JP7221802B2 - 電力変換装置 - Google Patents

電力変換装置 Download PDF

Info

Publication number
JP7221802B2
JP7221802B2 JP2019104361A JP2019104361A JP7221802B2 JP 7221802 B2 JP7221802 B2 JP 7221802B2 JP 2019104361 A JP2019104361 A JP 2019104361A JP 2019104361 A JP2019104361 A JP 2019104361A JP 7221802 B2 JP7221802 B2 JP 7221802B2
Authority
JP
Japan
Prior art keywords
period
phase
switching element
command value
carrier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019104361A
Other languages
English (en)
Other versions
JP2020198724A (ja
Inventor
辰樹 柏原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanden Holdings Corp
Original Assignee
Sanden Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanden Corp filed Critical Sanden Corp
Priority to JP2019104361A priority Critical patent/JP7221802B2/ja
Priority to CN202080049102.6A priority patent/CN114128131A/zh
Priority to EP20818334.3A priority patent/EP3979485A4/en
Priority to PCT/JP2020/021041 priority patent/WO2020246355A1/ja
Publication of JP2020198724A publication Critical patent/JP2020198724A/ja
Application granted granted Critical
Publication of JP7221802B2 publication Critical patent/JP7221802B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/539Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters with automatic control of output wave form or frequency
    • H02M7/5395Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters with automatic control of output wave form or frequency by pulse-width modulation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • H02P27/08Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0009Devices or circuits for detecting current in a converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0048Circuits or arrangements for reducing losses
    • H02M1/0054Transistor switching losses
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • H02M1/088Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters for the simultaneous control of series or parallel connected semiconductor devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/003Constructional details, e.g. physical layout, assembly, wiring or busbar connections
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • H02M7/53871Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • H02P27/08Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation
    • H02P27/085Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation wherein the PWM mode is adapted on the running conditions of the motor, e.g. the switching frequency
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/28Arrangements for controlling current
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)

