JP2017208892A - 電動機の制御装置及びそれを備えた電動車両 - Google Patents

電動機の制御装置及びそれを備えた電動車両 Download PDF

Info

Publication number
JP2017208892A
JP2017208892A JP2016098366A JP2016098366A JP2017208892A JP 2017208892 A JP2017208892 A JP 2017208892A JP 2016098366 A JP2016098366 A JP 2016098366A JP 2016098366 A JP2016098366 A JP 2016098366A JP 2017208892 A JP2017208892 A JP 2017208892A
Authority
JP
Japan
Prior art keywords
phase
zero
motor
pulse width
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016098366A
Other languages
English (en)
Other versions
JP6681266B2 (ja
Inventor
隆宏 荒木
Takahiro Araki
隆宏 荒木
利貞 三井
Toshisada Mitsui
利貞 三井
宮崎 英樹
Hideki Miyazaki
英樹 宮崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Astemo Ltd
Original Assignee
Hitachi Automotive Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Automotive Systems Ltd filed Critical Hitachi Automotive Systems Ltd
Priority to JP2016098366A priority Critical patent/JP6681266B2/ja
Priority to PCT/JP2017/014758 priority patent/WO2017199641A1/ja
Publication of JP2017208892A publication Critical patent/JP2017208892A/ja
Application granted granted Critical
Publication of JP6681266B2 publication Critical patent/JP6681266B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L9/00Electric propulsion with power supply external to the vehicle
    • B60L9/16Electric propulsion with power supply external to the vehicle using ac induction motors
    • B60L9/18Electric propulsion with power supply external to the vehicle using ac induction motors fed from dc supply lines
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/22Current control, e.g. using a current control loop
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Ac Motors In General (AREA)
  • Inverter Devices (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

【課題】
本発明の目的は、零相電流を減少させる際のスイッチング回数を低減することである。
【解決手段】
各相が独立して結線された電動機を制御する電動機の制御装置であって、入力されたトルク指令に基づき電動機へ印加する電圧を制御するためのPWM制御信号を出力する制御手段を有し、前記制御手段は前記電動機の交流電流から求められる零相電流を低減するための零相電圧指令に基づき、出力電圧の総和からなる零相電圧のパルス幅及び振幅を制御する。
【選択図】 図5

