WO2016185924A1 - 電力変換装置およびこれを適用した車両駆動システム - Google Patents

電力変換装置およびこれを適用した車両駆動システム Download PDF

Info

Publication number
WO2016185924A1
WO2016185924A1 PCT/JP2016/063717 JP2016063717W WO2016185924A1 WO 2016185924 A1 WO2016185924 A1 WO 2016185924A1 JP 2016063717 W JP2016063717 W JP 2016063717W WO 2016185924 A1 WO2016185924 A1 WO 2016185924A1
Authority
WO
WIPO (PCT)
Prior art keywords
value
dead time
power conversion
current
characteristic
Prior art date
Application number
PCT/JP2016/063717
Other languages
English (en)
French (fr)
Inventor
将 加藤
良範 山下
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to DE112016002281.6T priority Critical patent/DE112016002281T5/de
Priority to JP2016553480A priority patent/JP6045765B1/ja
Priority to CN201680004585.1A priority patent/CN107148739B/zh
Priority to US15/524,438 priority patent/US10910984B2/en
Publication of WO2016185924A1 publication Critical patent/WO2016185924A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • H02P27/08Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation
    • H02P27/085Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation wherein the PWM mode is adapted on the running conditions of the motor, e.g. the switching frequency
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/38Means for preventing simultaneous conduction of switches
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • H02M7/53871Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • H02P27/08Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61CLOCOMOTIVES; MOTOR RAILCARS
    • B61C3/00Electric locomotives or railcars
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0009Devices or circuits for detecting current in a converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/38Means for preventing simultaneous conduction of switches
    • H02M1/385Means for preventing simultaneous conduction of switches with means for correcting output voltage deviations introduced by the dead time
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/539Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters with automatic control of output wave form or frequency
    • H02M7/5395Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters with automatic control of output wave form or frequency by pulse-width modulation