Description

本発明は、モータに電力を供給して駆動する電力変換装置に関するものである。
従来よりモータを駆動するための電力変換装置は、三相インバータ回路のUVW各相のスイッチング素子をPWM(Pulse Width Modulation)制御するものであるが、永久磁石内蔵のロータ(回転子)の位置を推定する情報となる相電流を検出するために、直流電源とインバータ回路の間の直流電流を検出する電流検出器(シャント抵抗やホール素子)を一つ設け、この電流検出器が検出する直流電流とスイッチング素子のスイッチングタイミングからUVWのうちの二相の相電流を検出し、最終的に各相の相電流を求めていた(例えば、特許文献1参照)。
また、近年ではスイッチング素子の損失と発熱を低減する目的で、このPWM制御部に二相変調と称される方式を適用した電力変換装置(インバータ装置)も提案されている。この二相変調方式の電力変換装置は、UVWの各相のうち何れか一相のON/OFF状態を固定し、他の二相のみON/OFF状態を変調させながら制御することにより、三相変調方式よりもスイッチング素子のスイッチング回数を減少させ、スイッチング損失と発熱量を減少させつつ、PWM制御するものであった(例えば、特許文献2参照)。
特許第4788416号公報 特開平8-340691号公報
ここで、前記特許文献1ではW相の上アーム側のスイッチング素子がキャリア周期内の略全期間ONされ、V相の上アーム側のスイッチング素子はOFFされているときに、U相の上アーム側のスイッチング素子がONされている期間が短くなって、電流検出器が電流を検出するために必要な最小時間よりも短くなり、二相分の相電流を検出できなくなった場合、二つのキャリア周期でのU相の上アーム側のスイッチング素子のON期間を一つのキャリア周期に集め、残りのキャリア周期では通電しない補正を行っていた(例えば、特許文献1の図10(b))。
しかしながら、上記のような補正を行った場合、U相のスイッチング素子を一つ置きのキャリア周期でスイッチングすることになるため、キャリア周波数は二分の一となる。一方、キャリア周波数は通常、可聴領域を外した値としているため、二分の一のキャリア周波数では騒音が生じてしまう問題があった。
本発明は、係る従来の技術的課題を解決するために成されたものであり、モータが低回転となってインバータ回路に流れる直流電流を検出し難い状況となっても、騒音を生じること無く支障無く相電流を検出することができるようにした電力変換装置を提供するものである。
本発明の電力変換装置は、モータを駆動するインバータ回路と、このインバータ回路に流れる直流電流を検出する電流検出器と、この電流検出器が検出する電流値に基づいて、モータに印加する電圧指令値を演算する指令値演算部と、この指令値演算部が演算した電圧指令値に基づき、インバータ回路をPWM制御するPWM信号を生成するPWM信号生成部と、このPWM信号生成部が生成したPWM信号のデューティを補正するデューティ補正部を備えたものであって、デューティ補正部は、特定のキャリア周期におけるインバータ回路のスイッチング素子のON期間に、他のキャリア周期での当該スイッチング素子のON期間の一部を移動して加算すること、又は、特定のキャリア周期におけるスイッチング素子のOFF期間に、他のキャリア周期での当該スイッチング素子のOFF期間の一部を移動して加算することで、特定のキャリア周期におけるスイッチング素子のON期間、又は、OFF期間を、電流検出器によって電流を検出するために必要な最小時間以上とする補正を行うことを特徴とする。
請求項2の発明の電力変換装置は、上記発明においてデューティ補正部は、特定のキャリア周期と他のキャリア周期でのデューティの和を、補正前と補正後で一致させることを特徴とする。
請求項3の発明の電力変換装置は、上記各発明においてデューティ補正部は、他のキャリア周期でのスイッチング素子の補正されたON期間、又は、OFF期間を、出力可能な最小値とする補正を行うことを特徴とする。
請求項4の発明の電力変換装置は、上記各発明においてデューティ補正部は、特定のキャリア周期内の前半にスイッチング素子の補正されたON期間、又は、OFF期間を設けることを特徴とする。
請求項5の発明の電力変換装置は、上記発明においてデューティ補正部は、他のキャリア周期内の後半にスイッチング素子の補正されたON期間、又は、OFF期間を設けることを特徴とする。
請求項6の発明の電力変換装置は、上記各発明においてデューティ補正部は、モータの正規化した電圧指令値の二乗平均である電圧利用率が所定電圧利用率以下に低下した場合に、特定のキャリア周期及び他のキャリア周期におけるスイッチング素子のON期間、又は、OFF期間の補正を行うことを特徴とする。
請求項7の発明の電力変換装置は、上記各発明において指令値演算部は、モータに印加する三相変調電圧指令値を演算する相電圧指令演算部と、三相変調電圧指令値に基づき、インバータ回路の所定の一相のスイッチング素子のON/OFF状態を固定させると共に、他の二相のスイッチング素子のON/OFF状態を変調させる二相変調電圧指令値を演算する線間変調演算部を有し、PWM信号生成部は、線間変調演算部が演算する二相変調電圧指令値に基づき、インバータ回路をPWM制御するPWM信号を生成することを特徴とする。
請求項8の発明の電力変換装置は、上記発明においてデューティ補正部は、インバータ回路の一相の上アーム側のスイッチング素子のOFF状態が固定され、他の二相の上アーム側のスイッチング素子のON期間が1キャリア周期内において前記最小時間より短い場合、又は、一相の上アーム側のスイッチング素子のON状態が固定され、他の二相の上アーム側のスイッチング素子のOFF期間が1キャリア周期内において前記最小時間より短い場合、特定のキャリア周期及び他のキャリア周期におけるスイッチング素子のON期間、又は、OFF期間の補正を行うことを特徴とする。
本発明によれば、モータを駆動するインバータ回路と、このインバータ回路に流れる直流電流を検出する電流検出器と、この電流検出器が検出する電流値に基づいて、モータに印加する電圧指令値を演算する指令値演算部と、この指令値演算部が演算した電圧指令値に基づき、インバータ回路をPWM制御するPWM信号を生成するPWM信号生成部と、このPWM信号生成部が生成したPWM信号のデューティを補正するデューティ補正部を備えた電力変換装置において、デューティ補正部が、特定のキャリア周期におけるインバータ回路のスイッチング素子のON期間に、他のキャリア周期での当該スイッチング素子のON期間の一部を移動して加算すること、又は、特定のキャリア周期におけるスイッチング素子のOFF期間に、他のキャリア周期での当該スイッチング素子のOFF期間の一部を移動して加算することで、特定のキャリア周期におけるスイッチング素子のON期間、又は、OFF期間を、電流検出器によって電流を検出するために必要な最小時間以上とする補正を行うようにしたので、例えば請求項7の発明の如き二相変調方式の電力変換装置において、請求項6の発明の如くモータの電圧利用率が低くなって、請求項8の発明の如く例えばインバータ回路の一相の上アーム側のスイッチング素子のOFF状態が固定され、他の二相の上アーム側のスイッチング素子のON期間が1キャリア周期内において前記最小時間より短くなった場合、又は、一相の上アーム側のスイッチング素子のON状態が固定され、他の二相の上アーム側のスイッチング素子のOFF期間が1キャリア周期内において前記最小時間より短くなった場合にも、特定のキャリア周期において電流検出器による電流検出のための最小時間以上のON期間、又は、OFF期間を確保し、相電流を検出することができるようになる。
特に、デューティ補正部は、他のキャリア周期でのスイッチング素子のON期間、又は、OFF期間の一部を特定のキャリア周期の当該スイッチング素子のON期間、又は、OFF期間に加算するので、キャリア周波数が低下することによる騒音の発生も防止することができるようになる。
