WO2017119214A1 - 電力変換装置 - Google Patents

電力変換装置 Download PDF

Info

Publication number
WO2017119214A1
WO2017119214A1 PCT/JP2016/085267 JP2016085267W WO2017119214A1 WO 2017119214 A1 WO2017119214 A1 WO 2017119214A1 JP 2016085267 W JP2016085267 W JP 2016085267W WO 2017119214 A1 WO2017119214 A1 WO 2017119214A1
Authority
WO
WIPO (PCT)
Prior art keywords
dead time
phase
phase difference
axis current
amplitude value
Prior art date
Application number
PCT/JP2016/085267
Other languages
English (en)
French (fr)
Inventor
修市 田川
寛幸 安井
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to JP2017560054A priority Critical patent/JP6399239B2/ja
Publication of WO2017119214A1 publication Critical patent/WO2017119214A1/ja
Priority to US16/021,414 priority patent/US10148195B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/38Means for preventing simultaneous conduction of switches
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • H02M7/53871Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current
    • H02M7/53873Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current with digital control
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/38Means for preventing simultaneous conduction of switches
    • H02M1/385Means for preventing simultaneous conduction of switches with means for correcting output voltage deviations introduced by the dead time

Definitions

  • the present invention relates to a power converter that outputs an AC voltage converted from a DC voltage to a power system.
  • Patent Document 1 describes a PWM converter that compensates for an error voltage due to dead time by adding a compensation signal to a voltage command value.
  • a current phase is obtained from a power supply voltage phase detection value, and dead time compensation is performed in accordance with the current phase.
  • Patent Document 1 A method of directly detecting an alternating current and adjusting the current phase while performing fast Fourier transform (FFT) is also conceivable.
  • FFT fast Fourier transform
  • an object of the present invention is to provide a power converter that can perform dead time compensation with high accuracy.
  • the present invention relates to an inverter circuit including three series circuits in which a high-side switching element and a low-side switching element are connected in series in a power conversion device that converts a DC voltage into a three-phase AC voltage and outputs the converted voltage to an electric power system.
  • a PWM control unit configured to provide a dead time in which the high-side switching element and the low-side switching element of the series circuit are not turned on at the same time, and to switch the high-side switching element and the low-side switching element based on a PWM voltage command value;
  • a dead time compensation unit to be added to A current amplitude value detection unit for detecting an amplitude value of a d-axis current or a q-axis current in a rotating coordinate system obtained by dq conversion of the output current from each of the two series circuits, and an amplitude value detected by the current amplitude value detection unit And a changing unit that changes the deemed phase difference.
  • dead time compensation is performed by looking at the amplitude value of the d-axis current or q-axis current of the rotating coordinate system obtained by dq conversion of the three-axis coordinate system. Time compensation can be performed.
  • the power conversion device includes a reactive power output control unit that outputs reactive power to the power system and a reactive power output control unit that outputs reactive power when a system voltage of the power system exceeds a threshold value.
  • the change of the deemed phase difference by the changing unit may be stopped.
  • the d-axis current fluctuates by outputting reactive power to the power system. If dead time compensation is performed based on the amplitude value of the fluctuating d-axis current (or q-axis current), the output of the power converter is not stabilized. For this reason, when outputting reactive power to an electric power grid
  • the dead time compensation can be performed accurately in real time without enormous calculation processing.
  • Circuit diagram of power converter according to embodiment
  • the figure which shows the waveform of a phase current and d-axis current The figure for explaining the case where the phase difference is shifted in the same direction when adjusting the phase difference Diagram for explaining the case of shifting the phase difference in the opposite direction when adjusting the phase difference Flow chart showing phase difference adjustment processing during dead time compensation
  • FIG. 1 is a circuit diagram of the power conversion apparatus 1 according to the present embodiment.
  • the power conversion apparatus 1 is used for, for example, HEMS (Home Energy Management System).
  • the power conversion device 1 receives a DC voltage output from a solar power generation device, a gas power generation device, a wind power generation device, or the like from the input units IN1 and IN2, converts the DC voltage into a three-phase AC voltage, and outputs the output units OUT1 and OUT2.
  • OUT3 is a PWM inverter that outputs to the power system.
  • the power system is a power distribution system that transmits power from a distribution substation of the power company.
  • a series circuit of capacitors C1 and C2 is connected to the input sections IN1 and IN2.
  • a switching circuit is connected to the input sections IN1 and IN2.
  • the switching circuit (inverter circuit) is configured by serially connecting series circuits 2u, 2v, and 2w that output AC voltages of the U-phase, V-phase, and W-phase among the three-phase AC.
  • the series circuits 2u, 2v, 2w are configured by connecting high-side switching elements Q11, Q21, Q31 and low-side switching elements Q12, Q22, Q32 in series.
  • Each switching element is turned on and off when the PWM signal generated by the driver circuit 10 is input to the gate.
  • Each of these switching elements is a MOSFET, an IGBT, or the like. In the case of an IGBT, a free-wheeling diode is required for each switching element.
  • connection points of the high-side switching elements Q11, Q21, Q31 and the low-side switching elements Q12, Q22, Q32 are connected to the output units OUT1, OUT2, OUT3 via inductors Lu, Lv, Lw.
  • Inductors Lu, Lv, and Lw remove harmonic components superimposed on the alternating current output from the switching circuit.
  • Current detection circuits 12U, 12V, and 12W for detecting phase currents Iu, Iv, and Iw and phase voltages Vu, Vv, and Vw of the series circuits 2u, 2v, and 2w are provided on the U-phase, V-phase, and W-phase lines, respectively.