Definitions

  • the present invention relates to a power conversion device that performs pulse width modulation (hereinafter referred to as PWM) control to calculate an actual resistance value and a dead time error of an electric motor.
  • PWM pulse width modulation
  • variable speed motor control device by the power conversion device is applied to various fields including railway vehicles, elevators, electric vehicles, and general-purpose inverters. In each of these fields, further improvements in performance and reliability such as improvement in output torque and speed control accuracy of motors, high efficiency and low noise are expected. In order to improve the control performance as described above, it is necessary to quickly acquire the circuit constants of the electric motor and design the control parameters appropriately.
  • Non-Patent Document 1 introduces various methods for removing the influence of dead time.
  • the above-described dead time is a difference between the actual effective value and the set value added in the control configuration, due to various factors such as the characteristics of the semiconductor elements constituting the conversion device and the circuit configuration. It is necessary to accurately grasp the dead time error. Therefore, grasping the actual resistance value and dead time error of the motor is an important factor for improving the control performance.
  • Patent Document 1 describes the calculation method of the resistance value in detail, but does not disclose the dead time error, and a separate means is required to obtain the dead time error. Further, the method of Patent Document 1 requires a long time to reach a measurable condition because it is necessary to change the frequency of the AC power supply of the main circuit and measure the voltage and current at each frequency.
  • Non-Patent Document 1 introduces a method for compensating an output voltage error due to a set dead time, but does not disclose any method for obtaining an actual dead time error. Therefore, none of the documents can contribute to the improvement of the control performance.
  • the present invention has been made in order to solve the above-described conventional problems, and applied a power conversion device capable of calculating and estimating the resistance value and dead time error of an electric motor in a short time using the same common means, and the same.
  • the object is to obtain a vehicle drive system.
  • a power conversion device includes a bridge formed by connecting switching elements in series between both poles of a DC power supply, converts a voltage of the DC power supply, and supplies the electric current to the motor by converting the voltage of the DC power supply.
  • a current detection unit for detecting and a dead time for preventing a DC short-circuit by the switching elements constituting the bridge are set and added, and a switching signal for driving the switching elements on and off by PWM control based on the voltage command value and the carrier wave is provided.
  • a power conversion device including a control unit to generate,
  • the control unit can generate a first switching signal based on the voltage command value and the first carrier wave and a second switching signal based on the voltage command value and a second carrier wave having a frequency different from the frequency of the first carrier wave, Based on the first operation characteristic of the power conversion unit obtained when the switching element is driven by the first switching signal and the second operation characteristic of the power conversion unit obtained by driving the switching element by the second switching signal, the resistance value of the motor and the dead A characteristic calculation unit is provided that estimates and calculates one or both of the dead time errors that are the difference between the effective time value and the set value.
  • the control unit of the power conversion device includes a first switching signal based on the voltage command value and the first carrier wave, and a second switching signal based on the voltage command value and a second carrier wave having a frequency different from the frequency of the first carrier wave. Based on the first operating characteristic of the power converter determined when the switching element is driven by the first switching signal and the second operating characteristic of the power converter determined when the switching element is driven by the second switching signal. Since the characteristic calculation unit for estimating and / or calculating either or both of the resistance value and the dead time error of the motor is provided, of course, either the resistance value of the motor or the dead time error is determined by the same characteristic calculation unit. Both can be estimated at the same time, and the conditions on the main circuit can be changed as in Patent Document 1. By changing the control over settings rather than intended to enough to realize the calculation estimation in a short time.
  • FIG. 6 is a diagram illustrating an equivalent circuit when the operations of the power conversion unit 1 and the electric motor 7 reach a steady state in the configuration of FIG. 5. It is a figure which shows the example of 1 structure of the vehicle drive system which applied the power converter device to the railway vehicle by Embodiment 4 of this invention.
  • FIG. 1 is a block diagram showing an overall configuration of a power conversion device according to Embodiment 1 of the present invention.
  • the power converter 1 converts the voltage of the DC power supply 3 and supplies it to the electric motor 7, and the internal configuration thereof is well known, so illustration thereof is omitted, but between the two poles of the DC power supply 3 IGBT, MOSFET Provided with a bridge in which switching elements such as these are connected in series with each other, and has a function of converting DC power supplied from the DC power source 3 into AC power having a variable voltage and variable frequency and supplying the AC power to the motor 7.
  • the frequency of the AC power having the variable voltage and variable frequency includes DC power of 0 Hz.
  • the current detection unit 2 individually detects each phase current supplied from the power conversion unit 1 to the electric motor 7 and sends it to the control unit 4 described later.
  • the control unit 4 is configured by a control system using a known orthogonal two-axis dq-axis rotating coordinate system. Specifically, a coordinate converter 41, a current controller 42, a coordinate converter 43, a PWM controller 44, and a selector 45 are provided. Hereinafter, each of these elements will be described.
  • the coordinate converter 41 receives each phase current from the current detector 2 and outputs dq-axis currents Id and Iq.
  • the d-axis is an axis indicating the direction of the rotor magnetic flux of the electric motor 7
  • the q-axis is defined as an axis that controls the output torque of the electric motor 7 in a direction orthogonal to the d-axis.
  • the current controller 42 generates a voltage command value so that the deviation between the current detection value detected by the current detection unit 2 and the current command value becomes zero.
  • the dq axis currents Id and Iq and a desired value are generated.
  • the voltage command values Vd * and Vq * are output by the following equation (1).
  • the proportional gain kcp and the time constant ⁇ cpi in the above equation (1) are expressed by the following equation (2), for example, when the electric motor 7 in the first embodiment is an induction motor.
  • ⁇ cc is a predetermined current response target value for designing the response speed of the dq-axis currents Id and Iq controlled by the control unit 4, and the carrier frequency of the PWM controller 44 described later is This is determined in consideration of the required specifications for controlling the current supplied to the electric motor 7.
  • Ls in the following equation (2) is a primary inductance of the induction motor, and is the sum of the mutual inductance and the primary leakage inductance of the induction motor.
  • the coordinate converter 43 receives the voltage command values Vd * and Vq * and outputs phase voltage command values Vu *, Vv * and Vw *.
  • the PWM controller 44 receives the phase voltage command values Vu *, Vv *, and Vw *, performs PWM control based on a desired carrier wave, and outputs a switching signal to the power conversion unit 1. To do.
  • the selector 45 receives the carrier wave switching signal and outputs a desired carrier wave to the PWM controller 44.
  • FIG. 2 shows an internal configuration example of the power conversion unit 1 and the PWM controller 44 of FIG.
  • the configuration of FIG. 2 describes only one phase (U phase) for a three-phase power converter. Since the other phases have the same configuration, the description is omitted here.
  • the configuration shown in FIG. 2 is a known technique and is not particularly limited to this configuration.
  • an upper switching unit 11 and a lower switching unit 12, which are switching elements, are connected in series to the DC power source 3 to form a bridge, and an intermediate terminal 13 is an electric motor 7. Connected to.
  • the DC power supply short circuit is caused when the two switching units connected in series in each phase are turned on at the same time (become conductive). Invite the destruction. Therefore, when switching the switching signal by PWM control, it is necessary to provide a period in which both of the two switching units connected in series are turned off (become nonconductive). This period is referred to as a short circuit prevention period (hereinafter referred to as dead time). Further, if there is such a dead time, an error occurs in the output voltage as will be described later.
  • Td is the dead time
  • Fc is the frequency of the carrier wave
  • EFC is the voltage value of the DC power supply 3. Therefore, the PWM controller 44 shown in FIG. 2 is configured in consideration of the above, and the configuration and operation will be described below with reference to FIG.
  • the modulation wave generation circuit 441 receives the U-phase voltage command Vu * and normalizes the voltage value EFC of the DC power supply 3 to generate the U-phase modulation wave Au.
  • FIG. 2 shows a configuration in which the voltage value EFC of the DC power supply 3 is assumed to be a known value in advance. However, when the voltage value EFC of the DC power supply 3 fluctuates, the DC power supply 3 It is desirable to provide a sensor for detecting the voltage value of the current and to normalize the detected voltage value to generate the U-phase modulated wave Au.
  • the switching signal generation circuit 442 generates the previous switching signal Su1 from the magnitude relationship between the U-phase modulated wave Au and the carrier wave by PWM control.
  • the dead time correction circuit 443 corrects the preceding switching signal Su1 so as to compensate for the output voltage error caused by the dead time, and generates the succeeding switching signal Su2.
  • the on-time is a time added by a dead time generation circuit 445 described later. Increase the dead time and shorten the off time by the dead time. If the current sign is negative (when current flows from the electric motor 7 toward the power conversion unit 1), the adjustment is performed so that the on time is shortened by the dead time and the off time is lengthened by the dead time.
  • the dead time adjusted by the dead time correction circuit 443 is set and added by the dead time generation circuit 445.
  • this value is limited to this value. It is not something that can be done.
  • the signal inverting circuit 444 In order to generate the switching signal Sx that is inverted with respect to the switching signal Su that operates the upper switching unit 11, the signal inverting circuit 444 generates the signal Sx2 that is the inverted signal Su2, and the dead time generating circuit 445 A dead time is set and added to the signals Su2 and Sx2, and a switching signal Su for driving the upper switching unit 11 on and off and a switching signal Sx for driving the lower switching unit 12 on and off are generated.
  • this error is referred to as a dead time error ⁇ Td.
  • FIG. 1 is a nonlinear temperature characteristic and current characteristic of a semiconductor device, a parasitic capacitance due to a wiring length, and a driver circuit for driving the semiconductor device. Due to a response delay or the like, a delay occurs until the upper switching unit 11 and the lower switching unit 12 actually operate with respect to the on / off signals of the switching signals Su and Sx. Theoretically, the voltage waveform is approximated by a rectangular wave, but is not actually a rectangular wave, and the voltage waveform during the switching operation changes continuously with a certain slope. In practice, this inclination also changes in a complicated manner depending on the nonlinear temperature characteristics and current characteristics of the semiconductor device and the circuit constants of the driver circuit.
  • FIG. 3 schematically shows the situation of the dead time error when it is assumed that a time delay occurs during the above dead time correction and switching operation.
  • the left half of the figure shows the case where the current direction is positive and the right half is negative.
  • the upper part shows the operation of the dead time correction circuit 443, that is, the operation of performing the correction of Td (correction amount) on the previous switching signal Su1 from the switching signal generation circuit 442 and outputting the subsequent switching signal Su2. ing.
  • the middle stage sets and adds Td (set amount) to the operation of the dead time generation circuit 445, that is, the subsequent switching signals Su2 and Sx2 from the dead time correction circuit 443, and sends them to the upper switching unit 11 and the lower switching unit 12, respectively.
  • Td set amount
  • the lower row shows the U-phase voltage Vu when driven by the middle-stage switching signals Su and Sx.
  • Ton and Toff in the case where the current direction is positive indicate a time delay that occurs when the upper switching unit 11 rises and a time delay that occurs when it falls.
  • Toff and Ton when the current direction is negative indicate a time delay at the time of falling and a time delay at the time of rising of the lower switching unit 12, respectively.
  • the dead time Td (set amount) is set and added by the dead time generation circuit 445 (see FIG. 2)
  • the dead time Td (actual amount) that actually occurs is the case where the current direction is positive. If it shows, it will become (3) Formula.
  • Td (actual amount) Td (set amount) + Ton-Toff (3)
  • Td corrected amount
  • Td (error amount) Td (actual amount) ⁇ Td (correction amount) (4)
  • Td (error amount) dead time error expressed by the equation (4) is actually the power conversion unit 1. This is the dead time that causes an error in the output voltage, that is, the dead time effective value.
  • this dead time effective value dead time error is ⁇ Td
  • the output voltage error ⁇ Vtd generated by this ⁇ Td is obtained by the equation (5).
  • the dead time correction circuit 443 When the dead time correction circuit 443 is not employed in the PWM controller 44 (the present invention is also within the assumed range in such a case), the Td (actual amount) expressed by the equation (3) is The dead time effective value is obtained, and the dead time error ⁇ Td is obtained by equation (6).
  • the resistance value calculator 5 calculates the resistance value of the electric motor 7 from the voltage command value Vd *, the d-axis current Id, and the carrier wave switching signal.
  • the dead time error calculation unit 6 calculates a dead time error from the voltage command value Vd * and the carrier wave switching signal.
  • the carrier wave switching signal is input to the resistance value calculation unit 5 and the dead time error calculation unit 6.
  • the configuration is not particularly limited, and PWM control is performed by the PWM controller 44. Any configuration is possible as long as the frequency of the carrier wave at that time is known.
  • the processing unit 8 performs processing of the control unit 4, the resistance value calculation unit 5, and the dead time error calculation unit 6 by executing a program stored in the storage unit 9 described later.
  • the storage unit 9 is configured by a memory in which electric circuit constants of the electric motor 7, parameters necessary for control, a program describing the above processing, and the like are stored.
  • the processing unit 8 includes a processor logically configured in a hardware circuit such as a microcomputer (DSP), a DSP (Digital Signal Processor), or an FPGA. Further, the plurality of processing units 8 and the plurality of storage units 9 may execute the above functions in cooperation.
  • the present invention was created by paying attention to the fact that the actual dead time is not related to the frequency of the carrier wave for PWM control, and that the output voltage error caused by the existence of the dead time is proportional to the dead time.
  • the basic principle is as follows. That is, the control unit 4 includes a selector 45 that selects and outputs a first carrier wave and a second carrier wave having a frequency different from the frequency of the first carrier wave as a carrier wave for PWM control. The first switching signal based on the input voltage command value and the first carrier wave and the second switching signal based on the voltage command value and the second carrier wave can be generated.
  • the characteristic calculating part 10 drives a switching element with the 1st operation characteristic of the power conversion part 1 when a switching element is driven with a 1st switching signal, and a 2nd switching signal in the state which the electric motor 7 stopped rotation
  • the second operating characteristic of the power converter 1 is obtained, and the target resistance value and dead time error of the electric motor 7 are calculated from these two operating characteristics.
  • Various types of operation characteristics can be targeted.
  • the power conversion device including the current controller 42 shown in FIG. 1 will be described as an example. That is, here, the two operating characteristics are obtained under the control conditions in which the current detection value detected by the current detection unit 2 follows the current command value.
  • the phase ⁇ input to the coordinate converters 41 and 43 is set to a constant value of the phase ⁇ 0 so that each phase current does not become zero.
  • the reason for setting in this way is that the error voltage during the dead time period near the current value of zero is generally non-linear and it is difficult to determine the sign of the error. This is because the influence of the error ⁇ Td appears very large.
  • the configuration of FIG. 1 is configured by a control system using a known orthogonal two-axis dq-axis rotational coordinate system as described above, and the orthogonal two-axis current value controlled by the control unit 4 is used. It is possible to control the response of certain Id and Iq with a predetermined current response target value. As a result, the current value can be set to a constant value within a desired period, so that it is possible to instantaneously estimate the resistance value and dead time error of the motor so as not to hinder normal operation.
  • the d-axis current Id1 and the d-axis voltage command value Vd1 * are obtained from the first operating characteristics collected in the manner described above, and the first resistance value R1 is calculated by the equation (9).
  • the switching element is driven by the second switching signal generated by the second carrier wave (frequency Fc2), and the second operation characteristic is collected when the voltage / current is in a steady state. Then, from this second operating characteristic, the d-axis current Id2 and the d-axis voltage command value Vd2 * are obtained, and the second resistance value R2 is calculated by the equation (10).
  • the current command value Id * is set to the same value to obtain the first operating characteristic and the second operating characteristic, and the voltage command value Vd1 * and the current command value Id * in the first operating characteristic are
