電圧指令と三角波キャリア信号とを比較して電圧指令をPWMパルスに変換するステップと、
     前記PWMパルスに基づき電力変換器のスイッチ素子を駆動し直流電圧と三相交流電圧との間に電力変換するステップと、
     前記電力変換器の主回路の直流母線に流れるパルス状電流を検出するステップと、
     前記三相電圧指令を補正するステップと、
     前記三相電圧指令の瞬間値をその大きさの順に並べた場合の最大となる相を最大相、2番目に大きい相を中間相、3番目に大きい相を最小相とするとき、最大相と中間相の線間電圧及び中間相と最小相の線間電圧がともに所定値以上となるように、前記最大相と最小相の電圧指令を補正するステップとを備えた電力変換装置の制御方法において、
     前記最大相と最小相の電圧指令を補正するステップで、前記最大相あるいは最小相の電圧指令値を補正したとき、電圧指令値の上限値又は下限値を逸脱するとき、前記最大相及び/又は最小相の電圧指令のみならず、前記中間相の電圧指令を補正するステップを備えたことを特徴とする電力変換装置の制御方法。
  12.  線間電圧値の前記所定値は、前記直流母線を流れる直流入力電流のパルス幅を所定の幅以上とするための最小の線間電圧であることを特徴とする請求項11に記載の電力変換装置の制御方法。
PCT/JP2010/000961 2009-03-09 2010-02-17 電力変換装置及びその制御方法 WO2010103733A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201080008248.2A CN102326328B (zh) 2009-03-09 2010-02-17 电力变换装置及其控制方法
US13/147,807 US8710781B2 (en) 2009-03-09 2010-02-17 Power conversion device and method for controlling thereof
EP10750492.0A EP2408100B1 (en) 2009-03-09 2010-02-17 Power conversion device, and method for controlling thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009054834A JP5122505B2 (ja) 2009-03-09 2009-03-09 電力変換装置及びその制御方法
JP2009-054834 2009-03-09

Publications (1)

Publication Number Publication Date
WO2010103733A1 true WO2010103733A1 (ja) 2010-09-16

Family

ID=42728032

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/000961 WO2010103733A1 (ja) 2009-03-09 2010-02-17 電力変換装置及びその制御方法

Country Status (5)

Country Link
US (1) US8710781B2 (ja)
EP (1) EP2408100B1 (ja)
JP (1) JP5122505B2 (ja)
CN (1) CN102326328B (ja)
WO (1) WO2010103733A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012170277A (ja) * 2011-02-16 2012-09-06 Mitsubishi Electric Corp 電力変換装置および電動パワーステアリングの制御装置
WO2019008676A1 (ja) * 2017-07-04 2019-01-10 三菱電機株式会社 インバータ装置、及び、電動パワーステアリング装置