  • voltage detection circuits 13U, 13V, and 13W are provided. Detection signals from the current detection circuits 12U, 12V, and 12W and detection signals from the voltage detection circuits 13U, 13V, and 13W are input to the microcomputer 11.
  • the microcomputer 11 corresponds to a “PWM control unit”, “calculation unit”, “dead time compensation unit”, “current amplitude value detection unit”, and “change unit” according to the present invention.
  • the microcomputer 11 sends command signals Pu, Pv, and Pw to the driver circuit 10 so that the detected phase voltages Vu, Vv, and Vw coincide with the voltage command values (PWM voltage command values) Vu *, Vv *, and Vw *. And switching control of the switching circuit through the driver circuit 10. At this time, the microcomputer 11 performs switching control of the series circuits 2u, 2v, and 2w so that the phase voltages of the series circuits 2u, 2v, and 2w are shifted by 120 °.
  • microcomputer 11 turns on and off alternately by providing a dead time during which the high-side switching elements Q11, Q21, and Q31 and the low-side switching elements Q12, Q22, and Q32 are not turned on at the same time.
  • FIG. 2 is a diagram showing waveforms of PWM signals applied to the high-side switching elements (HS) Q11, Q21, Q31 and the low-side switching elements (LS) Q12, Q22, Q32.
  • HS high-side switching elements
  • LS low-side switching elements
  • the microcomputer 11 provides a dead time td to the PWM signal output to the high side switching elements Q11, Q21, Q31 and the low side switching elements Q12, Q22, Q32. This provides a period (dead time) in which both the high-side switching elements Q11, Q21, and Q31 and the low-side switching elements Q12, Q22, and Q32 are turned off, and they are not instantaneously turned on simultaneously.
  • the microcomputer 11 executes dead time compensation for compensating for an error voltage caused by the dead time.
  • THD Total Harmonic Distortion
  • THD is the ratio (distortion rate) of the entire harmonic component to the fundamental component. The smaller the THD, the smaller the distortion due to the dead time, which means that phase currents Iu, Iv, and Iw that are closer to a sine wave can be obtained.
  • output part OUT1, OUT2, OUT3 is connected to the electric power grid
  • the THD is required to be about 5% or less.
  • the dead time compensation performed by the microcomputer 11 will be described below.
  • the microcomputer 11 calculates the dead time compensation amount ⁇ V from the switching frequency fc of the series circuits 2u, 2v, 2w, the DC voltage Vdc input from the input units IN1, IN2, and the dead time td.
  • the dead time compensation amount ⁇ V can be expressed by the following equation.
  • ⁇ V [V] td [ms] ⁇ fc [kHz] ⁇ Vdc [V] ⁇ sign (i)
  • the dead time compensation is performed by adding the calculated dead time compensation amount ⁇ V to the voltage command values Vu *, Vv *, and Vw *.
  • sign (i) indicates the polarity of the current of the inductors Lu, Lv, and Lw.
  • the currents of the inductors Lu, Lv, and Lw circulate through the body diode or the free wheel diode of the switching element according to the current polarity. That is, the voltage output from the series circuits 2u, 2v, 2w during the dead time period depends on the current polarity. Therefore, when the phase voltages Vu, Vv, and Vw are negative, a positive dead time compensation amount ⁇ V is added. When the phase voltages Vu, Vv, and Vw are positive, a negative dead time compensation amount ⁇ V is added.
  • phase difference ⁇ between the phase voltages Vu, Vv, Vw and the phase currents Iu, Iv, Iw.
  • This phase difference ⁇ varies in real time depending on the load connected to the power system. Therefore, if the microcomputer 11 does not add the dead time compensation amount ⁇ V to the voltage command values Vu *, Vv *, and Vw * by shifting the phase difference ⁇ that varies in real time from the phase of the three-phase AC voltage, Phase currents Iu, Iv, and Iw that are nearly sinusoidal cannot be obtained.
  • the phase difference ⁇ corresponds to the “deemed phase difference” according to the present invention.
  • the microcomputer 11 performs control to search for an optimum phase difference ⁇ described below.
  • the microcomputer 11 performs dq conversion using the acquired complex numbers of the phase currents Iu, Iv, and Iw, and calculates the d-axis current (or q-axis current) of the rotating coordinate system.
  • the microcomputer 11 detects the amplitude value of the d-axis current (or q-axis current). Since the d-axis current and the q-axis current correspond to two orthogonal components of the torque component received by the rotor of the three-phase motor, if the three-phase current is a perfect sine wave, the d-axis current and the q-axis current The fluctuation range is zero. That is, the d-axis current and the q-axis current have a strong correlation with the harmonic distortion of the phase current. Accordingly, when the amplitude value of the d-axis current (or q-axis current) is controlled to be small, the distortion of the phase currents Iu, Iv, Iw is small.
  • FIG. 3 is a diagram showing waveforms of the phase current and the d-axis current.
  • the d-axis current pulsates at a frequency 6 times the system frequency. Comparing the upper and lower diagrams of FIG. 3, it can be seen that the waveform of the phase current approximates a sine wave when the amplitude of the d-axis current is reduced.
  • the microcomputer 11 sets the phase difference ⁇ for each period (50 Hz or 60 Hz) of the system voltage so that the amplitude value of the d-axis current (or q-axis current) becomes small, for example, in a delay direction of 0.1 ° or Adjust by moving in the advance direction.
  • the microcomputer 11 adds the dead time compensation amount ⁇ V to the voltage command values Vu *, Vv *, Vw * while shifting by the adjusted phase difference ⁇ . As a result, the amplitude value of the d-axis current becomes smaller.
  • 4 and 5 are diagrams for explaining a method of adjusting the phase difference ⁇ so that the amplitude value of the d-axis current (or q-axis current) becomes small.
  • the amplitude value of the d-axis current in the period (B) is smaller than the amplitude value 5A in the period (A).
  • the amplitude value of the d-axis current in the period (C) is further smaller than the amplitude value in the period (B).
  • the microcomputer 11 repeats the above process.
  • the amplitude value of the d-axis current may increase.