  • the first resistance value R1 is calculated from the voltage command value Vd2 * and the current command value Id * in the second operating characteristic
  • the second resistance value R2 is calculated from the first resistance value R1 and the second resistance value R2. That is, the resistance value Rs of the electric motor 7 can be calculated.
  • the current command value Id * is set to the same value to obtain the first operation characteristic and the second operation characteristic, and the voltage command value Vd1 * in the first operation characteristic and the voltage command value Vd2 * in the second operation characteristic are obtained. That is, the dead time error ⁇ Td can be calculated from the difference.
  • Td (correction amount) Td (set amount), but the dead time error ⁇ Td obtained by the above equation (14) is fed back.
  • the dead time correction circuit when the dead time correction circuit is not provided, the Td (actual amount) of the equation (3) corresponding to the dead time effective value is applied to the ⁇ Td of the equations (11) and (12).
  • the dead time error is a value obtained by subtracting Td (set amount) from ⁇ Td obtained from the equation (14).
  • the power conversion unit 1 has stopped switching operation.
  • the vehicle is stopped.
  • normal control for example, a driving
  • the estimation calculation can be performed in the rotation stop state of the electric motor 7 immediately after the end of the normal control.
  • the power converter 1 is switched from time T0 to start resistance value estimation.
  • PWM control is performed with the first carrier wave (frequency Fc1), and current control is performed so that the d-axis current Id1 becomes a desired constant value Id *.
  • the period from time T0 to T0a is a transient response period until the d-axis current Id1 becomes a desired constant value. It can be seen that in this transient response period, the resistance value is not a constant value and it is difficult to correctly estimate the resistance value.
  • the transient response period can be shortened by setting the current response target value ⁇ cc as described above, and is set to be sufficiently shorter than the L / R time constant of the electric motor 7.
  • the first resistance value R1 is calculated from the first operating characteristic collected during the period from time T0a to T1 when the d-axis current Id1 is a constant value Id *, and stored together with the voltage command value Vd1 * at this time.
  • the dead time error ⁇ Td cannot be calculated, so it is set to zero.
  • the carrier wave is switched from the first carrier wave to the second carrier wave (frequency Fc2) in the period from time T1 to T2 (hereinafter referred to as the second period).
  • the d-axis current is continuously controlled to the constant value Id * without stopping the control.
  • the second resistance value R2 is calculated from the second operating characteristic collected in the second period from the time T1 to the time T2 when the d-axis current Id2 is a constant value Id *, and the voltage command value Vd2 * at this time is calculated. At the same time, it is stored in the storage unit 9. In this case, since the first operating characteristic and the second operating characteristic are obtained under the same current value condition, the resistance value and the dead time are compared to the case where the current value is different in both of the second embodiment described later. The error estimation accuracy can be improved.
  • the true value Rs of the resistance value can be estimated from both frequencies Fc1 and Fc2 by the above-described equation (13). Further, the dead time error ⁇ Td can be calculated from the voltage command values Vd1 * and Vd2 * in both operation characteristics, the two frequencies Fc1 and Fc2, and the voltage EFC of the DC power supply 3 by the above-described equation (14).
  • ⁇ Td is reflected in the control parameter of normal motor control, and the control is shifted to normal motor control.
  • the carrier frequency is also switched to the normal control carrier frequency Fc3, although not shown in FIG.
  • the reason for this configuration is that by providing the normal control carrier frequency Fc3, the carrier frequency can be set according to the current response target value required for the normal control, and the design flexibility in the control system design is increased. In addition to improvement, it can be designed separately from the current response target value in the resistance dead time error estimation period.
  • the power conversion unit 1 switches the power conversion unit 1 from the switching stop state by continuously shifting from the resistance value dead time error estimation period to the normal control. It is possible to shift to a normal control in which the electric motor 7 is operated and operated in a short time.
  • the normal control carrier frequency Fc3 is set to a value different from both the carrier frequency Fc1 and the carrier frequency Fc2.
  • the present invention is not limited to this, and one of the carrier frequency Fc1 and the carrier frequency Fc2 is used. May be.
  • the value adopted in an actual apparatus as each of these carrier frequencies is about 500 Hz to several tens of kHz.
  • the current value is switched from the first period to the second period in a state where the current value is continuously controlled to a constant value, but the present invention is not limited to this, and the first period A gate-off period (stopping the switching operation of the power conversion unit 1 so that no current flows) may be provided between the first period and the second period.
  • the calculation is made from Vd and Id on the orthogonal two-axis dq-axis rotation coordinates.
  • the present invention is not limited to this, and it can be calculated from the phase voltage and phase current of each phase. Good.
  • the electrical circuit configuration includes a so-called T-type equivalent circuit configuration including a mutual inductance, a secondary inductance, and a secondary resistance in addition to a primary resistance and a primary inductance. Therefore, even if an attempt is made to control the primary side current to a constant DC value, the voltage applied to the motor (for example, Vd1 *, Vd2 * is equivalent) does not become a constant DC value in a short time, and mutual inductance Therefore, it is necessary to correct the following equation (15) in consideration of the circuit response.
  • Vd ** Vd ** ⁇ Secondary side circuit response (15)
  • the control unit 4 of the power conversion device includes the first switching signal based on the voltage command value and the first carrier wave of the frequency Fc1, the voltage command value, and the frequency of the first carrier wave.
  • the first operation of the power conversion unit 1 is obtained when the second switching signal based on the second carrier wave of the different frequency Fc2 can be generated and the switching element is driven by the first switching signal while the motor 7 is stopped rotating.
  • a characteristic calculator that estimates and calculates one or both of the resistance value Rs and the dead time error ⁇ Td of the electric motor 7 based on the characteristic and the second operation characteristic of the power converter 1 that is obtained when the switching element is driven by the second switching signal.
  • the same characteristic calculation unit 10 makes the resistance value Rs of the motor 7 and the dead time error ⁇ Either Td or both of them can be estimated and calculated at the same time. Also, as in Patent Document 1, it is sufficient to change the control settings rather than changing the conditions on the main circuit. The calculation estimation in time is realized.
  • a current controller 42 is provided, and the first operation characteristic and the second operation characteristic are obtained under control conditions for causing the current detection value detected by the current detection unit 2 to follow the current command value, and Since the time constant related to the current response of the current controller 42 is set to be smaller than the time constant determined by the resistance value and the inductance value of the electric motor 7, the resistance value and the dead time error cause an obstacle to the normal control of the power converter. It is possible to identify accurately in a short time.
  • FIG. FIG. 5 is a diagram showing a configuration of a power conversion device according to Embodiment 2 of the present invention.
  • the first operation characteristic and the second operation characteristic are obtained under the control conditions for causing the current detection value detected by the current detection unit 2 to follow the current command value.
  • the second embodiment is different in that the first operation characteristic and the second operation characteristic are obtained under the control conditions in which the voltage command value is constant.
  • FIG. 6 is a diagram showing an equivalent circuit when the operations of the power conversion unit 1 and the electric motor 7 reach a steady state in the configuration of FIG.
  • R in FIG. 6 is the resistance value of the winding of the electric motor 7.
  • dead time correction is performed as described in FIG. 2 of the first embodiment, and the effective value of the dead time corresponds to the dead time error ⁇ Td.
  • ⁇ Td is 1 [ ⁇ s]
  • Fc 1000 [Hz]
  • EFC 1500 [V]
  • the result includes an estimation error of about 30%.
  • the first operating characteristic when the switching element is driven by the PWM control using the first carrier wave of the frequency Fc1, and the frequency Fc2 different from the frequency Fc1 are used.
  • the second operating characteristic when the switching element is driven by PWM control using two carrier waves is obtained.
  • the current obtained from the first operating characteristic is Iu1
  • the current obtained from the second operating characteristic is Iu2
  • the true value of the resistance value is Rs
  • the DC voltage command value is V *
  • the voltage of the DC power supply 3 The following simultaneous equations hold with the value as EFC.
  • the first operation characteristic and the second operation characteristic are obtained by setting the voltage command value V * to the same value, and the first current detection detected by the current detector 2 in the first operation characteristic.
  • the resistance value Rs of the electric motor 7 can be calculated from the value Iu1 and the second current detection value Iu2 detected by the current detector 2 in the second operation characteristic.
  • the voltage command value V * is set to the same value to obtain the first operation characteristic and the second operation characteristic, and the first current detection value Iu1 detected by the current detection unit 2 in the first operation characteristic and the second operation characteristic are obtained.
  • the dead time error ⁇ Td can be calculated from the difference from the second current detection value Iu2 detected by the current detection unit 2 in the characteristics.
  • the control unit 4A of the power conversion device performs the first switching signal based on the voltage command value and the first carrier wave of the frequency Fc1, as in the first embodiment. And generating a second switching signal based on the voltage command value and a second carrier wave having a frequency Fc2 different from the frequency of the first carrier wave, and driving the switching element with the first switching signal in a state where the motor 7 is stopped rotating.
  • the resistance value Rs of the electric motor 7 and the dead time error ⁇ Td are determined based on the first operation characteristic of the power conversion unit 1 obtained when the switching element is driven and the second operation characteristic of the power conversion unit 1 obtained when the switching element is driven by the second switching signal.
  • the characteristic calculation unit 10A for estimating and calculating one or both of them Since the characteristic calculation unit 10A for estimating and calculating one or both of them is provided, the same characteristic calculation unit 10A allows the electric motor to The resistance value Rs and the dead time error ⁇ Td as well as both of them can be estimated and calculated at the same time. Also, as in Patent Document 1, the conditions on the main circuit are not changed, It is sufficient to change the setting, and calculation estimation in a short time is realized.
  • the present invention can be applied to a power converter that drives and controls an electric motor with a simple control configuration.
  • Embodiment 3 FIG.
  • a switching element made of a wide band gap semiconductor such as silicon carbide (SiC) is applied to the material of the switching element provided in the power conversion unit 1 in the previous embodiment.
  • SiC silicon carbide
  • the switching element used in the power conversion unit 1 has a configuration in which a semiconductor transistor element (IGBT, MOSFET, etc.) made of silicon (Si) and a semiconductor diode element made of silicon are connected in antiparallel. Is common.
  • IGBT semiconductor transistor element
  • MOSFET MOSFET
  • the technique described in the previous embodiment can be used for a power converter including this general switching element.
  • the technique described in the previous embodiment is not limited to a switching element formed using silicon as a material.
  • a switching element made of a wide band gap semiconductor such as silicon carbide (SiC)
  • SiC silicon carbide
  • silicon carbide which is one of the wide band gap semiconductors, has the feature that it can be used at a high temperature as well as greatly reducing the loss generated in the semiconductor element compared to silicon. If an element made of silicon carbide is used as the switching element provided in the power converter, the allowable operating temperature of the switching element module can be raised to the high temperature side, so that the carrier frequency is increased and the operating efficiency of the motor is improved. It is possible to make it.
  • the characteristic calculation unit 10 described in the previous embodiment makes it possible to identify the resistance value and the dead time error of the motor in a shorter time by taking advantage of such characteristics of the wide band gap semiconductor.
  • the current is controlled by the control unit 4. This is achieved by increasing the predetermined current response target value ⁇ cc for designing the above Id and Iq responses as much as possible.
  • the setting of the current response target value ⁇ cc is limited by the carrier frequency.
  • the current response target value ⁇ cc is set to about 1/10 of the carrier frequency Fc, and if a larger value is set, control may become unstable. Therefore, by applying a switching element made of a wide band gap semiconductor such as silicon carbide (SiC) to the material of the switching element provided in the power conversion unit 1, switching made of a non-wide band gap semiconductor made of silicon or the like is used. Since the carrier frequency can be set higher than when using an element, it is possible to identify the resistance value and the dead time error in a short time.
  • SiC silicon carbide
  • the carrier frequency is increased by using a switching element made of silicon carbide, and the above-mentioned Even if the identification time is shortened, the second period in which the PWM control is performed with the first carrier wave to obtain the first operation characteristic and the second operation characteristic is obtained by performing the PWM control with the second carrier wave. By having the period, it becomes possible to accurately identify the resistance value and the dead time error of the electric motor.
  • silicon carbide is an example of a semiconductor referred to as a wide band gap semiconductor, capturing the characteristic that the band gap is larger than that of silicon (Si).
  • SiC silicon carbide
  • a semiconductor formed using a gallium nitride-based material or diamond belongs to a wide band gap semiconductor, and their characteristics are also similar to silicon carbide. Therefore, a configuration using a wide band gap semiconductor other than silicon carbide also forms the gist of the present invention.
  • the switching element material provided in the power conversion unit 1 of the previous embodiment is made of a wide band gap semiconductor such as silicon carbide (SiC). Since the switching element is applied, the identification accuracy of the resistance value and the dead time error of the motor is improved, and the identification is completed in a shorter time than ever before.
  • SiC silicon carbide
  • the carrier frequency is increased even during normal control, and the control response is improved.
  • the output voltage error ⁇ Vtd due to the dead time error may affect the control so that it cannot be ignored, and it may be difficult to improve the desired control response.
  • the resistance value and the dead time error identified by the present invention can be stored in the storage unit 9 and reflected in the control parameters of the normal control, thereby contributing to the improvement of the control response of the normal control.
  • the configurations shown in the above first to third embodiments show an example of the contents of the present invention, and can be combined with other known techniques and do not depart from the gist of the present invention. Thus, part of the configuration can be omitted or changed.
  • the resistance value and the dead time error of the motor 7 are identified with high accuracy in a state where the motor 7 is stopped rotating.
  • the present invention is not limited to this. The same effect can be obtained even when the electric motor 7 is slightly rotated. Specifically, it is sufficient that the rotation period of the electric motor 7 is longer than the identification period of the present invention, and it goes without saying that the application range of the present invention is expanded as the identification period of the present invention is shorter.
  • FIG. 7 is a diagram illustrating a configuration example of a vehicle drive system in which the power conversion device according to Embodiments 1 to 3 of the present invention is applied to a railway vehicle.
  • the vehicle drive system according to the fourth embodiment includes an AC motor 101, a power conversion unit 102, a control unit 108, and an input circuit 103.
  • the AC motor 101 corresponds to the motor 7 shown in FIG. 1 and is mounted on a railway vehicle.
  • the power conversion unit 102 is the same as the power conversion unit 1 shown in FIG. 1, and includes switching elements 104a, 105a, 106a, 104b, 105b, and 106b.
  • the control unit 108 includes all of the control unit 4, the processing unit 8, and the storage unit 9 shown in FIG. 1, and switching signals SWU, SWV, SWW for on / off control of the switching elements 104a to 106b of the power conversion unit 102 are included. Is generated.
  • the input circuit 103 includes a switch, a filter capacitor, a filter reactor, and the like.
  • the input side of the input circuit 103 is connected to the negative circuit 100 via a current collector 111 and a wheel 113. It is connected to the overhead wire 110 and the rail 114 which constitute, and the output side is connected to the power conversion unit 102.
  • the input circuit 103 receives supply of DC power or AC power from the overhead line 110 and generates DC power to be supplied to the power conversion unit 102.
  • the power converter 102 converts the DC voltage supplied from the input circuit 103 into an AC voltage having an arbitrary frequency and an arbitrary voltage, and drives the AC motor 101.
  • control is performed even under the condition that the resistance value of AC motor 101 varies greatly depending on the temperature, as described in these embodiments. Degradation of performance can be prevented. In addition, it is possible to prevent deterioration of control performance due to a dead time error. Furthermore, by preventing deterioration of control performance as described above, safety is improved by improving the output torque and speed control accuracy of the motor, riding comfort is improved, energy is saved by high efficiency, environmental load is reduced by low noise, etc. Can be achieved.
  • the present invention can be freely combined with each other within the scope of the invention, and each embodiment can be appropriately modified or omitted.