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5178799B2 (ja) * 2010-09-27 2013-04-10 株式会社東芝 モータ制御装置
JP2012085379A (ja) * 2010-10-07 2012-04-26 Hitachi Appliances Inc モータ制御システム
JP5972545B2 (ja) * 2011-09-15 2016-08-17 株式会社東芝 モータ制御装置
JP5783066B2 (ja) * 2012-01-26 2015-09-24 ダイキン工業株式会社 電力変換器制御装置
JP5783064B2 (ja) * 2012-01-26 2015-09-24 ダイキン工業株式会社 電力変換器制御装置
JP5783065B2 (ja) * 2012-01-26 2015-09-24 ダイキン工業株式会社 電力変換器制御装置
US20150069941A1 (en) * 2012-04-12 2015-03-12 Hitachi, Ltd. Three-Phase Synchronous Motor Drive Device
JP2014011944A (ja) * 2012-07-03 2014-01-20 Mitsubishi Electric Corp 電力変換装置及び電力変換方法
JP6011261B2 (ja) * 2012-11-14 2016-10-19 富士電機株式会社 3相pwmインバータ装置及びそれを用いた電動機制御装置
JP5908424B2 (ja) * 2013-03-25 2016-04-26 日立オートモティブシステムズステアリング株式会社 モータ制御装置およびパワーステアリング装置
JP5983567B2 (ja) * 2013-09-10 2016-08-31 トヨタ自動車株式会社 電動機制御装置
JP5920300B2 (ja) * 2013-09-18 2016-05-18 株式会社デンソー 電力変換装置、および、これを用いた電動パワーステアリング装置
JP5839011B2 (ja) * 2013-09-18 2016-01-06 株式会社デンソー 電力変換装置、および、これを用いた電動パワーステアリング装置
JP6243448B2 (ja) * 2013-12-03 2017-12-06 日立オートモティブシステムズ株式会社 電動機駆動装置
JP6327010B2 (ja) * 2014-06-26 2018-05-23 富士電機株式会社 インバータの制御装置
WO2017064756A1 (ja) * 2015-10-13 2017-04-20 三菱電機株式会社 交流回転機の制御装置及びそれを備えた電動パワーステアリング装置
JP6525364B2 (ja) * 2016-03-28 2019-06-05 三菱電機株式会社 電力変換装置
JP6644172B2 (ja) * 2017-01-11 2020-02-12 三菱電機株式会社 モータ制御装置
JP2019075964A (ja) * 2017-10-19 2019-05-16 アイシン精機株式会社 モータ制御装置
JP6982519B2 (ja) * 2018-03-07 2021-12-17 サンデンホールディングス株式会社 電力変換装置
JP7064932B2 (ja) * 2018-04-17 2022-05-11 日立Astemo株式会社 インバータ制御装置、インバータ制御方法、インバータ制御プログラム
JP2020156290A (ja) * 2019-03-22 2020-09-24 日本電産株式会社 モータ駆動制御装置、モータシステム、送風装置
JP7221802B2 (ja) * 2019-06-04 2023-02-14 サンデン株式会社 電力変換装置
CN110581663B (zh) * 2019-10-16 2022-04-01 南京理工大学 低载波比下Vienna整流器的相位补偿装置与方法
JP7406446B2 (ja) * 2020-04-28 2023-12-27 ローム株式会社 モータ制御回路
CN113098454B (zh) * 2021-03-31 2023-03-31 上海电气风电集团股份有限公司 Pwm信号生成方法、单相pwm信号生成模块及三相pwm信号生成模块
CN116298491B (zh) * 2023-05-11 2023-07-28 昆山迈致治具科技有限公司 应用于显示屏背光电流检测的脉冲式直流电流测量方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0819263A (ja) 1994-06-30 1996-01-19 Meidensha Corp Pwmインバータの出力電流検出装置
JP2004201440A (ja) * 2002-12-19 2004-07-15 Hitachi Ltd パルス幅変調方法とその装置及び電力変換方法と電力変換器
JP3664040B2 (ja) 2000-05-17 2005-06-22 日産自動車株式会社 モータ制御用pwmインバータ
JP2005253229A (ja) * 2004-03-05 2005-09-15 Mitsubishi Electric Corp 相電圧指令値補正方法およびこの相電圧指令値補正方法を使用したモータ制御装置
JP2008131770A (ja) 2006-11-22 2008-06-05 Hitachi Ltd 電力変換装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69416747T2 (de) * 1993-08-10 1999-07-29 Toyota Motor Co Ltd Vorrichtung zum Antrieb und zur Steuerung von Synchronmotoren, die Permanentmagnete als Erregungssystem benützen
JP3625901B2 (ja) * 1995-06-30 2005-03-02 三菱電機株式会社 サーボ制御システムの自動適正化方法および装置
US5790396A (en) * 1995-12-19 1998-08-04 Kabushiki Kaisha Toshiba Neutral point clamped (NPC) inverter control system
KR100674423B1 (ko) * 2001-01-19 2007-01-29 엘지전자 주식회사 송/수신 시스템 및 데이터 처리 방법
KR100425851B1 (ko) * 2001-05-10 2004-04-03 엘지산전 주식회사 하나의 전류센서를 이용한 삼상 교류전류 측정 방법
US6735537B2 (en) * 2002-03-15 2004-05-11 Motorola, Inc. Procedure for measuring the current in each phase of a three-phase device via single current sensor
JP3951975B2 (ja) * 2003-07-22 2007-08-01 株式会社日立製作所 交流電動機の制御装置,交流電動機の制御方法及びモジュール
JP4505725B2 (ja) * 2004-03-18 2010-07-21 富士電機システムズ株式会社 三相インバータ装置
CN101160713B (zh) * 2005-04-15 2011-07-27 株式会社日立制作所 交流电动机控制装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0819263A (ja) 1994-06-30 1996-01-19 Meidensha Corp Pwmインバータの出力電流検出装置
JP3664040B2 (ja) 2000-05-17 2005-06-22 日産自動車株式会社 モータ制御用pwmインバータ
JP2004201440A (ja) * 2002-12-19 2004-07-15 Hitachi Ltd パルス幅変調方法とその装置及び電力変換方法と電力変換器
JP2005253229A (ja) * 2004-03-05 2005-09-15 Mitsubishi Electric Corp 相電圧指令値補正方法およびこの相電圧指令値補正方法を使用したモータ制御装置
JP2008131770A (ja) 2006-11-22 2008-06-05 Hitachi Ltd 電力変換装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2408100A4 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012170277A (ja) * 2011-02-16 2012-09-06 Mitsubishi Electric Corp 電力変換装置および電動パワーステアリングの制御装置
DE102011080334A1 (de) * 2011-02-16 2012-09-27 Mitsubishi Electric Corporation Stromwechselrichter und elektrische Servolenkungssteuervorrichtung
US8917050B2 (en) 2011-02-16 2014-12-23 Mitsubishi Electric Corporation Power inverter and electric power steering controller
DE102011080334B4 (de) * 2011-02-16 2017-09-14 Mitsubishi Electric Corporation Stromwechselrichter und elektrische Servolenkungssteuervorrichtung
WO2019008676A1 (ja) * 2017-07-04 2019-01-10 三菱電機株式会社 インバータ装置、及び、電動パワーステアリング装置
JPWO2019008676A1 (ja) * 2017-07-04 2019-11-07 三菱電機株式会社 インバータ装置、及び、電動パワーステアリング装置
CN110785920A (zh) * 2017-07-04 2020-02-11 三菱电机株式会社 逆变器装置及电动助力转向装置
CN110785920B (zh) * 2017-07-04 2021-06-18 三菱电机株式会社 逆变器装置及电动助力转向装置
US11063544B2 (en) 2017-07-04 2021-07-13 Mitsubishi Electric Corporation Inverter device and electric power steering apparatus
JP7102407B2 (ja) 2017-07-04 2022-07-19 三菱電機株式会社 インバータ装置、及び、電動パワーステアリング装置