  • the microcomputer 11 shifts the phase difference ⁇ in the direction opposite to the direction in which the phase difference ⁇ was shifted immediately before.
  • the amplitude value of the d-axis current in the period (E) is larger than the amplitude value 3A in the period (D).
  • the amplitude value of the d-axis current in the period (F) is smaller than the amplitude value in the period (E).
  • the microcomputer 11 shifts the phase difference ⁇ in the direction opposite to the direction shifted immediately before. Thereby, the microcomputer 11 adjusts the amplitude value of the d-axis current to be small.
  • the microcomputer 11 removes the amplitude value as noise and detects the amplitude value again. Good.
  • the phase difference ⁇ is shifted by 0.1 °, but the shifting unit is not limited to this. If the unit for shifting the phase difference ⁇ is reduced, the resolution of control increases.However, the smaller the unit for shifting the phase difference ⁇ , the smaller the feedback gain and the lower the response, so the unit for shifting the phase difference ⁇ is the resolution. And take into account the responsiveness.
  • an optimal initial value may be set for the phase difference ⁇ . For example, when the optimum phase difference ⁇ is 10 ° and the dead time compensation is started with the initial value of the phase difference ⁇ being 0 °, the phase adjustment until the phase difference ⁇ reaches the optimum value is performed. Becomes longer. Therefore, if the initial value of the phase difference ⁇ is set according to the power system or according to the characteristics of the power converter 1, the control time is shortened.
  • FIG. 6 is a flowchart showing the adjustment process of the phase difference ⁇ at the time of dead time compensation. The process shown in FIG. 6 is executed by the microcomputer 11. In FIG. 6, as described later, a flow (S4 and S9) for determining whether or not the detected amplitude value is equal to or less than the threshold value is provided, but this is not an essential component in the present invention.
  • the microcomputer 11 calculates the dead time compensation amount ⁇ V from the switching frequency fc of the series circuits 2u, 2v, 2w, the DC voltage Vdc, and the dead time td (S1).
  • the microcomputer 11 shifts by the phase difference ⁇ and adds the calculated dead time compensation amount ⁇ V to the voltage command values Vu *, Vv *, Vw * (S2).
  • the phase difference ⁇ at this time is a preset initial value.
  • the microcomputer 11 performs dq conversion using complex numbers of the detected currents Iu, Iv, and Iw, calculates the d-axis current (or q-axis current) of the rotating coordinate system, and the amplitude of the d-axis current (or q-axis current). A value is detected (S3). The microcomputer 11 determines whether or not the detected amplitude value is equal to or less than a threshold value (S4). In the examples of FIGS. 4 and 5, the threshold is 1A.
  • the microcomputer 11 holds the phase difference ⁇ in S2 (S5). The microcomputer 11 proceeds to the process of S2.
  • the microcomputer 11 shifts the phase difference ⁇ by 0.1 ° in the advance direction (S6).
  • the direction at this time may be a delay direction.
  • the microcomputer 11 adds the dead time compensation amount ⁇ V calculated in S1 to the voltage command values Vu *, Vv *, Vw * with the adjusted phase difference ⁇ (S7). Then, the microcomputer 11 detects the amplitude value of the d-axis current (or q-axis current) as in S3 (S8). The microcomputer 11 determines whether or not the detected amplitude value is equal to or less than a threshold value (S9).
  • the microcomputer 11 When the amplitude value of the d-axis current (or q-axis current) is equal to or smaller than the threshold value (S9: YES), the microcomputer 11 holds the phase difference ⁇ used in S7 (S5). When the amplitude value of the d-axis current (or q-axis current) is not less than or equal to the threshold (S9: NO), the microcomputer 11 determines that the amplitude value of the d-axis current (or q-axis current) is smaller than the amplitude value detected immediately before. It is determined whether or not (S10).
  • the microcomputer 11 shifts the phase difference ⁇ by 0.1 ° in the same advance direction as S6 (S11), and re-executes the process of S7. If it is not smaller (S10: NO), that is, if the amplitude value is larger, the microcomputer 11 shifts the phase difference ⁇ by 0.1 ° in the delay direction opposite to S6 (S12), and performs the process of S7. Try again.
  • the microcomputer 11 can detect the optimum phase difference ⁇ by executing the above processing, and can accurately compensate for the dead time. Since the microcomputer 11 that performs this dead time compensation performs processing in a rotating coordinate system obtained by dq conversion of the three-axis coordinate system, the calculation processing does not become enormous. For this reason, the burden on the microcomputer 11 is not large, and the dead time can be compensated accurately following the phase difference ⁇ that changes in real time.
  • the microcomputer 11 detects the system frequency and calculates reactive power to be injected into the power system based on the deviation of the system frequency. Then, the switching circuit is PWM-controlled so that the voltage output from the power converter 1 has a pulse width corresponding to the calculated reactive power.
  • a threshold value for example, 107V
  • the microcomputer 11 By outputting reactive power, the d-axis current (or q-axis current) changes. If dead time compensation is performed based on the amplitude value of the fluctuating d-axis current (or q-axis current), the output of the power converter 1 is not stabilized. For this reason, when outputting reactive power to the power system, the microcomputer 11 preferably maintains the phase difference ⁇ before outputting reactive power and stops adjusting the phase difference ⁇ . Thereby, the output of the power converter device 1 can be stabilized. In this case, the microcomputer 11 corresponds to a “reactive power output control unit” according to the present invention.
  • phase difference C1, C2 ... capacitor fc switching frequency IN1, IN2 ... input part Iu, Iv, Iw ... phase current Lu, Lv, Lw ... inductors OUT1, OUT2, OUT3 ... output part Pu, Pv, Pw ... command signal Q11, Q21, Q31 ... high-side switching elements Q12, Q22, Q32 ... low-side switching elements td ... dead time Vdc ... DC voltage Vu *, Vv *, Vw * ... voltage command values Vu, Vv, Vw ... phase voltages OUT1, OUT2 , OUT3 ... output unit 1 ... power converters 2u, 2v, 2w ... series circuit 10 ... driver circuit 11 ... microcomputer 12U, 12V, 12W ... current detection circuit 13U, 13V, 13W ... voltage detection circuit