Abstract

制御部(4)は、電圧指令値と第一搬送波(周波数Fc1)とに基づく第一スイッチング信号および電圧指令値と第二搬送波(周波数Fc2≠Fc1)とに基づく第二スイッチング信号を生成可能とするとともに、第一スイッチング信号によりスイッチング素子を駆動したとき求まる電力変換部(1)の第一動作特性および第二スイッチング信号によりスイッチング素子を駆動したとき求まる電力変換部(1)の第二動作特性に基づき、電動機(7)の抵抗値(Rs)およびデッドタイムの実効値とデッドタイムの設定値との差であるデッドタイム誤差(ΔTd)のいずれか一方または双方を推定演算する特性演算部(10)を備えることで、電動機の抵抗値およびデッドタイム誤差を同じ共通の手段で短時間に演算推定することが出来る。

Description

電力変換装置およびこれを適用した車両駆動システム
 本発明は、パルス幅変調(Pulse Width Modulation:以下、PWMと表記)制御を行って電動機の実際の抵抗値やデッドタイム誤差を演算する電力変換装置に関する。
 電力変換装置による可変速電動機制御装置は、鉄道車両、昇降機、電気自動車、汎用インバータをはじめ各分野に適用されている。このような各分野では電動機の出力トルクや速度制御精度の向上、高効率、低騒音など更なる高性能化と信頼性の向上が期待されている。以上のような制御性能の向上には、電動機の回路定数を速やかに取得し、適切に制御パラメータを設計することが必要である。
 一方で、電動機の回路定数は電動機の温度や動作状態によって変動することが知られている。このような回路定数の変動に対して、オフライン(特別に同定用のモードを設けるなどして、電動機を加減速制御やトルク制御していない状態)にて精度の高い同定すなわち推定を行う手段が、例えば、下記特許文献1に記載されている。この特許文献1のように、電動機の回転停止状態で、交番磁束が発生するように、予め設定された異なる2つの周波数の正弦波電圧を個別に与えることで、多少の時間を要しても精度の高い巻線抵抗値を同定することは可能である。
 更に、PWM制御においては、2つのスイッチング素子の直流電源短絡を防止するため短絡防止時間、いわゆるデッドタイムを設けるが、このデッドタイムにより出力電圧誤差が発生し、その出力電圧誤差を補償する対策が必要となる。これに対し、例えば、下記非特許文献1は、デッドタイムの影響を除去する各種の方法を紹介している。
再公表特許WO2009/078216号公報
「ACサーボシステムの理論と設計の実際」杉本英彦編著、総合電子出版社発行1990年5月、3章p.54-59
 上述したデッドタイムは、変換装置を構成する半導体素子の特性や回路構成上等の諸要因によって、実際の実効値は、制御構成上設定付加する設定値と異なったものとなり、両者の差であるデッドタイム誤差を正確に把握する必要がある。従って、電動機の実際の抵抗値およびデッドタイム誤差の把握は、制御性能の向上を図る上でともに重要な要素となる。
 しかるに、特許文献1は、抵抗値の演算手法については詳しく記載しているが、デッドタイム誤差については開示がなく、デッドタイム誤差を得るためには、別途の手段を必要とする。また、特許文献1の方法は、主回路の交流電源の周波数を変化させそれぞれの周波数において電圧電流等を測定する必要があるため、測定可能な条件に至る迄に長時間を要するものである。
 また、非特許文献1は、設定したデッドタイムによる出力電圧誤差を補償する手法については紹介しているが、実際のデッドタイム誤差を得る手法については何ら開示していない。
 従って、いずれの文献も、制御性能の向上に十分寄与しうるものとは言えない。
 この発明は、以上の従来の課題を解決するためになされたもので、電動機の抵抗値およびデッドタイム誤差を同じ共通の手段で短時間に演算推定することが出来る電力変換装置およびこれを適用した車両駆動システムを得ることを目的とする。
 この発明に係る電力変換装置は、直流電源の両極間にスイッチング素子を互いに直列に接続してなるブリッジを備え直流電源の電圧を変換して電動機に供給する電力変換部、電動機に流入する電流を検出する電流検出部、およびブリッジを構成するスイッチング素子による直流短絡を防止するためのデッドタイムを設定付加するとともに電圧指令値と搬送波とに基づきPWM制御によりスイッチング素子をオンオフ駆動するためのスイッチング信号を生成する制御部を備えた電力変換装置であって、
 前記制御部は、電圧指令値と第一搬送波とに基づく第一スイッチング信号および電圧指令値と第一搬送波の周波数と異なる周波数の第二搬送波とに基づく第二スイッチング信号を生成可能とするとともに、
 第一スイッチング信号によりスイッチング素子を駆動したとき求まる電力変換部の第一動作特性および第二スイッチング信号によりスイッチング素子を駆動したとき求まる電力変換部の第二動作特性に基づき、電動機の抵抗値およびデッドタイムの実効値と設定値との差であるデッドタイム誤差のいずれか一方または双方を推定演算する特性演算部を備えたものである。
 この発明に係る電力変換装置の制御部は、電圧指令値と第一搬送波とに基づく第一スイッチング信号および電圧指令値と第一搬送波の周波数と異なる周波数の第二搬送波とに基づく第二スイッチング信号を生成可能とするとともに、第一スイッチング信号によりスイッチング素子を駆動したとき求まる電力変換部の第一動作特性および第二スイッチング信号によりスイッチング素子を駆動したとき求まる電力変換部の第二動作特性に基づき、電動機の抵抗値およびデッドタイム誤差のいずれか一方または双方を推定演算する特性演算部を備えたので、同じこの特性演算部により、電動機の抵抗値およびデッドタイム誤差のいずれか一方は勿論、それら双方を同時に推定演算することもでき、また、特許文献1のように、主回路上の条件を変更するものではなく制御上の設定を変更すれば足り、短時間での演算推定が実現する。
本発明の実施の形態1による電力変換装置の全体構成を示す図である。 図1の電力変換部1およびPWM制御器44の内部構成を示す図である。 図2のPWM制御器44の動作を説明する図である。 図1の抵抗値演算部5およびデッドタイム誤差演算部6により演算推定する動作を説明するタイミングチャートである。 本発明の実施の形態2による電力変換装置の構成を示す図である。 図5の構成において、電力変換部1と電動機7の動作が定常状態に達したときの等価回路を示す図である。 本発明の実施の形態4による、電力変換装置を鉄道車両に適用した車両駆動システムの一構成例を示す図である。
実施の形態1.
 図1は、本発明の実施の形態1による電力変換装置の全体構成を示すブロック図である。図1において、電力変換部1は、直流電源3の電圧を変換して電動機7に供給し、その内部構成は公知であるのでその図示は省略するが、直流電源3の両極間にIGBT、MOSFET等のスイッチング素子を互いに直列に接続してなるブリッジを備え、直流電源3から供給される直流電力を可変電圧可変周波数の交流電力に変換して電動機7に供給する機能を有する。なお、上記の可変電圧可変周波数の交流電力の周波数は0Hzの直流電力を含む。
 電流検出部2は、電力変換部1が電動機7に供給する各相電流を個別に検出して後述する制御部4に送る。なお、電流検出部2は、図1に図示しているような電力変換部1と電動機7との結線に流れる電流を検出するCT(Current Transformer)に限らず、シャント抵抗等に流れる電流を検出するようにしてもよい。また、3相の相電流は、Iu+Iv+Iw=0という関係を満たすので、例えば、電流検出部2のうち1つを省略し、2つの電流検出部2がそれぞれ検出した相電流Iu、Ivから相電流Iwを算出してもよい。
 制御部4は、公知である直交2軸のdq軸回転座標系を用いた制御系で構成する。具体的には、座標変換器41、電流制御器42、座標変換器43、PWM制御器44および選択器45を備える。以下、これら各要素について説明する。
 座標変換器41は、電流検出部2からの各相電流を受けてdq軸電流Id、Iqを出力する。
 ここで、本発明では、d軸は電動機7の回転子磁束の方向を示す軸であり、q軸はd軸に対して直交する方向で、電動機7の出力トルクを制御する軸と定義する。
 電流制御器42は、電流検出部2で検出された電流検出値と電流指令値との偏差が零となるよう電圧指令値を生成し、具体的には、dq軸電流Id、Iqと所望の電流指令値Id*、Iq*の差分を受けて電圧指令値Vd*、Vq*を以下の(1)式の演算式で出力する。
Figure JPOXMLDOC01-appb-M000001
 上記(1)式中の比例ゲインkcpおよび時定数ωcpiは、例えば、本実施の形態1における電動機7が誘導電動機であるとすると、下記(2)式で表される。
 下記(2)式中のωccは、制御部4によって制御されるdq軸電流Id、Iqの応答速度を設計するための所定の電流応答目標値であり、後述するPWM制御器44の搬送波周波数と、電動機7に供給する電流を制御するための要求仕様を加味して決定する。
 また、下記(2)式中のLsは、誘導電動機の一次側インダクタンスであり、誘導電動機の相互インダクタンスと一次漏れインダクタンスとの和である。
Figure JPOXMLDOC01-appb-M000002
 座標変換器43は、電圧指令値Vd*、Vq*を受けて相電圧指令値Vu*、Vv*、Vw*を出力する。PWM制御器44は、後段の図2で詳述するが、相電圧指令値Vu*、Vv*、Vw*を受けて所望の搬送波に基づきPWM制御を行い、スイッチング信号を電力変換部1に出力する。選択器45は、搬送波切替え信号を受けて所望の搬送波をPWM制御器44へ出力する。
 図2は、図1の電力変換部1とPWM制御器44の内部構成例について示す。図2の構成は、3相の電力変換装置に対して1相(U相)のみを記載している。他の相も同様の構成であるためここでは説明を省略する。なお、図2に示す構成は公知技術であり、特にこの構成に限定するものではない。
 図2において、電力変換部1は、スイッチング素子である上位スイッチング部11と下位スイッチング部12とが直流電源3に対して互いに直列に接続されブリッジを形成しており、その中間端子13が電動機7に接続される。
 PWM制御によるスイッチング動作に基づき電動機7に電流を供給する電力変換装置では、各相で直列接続された2つのスイッチング部がわずかでも同時にオンする(導通状態になる)と直流電源短絡を引き起こしスイッチング部の破壊を招く。そこで、PWM制御によりスイッチング信号を切替える際には直列接続された2つのスイッチング部が両方ともオフする(非導通状態になる)期間を設ける必要がある。この期間を短絡防止期間(以下、デッドタイムと呼ぶ)という。また、このようなデットタイムがあると後述するように出力電圧に誤差を生じることになる。
 前掲の非特許文献1の図3.24には、このデッドタイムにより出力電圧誤差ΔVtd=Td×Fc×EFCが発生することが示されている。ここでTdはデッドタイム、Fcは搬送波の周波数、EFCは直流電源3の電圧値である。
 そこで、図2に示すPWM制御器44は上記を勘案にて構成されたもので、以下、図2を参照してその構成および動作を説明する。
 変調波生成回路441は、U相電圧指令Vu*を受けて直流電源3の電圧値EFCにより規格化しU相変調波Auを生成する。ここで、直流電源3の電圧値EFCは予め既知の値であると仮定した構成を図2に記載しているが、直流電源3の電圧値EFCが変動するような場合には、直流電源3の電圧値を検出するセンサを設けて、この検出した電圧値により規格化しU相変調波Auを生成することが望ましい。
 スイッチング信号生成回路442は、PWM制御によりU相変調波Auと搬送波との大小関係から前段スイッチング信号Su1を生成する。
 デッドタイム補正回路443は、デッドタイムにより発生する出力電圧誤差を補償するように前段スイッチング信号Su1を補正して後段スイッチング信号Su2を生成する。
 具体的には、U相電流Iuの符号が正(電力変換部1から電動機7に向かって電流が流れる場合)であればオン時間を後述するデッドタイム生成回路445にて付加される時間であるデッドタイム分長くしオフ時間をデッドタイム分だけ短くする。また、電流符号が負(電動機7から電力変換部1に向かって電流が流れる場合)であればオン時間をデッドタイム分短くしオフ時間をデッドタイム分だけ長くなるように調整を実施する。
 なお、ここでは、デッドタイム補正回路443で調整するデッドタイム分は、デッドタイム生成回路445で設定付加する値としたが、後段のデッドタイム誤差の推定演算の説明で触れるとおり、この値に限られるものではない。
 上位スイッチング部11を動作させるスイッチング信号Suに対して反転したスイッチング信号Sxを生成するため、信号反転回路444により信号Su2を反転した信号Sx2を生成し、デッドタイム生成回路445は、それぞれの後段スイッチング信号Su2、Sx2にデッドタイムを設定付加し、上位スイッチング部11をオンオフ駆動するためのスイッチング信号Suと下位スイッチング部12をオンオフ駆動するためのスイッチング信号Sxを生成する。
 このように構成することで、理論的にはデッドタイムによる出力電圧誤差の影響を受けないようにすることができる。
 しかしながら、実際にはデッドタイム生成回路445にて設定付加されるデッドタイムの設定値と電力変換部1で実際に発生するデッドタイムの実効値とは以下に述べるような理由により同じにはならない。本明細書ではこの誤差をデッドタイム誤差ΔTdと呼ぶことにする。
 このデッドタイム誤差の要因は非常に複雑であり、半導体デバイスの非線形な温度特性や電流特性、図1には図示していないが、配線長による寄生容量、半導体デバイスを駆動するためのドライバ回路の応答遅れなどが起因し、スイッチング信号Su、Sxのオンオフ信号に対して実際に上位スイッチング部11と下位スイッチング部12が動作するまでには遅れが生じる。また、理論的には電圧波形は矩形波で近似されているが実際には矩形波ではなく、スイッチング動作時の電圧波形はある傾きをもって連続的に変化する。この傾きも実際には半導体デバイスの非線形な温度特性や電流特性、ドライバ回路の回路定数により複雑に変化する。
 図3は、以上のデッドタイム補正およびスイッチング動作時に時間遅れが発生すると仮定したときのデッドタイム誤差の状況を模擬的に示したものである。図の左半分は電流方向が正の場合、右半分が負の場合を示す。
 図3において、上段は、デッドタイム補正回路443の動作、即ち、スイッチング信号生成回路442からの前段スイッチング信号Su1に、Td(補正量)の補正を施して後段スイッチング信号Su2を出力する動作を示している。
 中段は、デッドタイム生成回路445の動作、即ち、デッドタイム補正回路443からの後段スイッチング信号Su2、Sx2にTd(設定量)を設定付加してそれぞれ上位スイッチング部11および下位スイッチング部12に送出するスイッチング信号SuおよびSxを出力する動作を示している。
 下段は、中段のスイッチング信号Su、Sxで駆動したときのU相電圧Vuを示す。図において、電流方向が正の場合(図左)のTonおよびToffは、上位スイッチング部11のそれぞれ立ち上がり時に発生する時間遅れおよび立ち下がり時に発生する時間遅れを示す。また、電流方向が負の場合(図右)のToffおよびTonは、下位スイッチング部12のそれぞれ立ち下がり時の時間遅れおよび立ち上がり時の時間遅れを示す。
 図3の結果では、デッドタイム生成回路445によりTd(設定量)のデッドタイムを設定付加した場合(図2参照)に実際に発生するデッドタイムTd(実際量)は、電流方向正の場合で示すと、(3)式となる。