また、請求項2の発明によれば、上記発明に加えてデューティ補正部が、特定のキャリア周期と他のキャリア周期でのデューティの和を、補正前と補正後で一致させるようにしたので、モータの制御性の悪化も招くことなく、良質なモータ制御を実現することが可能となる。
この場合、請求項3の発明の如くデューティ補正部が、他のキャリア周期でのスイッチング素子の補正されたON期間、又は、OFF期間を、出力可能な最小値とする補正を行うようにすれば、モータが低回転となっても特定のキャリア周期において電流検出器による電流検出のための最小時間以上のON期間、又は、OFF期間を支障無く確保することができるようになる。
また、請求項4の発明の如くデューティ補正部が、特定のキャリア周期内の前半にスイッチング素子の補正されたON期間、又は、OFF期間を設け、請求項5の発明の如く他のキャリア周期内の後半にスイッチング素子の補正されたON期間、又は、OFF期間を設けるようにすれば、他の相とON期間、又は、OFF期間の位相が重なることなく、特定のキャリア周期において相電流を容易に検出することができるようになるものである。
本発明の一実施例の電力変換装置の電気回路図である。 図1の電力変換装置を備えた一実施例の電動圧縮機の縦断側面図である。 図1の制御部の指令値演算部を構成する相電圧指令演算部が出力する三相変調電圧指令値とキャリア三角波、三相変調制御を行う場合のPWM波形及びUV線間電圧を示す図である。 図1の制御部の指令値演算部を構成する線間変調演算部が出力する二相変調電圧指令値とキャリア三角波、PWM信号生成部が出力するPWM波形及びUV線間電圧を示す図である。 図1の制御部の指令値演算部を構成する線間変調演算部が出力する二相変調電圧指令値とキャリア三角波、PWM信号生成部が出力するPWM波形及び線間電圧を示すもう一つの図である。 図5の枠X付近の拡大図である。 図1の制御部の指令値演算部を構成する線間変調演算部が出力する二相変調電圧指令値とキャリア三角波、デューティ補正部が出力する補正されたPWM波形及び線間電圧を示す図である。 図7の枠X付近の拡大図である。
以下、本発明の実施の形態について、図面に基づいて詳細に説明する。先ず、図2を参照しながら本発明の電力変換装置1を一体に備えた実施例の電動圧縮機(所謂インバータ一体型電動圧縮機)16について説明する。尚、実施例の電動圧縮機16は、ハイブリッド自動車、電気自動車等の車両に搭載される車両用空気調和装置の冷媒回路の一部を構成するものであり、車両に搭載された直流電源(バッテリ)29から給電されて駆動されるものである。
(1)電動圧縮機16の構成
図2において、電動圧縮機16の金属製ハウジング2内は、当該ハウジング2の軸方向に交差する仕切壁3により圧縮機構収容部4とインバータ収容部6とに区画されており、圧縮機構収容部4内に例えばスクロール型の圧縮機構7と、この圧縮機構7を駆動するモータ8が収容されている。この場合、モータ8はハウジング2に固定されたステータ9と、このステータ9の内側で回転する永久磁石内蔵型のロータ11から成るIPMSM(Interior Permanent Magnet Synchronous Motor)である。
仕切壁3の圧縮機構収容部4側の中心部には軸受部12が形成されており、ロータ11の駆動軸13の一端はこの軸受部12に支持され、駆動軸13の他端は圧縮機構7に連結されている。ハウジング2の圧縮機構収容部4に対応する位置の仕切壁3近傍には吸入口14が形成されており、モータ8のロータ11(駆動軸13)が回転して圧縮機構7が駆動されると、この吸入口14からハウジング2の圧縮機構収容部4内に作動流体である冷媒が流入し、圧縮機構7に吸引されて圧縮される。
そして、この圧縮機構7で圧縮されて高温・高圧となった冷媒は、図示しない吐出口よりハウジング2外の前記冷媒回路に吐出される構成とされている。また、吸入口14から流入した低温の冷媒は、仕切壁3近傍を通ってモータ8の周囲を通過し、圧縮機構7に吸引されることから、仕切壁3も冷却されることになる。
そして、この仕切壁3で圧縮機構収容部4と区画されたインバータ収容部6内には、モータ8を駆動制御する本発明の電力変換装置1が収容される。この場合、電力変換装置1は、仕切壁3を貫通する密封端子やリード線を介してモータ8に給電する構成とされている。
(2)電力変換装置1の構造
実施例の場合、電力変換装置1は、基板17と、この基板17の一面側に配線された6個のスイッチング素子18A~18Fと、基板17の他面側に配線された制御部21と、図示しないHVコネクタ、LVコネクタ等から構成されている。スイッチング素子18A~18Fは、実施例ではMOS構造をゲート部に組み込んだ絶縁ゲートバイポーラトランジスタ(IGBT)等から構成されている。
この場合、実施例では後述する三相のインバータ回路(三相インバータ回路)28のU相インバータ19Uの上アーム側のスイッチング素子18Aと下アーム側のスイッチング素子18D、V相インバータ19Vの上アーム側のスイッチング素子18Bと下アーム側のスイッチング素子18E、W相インバータ19Wの上アーム側のスイッチング素子18Cと下アーム側のスイッチング素子18Fは二つずつそれぞれ並んだかたちとされ、この並んだ一組のスイッチング素子18A及び18D、スイッチング素子18B及び18E、スイッチング素子18C及び18Fが、基板17の中心の周囲に放射状に配置されている。
また、各スイッチング素子18A~18Fの端子部22は、基板17の中心側となった状態で基板17に接続されている。そして、このように組み立てられた電力変換装置1は、各スイッチング素子18A~18Fがある一面側が仕切壁3側となった状態でインバータ収容部6内に収容されて仕切壁3に取り付けられ、カバー23にて塞がれる。この場合、基板17は仕切壁3から起立するボス部24を介して仕切壁3に固定されることになる。
このように電力変換装置1が仕切壁3に取り付けられた状態で、各スイッチング素子18A~18Fは仕切壁3に直接若しくは所定の絶縁熱伝導材を介して密着し、ハウジング2の仕切壁3と熱交換関係となる。そして、前述した如く仕切壁3は圧縮機構収容部4内に吸入される冷媒によって冷やされているので、各スイッチング素子18A~18Fは仕切壁3を介して吸入冷媒と熱交換関係となり、仕切壁3の厚みを介して圧縮機構収容部4内に吸入された冷媒によって冷却され、各スイッチング素子18A~18F自体は仕切壁3を介して冷媒に放熱するかたちとなる。
(3)電力変換装置1の電気回路の構成
次に、図1において本発明の実施例の電力変換装置1は、前述した三相のインバータ回路(三相インバータ回路)28と、制御部21を備えている。インバータ回路28は、直流電源(バッテリ)29の直流電圧を三相交流電圧に変換してモータ8のステータ9の電機子コイルに印加する回路である。このインバータ回路28は、前述したU相インバータ19U、V相インバータ19V、W相インバータ19Wを有しており、各相インバータ19U~19Wは、それぞれ前述した上アーム側のスイッチング素子18A~18Cと、下アーム側のスイッチング素子18D~18Fを個別に有している。更に、各スイッチング素子18A~18Fには、それぞれフライホイールダイオード31が逆並列に接続されている。
そして、インバータ回路28の上アーム側のスイッチング素子18A~18Cの上端側は、直流電源29及び平滑コンデンサ32の正極側に接続されている。尚、平滑コンデンサ32も基板17に設けられて電力変換装置1を構成するものである。一方、インバータ回路28の下アーム側のスイッチング素子18D~18Fの下端側は、直流電源29及び平滑コンデンサ32の負極側に接続されている。