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)

Abstract

直流電圧を三相交流電圧に変換して、電力系統に出力する電力変換装置(1)において、マイコン(11)は、ハイサイドスイッチング素子(Q11,Q21,Q31)とローサイドスイッチング素子(Q12,Q22,Q32)とを、同時にオンとならないデッドタイムを設け、スイッチングする。このとき、マイコン(11)は、相電流(Iu,Iv,Iw)の複素数を用いてdq変換し、d軸電流又はq軸電流の振幅値を検出する。d軸電流又はq軸電流の振幅値が減少するよう、位相差Δθを変更する。変更後の位相差Δθに基づいてデッドタイム補償する。

Description

電力変換装置
 本発明は、直流電圧から変換した交流電圧を電力系統へ出力する電力変換装置に関する。
 ハイサイドスイッチング素子とローサイドスイッチング素子とが直列に接続されたインバータ回路等においては、2つのスイッチング素子が同時にオンされる状態(短絡)を防止するために、両スイッチング素子が共にオフとなる時間(デッドタイム)が設けられている。このデッドタイムにより、インバータ回路の出力電流に歪みが発生するという問題がある。
 この出力電圧の歪みを抑える方法として、特許文献1には、電圧指令値に補償信号を足し合わせることで、デッドタイムによる誤差電圧を補うPWMコンバータが記載されている。特許文献1では、電源電圧位相検出値から電流位相を求め、その電流位相に応じてデッドタイム補償を行っている。
特開平9-154280号公報
 しかしながら、電圧と電流とには常に変動する位相差があり、電流位相を常時的確に検出することは困難である。そのため、特許文献1では、リアルタイムに発生する電流の歪みに応じて、適切にデッドタイム補償を行うことは難しい。また、交流電流を直接検出し、高速フーリエ変換(FFT)を行いながら電流位相を調節する方法も考えられるが、演算処理が膨大であり、プロセッサにかかる負担も大きいため、現実性が低い。
 そこで、本発明の目的は、精度よくデッドタイム補償を行える電力変換装置を提供することにある。
 本発明は、直流電圧を三相交流電圧に変換して、電力系統に出力する電力変換装置において、ハイサイドスイッチング素子及びローサイドスイッチング素子が直列接続された3つの直列回路を含むインバータ回路と、前記直列回路のハイサイドスイッチング素子とローサイドスイッチング素子とが同時にオンとならないデッドタイムを設け、前記ハイサイドスイッチング素子と前記ローサイドスイッチング素子とをPWM電圧指令値に基づいてスイッチングさせるPWM制御部と、前記デッドタイムを設けることにより発生する歪みを抑制するためのデッドタイム補償量を算出する算出部と、前記デッドタイム補償量を、前記三相交流電圧の位相からみなし位相差分ずらして、前記PWM電圧指令値に加算するデッドタイム補償部と、前記3つの直列回路それぞれからの出力電流をdq変換して得られる回転座標系のd軸電流又はq軸電流の振幅値を検出する電流振幅値検出部と、前記電流振幅値検出部が検出する振幅値が減少するよう、前記みなし位相差を変更する変更部とを備えることを特徴とする。
 この構成では、三軸座標系をdq変換した回転座標系のd軸電流又はq軸電流の振幅値を見てデッドタイム補償を行うため、演算処理が膨大となることなく、リアルタイムで精度よくデッドタイム補償を行える。
 前記電力変換装置は、前記電力系統の系統電圧が閾値を超えた場合に、前記電力系統に無効電力を出力する無効電力出力制御部と、前記無効電力出力制御部が無効電力を出力する場合に、前記変更部によるみなし位相差の変更を停止する構成でもよい。
 無効電力を電力系統へ出力することでd軸電流(又はq軸電流)は変動する。この変動するd軸電流(又はq軸電流)の振幅値に基づいて、デッドタイム補償を行うと、電力変換装置の出力が安定化しない。このため、電力系統に無効電力を出力する場合、みなし位相差の変更を停止することで、電力変換装置の出力を安定化できる。
 本発明によれば、演算処理が膨大となることなく、リアルタイムで精度よくデッドタイム補償を行える。
実施形態に係る電力変換装置の回路図 ハイサイドスイッチング素子とローサイドスイッチング素子とに印加するPWM信号の波形を示す図 相電流とd軸電流との波形を示す図 位相差の調整時に、同方向に位相差をずらす場合を説明するための図 位相差の調整時に、反対方向に位相差をずらす場合を説明するための図 デッドタイム補償時の位相差の調整処理を示すフローチャート
 図1は、本実施形態に係る電力変換装置1の回路図である。電力変換装置1は、例えばHEMS(Home Energy Management System)に用いられる。電力変換装置1は、太陽光発電装置、ガス発電装置、又は風力発電装置等から出力される直流電圧を、入力部IN1,IN2から入力して三相交流電圧に変換し、出力部OUT1,OUT2,OUT3から電力系統へ出力するPWMインバータである。ここで、電力系統は電力会社の配電変電所から電力を伝送する配電系統である。
 入力部IN1,IN2にはキャパシタC1,C2の直列回路が接続されている。また、入力部IN1,IN2にはスイッチング回路が接続されている。スイッチング回路(インバータ回路)は、三相交流のうちU相、V相、W相それぞれの交流電圧を出力する直列回路2u,2v,2wが並列接続されて構成されている。直列回路2u,2v,2wは、ハイサイドスイッチング素子Q11,Q21,Q31とローサイドスイッチング素子Q12,Q22,Q32とが直列接続されて構成されている。各スイッチング素子は、ドライバ回路10で生成されたPWM信号がゲートに入力され、オンオフする。これら各スイッチング素子は、MOSFET、IGBT等である。なお、IGBTとする場合、各スイッチング素子に還流ダイオードが必要である。
 ハイサイドスイッチング素子Q11,Q21,Q31とローサイドスイッチング素子Q12,Q22,Q32との接続点は、インダクタLu,Lv,Lwを介して、出力部OUT1,OUT2,OUT3へ接続されている。インダクタLu,Lv,Lwは、スイッチング回路から出力される交流電流に重畳される高調波成分を除去する。
 U相、V相、W相それぞれのラインには、直列回路2u,2v,2wそれぞれの相電流Iu,Iv,Iw及び相電圧Vu,Vv,Vwを検出する電流検出回路12U,12V,12W、及び電圧検出回路13U,13V,13Wが設けられている。電流検出回路12U,12V,12Wの検出信号、及び、電圧検出回路13U,13V,13Wの検出信号はマイコン11に入力される。