Description

本発明は電動機の制御装置に関し、特に車載用の電動機の制御装置に関する。
ハイブリッド自動車や電気自動車は、車両走行中の故障発生防止の観点から信頼性の向上と、車両軽量化の観点から出力トルクの向上が要求される。これらの要求に対して三相6線式の駆動装置が考えられているが、中性点が接続されていない電動機を用いるため、電動機を駆動する駆動電流に零相電流が重畳し、銅損などの損失が増加するという課題があった。
本技術分野の背景技術として、特開昭63−224693号公報(特許文献1)がある。この公報には、「複数通電モードの中から零相電流の現在値を減少させるような第1および第2の電圧形インバータの通電モードを選択する」と記載されている。これにより零相電流を減少させるようにインバータが動作するため、零相電流による損失を低減することができる。
特開昭63−224693号公報
特許文献1に記載の方法では、零相電流を減少させるためにスイッチング回数が増加する恐れがある。
本発明の目的は、零相電流を減少させる際のスイッチング回数を低減することである。
上記の課題を解決するため、本発明に係る電動機の制御装置は、各相の巻線が独立して結線された電動機を制御するとともに、入力されたトルク指令に基づき電動機へ印加する電圧を制御するためのPWM制御信号を出力する電動機の制御装置において、前記電動機の交流電流から求められる零相電流を低減するための零相電圧指令に基づき、 出力電圧の総和からなる零相電圧のパルス幅及び振幅を制御する。
本発明に係るインバータ制御装置によれば、零相電流を減少させる際のスイッチング回数を低減することができる。
本実施形態に係るモータ駆動装置の構成を示す図である。 本実施形態に係るモータ駆動装置の出力電圧波形例を示す図である。 本実施形態に係るモータ駆動装置の出力電圧ベクトル図である。 第1の実施例を説明する制御ブロック図である。 スイッチング信号生成部30のフローチャートを示す図である。 図5のフローチャートにおけるステップ2の処理を示す図であり、図3のベクトル図において太点線で示した六角形部分を示している。 図5のフローチャートにおけるステップ4の処理を示す図であり、図3のベクトル図において太点線で示した六角形部分を示している。 図5のフローチャートにおけるステップ6およびステップ8の処理を示す図であり、図3のベクトル図において太点線で示した六角形部分を示している。 図5のフローチャートにおけるステップ9の処理を示す図であり、図3のベクトル図において太点線で示した六角形部分を示している。 図5のフローチャートにおけるステップ11の処理を示す図であり、図3のベクトル図において太点線で示した六角形部分を示している。 図5のフローチャートにおけるステップ13およびステップ15の処理を示す図であり、図3のベクトル図において太点線で示した六角形部分を示している。
以下、図面を参照して本発明の実施形態を説明する。ただし、本発明は下記の実施形態に限定解釈されるものではなく、公知の他の構成要素を組み合わせて本発明の技術思想を実現してもよい。なお、各図において同一要素については同一の符号を記し、重複する説明は省略する。
図1は、本発明の実施形態に係るモータ駆動装置の構成を示す図である。
モータ駆動装置は、モータ200と、位置センサ210と、電流センサ220と、インバータ100と、インバータ制御装置1と、を有する。モータ駆動装置は、モータを駆動するモータ駆動システムとして機能する・
モータ200は、中性点が接続されていない埋込磁石同期電動機などにより構成される。
モータ200の固定子に巻かれたU相巻線201は、U相フルブリッジインバータ110の出力端子に接続される。
モータ200の固定子に巻かれたV相巻線202は、V相フルブリッジインバータ111の出力端子に接続される。
モータ200の固定子に巻かれたW相巻線203は、W相フルブリッジインバータ112の出力端子に接続される。
モータ200は中性点が接続されていないことにより、U相巻線201と、V相巻線202と、W相巻線203に流れる電流をそれぞれ独立に制御することができる。ただし、モータ200は中性点が接続されていないため、特許文献1に記載されている通り、U相巻線201と、V相巻線202と、W相巻線203に流れる駆動電流には、零相電流が含まれる。
位置センサ210は、モータ200の回転子の位置を検出し、検出した回転子位置θを出力する。
電流センサ220は、モータ200の固定子に巻かれた、U相巻線201と、V相巻線202と、W相巻線203に流れる電流を検出し、検出した三相電流iu、iv、iwを出力する。
インバータ100は、U相フルブリッジインバータ110と、V相フルブリッジインバータ111と、W相フルブリッジインバータ112と、により構成される。U相フルブリッジインバータ110と、V相フルブリッジインバータ111と、W相フルブリッジインバータ112と、は、図略の直流電源に並列接続される。