 Td(実際量)=Td(設定量)+Ton-Toff  ・・・(3)
 ここでは、Td(設定量)による電圧誤差を補償すべく、デッドタイム補正回路443によりTd(補正量)の補正を実施しているので(図2参照)、この状態で発生するTd(誤差量)は、(4)式で求められ、このTd(誤差量)がデッドタイム誤差となる。
 Td(誤差量)=Td(実際量)-Td(補正量)   ・・・(4)
 従って、この実施の形態1の図2に示すPWM制御器44によりスイッチング素子が駆動された場合は、(4)式で示されるTd(誤差量)=デッドタイム誤差が、実際に電力変換部1の出力電圧に誤差を発生させる要因となるデッドタイム、いわばデッドタイム実効値となる。
 このデッドタイム実効値=デッドタイム誤差をΔTdとすると、このΔTdにより発生する出力電圧誤差ΔVtdは、(5)式により求まる。
 ΔVtd=ΔTd×Fc×EFC           ・・・(5)
 なお、PWM制御器44でデッドタイム補正回路443を採用しない場合は(本願発明は、このような場合も想定範囲内とするものである)、(3)式で示されるTd(実際量)がデッドタイム実効値となり、デッドタイム誤差ΔTdは、(6)式により求まる。
 ΔTd=Td(実際量)-Td(設定量)       ・・・(6)
 図1に戻り、以下、本願発明の要部である、特性演算部10を構成する抵抗値演算部5およびデッドタイム誤差演算部6の構成およびその演算手法について説明する。
 抵抗値演算部5は、電圧指令値Vd*とd軸電流Idと搬送波切替え信号とから電動機7の抵抗値を算出する。デッドタイム誤差演算部6は、電圧指令値Vd*と搬送波切替え信号とからデッドタイム誤差を算出する。
 なお、図1の構成において抵抗値演算部5とデッドタイム誤差演算部6に搬送波切替え信号を入力する構成としたが、特にこれに限定されるものではなく、PWM制御器44によりPWM制御される際の搬送波の周波数が分かるような構成であればよい。
 処理部8は、後述する記憶部9に記憶されたプログラムを実行することにより、上述の制御部4、抵抗値演算部5およびデッドタイム誤差演算部6の処理を行う。
 ここで、記憶部9は、電動機7の電気回路定数や制御に必要なパラメータ、上記の処理を記述したプログラムなどが記憶されたメモリーにより構成される。処理部8は、マイコン(マイクロコンピュータ)やDSP(Digital Signal Processor)、FPGAなどのハードウェア回路に論理構成されたプロセッサにより構成される。また、複数の処理部8および複数の記憶部9が連携して上記機能を実行してもよい。
 なお、図1には記載していないが、後述する通常制御(ここでは鉄道車両や昇降機などの用途に用いられる電動機7を制御して所望の動作を実現する制御)の処理を記述したプログラムも記憶部9に記憶されており、処理部8により、後段で詳述する特性演算部10の処理を実行後に通常制御の処理を実行するように構成しても良い。
 また、抵抗値演算部5やデッドタイム誤差演算部6で算出された抵抗値やデッドタイム誤差を一旦記憶部9に記憶させ、通常制御の処理に抵抗値やデッドタイム誤差を制御パラメータとして用いても良い。
 本願発明は、実際のデッドタイムが、PWM制御の搬送波の周波数の如何に関係しないこと、かつ、デッドタイムの存在により発生する出力電圧誤差はデッドタイムに比例するという現象に着目して創案されたものである。
 その基本的な原理は以下の通りである。即ち、制御部4に、PWM制御のための搬送波として、第一搬送波とこの第一搬送波の周波数と異なる周波数の第二搬送波とを選択して出力する選択器45を備え、PWM制御器44は、入力される電圧指令値と第一搬送波とに基づく第一スイッチング信号および電圧指令値と第二搬送波とに基づく第二スイッチング信号を生成出来るようにする。
 そして、特性演算部10は、電動機7が回転停止した状態で、第一スイッチング信号によりスイッチング素子を駆動したときの電力変換部1の第一動作特性および第二スイッチング信号によりスイッチング素子を駆動したときの電力変換部1の第二動作特性を求め、これら両動作特性から目標とする電動機7の抵抗値やデッドタイム誤差を演算する。
 これら動作特性としては種々のものが対象となり得るが、先ず、この実施の形態1では、図1に示す、電流制御器42を備えた電力変換装置を使用した場合を例にとり説明する。
 即ち、ここでは、両動作特性は、電流検出部2で検出される電流検出値を電流指令値に追従させる制御の条件下で求められるものを使用する。
 具体的には、d軸電流指令値Id*には所望の正の値(Id*>0)、q軸電流指令値Iq*には零(Iq*=0)を設定する。
 なお、この場合、座標変換器41、43に入力する位相θとしては、各相電流が零にならないような位相θ0の一定値に設定する。このように設定する理由は、一般的に、電流値の零付近のデッドタイム期間中の誤差電圧は非線形かつ誤差の符号判定が困難なため、デッドタイム補正が正しく補正できない場合があり、デッドタイム誤差ΔTdの影響が非常に大きく表れるためである。
 従って、座標変換器41および座標変換器43は、θ=θ0として、それぞれ以下の(7)式および(8)式に示す演算式に基づき座標変換を行う。
Figure JPOXMLDOC01-appb-M000003
 そして、上述の電流指令値を与え、先ず、第一搬送波(周波数Fc1)により生成した第一スイッチング信号でスイッチング素子を駆動し、電圧電流が定常状態となったところで第一動作特性を採取する。
 この場合、図1の構成では、前述のように公知である直交2軸のdq軸回転座標系を用いた制御系で構成しており、制御部4によって制御される直交2軸の電流値である上記IdおよびIqの応答を所定の電流応答目標値で制御することが可能になる。これにより、所望の期間内に電流値を一定値に制定できるため、通常の運転に支障の生じないよう瞬時に電動機の抵抗値およびデッドタイム誤差を推定することが可能になる。
 この点、後段の実施の形態2で紹介する、両動作特性を、電圧指令値を一定とする制御の条件下で求める場合は、電動機7の抵抗値RとインダクタンスLとで決まる時定数L/Rの制限を受けて定常値になるまでに数秒程度掛かる場合がある、しかも、この時間は駆動する電動機7の種別によってばらつきが生じることになる。
 これに対し、この図1の場合は、電流制御器42の電流応答に係る時定数を上記時定数L/Rより十分小さく設定することで、高速度短時間での演算推定が実現し、しかも演算推定の時間が電動機7の種別に左右されることがない。
 例えば、(2)式の電流応答目標値ωccを500rad/s程度に設計すれば、第一動作特性および第二動作特性を、それぞれ10~100msec程度で獲得することが出来る。従って、L/Rの時定数に関係なく電流を応答させることができ、抵抗値およびデッドタイム誤差の推定演算に必要な時間の短縮が可能になる。
 次に、上述した要領で採取した第一動作特性から、d軸電流Id1およびd軸電圧指令値Vd1*を入手し、(9)式により第一抵抗値R1を演算する。
 R1=Vd1*/Id1              ・・・(9)
 同様の要領で、第二搬送波(周波数Fc2)により生成した第二スイッチング信号でスイッチング素子を駆動し、電圧電流が定常状態となったところで第二動作特性を採取する。
 そして、この第二動作特性から、d軸電流Id2およびd軸電圧指令値Vd2*を入手し、(10)式により第二抵抗値R2を演算する。
 R2=Vd2*/Id2              ・・・(10)
 ここで、Id1およびId2は、電流制御器42により、Id1=Id2=Id*に制御されているので、抵抗値の真値をRsとすると次の連立方程式が成立する。
 Rs=(Vd1*-ΔVtd1)/Id*
   =R1-(√2/3×ΔTd×Fc1×EFC)/Id*
                          ・・・(11)
 Rs=(Vd2*-ΔVtd2)/Id*
   =R2-(√2/3×ΔTd×Fc2×EFC)/Id*
                          ・・・(12)
 RsとΔTdを未知数として連立方程式(11)式(12)式を解くと、抵抗値Rsおよびデッドタイム誤差ΔTdは、それぞれ(13)式および(14)式で求められる。
 Rs=(Fc1×R2-Fc2×R1)/(Fc1-Fc2)[Ω]
                          ・・・(13)
 ΔTd=(Vd1*-Vd2*)/{√2/3×(Fc1-Fc2)
×EFC}                [sec]・・・(14)
 上述の式から分かるように、電流指令値Id*を互いに同一値に設定して第一動作特性および第二動作特性を求め、第一動作特性における電圧指令値Vd1*と電流指令値Id*とから第一抵抗値R1を演算し、第二動作特性における電圧指令値Vd2*と電流指令値Id*とから第二抵抗値R2を演算し、第一抵抗値R1と第二抵抗値R2とから電動機7の抵抗値Rsを演算することができる訳である。
 また、電流指令値Id*を互いに同一値に設定して第一動作特性および第二動作特性を求め、第一動作特性における電圧指令値Vd1*と第二動作特性における電圧指令値Vd2*との差からデッドタイム誤差ΔTdを演算することができる訳である。
 なお、図2のデッドタイム補正回路443に関し、以上の説明では、Td(補正量)=Td(設定量)としたが、上記(14)式で得られたデッドタイム誤差ΔTdをフィードバックする形で、それまでのTd(補正量)に上乗せすることで、最終的なデッドタイム誤差を一層低減すること、即ち、出力電圧誤差のより確実な補償が出来る。
 また、デッドタイム補正回路を設けない場合は、上記(11)式、(12)式のΔTdには、デッドタイム実効値に相当する(3)式のTd(実際量)をあてはめることになるので、この場合のデッドタイム誤差は、上記(14)式から得られるΔTdからTd(設定量)を差し引いた値となる。
 この場合の出力電圧誤差の補償は、デッドタイム実効値、従って、Td(実際量)に基づく出力電圧誤差=Td(実際量)×Fc×EFCの値を使って、例えば、電圧指令値を補正する等の対策が考えられる。
 次に、以上の抵抗値演算部5およびデッドタイム誤差演算部6により、抵抗値Rsおよびデッドタイム誤差ΔTdを推定する演算工程の一例について、図4を参照して説明する。
 時刻T0迄は、電力変換部1はスイッチング動作が停止しており、例えば、鉄道車両の例では、車両が停車している状態である。そして、後述する時刻T2から通常制御、例えば、運転を開始する。従って、この図4の例では、通常制御開始直前の電動機7の回転停止状態で推定演算を実施するものである。図4の例とは異なるが、通常制御終了直後の電動機7の回転停止状態で推定演算することもできるのは当然である。
 先ず、時刻T0から電力変換部1をスイッチング動作させ抵抗値推定を開始する。時刻T0からT1までの期間(以下、第一期間と称す)では、第一搬送波(周波数Fc1)でPWM制御を行い、d軸電流Id1が所望の一定値Id*になるように電流制御を実施する。
 ここで、時刻T0からT0aまでの期間は、d軸電流Id1が所望の一定値になるまでの過渡応答期間である。この過渡応答期間では抵抗値も一定値ではなく正しく抵抗値を推定することが困難であることが分かる。
 なお、この過渡応答期間は前述のように電流応答目標値ωccの設定によって短縮可能であり、電動機7のL/Rの時定数よりも十分短くなるように設定されている。
 そして、d軸電流Id1が一定値Id*となっている時刻T0aからT1までの期間で採取される第一動作特性から第一抵抗値R1を演算し、このときの電圧指令値Vd1*とともに記憶部9に記憶する。なお、図4に図示するように、デッドタイム誤差がある場合には、R1は真値Rsではなく誤差を持った値となる。
 また、時刻T0からT1までの期間では、デッドタイム誤差ΔTdの演算はできないので零としている。
 次に、時刻T1からT2の期間(以下、第二期間と称す)において、搬送波を第一搬送波から第二搬送波(周波数Fc2)に切替える。ここでは、制御を止めることなく連続的にd軸電流を一定値Id*に制御し続けるようにする。このようにすることで、搬送波周波数Fc2で動作させる際の過渡応答期間を省略することができ、抵抗値推定の演算に必要な時間の短縮に寄与できる。
 そして、d軸電流Id2が一定値Id*となっている時刻T1からT2までの第二期間で採取される第二動作特性から第二抵抗値R2を演算し、このときの電圧指令値Vd2*とともに記憶部9に記憶する。
 この場合、第一動作特性と第二動作特性とは、互いに同一の電流値の条件で得られるので、後述する実施の形態2の両者で電流値が異なる場合に比較して抵抗値とデッドタイム誤差の推定精度を向上させることができる。
 以上より第一および第二抵抗値R1、R2が求まったので、両周波数Fc1、Fc2とから上述の(13)式により抵抗値の真値Rsを推定できることになる。
 また、両動作特性における電圧指令値Vd1*、Vd2*、更には、両周波数Fc1、Fc2、直流電源3の電圧EFCとから上述の式(14)によりデッドタイム誤差ΔTdを算出できる。
 以上の時刻T0からT2までの抵抗値デッドタイム誤差推定期間(第一期間およびこれに続く第二期間)の過程を経て時刻T2以降の通常制御の期間において、推定した抵抗値Rsとデッドタイム誤差ΔTdを通常のモータ制御の制御パラメータに反映し、通常のモータ制御に移行させるようにしている。
 この時、搬送波周波数に関しても、図4に図示していないが、通常制御の搬送波周波数Fc3に切替えるようにしている。このように構成する理由としては、通常制御の搬送波周波数Fc3を設けることで通常制御に要求されている電流応答目標値に応じた搬送波周波数の設定が可能になり、制御系設計における設計自由度が向上するのに加えて、抵抗値デッドタイム誤差推定期間の電流応答目標値と分けて設計できる。
 また、図4に図示しているように、抵抗値デッドタイム誤差推定期間から通常制御へ連続的に移行するように構成することで、電力変換部1がスイッチング停止状態から電力変換部1をスイッチング動作させて電動機7を制御する通常制御へ短時間で移行させることができる。
 なお、上述では、通常制御の搬送波周波数Fc3は、搬送波周波数Fc1および搬送波周波数Fc2の両方と異なる値に設定したが、これに限らず、搬送波周波数Fc1および搬送波周波数Fc2のいずれか一方の値を用いても良い。
 また、これら各搬送波周波数として実際の装置で採用される値は、500Hz~数10kHz程度である。
 更に、図4の説明では、第一期間から第二期間へは、電流値が連続的に一定値に制御されている状態で切替えられているが、これに限定するものではなく、第一期間と第二期間との間に、ゲートオフ期間(電力変換部1のスイッチング動作を停止し電流を流さないようにする)を設けても良い。
 また、上記の推定演算にあたっては、直交2軸のdq軸回転座標上のVdおよびIdから算出しているが、これに限定するものではなく、各相の相電圧、相電流から算出してもよい。
 また、電動機7が誘導電動機の場合は、その電気的回路構成が一次側抵抗と一次側インダクタンスに加え、相互インダクタンスと二次側インダクタンスと二次側抵抗とからなるいわゆるT型等価回路の構成となるので、仮に、一次側電流を直流の一定値に制御しようとしても、電動機に印加する電圧(例えば、Vd1*、Vd2*が相当)は短時間には直流の一定値にならず、相互インダクタンスと二次側抵抗によって決まる電気回路の時定数によって変化するため、この回路応答を考慮して、例えば、下記の(15)式のように補正する必要がある。