 マイコン11は、本発明に係る「PWM制御部」、「算出部」、「デッドタイム補償部」、「電流振幅値検出部」及び「変更部」に相当する。
 マイコン11は、検出された相電圧Vu,Vv,Vwが、電圧指令値(PWM電圧指令値)Vu*,Vv*,Vw*と一致するよう、ドライバ回路10へ指令信号Pu,Pv,Pwを出力し、ドライバ回路10を通じてスイッチング回路をスイッチング制御する。このとき、マイコン11は、直列回路2u,2v,2wそれぞれの相電圧の位相が120°ずつずれるように、直列回路2u,2v,2wをスイッチング制御する。
 また、マイコン11は、ハイサイドスイッチング素子Q11,Q21,Q31とローサイドスイッチング素子Q12,Q22,Q32とが同時にオンとならないデッドタイムを設けて、交互にオンオフする。
 図2は、ハイサイドスイッチング素子(HS)Q11,Q21,Q31とローサイドスイッチング素子(LS)Q12,Q22,Q32とに印加するPWM信号の波形を示す図である。
 マイコン11は、ハイサイドスイッチング素子Q11,Q21,Q31とローサイドスイッチング素子Q12,Q22,Q32とに出力するPWM信号に、デッドタイムtdを設ける。これにより、ハイサイドスイッチング素子Q11,Q21,Q31とローサイドスイッチング素子Q12,Q22,Q32とが共にオフする期間(デッドタイム)が設けられ、瞬間的に同時にオンとならない。
 デッドタイムtdを設けた場合、相電流Iu,Iv,Iwの連続性が失われる為、相電流Iu,Iv,Iwには歪みが発生し、相電流Iu,Iv,Iwは正弦波状とならない。このデッドタイムが原因の歪みは主に6倍高調波成分として現れる。
 そこで、マイコン11は、デッドタイムによって生じる誤差電圧を補償するデッドタイム補償を実行する。デッドタイム補償を行うことで、THD(Total Harmonic Distortion:全高調波歪)の値は小さくなる。THDは、高調波成分全体の基本波成分に対する比(歪率)である。このTHDが小さくなるほど、デッドタイムによる歪みは小さく、より正弦波状に近い相電流Iu,Iv,Iwが得られることを意味する。
 なお、本実施形態に係る電力変換装置1は、出力部OUT1,OUT2,OUT3が電力系統に接続されている。電力変換装置1から電力系統に電流を出力する場合には、THDが約5%以下であることが要求されている。
 以下に、マイコン11が行うデッドタイム補償について説明する。
 マイコン11は、直列回路2u,2v,2wのスイッチング周波数fcと、入力部IN1,IN2から入力される直流電圧Vdcと、デッドタイムtdとからデッドタイム補償量ΔVを算出する。デッドタイム補償量ΔVは以下の式で表せる。
 ΔV[V]=td[ms]×fc[kHz]×Vdc[V]×sign(i)
 この算出されたデッドタイム補償量ΔVを、電圧指令値Vu*,Vv*,Vw*に加算することで、デッドタイム補償がなされる。
 ここで、sign(i)は、インダクタLu,Lv,Lwの電流の極性を示し、i>0の場合、sign(i)=1であり、i<0の場合、sign(i)=-1である。デッドタイム期間中は、電流極性に応じてスイッチング素子のボディーダイオード又は還流ダイオードを通ってインダクタLu,Lv,Lwの電流が還流する。すなわち、デッドタイム期間中に直列回路2u,2v,2wから出力される電圧は電流極性による。したがって、相電圧Vu,Vv,Vwが負の場合、正のデッドタイム補償量ΔVが加算され、相電圧Vu,Vv,Vwが正の場合、負のデッドタイム補償量ΔVが加算される。
 また、相電圧Vu,Vv,Vwと相電流Iu,Iv,Iwとには位相差Δθがある。この位相差Δθは電力系統に接続される負荷によってリアルタイムで変動する。このため、マイコン11は、三相交流電圧の位相から、リアルタイムで変動する位相差Δθ分だけずらして、デッドタイム補償量ΔVを電圧指令値Vu*,Vv*,Vw*に加算しないと、より正弦波状に近い相電流Iu,Iv,Iwが得られない。位相差Δθは、本発明に係る「みなし位相差」に相当する。
 そこで、マイコン11は、以下に説明する最適な位相差Δθを探索する制御を行う。
 マイコン11は、取得した相電流Iu,Iv,Iwの複素数を用いてdq変換を行い、回転座標系のd軸電流(又はq軸電流)を算出する。マイコン11は、d軸電流(又はq軸電流)の振幅値を検出する。d軸電流及びq軸電流は、三相電動機の回転子が受けるトルク成分の直交2成分に相当するものであるので、三相電流が完全な正弦波であればd軸電流及びq軸電流の変動幅は0である。すなわち、d軸電流及びq軸電流は相電流の高調波歪みと強い相関関係がある。したがって、d軸電流(又はq軸電流)の振幅値が小さくなるように制御すると、相電流Iu,Iv,Iwの歪みは小さくなる。
 図3は、相電流とd軸電流との波形を示す図である。d軸電流は系統周波数の6倍の周波数で脈動している。図3の上図及び下図を比べると、d軸電流の振幅が小さくなると、相電流の波形は正弦波状に近似することが読み取れる。
 マイコン11は、d軸電流(又はq軸電流)の振幅値が小さくなるように、系統電圧の1周期(50Hz又は60Hz)毎に、位相差Δθを、例えば0.1°単位で遅れ方向又は進み方向にずらして調整する。マイコン11は、調整後の位相差Δθ分だけずらして、デッドタイム補償量ΔVを電圧指令値Vu*,Vv*,Vw*に加算する。その結果、d軸電流の振幅値はより小さくなっていく。
 図4及び図5は、d軸電流(又はq軸電流)の振幅値が小さくなるように、位相差Δθを調整する方法を説明するための図である。
 図4に示す例では、期間(A)の開始時に、マイコン11が位相差Δθの初期値として15°を設定し、デッドタイム補償を行った結果、d軸電流の振幅値が5Aとなったものとする。そして、マイコン11は、期間(A)の終わり(期間(B)の始め)に、位相差Δθを進み方向に0.1°ずらし、位相差Δθ=15.1°とする。
 その結果、期間(B)でのd軸電流の振幅値は、期間(A)での振幅値5Aよりも小さくなっている。マイコン11は、期間(B)の終わり(期間(C)の始め)に、直前の調整時にずらした方向と同方向(進み方向)に位相差Δθをさらに0.1°ずらし、位相差Δθ=15.2°とする。その結果、期間(C)でのd軸電流の振幅値は、期間(B)での振幅値よりもさらに小さくなっている。
 マイコン11は、前記処理を繰り返す。
 また、位相差Δθをずらした結果、d軸電流の振幅値が大きくなる場合がある。この場合、直前に位相差Δθをずらした方向と同方向にさらに位相差Δθをずらすと、d軸電流の振幅値はさらに大きくなる可能性が高い。そこで、この場合には、マイコン11は、直前に位相差Δθをずらした方向と反対方向に位相差Δθをずらす。