そして、U相インバータ19Uの上アーム側のスイッチング素子18Aと下アーム側のスイッチング素子18Dとの間は、モータ8のU相の電機子コイルに接続され、V相インバータ19Vの上アーム側のスイッチング素子18Bと下アーム側のスイッチング素子18Eとの間は、モータ8のV相の電機子コイルに接続され、W相インバータ19Wの上アーム側のスイッチング素子18Cと下アーム側のスイッチング素子18Fとの間は、モータ8のW相の電機子コイルに接続されている。
また、直流電源29とインバータ回路28の間の母線には、インバータ回路28に流れる直流電流を検出するための電流検出器30が接続されている。この電流検出器30は実施例ではマイナス側の母線に接続されているが、プラス側に接続してもよい。また、電流検出器30はシャント抵抗やホール素子にて構成可能であるが、実施例ではシャント抵抗にて構成されているものとする。
(4)制御部21の構成
次に、制御部21はプロセッサを有するマイクロコンピュータから構成されており、車両ECUから回転数指令値を入力し、モータ8からU相電流iu、V相電流iv、W相電流iwの各相電流を入力して、これらに基づき、インバータ回路28の各スイッチング素子18A~18FのON/OFF状態を制御する。具体的には、各スイッチング素子18A~18Fのゲート端子に印加するゲート電圧を制御する。
この制御部21は、相電流変換部38と、相電圧指令演算部33と、線間変調演算部34と、PWM信号生成部36と、デューティ補正部39と、ゲートドライバ37を有している。そして、相電圧指令演算部33と線間変調演算部34が本発明における指令値演算部35を構成する。
(4-1)相電流変換部38
相電流変換部38は、電流検出器30が検出する直流電流と各スイッチング素子18A~18Fのスイッチングタイミングに基づいてモータ8のU相電流iu、V相電流iv、W相電流iwの各相電流を検出する。
例えば、キャリア周期内でU相インバータ19Uの上アーム側のスイッチング素子18AがON、V相インバータ19Vの下アーム側のスイッチング素子18EとW相インバータ19Wの下アーム側のスイッチング素子18FがONしている通電パターンでは、U相電流iuはスイッチング素子18Aからモータ8のU相の電機子コイルに流れ、V相電流ivはスイッチング素子18Eに並列接続されたフライホイールダイオード31からモータ8のV相の電機子コイルに流れ、W相電流iwはモータ8のW相の電機子コイルからスイッチング素子18Fに流れ出る。この場合、電流検出器30にはU相電流iuが流れて検出可能となる。
他方、キャリア周期内でU相インバータ19Uの上アーム側のスイッチング素子18AとV相インバータ19Vの上アーム側のスイッチング素子18BがON、W相インバータ19Wの下アーム側のスイッチング素子18FがONしている通電パターンでは、U相電流iuとV相電流ivはスイッチング素子18A、18Bからそれぞれモータ8のU相とV相の電機子コイルに流れ、W相電流iwはモータ8のW相の電機子コイルからスイッチング素子18Fに流れ出る。この場合、電流検出器30にはW相電流iwが流れて検出可能となる。
このように求めたU相電流iuとW相電流iwから、残りのV相電流ivは電機子コイルの中性点において、キルヒホッフの電流の法則を適用することで求められる。尚、相電流変換部38には、電流検出器30によって相電流を検出するために必要な最小時間Yが存在し、キャリア周期内で上アーム側のスイッチング素子18A~18CのON期間、又は、OFF期間がこの最小時間Yより短い場合には、検出は不可能となる。そして、相電流変換部38が検出した相電流iu、iv、iwは相電圧指令演算部33に入力される。
(4-2)相電圧指令演算部33(指令値演算部35)
相電圧指令演算部33は、モータ8の電気角、電流指令値と相電流iu、iv、iwに基づいてモータ8の各相の電機子コイルに印加する三相変調電圧指令値U’(U相電圧指令値)、V’(V相電圧指令値)、W’(W相電圧指令値)を演算する。この三相変調電圧指令値U’、V’、W’とは、モータ8の三相変調制御を行う場合における電圧指令値の直流電圧Vdcでの正規化後(-1~1に補正後)の値であり、図3に示す。
尚、図3には後述するPWM信号生成部36で比較されるキャリア三角波も同時に示されている。実施例のキャリア三角波の周波数(キャリア周波数)は可聴域から外れた20kHzとされている。このキャリア周波数が20kHzより低い可聴域の周波数になると電動圧縮機16から生じる音が騒音として認識されるためである。このキャリア周波数はまた、図3中に示されたVuはモータ8の三相変調制御を行う場合の後述するPWM信号(U相)であり、図3中のUV線間電圧は同じく三相変調制御を行う場合の後述するU相-V相間の電位差である。
(4-3)線間変調演算部34(指令値演算部35)
線間変調演算部34は、相電圧指令演算部33により演算され、算出された三相変調電圧指令値U’、V’、W’に基づき、二相変調電圧指令値U(U相電圧指令値)、V(V相電圧指令値)、W(W相電圧指令値)を演算する。この線間変調演算部34の動作については後に詳述する。
(4-4)PWM信号生成部36
PWM信号生成部36は、線間変調演算部34により演算され、算出された二相変調電圧指令値U、V、Wに基づき、インバータ回路28のU相インバータ19U、V相インバータ19V、W相インバータ19Wの駆動指令信号となるPWM信号Vu、Vv、Vwを、キャリア三角波と大小を比較することにより発生させる。
(4-5)デューティ補正部39
デューティ補正部39は、線間変調演算部34(指令値演算部35)から出力される二相変調電圧指令値U、V、Wを補正することで、PWM信号生成部36から出力されるPWM信号Vu、Vv、Vwを補正してゲートドライバ37に出力するものであるが、このデューティ補正部39の動作についても後に詳述する。
(4-6)ゲートドライバ37
ゲートドライバ37は、PWM信号生成部36から出力されたPWM信号Vu、Vv、Vwに基づき、U相インバータ19Uのスイッチング素子18A、18Dのゲート電圧Vuu、Vulと、V相インバータ19Vのスイッチング素子18B、18Eのゲート電圧Vvu、Vvlと、W相インバータ19Wのスイッチング素子18C、18Fのゲート電圧Vwu、Vwlを発生させる。これらのゲート電圧Vuu、Vul、Vvu、Vvl、Vwu、Vwlは、所定時間におけるON状態の時間割合であるデューティ(上アーム側のスイッチング素子18A~18CのON期間)にて表すことができる。
そして、インバータ回路28の各スイッチング素子18A~18Fは、ゲートドライバ37から出力されるゲート電圧Vuu、Vul、Vvu、Vvl、Vwu、Vwlに基づき、ON/OFF駆動される。即ち、ゲート電圧がON状態(所定の電圧値)となるとトランジスタがON動作し、ゲート電圧がOFF状態(零)となるとトランジスタがOFF動作する。このゲートドライバ37は、スイッチング素子18A~18Fが前述したIGBTである場合には、PWM信号に基づいてゲート電圧をIGBTに印加するための回路であり、フォトカプラやロジックIC、トランジスタ等から構成される。
(4-7)線間変調演算部34の動作
次に、図4を参照しながら制御部21の指令値演算部35を構成する線間変調演算部34における二相変調電圧指令値U、V、Wの演算/算出動作について説明する。線間変調演算部34が演算する二相変調電圧指令値U、V、Wとは、モータ8の二相変調制御を行うための電圧指令値の直流電圧Vdcでの正規化後(-1~1に補正後)の値であり、一例が図4に示される。尚、図4にはPWM信号生成部36で比較されるキャリア三角波も同時に示されている。また、図4中に示されたVuはモータ8の二相変調制御を行うためのPWM信号(U相)であり、図4中のUV線間電圧は二相変調制御におけるU相-V相間の電位差である。