 Vd**=Vd*×二次側回路応答         ・・・(15)
 従って、周波数Fc1の第一搬送波でPWM制御した場合の電圧指令補正値をVd1**、周波数Fc2の第二搬送波でPWM制御した場合の電圧指令補正値をVd2**とすると、電動機7が誘導電動機の場合のデッドタイム誤差ΔTdは、(16)式で演算出来ることになる。
 ΔTd=(Vd1**-Vd2**)/{√2/3×(Fc1-Fc2)
×EFC}[sec]                ・・・(16)
 以上の説明のように、本実施の形態1による電力変換装置の制御部4は、電圧指令値と周波数Fc1の第一搬送波とに基づく第一スイッチング信号および電圧指令値と第一搬送波の周波数と異なる周波数Fc2の第二搬送波とに基づく第二スイッチング信号を生成可能とするとともに、電動機7が回転停止した状態で、第一スイッチング信号によりスイッチング素子を駆動したとき求まる電力変換部1の第一動作特性および第二スイッチング信号によりスイッチング素子を駆動したとき求まる電力変換部1の第二動作特性に基づき、電動機7の抵抗値Rsおよびデッドタイム誤差ΔTdのいずれか一方または双方を推定演算する特性演算部10を備えたので、同じこの特性演算部10により、電動機7の抵抗値Rsおよびデッドタイム誤差ΔTdのいずれか一方は勿論、それら双方を同時に推定演算することもでき、また、特許文献1のように、主回路上の条件を変更するものではなく制御上の設定を変更すれば足り、短時間での演算推定が実現する。
 また、電流制御器42を備え、第一動作特性および第二動作特性は、電流検出部2で検出される電流検出値を電流指令値に追従させる制御の条件下で求めるようにし、しかも、当該電流制御器42の電流応答に係る時定数を電動機7の抵抗値とインダクタンス値とで決まる時定数より小さく設定したので、抵抗値とデッドタイム誤差を、電力変換装置の通常制御への支障を生じることのない短時間で精度よく同定することができる。
 これにより、これら推定値を通常制御のパラメータに反映させることで、電動機7の抵抗値が温度によって大きく変動する条件においても制御装置の性能劣化を防止することができる。また、デッドタイム誤差に関しても短時間で精度よく同定することができるため、デッドタイム誤差による制御装置の性能劣化も防止することができる。
 更には、電動機の出力トルクや速度制御精度の向上による安全性向上、高効率による省エネ化、低騒音による環境負荷低減等が得られる。
実施の形態2.
 図5は、本発明の実施の形態2による電力変換装置の構成を示す図である。先の実施の形態1では、第一動作特性および第二動作特性を、電流検出部2で検出される電流検出値を電流指令値に追従させる制御の条件下で求めるようにしたのに対し、この実施の形態2では、第一動作特性および第二動作特性を、電圧指令値を一定とする制御の条件下で求めるようにした点が異なる。以下、具体的な構成および推定演算の動作について説明する。
 図5の制御部4Aでは、そのPWM制御器44Aに入力する電圧指令値として、Vu*=V、Vv*=0、Vw*=-Vの固定値を与えることで電動機7のU相W相間に2Vの直流電圧を印加し、電動機7に直流電流を流す構成になっている。
 図6は、図5の構成において、電力変換部1と電動機7の動作が定常状態に達したときの等価回路を示す図である。ここで、図6のRは電動機7の巻線の抵抗値である。
 デッドタイムによる出力電圧誤差のない図6(a)の場合、抵抗値RsはRs=V/Iuで演算できる。しかしながら、未知の値である出力電圧誤差ΔVtdのある図6(b)の場合は、抵抗値RsをRs=(V-ΔVtd)/Iuで演算しないと真値が求まらない。仮に、V=5[V]、R=0.05[Ω]であったとすると、図6(a)の場合はIu=100[A]、Rs=V/Iu=0.05[Ω]となり真値を推定できる。
 一方、図6(b)の場合は、先の実施の形態1の図2で説明したように、デッドタイム補正を実施しており、デッドタイムの実効値がデッドタイム誤差ΔTdに該当するとして、仮に、このΔTdが1[μs]、更に、Fc=1000[Hz]、EFC=1500[V]であったとすると、出力電圧誤差ΔVtdはΔVtd=1.5[V]に相当する。この場合、Iu=70[A]の電流しか流れず、抵抗値RsはRs=V/Iu≒0.071[Ω]となって、真値を推定することができない。上記の例の場合、約30%の推定誤差を含む結果となる。
 そこで、先の実施の形態1で説明したと同様に、周波数Fc1の第一搬送波を使用してPWM制御でスイッチング素子を駆動したときの第一動作特性、および周波数Fc1とは異なる周波数Fc2の第二搬送波を使用してPWM制御でスイッチング素子を駆動したときの第二動作特性を求める。
 具体的に、第一動作特性から得られる電流をIu1、第二動作特性から得られる電流をIu2とすると、抵抗値の真値をRs、直流の電圧指令値をV*、直流電源3の電圧値をEFCとして次の連立方程式が成立する。
 Rs=(V*-ΔVtd1)/Iu1
   =(V*-ΔTd×Fc1×EFC)/Iu1  ・・・(17)
 Rs=(V*-ΔVtd2)/Iu2
   =(V*-ΔTd×Fc2×EFC)/Iu2  ・・・(18)
 RsとΔTdを未知数として連立方程式(17)式および(18)式を解くと、抵抗値Rsおよびデッドタイム誤差ΔTdは、それぞれ(19)式および(20)式で求められる。
 Rs=V*×(Fc1-Fc2)
/(Fc1×Iu2-Fc2×Iu1)[Ω]     ・・・(19)
 ΔTd=V*×(Iu1-Iu2)
  /{EFC×(Fc2×Iu1-Fc1×Iu2)}[sec]
                          ・・・(20)
 上述の式から分かるように、電圧指令値V*を互いに同一値に設定して第一動作特性および第二動作特性を求め、第一動作特性における電流検出部2で検出された第一電流検出値Iu1と、第二動作特性における電流検出部2で検出された第二電流検出値Iu2とから電動機7の抵抗値Rsを演算することができる訳である。
 また、電圧指令値V*を互いに同一値に設定して第一動作特性および第二動作特性を求め、第一動作特性における電流検出部2で検出された第一電流検出値Iu1と第二動作特性における電流検出部2で検出された第二電流検出値Iu2との差からデッドタイム誤差ΔTdを演算することができる訳である。
 以上の説明のように、本実施の形態2による電力変換装置の制御部4Aは、先の実施の形態1の場合と同様、電圧指令値と周波数Fc1の第一搬送波とに基づく第一スイッチング信号および電圧指令値と第一搬送波の周波数と異なる周波数Fc2の第二搬送波とに基づく第二スイッチング信号を生成可能とするとともに、電動機7が回転停止した状態で、第一スイッチング信号によりスイッチング素子を駆動したとき求まる電力変換部1の第一動作特性および第二スイッチング信号によりスイッチング素子を駆動したとき求まる電力変換部1の第二動作特性に基づき、電動機7の抵抗値Rsおよびデッドタイム誤差ΔTdのいずれか一方または双方を推定演算する特性演算部10Aを備えたので、同じこの特性演算部10Aにより、電動機7の抵抗値Rsおよびデッドタイム誤差ΔTdのいずれか一方は勿論、それら双方を同時に推定演算することもでき、また、特許文献1のように、主回路上の条件を変更するものではなく制御上の設定を変更すれば足り、短時間での演算推定が実現する。
 そして、第一動作特性および第二動作特性は、電圧指令値を一定とする制御の条件下で求めるようにしたので、電流検出値を電流指令値に追従させる電流制御機構を必要としない。従って、図5から分かるように、簡便な制御構成で電動機を駆動制御する電力変換装置においても適用することができるという利点がある。
実施の形態3.
 この実施の形態3では、先の実施の形態での電力変換部1に具備されるスイッチング素子の素材に炭化珪素(SiC)等のワイドバンドギャップ半導体からなるスイッチング素子を適用した場合について説明する。
 なお、図面上の構成は先の実施の形態の場合と変わりがないので、ここでは説明を割愛する。
 電力変換部1で用いられるスイッチング素子としては、珪素(Si)を素材とする半導体トランジスタ素子(IGBT、MOSFETなど)と、同じく珪素を素材とする半導体ダイオード素子とを逆並列に接続した構成のものが一般的である。先の実施の形態で説明した技術は、この一般的なスイッチング素子を具備する電力変換器に用いることができる。
 一方、先の実施の形態で説明した技術は、珪素を素材として形成されたスイッチング素子に限定されるものではない。この珪素に代え、低損失かつ高耐圧な半導体素子として近年注目されている炭化珪素(SiC)等のワイドバンドギャップ半導体からなるスイッチング素子を電力変換器に用いることも無論可能である。
 ここで、ワイドバンドギャップ半導体の一つである炭化珪素は、珪素と比較して半導体素子で発生する損失を大幅に低減できるとともに高温での使用が可能であるという特徴を有しているので、電力変換部に具備されるスイッチング素子として炭化珪素を素材とするものを用いれば、スイッチング素子モジュールの許容動作温度を高温側に引き上げることができるので、搬送波周波数を高めて、電動機の運転効率を向上させることが可能である。
 先の実施の形態で説明した特性演算部10を、このようなワイドバンドギャップ半導体の特徴を生かすことで更に短時間に電動機の抵抗値とデッドタイム誤差を同定することが可能となる。
 先の実施の形態1でも説明したように、同定演算を短時間で実行するためには電動機7に供給する電流をできるだけ早く制定させることが重要であり、そのためには、制御部4によって制御される上記IdおよびIqの応答を設計するための所定の電流応答目標値ωccをできるだけ大きくすることで達成される。しかしながら、電流応答目標値ωccの設定は搬送波周波数により制約される。
 一般的に電流応答目標値ωccは、搬送波周波数Fcの1/10程度に設定され、それ以上の大きな値が設定されると制御が不安定化する場合がある。従って、電力変換部1に具備されるスイッチング素子の素材に炭化珪素(SiC)等のワイドバンドギャップ半導体からなるスイッチング素子を適用することで、珪素等を素材とする非ワイドバンドギャップ半導体からなるスイッチング素子を用いる場合よりも搬送波周波数を高く設定できるため短時間に抵抗値とデッドタイム誤差を同定することが可能である。
 なお、この発明と異なり、1種類の搬送波を使用して演算推定を行うものでは、単に搬送波周波数を高くしても、上述したようなデッドタイム誤差と抵抗値の精度の関係により演算推定値のばらつきが非常に大きなものとなってしまう可能性がある。
 これに対し、先の実施の形態1で説明した本発明に係る技術によれば、PWM制御を行う電力変換装置において、炭化珪素を素材とするスイッチング素子を用いて搬送波周波数を増大させ、上述のような同定時間の短縮を図ったとしても、第一搬送波でPWM制御を実施して第一動作特性を求める第一期間と第二搬送波でPWM制御を実施して第二動作特性を求める第二期間とを有することで、電動機の抵抗値とデッドタイム誤差を精度よく同定することが可能となる。
 なお、炭化珪素(SiC)は、珪素(Si)よりもバンドギャップが大きいという特性を捉えて、ワイドバンドギャップ半導体と称される半導体の一例である。この炭化珪素以外にも、例えば、窒化ガリウム系材料、または、ダイヤモンドを用いて形成される半導体もワイドバンドギャップ半導体に属しており、それらの特性も炭化珪素に類似した点が多い。したがって、炭化珪素以外の他のワイドバンドギャップ半導体を用いる構成も、本発明の要旨を成すものである。
 以上の説明のように、本実施の形態3による電力変換装置では、先の実施の形態の電力変換部1に具備されるスイッチング素子の素材に炭化珪素(SiC)等のワイドバンドギャップ半導体からなるスイッチング素子を適用したので、電動機の抵抗値とデッドタイム誤差の同定精度を向上させ、更に短時間で同定を完了させるといったこれまでにない効果を奏するものである。
 ところで、電力変換部1に具備されるスイッチング素子の素材に炭化珪素(SiC)等のワイドバンドギャップ半導体からなるスイッチング素子を適用した場合、通常制御時においても搬送波周波数を増大させ、制御応答の向上を図ることができるが、この場合には、デッドタイム誤差による出力電圧誤差ΔVtdが無視できないほど制御に影響し、所望の制御応答に向上させることが困難となる可能性がある。
 しかし、このような場合においても、本発明によって同定した抵抗値とデッドタイム誤差を記憶部9に記憶させ、通常制御の制御パラメータに反映させることで、通常制御の制御応答の向上に寄与できることは言うまでもない。
 なお、以上の実施の形態1~3に示した構成は、本発明の内容の一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、本発明の要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。
 なお、以上の実施の形態1~3に示した構成では、電動機7が回転停止した状態で、電動機7の抵抗値とデッドタイム誤差を精度よく同定することを示したが、これに限らず、電動機7が少々回転した状態でも同様の効果を得ることができる。具体的には、電動機7の回転周期が本発明の同定期間よりも大きければよく、本発明の同定期間が短時間であるほど本発明の適用範囲が広がることは言うまでもない。
実施の形態4.
 図7は、本発明の実施の形態1から3に係る電力変換装置を鉄道車両に適用した車両駆動システムの一構成例を示す図である。この実施の形態4に係る車両駆動システムは、交流電動機101、電力変換部102、制御部108および入力回路103を備えている。
 交流電動機101は、図1に示した電動機7に対応するものであり、鉄道車両に搭載されている。電力変換部102は、図1に示した電力変換部1と同じものであり、スイッチング素子104a、105a、106a、104b、105b、106bを具備している。
 制御部108は、図1に示した制御部4、処理部8および記憶部9をすべて含むもので、電力変換部102のスイッチング素子104a~106bをオンオフ制御するためのスイッチング信号SWU、SWV、SWWを生成する。
 入力回路103は、図示は省略しているが、スイッチ、フィルタコンデンサ、フィルタリアクトル等を備えて構成されており、その入力側は、集電装置111と車輪113とを介して饋電回路100を構成する架線110とレール114に接続され、出力側は、電力変換部102に接続されている。この入力回路103は、例えば、架線110から直流電力または交流電力の供給を受けて、電力変換部102へ供給する直流電力を生成する。
 電力変換部102は、入力回路103から供給された直流電圧を任意周波数および任意電圧の交流電圧に変換して交流電動機101を駆動する。
 このように、実施の形態1から3に記載の電力変換装置を車両駆動システムへ適用することにより、これら形態例で説明した通り、交流電動機101の抵抗値が温度によって大きく変動する条件においても制御性能の劣化を防止することができる。また、デッドタイム誤差による制御性能の劣化も防止することができる。
 更には、以上のような制御性能の劣化も防止することにより、電動機の出力トルクや速度制御精度の向上による安全性向上、乗り心地の向上、高効率による省エネ化、低騒音による環境負荷低減等が得られる車両制御を実現することができる。
 なお、本発明は、その発明の範囲内において、各実施の形態を自由に組み合わせ、各実施の形態を適宜、変形、省略することが可能である。