 図5に示す例では、期間(D)の開始時に、マイコン11が位相差Δθの初期値として15°を設定し、デッドタイム補償を行った結果、d軸電流の振幅値が3Aとなったものとする。そして、マイコン11は、期間(D)の終わり(期間(E)の始め)において、位相差Δθを進み方向に0.1°ずらし、位相差Δθ=15.1°とする。
 その結果、期間(E)でのd軸電流の振幅値は、期間(D)での振幅値3Aよりも大きくなっている。この場合には、マイコン11は、直前の調整時でずらした方向と反対方向(遅れ方向)に位相差Δθを0.1°ずらし、位相差Δθ=15°とする。その結果、期間(F)でのd軸電流の振幅値は、期間(E)での振幅値よりも小さくなっている。
 このように、位相差Δθをずらした結果、d軸電流の振幅値が大きくなった場合、マイコン11は、位相差Δθを、直前にずらした方向と反対方向にずらす。これにより、マイコン11はd軸電流の振幅値が小さくなるように調整する。
 なお、マイコン11は、検出するd軸電流(又はq軸電流)の振幅値が急峻に変化している場合には、その振幅値をノイズとして除去し、再度振幅値を検出するようにしてもよい。
 また、図4及び図5では位相差Δθを0.1°単位でずらしているが、ずらす単位はこれに限定されない。位相差Δθのずらす単位を小さくすると制御の分解能が高まるが、位相差Δθのずらす単位を小さくする程、フィードバックゲインが小さくなって、応答性が低下するので、位相差Δθのずらす単位は、分解能と応答性を勘案して定めればよい。
 また、位相差Δθに最適な初期値を設定しておいてもよい。例えば、最適な位相差Δθが10°であって、位相差Δθの初期値を0°としてデッドタイム補償を開始した場合、位相差Δθが最適値となるまでの位相調整を行うため、制御時間が長くなる。そこで、電力系統に応じて、又は電力変換装置1の特性に応じて位相差Δθの初期値を設定すれば、制御時間は短くなる。
 図6は、デッドタイム補償時の位相差Δθの調整処理を示すフローチャートである。図6に示す処理はマイコン11により実行される。なお、図6においては、後述する通り、検出した振幅値が閾値以下であるか否かを判定するフロー(S4やS9)を設けているが、これは本発明における必須構成要素ではない。
 マイコン11は、直列回路2u,2v,2wのスイッチング周波数fcと、直流電圧Vdcと、デッドタイムtdとからデッドタイム補償量ΔVを算出する(S1)。マイコン11は、位相差Δθ分だけずらして、算出したデッドタイム補償量ΔVを電圧指令値Vu*,Vv*,Vw*に加算する(S2)。このときの位相差Δθは予め設定された初期値である。
 マイコン11は、検出した電流Iu,Iv,Iwの複素数を用いてdq変換を行い、回転座標系のd軸電流(又はq軸電流)を算出し、d軸電流(又はq軸電流)の振幅値を検出する(S3)。マイコン11は、検出した振幅値が閾値以下であるか否かを判定する(S4)。図4及び図5の例では、閾値は1Aである。
 d軸電流(又はq軸電流)の振幅値が閾値以下である場合(S4:YES)、マイコン11は、S2での位相差Δθを保持する(S5)。マイコン11は、S2の処理に移行する。
 d軸電流(又はq軸電流)の振幅値が閾値以下でない場合(S4:NO)、マイコン11は、進み方向に位相差Δθを0.1°ずらす(S6)。このときの方向は遅れ方向であってもよい。
 マイコン11は、調整後の位相差Δθで、S1で算出したデッドタイム補償量ΔVを電圧指令値Vu*,Vv*,Vw*に加算する(S7)。そして、マイコン11は、S3と同様に、d軸電流(又はq軸電流)の振幅値を検出する(S8)。マイコン11は、検出した振幅値が閾値以下であるか否かを判定する(S9)。
 d軸電流(又はq軸電流)の振幅値が閾値以下である場合(S9:YES)、マイコン11は、S7で用いた位相差Δθを保持する(S5)。d軸電流(又はq軸電流)の振幅値が閾値以下でない場合(S9:NO)、マイコン11は、d軸電流(又はq軸電流)の振幅値が、直前の検出した振幅値よりも小さくなったか否かを判定する(S10)。
 小さくなった場合(S10:YES)、マイコン11は、S6と同じ進み方向に位相差Δθを0.1°ずらし(S11)、S7の処理を再実行する。小さくなっていない場合(S10:NO)、すなわち振幅値が大きくなった場合、マイコン11は、S6とは反対方向の遅れ方向に位相差Δθを0.1°ずらし(S12)、S7の処理を再実行する。
 マイコン11は以上の処理を実行することで、最適な位相差Δθを検出でき、精度よくデッドタイム補償を行える。このデッドタイム補償を行うマイコン11は、三軸座標系をdq変換した回転座標系で処理を行うため、演算処理が膨大となることはない。このため、マイコン11へかかる負担は大きくなく、リアルタイムに変化する位相差Δθに追従して、精度よくデッドタイム補償を行える。
 なお、逆潮流により、電力系統の系統電圧が閾値(例えば107V)を超えた場合、電力系統に無効電力を出力する制御を行う場合がある。詳しくは、マイコン11は、系統周波数を検出し、系統周波数の偏差に基づいて、電力系統へ注入すべき無効電力を算出する。そして、電力変換装置1から出力される電圧が、算出された無効電力に応じたパルス幅となるよう、スイッチング回路をPWM制御する。
 無効電力を出力することで、d軸電流(又はq軸電流)は変動する。この変動するd軸電流(又はq軸電流)の振幅値に基づいて、デッドタイム補償を行うと、電力変換装置1の出力が安定化しない。このため、電力系統に無効電力を出力する場合、マイコン11は、無効電力を出力する前の位相差Δθを保持し、位相差Δθの調整を停止することが好ましい。これにより、電力変換装置1の出力を安定化できる。この場合、マイコン11は、本発明に係る「無効電力出力制御部」に相当する。
Δθ…位相差
C1,C2…キャパシタ
fc…スイッチング周波数
IN1,IN2…入力部
Iu,Iv,Iw…相電流
Lu,Lv,Lw…インダクタ
OUT1,OUT2,OUT3…出力部
Pu,Pv,Pw…指令信号
Q11,Q21,Q31…ハイサイドスイッチング素子
Q12,Q22,Q32…ローサイドスイッチング素子
td…デッドタイム
Vdc…直流電圧
Vu*,Vv*,Vw*…電圧指令値
Vu,Vv,Vw…相電圧
OUT1,OUT2,OUT3…出力部
1…電力変換装置
2u,2v,2w…直列回路
10…ドライバ回路
11…マイコン
12U,12V,12W…電流検出回路
13U,13V,13W…電圧検出回路