U相フルブリッジインバータ110は、スイッチング素子110a〜110dにより構成される。スイッチング素子110aはU相左レグ上アームに配置される。スイッチング素子110bはU相左レグ下アームに配置される。スイッチング素子110cはU相右レグ上アームに配置される。
スイッチング素子110dはU相右レグ下アームに配置される。
V相フルブリッジインバータ111は、スイッチング素子111a〜111dにより構成される。スイッチング素子111aはV相左レグ上アームに配置される。スイッチング素子111bはV相左レグ下アームに配置される。スイッチング素子111cはV相右レグ上アームに配置される。スイッチング素子111dはV相右レグ下アームに配置される。
W相フルブリッジインバータ112は、スイッチング素子112a〜112dにより構成される。スイッチング素子112aはW相左レグ上アームに配置される。スイッチング素子112bはW相左レグ下アームに配置される。スイッチング素子112cはW相右レグ上アームに配置される。スイッチング素子112dはW相右レグ下アームに配置される。
スイッチング素子110a〜110dと、スイッチング素子111a〜111dと、スイッチング素子112a〜112dをインバータ制御装置1で生成されたスイッチング信号に基づいてオンもしくはオフすることで、インバータ100は、図略の直流電源から印加された直流電圧を交流電圧に変換する。変換された交流電圧は、モータ200の固定子に巻かれたU相巻線201とV相巻線202とW相巻線203に印加され、3相交流電流を発生させる。この3相交流電流がモータ200に回転磁界を発生させ、回転子が回転する。
スイッチング素子110a〜110dと、スイッチング素子111a〜111dと、スイッチング素子112a〜112dは、金属酸化膜型電界効果トランジスタ(MOSFET)や絶縁ゲートバイポーラトランジスタ(IGBT)などと、ダイオードを組み合わせて構成される。本実施形態では、MOSFETとダイオードを用いる構成で説明する。
インバータ制御装置1は、外部からのトルク指令値T*、電流センサ220で検出された三相電流iu、iv、iw、位置センサ210で検出された回転子位置θに基づいてインバータ100をPWM制御する。
図2は、本実施形態に係るモータ駆動装置の出力電圧波形例を示す図である。
U相出力電圧Vuは、U相フルブリッジインバータ110の出力電圧である。V相出力電圧Vvは、V相フルブリッジインバータ111の出力電圧である。W相出力電圧Vwは、W相フルブリッジインバータ112の出力電圧である。零相出力電圧V0は、U相出力電圧Vuと、V相出力電圧Vvと、W相出力電圧Vwから(1)式で求められる。
Figure 2017208892
U相フルブリッジインバータ110と、V相フルブリッジインバータ111と、W相フルブリッジインバータ112は、正極性の電源電圧Vdcか、負極性の電源電圧−Vdcか、0のいずれかの電圧を出力する。
そのため、零相出力電圧V0の振幅は、その組み合わせによって、以下のいずれかとなる。
Figure 2017208892
図3は、本実施形態に係るモータ駆動装置の出力電圧ベクトル図である。
本ベクトル図において、出力電圧ベクトルの成分は、U相、V相、W相の順に示され、その大きさは、出力電圧が正極性の電源電圧Vdcのときは+、負極性の電源電圧−Vdcのときは−、0のときは0と表現されている。零相電圧Vzはz軸成分として扱い、点の形状によりその大きさを表現した。以降、太線で示した六角形の内接円を出力電圧の最大値とした場合を扱う。
図4は、第1の実施例を説明する制御ブロック図である。
電流指令演算部10は、入力されたトルク指令値T*と、角速度ωに基づき、d軸電流指令値id*及びq軸電流指令値iq*を計算する。d軸電流指令値id*及びq軸電流指令値iq*の計算方法としては、最大トルク電流制御や弱め界磁制御などがあるが、周知のため説明を省略する。なお、d軸電流指令値id*及びq軸電流指令値iq*の計算には、予め設定したテーブルを使用してもよい。
dq軸電流制御部20には、d軸電流指令値id*及びq軸電流指令値iq*と、d軸電流検出値id、q軸電流検出値iqが入力され、比例制御や積分制御などを用いてd軸電圧指令値Vd*及びq軸電圧指令値Vq*を出力する。
スイッチング信号生成部30には、d軸電圧指令値Vd*、q軸電圧指令値Vq*と、零相電圧指令値V0*が入力され、スイッチング素子110a〜110dと、スイッチング素子111a〜111dと、スイッチング素子112a〜112dと、をオンもしくはオフするスイッチング信号を生成する。
インバータ100には、スイッチング信号が入力され、前記動作によりモータを運転する。
dq変換部40には、電流センサ220で検出された三相電流iu、iv、iwと、位置センサ210で検出された回転子位置θが入力され、d軸電流検出値id、q軸電流検出値iqを出力する。
零相電流算出部50には、電流センサ220で検出された三相電流iu、iv、iwと、位置センサ210で検出された回転子位置θが入力され、零相電流i0が出力される。前記零相電流i0の計算式を(3)式に示す。
Figure 2017208892