Claims (19)

  1. 直流電源の両極間にスイッチング素子を互いに直列に接続してなるブリッジを備え前記直流電源の電圧を変換して電動機に供給する電力変換部、前記電動機に流入する電流を検出する電流検出部、および前記ブリッジを構成する前記スイッチング素子による直流短絡を防止するためのデッドタイムを設定付加するとともに電圧指令値と搬送波とに基づきPWM制御により前記スイッチング素子をオンオフ駆動するためのスイッチング信号を生成する制御部を備えた電力変換装置であって、
     前記制御部は、前記電圧指令値と第一搬送波とに基づく第一スイッチング信号および前記電圧指令値と前記第一搬送波の周波数と異なる周波数の第二搬送波とに基づく第二スイッチング信号を生成可能とするとともに、
     前記第一スイッチング信号により前記スイッチング素子を駆動したとき求まる前記電力変換部の第一動作特性および前記第二スイッチング信号により前記スイッチング素子を駆動したとき求まる前記電力変換部の第二動作特性に基づき、前記電動機の抵抗値および前記デッドタイムの実効値と前記デッドタイムの設定値との差であるデッドタイム誤差のいずれか一方または双方を推定演算する特性演算部を備えた電力変換装置。
  2. 前記特性演算部は、前記電動機の抵抗値を推定演算する請求項1記載の電力変換装置。
  3. 前記特性演算部は、更に、前記デッドタイム誤差を推定演算する請求項2記載の電力変換装置。
  4. 前記第一動作特性および前記第二動作特性は、前記電流検出部で検出される電流検出値を電流指令値に追従させる制御の条件下で求めるようにした請求項1から請求項3のいずれか1項に記載の電力変換装置。
  5. 前記制御部は、前記電流検出部で検出された前記電流検出値と前記電流指令値との偏差が零となるよう前記電圧指令値を生成する電流制御器、前記第一搬送波と前記第二搬送波とを選択して出力する選択器、および前記電圧指令値と前記選択器から出力された搬送波とに基づき前記スイッチング信号を生成するPWM制御器を備え、
     前記特性演算部は、前記電流指令値として直流値を設定し、前記PWM制御器からの前記第一スイッチング信号により求まる前記第一動作特性および前記PWM制御器からの前記第二スイッチング信号により求まる前記第二動作特性に基づき、前記電動機の前記抵抗値および前記デッドタイム誤差のいずれか一方または双方を推定演算する請求項4に記載の電力変換装置。
  6. 前記PWM制御器は、前記電圧指令値を前記直流電源の電圧値で規格化して変調波を出力する変調波生成回路、前記変調波と前記搬送波とに基づき前記PWM制御により前段スイッチング信号を生成するスイッチング信号生成回路、前記デッドタイムにより発生する出力電圧誤差を補償するように前記前段スイッチング信号を補正して後段スイッチング信号を生成するデッドタイム補正回路、および前記後段スイッチング信号にデッドタイム設定値を設定付加して前記スイッチング素子をオンオフ駆動するための前記スイッチング信号を生成するデッドタイム生成回路を備えた請求項5に記載の電力変換装置。
  7. 前記電流制御器の電流応答に係る時定数を前記電動機の抵抗値とインダクタンス値とで決まる時定数より小さく設定した請求項5または請求項6に記載の電力変換装置。
  8. 前記特性演算部は、前記電動機の前記抵抗値を演算し、
     前記電流指令値を互いに同一値に設定して前記第一動作特性および前記第二動作特性を求め、前記第一動作特性における前記電圧指令値と前記電流指令値とから第一抵抗値を演算し、前記第二動作特性における前記電圧指令値と前記電流指令値とから第二抵抗値を演算し、前記第一抵抗値と前記第二抵抗値とから前記電動機の前記抵抗値を演算するようにした請求項4から請求項7のいずれか1項に記載の電力変換装置。
  9. 前記特性演算部は、前記デッドタイム誤差を演算し、
     前記電流指令値を互いに同一値に設定して前記第一動作特性および前記第二動作特性を求め、前記第一動作特性における前記電圧指令値と前記第二動作特性における前記電圧指令値との差から前記デッドタイム誤差を演算するようにした請求項4から請求項7のいずれか1項に記載の電力変換装置。
  10. 前記第一動作特性および前記第二動作特性は、前記電圧指令値を一定とする制御の条件下で求めるようにした請求項1から請求項3のいずれか1項に記載の電力変換装置。
  11. 前記特性演算部は、前記電動機の前記抵抗値を演算し、
     前記電圧指令値を互いに同一値に設定して前記第一動作特性および前記第二動作特性を求め、前記第一動作特性における前記電流検出部で検出された第一電流検出値と、前記第二動作特性における前記電流検出部で検出された第二電流検出値とから前記電動機の前記抵抗値を演算するようにした請求項10に記載の電力変換装置。
  12. 前記特性演算部は、前記デッドタイム誤差を演算し、
     前記電圧指令値を互いに同一値に設定して前記第一動作特性および前記第二動作特性を求め、前記第一動作特性における前記電流検出部で検出された第一電流検出値と前記第二動作特性における前記電流検出部で検出された第二電流検出値との差から前記デッドタイム誤差を演算するようにした請求項10に記載の電力変換装置。
  13. 前記特性演算部は、第一期間で前記第一動作特性を求め、前記第一期間に続く第二期間で前記第二動作特性を求めるようにした請求項1から請求項12のいずれか1項に記載の電力変換装置。
  14. 前記第一期間および前記第二期間は、前記電動機の通常制御開始直前に設定した請求項13に記載の電力変換装置。
  15. 前記第一期間および前記第二期間は、前記電動機の通常制御終了直後に設定した請求項13に記載の電力変換装置。
  16. 前記スイッチング素子をワイドバンドギャップ半導体で形成した請求項1から請求項15のいずれか1項に記載の電力変換装置。
  17. 前記ワイドバンドギャップ半導体は、炭化ケイ素、窒化ガリウム系材料、または、ダイヤモンドを用いた半導体である請求項16に記載の電力変換装置。
  18. 前記第一搬送波および前記第二搬送波の周波数を、前記スイッチング素子を非ワイドバンドギャップ半導体で形成した場合より高く設定した請求項16または請求項17に記載の電力変換装置。
  19. 請求項1から請求項18のいずれか1項に記載の電力変換装置、饋電回路と前記電力変換装置との間に接続され前記電力変換装置への電力を生成する入力回路、および前記電力変換装置によって駆動される電動機を備えた車両駆動システム。
PCT/JP2016/063717 2015-05-20 2016-05-09 電力変換装置およびこれを適用した車両駆動システム WO2016185924A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE112016002281.6T DE112016002281T5 (de) 2015-05-20 2016-05-09 Energie-umwandlungseinrichtung und fahrzeug-antriebssystem, an welchem die energie-umwandlungseinrichtung verwendet wird
JP2016553480A JP6045765B1 (ja) 2015-05-20 2016-05-09 電力変換装置およびこれを適用した車両駆動システム
CN201680004585.1A CN107148739B (zh) 2015-05-20 2016-05-09 电力变换装置和应用该电力变换装置的车辆驱动系统
US15/524,438 US10910984B2 (en) 2015-05-20 2016-05-09 Power conversion device and vehicle drive system to which same is applied