Claims (2)

  1.  直流電圧を三相交流電圧に変換して、電力系統に出力する電力変換装置において、
     ハイサイドスイッチング素子及びローサイドスイッチング素子が直列接続された3つの直列回路を含むインバータ回路と、
     前記直列回路のハイサイドスイッチング素子とローサイドスイッチング素子とが同時にオンとならないデッドタイムを設け、前記ハイサイドスイッチング素子と前記ローサイドスイッチング素子とをPWM電圧指令値に基づいてスイッチングさせるPWM制御部と、
     前記デッドタイムを設けることにより発生する歪みを抑制するためのデッドタイム補償量を算出する算出部と、
     前記デッドタイム補償量を、前記三相交流電圧の位相からみなし位相差分ずらして、前記PWM電圧指令値に加算するデッドタイム補償部と、
     前記3つの直列回路それぞれからの出力電流をdq変換して得られる回転座標系のd軸電流又はq軸電流の振幅値を検出する電流振幅値検出部と、
     前記電流振幅値検出部が検出する振幅値が減少するよう、前記みなし位相差を変更する変更部と、
     を備える電力変換装置。
  2.  前記電力系統の系統電圧が閾値を超えた場合に、前記電力系統に無効電力を出力する無効電力出力制御部と、
     前記無効電力出力制御部が無効電力を出力する場合に、前記変更部によるみなし位相差の変更を停止する、
     請求項1に記載の電力変換装置。
PCT/JP2016/085267 2016-01-08 2016-11-29 電力変換装置 WO2017119214A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017560054A JP6399239B2 (ja) 2016-01-08 2016-11-29 電力変換装置
US16/021,414 US10148195B2 (en) 2016-01-08 2018-06-28 Power converter for outputting three-phase alternating-current voltages to a power system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016002467 2016-01-08
JP2016-002467 2016-01-08

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/021,414 Continuation US10148195B2 (en) 2016-01-08 2018-06-28 Power converter for outputting three-phase alternating-current voltages to a power system

Publications (1)

Publication Number Publication Date
WO2017119214A1 true WO2017119214A1 (ja) 2017-07-13

Family

ID=59274562

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/085267 WO2017119214A1 (ja) 2016-01-08 2016-11-29 電力変換装置

Country Status (3)

Country Link
US (1) US10148195B2 (ja)
JP (1) JP6399239B2 (ja)
WO (1) WO2017119214A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108075678A (zh) * 2017-12-23 2018-05-25 西安交通大学 基于脉宽调整的三相逆变器死区效应双边补偿方法
CN109067230A (zh) * 2018-09-27 2018-12-21 重庆大学 一种SiC MOSFET逆变器用在线自适应死区消除方法
US10811997B2 (en) 2017-09-29 2020-10-20 Daikin Industries, Ltd. Power conversion device

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6962379B2 (ja) * 2017-09-22 2021-11-05 株式会社村田製作所 蓄電装置
CN112737453B (zh) * 2020-12-09 2022-05-17 武汉船用电力推进装置研究所(中国船舶重工集团公司第七一二研究所) 一种变流器功率组件死区效应补偿方法
JP2023007592A (ja) * 2021-07-02 2023-01-19 トヨタ自動車株式会社 モータ制御装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006320122A (ja) * 2005-05-13 2006-11-24 Nissan Motor Co Ltd 電動機の制御装置
JP2008086083A (ja) * 2006-09-26 2008-04-10 Mitsubishi Electric Corp Pwmインバータ制御装置及びpwmインバータ制御方法並びに冷凍空調装置
JP2015061381A (ja) * 2013-09-18 2015-03-30 株式会社デンソー 電力変換装置、および、これを用いた電動パワーステアリング装置