線間変調演算部34は、相電圧指令演算部33が算出した各相の三相変調電圧指令値であるU相電圧指令値U’と、V相電圧指令値V’と、W相電圧指令値W’を比較し、絶対値が最大となる相のスイッチング素子18A~18FのON/OFF状態をON又はOFF状態に固定させる二相変調電圧指令値であるU相電圧指令値Uと、V相電圧指令値Vと、W相電圧指令値Wを演算し、出力することにより、三相変調制御を行う場合に比して、スイッチング素子18A~18Fのスイッチング回数を減少させる二相変調制御を実行する。
次に、その具体的な比較演算、固定相の決定制御について詳細に説明する。先ず、実施例の線間変調演算部34は、上記の如く三相変調電圧指令値U’、V’、W’を比較する際、下記式(i)~(iii)の如く各値を比較値U’comp、V’comp、W’compと置く。
U’comp=U’ ・・・(i)
V’comp=V’ ・・・(ii)
W’comp=W’ ・・・(iii)
次に、式(iv)、(v)により、各比較値U’comp、V’comp、W’compを比較して、それらのうちの最大値K1と最小値K2を算出する。
K1=max(U’comp、V’comp、W’comp) ・・・(iv)
K2=min(U’comp、V’comp、W’comp) ・・・(v)
また、最大値K1が最小値K2の絶対値以上である場合、即ち、K1≧abs(K2)である場合は最大値K1をK3とし、最小値K2の絶対値が最大値K1より大きい場合、即ち、K1<abs(K2)である場合は最小値K2をK3とする。
そして、K3が比較値U’compである場合、即ち、K3=U’compである場合はU相電圧指令値U’をKとする。また、K3が比較値V’compである場合、即ち、K3=V’compである場合はV相電圧指令値V’をKとし、K3が比較値W’compである場合、即ち、K3=W’compである場合はW相電圧指令値W’をKとする。
このようにKを決定した後、下記式(vi)~(viii)を用いて二相変調電圧指令値であるU相電圧指令値Uと、V相電圧指令値Vと、W相電圧指令値Wを演算する。
U=U’-K+sign(K) ・・・(vi)
V=V’-K+sign(K) ・・・(vii)
W=W’-K+sign(K) ・・・(viii)
但し、sign(K)とは、Kが正の値のとき「1」となり、Kが負の値のときは「-1」となるものとする。また、各式(vi)~(viii)から三相変調制御と二相変調制御で線間電圧は変わらないことが分かる。
従って、U相電圧指令値U’がKである場合、比較値U’compが最大値K1であるときは、U相電圧指令値Uは「1」となり、比較値U’compが最小値K2であるときは、U相電圧指令値Uは「-1」となる。これにより、U相電圧指令値U’がKである期間、U相インバータ19Uのスイッチング素子18A及び18DのON/OFF状態が固定され、その分、スイッチング回数が減少することになる。
また、V相電圧指令値V’がKである場合、比較値V’compが最大値K1であるときは、V相電圧指令値Vは「1」となり、比較値V’compが最小値K2であるときは、V相電圧指令値Vは「-1」となる。これにより、V相電圧指令値V’がKである期間、V相インバータ19Vのスイッチング素子18B及び18EのON/OFF状態が固定され、その分、スイッチング回数が減少することになる。
また、W相電圧指令値W’がKである場合、比較値W’compが最大値K1であるときは、W相電圧指令値Wは「1」となり、比較値W’compが最小値K2であるときは、W相電圧指令値Wは「-1」となる。これにより、W相電圧指令値W’がKである期間、W相インバータ19Wのスイッチング素子18C及び18FのON/OFF状態が固定され、その分、スイッチング回数が減少することになる。
図4は線間変調演算部34から出力されるU相電圧指令値U、V相電圧指令値V、W相電圧指令値Wと、PWM信号生成部36から出力されるU相のPWM信号Vuと、UV線間電圧を示している。この図においてU相電圧指令値Uが「1」又は「-1」となっている期間、U相インバータ19Uのスイッチング素子18A及び18DのON/OFF状態が固定され、V相電圧指令値Vが「1」又は「-1」となっている期間、V相インバータ19Vのスイッチング素子18B及び18EのON/OFF状態が固定され、W相インバータ19Wのスイッチング素子18C及び18FのON/OFF状態が固定される。
これにより、三相変調制御における各相のスイッチング素子18A~18Fの一周期あたりのスイッチング回数の合計を、6/6(U相)+6/6(V相)+6/6(W相)=18/6と定義した場合、図4の如き二相変調制御では、各相のスイッチング素子18A~18Fのスイッチング回数は、何れも2/3まで低下し、4/6(U相)+4/6(V相)+4/6(W相)=12/6となる。従って、二相変調制御によれば、三相変調制御に比して各スイッチング素子18A~18Fにおいて発生するスイッチング損失と、それよる発熱が抑制されることになる。
(4-8)デューティ補正部39の動作
次に、図5~図8を参照しながらデューティ補正部39によるPWM信号のキャリア周期内での補正動作について詳述する。図5は線間変調演算部34が出力する二相変調電圧指令値U、V、Wとキャリア三角波、PWM信号生成部36が出力するPWM信号Vu、Vv、Vwを示し、図6は図5中の枠X付近の拡大図を示している。
尚、図5~図8の例は、何れか一相の上アーム側のスイッチング素子をOFF状態に固定し、下アーム側のスイッチング素子をON状態に固定する二相変調制御である。
前述した如くPWM信号Vuはインバータ回路28のU相インバータ19Uの駆動指令信号であり、図5や図6に示された「1」のパルスの幅が1キャリア周期内でのデューティであり、上アーム側のスイッチング素子18AのON期間となる。即ち、このデューティの間(「1」のパルスの幅)、上アーム側のスイッチング素子18AがON、下アーム側のスイッチング素子18DがOFFされる。
また、PWM信号VvはV相インバータ19Vの駆動指令信号であり、同様に図5や図6に示された「1」のパルスの幅が1キャリア周期内でのデューティであり、上アーム側のスイッチング素子18BのON期間となる。即ち、このデューティの間(「1」のパルスの幅)、上アーム側のスイッチング素子18BがON、下アーム側のスイッチング素子18EがOFFされる。
更に、PWM信号VwはW相インバータ19Wの駆動指令信号であり、同様に図5や図6に示された「1」のパルスの幅が1キャリア周期内でのデューティであり、上アーム側のスイッチング素子18CのON期間となる。即ち、このデューティの間(「1」のパルスの幅)、上アーム側のスイッチング素子18CがON、下アーム側のスイッチング素子18FがOFFされる。
このような電力変換装置1において、モータ8の電圧利用率kHが低下して来ると、例えば図5の枠X付近の領域では、図6に示される如くU相の上アーム側のスイッチング素子18AがOFF状態、下アーム側のスイッチング素子18DがON状態に固定され(「-1」)、V相の上アーム側のスイッチング素子18BのON期間(「1」)とW相の上アーム側のスイッチング素子18CのON期間(「1」)は極めて短くなってくる。ここで、電圧利用率kHは各相の三相電圧指令値であるU相電圧指令値U’、V相電圧指令値V’、W相電圧指令値W’で表すと下記式(ix)で表現できる。
kH=√(U’2+V’2+W’2) ・・・(ix)
一方、前述した如く相電流変換部38には、電流検出器30によって相電流を検出するために必要な最小時間Yが存在するため、U相の上アーム側のスイッチング素子18AがOFF状態に固定され、V相とW相の上アーム側のスイッチング素子18B、18CのON期間で相電流を検出するときに、図6に示すように1キャリア周期内での上アーム側のスイッチング素子18B、18CのON期間がこの最小時間Yより短い場合、V相とW相の相電流の検出が不可能となる。即ち、U相電流iuは検出可能であるが、V相電流ivとW相電流iwが検出できないため、三相分の相電流iu、iv、iwを検出できない。