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015102514 2015-05-20
JP2015-102514 2015-05-20

Publications (1)

Publication Number Publication Date
WO2016185924A1 true WO2016185924A1 (ja) 2016-11-24

Family

ID=57320207

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/063717 WO2016185924A1 (ja) 2015-05-20 2016-05-09 電力変換装置およびこれを適用した車両駆動システム

Country Status (5)

Country Link
US (1) US10910984B2 (ja)
JP (1) JP6045765B1 (ja)
CN (1) CN107148739B (ja)
DE (1) DE112016002281T5 (ja)
WO (1) WO2016185924A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2019180763A1 (ja) * 2018-03-19 2021-01-07 三菱電機株式会社 電力変換装置および回転機駆動システム
CN112910360A (zh) * 2021-02-04 2021-06-04 湖南科技大学 电机驱动器载波频率调节方法及装置
WO2022003886A1 (ja) * 2020-07-02 2022-01-06 三菱電機株式会社 モータ制御装置
WO2022234832A1 (ja) * 2021-05-07 2022-11-10 株式会社日立製作所 電力変換装置および電力変換方法
WO2023286272A1 (ja) * 2021-07-16 2023-01-19 三菱電機株式会社 モータ制御装置およびモータ制御方法、電気回路定数測定装置および電気回路定数測定方法

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10910984B2 (en) * 2015-05-20 2021-02-02 Mitsubishi Electric Corporation Power conversion device and vehicle drive system to which same is applied
FR3050336B1 (fr) * 2016-04-15 2018-05-04 Continental Automotive France Procede de diagnostic de la commande en courant d'un moteur electrique d'un vehicule automobile
JP6717791B2 (ja) * 2017-09-28 2020-07-08 ファナック株式会社 パラメータ決定支援装置
CN107623433B (zh) * 2017-09-28 2019-07-26 中冶京诚工程技术有限公司 一种变频器死区时间确定方法及装置
US11569727B2 (en) * 2018-07-17 2023-01-31 Mitsubishi Electric Corporation Drive circuit and power conversion device
DE102018213473A1 (de) * 2018-08-10 2020-02-13 Thyssenkrupp Ag Aufzugsanlage mit einer gleichrangigen Kommunikation zwischen Sensoreinheit und Linearantrieb
CN112997395B (zh) * 2018-11-14 2024-01-02 东芝三菱电机产业系统株式会社 电力转换装置
JP7156118B2 (ja) * 2019-03-20 2022-10-19 株式会社デンソー モータシステム
WO2021050912A1 (en) 2019-09-13 2021-03-18 Milwaukee Electric Tool Corporation Power converters with wide bandgap semiconductors
FR3112728B1 (fr) * 2020-07-27 2022-09-09 Alstom Transp Tech Ensemble de traction constitué d’une locomotive et d’un tender ; procédé associé.

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005151790A (ja) * 2003-10-24 2005-06-09 Daikin Ind Ltd Dcモータのコイル温度推定方法、dcモータ制御方法およびそれらの装置
JP2006191775A (ja) * 2005-01-07 2006-07-20 Mitsubishi Electric Corp 電動機装置
JP2011036031A (ja) * 2009-07-31 2011-02-17 Daikin Industries Ltd 電力変換装置

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3052315B2 (ja) 1989-09-26 2000-06-12 株式会社明電舎 誘導電動機の定数測定方法
WO1998042067A1 (fr) 1997-03-19 1998-09-24 Hitachi, Ltd. Convertisseur electrique, unite de commande de moteur a courant alternatif et leur procede de commande
JP3644531B2 (ja) 1999-07-06 2005-04-27 富士電機機器制御株式会社 オンディレイ補償用アームオン検出回路
JP4816838B2 (ja) * 2000-07-13 2011-11-16 株式会社安川電機 誘導電動機のベクトル制御装置
JP4749874B2 (ja) 2006-01-30 2011-08-17 日立オートモティブシステムズ株式会社 電力変換装置及びそれを用いたモータ駆動装置
JP2008086129A (ja) 2006-09-28 2008-04-10 Hitachi Ltd 交流電動機の制御装置および定数測定装置
US8035334B2 (en) * 2006-10-31 2011-10-11 Mitsubishi Electric Corporation Electric power converter
JP5146925B2 (ja) 2007-12-18 2013-02-20 株式会社安川電機 誘導電動機制御装置及びその電動機定数測定演算方法
CN102414978B (zh) * 2009-04-27 2014-08-27 三菱电机株式会社 功率变换装置
JP5147996B2 (ja) * 2010-01-15 2013-02-20 三菱電機株式会社 電力用半導体モジュール
JP5549384B2 (ja) 2010-06-03 2014-07-16 日産自動車株式会社 電動機の制御装置および電動機制御システム
JP5942337B2 (ja) * 2011-04-28 2016-06-29 株式会社ジェイテクト 車両用操舵装置
JP5603360B2 (ja) * 2011-06-24 2014-10-08 三菱電機株式会社 モータ制御装置およびそれを用いた電動パワーステアリング装置
JP5031128B1 (ja) 2011-09-30 2012-09-19 三菱電機株式会社 電動機の制御装置および制御方法、それらを適用した電動機ならびに車両駆動システム
CN103916064B (zh) * 2014-03-31 2017-06-09 广东威灵电机制造有限公司 定子电阻的测量方法、装置和温度检测方法、装置
CN104360171B (zh) * 2014-11-17 2017-05-03 长春工程学院 永磁同步电机电感参数测量方法
US10910984B2 (en) * 2015-05-20 2021-02-02 Mitsubishi Electric Corporation Power conversion device and vehicle drive system to which same is applied

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005151790A (ja) * 2003-10-24 2005-06-09 Daikin Ind Ltd Dcモータのコイル温度推定方法、dcモータ制御方法およびそれらの装置
JP2006191775A (ja) * 2005-01-07 2006-07-20 Mitsubishi Electric Corp 電動機装置
JP2011036031A (ja) * 2009-07-31 2011-02-17 Daikin Industries Ltd 電力変換装置

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2019180763A1 (ja) * 2018-03-19 2021-01-07 三菱電機株式会社 電力変換装置および回転機駆動システム
JP7005746B2 (ja) 2018-03-19 2022-01-24 三菱電機株式会社 電力変換装置および回転機駆動システム
US11329593B2 (en) 2018-03-19 2022-05-10 Mitsubishi Electric Corporation Power conversion device and rotating machine drive system
WO2022003886A1 (ja) * 2020-07-02 2022-01-06 三菱電機株式会社 モータ制御装置
JP7321375B2 (ja) 2020-07-02 2023-08-04 三菱電機株式会社 モータ制御装置
CN112910360A (zh) * 2021-02-04 2021-06-04 湖南科技大学 电机驱动器载波频率调节方法及装置
WO2022234832A1 (ja) * 2021-05-07 2022-11-10 株式会社日立製作所 電力変換装置および電力変換方法
WO2023286272A1 (ja) * 2021-07-16 2023-01-19 三菱電機株式会社 モータ制御装置およびモータ制御方法、電気回路定数測定装置および電気回路定数測定方法

Also Published As

Publication number Publication date
US20180287544A1 (en) 2018-10-04
DE112016002281T5 (de) 2018-02-15
JPWO2016185924A1 (ja) 2017-06-01
US10910984B2 (en) 2021-02-02
JP6045765B1 (ja) 2016-12-14
CN107148739B (zh) 2019-04-16
CN107148739A (zh) 2017-09-08

Similar Documents

Publication Publication Date Title
JP6045765B1 (ja) 電力変換装置およびこれを適用した車両駆動システム
US8816612B2 (en) Controller for multi-phase rotary device
JP4749874B2 (ja) 電力変換装置及びそれを用いたモータ駆動装置
US8232753B2 (en) Control device for electric motor drive apparatus
JP6735827B2 (ja) 電力変換装置
JP7102407B2 (ja) インバータ装置、及び、電動パワーステアリング装置
US8878477B2 (en) Electric motor driving apparatus having failure detection circuit, and failure detection method for the electric motor driving apparatus having failure detection circuit
EP2733844B1 (en) Vehicle and method for controlling vehicle
JPWO2016006386A1 (ja) 車両用回転電機の制御装置、及び制御方法
US10432124B2 (en) Current detection apparatus and control apparatus of rotary electric machine
JP2017534240A (ja) コンバータおよびコンバータを作動する方法
JP6579195B2 (ja) 電力制御方法、及び、電力制御装置
JP6173003B2 (ja) 電力変換装置
JP6458684B2 (ja) 電力制御方法、及び、電力制御装置
JP2014036539A (ja) インバータ装置及びインバータ装置のスイッチングタイミング補正方法
JP2005124305A (ja) 二相変調制御式インバータ装置
JP6471670B2 (ja) 電力制御方法、及び、電力制御装置
JP2011109848A (ja) モータ駆動制御装置
JP5473071B2 (ja) 負荷制御装置
WO2020105106A1 (ja) 交流回転電機の制御装置
JP6458683B2 (ja) 電力制御方法、及び、電力制御装置
JP2017208892A (ja) 電動機の制御装置及びそれを備えた電動車両
JP5573713B2 (ja) 回転機の制御装置
JP6477397B2 (ja) 電力制御方法、及び、電力制御装置
JP2008236971A (ja) モータ制御装置及び、モータ制御方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016553480

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16796318

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15524438

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112016002281

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16796318

Country of ref document: EP

Kind code of ref document: A1