Family Cites Families (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5550450A (en) * 1993-04-28 1996-08-27 Otis Elevator Company Dead-time effect compensation for pulse-width modulated inverters and converters
JP3236985B2 (ja) 1995-11-29 2001-12-10 株式会社日立製作所 Pwmコンバータの制御装置
US5850132A (en) * 1997-07-02 1998-12-15 Allin-Bradley Company, Llc Apparatus used with AC motors for compensating for turn on delay errors
JP2004015892A (ja) * 2002-06-05 2004-01-15 Toshiba Corp インバータの制御装置及び電気自動車
JP4422567B2 (ja) * 2004-06-30 2010-02-24 株式会社日立製作所 モータ駆動装置,電動アクチュエータおよび電動パワーステアリング装置
JP4747968B2 (ja) * 2006-06-30 2011-08-17 トヨタ自動車株式会社 モータ駆動装置
JP4279886B2 (ja) * 2007-02-28 2009-06-17 株式会社日立製作所 同期モータ駆動装置および方法
JP4497235B2 (ja) * 2008-08-08 2010-07-07 トヨタ自動車株式会社 交流電動機の制御装置および制御方法
JP5343229B2 (ja) 2009-05-13 2013-11-13 新電元工業株式会社 インバータ
JP5580095B2 (ja) 2010-03-30 2014-08-27 株式会社ダイヘン 系統連系インバータ装置
JP5857394B2 (ja) * 2010-09-15 2016-02-10 日産自動車株式会社 インバータ装置及びインバータ制御方法
JP5316514B2 (ja) 2010-11-02 2013-10-16 株式会社日本自動車部品総合研究所 電力変換装置
JP5402948B2 (ja) * 2011-01-05 2014-01-29 日本精工株式会社 モータ制御装置及びそれを用いた電動パワーステアリング装置
JP5161985B2 (ja) * 2011-02-16 2013-03-13 三菱電機株式会社 電力変換装置および電動パワーステアリングの制御装置
JP5321614B2 (ja) * 2011-02-28 2013-10-23 株式会社デンソー 回転機の制御装置
EP2717465B1 (en) * 2011-04-21 2019-06-19 Nissan Motor Co., Ltd Control device for electric motor and control method for electric motor
JP5423777B2 (ja) * 2011-06-03 2014-02-19 株式会社デンソー 車両用コンバータ制御装置
CN103650333B (zh) * 2011-07-12 2016-01-20 丰田自动车株式会社 车辆和车辆的控制方法
TWI462458B (zh) * 2011-09-09 2014-11-21 Delta Electronics Inc 具死區開路補償功能之驅動器
JP5672278B2 (ja) * 2012-08-29 2015-02-18 株式会社デンソー 3相回転機の制御装置
JP5751240B2 (ja) * 2012-11-07 2015-07-22 トヨタ自動車株式会社 交流電動機の制御システム
JP5772843B2 (ja) * 2013-02-08 2015-09-02 株式会社デンソー 交流電動機の制御装置
JP5884746B2 (ja) * 2013-02-08 2016-03-15 株式会社デンソー 交流電動機の制御装置
CN105340173B (zh) * 2013-07-02 2017-09-29 三菱电机株式会社 电机控制装置
JP5920300B2 (ja) * 2013-09-18 2016-05-18 株式会社デンソー 電力変換装置、および、これを用いた電動パワーステアリング装置
JP6385691B2 (ja) * 2014-03-06 2018-09-05 株式会社東芝 モータ制御装置及び空気調和機
JP6015712B2 (ja) * 2014-05-19 2016-10-26 株式会社デンソー 回転機の制御装置
US9419553B2 (en) * 2014-07-25 2016-08-16 Denso Corporation Apparatus for controlling rotary machine
JP6221981B2 (ja) * 2014-07-25 2017-11-01 株式会社デンソー 回転電機の制御装置
JP2016120789A (ja) * 2014-12-24 2016-07-07 株式会社ジェイテクト 操舵アシスト装置
JP6455295B2 (ja) * 2015-04-22 2019-01-23 株式会社デンソー 3相回転機の制御装置
JP6418093B2 (ja) * 2015-07-16 2018-11-07 株式会社デンソー 電力変換装置
JP6439658B2 (ja) * 2015-11-10 2018-12-19 株式会社デンソー 電圧センサ異常診断装置
JP6593242B2 (ja) * 2016-04-12 2019-10-23 株式会社デンソー 交流電動機の制御装置
JP6693294B2 (ja) * 2016-06-22 2020-05-13 株式会社デンソー 3相回転機の制御装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006320122A (ja) * 2005-05-13 2006-11-24 Nissan Motor Co Ltd 電動機の制御装置
JP2008086083A (ja) * 2006-09-26 2008-04-10 Mitsubishi Electric Corp Pwmインバータ制御装置及びpwmインバータ制御方法並びに冷凍空調装置
JP2015061381A (ja) * 2013-09-18 2015-03-30 株式会社デンソー 電力変換装置、および、これを用いた電動パワーステアリング装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10811997B2 (en) 2017-09-29 2020-10-20 Daikin Industries, Ltd. Power conversion device
CN108075678A (zh) * 2017-12-23 2018-05-25 西安交通大学 基于脉宽调整的三相逆变器死区效应双边补偿方法
CN109067230A (zh) * 2018-09-27 2018-12-21 重庆大学 一种SiC MOSFET逆变器用在线自适应死区消除方法

Also Published As

Publication number Publication date
JP6399239B2 (ja) 2018-10-03
JPWO2017119214A1 (ja) 2018-09-20
US10148195B2 (en) 2018-12-04
US20180309389A1 (en) 2018-10-25

Similar Documents

Publication Publication Date Title
JP6399239B2 (ja) 電力変換装置
JP4749874B2 (ja) 電力変換装置及びそれを用いたモータ駆動装置
US9257931B2 (en) Power conversion apparatus
US9509229B2 (en) Power supply apparatus including power conversion circuit controlled by PWM control circuit
KR101175030B1 (ko) 전력 변환 장치
US10666163B2 (en) Electric-power conversion apparatus
US11139771B2 (en) Control device and control method for AC motor and AC motor drive system
WO2016185924A1 (ja) 電力変換装置およびこれを適用した車両駆動システム
AU2017336112B2 (en) Control device for power converter
JPWO2019008676A1 (ja) インバータ装置、及び、電動パワーステアリング装置
US20180152123A1 (en) Adaptive pulse width modulation in motor control systems
US8441225B2 (en) Direct-current to three-phase alternating-current inverter system
JP2010068677A (ja) 電力変換装置、及びモータ駆動システム
US9755551B2 (en) Power conversion device
JP5622437B2 (ja) 中性点クランプ式電力変換装置
WO2016143121A1 (ja) 交流回転機の制御装置および電動パワーステアリングの制御装置
US9923505B2 (en) Methods and systems for controlling an electric motor
WO2017056258A1 (ja) 電力制御方法、及び、電力制御装置
WO2015064131A1 (ja) コンバータの制御装置及び制御方法並びに空気調和機
Liu et al. Constant-frequency-hysteresis direct power control strategy for single phase PWM rectifiers
JP5334920B2 (ja) 負荷駆動装置
Zhou et al. Electrolytic capacitor-less single-stage boost three-phase inverter for variable-speed AC motor system
JP2021078176A (ja) 回転電動機の制御装置
JP2019004657A (ja) 単相三線式インバータ及び電圧補償装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16883714

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017560054

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16883714

Country of ref document: EP

Kind code of ref document: A1