なお、零相電流i0はモータ200の回転速度により変化するため、角速度ωから推定した零相電流値を考慮して算出してもよい。
零相電流制御部60には、零相電流i0が入力され、比例制御や積分制御などを用いて零相電圧指令値V0*が出力する。
速度変換部70には、位置センサ210で検出された回転子位置θが入力され、角速度ωが出力する。
図5はスイッチング信号生成部30のフローチャートを示す図である。
ステップ1において、スイッチング信号生成部30は、零相電圧制御部60から出力される零相電圧指令値V0*の極性を判別し、零相電圧指令値V0*が正の場合はステップ2、零相電圧指令値V0*が負の場合はステップ9の処理を行う。
ステップ2において、零相電圧指令値V0*が正の場合、スイッチング信号生成部30は、P1モードのパルス幅を算出する。
その後、ステップ3において、ステップ2で算出されたP1モードのパルス幅がキャリア周期内かを判別し、P1モードのパルス幅がキャリア周期内の場合は処理を完了し、P1モードのパルス幅がキャリア周期を超える場合はステップ4の処理を行う。
ステップ4において、P1モードのパルス幅がキャリア周期を超えた場合、スイッチング信号生成部30は、P2モードのパルス幅を算出する。
その後、ステップ5において、ステップ4で算出されたP2モードのパルス幅がキャリア周期内かを判別し、P2モードのパルス幅がキャリア周期内の場合は処理を完了し、P2モードのパルス幅がキャリア周期を超える場合はステップ6の処理を行う。
ステップ6において、P2モードのパルス幅がキャリア周期を超えた場合、スイッチング信号生成部30は、P3モードのパルス幅を算出する。
その後、ステップ7において、ステップ6で算出されたP3モードのパルス幅がキャリア周期内かを判別し、P3モードのパルス幅がキャリア周期内の場合は処理を完了し、P3モードのパルス幅がキャリア周期を超える場合はステップ8の処理を行う。
ステップ8において、P3モードのパルス幅がキャリア周期を超えた場合、スイッチング信号生成部30は、P4モードのパルス幅を算出する。
ステップ9において、零相電圧指令値V0*が負の場合、スイッチング信号生成部30は、N1モードのパルス幅を算出する。その後、ステップ10において、ステップ9で算出されたN1モードのパルス幅がキャリア周期内かを判別し、N1モードのパルス幅がキャリア周期内の場合は処理を完了し、N1モードのパルス幅がキャリア周期を超える場合はステップ11の処理を行う。
ステップ11において、N1モードのパルス幅がキャリア周期を超えた場合、スイッチング信号生成部30は、N2モードのパルス幅を算出する。
その後、ステップ12において、ステップ11で算出されたN2モードのパルス幅がキャリア周期内かを判別し、N2モードのパルス幅がキャリア周期内の場合は処理を完了し、N2モードのパルス幅がキャリア周期を超える場合はステップ13の処理を行う。
ステップ13において、N2モードのパルス幅がキャリア周期を超えた場合、スイッチング信号生成部30は、N3モードのパルス幅を算出する。
その後、ステップ14において、ステップ13で算出されたN3モードのパルス幅がキャリア周期内かを判別し、N3モードのパルス幅がキャリア周期内の場合は処理を完了し、N3モードのパルス幅がキャリア周期を超える場合はステップ15の処理を行う。
ステップ15において、N3モードのパルス幅がキャリア周期を超えた場合、スイッチング信号生成部30は、N4モードのパルス幅を算出する。
図6は、図5のフローチャートにおけるステップ2の処理を示す図であり、図3のベクトル図において太点線で示した六角形部分を示している。
以下、本領域においてP1モードのパルス幅を算出する方法を述べる。なお、他の領域においては図6のベクトル図を60°回転させ、極性を反転させることによって算出することができる。
図6において、V1を出力する期間をt1、V2を出力する期間をt2、V3を出力する期間をt3、とすると、t1とt2とt3は、dq軸電圧指令値Vd*、Vq*と、零相電圧指令値V0*から(4)式で求められる。
Figure 2017208892
なお、VaとVbは、dq軸電圧指令値Vd*、Vq*を図6の固定座標に変換した電圧指令値である。
図7は、図5のフローチャートにおけるステップ4の処理を示す図であり、図3のベクトル図において太点線で示した六角形部分を示している。
以下、本領域においてP2モードのパルス幅を算出する方法を述べる。なお、他の領域においては図7のベクトル図を60°回転させ、極性を反転させることによって算出することができる。
図7において、V1を出力する期間をt1、V2を出力する期間をt2、V4を出力する期間をt4、とすると、t1とt2とt4は、dq軸電圧指令値Vd*、Vq*と、零相電圧指令値V0*から(5)式で求められる。
Figure 2017208892
なお、VaとVbは、dq軸電圧指令値Vd*、Vq*を図7の固定座標に変換した電圧指令値である。
図8は、図5のフローチャートにおけるステップ6およびステップ8の処理を示す図であり、図3のベクトル図において太点線で示した六角形部分を示している。
以下、本領域においてP3モードとP4モードのパルス幅を算出する方法を述べる。なお、他の領域においては図8のベクトル図を60°回転させ、極性を反転させることによって算出することができる。
図8において、V1を出力する期間をt1、V2を出力する期間をt2、V5を出力する期間をt5、とすると、ステップ6においてt1とt2とt5は、dq軸電圧指令値Vd*、Vq*と、零相電圧指令値V0*から(6)式で求められる。
Figure 2017208892
なお、VaとVbは、dq軸電圧指令値Vd*、Vq*を図8の固定座標に変換した電圧指令値である。
また、ステップ8においてt1とt2とt5は、dq軸電圧指令値Vd*、Vq*と、零相電圧指令値V0*から(7)式で求められる。
Figure 2017208892
なお、VaとVbは、dq軸電圧指令値Vd*、Vq*を図8の固定座標に変換した電圧指令値である。
図9は、図5のフローチャートにおけるステップ9の処理を示す図であり、図3のベクトル図において太点線で示した六角形部分を示している。
以下、本領域においてN1モードのパルス幅を算出する方法を述べる。なお、他の領域においては図9のベクトル図を60°回転させ、極性を反転させることによって算出することができる。
図9において、V1を出力する期間をt1、V2を出力する期間をt2、V6を出力する期間をt6、とすると、t1とt2とt6は、dq軸電圧指令値Vd*、Vq*と、零相電圧指令値V0*から(8)式で求められる。
Figure 2017208892
なお、VaとVbは、dq軸電圧指令値Vd*、Vq*を図9の固定座標に変換した電圧指令値である。
図10は、図5のフローチャートにおけるステップ11の処理を示す図であり、図3のベクトル図において太点線で示した六角形部分を示している。
以下、本領域においてN2モードのパルス幅を算出する方法を述べる。なお、他の領域においては図10のベクトル図を60°回転させ、極性を反転させることによって算出することができる。
図10において、V1を出力する期間をt1、V2を出力する期間をt2、V7を出力する期間をt7、とすると、t1とt2とt7は、dq軸電圧指令値Vd*、Vq*と、零相電圧指令値V0*から(9)式で求められる。
Figure 2017208892
なお、VaとVbは、dq軸電圧指令値Vd*、Vq*を図10の固定座標に変換した電圧指令値である。
図11は、図5のフローチャートにおけるステップ13およびステップ15の処理を示す図であり、図3のベクトル図において太点線で示した六角形部分を示している。
以下、本領域においてN3モードとN4モードのパルス幅を算出する方法を述べる。なお、他の領域においては図11のベクトル図を60°回転させ、極性を反転させることによって算出することができる。
図11において、V1を出力する期間をt1、V2を出力する期間をt2、V8を出力する期間をt8、とすると、ステップ13においてt1とt2とt8は、dq軸電圧指令値Vd*、Vq*と、零相電圧指令値V0*から(10)式で求められる。
Figure 2017208892
なお、VaとVbは、dq軸電圧指令値Vd*、Vq*を図11の固定座標に変換した電圧指令値である。
また、ステップ15においてt1とt2とt8は、dq軸電圧指令値Vd*、Vq*と、零相電圧指令値V0*から(11)式で求められる。
Figure 2017208892
なお、VaとVbは、dq軸電圧指令値Vd*、Vq*を図11の固定座標に変換した電圧指令値である。
以上の通り、本実施形態においては、零相電圧の振幅とパルス幅を制御することで、各相のインバータが出力する電圧のパルス幅がキャリア周期を超えない範囲で振幅の小さい零相電圧を出力し、スッチング回数の低減によりスイッチング損失が低減される、という効果が得られる。
1…インバータ制御装置、10…電流指令演算部、20…dq軸電流制御部、30…三相変換部、40…スイッチング信号生成部、50…dq変換部、60…零相電流算出部、70…零相電流制御部、80…速度変換部、100…インバータ、110…U相フルブリッジインバータ、110a…スイッチング素子、110b…スイッチング素子、110c…スイッチング素子、110d…スイッチング素子、111…V相フルブリッジインバータ、111a…スイッチング素子、111b…スイッチング素子、111c…スイッチング素子、111d…スイッチング素子、112…W相フルブリッジインバータ、112a…スイッチング素子、112b…スイッチング素子、112c…スイッチング素子、112d…スイッチング素子、200…モータ、201…U相巻線、202…V相巻線、203…W相巻線、210…位置センサ、220…電流センサ、iu…U相電流、iv…V相電流、iw…W相電流、id*…d軸電流指令値、iq*…q軸電流指令値、i…d軸電流検出値、i…q軸電流検出値、i0…零相電流、T*…トルク指令値、Vdc…直流電源電圧、Vu…U相出力電圧、Vv…V相出力電圧、Vw…W相出力電圧、V0…零相出力電圧、Vd*…d軸電圧指令値、Vq*…q軸電圧指令値、V0*…零相電圧指令値、ω…角速度、θ…回転子位置

Claims (4)

  1. 各相の巻線が独立して結線された電動機を制御するとともに、入力されたトルク指令に基づき電動機へ印加する電圧を制御するためのPWM制御信号を出力する電動機の制御装置において、
    前記電動機の交流電流から求められる零相電流を低減するための零相電圧指令に基づき、 出力電圧の総和からなる零相電圧のパルス幅及び振幅を制御する電動機の制御装置。
  2. 請求項1に記載の電動機の制御装置であって、
    零相電圧の振幅が小さくなるように零相電圧のパルス幅及び振幅を制御する制御装置。
  3. 請求項1に記載の電動機の制御装置であって、
    零相電圧出力時のスイッチング回数を低減する所定のパルス幅と振幅の零相電圧を出力する制御装置。
  4. 請求項1乃至3のいずれかに記載の電動機の制御装置を備えた電動車両。
JP2016098366A 2016-05-17 2016-05-17 電動機の制御装置及びそれを備えた電動車両 Active JP6681266B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016098366A JP6681266B2 (ja) 2016-05-17 2016-05-17 電動機の制御装置及びそれを備えた電動車両
PCT/JP2017/014758 WO2017199641A1 (ja) 2016-05-17 2017-04-11 電動機の制御装置及びそれを備えた電動車両

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016098366A JP6681266B2 (ja) 2016-05-17 2016-05-17 電動機の制御装置及びそれを備えた電動車両

Publications (2)

Publication Number Publication Date
JP2017208892A true JP2017208892A (ja) 2017-11-24
JP6681266B2 JP6681266B2 (ja) 2020-04-15

Family

ID=60325214

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016098366A Active JP6681266B2 (ja) 2016-05-17 2016-05-17 電動機の制御装置及びそれを備えた電動車両

Country Status (2)

Country Link
JP (1) JP6681266B2 (ja)
WO (1) WO2017199641A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7414923B2 (ja) 2018-08-20 2024-01-16 株式会社東芝 オープン巻線モータ駆動装置及び冷凍サイクル装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5169396B2 (ja) * 2008-04-07 2013-03-27 富士電機株式会社 電力変換装置の制御回路
CN101702854A (zh) * 2009-11-21 2010-05-05 英飞特电子(杭州)有限公司 一种适用于多路led恒流驱动的电路
CN102064558B (zh) * 2010-11-30 2012-09-26 张家港市沙洲特种变压器制造有限公司 三相电磁平衡节电器
JP6194113B2 (ja) * 2014-06-26 2017-09-06 日立オートモティブシステムズ株式会社 モータ駆動装置
KR101522272B1 (ko) * 2014-06-30 2015-05-21 엘에스산전 주식회사 회로 차단기의 중성 극 변류기 모듈 및 중성 극 전류 검출 장치

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7414923B2 (ja) 2018-08-20 2024-01-16 株式会社東芝 オープン巻線モータ駆動装置及び冷凍サイクル装置

Also Published As

Publication number Publication date
JP6681266B2 (ja) 2020-04-15
WO2017199641A1 (ja) 2017-11-23

Similar Documents

Publication Publication Date Title
US8232753B2 (en) Control device for electric motor drive apparatus
US8278865B2 (en) Control device
EP2642658A2 (en) Controller for electric motor
JP6390489B2 (ja) インバータの制御装置
US9935568B2 (en) Control apparatus of rotary electric machine
WO2016006386A1 (ja) 車両用回転電機の制御装置、及び制御方法
CN107615642B (zh) 逆变器控制装置
JP5511700B2 (ja) インバータ装置、ファン駆動装置、圧縮機駆動装置および空気調和機
JP6173516B1 (ja) 電動機制御装置および電動機制御方法
CN108352801B (zh) 电动机的控制装置及使用其的电动汽车
US11736049B2 (en) Motor controller
WO2017199641A1 (ja) 電動機の制御装置及びそれを備えた電動車両
JP6203318B1 (ja) 電動機制御装置および電動機制御方法
US11909342B2 (en) Rotating electrical machine control device
US11095243B2 (en) Motor control system and electric vehicle
JP2018157651A (ja) インバータ制御装置及びインバータ制御方法
JP6305603B1 (ja) 回転電機の制御装置
JP5879821B2 (ja) モータ制御装置及びモータ制御方法
JP2023064580A (ja) モータ制御装置及び電力変換装置
CN116114165A (zh) 功率转换装置及电动助力转向装置
JP2012005262A (ja) 負荷制御装置

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160518

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170120

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170126

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191015

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20191216

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191218

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200225

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200323

R150 Certificate of patent or registration of utility model

Ref document number: 6681266

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250