そこで、制御部21のデューティ補正部39は、実施例ではモータ8の電圧利用率kHが所定電圧利用率kH1以下に低下した場合、図7、図8に示す如く線間変調演算部34(指令値演算部35)から出力される二相変調電圧指令値U、V、Wを補正し、PWM信号生成部36から出力されるPWM信号Vu、Vv、Vwを補正する。
即ち、図6や図8に示すV相の特定のキャリア周期Z1のV相の上アーム側のスイッチング素子18BのON期間に、V相の他のキャリア周期Z2のスイッチング素子18BのON期間の一部を移動して加算することで、V相の特定のキャリア周期Z1のスイッチング素子18BのON期間(図8中にP1で示す)を、前述した最小時間Y以上とする補正を行う。一方、V相のキャリア周期Z2のスイッチング素子18BのON期間(図8中にP2で示す)は、出力可能な最小値とする。
この場合、デューティ補正部39は、図8に示される補正後の2キャリア周期(Z1~Z2)でのスイッチング素子18Bのデューティの和を、図6の補正前の2キャリア周期(Z1~Z2)でのスイッチング素子18Bのデューティの和と一致させる。更に、デューティ補正部39は、V相の特定のキャリア周期Z1の前半にスイッチング素子18BのON期間を設け、V相の他のキャリア周期Z2の後半にスイッチング素子18BのON期間を設ける。
また、W相に関しても、デューティ補正部39はW相の特定のキャリア周期Z2のW相の上アーム側のスイッチング素子18CのON期間に、W相の他のキャリア周期(Z2の次のキャリア周期)のスイッチング素子18CのON期間の一部を移動して加算することで、W相の特定のキャリア周期Z2のスイッチング素子18CのON期間(図8中にP3で示す)を、前述した最小時間Y以上とする補正を行う。一方、W相の他のキャリア周期のスイッチング素子18CのON期間は、同様に出力可能な最小値とする。
この場合も同様に、デューティ補正部39は、図8に示される補正後の2キャリア周期(Z2と次の周期)でのスイッチング素子18Cのデューティの和を、図6の補正前の2キャリア周期(Z2と次の周期)でのスイッチング素子18Cのデューティの和と一致させる。更に、デューティ補正部39は、W相の特定のキャリア周期Z2の前半にスイッチング素子18CのON期間を設け、W相の他のキャリア周期(Z2の次の周期)の後半にスイッチング素子18CのON期間を設ける。
そして、以上の補正は図8に示されるように他のタイミング(特定のキャリア周期と他のキャリア周期の組)についても同様に実行される。尚、他のキャリア周期は一つに限らず、特定のキャリア周期に続く二つ以上(複数)のキャリア周期から、それらのON期間の一部ずつを特定のキャリア周期のON期間に移動するようにしてもよい。
これにより、相電流変換部38は電流検出器30により、キャリア周期Z1ではV相電流ivを検出でき、キャリア周期Z2ではW相電流iwを検出することができるようになり、最終的に三相分の相電流iu、iv、iwを検出することが可能となる。この場合、例えばキャリア周期Z2でのスイッチング素子18BのON期間とスイッチング素子18CのON期間が重ならないので、V相電流ivとW相電流iwを支障無く検出することができるようになる。
また、図8から明らかな如くキャリア周期Z1においてもスイッチング素子18Cがスイッチングされ、キャリア周期Z2においてもスイッチング素子18Bはスイッチングされるので、キャリア周期は変化しない。
以上詳述した如く本発明では、制御部21のデューティ補正部39が、特定のキャリア周期(V相ではZ1)におけるインバータ回路28のスイッチング素子(V相では18B)のON期間に、他のキャリア周期(V相ではZ2)での当該スイッチング素子(V相では18B)のON期間の一部を移動して加算することで、特定のキャリア周期(V相ではZ1)におけるスイッチング素子(V相では18B)のON期間を、電流検出器30によって電流を検出するために必要な最小時間Y以上とする補正を行うようにしたので、例えば実施例の如き二相変調方式の電力変換装置1において、実施例の如くモータ8の電圧利用率kHが低くなって、実施例の如くインバータ回路28のU相の上アーム側のスイッチング素子18AのOFF状態が固定され、他の二相の上アーム側のスイッチング素子18B、18CのON期間が1キャリア周期内において最小時間Yより短くなった場合にも、特定のキャリア周期(V相ではZ1)において電流検出器30による電流検出のための最小時間Y以上のON期間を確保し、相電流(V相のキャリア周期Z1ではiv)を検出することができるようになる。
特に、デューティ補正部39は、他のキャリア周期(V相ではZ2)でのスイッチング素子(V相では18B)のON期間の一部を特定のキャリア周期(V相ではZ1)の当該スイッチング素子(18B)のON期間に加算するので、キャリア周波数が低下することによる騒音の発生も防止することができるようになる。
また、実施例ではデューティ補正部39が、特定のキャリア周期(V相ではZ1)と他のキャリア周期(V相ではZ2)でのデューティの和を、補正前と補正後で一致させるようにしたので、モータ8の制御性の悪化も招くことなく、良質なモータ制御を実現することが可能となる。
この場合、実施例ではデューティ補正部39が、他のキャリア周期(V相ではZ2)でのスイッチング素子(V相では18B)の補正されたON期間を、出力可能な最小値とする補正を行うようにしたので、モータ8が低回転となっても特定のキャリア周期(V相ではZ1)において電流検出器30による電流検出のための最小時間Y以上のON期間を支障無く確保することができるようになる。
また、実施例ではデューティ補正部39が、特定のキャリア周期(V相ではZ1)内の前半にスイッチング素子(V相では18B)の補正されたON期間を設け、他のキャリア周期(V相ではZ2)内の後半にスイッチング素子(V相では18B)の補正されたON期間を設けるようにしているので、他の相とON期間の位相が重なることなく、特定のキャリア周期(V相ではZ1、W相ではZ2))において相電流iv、iwを容易に検出することができるようになる。
尚、上述した実施例では特定のキャリア周期におけるインバータ回路28のスイッチング素子のON期間に、他のキャリア周期での当該スイッチング素子のON期間の一部を移動して加算するようにしたが、一相のスイッチング素子がON状態に固定され、他の二相のスイッチング素子をスイッチングする場合には、特定のキャリア周期におけるスイッチング素子のOFF期間に、他のキャリア周期での当該スイッチング素子のOFF期間の一部を移動して加算することで、特定のキャリア周期におけるスイッチング素子のOFF期間を、電流検出器30によって電流を検出するために必要な最小時間Y以上とする補正を行うようにしてもよい。
また、実施例では一相のスイッチング素子をOFF状態に固定し、他の二相のスイッチング素子をスイッチングする二相変調方式の電力変換装置1で本発明を説明したが、それに限らず、一相のスイッチング素子をON状態とOFF状態に固定する方式でも本発明は有効である。
更に、請求項7、請求項8以外の発明では実施例の二相変調方式の電力変換装置1に限らず、三相変調方式の電力変換装置1でも有効である。その場合は、デューティ補正部が相電圧指令演算部33が出力する三相変調電圧指令値U’、V’、W’を前述同様に補正することになる。
更にまた、実施例では電動圧縮機16のモータ8を駆動制御する電力変換装置1に本発明を適用したが、それに限らず、各種機器のモータの駆動制御に本発明は有効である。
1 電力変換装置
8 モータ
16 電動圧縮機
18A~18F スイッチング素子
19U U相インバータ
19V V相インバータ
19W W相インバータ
21 制御部
28 三相インバータ回路
30 電流検出器
33 相電圧指令演算部
34 線間変調演算部
35 指令値演算部
36 PWM信号生成部
37 ゲートドライバ
38 相電流変換部
39 デューティ補正部

Claims (8)

  1. モータを駆動するインバータ回路と、
    該インバータ回路に流れる直流電流を検出する電流検出器と、
    該電流検出器が検出する電流値に基づいて、前記モータに印加する電圧指令値を演算する指令値演算部と、
    該指令値演算部が演算した前記電圧指令値に基づき、前記インバータ回路をPWM制御するPWM信号を生成するPWM信号生成部と、
    該PWM信号生成部が生成した前記PWM信号のデューティを補正するデューティ補正部と、
    を備えた電力変換装置において、
    前記デューティ補正部は、
    特定のキャリア周期における前記インバータ回路のスイッチング素子のON期間に、他のキャリア周期での当該スイッチング素子のON期間の一部を移動して加算すること、又は、前記特定のキャリア周期における前記スイッチング素子のOFF期間に、前記他のキャリア周期での当該スイッチング素子のOFF期間の一部を移動して加算することで、前記特定のキャリア周期における前記スイッチング素子のON期間、又は、OFF期間を、前記電流検出器によって電流を検出するために必要な最小時間以上とする補正を行うことを特徴とする電力変換装置。
  2. 前記デューティ補正部は、前記特定のキャリア周期と前記他のキャリア周期でのデューティの和を、補正前と補正後で一致させることを特徴とする請求項1に記載の電力変換装置。
  3. 前記デューティ補正部は、前記他のキャリア周期での前記スイッチング素子の補正されたON期間、又は、OFF期間を、出力可能な最小値とする補正を行うことを特徴とする請求項1又は請求項2に記載の電力変換装置。
  4. 前記デューティ補正部は、前記特定のキャリア周期内の前半に前記スイッチング素子の補正されたON期間、又は、OFF期間を設けることを特徴とする請求項1乃至請求項3のうちの何れかに記載の電力変換装置。
  5. 前記デューティ補正部は、前記他のキャリア周期内の後半に前記スイッチング素子の補正されたON期間、又は、OFF期間を設けることを特徴とする請求項4に記載の電力変換装置。
  6. 前記デューティ補正部は、前記モータの正規化した電圧指令値の二乗平均である電圧利用率が所定電圧利用率以下に低下した場合に、前記特定のキャリア周期及び他のキャリア周期における前記スイッチング素子のON期間、又は、OFF期間の補正を行うことを特徴とする請求項1乃至請求項5のうちの何れかに記載の電力変換装置。
  7. 前記指令値演算部は、
    前記モータに印加する三相変調電圧指令値を演算する相電圧指令演算部と、
    前記三相変調電圧指令値に基づき、前記インバータ回路の所定の一相のスイッチング素子のON/OFF状態を固定させると共に、他の二相のスイッチング素子のON/OFF状態を変調させる二相変調電圧指令値を演算する線間変調演算部を有し、
    前記PWM信号生成部は、前記線間変調演算部が演算する前記二相変調電圧指令値に基づき、前記インバータ回路をPWM制御するPWM信号を生成することを特徴とする請求項1乃至請求項6のうちの何れかに記載の電力変換装置。
  8. 前記デューティ補正部は、前記インバータ回路の一相の上アーム側のスイッチング素子のOFF状態が固定され、他の二相の上アーム側のスイッチング素子のON期間が1キャリア周期内において前記最小時間より短い場合、又は、一相の上アーム側のスイッチング素子のON状態が固定され、他の二相の上アーム側のスイッチング素子のOFF期間が1キャリア周期内において前記最小時間より短い場合、前記特定のキャリア周期及び他のキャリア周期における前記スイッチング素子のON期間、又は、OFF期間の補正を行うことを特徴とする請求項7に記載の電力変換装置。
JP2019104361A 2019-06-04 2019-06-04 電力変換装置 Active JP7221802B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2019104361A JP7221802B2 (ja) 2019-06-04 2019-06-04 電力変換装置
CN202080049102.6A CN114128131A (zh) 2019-06-04 2020-05-28 功率转换装置
EP20818334.3A EP3979485A4 (en) 2019-06-04 2020-05-28 POWER CONVERSION DEVICE
PCT/JP2020/021041 WO2020246355A1 (ja) 2019-06-04 2020-05-28 電力変換装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019104361A JP7221802B2 (ja) 2019-06-04 2019-06-04 電力変換装置

Publications (2)

Publication Number Publication Date
JP2020198724A JP2020198724A (ja) 2020-12-10
JP7221802B2 true JP7221802B2 (ja) 2023-02-14

Family

ID=73649464

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019104361A Active JP7221802B2 (ja) 2019-06-04 2019-06-04 電力変換装置

Country Status (4)

Country Link
EP (1) EP3979485A4 (ja)
JP (1) JP7221802B2 (ja)
CN (1) CN114128131A (ja)
WO (1) WO2020246355A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023081503A (ja) * 2021-12-01 2023-06-13 サンデン株式会社 電力変換装置
CN114825892B (zh) * 2022-05-27 2023-08-11 杭州晶丰明源半导体有限公司 最小导通时间电路、控制器、电路系统和电流检测方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008113494A (ja) 2006-10-30 2008-05-15 Mitsubishi Electric Corp 3相pwm信号発生装置および3相電圧型インバータ装置
JP2010213407A (ja) 2009-03-09 2010-09-24 Hitachi Industrial Equipment Systems Co Ltd 電力変換装置及びその制御方法
JP2012125022A (ja) 2010-12-07 2012-06-28 Denso Corp 電力変換装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08340691A (ja) 1995-06-08 1996-12-24 Nippondenso Co Ltd インバータ制御装置
JP4788416B2 (ja) 2006-03-15 2011-10-05 パナソニック株式会社 モータ駆動用インバータ制御装置及び冷凍装置
JP4866216B2 (ja) * 2006-11-22 2012-02-01 株式会社日立製作所 電力変換装置
JPWO2012035719A1 (ja) * 2010-09-15 2014-01-20 パナソニック株式会社 モータ電流位相検出装置およびそれを用いたモータ駆動装置
JP5790390B2 (ja) * 2011-10-07 2015-10-07 アイシン精機株式会社 交流モータの制御装置および制御方法
JP6170455B2 (ja) * 2014-03-20 2017-07-26 日立オートモティブシステムズ株式会社 ブラシレスモータの制御装置及び制御方法
JP6156282B2 (ja) * 2014-08-07 2017-07-05 株式会社デンソー 回転機の制御装置
WO2016170585A1 (ja) * 2015-04-20 2016-10-27 日産自動車株式会社 制御装置及び制御方法
JP6369423B2 (ja) * 2015-09-01 2018-08-08 株式会社安川電機 電力変換装置、制御装置および制御方法
CN107317502B (zh) * 2016-04-18 2023-07-18 珠海格力电器股份有限公司 逆变器死区补偿方法、装置和逆变器

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008113494A (ja) 2006-10-30 2008-05-15 Mitsubishi Electric Corp 3相pwm信号発生装置および3相電圧型インバータ装置
JP2010213407A (ja) 2009-03-09 2010-09-24 Hitachi Industrial Equipment Systems Co Ltd 電力変換装置及びその制御方法
JP2012125022A (ja) 2010-12-07 2012-06-28 Denso Corp 電力変換装置

Also Published As

Publication number Publication date
CN114128131A (zh) 2022-03-01
EP3979485A1 (en) 2022-04-06
EP3979485A4 (en) 2023-02-15
JP2020198724A (ja) 2020-12-10
WO2020246355A1 (ja) 2020-12-10

Similar Documents

Publication Publication Date Title
CN111480287B (zh) 电力变换装置
JP6165470B2 (ja) モータ制御装置,ヒートポンプシステム及び空気調和機
KR20180040085A (ko) 차량용 인버터 구동 장치 및 차량용 유체 기계
JP7221802B2 (ja) 電力変換装置
CN111742481B (zh) 电力变换装置
US11677309B2 (en) Inverter device
CN116114162A (zh) 逆变器装置
WO2020171110A1 (ja) インバータ装置
JP5045020B2 (ja) モータ駆動用インバータ制御装置
JP6244482B2 (ja) モータ駆動装置
JPH11136994A (ja) 3相誘導電動機駆動装置
JP5441862B2 (ja) インバータ制御装置、圧縮機駆動装置、空気調和機
JP7394619B2 (ja) インバータ装置
JP2006109623A (ja) インバータ制御装置および密閉型電動圧縮機
WO2023002937A1 (ja) インバータ装置
JP5040160B2 (ja) モータ駆動用インバータ制御装置
Li et al. Sensorless control and PMSM drive system for compressor applications
CN110326210B (zh) 空调机
JP2018183004A (ja) インバータ制御装置
JP2006166612A (ja) インバータ制御装置及び密閉型電動圧縮機及び冷蔵庫

Legal Events

Date Code Title Description
A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20220520

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20220810

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230110

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230202

R150 Certificate of patent or registration of utility model

Ref document number: 7221802

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150