Also Published As

Publication number Publication date
EP2408100A4 (en) 2017-06-28
JP5122505B2 (ja) 2013-01-16
JP2010213407A (ja) 2010-09-24
CN102326328B (zh) 2014-04-09
US20110292700A1 (en) 2011-12-01
EP2408100A1 (en) 2012-01-18
US8710781B2 (en) 2014-04-29
CN102326328A (zh) 2012-01-18
EP2408100B1 (en) 2020-08-19

Similar Documents

Publication Publication Date Title
JP5122505B2 (ja) 電力変換装置及びその制御方法
JP4749874B2 (ja) 電力変換装置及びそれを用いたモータ駆動装置
US8674652B2 (en) Motor control device
JP6045765B1 (ja) 電力変換装置およびこれを適用した車両駆動システム
US8035334B2 (en) Electric power converter
US9362840B2 (en) Power conversion device
US9130481B2 (en) Power converting appartatus
EP1921740B1 (en) Power converter control
US11218107B2 (en) Control device for power converter
US10541638B2 (en) Control apparatus and control method
US10666169B2 (en) Control device for AC rotary machine and control device for electric power steering
KR20160121641A (ko) 전류 센서의 옵셋 보정 장치
TW200924366A (en) Matrix converter
WO2017119214A1 (ja) 電力変換装置
US9923505B2 (en) Methods and systems for controlling an electric motor
JP6293401B2 (ja) 空気調和機のモータ制御装置及び空気調和機
US11658600B2 (en) Motor controller, motor system and method for controlling motor
JP2017205017A (ja) 空気調和機のモータ制御装置及び空気調和機
JP2006074951A (ja) 交流電動機の制御装置
JP2022090317A (ja) インバータの制御装置、インバータの制御方法
WO2024042942A1 (ja) 回転電機の駆動制御装置および駆動制御方法
CN110557078B (zh) 电动机控制装置及其控制方法、计算机可读介质
JP5223521B2 (ja) 電力変換装置
JP2012085405A (ja) 電力変換装置,電力変換方法及び電動機駆動システム

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080008248.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10750492

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13147807

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2010750492

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE