WO2010095809A2 - 엘이디 칩 테스트장치 - Google Patents

엘이디 칩 테스트장치 Download PDF

Info

Publication number
WO2010095809A2
WO2010095809A2 PCT/KR2009/007809 KR2009007809W WO2010095809A2 WO 2010095809 A2 WO2010095809 A2 WO 2010095809A2 KR 2009007809 W KR2009007809 W KR 2009007809W WO 2010095809 A2 WO2010095809 A2 WO 2010095809A2
Authority
WO
WIPO (PCT)
Prior art keywords
contact
led chip
unit
seating
test
Prior art date
Application number
PCT/KR2009/007809
Other languages
English (en)
French (fr)
Other versions
WO2010095809A3 (ko
Inventor
유병소
Original Assignee
(주)큐엠씨
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020090023030A external-priority patent/KR100931322B1/ko
Priority claimed from KR1020090058292A external-priority patent/KR100935706B1/ko
Priority claimed from KR1020090114028A external-priority patent/KR20110057568A/ko
Application filed by (주)큐엠씨 filed Critical (주)큐엠씨
Priority to CN2009801571661A priority Critical patent/CN102326090B/zh
Priority to US13/148,980 priority patent/US8952717B2/en
Priority to JP2011550997A priority patent/JP5327489B2/ja
Publication of WO2010095809A2 publication Critical patent/WO2010095809A2/ko
Publication of WO2010095809A3 publication Critical patent/WO2010095809A3/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/26Testing of individual semiconductor devices
    • G01R31/2607Circuits therefor
    • G01R31/2632Circuits therefor for testing diodes
    • G01R31/2635Testing light-emitting diodes, laser diodes or photodiodes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/2851Testing of integrated circuits [IC]
    • G01R31/2886Features relating to contacting the IC under test, e.g. probe heads; chucks
    • G01R31/2887Features relating to contacting the IC under test, e.g. probe heads; chucks involving moving the probe head or the IC under test; docking stations
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/2851Testing of integrated circuits [IC]
    • G01R31/2893Handling, conveying or loading, e.g. belts, boats, vacuum fingers

Definitions

  • the present invention relates to an LED chip test apparatus for testing the LED chip to confirm the performance of the LED chip.
  • LED Light Emitting Diode
  • Luminescent diode a kind of light emitting device using a semiconductor that converts electricity into light, also known as a Luminescent diode.
  • LEDs are smaller than conventional light sources, have a long life, low power consumption, and high-speed response. They are used to display lamps for various electronic devices such as display devices for automobile instrumentation, optical communication light sources, card readers for digital display devices, calculators, and backlights. It is widely used in various fields.
  • the LED is manufactured through an epi process (EPI), a chip process (Fabrication), and a package process (Package), etc., and is subjected to a test process in a packaged state through the package process.
  • EPI epi process
  • Fabrication chip process
  • Package package process
  • the LEDs which are not normally operated hereinafter referred to as 'defective products'
  • 'goods' the LEDs which are normally operated
  • the LED may be classified as a low grade even if it is excluded or defective in the test process due to a problem occurring during the package process, but before the package process (hereinafter referred to as 'LED chip') Due to a problem that occurs during the manufacturing process, it may be excluded as a defective product in the test process or even classified as a low grade product.
  • the LED does not cause a problem that may affect the performance of the LED in the package process, the LED is excluded as a defective product or classified as a low grade in the test process due to a problem occurring in the process of manufacturing the LED chip. It can be.
  • the LEDs excluded from the test process due to problems caused by the manufacturing process of the LED chips are those that have gone through an unnecessary packaging process and a test process, and these materials cause loss of material cost and process cost. There is a problem.
  • LEDs classified as low grade in the test process are often found in the packaging process as a reason for being classified as low grade, and therefore, time and cost to find an accurate analysis result. There is a problem that causes loss.
  • an object of the present invention is to provide an LED chip test apparatus that can accurately measure the performance of the LED chip.
  • the present invention may include the following configuration.
  • the present invention the LED chip test apparatus for measuring the characteristics of the LED chip, the support for the LED chip, the rotating member for rotating the LED chip to a test position for measuring the characteristics of the LED chip; And a test unit installed next to the rotating member and measuring characteristics of the LED chip at the test position.
  • the rotating member may include a plurality of support frames extending in a radial direction about the rotation shaft, and a plurality of seating members respectively installed at end portions of the plurality of support frames and for seating the LED chip. .
  • all or part of the seating member may be made of a material including any one of sapphire, quartz, glass, iron alloy, copper alloy, aluminum alloy, stainless steel, cemented carbide, PTFE gold, platinum, silver.
  • all or part of the seating member may be a mirror coating, gold plating, platinum plating, or silver plating.
  • the seating member may include a seating body coupled to the rotating member, and a contact member in contact with the LED chip.
  • the contact member is formed of sapphire, the surface facing the seating body in the contact member may be a mirror coating.
  • the test unit may include a contact unit that emits the LED chip in contact with the LED chip at the test position, and a measurement unit that measures the optical characteristics of the LED chip at the test position.
  • the present invention may further include a transmission member installed in the contact unit and transmitting the light emitted from the LED chip to the test unit.
  • the transmission member may include a transmission surface for transmitting the light emitted from the LED chip to the measuring unit, the transmission surface may be formed with a through hole through which the light emitted by the LED chip passes.
  • the through hole may be formed to gradually decrease in size toward the LED chip positioned in the test position in the measuring unit.
  • all or part of the transfer surface may be mirror coated.
  • the contact unit may include a detachable contact pin contacting the LED chip.
  • the contact unit may be a probe card.
  • the measuring unit may be an integrating sphere including a light receiving hole for entering the light emitted from the LED chip in the test position therein.
  • the test may further include a contact movement unit for moving the contact unit.
  • the contact moving unit may include a contact rotating mechanism for rotating the contact unit.
  • test unit may further include a measurement lifting unit for raising and lowering the measurement unit.
  • FIG. 1 is a schematic perspective view of an LED chip test apparatus according to the present invention.
  • FIG. 2 is a schematic perspective view of the supply unit.
  • FIG. 3 is a sectional view taken along the line A-A of FIG.
  • FIG. 4 is a schematic perspective view of a seating member according to a modified embodiment of the present invention.
  • FIG. 5 is a cross-sectional view taken along line B-B in FIG. 4.
  • FIG. 6 is a schematic cross-sectional view of a seating member according to another modified embodiment of the present invention.
  • FIG. 7 is a schematic front view of the LED chip test apparatus according to the present invention.
  • FIG. 8 is a schematic perspective perspective view of the contact unit, the mobile unit, and the first transfer member.
  • FIG. 9 is an exploded perspective view of FIG. 8.
  • FIG. 10 is a cross-sectional view taken along the line D-D of FIG. 8.
  • 11 and 12 are enlarged views of part C of FIG. 7 showing a state in which the LED chip is tested in the LED chip test apparatus according to the present invention.
  • FIG. 13 is a schematic front view of an LED chip test apparatus according to a modified embodiment of the present invention.
  • 14 to 17 is a schematic operation state diagram showing a process in which the LED chip is tested.
  • FIG. 18 is a schematic perspective view of a contact moving unit according to a modified embodiment of the present invention.
  • FIG. 19 is an exploded perspective view of FIG. 18.
  • 20 to 22 is a schematic operation state diagram showing the process of the LED chip is tested using a contact mobile unit according to a modified embodiment of the present invention.
  • FIG. 23 is a schematic exploded perspective view of the contact unit, the mobile unit, the first transfer member, and the second transfer member.
  • FIG. 24 is a side cross-sectional view of FIG. 23.
  • 25 to 27 are enlarged views of portion C of FIG. 7 showing a second transfer member according to a modified embodiment of the present invention.
  • FIG. 28 is a schematic perspective view showing a measuring unit, a contact unit, and a main body according to a modified embodiment of the present invention.
  • 29 and 30 are schematic perspective views of a contact unit according to a modified embodiment of the present invention.
  • FIG. 31 is a schematic perspective view of an LED chip test apparatus including a contact unit according to a modified embodiment of the present invention.
  • FIG. 32 is a schematic front view of an LED chip test apparatus according to a modified embodiment of the present invention.
  • FIG. 33 is a schematic enlarged view of a test position of FIG. 32.
  • the LED chip test apparatus 1 includes a supply unit 2 and a test unit 3.
  • the test unit 3 may include a measuring unit 31, a contact unit 32, a first transfer member 33 (shown in FIG. 8), a contact moving unit 34, and a main body 35. .
  • the supply unit 2 supplies the LED chip to be tested to the test position TP where the measurement unit 31 can measure the optical characteristics of the LED chip.
  • the supply part 2 may include a seating member 21, a rotating member 22, and a rotating unit 23.
  • an LED chip is mounted on the seating member 21.
  • the LED chip may be adsorbed in a state of being seated on the seating member 21 by the intake device (F, shown in Figure 11).
  • the intake apparatus F (shown in FIG. 11) may be installed in the rotating member 22.
  • the intake apparatus F (shown in FIG. 11) may adsorb the LED chip seated on the seating member 21 through the through hole 21a formed in the seating member 21.
  • the seating member 21 may be formed in a cylindrical shape as a whole.
  • a plurality of seating members 21 may be installed on the rotating member 22. As the rotating unit 23 rotates the rotating member 22, the seating members 21 may be sequentially positioned at the test position TP. When the seating member 21 is positioned at the test position TP, the seating member 21 may be positioned below the measuring unit 31.
  • the mounting member 21 serves to absorb and fix the LED chip. Since a plurality of LED chips are continuously attached to the seating member 21, the seating member 21 is preferably formed of a material having excellent wear resistance and hardness, or coated with such a material. In addition, when the light emitted from the LED chip is transmitted or reflected to the seating member 21 side, the light is transmitted to the measuring unit 31 side so that the light loss does not occur, the seating member 21 is made of a material having a high reflectance It is preferred to be formed or coated with such a material.
  • the mounting member 21 is preferably formed of a material having a high reflectance at the measurement wavelength band and a wavelength band adjacent thereto, that is, 200 nm to 1000 nm, or coated with such a material.
  • the seating member 21 is preferably formed of a material having high reflectance in the measurement wavelength band and the wavelength band adjacent thereto.
  • the reflectance of the member 21 is constantly high in the measurement wavelength band and the wavelength band adjacent thereto.
  • the LED chip when the LED chip is a horizontal chip, an electrode is formed only on the upper surface of the LED chip during packaging, whereas in the case of the vertical chip, one electrode is formed on the upper surface of the LED chip, and one electrode is different from the lower part of the LED chip.
  • the vertical chip should be energized through the lower part of the LED chip. Therefore, in the case of the vertical chip, the mounting member 21 in contact with the lower portion of the LED chip should be formed of a material having excellent conductivity so as to lower the electrical resistance when the LED chip emits light.
  • all or part of the mounting member 21 may be sapphire, quartz, glass, iron alloy, copper. Alloy, aluminum alloy, stainless steel, cemented carbide, PTFE (polytetrafluoroethylene), gold, platinum, or any one of the materials including silver, or all or part of the mounting member 21 is a mirror (mirror) coating, gold plating, platinum plating, or silver plating is preferable.
  • the seating member 21 may include a contact member 211 and a first seating body 212.
  • the contact member 211 may be coupled to one surface 212a of the first seating body 212 and may be in contact with an LED chip.
  • the contact member 211 may be formed of a material having excellent conductivity, and for example, may be formed of gold, platinum, or silver. In particular, the contact member 211 may be formed by coating the first seating body 212 with gold, platinum, or silver. The contact member 211 may lower the electrical resistance of the LED chip when the LED chip is emitted by the contact unit 32. Accordingly, the LED chip test apparatus 1 can accurately measure the optical characteristics and the electrical characteristics of the LED chip.
  • the first seating body 212 is coupled to the rotating member 22.
  • the contact member 211 is coupled to one surface 212a of the first seating body 212.
  • the first seating body 212 may be formed in a cylindrical shape as a whole.
  • the contact member 211 when the contact member 211 is a material having excellent conductivity, reflectivity, or the like, the contact member 211 may have a relatively low hardness. In this case, when the LED chip is repeatedly placed on the seating member 21, the contact member 211 may be easily worn.
  • the first seating body 212 has a plurality of protrusions protruding from the LED chip positioned at the test position TP toward the measurement unit 31 (G arrow direction). 2121).
  • the protrusions 2121 may be formed on one surface 212a of the first seating body 212. Due to the protrusions 2121, one surface 212a of the first seating body 212 is in a direction (H arrow direction) toward the LED chip positioned at the test position TP in the measurement unit 31.
  • a plurality of grooves 2122 recessed to a predetermined depth may be formed.
  • the contact member 211 may be coupled to the first seating body 212 to be inserted between the protrusions 2121. That is, the contact member 211 may be formed on one surface 212a of the first seating body 212 to be inserted into the grooves 2122. Accordingly, even when the LED chip is repeatedly placed on the seating member 21, the contact member 211 inserted into the grooves 2122 remains, so that the seating member 21 is used for a long time. The performance of the LED chip can be accurately measured.
  • Each of the protrusions 2121 may be formed in a rectangular parallelepiped shape.
  • the protrusions 2121 may be formed in other forms, such as hemispherical shape, in addition to a rectangular parallelepiped shape, if the contact member 211 may be inserted therebetween.
  • the protrusions 2121 may be formed by processing the grooves 2122 on one surface 212a of the first seating body 212. Some of the grooves 2122 may be elongated in a first direction, and others of the grooves 2122 may be elongated in a second direction perpendicular to the second direction. The protrusions 2121 may be formed in a lattice shape on one surface 212a of the seating body 212. The first direction and the second direction may be angles other than vertical, and the grooves 2122 may be formed in three or more different directions.
  • the seating member 21 may include a contact member 211 and a first seating body 212 as follows.
  • the contact member 211 may be coupled to one surface 212a of the first seating body 212 and may be in contact with an LED chip.
  • the contact member 211 may be formed of a material having excellent hardness, and for example, may be formed of sapphire, quartz, glass, iron alloy, copper alloy, aluminum alloy, stainless steel, cemented carbide, and PTFE. Thus, even if the LED chip is repeatedly placed on the seating member 21, the contact member 211 can be prevented from being easily worn.
  • a coupling groove 2123 into which the contact member 211 is inserted may be formed at one surface 212a of the first seating body 212.
  • the coupling groove 2123 may be formed by recessing a predetermined depth in the direction (H arrow direction) toward the LED chip positioned at the test position TP in the measurement unit 31.
  • the coupling groove 2123 may be formed in a disk shape as a whole.
  • the coupling groove 2123 may be formed in a shape substantially coincident with the contact member 211 so that the contact member 211 may be inserted therein, and may be formed in another shape such as a square plate shape in addition to the disc shape.
  • the coupling groove 2123 may have a size substantially coincident with the contact member 211.
  • the contact member 211 may be coupled to the first seating body 212 by a fitting method through the coupling groove 2123.
  • the contact member 211 may be coupled to the first seating body 212 by being adhered by an adhesive material or the like.
  • the contact member 211 when the contact member 211 is formed of a material having excellent hardness, the material may have a relatively low reflectance.
  • the contact member 211 when the contact member 211 is formed of sapphire, quartz, glass, iron alloy, copper alloy, aluminum alloy, stainless steel, cemented carbide, or PTFE, the incident light into the measuring unit 31 in the light emitted from the LED chip Light may not be generated.
  • the seating member 21 may further include a reflective member 213.
  • the reflective member 213 may be inserted into the coupling groove 2123 to be positioned between the contact member 211 and the first seating body 212.
  • the reflecting member 213 reflects the light emitted by the LED chip so that the light emitted by the LED chip is transmitted toward the measuring unit 31.
  • Light emitted from the LED chip may be reflected by the reflective member 213 and transmitted to the measurement unit 31.
  • the reflective member 213 may be formed of a material having high reflectance, and for example, may be formed by mirror coating a metal or a resin material. Accordingly, since a larger amount of light may be incident on the measuring unit 31, the LED chip testing apparatus 1 may more accurately measure the performance of the LED chip.
  • the reflective member 213 may be formed by mirror coating one surface 211a into which the contact member 211 is inserted into the coupling groove 2123.
  • the contact member 211 may be formed of sapphire, and the light emitted from the LED chip by mirror coating one surface 211a into which the contact member 211 is inserted into the coupling groove 2123. This can be delivered to the measuring unit 31. In this case, even though the contact member 211 formed of sapphire is reduced in reflectance due to surface damage due to repeated use, the back side of the sapphire is mirror-coated so that a constant high level of reflectance can be maintained over time.
  • the through hole 21a formed in the seating member 21 may pass through the contact member 211, the first seating body 212, and the reflective member 213.
  • the intake apparatus F (shown in FIG. 11) may adsorb the LED chip seated on the seating member 21 through the through hole 21a.
  • the seating member 21 may further include a second seating body 214.
  • the second seating body 214 may include a through hole through which a portion of the LED chip is seated in the first seating body 212, and the LED chip may be formed in the first seating body 212 through the through hole.
  • the seated portion may be coupled to the first seating body 212 in a penetrating state.
  • the upper surface of the second seating body 214 and the upper surface of the first seating body 212 may be formed at different heights. As shown in FIG. 6, the first seating body 212 may be formed to protrude upward based on an upper surface of the second seating body 214. Although not shown, the second seating body 214 may be formed to protrude upward based on the top surface of the first seating body 212.
  • the second seating body 214 may be formed in a cylindrical shape as a whole.
  • An inclined surface 2141 is formed on the second seating body 214 to transmit the light emitted from the LED chip to the measuring unit 31.
  • the measuring unit 31 may be located above the LED chip positioned at the test position TP.
  • the inclined surface 2141 may be formed by an inclined groove 2142 which is formed by recessing a predetermined depth in the upper surface of the second seating body 214.
  • the inclined groove 2142 may be formed to gradually decrease in size from the upper surface of the second seating body 214 (in the direction of the H arrow). Accordingly, the inclined surface 2141 may be formed to be inclined in the outward direction (E arrow direction).
  • the second seating body 214 may be formed in a cylindrical shape as a whole, and the inclined groove 2142 may be formed to gradually decrease in diameter from the upper surface of the second seating body 214.
  • the inclined surface 2141 allows a greater amount of light to be incident on the measuring unit 31, the LED chip testing apparatus 1 according to the present invention can accurately measure the performance of the LED chip.
  • the inclined surface 2141 may be formed of a material having high reflectance or coated with such a material.
  • the inclined surface 2141 may be a surface of a metal or an alloy thereof, or may be a mirror coating of a metal or a resin material.
  • the rotating member 22 is installed next to the main body 35.
  • a plurality of seating members 21 may be installed on the rotating member 22.
  • the rotating member 22 may be rotated by the rotating unit 23.
  • the seating members 21 may be sequentially positioned at the test position TP, and the LED chips to be tested seated on the seating members 21 may be tested. May be sequentially located at the position TP.
  • the seating member 21 may be spaced apart from the rotating member 22 at the same angle with respect to the rotating shaft 22a, and a plurality of mounting members 21 may be installed. Accordingly, the rotating unit 23 may rotate and stop the rotating member 22 at the same angle, thereby sequentially placing the seating members 21 at the test position TP.
  • the seating member 21 may be spaced apart from each other by 45 ° with respect to the rotation shaft 22a and may be installed at the rotation member 22.
  • the mounting unit 21 may be sequentially positioned at the test position TP by stopping the rotating unit 23 after rotating the rotating member 22 by 45 °. Twelve seats may be installed on the rotation member 22 by spaced apart by 30 ° from the rotation shaft 22a.
  • the mounting unit 21 may be sequentially positioned at the test position TP by stopping the rotating unit 23 after rotating the rotating member 22 by 30 °.
  • the number of seating members 21 installed on the rotating member 22 is defined as N pieces (N is an integer greater than 1)
  • the seating member 21 is rotated on the rotating member 22.
  • N pieces may be installed spaced apart by (360 / N) ° with respect to 22a.
  • the seating members 21 may be sequentially positioned at the test position TP.
  • the seating member 21 is preferably installed in even numbers on the rotating member (22).
  • any one of the seating members 21 When any one of the seating members 21 is located at the test position TP, any one of the remaining seating members 21 may be located at a loading position LP at which the LED chip to be tested is loaded. One of the remaining mounting members 21 may be located at an unloading position ULP where the tested LED chip is unloaded.
  • the LED chip may be seated on the seating member 21 positioned at the loading position LP, moved to the test position TP and tested, and then moved to the unloading position ULP to be unloaded. That is, the supply unit 2 may supply the LED chip to be tested to the test position TP, and supply the tested LED chip to the unloading position TLP.
  • the process of loading the LED chip to be tested on the seating member 21 located at the loading position LP and the process of unloading the LED chip tested at the seating member 21 positioned at the unloading position ULP may be made by a transfer means for transferring the LED chip.
  • the seating members 21 may be installed on the rotating member 22 so that at least one of the seating members 21 may be simultaneously positioned at the test position TP, the loading position LP, and the unloading position ULP.
  • the rotating member 22 may include a support frame 221 on which the seating members 21 are installed.
  • the rotating member 22 may include the same number of support frames 221 as the seating member 21.
  • the rotating member 22 may include eight supporting frames 221.
  • the support frames 221 may be spaced apart from each other by 45 ° with respect to the rotation axis 22a.
  • the support frame 221 is outwardly from the rotating shaft 22a so that the seating member 21 can be located at the test position TP, the loading position LP, and the unloading position ULP. It may be formed long.
  • the seating member 21 may be installed on an upper surface of the support frame 221, and the intake apparatus F (shown in FIG. 11) may be installed on a bottom surface of the support frame 221.
  • the through hole 22b and FIG. 11 communicating with the through hole 21a (shown in FIG. 11) formed in the seating member 21. Shown) can be formed.
  • the through holes 21a and 22b (shown in FIG. 11) may be formed in a cylindrical shape as a whole.
  • the rotation unit 23 rotates the rotation member 22 such that the seating members 21 are sequentially positioned at the test position TP.
  • the rotating unit 23 may be coupled to the bottom surface of the rotating member 22, and may rotate the rotating member 22 about the rotating shaft 22a.
  • the rotating unit 23 may include a motor 231.
  • the motor 231 may be directly coupled to the rotary shaft 22a to rotate the rotary member 22, and coupled to a shaft (not shown) coupled to the rotary shaft 22a to thereby rotate the rotary member 22. It can also be rotated.
  • the rotation unit 23 further includes a pulley and a belt connecting the motor 231 and the shaft (not shown). can do.
  • the test unit 3 may be installed next to the rotating member 21 and test an LED chip positioned at the test position TP.
  • the test unit 3 includes the measuring unit 31, the contact unit 32, the first transfer member 33 (shown in FIG. 8), the contact moving unit 34, and the main body 35. It may include.
  • the measuring unit 31 includes a light receiving hole 311 (shown in FIG. 11) to which light emitted from the LED chip is incident.
  • the measuring unit 31 is connected to a tester (not shown) capable of analyzing a test result for the LED chip, and through the light receiving hole 311 (shown in FIG. 11) in connection with the tester (not shown).
  • the optical characteristics of the LED chip can be measured from the incident light.
  • the optical properties may be luminance, wavelength, luminous flux, luminous intensity, illuminance, spectral distribution, color temperature, and the like.
  • An integrating sphere may be used as the measuring unit 31.
  • the measuring unit 31 may be coupled to the main body 35 such that the light receiving hole 311 (shown in FIG. 11) is positioned on the LED chip. At least one of a spectrometer or a photodetector may be installed in the measuring unit 31.
  • the measuring unit 31 may be formed in a spherical shape as a whole, and may include a light receiving hole 311 (shown in FIG. 11) formed in a circular shape as a whole.
  • the contact unit 32 may be connected to a tester (not shown), and in conjunction with the tester (not shown) may emit an LED chip. Accordingly, the measuring unit 31 can measure the optical characteristics of the LED chip. The contact unit 32 may test the electrical characteristics of the LED chip in conjunction with a tester (not shown).
  • the contact unit 32 may include a contact pin 321 contacting the LED chip and a contact body 322 coupled to the contact movement unit 34.
  • the contact unit 32 may be raised and lowered by the contact movement unit 34 and may be moved in the horizontal direction.
  • the contact unit 32 may emit an LED chip in contact with the contact pin 321 in association with a tester (not shown).
  • the contact unit 32 may include a plurality of contact pins 321.
  • a probe card may be used as the contact unit 32.
  • the contact body 322 may include a terminal 3221 electrically connected to the contact pin 321.
  • the contact pin 321 is coupled to the contact body 322 in contact with the terminal 3221.
  • the contact pin 321 may be electrically connected to a tester (not shown) through the terminal 3221.
  • the contact body 322 may include a plurality of terminals 3221, and the contact pins 321 may be connected to each of the terminals 3221.
  • the contact body 322 may be coupled to the contact movement unit 34 to be positioned between the measurement unit 31 and the LED chip in contact with the contact pin 321.
  • the measurement unit 31 may be positioned on the contact body 322, and an LED chip positioned at the test position TP may be positioned below the contact body 322.
  • the contact body 322 may include an insertion hole 3222 through which the contact pin 321 may pass.
  • the contact pin 321 is connected to a terminal 3221 formed at one side of the upper surface of the contact body 322, and the other side is positioned below the contact body 322 through the insertion hole 3322.
  • Light emitted by the LED chip may be incident into the measuring unit 31 through the insertion hole 3222 and the light receiving hole 311 (shown in FIG. 11).
  • the contact body 322 may be formed in a rectangular plate shape as a whole, it may include an insertion hole 3322 formed in a circular shape as a whole.
  • the contact unit 32 may include a connection unit 323. At least one connection terminal 3223 is formed at one side of the contact body 322, and may be electrically connected to the connection unit 323 through the connection terminal 3223.
  • the connection unit 323 may be connected to a tester (not shown), and the contact pin 321 may be electrically connected to a tester (not shown) through the contact body 322 and the connection unit 323. .
  • the connection unit 323 may include a connection groove 3231 into which the contact body 322 is inserted.
  • the contact body 322 may include at least one or more connection terminals 3223 on one side of the contact body 3321.
  • the connection unit 323 may be detachably coupled to the contact movement unit 34, the contact body 322 is inserted into the connection unit 323 is the measurement unit 31 and the test position ( TP) may be located between the LED chip located in.
  • the first transfer member 33 is installed to be located between the contact unit 32 and the LED chip positioned at the test position TP. Accordingly, since the LED chip test apparatus 1 may block a portion between the measurement unit 31 and the LED chip with the first transfer member 33, the light emitted by the LED chip compared to the test apparatus according to the prior art. The amount of passage between the measuring unit 31 and the LED chip can be reduced.
  • the first transfer member 33 may be coupled to the contact movement unit 34. Accordingly, when it is necessary to replace the contact unit 32, it is possible to replace only the contact unit 32 irrespective of the first transfer member 33.
  • the first transfer member 33 includes a first through hole 331 and a first transfer surface 332.
  • the first through hole 331 may be formed through the first transfer member 33.
  • the contact pin 321 may pass through the first through hole 331 to be in contact with the LED chip positioned below the first transfer member 33. That is, the contact pin 321 may contact the LED chip positioned at the test position TP through the first through hole 331.
  • a plurality of contact pins 321 may pass through the first through hole 331 to contact the LED chip positioned at the test position TP.
  • Light emitted from the LED chip may pass through the first through hole 331 and the light receiving hole 311 to be incident into the measuring unit 31. Accordingly, the contact pin 321 may be in contact with the LED chip without being disturbed by the first transfer member 33, and the light emitted by the LED chip is not disturbed by the first transfer member 33. It may be incident into the measuring unit 31.
  • the first transfer member 33 is gradually reduced in size in the direction (H arrow direction) toward the LED chip positioned in the test position TP in the test unit 31 in the first through hole 331 Can be formed. That is, the first through hole 331 may be formed to gradually decrease in size in the downward direction (H arrow direction) on the upper surface (33a) of the first transfer member (33). The first through hole 331 may be formed to gradually decrease in diameter in the downward direction (H arrow direction) on the upper surface 33a of the first transfer member 33, and may be formed in a hemispherical shape as a whole.
  • the first transfer surface 332 transmits the light emitted from the LED chip toward the measurement unit 31 such that the light emitted from the LED chip is incident to the measurement unit 31 through the light receiving hole 311. Light emitted from the LED chip to the side may be transmitted toward the measuring unit 31 by the first transfer surface 332. Accordingly, since a larger amount of light may be incident into the measuring unit 31, the LED chip test apparatus 1 may more accurately measure the performance of the LED chip.
  • the first transfer surface 332 may be formed of a material having a high reflectance or coated with such a material.
  • the first transfer surface 332 may be a surface of a metal or an alloy thereof, or may be mirror coated with a metal or resin material.
  • the first transfer surface 332 may be formed by an LED chip.
  • the first transfer surface 332 may be formed along the outer surface of the first through hole 331 to transmit light toward the measuring unit 31. That is, as shown in the enlarged view of FIG. 10, the first transfer surface 332 is directed toward the upper direction (G arrow direction) from the bottom surface 33b of the first transfer member 33. It may be formed away from the center (I) of the through-hole 331. When the first through hole 331 is formed in a hemispherical shape as a whole, the first transfer surface 332 may be formed to form a curved surface as a whole.
  • the first transfer member 33 may further include a first protruding member 333.
  • the first protruding member 333 may be formed to protrude in a direction (G arrow direction) toward the measuring unit 31 from the LED chip positioned at the test position TP. That is, the first protruding member 333 may be formed to protrude in an upward direction (G arrow direction) from the upper surface 33a of the first transfer member 33. The first protruding member 333 may be inserted into the insertion hole 3322.
  • the first protruding member 333 may include a first inclined surface 3331 formed to be connected to the first transmission surface 332.
  • the first transfer surface 332 and the first inclined surface 3331 may be formed with the same slope. That is, the first transfer surface 332 and the first inclined surface 3331 may be formed at one inclination angle.
  • the first transfer surface 332 and the first inclined surface 3331 may be formed to form one curved surface. Accordingly, the first transfer surface 332 and the first inclined surface 3331 may transmit light emitted from the LED chip toward the measuring unit 31.
  • the first inclined surface 3331 may be formed of a material having high reflectance or coated with such a material.
  • the first inclined surface 3331 may be a surface of a metal or an alloy thereof, or may be a mirror coating of a metal or a resin material.
  • the contact movement unit 34 may include a contact support mechanism 341, a contact coupling mechanism 342, and a contact lifting mechanism 343.
  • the contact support mechanism 341 supports the contact unit 32.
  • the contact unit 32 may be detachably coupled to the contact support mechanism 341 by the contact coupling mechanism 342.
  • the first support member 33 is coupled to the contact support mechanism 341 under the contact unit 32. Accordingly, when it is necessary to replace the contact unit 32, such as the type of the LED chip is changed or the contact pin 321 is damaged, the contact unit 32 regardless of the first transfer member 33 ) Can only be replaced.
  • At least one of the contact body 322 and the connection unit 323 may be coupled to the contact support mechanism 341.
  • the contact support mechanism 341 is formed with a through hole into which the first transfer member 33 is inserted.
  • the first transfer member 33 may be inserted into the through hole and coupled to the contact support mechanism 341 by a fitting method.
  • the first transfer member 33 may be inserted into the through hole and coupled to the contact support mechanism 341 by a fastener such as a bolt.
  • the contact supporting mechanism 341 may be coupled to the contact raising and lowering mechanism 343. As the contact support mechanism 341 is raised and lowered by the contact raising and lowering mechanism 343, the contact unit 32 and the first transfer member 33 coupled to the contact supporting mechanism 341 are also together. Can be raised and lowered.
  • the contact support mechanism 341 may be formed in a rectangular plate shape as a whole, and may be formed long in the direction toward the measurement unit 31 in the contact lift mechanism 343.
  • the contact coupling mechanism 342 detachably couples the contact unit 32 to the contact support mechanism 341.
  • a fastening member such as a bolt may be used as the contact coupling mechanism 342.
  • the contact unit 32 may include a through hole through which the contact coupling mechanism 342 passes, and the contact support mechanism 341 may include a groove to which the contact coupling mechanism 342 is coupled.
  • the contact raising and lowering mechanism 343 may move the contact unit 32 in a vertical direction (Z-axis direction, shown in FIG. 2).
  • the contact raising and lowering mechanism 343 may lower the contact unit 32 so that the contact pin 321 contacts the LED chip.
  • the contact raising and lowering mechanism 343 may raise the contact unit 32 so that the contact pin 321 and the LED chip are not damaged by contact when the test for the LED chip is completed.
  • the contact raising and lowering mechanism 343 may raise and lower the contact unit 32 by raising and lowering the contact supporting mechanism 341.
  • the contact raising and lowering mechanism 343 may raise and lower the contact supporting mechanism 341 such that the first transfer member 33 is positioned at a first position or a second position.
  • the first transfer member 33 is coupled to the contact support mechanism 341.
  • the first transfer member 33 When the first transfer member 33 is positioned in the first position, as shown in FIG. 11, the first transfer member 33 is positioned above the seating member 21.
  • the contact raising and lowering mechanism 343 may raise the contact supporting mechanism 341 such that the lower end 332a of the first transfer surface 332 is positioned on the upper surface 21b of the seating member 21.
  • the contact pin 321 When the first transfer member 33 is positioned at the first position, the contact pin 321 is positioned at a distance away from the LED chip seated on the seating member 21.
  • the first transfer member 33 When the first transfer member 33 is located in the second position, as shown in FIG. 12, the first transfer member 33 is mounted in the first through hole 331 by the seating member 21. Is positioned at the insertion position. That is, the bottom surface 33b of the first transfer member 33 is positioned below the top surface 21b of the seating member 21 on which the LED chip is seated.
  • the contact raising and lowering mechanism 343 may lower the contact supporting mechanism 341 such that the lower end 332a of the first transfer surface 332 is positioned below the upper surface 21b of the seating member 21.
  • the contact pin 321 When the first transfer member 33 is located in the second position, the contact pin 321 is in contact with the LED chip seated on the seating member 21, the contact unit 32 is the contact pin
  • the LED chip in contact with 321 is made to emit light.
  • the LED chip test apparatus 1 can more accurately measure the performance of the LED chip.
  • the contact raising and lowering mechanism 343 lowers the contact supporting mechanism 341 so that the first transfer member 33 is positioned at the second position when the LED chip to be tested is positioned at the test position TP. .
  • the contact raising and lowering mechanism 343 raises the contact supporting mechanism 341 so that the first transfer member 33 is positioned at the first position when the test of the LED chip is completed. Thereafter, the rotating unit 23 may rotate the rotating member 22.
  • the rotating unit 23 may stop the rotating member 22, and the contact raising and lowering mechanism 343 may be the first transfer member 33.
  • the contact support mechanism 341 may be lowered so that the contact point is positioned at the second position.
  • the contact raising and lowering mechanism 343 may raise and lower the contact unit 32 using a motor and connecting means respectively coupled to the motor and the contact unit 32.
  • the connecting means may be a pulley and a belt, a ball screw, a cam member, and the like.
  • the contact raising and lowering mechanism 343 may raise and lower the contact unit 32 using a hydraulic cylinder or a pneumatic cylinder.
  • the LED chip positioned at the test position TP may not always be seated at the same position in the seating member 21.
  • the centrifugal force when the LED chip is moved from the loading position LP to the test position TP This is because the state that is moved by the seat and seated on the seating member 21 can be changed.
  • the contact movement unit 34 moves the contact unit 32 in the horizontal direction (X-axis direction and Y-axis direction, as shown in FIG. 1) so that an accurate test can be made. ) May be further included.
  • the contact movement mechanism 344 may move the contact unit 32 such that the contact pin 321 is positioned at a position where the contact pin 321 may contact the LED chip.
  • the contact raising and lowering mechanism 343 may be coupled to the contact moving mechanism 344.
  • the contact movement mechanism 344 may move the contact unit 32 by moving the contact elevation mechanism 343.
  • the contact support mechanism 341 may be coupled to the contact movement mechanism 344, and the contact movement mechanism 344 may be coupled to the contact elevation mechanism 343.
  • the contact movement mechanism 344 may move the contact unit 32 using a hydraulic cylinder or a pneumatic cylinder.
  • the contact movement mechanism 344 may move the contact unit 32 using a motor and connecting means coupled to the motor and the contact unit 32, respectively.
  • the connecting means may be a pulley and a belt, a ball screw, a cam member, and the like.
  • the contact movement mechanism 344 removes the first contact movement mechanism 341 and the contact unit 32 for moving the contact unit 32 in a first horizontal direction (X-axis direction, shown in FIG. 1). And a second contact movement mechanism 3442 moving in a second horizontal direction (Y-axis direction, shown in FIG. 1).
  • the contact raising and lowering mechanism 343 may be coupled to the second contact movement mechanism 3442, and the second contact movement mechanism 3442 may be coupled to the first contact movement mechanism 3431.
  • the contact raising and lowering mechanism 343 may be coupled to the first contact movement mechanism 341, and the first contact movement mechanism 341 may be coupled to the second contact movement mechanism 3442.
  • the contact movement mechanism 344 may include the contact pins 321 from the state information of the LED chip obtained by a detection unit (not shown) for checking a state in which the LED chip is seated on the seating member 21. ) May move the contact unit 32 to a position where it can contact the LED chip.
  • the detection unit (not shown) may check the position where the LED chip is seated on the seating member 21.
  • the sensing unit (not shown) may include a CCD camera capable of capturing a state in which the LED chip is seated on the seating member 21.
  • the LED chip positioned at the test position TP may not always be seated in the same direction in the seating member 21.
  • the centrifugal force when the LED chip is moved from the loading position LP to the test position TP This is because the state seated on the seating member 21 by being rotated by the light may be changed.
  • the contact moving unit 34 further includes a contact rotating mechanism 345 (shown in FIG. 13) for rotating the contact unit 32. It may include.
  • the contact rotating mechanism 345 may rotate the contact supporting mechanism 341 such that the contact pin 321 contacts an LED chip positioned at the test position TP. .
  • the contact supporting mechanism 341 is coupled to the contact rotating mechanism 345. As the contact rotating mechanism 345 rotates the contact supporting mechanism 341, the contact unit 32 coupled to the contact supporting mechanism 341 may be rotated.
  • the contact pin 32 is rotated according to the state in which the LED chip positioned at the test position TP is seated on the seating member 21, so that the contact pin 321 is positioned at the test position TP. Since the LED chip can be accurately contacted, the LED chip testing apparatus 1 according to the present invention can more accurately measure the performance of the LED chip.
  • the contact rotating mechanism 345 may include a contact rotating member 3451, a contact driving mechanism 3652, and a contact connecting mechanism 3503.
  • the contact supporting mechanism 341 is coupled to the contact rotating member 3451.
  • the contact rotating member 3451 may be rotatably coupled to the contact connecting mechanism 3503, and may be rotated about the contact rotating shaft 3451a by the contact driving mechanism 3452.
  • the contact rotation member 3451 When the contact rotation member 3451 is rotated, the contact support mechanism 341 may be rotated, and thus the contact unit 32 coupled to the contact support mechanism 341 may be rotated.
  • the contact driving mechanism 3452 may rotate the contact rotating member 3451 about the contact rotating shaft 3451a.
  • the contact driving mechanism 3452 may rotate the contact rotating member 3451 such that the contact pin 321 contacts the LED chip positioned at the test position TP.
  • the contact driving mechanism 3452 may rotate the contact rotating member 3451 in a clockwise or counterclockwise direction about the contact rotating shaft 3451a.
  • the contact driving mechanism 3452 may include a motor 3502a.
  • the motor 3502a may be directly coupled to the contact rotation shaft 3451a to rotate the contact rotation member 3452, and may be coupled to a shaft (not shown) coupled to the contact rotation shaft 3651a to allow the rotation member ( 22) may be rotated.
  • the contact driving mechanism 3452 further includes a pulley and a belt connecting the motor 3452a and the shaft (not shown). It may include.
  • the contact rotating mechanism 3651 and the contact driving mechanism 3452 are coupled to the contact connecting mechanism 3345.
  • the contact rotating member 3451 may be coupled to an upper surface of the contact coupling mechanism 3503, and the contact driving mechanism 3452 may be coupled to a bottom surface of the contact coupling mechanism 3503.
  • the contact connecting mechanism 3503 may be coupled to the contact raising and lowering mechanism 343, and the contact raising and lowering mechanism 343 may be coupled to the contact moving mechanism 344. Accordingly, the contact connecting mechanism 3503 can be lifted up and down by the contact raising and lowering mechanism 343, and is shown in FIG. 1 by the contact moving mechanism 344 in a first horizontal direction (X-axis direction, FIG. 1). ) And the second horizontal direction (Y-axis direction, shown in Figure 1). Therefore, the contact rotating member 3501 and the contact unit 32 move in a first horizontal direction (X axis direction, shown in FIG. 1) and a second horizontal direction (Y axis direction, shown in FIG. 1). Can be raised and lowered.
  • the contact connecting mechanism 3503 may be coupled to the contact moving mechanism 344, and the contact moving mechanism 344 may be coupled to the contact raising and lowering mechanism 343.
  • the contact rotating mechanism 345 may be made in two embodiments according to the position of the contact rotating shaft (3451a), the following will be described sequentially with reference to the accompanying drawings for each embodiment.
  • the LED chip may include two pads P1 and P2, and the test is performed while the contact pins 321 are in contact with each of the pads P1 and P2. Can be. If the LED chip is positioned at the test position TP in a state where the LED chip is seated on the seating member 21 in the position and direction shown in the enlarged view of FIG. 14, the contact unit 32 is not moved or rotated in the horizontal direction. The contact pins 321 may be in contact with the pads P1 and P2 of the LED chip. However, as described above, the state in which the LED chip is mounted on the seating member 21 may change due to various factors.
  • the contact driving mechanism 3652 is one end 321a of the contact pin 321 in contact with the LED chip.
  • the contact rotating member 3501 may be rotated about the contact rotating shaft 3451a spaced apart from the predetermined distance from the contact rotating shaft 3451a. That is, the contact driving mechanism 3452 may rotate the contact rotating member 3451 about the contact rotating shaft 3451a spaced a predetermined distance from the seating member 21 positioned at the test position TP. have.
  • 15 to 17 are conceptual views illustrating an operation process of the contact rotating mechanism 345 according to an embodiment of the present invention with reference to the enlarged view of FIG.
  • the LED chip may be positioned at the test position TP in a state as shown in FIG. 15 by being rotated at a predetermined distance and a predetermined angle from the position and direction shown in FIG. 14.
  • 15 shows the state of the LED chip seated on the seating member 21 in the position and direction shown in Figure 14, the LED chip shown in solid line in Figure 15 is the test position
  • the LED chip positioned at (TP) is moved and rotated by various factors as described above to show the mounted state on the seating member 21.
  • the contact driving mechanism 3452 rotates the contact rotating member 3401 about the contact rotating shaft 3501a so as to correspond to an angle at which the LED chip positioned at the test position TP is rotated.
  • the contact driving mechanism 3452 may rotate the contact rotating member 3451 in a counterclockwise direction about the contact rotating shaft 3451a.
  • the contact unit 32 may be in a state of being lifted by the contact raising and lowering mechanism 343 so as not to collide with the LED chip positioned in the test position TP and the seating member 21.
  • the first transfer member 33 may be in a state located at the first position.
  • the contact movement mechanism 344 When the contact pins 321 are rotated at an angle capable of contacting the pads P1 and P2 of the LED chip positioned at the test position TP, the contact movement mechanism 344 is shown in FIG. As described above, the contact support mechanism 341 is moved such that the contact pins 321 are positioned on the pads P1 and P2 of the LED chip positioned at the test position TP. This means that the contact moving mechanism 344 moves the contact raising and lowering mechanism 343 in a first horizontal direction (X axis direction, shown in FIG. 1) and a second horizontal direction (Y axis direction, shown in FIG. 1). This can be done by moving to.
  • X axis direction shown in FIG. 1
  • Y axis direction shown in FIG. 1
  • the contact raising and lowering mechanism 343 may include the contact pins 321 at the test position TP.
  • the contact unit 32 is lowered so as to be in contact with the pads P1 and P2 of the LED chip respectively positioned at the C). This may be achieved by the contact raising and lowering mechanism 343 descending the contact connecting mechanism 3503.
  • the first transfer member 33 may be lowered by the contact raising and lowering mechanism 343 and positioned at the second position.
  • the contact driving mechanism 3452 is a seating member located at the test position TP ( 21)
  • the contact rotating member 3501 may be rotated about the contact rotating shaft 3451a positioned below.
  • the seating member 21 positioned at the test position TP may be located between the contact unit 32 and the contact rotation shaft 3451a.
  • the contact rotating member 3451 may include a vertical frame 3451b to which the contact support mechanism 341 is coupled, and a horizontal frame 3451c rotatably coupled to the contact connection mechanism 3503.
  • the contact driving mechanism 3452 may rotate the contact rotating member 3451 about the contact rotating shaft 3451a in the horizontal frame 3451c.
  • the vertical frame 3451b may be formed at a height at which the seating member 21 positioned at the test position TP may be positioned between the contact unit 32 and the horizontal frame 3541c.
  • the horizontal frame 3451c has a seating member positioned at the test position TP at the vertical frame 3451b such that the contact rotation shaft 3501a is positioned below the seating member 21 positioned at the test position TP. It may be formed long toward the (21).
  • the contact rotating member 3451 may be formed in a 'b' shape as a whole.
  • the distance from which the contact rotating shaft 3501a is spaced apart from one end 321a of the contact pin 321 in contact with the LED chip. Can be reduced. Therefore, after the contact pins 321 are rotated at an angle capable of contacting the pads P1 and P2 of the LED chip positioned at the test position TP, the contact movement mechanism 344 is rotated. The distance at which the contact support mechanism 341 is moved to be positioned on the pads P1 and P2 of the LED chip positioned at the test position TP may be reduced.
  • the contact driving mechanism 3452 is configured to move the contact rotating member 3451 about the contact rotating shaft 3451a positioned on the same vertical line J as the one end 321a of the contact pin 321 contacting the LED chip. Can be rotated.
  • the contact rotation shaft 3501a is the same vertical line as one end 321a of any one of the contact pins 321. May be located on (J).
  • the contact driving mechanism 3452 rotates the contact rotating member 3501 about the contact rotating shaft 3501a positioned on the same vertical line I (shown in FIG. 10) as the center of the insertion hole 3322. You can.
  • the contact rotation shaft 3501a may be positioned on the same vertical line I (shown in FIG. 10) as the center of the insertion hole 3322 and the center of the first through hole 331.
  • the LED chip may be positioned at the test position TP in a state as shown in FIG. 20 by being rotated at a predetermined distance and a predetermined angle from the position and direction shown in FIG. 14.
  • the LED chip shown by dotted lines in FIG. 20 shows the state of the LED chip seated on the seating member 21 in the position and direction shown in FIG. 14, and the LED chip shown by solid lines in FIG.
  • the LED chip positioned at (TP) is moved and rotated by various factors as described above to show the mounted state on the seating member 21.
  • the contact driving mechanism 3452 rotates the contact rotating member 3401 about the contact rotating shaft 3501a so as to correspond to an angle at which the LED chip positioned at the test position TP is rotated. As shown in FIG. 21, the contact driving mechanism 3452 may rotate the contact rotating member 3451 counterclockwise about the contact rotating shaft 3451a.
  • the contact movement mechanism 344 is as shown in FIG.
  • the contact support mechanism 341 is moved such that the contact pins 321 are positioned on the pads P1 and P2 of the LED chip positioned at the test position TP.
  • the contact moving mechanism 344 moves the contact raising and lowering mechanism 343 in a first horizontal direction (X axis direction, shown in FIG. 1) and a second horizontal direction (Y axis direction, shown in FIG. 1). This can be done by moving to.
  • X axis direction shown in FIG. 1
  • Y axis direction shown in FIG. 1
  • the contact moving mechanism 344 according to another embodiment of the present invention has a shorter distance than the contact supporting mechanism. By moving the 341, the contact support mechanism 341 may be moved such that the contact pins 321 are positioned on the pads P1 and P2 of the LED chip positioned at the test position TP.
  • the contact raising and lowering mechanism 343 may include the contact pins 321 at the test position TP.
  • the contact unit 32 is lowered so as to be in contact with the pads P1 and P2 of the LED chip respectively positioned at the C). This may be achieved by the contact raising and lowering mechanism 343 descending the contact connecting mechanism 3503.
  • the first transfer member 33 may be lowered by the contact raising and lowering mechanism 343 and positioned at the second position.
  • the main body 35 is installed next to the supply part 2.
  • the contact movement unit 34 and the measurement unit 31 are respectively coupled to the main body 35.
  • the main body 35 is a first frame 351 is coupled to the measuring unit 31 is formed long in the horizontal direction, the second frame is formed long in the lower direction (H arrow direction) from the first frame 351 352, and a third frame 353 to which the second frame 352 is coupled.
  • the contact movement unit 34 may be coupled to an upper surface of the third frame 353.
  • the contact lifting mechanism 343 or the contact movement mechanism 344 may be coupled to an upper surface of the third frame 353.
  • the LED chip test apparatus 1 may further include a second transfer member 36.
  • the second transfer member 36 may be coupled to the contact movement unit 34 to be positioned between the measurement unit 31 and the contact unit 32. Accordingly, since the LED chip test apparatus 1 may block a portion between the measuring unit 31 and the contact unit 32 with the second transfer member 36, the light emitted from the LED chip is measured by the measuring unit. The amount of passage between the 31 and the LED chip can be further reduced.
  • the contact unit 32 may be coupled to the contact movement unit 34 to be positioned between the first transfer member 33 and the second transfer member 36.
  • the second transfer member 36 and the contact unit 32 may be respectively coupled to the contact support mechanism 341.
  • the second transfer member 36 includes a second through hole 361 and a second transfer surface 362.
  • the second through hole 361 may be formed through the second transfer member 36. Light emitted by the LED chip may pass through the first through hole 331, the second through hole 361, and the light receiving hole 311 to be incident into the measuring unit 31. Accordingly, the light emitted by the LED chip may be incident into the measuring unit 31 without being disturbed by the first transfer member 33 and the second transfer member 36.
  • the second transfer member 36 may be formed such that the size of the second through hole 361 is gradually reduced in the direction (H arrow direction) toward the LED chip in the measuring unit 31. That is, the second through hole 361 may be formed to gradually decrease in size in the downward direction (H arrow direction) on the upper surface 36a of the second transfer member 36. The second through hole 361 may be formed such that the diameter of the second through hole 361 is gradually reduced in the downward direction (the direction of the H arrow) from the upper surface 36a of the second transfer member 36.
  • the second transfer surface 362 transfers the light emitted by the LED chip toward the measurement unit 31 such that the light emitted by the LED chip passes through the light receiving hole 311 and is incident to the measurement unit 31. Accordingly, since a larger amount of light may be incident into the measuring unit 31, the LED chip test apparatus 1 may more accurately measure the performance of the LED chip.
  • the second transfer surface 362 may be formed of a material having a high reflectance or coated with such a material.
  • the second transfer surface 362 may be a surface of a metal or an alloy thereof, or may be a mirror coating of a metal or a resin material.
  • the second transfer surface 362 may be formed along the outer surface of the second through hole 361 so as to transmit light emitted from the LED chip toward the measurement unit 31. That is, as shown in the enlarged view of FIG. 24, the second transfer surface 362 is directed toward the upper direction (G arrow direction) from the bottom surface 36b of the second transfer member 36. It may be formed away from the center (K) of the through hole (361). When the second through hole 361 is gradually reduced in diameter in the downward direction (in the direction of the H arrow) from the upper surface 36a of the second transfer member 36, the second transfer surface 362 is generally It may be formed to form a curved surface.
  • the second transfer surface 362 and the first transfer surface 332 may be formed on one curved surface. That is, when the first transfer surface 332 and the second transfer surface 362 are connected to each other, the first transfer surface 332 and the second transfer surface 362 may be formed to form one curved surface. Can be. Light emitted by the LED chip may be transmitted toward the measuring unit 31 by the first transfer surface 332 and the second transfer surface 362.
  • the second transfer member 36 may further include an accommodation groove 363 capable of receiving the contact pin 321.
  • the second transfer member 36 is the contact support mechanism 341 so that the contact pin 321 is positioned between the measuring unit 31 and the contact unit 32 in a state where the contact pin 321 is located in the receiving groove 363. ) May be combined.
  • the second transfer member 36 may be formed in a ' ⁇ ' shape as a whole.
  • the second transfer member 36 may further include a second protruding member 364.
  • the second transfer member 36 is illustrated as being coupled to the measurement unit 31, but the second transfer member 36 has the second protruding member 364 attached to the light receiving hole 311. It may be coupled to the contact moving unit 34 in the inserted state.
  • the second protruding member 364 may be formed to protrude in a direction (G arrow direction) toward the measuring unit 31 from the LED chip positioned at the test position TP. That is, the second protruding member 364 may be formed to protrude in an upward direction (G arrow direction) from the upper surface 36a of the second transfer member 36. The second protruding member may be inserted into the measuring unit 31 through the light receiving hole 311.
  • the second protruding member 364 may include a second inclined surface 3641 formed to extend to the second transfer surface 362. That is, the second transfer surface 362 and the second inclined surface 3641 may be formed to form one curved surface. Accordingly, the second transfer surface 362 and the second inclined surface 3641 may transmit light emitted from the LED chip toward the measuring unit 31.
  • the second inclined surface 3641 may be formed of a material having high reflectance or coated with such a material.
  • the second inclined surface 3641 may be a surface of a metal or an alloy thereof, or may be mirror coated with a metal or a resin material.
  • the second transfer member 36 may be coupled to the contact support mechanism 341 together with the contact unit 32, the second transfer member 36 may deform the contact unit 32. It may also have a function of preventing the reinforcing plate. In this case, it is preferable to firmly couple the second transfer member 36 to the contact unit 32 by screwing or the like.
  • a separate reinforcing plate may be coupled to the contact unit 32.
  • the reinforcing plate may be a plate or a structure having a predetermined shape to be integrally coupled to the upper or lower surface of the probe card to prevent deformation of the probe card.
  • the reinforcement plate functions to prevent deformation of the probe card due to external mechanical stress or thermal stress.
  • the reinforcing plate is preferably made of a material having a higher strength and / or rigidity than the probe card and a low thermal expansion coefficient. Therefore, the reinforcement plate may be made of a material such as metal or alloy, or a nonmetal material such as resin or ceramic. Examples of these materials include steel, titanium, nickel, invar, kovar, graphite, epoxy, ceramic, carbon fiber-reinforced polymer (CFRP), or these and / or other materials. Arbitrary alloys and mixtures thereof.
  • the second transfer member 36 may be coupled to the measurement unit 31.
  • the second transfer member 36 may be coupled to the measurement unit 31 to protrude in the direction (H arrow direction) toward the LED chip positioned at the test position TP in the measurement unit 31. That is, the second transfer member 36 may be coupled to the measurement unit 31 to protrude in the downward direction (H arrow direction) from the measurement unit 31.
  • the second transfer member 36 may be coupled to the measurement unit 31 with the second protruding member 364 inserted into the light receiving hole 311. Accordingly, since the second transfer member 36 may increase the area for transmitting the light emitted by the LED chip toward the measurement unit 31, the LED chip test apparatus 1 may measure the measurement unit 31. More light can be injected into the interior, and the performance of the LED chip can be measured more accurately.
  • the second transfer member 36 may be coupled to the measurement unit 31 by the second protruding member 364 is inserted into the light receiving hole 311 and fitted.
  • the second transfer member 36 may be coupled to the measurement unit 31 by a fastening member such as a bolt while the second protruding member 364 is inserted into the light receiving hole 311.
  • the second transfer member 36 may be coupled to the measurement unit 31 such that the measurement unit 31 is positioned in the second through hole 361.
  • the second transfer member 36 may be coupled to the measurement unit 31 by a fitting method, or may be coupled to the measurement unit 31 by a fastening member such as a bolt.
  • the second transfer member 36 according to another modified embodiment of the present invention, one side is coupled to the measuring unit 31, the other side is the contact May be coupled to the unit 32.
  • the second transfer member 36 may be coupled to the contact body 322 at the other side.
  • one side of the second transfer member 36 may be coupled to the measurement unit 31, and the other side may be coupled to the contact support mechanism 341.
  • An insertion groove 365 into which the contact pin 321 may be inserted may be formed in the second transfer member 36.
  • the contact unit 32 includes a plurality of contact pins 321
  • a plurality of insertion grooves 365 may be formed in the second transfer member 36.
  • the second transfer member 36 may have the same number of insertion grooves 365 as the contact pins 321.
  • the second transfer member 36 may be coupled to the contact body 322 on the other side while the contact pin 321 is inserted into the insertion groove 365, and one side may be connected to the measurement unit 31. Can be combined. Accordingly, the second transfer member 36 may block the gap between the measurement unit 31 and the contact unit 32, so that light emitted from the LED chip does not pass between the measurement unit 31 and the LED chip. Can be. Therefore, the LED chip test apparatus 1 may allow a greater amount of light to enter the measurement unit 31 and more accurately measure the performance of the LED chip.
  • the measurement unit 31 When the second transfer member 36 is coupled to the measurement unit 31 and the contact body 322, the measurement unit 31 may be movably coupled to the main body 35. Accordingly, when the contact movement unit 34 moves the contact unit 32, the measurement unit 31 coupled to the contact unit 32 may also move together.
  • the main body 35 may include a first connection frame 354, a second connection frame 355, and a third connection frame 356.
  • the measuring unit 31 may be coupled to the third connection frame 346.
  • the first connection frame 354 may be coupled to the first frame 351 to be lifted and lowered. Accordingly, when the contact movement unit 34 raises and lowers the contact unit 32, the first connection frame 354 may move up and down, and thus the measurement unit 31 may also move up and down. have.
  • the first frame 351 may include an LM rail
  • the first connection frame 354 may include an LM block movably coupled to the LM rail of the first frame 351.
  • the second connection frame 355 may be coupled to the first connection frame 354 so as to be movable in a first horizontal direction (X-axis direction). Accordingly, when the contact movement unit 34 moves the contact unit 32 in the first horizontal direction (X axis direction), the second connection frame 355 moves in the first horizontal direction (X axis direction). ), And thus the measuring unit 31 may be moved in the first horizontal direction (X-axis direction).
  • the first connection frame 354 may include an LM rail
  • the second connection frame 355 may include an LM block movably coupled to the LM rail of the first connection frame 354. .
  • the third connection frame 356 may be movably coupled to the second connection frame 355 in a second horizontal direction (Y-axis direction) perpendicular to the first horizontal direction (X-axis direction). Accordingly, when the contact movement unit 34 moves the contact unit 32 in the second horizontal direction (Y axis direction), the third connection frame 356 moves in the second horizontal direction (Y axis direction). ), And thus the measuring unit 31 may be moved in the second horizontal direction (Y-axis direction).
  • the second connection frame 355 may include an LM rail
  • the third connection frame 356 may include an LM block movably coupled to the LM rail of the second connection frame 355. .
  • the measuring unit 31 may be rotatably coupled to the third connection frame 356. Accordingly, when the contact movement unit 34 rotates the contact unit 32, the measurement unit 31 may also rotate.
  • the measurement unit 31 Since it moves together, the LED chip located at the test position (TP) can be tested in a state positioned on the same vertical line as the center of the light receiving hole (311) irrespective of the position seated on the seating member (21) have. Therefore, the LED chip test apparatus 1 can more accurately measure the performance of the LED chip.
  • the contact unit 32 according to the modified embodiment of the present invention includes a contact pin 321, a first body 324, a second body 325, and a third body 326. , And a coupling member 327.
  • the contact unit 32 may be moved up and down by the contact movement unit 34 and may be moved in the first horizontal direction (X-axis direction) and the second horizontal direction (Y-axis direction).
  • the test unit 3 may include a plurality of contact units 32 according to a modified embodiment of the present invention.
  • the contact pin 321 is coupled to the first body 324.
  • the first body 324 is coupled to the second body 325.
  • the first body 324 may be elongated in the direction toward the LED chip positioned at the test position TP in the second body 325.
  • the first body 324 may be electrically connected to a tester (not shown), and the contact pin 321 may be electrically connected to a tester (not shown) through the first body 324.
  • the contact pin 321 may be detachably coupled to the first body 324 by a connection member 3321. Accordingly, when the contact pin 321 is damaged or broken, the user may easily replace only the contact pin 321. Even when the LED chip to be tested is replaced with an LED chip having a different specification from the existing one, the user can easily replace the contact pin 321 meeting the specifications of the new LED chip.
  • connection member 3241 may be rotatably coupled to the first body 324. As the connecting member 3321 is rotated in one direction, the connecting member 3241 may couple the contact pin 321 to the first body 324 by applying a force to the first body 324. As the connecting member 3241 is rotated in the other direction, the force applied to the first body 324 by the connecting member 3321 is removed, so that the contact pin 321 is removed from the first body 324. It may be in a detachable state.
  • a fastening member (not shown) such as a bolt may be used as the connection member 3241.
  • the first body 324 is coupled to the second body 325.
  • the second body 325 and the third body 326 may be detachably coupled by the coupling member 327. Accordingly, when it is necessary to replace the contact pins 321, the contact pins 321 may be easily replaced by separating the second body 325 from the third body 326.
  • the second body 325 may be electrically connected to a tester (not shown), and the contact pin 321 may be connected to a tester (not shown) through the first body 324 and the second body 325. Can be electrically connected.
  • the second body 325 is coupled to the third body 326.
  • the second body 325 may be detachably coupled to the third body 326 by the coupling member 327.
  • the third body 326 may be coupled to the contact movement unit 34. As the third body 326 is moved by the contact movement unit 34, the second body 325, the first body 324, and the contact pin 321 may be moved together.
  • the third body 326 may be electrically connected to a tester (not shown), and the contact pin 321 may be the first body 324, the second body 325, and the third body 326. ) May be electrically connected to a tester (not shown).
  • the coupling member 327 detachably couples the second body 325 and the third body 326.
  • a fastening member such as a bolt may be used as the coupling member 327.
  • test unit 3 may further include a contact mechanism 37.
  • the contact mechanism 37 includes a contact hole 371 in contact with a seating member 21 positioned at the test position TP.
  • the contact mechanism 37 may be installed next to the rotating member 22 such that the contact hole 371 may contact the seating member 21 positioned at the test position TP.
  • the light may be emitted by the power applied through the contact unit 32 and the contact hole 371.
  • the contact unit 32 and the contact mechanism 37 may emit an LED chip in association with a tester (not shown).
  • the contact unit 32 and the contact mechanism 37 may test the electrical characteristics of the LED chip in conjunction with a tester (not shown).
  • the contact hole 371 may be in contact with a side surface of the seating member 21 positioned at the test position TP.
  • the contact hole 371 may be elongated in a direction toward the seating member 21 positioned at the test position TP.
  • the contact mechanism 37 may further include a contact movement means 372 for moving the contact hole 371 such that the contact hole 371 is closer to or away from the seating member 21.
  • the contact movement means 372 contacts the contact hole 371 so as to be closer to the seating member 21 positioned at the test position TP.
  • the sphere 371 is moved.
  • the contact hole 371 may be moved by the contact moving means 372 to be in contact with the seating member 21 positioned at the test position TP.
  • the contact movement means 372 moves the contact hole 371 away from the seating member 21 positioned at the test position TP.
  • the contact hole 371 is moved.
  • the contact hole 371 may be moved by the contact moving means 372 to be spaced apart from the mounting member 21 positioned at the test position TP.
  • the mounting member 21 and the contact hole 371 do not come into contact or collide with each other. Can be. Therefore, the mounting member 21 and the contact hole 371 can be prevented from being worn by friction or damaged by a collision.
  • the contact moving means 372 may move the contact hole 371 by using a hydraulic cylinder or a pneumatic cylinder.
  • the contact movement means 372 may move the contact hole 371 by using a converter mechanism for converting a rotational motion of the motor and the motor into a linear movement.
  • the converter mechanism may be a pulley and a belt, a rack pinion gear, a ball screw, a cam member, or the like.
  • the contact hole 371 is coupled to the contact movement means 372.
  • the contact hole 371 may not accurately contact the seating member 21 by slipping or the like in the process of contacting the seating member 21. have.
  • the seating member 21 may further include a contact surface 215 to which the contact hole 371 is in contact.
  • the contact surface 215 may be formed at a side facing the contact hole 371 from the seating member 21 when the seating member 21 is positioned at the test position TP. Due to the contact surface 215, the mounting member 21 may have a side surface facing the contact hole 371. Accordingly, since the contact hole 371 may minimize the occurrence of slips and the like in the process of contacting the seating member 21, the LED chip test apparatus 1 according to the present invention may include the contact hole 371. The LED chip can be tested in a state in which the mounting member 21 is correctly contacted.
  • the mounting member 21 includes a contact surface 215 where the contact hole 371 and the contact surface 215 may be perpendicular to each other when the contact hole 371 is in contact with the contact surface 215. can do.
  • the seating member 21 may include a contact groove 21c formed by recessing a predetermined depth from a side at which the contact surface 215 is formed.
  • the contact hole 371 may be coupled to the contact body 322, as shown in FIGS. 20 to 22.
  • the contact hole 371 may be coupled to the contact body 322 while being in contact with the terminal 3221.
  • the contact hole 371 is on the upper surface 21b of the seating member 21 located at the test position TP. It may be coupled to the contact body 322 to be in contact.
  • the contact hole 371 may be in contact with the contact member 211 (shown in FIG. 3).
  • the contact moving unit 34 moves the contact unit 32 so that the contact pin 321 is in contact with the LED chip located at the test position TP.
  • the contact hole 371 may be in contact with the upper surface 21b of the seating member 21 positioned at the test position TP.
  • a plurality of contact holes 371 may be coupled to the contact body 322.
  • the first transfer member 33 protrudes from the measuring unit 31 toward the LED chip positioned at the test position TP. It may be installed in the measuring unit 31. When the LED chip is tested, when the measuring unit 31 is positioned above the LED chip, the first transfer member 33 may be formed to protrude downward from the measuring unit 31.
  • the first transfer member 33 may be installed on the seating member 21 to protrude in the direction from the seating member 21 toward the measuring unit 31.
  • the first transfer member 33 may be formed to protrude upward from the seating member 21.
  • An LED chip and the support member 312 may be located inside the first transfer member 33.
  • the first transfer member 33 has a groove 334 through which the contact pin 321 passes. Accordingly, even if the contact unit 32 is located between the measurement unit 31 and the LED chip, the LED chip can be tested in a state in which the first transfer member 33 is located close to the LED chip. Therefore, since a larger amount of light emitted by the LED chip can be incident to the measuring unit 31 through the first transfer member 33, the performance of the LED chip can be accurately measured.
  • the first transfer member 33 may be formed in a hollow cylindrical shape as a whole.
  • the groove 334 may be formed in the direction in which the contact unit 32 is installed in the first transfer member 33.
  • the inside of the first transfer member 33 may be formed of a material having high reflectance or coated with such a material.
  • the inside of the first transfer member 33 may be a polished surface of a metal or an alloy thereof, or may be a mirror coating of a metal or a resin material.
  • the groove 334 formed in the first transfer member 33 may have a size that allows the contact pin 321 to pass through.
  • the contact pin 321 may be in contact with the LED chip positioned at the test position TP through the groove 334.
  • test unit 3 may further include a measurement elevating unit 38.
  • the measuring raising and lowering unit 38 may be coupled to the main body 35 and raise and lower the measuring unit 31.
  • the measuring unit 31 may be coupled to the first frame 351 to be moved up and down.
  • the measurement raising and lowering unit 38 may raise the measuring unit 31 when the rotating unit 23 rotates the rotating member 22.
  • the measurement raising and lowering unit 38 may lower the measuring unit 31. Accordingly, the LED chip test apparatus 1 according to the present invention can be tested in a state in which the LED chip located at the test position (TP) is located close to the measuring unit 31.
  • the LED chip test apparatus 1 can allow a larger amount of light emitted by the LED chip to be incident to the measuring unit 31 through the first transfer member 33.
  • the branch can measure the performance more accurately.
  • the LED chip test apparatus 1 When the first transfer member 33 is installed on the seating member 21, the LED chip test apparatus 1 according to the present invention is the first transfer member 33 when the rotating member 22 is rotated While reducing the possibility of collision with the measuring unit 31, the LED chip can be tested in a state where the measuring unit 31 is located close to the first transfer member 33. It is also possible to allow the LED chip to be tested while the first transfer member 33 is inserted into the measurement unit 31 or the first transfer member 33 is in contact with the measurement unit 31. Do.
  • the LED chip test apparatus 1 can allow a larger amount of light emitted by the LED chip to be incident to the measuring unit 31 through the first transfer member 33.
  • the branch can measure the performance more accurately.
  • the measuring raising and lowering unit 38 may raise and lower the measuring unit 31 using a hydraulic cylinder or a pneumatic cylinder.
  • the measuring raising and lowering unit 38 may raise and lower the measuring unit 31 by using a motor and connecting means respectively coupled to the motor and the measuring unit 31.
  • the connecting means may include a pulley and a belt, a ball screw, a cam member, and the like.
  • the present invention can accurately measure the performance of the LED chip, thereby preventing the loss of the material cost, process cost, etc. by preventing the LED chip that is unnecessarily undergoing the packaging process and the test process, the manufacturing cost of the LED It provides an LED chip test apparatus that can lower the.

Abstract

본 발명의 목적은 엘이디 칩이 가지는 성능을 정확하게 측정할 수 있는 엘이디 칩 테스트장치를 제공하는 것이다. 이를 위해 본 발명은, 엘이디 칩의 특성을 측정하는 엘이디 칩 테스트장치에 있어서, 상기 엘이디 칩을 지지하며, 상기 엘이디 칩의 특성을 측정하는 테스트위치로 상기 엘이디 칩을 회전시키는 회전부재; 및 상기 회전부재의 옆에 설치되며, 상기 테스트위치에서 상기 엘이디 칩의 특성을 측정하는 테스트부를 포함하는 것을 특징으로 하는 엘이디 칩 테스트장치를 제공한다.

Description

엘이디 칩 테스트장치
본 발명은 엘이디 칩이 가지는 성능을 확인하기 위해 엘이디 칩을 테스트하는 엘이디 칩 테스트장치에 관한 것이다.
엘이디(LED, Light Emitting Diode)는 전기를 빛으로 변환하는 반도체를 이용한 발광 소자의 일종으로, 발광다이오드(Luminescent diode)라고도 한다. 엘이디는 종래 광원에 비해 소형이고, 수명이 길며, 소비전력이 적고, 고속응답이어서, 자동차 계기류의 표시소자, 광통신용광원 등 각종 전자기기의 표시용 램프, 숫자표시 장치나 계산기의 카드 판독기, 백라이트 등 각종 분야에서 널리 사용되고 있다.
엘이디는 에피공정(EPI), 칩공정(Fabrication) 및 패키지공정(Package) 등을 거쳐 제조되며, 상기 패키지공정을 거쳐 패키지된 상태로 테스트공정을 거치게 된다. 상기 테스트공정에서는 정상적으로 작동되지 않는 엘이디(이하, '불량품'이라 한다)를 제외시키는 한편, 정상적으로 작동되는 엘이디(이하, '양품'이라 한다)를 성능에 따라 등급별로 분류하여 출하하게 된다.
여기서, 엘이디는 상기 패키지공정을 거치면서 발생되는 문제로 인해 상기 테스트공정에서 불량품으로 제외되거나 양품이더라도 낮은 등급으로 분류될 수 있지만, 상기 패키지공정을 거치기 전 칩 상태(이하 '엘이디 칩'이라 한다)로 제조되는 과정에서 발생되는 문제로 인해 상기 테스트공정에서 불량품으로 제외되거나 양품이더라도 낮은 등급으로 분류될 수 있다.
즉, 엘이디는 상기 패키지공정에서 엘이디가 가지는 성능에 영향을 미칠 수 있는 문제가 발생하지 않더라도, 엘이디 칩으로 제조되는 과정에서 발생되는 문제로 인해 상기 테스트공정에서 불량품으로 제외되거나 양품이더라도 낮은 등급으로 분류될 수 있는 것이다.
엘이디 칩으로 제조되는 과정에서 발생되는 문제로 인해 상기 테스트공정에 서 불량품으로 제외되는 엘이디들은, 불필요한 패키지공정 및 테스트공정을 거친 것들이며, 이러한 공정들을 거침으로 인해 재료비, 공정비 등의 손실을 초래하는 문제가 있다.
엘이디 칩으로 제조되는 과정에서 발생되는 문제로 인해 상기 테스트공정에서 낮은 등급으로 분류되는 엘이디들은, 낮은 등급으로 분류되는 이유를 패키지공정에서 찾는 경우가 다소 있으며, 이로 인해 정확한 분석결과를 찾는데 시간 및 비용 손실을 초래하는 문제가 있다.
상술한 바와 같은 문제들은 엘이디의 제조단가를 상승시킴은 물론, 이러한 엘이디를 이용하는 제품들의 제조단가 또한 상승시키는 문제가 있다.
본 발명은 상술한 바와 같은 문제를 해결하기 위해 안출된 것으로, 본 발명의 목적은 엘이디 칩이 가지는 성능을 정확하게 측정할 수 있는 엘이디 칩 테스트장치를 제공하는 것이다.
상술한 바와 같은 목적을 달성하기 위해서, 본 발명은 하기와 같은 구성을 포함할 수 있다.
먼저 본 발명은, 엘이디 칩의 특성을 측정하는 엘이디 칩 테스트장치에 있어서, 상기 엘이디 칩을 지지하며, 상기 엘이디 칩의 특성을 측정하는 테스트위치로 상기 엘이디 칩을 회전시키는 회전부재; 및 상기 회전부재의 옆에 설치되며, 상기 테스트위치에서 상기 엘이디 칩의 특성을 측정하는 테스트부를 포함하는 것을 특징으로 한다.
여기서, 상기 회전부재는, 회전축을 중심으로 반경 방향으로 연장된 복수개의 지지프레임, 및 상기 복수개의 지지프레임의 단부측에 각각 설치되며, 상기 엘이디 칩을 안착시키는 복수개의 안착부재를 포함할 수 있다.
또한, 상기 안착부재의 전체 또는 일부는 사파이어, 수정, 유리, 철합금, 구리합금, 알루미늄합금, 스테인리스스틸, 초경합금, PTFE 금, 백금, 은 중 어느 하나를 포함하는 재질로 이루어질 수 있다. 또한, 상기 안착부재의 전체 또는 일부는 미러 코팅, 금 도금, 백금 도금, 또는 은 도금되어 있을 수 있다.
또한, 상기 안착부재는 상기 회전부재에 결합되는 안착몸체, 및 엘이디 칩에 접촉되는 접촉부재를 포함할 수 있다. 여기서, 상기 접촉부재는 사파이어로 형성되고, 상기 접촉부재에서 상기 안착몸체를 향한 면은 미러 코팅되어 있을 수 있다.
다음으로, 상기 테스트부는, 상기 테스트위치에서 상기 엘이디 칩에 접촉하여 상기 엘이디 칩을 발광시키는 접촉유닛, 및 상기 테스트 위치에서 상기 엘이디 칩의 광특성을 측정하는 측정유닛을 포함할 수 있다.
본 발명은, 상기 접촉유닛에 설치되며, 상기 엘이디 칩이 발하는 광을 상기 테스트부로 전달하는 전달부재를 더 포함할 수 있다.
또한, 상기 전달부재는 상기 엘이디 칩이 발하는 광을 상기 측정유닛으로 전달하는 전달면을 포함하고, 상기 전달면에는 상기 엘이디 칩이 발하는 광이 통과되는 통과공이 형성되어 있을 수 있다.
여기서, 상기 통과공은 상기 측정유닛에서 상기 테스트위치에 위치되는 엘이디 칩을 향하는 방향으로 크기가 점차 줄어들게 형성될 수 있다.
또한, 상기 전달면의 전체 또는 일부는 미러 코팅되어 있을 수 있다.
다음으로, 상기 접촉유닛은, 상기 엘이디 칩에 접촉하는 탈부착 가능한 접촉핀을 포함할 수 있다. 또한, 상기 접촉유닛은 프로브 카드일 수 있다.
또한, 상기 측정유닛은, 상기 테스트위치에서 상기 엘이디 칩이 발하는 광을 내부로 입사하는 수광공을 포함하는 적분구일 수 있다.
다음으로, 상기 테스트는, 상기 접촉유닛을 이동시키는 접촉이동유닛을 더 포함할 수 있다. 여기서, 상기 접촉이동유닛은, 상기 접촉유닛을 회전시키는 접촉회전기구를 포함할 수 있다.
또한, 상기 테스트부는, 상기 측정유닛을 승하강시키는 측정승하강유닛을 더 포함할 수 있다.
도 1은 본 발명에 따른 엘이디 칩 테스트장치의 개략적인 사시도이다.
도 2는 공급부의 개략적인 사시도이다.
도 3은 안착부재에 대한 도 2의 A-A 단면도이다.
도 4는 본 발명의 변형된 일실시예에 따른 안착부재의 개략적인 사시도이다.
도 5는 도 4의 B-B 단면도이다.
도 6은 본 발명의 변형된 다른 실시예에 따른 안착부재의 개략적인 단면도이다.
도 7은 본 발명에 따른 엘이디 칩 테스트장치의 개략적인 정면도이다.
도 8은 접촉유닛, 이동유닛, 및 제1 전달부재의 개략적인 결합사시도이다.
도 9는 도 8의 분해사시도이다.
도 10은 도 8의 D-D 단면도이다.
도 11 및 도 12는 본 발명에 따른 엘이디 칩 테스트장치에서 엘이디 칩이 테스트되는 상태를 나타낸 도 7의 C 부분의 확대도이다.
도 13은 본 발명의 변형된 실시예에 따른 엘이디 칩 테스트장치의 개략적인 정면도이다.
도 14는 내지 도 17은 엘이디 칩이 테스트되는 과정을 나타낸 개략적인 작동상태도이다.
도 18은 본 발명의 변형된 실시예에 따른 접촉이동유닛의 개략적인 사시도이다.
도 19는 도 18의 분해사시도이다.
도 20 내지 도 22는 본 발명의 변형된 실시예에 따른 접촉이동유닛을 이용하여 엘이디 칩이 테스트되는 과정을 나타낸 개략적인 작동상태도이다.
도 23은 접촉유닛, 이동유닛, 제1 전달부재, 및 제2 전달부재의 개략적인 분해사시도이다.
도 24는 도 23의 결합 측단면도이다.
도 25 내지 도 27은 본 발명의 변형된 실시예에 따른 제2 전달부재를 나타낸 도 7의 C 부분의 확대도이다.
도 28은 본 발명의 변형된 실시예에 따른 측정유닛, 접촉유닛, 및 본체를 나타낸 개략적인 사시도이다.
도 29 및 도 30은 본 발명의 변형된 실시예에 따른 접촉유닛의 개략적인 사시도이다.
도 31은 본 발명의 변형된 실시예에 따른 접촉유닛을 포함하는 엘이디 칩 테스트장치의 개략적인 사시도이다.
도 32는 본 발명의 변형된 실시예에 따른 엘이디 칩 테스트장치의 개략적인 정면도이다.
도 33은 도 32의 테스트위치에 대한 개략적인 확대도이다.
이하에서는 본 발명에 따른 엘이디 칩 테스트장치의 바람직한 실시예를 첨부된 도면을 참조하여 상세히 설명한다.
도 1을 참고하면, 본 발명에 따른 엘이디 칩 테스트장치(1)는 공급부(2) 및 테스트부(3)를 포함한다. 상기 테스트부(3)는 측정유닛(31), 접촉유닛(32), 제1 전달부재(33, 도 8에 도시됨), 접촉이동유닛(34), 및 본체(35)를 포함할 수 있다.
<공급부(2)>
도 1 및 도 2를 참고하면, 상기 공급부(2)는 상기 측정유닛(31)이 엘이디 칩의 광 특성을 측정할 수 있는 테스트위치(TP)로 테스트될 엘이디 칩을 공급한다. 상기 공급부(2)는 안착부재(21), 회전부재(22), 및 회전유닛(23)을 포함할 수 있다.
도 1 내지 도 3을 참고하면, 상기 안착부재(21)에는 엘이디 칩이 안착된다. 엘이디 칩은 흡기장치(F, 도 11에 도시됨)에 의해 상기 안착부재(21)에 안착된 상태로 흡착될 수 있다. 상기 흡기장치(F, 도 11에 도시됨)는 상기 회전부재(22)에 설치될 수 있다. 상기 흡기장치(F, 도 11에 도시됨)는 상기 안착부재(21)에 형성되어 있는 관통공(21a)을 통해 상기 안착부재(21)에 안착된 엘이디 칩을 흡착할 수 있다. 상기 안착부재(21)는 전체적으로 원통형태로 형성될 수 있다.
상기 안착부재(21)는 상기 회전부재(22)에 복수개가 설치될 수 있다. 상기 회전유닛(23)이 상기 회전부재(22)를 회전시킴에 따라, 상기 안착부재(21)들은 상기 테스트위치(TP)에 순차적으로 위치될 수 있다. 상기 안착부재(21)가 상기 테스트위치(TP)에 위치될 때, 상기 안착부재(21)는 상기 측정유닛(31)의 아래에 위치될 수 있다.
안착부재(21)는 엘이디 칩을 흡착하여 고정시키는 역할을 한다. 다수의 엘이디 칩이 연속하여 안착부재(21)에 부착되므로 안착부재(21)는 내마모성이 좋고 경도가 우수한 재질로 형성되거나, 그러한 재질로 코팅되는 것이 바람직하다. 또한 엘이디 칩에서 발하는 광이 안착부재(21) 측으로 전달 또는 반사되는 경우 이들 광을 다시 측정유닛(31) 측으로 전달함으로써 광손실이 발생되지 않도록 하기 위하여, 안착부재(21)는 반사율이 높은 재질로 형성되거나, 그러한 재질로 코팅되는 것이 바람직하다.
특히 안착부재(21)는 측정 파장대역 및 그에 인접한 파장대역, 즉 200nm ~ 1000nm에서 반사율이 일정하게 높은 재질로 형성되거나, 그러한 재질로 코팅되는 것이 바람직하다. 다시 말해, 안착부재(21)의 상면에 있어서 엘이디 칩이 놓여지는 영역을 제외한 나머지 영역과, 안착부재(21)의 측면 영역으로 광이 전달될 경우, 이 광이 안착부재(21)로 다량 흡수되면 엘이디 칩의 광특성을 정확히 측정할 수 없게 되므로, 안착부재(21)는 측정 파장대역 및 그에 인접한 파장대역에서 반사율이 높은 재질로 형성되는 것이 바람직하다. 또한, 복수의 안착부재(21)에 있어서 반사율이 상이하거나, 오랜 사용으로 인한 마모 등으로 안착부재(21)의 반사율이 초기와 달라지는 경우에도 엘이디 칩의 광특성을 정확히 측정할 수 없게 되므로, 안착부재(21)의 반사율은 측정 파장대역 및 그에 인접한 파장대역에서 일정하게 높은 것이 바람직하다.
한편, 엘이디 칩이 수평형 칩인 경우는 패키징 시에 엘이디 칩의 상면에만 전극이 형성되지만, 수직형 칩의 경우에는 엘이디 칩의 상면에 하나의 전극이 형성되고, 엘이디 칩의 하부가 다른 하나의 전극이 된다. 엘이디 칩의 특성은 패키징 이후의 환경과 최대한 동일한 조건에서 측정하는 것이 바람직하므로, 수직형 칩의 경우는 엘이디 칩의 하부를 통해 통전시켜야 한다. 따라서, 수직형 칩의 경우 엘이디 칩의 발광시 전기저항을 낮출 수 있도록, 엘이디 칩의 하부와 접촉하는 안착부재(21)는 전도성이 우수한 재질로 형성되어야 한다.
이와 같이, 내마모성, 경도, 반사율, 전도성 등의 여러 조건을 고려하여, 광특성을 안정적이고 신뢰성 높게 측정하기 위해, 안착부재(21)의 전체 또는 그 일부분이 사파이어, 수정, 유리, 철합금, 구리합금, 알루미늄합금, 스테인리스스틸, 초경합금, PTFE(polytetrafluoroethylene; 폴리테트라플루오로에틸렌), 금, 백금, 은 중 어느 하나를 포함하는 재질로 형성되거나, 또는 안착부재(21)의 전체 또는 그 일부분이 미러(mirror) 코팅, 금 도금, 백금 도금, 또는 은 도금되어 있는 것이 바람직하다.
한편, 상기 안착부재(21)는 접촉부재(211) 및 제1 안착몸체(212)를 포함할 수 있다.
상기 접촉부재(211)는 상기 제1 안착몸체(212)의 일면(212a)에 결합되고, 엘이디 칩에 접촉될 수 있다. 상기 접촉부재(211)는 전도성이 우수한 재질로 형성될 수 있고, 예컨대 금, 백금, 또는 은으로 형성될 수 있다. 특히, 상기 접촉부재(211)는 상기 제1 안착몸체(212)를 금, 백금, 또는 은으로 코팅함으로써 형성될 수 있다. 상기 접촉부재(211)는 엘이디 칩이 상기 접촉유닛(32)에 의해 발광될 때, 엘이디 칩의 전기저항을 낮출 수 있다. 이에 따라, 상기 엘이디 칩 테스트장치(1)는 엘이디 칩의 광 특성 및 전기적 특성을 정확하게 측정할 수 있다.
상기 제1 안착몸체(212)는 상기 회전부재(22)에 결합된다. 상기 제1 안착몸체(212)의 일면(212a)에는 상기 접촉부재(211)가 결합된다. 상기 제1 안착몸체(212)는 전체적으로 원통형태로 형성될 수 있다.
상술한 바와 같이, 상기 접촉부재(211)가 전도성, 반사율 등이 우수한 재질인 경우 상대적으로 경도가 낮은 재질일 수 있다. 이러한 경우, 상기 안착부재(21)에 반복적으로 엘이디 칩이 놓여지게 되면, 상기 접촉부재(211)가 쉽게 마모될 수 있다.
이를 방지할 수 있도록, 상기 제1 안착몸체(212)는 상기 테스트위치(TP)에 위치되는 엘이디 칩에서 상기 측정유닛(31)을 향하는 방향(G 화살표 방향)으로 돌출되게 형성되는 복수개의 돌기(2121)를 포함할 수 있다. 상기 돌기(2121)들은 상기 제1 안착몸체(212)의 일면(212a)에 형성될 수 있다. 상기 돌기(2121)들로 인해, 상기 제1 안착몸체(212)의 일면(212a)에는 상기 측정유닛(31)에서 상기 테스트위치(TP)에 위치되는 엘이디 칩을 향하는 방향(H 화살표 방향)으로 일정 깊이 함몰되는 복수개의 홈(2122)이 형성될 수 있다.
상기 접촉부재(211)는 상기 돌기(2121)들 사이에 삽입되게 상기 제1 안착몸체(212)에 결합될 수 있다. 즉, 상기 접촉부재(211)는 상기 홈(2122)들에 삽입되게 상기 제1 안착몸체(212)의 일면(212a)에 형성될 수 있다. 이에 따라, 안착부재(21)에 반복적으로 엘이디 칩이 놓여지게 되더라도, 상기 홈(2122)들에 삽입되어 있는 접촉부재(211)가 남아있게 되므로, 상기 안착부재(21)가 오랜 시간 동안 사용되도록 할 수 있고, 엘이디 칩이 가지는 성능이 정확하게 측정되도록 할 수 있다.
상기 돌기(2121)들은 각각 전체적으로 직방체 형태로 형성될 수 있다. 상기 돌기(2121)들은 그 사이에 상기 접촉부재(211)가 삽입될 수 있는 형태이면, 직방체 형태 외에 반구 형태 등 다른 형태로도 형성될 수 있다.
상기 돌기(2121)들은 상기 제1 안착몸체(212)의 일면(212a)에 상기 홈(2122)들을 가공함으로써 형성될 수 있다. 상기 홈(2122)들 중 일부는 제1 방향으로 길게 형성되고, 나머지는 상기 제2 방향에 수직인 제2 방향으로 길게 형성될 수 있으며, 이로 인해 상기 홈(2122)들이 서로 교차됨으로써 상기 제1 안착몸체(212)의 일면(212a)에는 상기 돌기(2121)들이 격자형태를 이루며 형성될 수 있다. 상기 제1 방향 및 상기 제2 방향은 수직 외에 다른 각도일 수도 있고, 상기 홈(2122)들은 3개 이상의 서로 다른 방향으로 형성될 수도 있다.
도 1 내지 도 5를 참고하면, 본 발명의 변형된 일실시예에 따른 안착부재(21)는 다음과 같은 접촉부재(211) 및 제1 안착몸체(212)를 포함할 수 있다.
상기 접촉부재(211)는 상기 제1 안착몸체(212)의 일면(212a)에 결합되고, 엘이디 칩에 접촉될 수 있다. 상기 접촉부재(211)는 경도가 우수한 재질로 형성될 수 있고, 예컨대 사파이어, 수정, 유리, 철합금, 구리합금, 알루미늄합금, 스테인리스스틸, 초경합금, PTFE로 형성될 수 있다. 이로 인해, 상기 안착부재(21)에 반복적으로 엘이디 칩이 놓여지더라도, 상기 접촉부재(211)가 쉽게 마모되지 않도록 할 수 있다.
상기 제1 안착몸체(212)의 일면(212a)에는 상기 접촉부재(211)가 삽입되는 결합홈(2123)이 형성될 수 있다. 상기 결합홈(2123)은 상기 측정유닛(31)에서 상기 테스트위치(TP)에 위치되는 엘이디 칩을 향하는 방향(H 화살표 방향)으로 일정 깊이 함몰되어 형성될 수 있다.
상기 결합홈(2123)은 전체적으로 원반형태로 형성될 수 있다. 상기 결합홈(2123)은 상기 접촉부재(211)가 삽입될 수 있도록 상기 접촉부재(211)와 대략 일치하는 형태로 형성될 수 있고, 원반형태 외에 사각판형 등 다른 형태로 형성될 수도 있다. 상기 결합홈(2123)은 상기 접촉부재(211)와 대략 일치하는 크기로 형성될 수 있다. 상기 접촉부재(211)는 상기 결합홈(2123)을 통해 상기 제1 안착몸체(212)에 끼워맞춤방식에 의해 결합될 수 있다. 상기 접촉부재(211)는 점착물질 등에 의해 접착됨으로써 상기 제1 안착몸체(212)에 결합될 수도 있다.
상술한 바와 같이, 상기 접촉부재(211)가 경도가 우수한 재질로 형성되는 경우 상대적으로 반사율이 낮은 재질일 수 있다. 예컨대, 상기 접촉부재(211)가 사파이어, 수정, 유리, 철합금, 구리합금, 알루미늄합금, 스테인리스스틸, 초경합금, 또는 PTFE로 형성되는 경우, 엘이디 칩이 발하는 광 중에서 상기 측정유닛(31)으로 입사되지 못하는 광이 발생할 수 있다.
이를 방지할 수 있도록, 상기 안착부재(21)는 반사부재(213)를 더 포함할 수 있다. 상기 반사부재(213)는 상기 접촉부재(211)와 상기 제1 안착몸체(212) 사이에 위치되게 상기 결합홈(2123)에 삽입될 수 있다. 상기 반사부재(213)는 엘이디 칩이 발하는 광을 반사시켜서 엘이디 칩이 발하는 광이 상기 측정유닛(31) 쪽으로 전달되도록 한다. 엘이디 칩이 아래로 발하는 광은 상기 반사부재(213)에 의해 반사되어 상기 측정유닛(31) 쪽으로 전달될 수 있다. 상기 반사부재(213)는 반사율이 높은 재질로 형성될 수 있고, 예컨대 금속 또는 수지재료에 미러 코팅함으로써 형성될 수 있다. 이에 따라 상기 측정유닛(31)으로 더 많은 양의 광이 입사되도록 할 수 있으므로, 상기 엘이디 칩 테스트장치(1)는 엘이디 칩이 가지는 성능을 더 정확하게 측정할 수 있다.
상기 반사부재(213)는 상기 접촉부재(211)가 상기 결합홈(2123)에 삽입되는 일면(211a)을 미러 코팅(Mirror Coating)함으로써 형성될 수 있다. 예컨대, 상기 접촉부재(211)는 사파이어로 형성될 수 있고, 상기 접촉부재(211)가 상기 결합홈(2123)에 삽입되는 일면(211a)을 미러 코팅(Mirror Coating)함으로써, 엘이디 칩이 발하는 광이 상기 측정유닛(31) 쪽으로 전달되도록 할 수 있다. 이 경우 사파이어로 형성된 접촉부재(211)가 반복 사용으로 인한 표면 손상으로 반사율이 떨어지더라도, 사파이어의 배면 측이 미러 코팅되어 있기 때문에 시간이 지나도 일정하게 높은 수준의 반사율을 유지할 수 있게 된다.
상기 안착부재(21)에 형성되어 있는 관통공(21a)은 상기 접촉부재(211), 상기 제1 안착몸체(212), 및 상기 반사부재(213)를 관통하여 형성될 수 있다. 상기 흡기장치(F, 도 11에 도시됨)는 상기 관통공(21a)을 통해 상기 안착부재(21)에 안착된 엘이디 칩을 흡착할 수 있다.
도 1 내지 도 6을 참고하면, 본 발명의 변형된 다른 실시예에 따른 안착부재(21)는 제2 안착몸체(214)를 더 포함할 수 있다.
상기 제2 안착몸체(214)는 상기 제1 안착몸체(212)에서 엘이디 칩이 안착되는 부분이 관통되는 관통공을 포함하고, 상기 관통공을 통해 상기 제1 안착몸체(212)에서 엘이디 칩이 안착되는 부분이 관통된 상태로 상기 제1 안착몸체(212)에 결합될 수 있다.
상기 제2 안착몸체(214)의 상면과 상기 제1 안착몸체(212)의 상면은 서로 다른 높이로 형성될 수 있다. 도 6에 도시된 바와 같이, 상기 제1 안착몸체(212)가 상기 제2 안착몸체(214)의 상면을 기준으로 하여 위로 돌출되게 형성될 수 있다. 도시되지는 않았지만, 상기 제2 안착몸체(214)가 상기 제1 안착몸체(212)의 상면을 기준으로 하여 위로 돌출되게 형성될 수도 있다. 상기 제2 안착몸체(214)는 전체적으로 원통형태로 형성될 수 있다.
상기 제2 안착몸체(214)에는 엘이디 칩이 아래로 발하는 광이 상기 측정유닛(31)으로 전달되도록 하는 경사면(2141)이 형성되어 있다. 이 경우, 상기 측정유닛(31)은 상기 테스트위치(TP)에 위치되는 엘이디 칩의 위에 위치될 수 있다.
상기 경사면(2141)은 상기 제2 안착몸체(214)의 상면에서 일정 깊이 함몰되어 형성되는 경사홈(2142)에 의해 형성될 수 있다. 상기 경사홈(2142)은 상기 제2 안착몸체(214)의 상면에서 아래(H 화살표 방향)로 점차적으로 크기가 줄어들게 형성될 수 있다. 이에 따라, 상기 경사면(2141)은 외측방향(E 화살표 방향)으로 기울어지게 형성될 수 있다. 상기 제2 안착몸체(214)는 전체적으로 원통형태로 형성될 수 있고, 상기 경사홈(2142)은 상기 제2 안착몸체(214)의 상면에서 아래로 점차적으로 직경이 줄어들게 형성될 수 있다.
상기 경사면(2141)에 의해 더 많은 양의 광이 상기 측정유닛(31)으로 입사되도록 할 수 있으므로, 본 발명에 따른 엘이디 칩 테스트장치(1)는 엘이디 칩이 가지는 성능을 정확하게 측정할 수 있다. 상기 경사면(2141)은 반사율이 높은 물질로 형성되거나, 그러한 물질로 코팅될 수 있다. 예컨대 경사면(2141)은 금속 또는 그 합금의 표면을 연마한 것일 수 있으며, 또는 금속이나 수지 물질 등을 미러 코팅한 것일 수 있다.
도 1 및 도 2를 참고하면, 상기 회전부재(22)는 상기 본체(35) 옆에 설치된다.
상기 회전부재(22)에는 상기 안착부재(21)가 복수개 설치될 수 있다. 상기 회전부재(22)는 상기 회전유닛(23)에 의해 회전될 수 있다. 상기 회전부재(22)가 회전됨에 따라, 상기 안착부재(21)들은 상기 테스트위치(TP)에 순차적으로 위치될 수 있고, 상기 안착부재(21)들에 안착되어 있는 테스트될 엘이디 칩들이 상기 테스트위치(TP)에 순차적으로 위치될 수 있다.
상기 회전부재(22)에는 상기 안착부재(21)가 회전축(22a)을 중심으로 동일한 각도로 이격되어서 복수개가 설치될 수 있다. 이에 따라, 상기 회전유닛(23)은 동일한 각도로 상기 회전부재(22)를 회전, 정지시킴으로써, 상기 안착부재(21)들을 상기 테스트위치(TP)에 순차적으로 위치시킬 수 있다.
예컨대, 상기 회전부재(22)에는 상기 안착부재(21)가 상기 회전축(22a)을 중심으로 45°씩 이격되어서 8개가 설치될 수 있다. 이 경우, 상기 회전유닛(23)이 상기 회전부재(22)를 45°씩 회전시킨 후에 정지시킴으로써, 상기 테스트위치(TP)에는 상기 안착부재(21)들이 순차적으로 위치될 수 있다. 상기 회전부재(22)에는 상기 안착부재(21)가 상기 회전축(22a)을 중심으로 30°씩 이격되어서 12개가 설치될 수도 있다. 이 경우, 상기 회전유닛(23)이 상기 회전부재(22)를 30°씩 회전시킨 후에 정지시킴으로써, 상기 테스트위치(TP)에는 상기 안착부재(21)들이 순차적으로 위치될 수 있다.
즉, 상기 회전부재(22)에 설치되는 안착부재(21)의 개수를 N개(N은 1보다 큰 정수)라 정의할 때, 상기 회전부재(22)에는 상기 안착부재(21)가 상기 회전축(22a)을 중심으로 (360/N)°씩 이격되어서 N개가 설치될 수 있다. 상기 회전유닛(23)이 상기 회전부재(22)를 (360/N)°씩 회전시킨 후에 정지시킴으로써, 상기 테스트위치(TP)에는 상기 안착부재(21)들이 순차적으로 위치될 수 있다. 상기 안착부재(21)는 상기 회전부재(22)에 짝수개로 설치되는 것이 바람직하다.
상기 안착부재(21)들 중 어느 하나가 상기 테스트위치(TP)에 위치될 때, 나머지 안착부재(21)들 중 어느 하나는 테스트될 엘이디 칩이 로딩되는 로딩위치(LP)에 위치될 수 있고, 나머지 안착부재(21)들 중 어느 하나는 테스트된 엘이디 칩이 언로딩되는 언로딩위치(ULP)에 위치될 수 있다.
엘이디 칩은 상기 로딩위치(LP)에 위치된 안착부재(21)에 안착되고, 상기 테스트위치(TP)로 이동되어 테스트된 후에, 상기 언로딩위치(ULP)로 이동되어 언로딩될 수 있다. 즉, 상기 공급부(2)는 테스트될 엘이디 칩을 상기 테스트위치(TP)로 공급할 수 있고, 테스트된 엘이디 칩을 상기 언로딩위치(TLP)로 공급할 수 있다. 상기 로딩위치(LP)에 위치되는 안착부재(21)에 테스트될 엘이디 칩을 로딩하는 공정 및 상기 언로딩위치(ULP)에 위치되는 안착부재(21)에서 테스트된 엘이디 칩을 언로딩하는 공정은, 도시되지는 않았지만, 엘이디 칩을 이송할 수 있는 이송수단에 의해 이루어질 수 있다.
상기 안착부재(21)들은 상기 테스트위치(TP), 상기 로딩위치(LP), 및 상기 언로딩위치(ULP)에 적어도 하나씩 동시에 위치될 수 있도록 상기 회전부재(22)에 설치될 수 있다.
상기 회전부재(22)는 상기 안착부재(21)들이 각각 설치되는 지지프레임(221)을 포함할 수 있다. 상기 회전부재(22)는 상기 안착부재(21)와 동일한 개수의 지지프레임(221)을 포함할 수 있다. 예컨대, 상기 회전부재(22)에 8개의 안착부재(21)가 설치되는 경우, 상기 회전부재(22)는 8개의 지지프레임(221)을 포함할 수 있다. 이 경우, 상기 지지프레임(221)들은 회전축(22a)을 중심으로 서로 45°씩 이격될 수 있다. 상기 지지프레임(221)은 상기 안착부재(21)가 상기 테스트위치(TP), 상기 로딩위치(LP), 및 상기 언로딩위치(ULP)에 위치될 수 있도록, 상기 회전축(22a)으로부터 외측으로 길게 형성될 수 있다.
상기 지지프레임(221)의 상면에는 상기 안착부재(21)가 설치될 수 있고, 상기 지지프레임(221)의 저면에는 상기 흡기장치(F, 도 11에 도시됨)가 설치될 수 있다. 상기 지지프레임(221)에서 상기 안착부재(21)가 설치되는 위치에는, 상기 안착부재(21)에 형성되는 관통공(21a, 도 11에 도시됨)에 연통되는 관통공(22b, 도 11에 도시됨)이 형성될 수 있다. 상기 관통공(21a, 22b, 도 11에 도시됨)들은 전체적으로 원통형태로 형성될 수 있다.
도 1 및 도 2를 참고하면, 상기 회전유닛(23)은 상기 테스트위치(TP)에 상기 안착부재(21)들이 순차적으로 위치되도록 상기 회전부재(22)를 회전시킨다. 상기 회전유닛(23)은 상기 회전부재(22)의 저면에 결합될 수 있고, 상기 회전부재(22)를 회전축(22a)을 중심으로 회전시킬 수 있다.
상기 회전유닛(23)은 모터(231)를 포함할 수 있다. 상기 모터(231)는 상기 회전축(22a)에 직접 결합되어서 상기 회전부재(22)를 회전시킬 수 있고, 상기 회전축(22a)에 결합된 샤프트(미도시)에 결합되어서 상기 회전부재(22)를 회전시킬 수도 있다. 상기 모터(231)가 상기 샤프트(미도시)에서 소정 거리 이격된 위치에 설치되는 경우, 상기 회전유닛(23)은 상기 모터(231) 및 샤프트(미도시)를 연결하는 풀리 및 벨트를 더 포함할 수 있다.
<테스트부(3)>
도 1 내지 도 7을 참고하면, 상기 테스트부(3)는 상기 회전부재(21) 옆에 설치되고, 상기 테스트위치(TP)에 위치되는 엘이디 칩을 테스트할 수 있다. 상기 테스트부(3)는 상술한 바와 같이 측정유닛(31), 접촉유닛(32), 제1 전달부재(33, 도 8에 도시됨), 접촉이동유닛(34), 및 본체(35)를 포함할 수 있다.
상기 측정유닛(31)은 엘이디 칩이 발하는 광이 입사되는 수광공(311, 도 11에 도시됨)을 포함한다. 상기 측정유닛(31)은 엘이디 칩에 대한 테스트 결과를 분석할 수 있는 테스터(미도시)와 연결되고, 상기 테스터(미도시)와 연계하여 상기 수광공(311, 도 11에 도시됨)을 통해 입사되는 광으로부터 엘이디 칩의 광 특성을 측정할 수 있다. 광 특성은 휘도, 파장, 광속, 광도, 조도, 분광분포, 색온도 등일 수 있다. 상기 측정유닛(31)으로 적분구가 이용될 수 있다.
상기 측정유닛(31)은 상기 수광공(311, 도 11에 도시됨)이 엘이디 칩의 위에 위치되게 상기 본체(35)에 결합될 수 있다. 상기 측정유닛(31)에는 분광계(Spectrometer) 또는 광검출기(Photodetector) 중 적어도 하나가 설치될 수 있다. 상기 측정유닛(31)은 전체적으로 구형으로 형성될 수 있고, 전체적으로 원형으로 형성되는 수광공(311, 도 11에 도시됨)을 포함할 수 있다.
도 1 내지 도 10을 참고하면, 상기 접촉유닛(32)은 테스터(미도시)와 연결될 수 있고, 테스터(미도시)와 연계하여 엘이디 칩을 발광시킬 수 있다. 이에 따라, 상기 측정유닛(31)은 엘이디 칩의 광 특성을 측정할 수 있다. 상기 접촉유닛(32)은 테스터(미도시)와 연계하여 엘이디 칩의 전기적 특성을 테스트할 수 있다.
상기 접촉유닛(32)은 엘이디 칩에 접촉되는 접촉핀(321) 및 상기 접촉이동유닛(34)에 결합되는 접촉몸체(322)를 포함할 수 있다. 상기 접촉유닛(32)은 상기 접촉이동유닛(34)에 의해 승하강될 수 있고, 수평방향으로 이동될 수 있다. 상기 접촉유닛(32)은 테스터(미도시)와 연계하여 상기 접촉핀(321)에 접촉되는 엘이디 칩을 발광시킬 수 있다. 상기 접촉유닛(32)은 복수개의 접촉핀(321)을 포함할 수 있다. 상기 접촉유닛(32)으로 프로브카드(Probecard)가 이용될 수 있다.
상기 접촉몸체(322)는 상기 접촉핀(321)과 전기적으로 연결되는 단자(3221)을 포함할 수 있다. 상기 접촉핀(321)은 상기 단자(3221)에 접촉된 상태로 상기 접촉몸체(322)에 결합된다. 상기 접촉핀(321)은 상기 단자(3221)를 통해 테스터(미도시)와 전기적으로 연결될 수 있다. 상기 접촉몸체(322)는 복수개의 단자(3221)를 포함할 수 있고, 상기 단자(3221)들 각각에 상기 접촉핀(321)이 연결될 수 있다.
상기 접촉몸체(322)는 상기 측정유닛(31)과 상기 접촉핀(321)에 접촉되는 엘이디 칩 사이에 위치되게 상기 접촉이동유닛(34)에 결합될 수 있다. 상기 접촉몸체(322)의 위에는 상기 측정유닛(31)이 위치되고, 상기 접촉몸체(322)의 아래에는 상기 테스트위치(TP)에 위치되는 엘이디 칩이 위치될 수 있다.
상기 접촉몸체(322)는 상기 접촉핀(321)이 통과될 수 있는 삽입공(3222)을 포함할 수 있다. 상기 접촉핀(321)은 일측이 상기 접촉몸체(322)의 상면에 형성되어 있는 단자(3221)에 접속되고, 타측이 상기 삽입공(3222)을 통과하여 상기 접촉몸체(322)의 아래에 위치되는 엘이디 칩에 접촉될 수 있다. 엘이디 칩이 발하는 광은 상기 삽입공(3222) 및 상기 수광공(311, 도 11에 도시됨)을 지나 상기 측정유닛(31) 내부로 입사될 수 있다. 상기 접촉몸체(322)는 전체적으로 사각판형으로 형성될 수 있고, 전체적으로 원형으로 형성되는 삽입공(3222)을 포함할 수 있다.
상기 접촉유닛(32)은 연결유닛(323)을 포함할 수 있다. 상기 접촉몸체(322)에는 일측에 적어도 하나 이상의 연결단자(3223)가 형성되어 있고, 상기 연결단자(3223)를 통해 상기 연결유닛(323)과 전기적으로 연결될 수 있다. 상기 연결유닛(323)은 테스터(미도시)와 연결될 수 있고, 상기 접촉핀(321)은 상기 접촉몸체(322) 및 상기 연결유닛(323)을 통해 테스터(미도시)와 전기적으로 연결될 수 있다.
상기 연결유닛(323)은 상기 접촉몸체(322)가 삽입되는 연결홈(3231)을 포함할 수 있다. 상기 접촉몸체(322)는 상기 연결홈(3231)에 삽입되는 일측에 적어도 하나 이상의 연결단자(3223)를 포함할 수 있다. 상기 연결유닛(323)은 상기 접촉이동유닛(34)에 분리 가능하게 결합될 수 있고, 상기 접촉몸체(322)는 상기 연결유닛(323)에 삽입되어 상기 측정유닛(31)과 상기 테스트위치(TP)에 위치되는 엘이디 칩 사이에 위치될 수 있다.
도 1 내지 도 11을 참고하면, 상기 제1 전달부재(33)는 상기 접촉유닛(32) 및 상기 테스트위치(TP)에 위치되는 엘이디 칩 사이에 위치되게 설치된다. 이에 따라, 상기 엘이디 칩 테스트장치(1)는 상기 측정유닛(31)과 엘이디 칩 사이 일부를 상기 제1 전달부재(33)로 차단할 수 있으므로, 종래 기술에 따른 테스트장치에 비해 엘이디 칩이 발하는 광이 상기 측정유닛(31)과 엘이디 칩 사이로 통과하는 양을 줄일 수 있다.
상기 제1 전달부재(33)는 상기 접촉이동유닛(34)에 결합될 수 있다. 이에 따라, 상기 접촉유닛(32)을 교체할 필요가 있는 경우, 상기 제1 전달부재(33)에 관계없이 상기 접촉유닛(32)만을 교체할 수 있다.
상기 제1 전달부재(33)는 제1 통과공(331) 및 제1 전달면(332)을 포함한다.
상기 제1 통과공(331)은 상기 제1 전달부재(33)를 관통하여 형성될 수 있다. 상기 접촉핀(321)은 상기 제1 통과공(331)을 통과하여 상기 제1 전달부재(33) 아래에 위치하는 엘이디 칩에 접촉될 수 있다. 즉, 상기 접촉핀(321)은 상기 제1 통과공(331)을 통과하여 상기 테스트위치(TP)에 위치되는 엘이디 칩에 접촉될 수 있다. 복수개의 접촉핀(321)이 상기 제1 통과공(331)을 통과하여 상기 테스트위치(TP)에 위치되는 엘이디 칩에 접촉될 수도 있다. 엘이디 칩이 발하는 광은 상기 제1 통과공(331) 및 상기 수광공(311)을 통과하여 상기 측정유닛(31) 내부로 입사될 수 있다. 이에 따라, 상기 접촉핀(321)은 상기 제1 전달부재(33)에 방해됨이 없이 엘이디 칩에 접촉될 수 있고, 엘이디 칩이 발하는 광은 상기 제1 전달부재(33)에 방해됨이 없이 상기 측정유닛(31) 내부로 입사될 수 있다.
상기 제1 전달부재(33)에는 상기 제1 통과공(331)이 상기 측정유닛(31)에서 상기 테스트위치(TP)에 위치되는 엘이디 칩을 향하는 방향(H 화살표 방향)으로 크기가 점차적으로 줄어들게 형성될 수 있다. 즉, 상기 제1 통과공(331)은 상기 제1 전달부재(33)의 상면(33a)에서 하측 방향(H 화살표 방향)으로 크기가 점차적으로 줄어들게 형성될 수 있다. 상기 제1 통과공(331)은 상기 제1 전달부재(33)의 상면(33a)에서 하측 방향(H 화살표 방향)으로 직경이 점차적으로 줄어들게 형성될 수 있고, 전체적으로 반구 형태로 형성될 수 있다.
상기 제1 전달면(332)은 엘이디 칩이 발하는 광이 상기 수광공(311)을 통해 상기 측정유닛(31)으로 입사되도록 엘이디 칩이 발하는 광을 상기 측정유닛(31) 쪽으로 전달한다. 엘이디 칩이 측면으로 발하는 광은 상기 제1 전달면(332)에 의해 상기 측정유닛(31) 쪽으로 전달될 수 있다. 이에 따라, 상기 측정유닛(31) 내부로 더 많은 양의 광이 입사되도록 할 수 있으므로, 상기 엘이디 칩 테스트장치(1)는 엘이디 칩이 가지는 성능을 더 정확하게 측정할 수 있다. 상기 제1 전달면(332)은 반사율이 높은 물질로 형성되거나, 그러한 물질로 코팅될 수 있다. 예컨대 상기 제1 전달면(332)은 금속 또는 그 합금의 표면을 연마한 것일 수 있으며, 또는 금속이나 수지 물질 등을 미러 코팅한 것일 수 있다.상기 제1 전달면(332)은 엘이디 칩이 발하는 광을 상기 측정유닛(31) 쪽으로 전달할 수 있도록 상기 제1 통과공(331)의 외면을 따라 형성될 수 있다. 즉, 상기 제1 전달면(332)은, 도 10의 확대도에 도시된 바와 같이, 상기 제1 전달부재(33)의 저면(33b)에서 상측 방향(G 화살표 방향)을 향할수록 상기 제1 통과공(331)의 중심(I)으로부터 멀어지게 형성될 수 있다. 상기 제1 통과공(331)이 전체적으로 반구 형태로 형성되는 경우, 상기 제1 전달면(332)은 전체적으로 곡면을 이루며 형성될 수 있다.
상기 제1 전달부재(33)는 제1 돌출부재(333)를 더 포함할 수 있다.
상기 제1 돌출부재(333)는 상기 테스트위치(TP)에 위치되는 엘이디 칩에서 상기 측정유닛(31)을 향하는 방향(G 화살표 방향)으로 돌출되게 형성될 수 있다. 즉, 상기 제1 돌출부재(333)는 상기 제1 전달부재(33)의 상면(33a)에서 상측 방향(G 화살표 방향)으로 돌출되게 형성될 수 있다. 상기 제1 돌출부재(333)는 상기 삽입공(3222)에 삽입될 수 있다.
상기 제1 돌출부재(333)는 상기 제1 전달면(332)에 이어지게 형성되는 제1 경사면(3331)을 포함할 수 있다. 상기 제1 전달면(332) 및 상기 제1 경사면(3331)은 동일한 기울기를 이루며 형성될 수 있다. 즉, 상기 제1 전달면(332) 및 상기 제1 경사면(3331)은 하나의 경사각을 이루며 형성될 수 있다. 상기 제1 전달면(332) 및 상기 제1 경사면(3331)은 하나의 곡면을 이루며 형성될 수도 있다. 이에 따라, 상기 제1 전달면(332) 및 상기 제1 경사면(3331)은 엘이디 칩이 발하는 광을 상기 측정유닛(31) 쪽으로 전달할 수 있다.
따라서, 상기 제1 전달부재(33)가 엘이디 칩이 발하는 광을 상기 측정유닛(31) 쪽으로 전달하기 위한 면적을 증가시킬 수 있으므로, 상기 엘이디 칩 테스트장치(1)는 상기 측정유닛(31) 내부로 더 많은 양의 광이 입사되도록 할 수 있고, 엘이디 칩이 가지는 성능을 더 정확하게 측정할 수 있다. 상기 제1 경사면(3331)은 반사율이 높은 물질로 형성되거나, 그러한 물질로 코팅될 수 있다. 예컨대 상기 제1 경사면(3331)은 금속 또는 그 합금의 표면을 연마한 것일 수 있으며, 또는 금속이나 수지 물질 등을 미러 코팅한 것일 수 있다.
도 1 내지 도 12를 참고하면, 상기 접촉이동유닛(34)은 접촉지지기구(341), 접촉결합기구(342), 및 접촉승하강기구(343)를 포함할 수 있다.
상기 접촉지지기구(341)는 상기 접촉유닛(32)을 지지한다. 상기 접촉유닛(32)은 상기 접촉결합기구(342)에 의해 상기 접촉지지기구(341)에 분리 가능하게 결합될 수 있다. 상기 접촉지지기구(341)에는 상기 접촉유닛(32) 아래로 상기 제1 전달부재(33)가 결합된다. 이에 따라, 엘이디 칩의 종류가 바뀌거나 상기 접촉핀(321)이 손상되는 등 상기 접촉유닛(32)을 교체할 필요가 있는 경우, 상기 제1 전달부재(33)에 관계없이 상기 접촉유닛(32)만을 교체할 수 있다.
상기 접촉지지기구(341)에는 상기 접촉몸체(322) 및 상기 연결유닛(323) 중 적어도 하나가 결합될 수 있다. 상기 접촉지지기구(341)에는 상기 제1 전달부재(33)가 삽입되는 관통공이 형성되어 있다. 상기 제1 전달부재(33)는 상기 관통공에 삽입되어 끼워맞춤방식에 의해 상기 접촉지지기구(341)에 결합될 수 있다. 상기 제1 전달부재(33)는 상기 관통공에 삽입되어 볼트 등의 체결구에 의해 상기 접촉지지기구(341)에 결합될 수도 있다.
상기 접촉지지기구(341)는 상기 접촉승하강기구(343)에 결합될 수 있다. 상기 접촉지지기구(341)가 상기 접촉승하강기구(343)에 의해 승하강됨에 따라, 상기 접촉지지기구(341)에 결합되는 상기 접촉유닛(32) 및 상기 제1 전달부재(33)도 함께 승하강될 수 있다. 상기 접촉지지기구(341)는 전체적으로 사각 판형으로 형성될 수 있고, 상기 접촉승하강기구(343)에서 측정유닛(31)을 향하는 방향으로 길게 형성될 수 있다.
상기 접촉결합기구(342)는 상기 접촉유닛(32)을 상기 접촉지지기구(341)에 분리 가능하게 결합시킨다. 상기 접촉결합기구(342)로 볼트 등의 체결부재가 이용될 수 있다. 상기 접촉유닛(32)은 상기 접촉결합기구(342)가 관통되는 관통공을 포함할 수 있고, 상기 접촉지지기구(341)는 상기 접촉결합기구(342)가 결합되는 홈을 포함할 수 있다.
도 1 내지 도 12를 참고하면, 상기 접촉승하강기구(343)는 상기 접촉유닛(32)을 수직방향(Z축 방향, 도 2에 도시됨)으로 이동시킬 수 있다. 상기 접촉승하강기구(343)는 상기 접촉핀(321)이 엘이디 칩에 접촉되도록 상기 접촉유닛(32)을 하강시킬 수 있다. 상기 접촉승하강기구(343)는 엘이디 칩에 대한 테스트가 완료되면, 상기 접촉핀(321)과 엘이디 칩이 접촉에 의해 손상되지 않도록 상기 접촉유닛(32)을 상승시킬 수 있다. 상기 접촉승하강기구(343)는 상기 접촉지지기구(341)를 승하강시킴으로써 상기 접촉유닛(32)을 승하강시킬 수 있다.
상기 접촉승하강기구(343)는 상기 제1 전달부재(33)가 제1 위치 또는 제2 위치에 위치되도록 상기 접촉지지기구(341)를 승하강시킬 수 있다. 상기 접촉지지기구(341)에는 상기 제1 전달부재(33)가 결합된다.
상기 제1 전달부재(33)가 상기 제1 위치에 위치될 때, 도 11에 도시된 바와 같이, 상기 제1 전달부재(33)는 상기 안착부재(21) 위에 위치된다. 상기 접촉승하강기구(343)는 상기 제1 전달면(332) 하단(332a)이 상기 안착부재(21) 상면(21b) 위에 위치되게 상기 접촉지지기구(341)를 상승시킬 수 있다. 상기 제1 전달부재(33)가 상기 제1 위치에 위치되면, 상기 접촉핀(321)은 상기 안착부재(21)에 안착되어 있는 엘이디 칩으로부터 소정 거리 이격된 위치에 위치된다.
상기 제1 전달부재(33)가 상기 제2 위치에 위치될 때, 도 12에 도시된 바와 같이, 상기 제1 전달부재(33)는 상기 제1 통과공(331)에 상기 안착부재(21)가 삽입되는 위치에 위치된다. 즉, 상기 제1 전달부재(33)의 저면(33b)은 엘이디 칩이 안착되는 상기 안착부재(21)의 상면(21b) 보다 아래에 위치된다. 상기 접촉승하강기구(343)는 상기 제1 전달면(332) 하단(332a)이 상기 안착부재(21) 상면(21b) 아래에 위치되게 상기 접촉지지기구(341)를 하강시킬 수 있다. 상기 제1 전달부재(33)가 상기 제2 위치에 위치되면, 상기 접촉핀(321)은 상기 안착부재(21)에 안착되어 있는 엘이디 칩에 접촉되고, 상기 접촉유닛(32)은 상기 접촉핀(321)에 접촉되는 엘이디 칩을 발광시킨다.
이에 따라, 엘이디 칩이 측면으로 발하는 광은 상기 제1 전달면(332)에 의해 상기 측정유닛(31) 쪽으로 전달될 수 있으므로, 상기 측정유닛(31) 내부로 더 많은 광이 입사될 수 있다. 따라서, 상기 엘이디 칩 테스트장치(1)는 엘이디 칩이 가지는 성능을 더 정확하게 측정할 수 있다.
상기 접촉승하강기구(343)는 상기 테스트위치(TP)에 테스트될 엘이디 칩이 위치되면, 상기 제1 전달부재(33)가 상기 제2 위치에 위치되게 상기 접촉지지기구(341)를 하강시킨다. 상기 접촉승하강기구(343)는 엘이디 칩에 대한 테스트가 완료되면, 상기 제1 전달부재(33)가 상기 제1 위치에 위치되게 상기 접촉지지기구(341)를 상승시킨다. 그 후에, 상기 회전유닛(23)은 상기 회전부재(22)를 회전시킬 수 있다.
따라서, 상기 회전부재(22)가 회전되어도, 상기 안착부재(21) 또는 상기 안착부재(21)에 안착되어 있는 엘이디 칩은 상기 제1 전달부재(33)와 상기 접촉핀(321)에 충돌되지 않을 수 있다. 상기 테스트위치(TP)에 새로운 엘이디 칩이 위치되면, 상기 회전유닛(23)은 상기 회전부재(22)를 정지시킬 수 있고, 상기 접촉승하강기구(343)는 상기 제1 전달부재(33)가 상기 제2 위치에 위치되게 상기 접촉지지기구(341)를 하강시킬 수 있다.
상기 접촉승하강기구(343)는 모터 및 상기 모터와 상기 접촉유닛(32)에 각각 결합되는 연결수단을 이용하여 상기 접촉유닛(32)을 승하강시킬 수도 있다. 상기 연결수단은 풀리 및 벨트, 볼스크류, 캠부재 등일 수 있다. 상기 접촉승하강기구(343)는 유압실린더 또는 공압실린더를 이용하여 상기 접촉유닛(32)을 승하강시킬 수도 있다.
여기서, 상기 테스트위치(TP)에 위치되는 엘이디 칩은 상기 안착부재(21)에서 항상 동일한 위치에 안착되어 있지 않을 수 있다. 엘이디 칩이 상기 로딩위치(LP)에서 상기 안착부재(21)에 로딩될 때 일정한 위치에 안착되지 않을 수 있고, 엘이디 칩이 상기 로딩위치(LP)에서 상기 테스트위치(TP)로 이동될 때 원심력 등에 의해 이동되어서 상기 안착부재(21)에 안착된 상태가 변화될 수 있기 때문이다. 이러한 경우에도 정확한 테스트가 이루어질 수 있도록, 상기 접촉이동유닛(34)은 상기 접촉유닛(32)을 수평방향(X축 방향 및 Y축 방향, 도 1에 도시됨)으로 이동시키는 접촉이동기구(344)를 더 포함할 수 있다.
상기 접촉이동기구(344)는 상기 접촉핀(321)이 엘이디 칩에 접촉될 수 있는 위치에 위치되도록 상기 접촉유닛(32)을 이동시킬 수 있다. 상기 접촉이동기구(344)에는 상기 접촉승하강기구(343)가 결합될 수 있다. 상기 접촉이동기구(344)는 상기 접촉승하강기구(343)를 이동시킴으로써, 상기 접촉유닛(32)을 이동시킬 수 있다. 상기 접촉이동기구(344)에 상기 접촉지지기구(341)가 결합되고, 상기 접촉이동기구(344)가 상기 접촉승하강기구(343)에 결합될 수도 있다.
상기 접촉이동기구(344)는 유압실린더 또는 공압실린더를 이용하여 상기 접촉유닛(32)을 이동시킬 수 있다. 상기 접촉이동기구(344)는 모터 및 상기 모터와 상기 접촉유닛(32)에 각각 결합되는 연결수단을 이용하여 상기 접촉유닛(32)을 이동시킬 수도 있다. 상기 연결수단은 풀리 및 벨트, 볼스크류, 캠부재 등일 수 있다.
상기 접촉이동기구(344)는 상기 접촉유닛(32)을 제1 수평방향(X축 방향, 도 1에 도시됨)으로 이동시키는 제1 접촉이동기구(3441) 및 상기 접촉유닛(32)을 제2 수평방향(Y축 방향, 도 1에 도시됨)으로 이동시키는 제2 접촉이동기구(3442)를 포함할 수 있다.
상기 제2 접촉이동기구(3442)에는 상기 접촉승하강기구(343)가 결합되고, 상기 제1 접촉이동기구(3441)에는 상기 제2 접촉이동기구(3442)가 결합될 수 있다. 상기 제1 접촉이동기구(3441)에는 상기 접촉승하강기구(343)가 결합되고, 상기 제2 접촉이동기구(3442)에는 상기 제1 접촉이동기구(3441)가 결합될 수도 있다.
도시되지는 않았지만, 상기 접촉이동기구(344)는 상기 안착부재(21)에 엘이디 칩이 안착되어 있는 상태를 확인하는 감지유닛(미도시)이 획득한 엘이디 칩의 상태 정보로부터 상기 접촉핀(321)이 엘이디 칩에 접촉될 수 있는 위치로 상기 접촉유닛(32)을 이동시킬 수 있다. 상기 감지유닛(미도시)은 상기 안착부재(21)에 엘이디 칩이 안착되어 있는 위치를 확인할 수 있다. 상기 감지유닛(미도시)은 상기 안착부재(21)에 엘이디 칩이 안착되어 있는 상태를 촬영할 수 있는 CCD 카메라를 포함할 수 있다.
여기서, 상기 테스트위치(TP)에 위치되는 엘이디 칩은 상기 안착부재(21)에서 항상 동일한 방향으로 안착되어 있지 않을 수 있다. 엘이디 칩이 상기 로딩위치(LP)에서 상기 안착부재(21)에 로딩될 때 일정한 방향으로 안착되지 않을 수 있고, 엘이디 칩이 상기 로딩위치(LP)에서 상기 테스트위치(TP)로 이동될 때 원심력 등에 의해 회전되어서 상기 안착부재(21)에 안착된 상태가 변화될 수 있기 때문이다.
이러한 경우에도 정확한 테스트가 이루어질 수 있도록, 본 발명의 변형된 실시예에 따른 상기 접촉이동유닛(34)은 상기 접촉유닛(32)을 회전시키는 접촉회전기구(345, 도 13에 도시됨)를 더 포함할 수 있다.
도 1 내지 도 14를 참고하면, 상기 접촉회전기구(345)는 상기 접촉핀(321)이 상기 테스트위치(TP)에 위치되는 엘이디 칩에 접촉되도록 상기 접촉지지기구(341)를 회전시킬 수 있다. 상기 접촉회전기구(345)에는 상기 접촉지지기구(341)가 결합된다. 상기 접촉회전기구(345)가 상기 접촉지지기구(341)를 회전시킴에 따라, 상기 접촉지지기구(341)에 결합되어 있는 상기 접촉유닛(32)이 회전될 수 있다.
따라서, 상기 테스트위치(TP)에 위치되는 엘이디 칩이 안착부재(21)에 안착된 상태에 따라 상기 접촉유닛(32)이 회전됨으로써 상기 접촉핀(321)이 상기 테스트위치(TP)에 위치되는 엘이디 칩에 정확하게 접촉되도록 할 수 있으므로, 본 발명에 따른 엘이디 칩 테스트장치(1)는 엘이디 칩이 가지는 성능을 더 정확하게 측정할 수 있다.
상기 접촉회전기구(345)는 접촉회전부재(3451), 접촉구동기구(3452), 및 접촉연결기구(3453)를 포함할 수 있다.
상기 접촉회전부재(3451)에는 상기 접촉지지기구(341)가 결합된다. 상기 접촉회전부재(3451)는 상기 접촉연결기구(3453)에 회전 가능하게 결합될 수 있고, 상기 접촉구동기구(3452)에 의해 접촉회전축(3451a)을 중심으로 회전될 수 있다. 상기 접촉회전부재(3451)가 회전되면 상기 접촉지지기구(341)가 회전되고, 이에 따라 상기 접촉지지기구(341)에 결합되어 있는 상기 접촉유닛(32)이 회전될 수 있다.
상기 접촉구동기구(3452)는 접촉회전축(3451a)을 중심으로 상기 접촉회전부재(3451)를 회전시킬 수 있다. 상기 접촉구동기구(3452)는 상기 접촉핀(321)이 상기 테스트위치(TP)에 위치되는 엘이디 칩에 접촉되도록 상기 접촉회전부재(3451)를 회전시킬 수 있다. 상기 접촉구동기구(3452)는 상기 접촉회전축(3451a)을 중심으로 상기 접촉회전부재(3451)를 시계방향 또는 반시계방향으로 회전시킬 수 있다.
상기 접촉구동기구(3452)는 모터(3452a)를 포함할 수 있다. 상기 모터(3452a)는 상기 접촉회전축(3451a)에 직접 결합되어서 상기 접촉회전부재(3452)를 회전시킬 수 있고, 상기 접촉회전축(3451a)에 결합된 샤프트(미도시)에 결합되어서 상기 회전부재(22)를 회전시킬 수도 있다. 상기 모터(3452a)가 상기 샤프트(미도시)에서 소정 거리 이격된 위치에 설치되는 경우, 상기 접촉구동기구(3452)는 상기 모터(3452a) 및 샤프트(미도시)를 연결하는 풀리 및 벨트를 더 포함할 수 있다.
상기 접촉연결기구(3453)에는 상기 접촉회전부재(3451) 및 상기 접촉구동기구(3452)가 결합된다. 상기 접촉회전부재(3451)는 상기 접촉연결기구(3453)의 상면에 결합될 수 있고, 상기 접촉구동기구(3452)는 상기 접촉연결기구(3453)의 저면에 결합될 수 있다.
상기 접촉연결기구(3453)는 상기 접촉승하강기구(343)에 결합될 수 있고, 상기 접촉승하강기구(343)는 상기 접촉이동기구(344)에 결합될 수 있다. 이에 따라, 상기 접촉연결기구(3453)는 상기 접촉승하강기구(343)에 의해 승하강될 수 있고, 상기 접촉이동기구(344)에 의해 제1 수평방향(X축 방향, 도 1에 도시됨)과 제2 수평방향(Y축 방향, 도 1에 도시됨)으로 이동될 수 있다. 따라서, 상기 접촉회전부재(3451) 및 상기 접촉유닛(32)은 제1 수평방향(X축 방향, 도 1에 도시됨)과 제2 수평방향(Y축 방향, 도 1에 도시됨)으로 이동될 수 있고, 승하강될 수 있다. 상기 접촉연결기구(3453)가 상기 접촉이동기구(344)에 결합되고, 상기 접촉이동기구(344)가 상기 접촉승하강기구(343)에 결합되는 것도 가능하다.
여기서, 본 발명에 따른 접촉회전기구(345)는 접촉회전축(3451a)의 위치에 따라 크게 두 가지 실시예로 이루어질 수 있는데, 이하에서는 각 실시예에 관하여 첨부된 도면을 참조하여 순차적으로 설명한다.
도 14의 확대도에 도시된 바와 같이, 엘이디 칩은 2개의 패드(P1, P2)를 포함할 수 있고, 상기 패드(P1, P2)들 각각에 상기 접촉핀(321)이 접촉된 상태에서 테스트될 수 있다. 엘이디 칩이 도 14의 확대도에 도시된 위치와 방향으로 상기 안착부재(21)에 안착된 상태에서 상기 테스트위치(TP)에 위치된다면, 상기 접촉유닛(32)이 수평방향으로 이동되거나 회전되지 않고도 상기 접촉핀(321)은 엘이디 칩의 패드(P1, P2)에 접촉될 수 있다. 그러나, 상술한 바와 같이, 엘이디 칩은 여러 가지 요인으로 인해 상기 안착부재(21)에 안착된 상태가 변화될 수 있다.
이러한 경우에도 정확한 테스트가 이루어질 수 있도록 본 발명의 일실시예에 따른 접촉회전기구(345)에 있어서, 상기 접촉구동기구(3452)는 엘이디 칩에 접촉되는 상기 접촉핀(321)의 일단(321a)으로부터 소정 거리 이격되어 있는 접촉회전축(3451a)을 중심으로 상기 접촉회전부재(3451)를 회전시킬 수 있다. 즉, 상기 접촉구동기구(3452)는 상기 테스트위치(TP)에 위치되는 안착부재(21) 옆으로 소정 거리 이격되어 있는 접촉회전축(3451a)을 중심으로 상기 접촉회전부재(3451)를 회전시킬 수 있다.
도 1 내지 도 17을 참고하여 본 발명의 일실시예에 따른 접촉회전기구(345)에 의해 상기 접촉핀(321)이 엘이디 칩에 접촉되는 과정을 설명하면 다음과 같다. 도 15 내지 도 17은 본 발명의 일실시예에 따른 접촉회전기구(345)의 작동 과정을 도 14의 확대도와 접촉회전축(3451a)을 중심으로 나타낸 개념도이다.
먼저, 엘이디 칩은 도 14에 도시된 위치와 방향으로부터 소정 거리와 소정 각도로 회전되어서 도 15에 도시된 바와 같은 상태로 상기 테스트위치(TP)에 위치될 수 있다. 도 15에서 점선으로 도시된 엘이디 칩은 도 14에 도시된 위치와 방향으로 안착부재(21)에 안착되어 있는 엘이디 칩의 상태를 도시한 것이고, 도 15에서 실선으로 도시된 엘이디 칩은 상기 테스트위치(TP)에 위치되는 엘이디 칩이 상술한 바와 같은 여러 가지 요인에 의해 이동 및 회전되어 안착부재(21)에 안착된 상태를 도시한 것이다.
이러한 상태에서, 상기 접촉구동기구(3452)는 상기 테스트위치(TP)에 위치되는 엘이디 칩이 회전된 각도에 대응되도록 상기 접촉회전부재(3451)를 상기 접촉회전축(3451a)을 중심으로 회전시킨다. 상기 접촉구동기구(3452)는 도 16에 도시된 바와 같이, 상기 접촉회전부재(3451)를 상기 접촉회전축(3451a)을 중심으로 반시계방향으로 회전시킬 수 있다. 이 경우, 상기 접촉유닛(32)은 상기 테스트위치(TP)에 위치되는 엘이디 칩과 안착부재(21)에 충돌되지 않도록 상기 접촉승하강기구(343)에 의해 상승된 상태일 수 있다. 상기 제1 전달부재(33)는 상기 제1 위치에 위치된 상태일 수 있다.
상기 접촉핀(321)들이 상기 테스트위치(TP)에 위치되는 엘이디 칩의 패드(P1, P2)에 각각 접촉될 수 있는 각도로 회전되면, 상기 접촉이동기구(344)는 도 17에 도시된 바와 같이 상기 접촉핀(321)들이 상기 테스트위치(TP)에 위치되는 엘이디 칩의 패드(P1, P2) 위에 위치되게 상기 접촉지지기구(341)를 이동시킨다. 이는, 상기 접촉이동기구(344)가 상기 접촉승하강기구(343)를 제1 수평방향(X축 방향, 도 1에 도시됨)과 제2 수평방향(Y축 방향, 도 1에 도시됨)으로 이동시킴으로써 이루어질 수 있다.
상기 접촉핀(321)들이 상기 테스트위치(TP)에 위치되는 엘이디 칩의 패드(P1, P2) 위에 위치되면, 상기 접촉승하강기구(343)는 상기 접촉핀(321)들이 상기 테스트위치(TP)에 위치되는 엘이디 칩의 패드(P1, P2)에 각각 접촉되도록 상기 접촉유닛(32)을 하강시킨다. 이는, 상기 접촉승하강기구(343)가 상기 접촉연결기구(3453)를 하강시킴으로써 이루어질 수 있다. 상기 제1 전달부재(33)는 상기 접촉승하강기구(343)에 의해 하강되어서 상기 제2 위치에 위치될 수 있다.
도 1 내지 도 13, 도 18 내지 도 20을 참고하면, 본 발명의 다른 실시예에 따른 접촉회전기구(345)에서 상기 접촉구동기구(3452)는 상기 테스트위치(TP)에 위치되는 안착부재(21) 아래에 위치되는 접촉회전축(3451a)을 중심으로 상기 접촉회전부재(3451)을 회전시킬 수 있다. 상기 테스트위치(TP)에 위치되는 안착부재(21)는 상기 접촉유닛(32)과 상기 접촉회전축(3451a) 사이에 위치될 수 있다.
상기 접촉회전부재(3451)는 상기 접촉지지기구(341)가 결합되는 수직프레임(3451b) 및 상기 접촉연결기구(3453)에 회전 가능하게 결합되는 수평프레임(3451c)을 포함할 수 있다. 상기 접촉구동기구(3452)는 상기 수평프레임(3451c)에 있는 접촉회전축(3451a)을 중심으로 상기 접촉회전부재(3451)를 회전시킬 수 있다.
상기 수직프레임(3451b)은 상기 접촉유닛(32) 및 상기 수평프레임(3451c) 사이에 상기 테스트위치(TP)에 위치되는 안착부재(21)가 위치될 수 있는 높이로 형성될 수 있다. 상기 수평프레임(3451c)은 상기 접촉회전축(3451a)이 상기 테스트위치(TP)에 위치되는 안착부재(21) 아래에 위치되도록 상기 수직프레임(3451b)에서 상기 테스트위치(TP)에 위치되는 안착부재(21) 쪽으로 길게 형성될 수 있다. 상기 접촉회전부재(3451)는 전체적으로 'ㄴ' 형태로 형성될 수 있다.
이에 따라, 상술한 일실시예에 따른 접촉회전기구(345)와 대비하여 볼 때, 엘이디 칩에 접촉되는 상기 접촉핀(321)의 일단(321a)으로부터 상기 접촉회전축(3451a)이 이격되는 거리를 줄일 수 있다. 따라서, 상기 접촉핀(321)들이 상기 테스트위치(TP)에 위치되는 엘이디 칩의 패드(P1, P2)에 각각 접촉될 수 있는 각도로 회전된 후에, 상기 접촉이동기구(344)가 상기 접촉핀(321)들이 상기 테스트위치(TP)에 위치되는 엘이디 칩의 패드(P1, P2) 위에 위치되게 상기 접촉지지기구(341)를 이동시키는 거리를 줄일 수 있다.
상기 접촉구동기구(3452)는 엘이디 칩에 접촉되는 접촉핀(321)의 일단(321a)과 동일한 수직선(J)상에 위치되는 상기 접촉회전축(3451a)을 중심으로 상기 접촉회전부재(3451)를 회전시킬 수 있다. 상기 접촉유닛(32)이 복수개의 접촉핀(321)을 포함하는 경우, 상기 접촉회전축(3451a)은 상기 접촉핀(321)들 중 어느 하나의 접촉핀(321)의 일단(321a)과 동일한 수직선(J)상에 위치될 수 있다.
상기 접촉구동기구(3452)는 상기 삽입공(3222)의 중심과 동일한 수직선(I, 도 10에 도시됨)상에 위치되는 상기 접촉회전축(3451a)을 중심으로 상기 접촉회전부재(3451)를 회전시킬 수 있다. 상기 접촉회전축(3451a)은 상기 삽입공(3222)의 중심 및 상기 제1 통과공(331)의 중심과 동일한 수직선(I, 도 10에 도시됨)상에 위치될 수 있다.
상기 접촉회전축(3451a)이 상기 삽입공(3222)의 중심과 동일 수직선(I, 도 10에 도시됨)상에 위치되는 경우, 도 13, 도 18 내지 도 20을 참고하여 본 발명의 다른 실시예에 따른 접촉회전기구(345)에 의해 상기 접촉핀(321)이 엘이디 칩에 접촉되는 과정을 설명하면 다음과 같다.
먼저, 엘이디 칩은 도 14에 도시된 위치와 방향으로부터 소정 거리와 소정 각도로 회전되어서 도 20에 도시된 바와 같은 상태로 상기 테스트위치(TP)에 위치될 수 있다. 도 20에서 점선으로 도시된 엘이디 칩은 도 14에 도시된 위치와 방향으로 안착부재(21)에 안착되어 있는 엘이디 칩의 상태를 도시한 것이고, 도 20에서 실선으로 도시된 엘이디 칩은 상기 테스트위치(TP)에 위치되는 엘이디 칩이 상술한 바와 같은 여러 가지 요인에 의해 이동 및 회전되어 안착부재(21)에 안착된 상태를 도시한 것이다.
이러한 상태에서, 상기 접촉구동기구(3452)는 상기 테스트위치(TP)에 위치되는 엘이디 칩이 회전된 각도에 대응되도록 상기 접촉회전부재(3451)를 상기 접촉회전축(3451a)을 중심으로 회전시킨다. 상기 접촉구동기구(3452)는 도 21에 도시된 바와 같이, 상기 접촉회전부재(3451)를 상기 접촉회전축(3451a)을 중심으로 반시계방향으로 회전시킬 수 있다.
상기 접촉핀(321)들이 상기 테스트위치(TP)에 위치되는 엘이디 칩의 패드(P1, P2)에 각각 접촉될 수 있는 각도로 회전되면, 상기 접촉이동기구(344)는 도 22에 도시된 바와 같이 상기 접촉핀(321)들이 상기 테스트위치(TP)에 위치되는 엘이디 칩의 패드(P1, P2) 위에 위치되게 상기 접촉지지기구(341)를 이동시킨다. 이는, 상기 접촉이동기구(344)가 상기 접촉승하강기구(343)를 제1 수평방향(X축 방향, 도 1에 도시됨)과 제2 수평방향(Y축 방향, 도 1에 도시됨)으로 이동시킴으로써 이루어질 수 있다. 도 22에 도시된 바와 같이 상술한 일실시예에 따른 접촉회전기구(345)와 대비하여 볼 때, 본 발명의 다른 실시예에 따른 상기 접촉이동기구(344)는 더 짧은 거리로 상기 접촉지지기구(341)를 이동시킴으로써 상기 접촉핀(321)들이 상기 테스트위치(TP)에 위치되는 엘이디 칩의 패드(P1, P2) 위에 위치되게 상기 접촉지지기구(341)를 이동시킬 수 있다.
상기 접촉핀(321)들이 상기 테스트위치(TP)에 위치되는 엘이디 칩의 패드(P1, P2) 위에 위치되면, 상기 접촉승하강기구(343)는 상기 접촉핀(321)들이 상기 테스트위치(TP)에 위치되는 엘이디 칩의 패드(P1, P2)에 각각 접촉되도록 상기 접촉유닛(32)을 하강시킨다. 이는, 상기 접촉승하강기구(343)가 상기 접촉연결기구(3453)를 하강시킴으로써 이루어질 수 있다. 상기 제1 전달부재(33)는 상기 접촉승하강기구(343)에 의해 하강되어서 상기 제2 위치에 위치될 수 있다.
도 13을 참고하면, 상기 본체(35)는 상기 공급부(2) 옆에 설치된다. 상기 본체(35)에는 상기 접촉이동유닛(34) 및 상기 측정유닛(31)이 각각 결합된다. 상기 본체(35)는 상기 측정유닛(31)이 결합되고 수평방향으로 길게 형성되는 제1 프레임(351), 상기 제1 프레임(351)에서 하측 방향(H 화살표 방향)으로 길게 형성되는 제2 프레임(352), 및 상기 제2 프레임(352)이 결합되는 제3 프레임(353)을 포함할 수 있다. 상기 제3 프레임(353) 상면에는 상기 접촉이동유닛(34)이 결합될 수 있다. 상기 제3 프레임(353) 상면에는 상기 접촉승하강기구(343) 또는 상기 접촉이동기구(344)가 결합될 수 있다.
도 1 내지 도 26을 참고하면, 상기 엘이디 칩 테스트장치(1)는 제2 전달부재(36)를 더 포함할 수 있다.
상기 제2 전달부재(36)는 상기 측정유닛(31) 및 상기 접촉유닛(32) 사이에 위치되게 상기 접촉이동유닛(34)에 결합될 수 있다. 이에 따라, 상기 엘이디 칩 테스트장치(1)는 상기 측정유닛(31)과 상기 접촉유닛(32) 사이 일부를 상기 제2 전달부재(36)로 차단할 수 있으므로, 엘이디 칩이 발하는 광이 상기 측정유닛(31)과 엘이디 칩 사이로 통과하는 양을 더 줄일 수 있다. 상기 접촉유닛(32)은 상기 제1 전달부재(33) 및 상기 제2 전달부재(36) 사이에 위치되게 상기 접촉이동유닛(34)에 결합될 수 있다. 상기 제2 전달부재(36) 및 상기 접촉유닛(32)은 각각 상기 접촉지지기구(341)에 결합될 수 있다.
상기 제2 전달부재(36)는 제2 통과공(361) 및 제2 전달면(362)을 포함한다.
상기 제2 통과공(361)은 상기 제2 전달부재(36)를 관통하여 형성될 수 있다. 엘이디 칩이 발하는 광은 상기 제1 통과공(331), 상기 제2 통과공(361), 및 상기 수광공(311)을 통과하여 상기 측정유닛(31) 내부로 입사될 수 있다. 이에 따라, 엘이디 칩이 발하는 광은 상기 제1 전달부재(33) 및 상기 제2 전달부재(36)에 방해됨이 없이 상기 측정유닛(31) 내부로 입사될 수 있다.
상기 제2 전달부재(36)에는 상기 제2 통과공(361)이 상기 측정유닛(31)에서 엘이디 칩을 향하는 방향(H 화살표 방향)으로 크기가 점차적으로 줄어들게 형성될 수 있다. 즉, 상기 제2 통과공(361)은 상기 제2 전달부재(36)의 상면(36a)에서 하측 방향(H 화살표 방향)으로 크기가 점차적으로 줄어들게 형성될 수 있다. 상기 제2 통과공(361)은 상기 제2 전달부재(36)의 상면(36a)에서 하측 방향(H 화살표 방향)으로 직경이 점차적으로 줄어들게 형성될 수 있다.
상기 제2 전달면(362)은 엘이디 칩이 발하는 광이 상기 수광공(311)을 통과하여 상기 측정유닛(31)으로 입사되도록 엘이디 칩이 발하는 광을 상기 측정유닛(31) 쪽으로 전달한다. 이에 따라, 상기 측정유닛(31) 내부로 더 많은 양의 광이 입사되도록 할 수 있으므로, 상기 엘이디 칩 테스트장치(1)는 엘이디 칩이 가지는 성능을 더 정확하게 측정할 수 있다. 상기 제2 전달면(362)은 반사율이 높은 물질로 형성되거나, 그러한 물질로 코팅될 수 있다. 예컨대 상기 제2 전달면(362)은 금속 또는 그 합금의 표면을 연마한 것일 수 있으며, 또는 금속이나 수지 물질 등을 미러 코팅한 것일 수 있다.
상기 제2 전달면(362)은 엘이디 칩이 발하는 광을 상기 측정유닛(31) 쪽으로 전달할 수 있도록 상기 제2 통과공(361)의 외면을 따라 형성될 수 있다. 즉, 상기 제2 전달면(362)은, 도 24의 확대도에 도시된 바와 같이, 상기 제2 전달부재(36)의 저면(36b)에서 상측 방향(G 화살표 방향)을 향할수록 상기 제2 통과공(361)의 중심(K)으로부터 멀어지게 형성될 수 있다. 상기 제2 통과공(361)이 상기 제2 전달부재(36)의 상면(36a)에서 하측 방향(H 화살표 방향)으로 직경이 점차적으로 줄어들게 형성되는 경우, 상기 제2 전달면(362)은 전체적으로 곡면을 이루며 형성될 수 있다.
상기 제2 전달면(362)과 상기 제1 전달면(332)은 하나의 곡면 상에 형성될 수 있다. 즉, 상기 제1 전달면(332)과 상기 제2 전달면(362)을 서로 연결하였을 때, 상기 제1 전달면(332)과 상기 제2 전달면(362)은 하나의 곡면을 이루도록 형성될 수 있다. 엘이디 칩이 발하는 광은 상기 제1 전달면(332) 및 상기 제2 전달면(362)에 의해 상기 측정유닛(31) 쪽으로 전달될 수 있다.
상기 제2 전달부재(36)는 상기 접촉핀(321)을 수용할 수 있는 수용홈(363)을 더 포함할 수 있다. 상기 제2 전달부재(36)는 상기 접촉핀(321)이 상기 수용홈(363)에 위치된 상태에서 상기 측정유닛(31) 및 상기 접촉유닛(32) 사이에 위치되게 상기 접촉지지기구(341)에 결합될 수 있다. 상기 제2 전달부재(36)는 전체적으로 '∩' 형태로 형성될 수 있다.
도 25를 참고하면, 상기 제2 전달부재(36)는 제2 돌출부재(364)를 더 포함할 수 있다. 도 25에서는 상기 제2 전달부재(36)가 상기 측정유닛(31)에 결합되는 것으로 도시되었으나, 상기 제2 전달부재(36)는 상기 제2 돌출부재(364)가 상기 수광공(311)에 삽입된 상태로 상기 접촉이동유닛(34)에 결합될 수도 있다.
상기 제2 돌출부재(364)는 상기 테스트위치(TP)에 위치되는 엘이디 칩에서 상기 측정유닛(31)을 향하는 방향(G 화살표 방향)으로 돌출되게 형성될 수 있다. 즉, 상기 제2 돌출부재(364)는 상기 제2 전달부재(36)의 상면(36a)에서 상측 방향(G 화살표 방향)으로 돌출되게 형성될 수 있다. 상기 제2 돌출부재는 상기 수광공(311)을 통해 상기 측정유닛(31)에 삽입될 수 있다.
상기 제2 돌출부재(364)는 상기 제2 전달면(362)에 이어지게 형성되는 제2 경사면(3641)을 포함할 수 있다. 즉, 상기 제2 전달면(362) 및 상기 제2 경사면(3641)은 하나의 곡면을 이루며 형성될 수 있다. 이에 따라, 상기 제2 전달면(362) 및 상기 제2 경사면(3641)은 엘이디 칩이 발하는 광을 상기 측정유닛(31) 쪽으로 전달할 수 있다.
따라서, 상기 제2 전달부재(36)가 엘이디 칩이 발하는 광을 상기 측정유닛(31) 쪽으로 전달하기 위한 면적을 증가시킬 수 있으므로, 상기 엘이디 칩 테스트장치(1)는 상기 측정유닛(31) 내부로 더 많은 양의 광이 입사되도록 할 수 있고, 엘이디 칩이 가지는 성능을 더 정확하게 측정할 수 있다. 상기 제2 경사면(3641)은 반사율이 높은 물질로 형성되거나, 그러한 물질로 코팅될 수 있다. 예컨대 상기 제2 경사면(3641)은 금속 또는 그 합금의 표면을 연마한 것일 수 있으며, 또는 금속이나 수지 물질 등을 미러 코팅한 것일 수 있다.
한편, 전술한 바와 같이 상기 제2 전달부재(36)는 접촉유닛(32)과 함께 접촉지지기구(341)에 결합될 수 있으므로, 제2 전달부재(36)는 접촉유닛(32)의 변형을 방지하는 보강판의 기능도 가질 수 있다. 이 경우, 제2 전달부재(36)를 접촉유닛(32)과 나사결합 등으로 강고하게 결합시키는 것이 바람직하다.
이와 달리 도시하지는 않았으나 접촉유닛(32)에 별도의 보강판을 결합시키는 것도 가능하다. 예컨대 접촉유닛(32)이 프로브카드일 경우, 상기 보강판은 프로브카드의 상면 또는 하면에 일체로 결합되어 프로브카드의 변형을 방지하는 플레이트 또는 소정 형상의 구조물일 수 있다. 보강판은 외부의 기계적 응력이나 열응력에 의해 프로브카드가 휘는 등의 변형을 방지하는 기능을 한다. 이를 위해 보강판은 프로브카드보다 강도 및/또는 강성이 높고 열팽창계수가 낮은 재질로 이루어지는 것이 바람직하다. 따라서, 보강판은 금속이나 합금 등의 재료, 또는 수지나 세라믹 등의 비금속 재료로 만들어 질 수 있다. 이들 재료의 일례로서, 강철, 티타늄, 니켈, 인바(invar), 코바(kovar), 흑연, 에폭시, 세라믹, CFRP(Carbon fiber-reinforced polymer; 탄소섬유강화플라스틱), 또는 이들 재료 및/또는 다른 재료의 임의의 합금이나 혼합체를 들 수 있다.
도 1, 도 2, 도 25, 및 도 26을 참고하면, 본 발명의 변형된 실시예에 따른 상기 제2 전달부재(36)는 상기 측정유닛(31)에 결합될 수 있다.
상기 제2 전달부재(36)는 상기 측정유닛(31)에서 상기 테스트위치(TP)에 위치되는 엘이디 칩을 향하는 방향(H 화살표 방향)으로 돌출되게 상기 측정유닛(31)에 결합될 수 있다. 즉, 상기 제2 전달부재(36)는 상기 측정유닛(31)에서 하측 방향(H 화살표 방향)으로 돌출되게 상기 측정유닛(31)에 결합될 수 있다.
도 25에 도시된 바와 같이, 상기 제2 전달부재(36)는 상기 제2 돌출부재(364)가 상기 수광공(311)에 삽입된 상태로 상기 측정유닛(31)에 결합될 수 있다. 이에 따라, 상기 제2 전달부재(36)가 엘이디 칩이 발하는 광을 상기 측정유닛(31) 쪽으로 전달하기 위한 면적을 증가시킬 수 있으므로, 상기 엘이디 칩 테스트장치(1)는 상기 측정유닛(31) 내부로 더 많은 양의 광이 입사되도록 할 수 있고, 엘이디 칩이 가지는 성능을 더 정확하게 측정할 수 있다.
상기 제2 전달부재(36)는 상기 제2 돌출부재(364)가 상기 수광공(311)에 삽입되어 끼워맞춤방식에 의해 상기 측정유닛(31)에 결합될 수 있다. 상기 제2 전달부재(36)는 상기 제2 돌출부재(364)가 상기 수광공(311)에 삽입된 상태로 볼트 등의 체결부재에 의해 상기 측정유닛(31)에 결합될 수 있다.
도 26에 도시된 바와 같이, 상기 제2 전달부재(36)는 상기 제2 통과공(361)에 상기 측정유닛(31)이 위치되게 상기 측정유닛(31)에 결합될 수 있다. 상기 제2 전달부재(36)는 끼워맞춤방식에 의해 상기 측정유닛(31)에 결합될 수 있고, 볼트 등의 체결부재에 의해 상기 측정유닛(31)에 결합될 수도 있다.
도 1, 도 2, 도 27 및 도 28을 참고하면, 본 발명의 변형된 다른 실시예에 따른 상기 제2 전달부재(36)는 일측이 상기 측정유닛(31)에 결합되고, 타측이 상기 접촉유닛(32)에 결합될 수 있다. 상기 제2 전달부재(36)는 타측이 상기 접촉몸체(322)에 결합될 수 있다. 도시되지는 않았지만, 상기 제2 전달부재(36)는 일측이 상기 측정유닛(31)에 결합되고, 타측이 상기 접촉지지기구(341)에 결합될 수도 있다.
상기 제2 전달부재(36)에는 상기 접촉핀(321)이 삽입될 수 있는 삽입홈(365)이 형성될 수 있다. 상기 접촉유닛(32)이 복수개의 접촉핀(321)을 포함하는 경우, 상기 제2 전달부재(36)에는 복수개의 삽입홈(365)이 형성될 수 있다. 상기 제2 전달부재(36)에는 상기 접촉핀(321)과 동일한 개수의 삽입홈(365)이 형성될 수 있다.
상기 제2 전달부재(36)는 상기 삽입홈(365)에 상기 접촉핀(321)이 삽입된 상태로 타측이 상기 접촉몸체(322)에 결합될 수 있고, 일측이 상기 측정유닛(31)에 결합될 수 있다. 따라서, 상기 제2 전달부재(36)는 상기 측정유닛(31)과 상기 접촉유닛(32) 사이를 차단할 수 있으므로, 엘이디 칩이 발하는 광이 상기 측정유닛(31)과 엘이디 칩 사이로 통과되지 않도록 할 수 있다. 따라서, 상기 엘이디 칩 테스트장치(1)는 상기 측정유닛(31) 내부로 더 많은 양의 광이 입사되도록 할 수 있고, 엘이디 칩이 가지는 성능을 더 정확하게 측정할 수 있다.
상기 제2 전달부재(36)가 상기 측정유닛(31)과 상기 접촉몸체(322)에 결합되는 경우, 상기 측정유닛(31)은 상기 본체(35)에 이동 가능하게 결합될 수 있다. 이에 따라, 상기 접촉이동유닛(34)이 상기 접촉유닛(32)을 이동시키는 경우, 상기 접촉유닛(32)에 결합되어 있는 상기 측정유닛(31)도 함께 이동될 수 있다. 이를 위해, 상기 본체(35)는 제1 연결프레임(354), 제2 연결프레임(355), 및 제3 연결프레임(356)을 포함할 수 있다. 상기 측정유닛(31)은 상기 제3 연결프레임(346)에 결합될 수 있다.
상기 제1 연결프레임(354)은 상기 제1 프레임(351)에 승하강 가능하게 결합될 수 있다. 이에 따라, 상기 접촉이동유닛(34)이 상기 접촉유닛(32)을 승하강시키면, 상기 제1 연결프레임(354)이 승하강될 수 있고, 이에 따라 상기 측정유닛(31)도 승하강될 수 있다. 상기 제1 프레임(351)은 LM 레일을 포함할 수 있고, 상기 제1 연결프레임(354)은 상기 제1 프레임(351)의 LM 레일에 이동 가능하게 결합되는 LM 블럭을 포함할 수 있다.
상기 제2 연결프레임(355)은 상기 제1 연결프레임(354)에 제1 수평방향(X축 방향)으로 이동 가능하게 결합될 수 있다. 이에 따라, 상기 접촉이동유닛(34)이 상기 접촉유닛(32)을 상기 제1 수평방향(X축 방향)으로 이동시키면, 상기 제2 연결프레임(355)이 상기 제1 수평방향(X축 방향)으로 이동될 수 있고, 이에 따라 상기 측정유닛(31)도 상기 제1 수평방향(X축 방향)으로 이동될 수 있다. 상기 제1 연결프레임(354)은 LM 레일을 포함할 수 있고, 상기 제2 연결프레임(355)은 상기 제1 연결프레임(354)의 LM 레일에 이동 가능하게 결합되는 LM 블럭을 포함할 수 있다.
상기 제3 연결프레임(356)은 상기 제2 연결프레임(355)에 상기 제1 수평방향(X축 방향)에 수직인 제2 수평방향(Y축 방향)으로 이동 가능하게 결합될 수 있다. 이에 따라, 상기 접촉이동유닛(34)이 상기 접촉유닛(32)을 상기 제2 수평방향(Y축 방향)으로 이동시키면, 상기 제3 연결프레임(356)이 상기 제2 수평방향(Y축 방향)으로 이동될 수 있고, 이에 따라 상기 측정유닛(31)도 상기 제2 수평방향(Y축 방향)으로 이동될 수 있다. 상기 제2 연결프레임(355)은 LM 레일을 포함할 수 있고, 상기 제3 연결프레임(356)은 상기 제2 연결프레임(355)의 LM 레일에 이동 가능하게 결합되는 LM 블럭을 포함할 수 있다.
상기 제3 연결프레임(356)에는 상기 측정유닛(31)이 회전 가능하게 결합될 수 있다. 이에 따라, 상기 접촉이동유닛(34)이 상기 접촉유닛(32)을 회전시키면, 상기 측정유닛(31)도 회전될 수 있다.
상술한 바와 같이, 상기 접촉핀(321)이 상기 테스트위치(TP)에 위치되는 엘이디 칩에 접촉되도록 상기 접촉이동유닛(321)이 상기 접촉유닛(32)을 이동시키면 상기 측정유닛(31)도 함께 이동되므로, 상기 테스트위치(TP)에 위치되는 엘이디 칩은 상기 안착부재(21)에 안착되어 있는 위치에 관계없이 상기 수광공(311)의 중앙과 동일한 수직선상에 위치된 상태에서 테스트될 수 있다. 따라서, 상기 엘이디 칩 테스트장치(1)는 엘이디 칩이 가지는 성능을 더 정확하게 측정할 수 있다.
도 29 내지 도 31을 참고하면, 본 발명의 변형된 실시예에 따른 접촉유닛(32)은 접촉핀(321), 제1 몸체(324), 제2 몸체(325), 제3 몸체(326), 및 결합부재(327)를 포함할 수 있다. 상기 접촉유닛(32)은 상기 접촉이동유닛(34)에 의해 승하강될 수 있고, 상기 제1 수평방향(X축 방향)과 제2 수평방향(Y축 방향)으로 이동될 수 있다. 상기 테스트부(3)는 본 발명의 변형된 실시예에 따른 접촉유닛(32)을 복수개 포함할 수 있다.
상기 제1 몸체(324)에는 상기 접촉핀(321)이 결합된다. 상기 제1 몸체(324)는 상기 제2 몸체(325)에 결합된다. 상기 제1 몸체(324)는 상기 제2 몸체(325)에서 상기 테스트위치(TP)에 위치되는 엘이디 칩을 향하는 방향으로 길게 형성될 수 있다. 상기 제1 몸체(324)는 테스터(미도시)와 전기적으로 연결될 수 있고, 상기 접촉핀(321)은 상기 제1 몸체(324)를 통해 테스터(미도시)와 전기적으로 연결될 수 있다.
상기 제1 몸체(324)에는 상기 접촉핀(321)이 연결부재(3241)에 의해 탈부착 가능하게 결합될 수 있다. 이에 따라, 사용자는 상기 접촉핀(321)이 손상 내지 파손되는 경우, 상기 접촉핀(321)만을 용이하게 교체할 수 있다. 테스트될 엘이디 칩이 기존과 다른 사양을 가진 엘이디 칩으로 바뀌는 경우에도, 사용자는 새로운 엘이디 칩의 사양에 맞는 접촉핀(321)으로 용이하게 교체할 수 있다.
상기 연결부재(3241)는 상기 제1 몸체(324)에 회전 가능하게 결합될 수 있다. 상기 연결부재(3241)가 일방향으로 회전됨에 따라 상기 연결부재(3241)가 상기 제1 몸체(324)에 힘을 가함으로써 상기 접촉핀(321)을 제1 몸체(324)에 결합시킬 수 있다. 상기 연결부재(3241)가 타방향으로 회전됨에 따라 상기 연결부재(3241)가 상기 제1 몸체(324)에 가하던 힘이 제거됨으로써, 상기 접촉핀(321)은 상기 제1 몸체(324)로부터 분리 가능한 상태로 될 수 있다. 상기 연결부재(3241)로 볼트 등과 같은 체결부재(미도시)가 이용될 수도 있다.
상기 제2 몸체(325)에는 상기 제1 몸체(324)가 결합된다. 상기 제2 몸체(325)와 상기 제3 몸체(326)는 상기 결합부재(327)에 의해 탈부착 가능하게 결합될 수 있다. 이에 따라, 상기 접촉핀(321)을 교체시킬 필요가 있는 경우, 상기 제2 몸체(325)를 상기 제3 몸체(326)에서 분리시킴으로써 상기 접촉핀(321)을 용이하게 교체할 수 있다. 상기 제2 몸체(325)는 테스터(미도시)와 전기적으로 연결될 수 있고, 상기 접촉핀(321)은 상기 제1 몸체(324) 및 상기 제2 몸체(325)를 통해 테스터(미도시)와 전기적으로 연결될 수 있다.
상기 제3 몸체(326)에는 상기 제2 몸체(325)가 결합된다. 상기 제3 몸체(326)에는 상기 결합부재(327)에 의해 상기 제2 몸체(325)가 탈부착 가능하게 결합될 수 있다. 상기 제3 몸체(326)는 상기 접촉이동유닛(34)에 결합될 수 있다. 상기 제3 몸체(326)가 상기 접촉이동유닛(34)에 의해 이동됨에 따라 상기 제2 몸체(325), 상기 제1 몸체(324), 및 상기 접촉핀(321)이 함께 이동될 수 있다. 상기 제3 몸체(326)는 테스터(미도시)와 전기적으로 연결될 수 있고, 상기 접촉핀(321)은 상기 제1 몸체(324), 상기 제2 몸체(325), 및 상기 제3 몸체(326)를 통해 테스터(미도시)와 전기적으로 연결될 수 있다.
상기 결합부재(327)는 상기 제2 몸체(325)와 상기 제3 몸체(326)를 탈부착 가능하게 결합시킨다. 상기 결합부재(327)로 볼트 등과 같은 체결부재(미도시)가 이용될 수 있다.
도 31 내지 도 33을 참고하면, 본 발명의 변형된 실시예에 따른 테스트부(3)는 접촉기구(37)를 더 포함할 수 있다.
상기 접촉기구(37)는 상기 테스트위치(TP)에 위치되는 안착부재(21)에 접촉되는 접촉구(371)를 포함한다. 상기 접촉기구(37)는 상기 접촉구(371)가 상기 테스트위치(TP)에 위치되는 안착부재(21)에 접촉될 수 있도록, 상기 회전부재(22) 옆에 설치될 수 있다.
상기 접촉구(371)가 상기 테스트위치(TP)에 위치되는 안착부재(21)에 접촉되고 상기 접촉핀(321)이 엘이디 칩에 접촉된 상태에서, 상기 테스트위치(TP)에 위치되는 엘이디 칩은 상기 접촉유닛(32) 및 상기 접촉구(371)를 통해 인가되는 전원에 의해 발광될 수 있다. 상기 접촉유닛(32) 및 상기 접촉기구(37)는 테스터(미도시)와 연계하여 엘이디 칩을 발광시킬 수 있다. 상기 접촉유닛(32) 및 상기 접촉기구(37)는 테스터(미도시)와 연계하여 엘이디 칩의 전기적 특성을 테스트할 수 있다.
상기 접촉구(371)는 상기 테스트위치(TP)에 위치되는 안착부재(21)의 측면에 접촉될 수 있다. 상기 접촉구(371)는 상기 테스트위치(TP)에 위치되는 안착부재(21)를 향하는 방향으로 길게 형성될 수 있다.
상기 접촉기구(37)는 상기 접촉구(371)가 상기 안착부재(21)에 가까워지거나 멀어지게 상기 접촉구(371)를 이동시키는 접촉이동수단(372)을 더 포함할 수 있다.
상기 접촉이동수단(372)은, 상기 테스트위치(TP)에 테스트될 엘이디 칩이 위치되면, 상기 접촉구(371)가 상기 테스트위치(TP)에 위치되는 안착부재(21)에 가까워지게 상기 접촉구(371)를 이동시킨다. 상기 접촉구(371)는 상기 접촉이동수단(372)에 의해 이동되어서, 상기 테스트위치(TP)에 위치되는 안착부재(21)에 접촉될 수 있다.
상기 접촉이동수단(372)은, 상기 테스트위치(TP)에 위치된 엘이디 칩의 테스트가 완료되면, 상기 접촉구(371)가 상기 테스트위치(TP)에 위치되는 안착부재(21)에서 멀어지게 상기 접촉구(371)를 이동시킨다. 상기 접촉구(371)는 상기 접촉이동수단(372)에 의해 이동되어서, 상기 테스트위치(TP)에 위치되는 안착부재(21)로부터 이격될 수 있다.
이에 따라, 상기 테스트위치(TP)에 새로운 테스트될 엘이디 칩을 위치시키기 위해 상기 회전부재(22)가 회전될 때, 상기 안착부재(21) 및 상기 접촉구(371)가 접촉 또는 충돌하지 않도록 할 수 있다. 따라서, 상기 안착부재(21) 및 상기 접촉구(371)가 마찰에 의해 마모되거나, 충돌에 의해 손상되는 것을 방지할 수 있다.
상기 접촉이동수단(372)은 유압실린더 또는 공압실린더를 이용하여 상기 접촉구(371)를 이동시킬 수 있다. 상기 접촉이동수단(372)은 모터 및 모터의 회전운동을 직선운동으로 변환하는 변환기구를 이용하여 상기 접촉구(371)를 이동시킬 수도 있다. 상기 변환기구는 풀리 및 벨트, 랙?피니언기어, 볼스크류, 캠부재 등일 수 있다. 상기 접촉구(371)는 상기 접촉이동수단(372)에 결합된다.
여기서, 상기 안착부재(21)가 전체적으로 원통형태로 형성되는 경우, 상기 접촉구(371)는 상기 안착부재(21)에 접촉되는 과정에서 미끄러짐 등에 의해 상기 안착부재(21)에 정확하게 접촉하지 못할 수 있다. 이를 방지할 수 있도록, 상기 안착부재(21)는 상기 접촉구(371)가 접촉되는 접촉면(215)을 더 포함할 수 있다.
상기 접촉면(215)은, 상기 안착부재(21)가 상기 테스트위치(TP)에 위치될 때, 상기 안착부재(21)에서 상기 접촉구(371)를 향하는 측면에 형성될 수 있다. 상기 접촉면(215)으로 인해, 상기 안착부재(21)는 상기 접촉구(371)를 향하는 측면이 평면을 이룰 수 있다. 이에 따라, 상기 접촉구(371)가 상기 안착부재(21)에 접촉되는 과정에서 미끄러짐 등이 발생하는 것을 최소화할 수 있으므로, 본 발명에 따른 엘이디 칩 테스트장치(1)는 상기 접촉구(371)가 상기 안착부재(21)에 정확하게 접촉된 상태에서 엘이디 칩을 테스트할 수 있다.
상기 안착부재(21)는, 상기 접촉구(371)가 상기 접촉면(215)에 접촉될 때, 상기 접촉구(371) 및 상기 접촉면(215)이 서로 수직을 이룰 수 있는 접촉면(215)을 포함할 수 있다. 상기 안착부재(21)는 상기 접촉면(215)이 형성되는 측면에서 일정 깊이 함몰되어 형성되는 접촉홈(21c)을 포함할 수 있다.
본 발명의 변형된 실시예에 따른 상기 접촉구(371)는, 도 20 내지 도 22에 도시된 바와 같이, 상기 접촉몸체(322)에 결합될 수 있다. 상기 접촉구(371)는 상기 단자(3221)에 접촉된 상태로 상기 접촉몸체(322)에 결합될 수 있다. 상기 접촉핀(321)이 상기 테스트위치(TP)에 위치되는 엘이디 칩에 접촉될 때, 상기 접촉구(371)는 상기 테스트위치(TP)에 위치되는 안착부재(21)의 상면(21b)에 접촉될 수 있도록 상기 접촉몸체(322)에 결합될 수 있다. 상기 접촉구(371)는 상기 접촉부재(211, 도 3에 도시됨)에 접촉될 수도 있다.
이에 따라, 상기 접촉이동유닛(34)은 상기 접촉유닛(32)을 이동시킴으로써, 상기 접촉핀(321)이 상기 테스트위치(TP)에 위치되는 엘이디 칩에 상기 접촉핀(321)이 접촉되도록 할 수 있고, 상기 접촉구(371)가 상기 테스트위치(TP)에 위치되는 안착부재(21)의 상면(21b)에 접촉되도록 할 수 있다. 상기 접촉몸체(322)에는 복수개의 접촉구(371)가 결합될 수 있다.
도 32 및 도 33을 참고하면, 본 발명의 변형된 실시예에 따른 상기 제1 전달부재(33)는 상기 측정유닛(31)에서 상기 테스트위치(TP)에 위치되는 엘이디 칩을 향하는 방향으로 돌출되게 상기 측정유닛(31)에 설치될 수 있다. 엘이디 칩이 테스트될 때 상기 측정유닛(31)이 엘이디 칩의 위에 위치하는 경우, 상기 제1 전달부재(33)는 상기 측정유닛(31)에서 아래로 돌출되게 형성될 수 있다.
도시되지는 않았지만, 상기 제1 전달부재(33)는 상기 안착부재(21)에서 상기 측정유닛(31)을 향하는 방향으로 돌출되게 상기 안착부재(21)에 설치될 수 있다. 엘이디 칩이 테스트될 때 상기 측정유닛(31)이 엘이디 칩의 위에 위치하는 경우, 상기 제1 전달부재(33)는 상기 안착부재(21)에서 위로 돌출되게 형성될 수 있다. 상기 제1 전달부재(33) 내부에는 엘이디 칩 및 상기 지지부재(312)가 위치할 수 있다.
상기 제1 전달부재(33)는 상기 접촉핀(321)이 통과되는 홈(334)이 형성되어 있다. 이에 따라, 상기 접촉유닛(32)이 상기 측정유닛(31)과 엘이디 칩 사이에 위치하더라도, 상기 제1 전달부재(33)가 엘이디 칩에 가깝게 위치된 상태에서 엘이디 칩을 테스트할 수 있다. 따라서, 엘이디 칩이 발하는 더 많은 양의 광이 상기 제1 전달부재(33)를 통해 상기 측정유닛(31)으로 입사되도록 할 수 있으므로, 엘이디 칩이 가지는 성능을 정확하게 측정할 수 있다.
상기 제1 전달부재(33)는 전체적으로 중공의 원통형태로 형성될 수 있다. 상기 홈(334)은 상기 제1 전달부재(33)에서 상기 접촉유닛(32)이 설치된 방향에 형성될 수 있다. 상기 제1 전달부재(33) 내부는 반사율이 높은 물질로 형성되거나, 그러한 물질로 코팅될 수 있다. 예컨대 상기 제1 전달부재(33) 내부는 금속 또는 그 합금의 표면을 연마한 것일 수 있으며, 또는 금속이나 수지 물질 등을 미러 코팅한 것일 수 있다.
상기 제1 전달부재(33)에 형성되어 있는 홈(334)은 상기 접촉핀(321)이 통과될 수 있는 크기로 형성될 수 있다. 상기 접촉핀(321)은 상기 홈(334)을 통과하여 상기 테스트위치(TP)에 위치된 엘이디 칩에 접촉될 수 있다.
도 32 및 도 33을 참고하면, 본 발명의 변형된 실시예에 따른 상기 테스트부(3)는 측정승하강유닛(38)을 더 포함할 수 있다.
상기 측정승하강유닛(38)은 상기 본체(35)에 결합되고, 상기 측정유닛(31)을 승하강시킬 수 있다. 상기 측정유닛(31)은 상기 제1 프레임(351)에 승하강 가능하게 결합될 수 있다.
상기 측정승하강유닛(38)은, 상기 회전유닛(23)이 상기 회전부재(22)를 회전시킬 때, 상기 측정유닛(31)을 상승시킬 수 있다. 상기 테스트위치(TP)에 테스트될 엘이디 칩이 위치되면, 상기 측정승하강유닛(38)은 상기 측정유닛(31)을 하강시킬 수 있다. 이에 따라, 본 발명에 따른 엘이디 칩 테스트장치(1)는 상기 테스트위치(TP)에 위치되는 엘이디 칩이 상기 측정유닛(31)에 가깝게 위치된 상태에서 테스트되도록 할 수 있다.
따라서, 본 발명에 따른 엘이디 칩 테스트장치(1)는 엘이디 칩이 발하는 더 많은 양의 광이 상기 제1 전달부재(33)를 통해 상기 측정유닛(31)으로 입사되도록 할 수 있으므로, 엘이디 칩이 가지는 성능을 더 정확하게 측정할 수 있다.
상기 제1 전달부재(33)가 상기 안착부재(21)에 설치되는 경우, 본 발명에 따른 엘이디 칩 테스트장치(1)는 상기 회전부재(22)가 회전될 때 상기 제1 전달부재(33)가 상기 측정유닛(31)과 충돌될 가능성을 줄이면서도, 상기 측정유닛(31)이 상기 제1 전달부재(33)에 가깝게 위치된 상태에서 엘이디 칩이 테스트되도록 할 수 있다. 상기 제1 전달부재(33)가 상기 측정유닛(31) 내부에 삽입된 상태 또는 상기 제1 전달부재(33)가 상기 측정유닛(31)에 접촉된 상태에서 엘이디 칩이 테스트되도록 하는 것 또한 가능하다.
따라서, 본 발명에 따른 엘이디 칩 테스트장치(1)는 엘이디 칩이 발하는 더 많은 양의 광이 상기 제1 전달부재(33)를 통해 상기 측정유닛(31)으로 입사되도록 할 수 있으므로, 엘이디 칩이 가지는 성능을 더 정확하게 측정할 수 있다.
상기 측정승하강유닛(38)은 유압실린더 또는 공압실린더를 이용하여 상기 측정유닛(31)을 승하강시킬 수 있다. 상기 측정승하강유닛(38)은 모터 및 상기 모터와 상기 측정유닛(31)에 각각 결합되는 연결수단을 이용하여 상기 측정유닛(31)을 승하강시킬 수도 있다. 상기 연결수단은 풀리 및 벨트, 볼스크류, 캠부재 등을 포함할 수 있다.
이상에서 설명한 본 발명은 전술한 실시예 및 첨부된 도면에 한정되는 것이 아니고, 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 여러 가지 치환, 변형 및 변경이 가능하다는 것이 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에게 있어 명백할 것이다.
본 발명은 엘이디 칩이 가지는 성능을 정확하게 측정할 수 있고, 이로 인해 불필요하게 패키지공정 및 테스트공정을 거치게 되는 엘이디 칩이 발생되지 않도록 함으로써 재료비, 공정비 등의 손실을 막을 수 있고, 엘이디의 제조단가를 낮출 수 있는 엘이디 칩 테스트장치를 제공한다.

Claims (17)

  1. 엘이디 칩의 특성을 측정하는 엘이디 칩 테스트장치에 있어서,
    상기 엘이디 칩을 지지하며, 상기 엘이디 칩의 특성을 측정하는 테스트위치로 상기 엘이디 칩을 회전시키는 회전부재; 및
    상기 회전부재의 옆에 설치되며, 상기 테스트위치에서 상기 엘이디 칩의 특성을 측정하는 테스트부를 포함하는 것을 특징으로 하는 엘이디 칩 테스트장치.
  2. 제1항에 있어서, 상기 회전부재는,
    회전축을 중심으로 반경 방향으로 연장된 복수개의 지지프레임, 및
    상기 복수개의 지지프레임의 단부측에 각각 설치되며, 상기 엘이디 칩을 안착시키는 복수개의 안착부재를 포함하는 것을 특징으로 하는 엘이디 칩 테스트장치.
  3. 제2항에 있어서, 상기 안착부재의 전체 또는 일부는 사파이어, 수정, 유리, 철합금, 구리합금, 알루미늄합금, 스테인리스스틸, 초경합금, PTFE, 금, 백금, 은 중 어느 하나를 포함하는 재질로 이루어진 것을 특징으로 하는 엘이디 칩 테스트장치.
  4. 제2항에 있어서, 상기 안착부재의 전체 또는 일부는 미러 코팅, 금 도금, 백금 도금, 또는 은 도금되어 있는 것을 특징으로 하는 엘이디 칩 테스트장치.
  5. 제2항에 있어서, 상기 안착부재는 상기 회전부재에 결합되는 안착몸체, 및 엘이디 칩에 접촉되는 접촉부재를 포함하는 것을 특징으로 하는 엘이디 칩 테스트장치.
  6. 제5항에 있어서, 상기 접촉부재는 사파이어로 형성되고, 상기 접촉부재에서 상기 안착몸체를 향한 면은 미러 코팅된 것을 특징으로 하는 엘이디 칩 테스트장치.
  7. 제1항에 있어서, 상기 테스트부는,
    상기 테스트위치에서 상기 엘이디 칩에 접촉하여 상기 엘이디 칩을 발광시키는 접촉유닛, 및
    상기 테스트 위치에서 상기 엘이디 칩의 광특성을 측정하는 측정유닛을 포함하는 것을 특징으로 하는 엘이디 칩 테스트장치.
  8. 제7항에 있어서, 상기 접촉유닛에 설치되며, 상기 엘이디 칩이 발하는 광을 상기 테스트부로 전달하는 전달부재를 더 포함하는 것을 특징으로 하는 엘이디 칩 테스트장치.
  9. 제8항에 있어서, 상기 전달부재는 상기 엘이디 칩이 발하는 광을 상기 측정유닛으로 전달하는 전달면을 포함하고, 상기 전달면에는 상기 엘이디 칩이 발하는 광이 통과되는 통과공이 형성되어 있는 것을 특징으로 하는 엘이디 칩 테스트장치.
  10. 제9항에 있어서, 상기 통과공은 상기 측정유닛에서 상기 테스트위치에 위치되는 엘이디 칩을 향하는 방향으로 크기가 점차 줄어들게 형성되는 것을 특징으로 하는 엘이디 칩 테스트장치.
  11. 제9항에 있어서, 상기 전달면의 전체 또는 일부는 미러 코팅되어 있는 것을 특징으로 하는 엘이디 칩 테스트장치.
  12. 제7항에 있어서, 상기 접촉유닛은, 상기 엘이디 칩에 접촉하는 탈부착 가능한 접촉핀을 포함하는 것을 특징으로 하는 엘이디 칩 테스트장치.
  13. 제7항에 있어서, 상기 접촉유닛은 프로브 카드인 것을 특징으로 하는 엘이디 칩 테스트장치.
  14. 제7항에 있어서, 상기 측정유닛은, 상기 테스트위치에서 상기 엘이디 칩이 발하는 광을 내부로 입사하는 수광공을 포함하는 적분구인 것을 특징으로 하는 엘이디 칩 테스트장치.
  15. 제7항에 있어서, 상기 테스트부는, 상기 접촉유닛을 이동시키는 접촉이동유닛을 더 포함하는 것을 특징으로 하는 엘이디 칩 테스트장치.
  16. 제15항에 있어서, 상기 접촉이동유닛은, 상기 접촉유닛을 회전시키는 접촉회전기구를 포함하는 것을 특징으로 하는 엘이디 칩 테스트장치.
  17. 제7항에 있어서, 상기 테스트부는, 상기 측정유닛을 승하강시키는 측정승하강유닛을 더 포함하는 것을 특징으로 하는 엘이디 칩 테스트장치.
PCT/KR2009/007809 2009-02-20 2009-12-24 엘이디 칩 테스트장치 WO2010095809A2 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN2009801571661A CN102326090B (zh) 2009-02-20 2009-12-24 Led芯片测试装置
US13/148,980 US8952717B2 (en) 2009-02-20 2009-12-24 LED chip testing device
JP2011550997A JP5327489B2 (ja) 2009-02-20 2009-12-24 エルイーディーチップテスト装置

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
KR20090014471 2009-02-20
KR10-2009-0014471 2009-02-20
KR1020090023030A KR100931322B1 (ko) 2009-02-20 2009-03-18 엘이디 칩 테스트장치 및 이를 이용한 테스트방법
KR10-2009-0023030 2009-03-18
KR10-2009-0058292 2009-06-29
KR1020090058292A KR100935706B1 (ko) 2009-06-29 2009-06-29 엘이디 칩 테스트장치 및 그 전달부재
KR1020090114028A KR20110057568A (ko) 2009-11-24 2009-11-24 엘이디 칩 테스트장치 및 엘이디 칩 분류장치
KR10-2009-0114028 2009-11-24

Publications (2)

Publication Number Publication Date
WO2010095809A2 true WO2010095809A2 (ko) 2010-08-26
WO2010095809A3 WO2010095809A3 (ko) 2010-10-14

Family

ID=42634289

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2009/007809 WO2010095809A2 (ko) 2009-02-20 2009-12-24 엘이디 칩 테스트장치

Country Status (5)

Country Link
US (1) US8952717B2 (ko)
JP (1) JP5327489B2 (ko)
CN (1) CN102326090B (ko)
TW (1) TWI449901B (ko)
WO (1) WO2010095809A2 (ko)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120044824A (ko) * 2010-10-28 2012-05-08 엘지이노텍 주식회사 발광 칩 측정 장치
CN103418557A (zh) * 2013-08-09 2013-12-04 上海无线电设备研究所 Led球泡灯成品在线检测及分拣的设备及方法
CN104089758A (zh) * 2014-07-03 2014-10-08 常州光电技术研究所 Led产品质量检测分类系统及其检测分类方法
CN104985365A (zh) * 2015-07-20 2015-10-21 马邵辉 Led双排线自动焊接机
CN106443505A (zh) * 2016-08-31 2017-02-22 苏州康贝尔电子设备有限公司 一种自动点亮测试机
CN112345915A (zh) * 2020-09-30 2021-02-09 无锡凌通精密工业有限公司 一种pcb线路板阳极测试夹具

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101083346B1 (ko) * 2010-12-09 2011-11-15 주식회사 이노비즈 엘이디 칩 검사장치
TWI442603B (zh) * 2011-05-09 2014-06-21 Youngtek Electronics Corp 發光二極體封裝晶片分類系統
TWI431291B (zh) * 2011-07-14 2014-03-21 Chroma Ate Inc 發光二極體量測裝置
TWM430614U (en) * 2011-12-21 2012-06-01 Youngtek Electronics Corp Fiber optic light guiding top cover structure
US8749773B2 (en) * 2012-02-03 2014-06-10 Epistar Corporation Method and apparatus for testing light-emitting device
CN103424186A (zh) * 2012-05-18 2013-12-04 全亿大科技(佛山)有限公司 发光二极管检测量具
JP6118801B2 (ja) * 2012-08-03 2017-04-19 パイオニア株式会社 光量測定装置及び光量測定方法
CN103777127A (zh) * 2012-10-19 2014-05-07 晶元光电股份有限公司 发光二极管光电特性量测装置
TW201423122A (zh) * 2012-12-06 2014-06-16 Jtron Technology Corp Led晶圓多晶粒檢測方法及裝置
US9347824B2 (en) 2013-11-01 2016-05-24 Kla-Tencor Corporation Light collection optics for measuring flux and spectrum from light-emitting devices
TW201537151A (zh) * 2014-03-20 2015-10-01 Ismeca Semiconductor Holding 帶有遮光器的光學積分球
CN105548855B (zh) * 2015-12-23 2018-05-04 陕西华经微电子股份有限公司 一种led厚膜陶瓷支架的测试装置及测试方法
KR102426709B1 (ko) * 2016-02-23 2022-07-29 삼성디스플레이 주식회사 발광 다이오드를 트랜스퍼하는 장치 및 방법
CN107694838B (zh) * 2017-10-26 2023-02-17 福建省苍乐电子企业有限公司 一种led自动测试涂胶装置及其工作方法
CN109724779A (zh) * 2017-10-31 2019-05-07 深圳市炫硕智造技术有限公司 Cob-led灯检测系统及检测方法
CN108627762B (zh) * 2018-06-08 2024-03-26 深圳瑞波光电子有限公司 一种测试系统
KR102558296B1 (ko) 2018-07-10 2023-07-24 삼성전자주식회사 전자 장치, 마이크로 led 모듈 제조 방법 및 컴퓨터 판독가능 기록 매체
TWI693413B (zh) * 2018-07-27 2020-05-11 鴻勁精密股份有限公司 電子元件測試裝置及其應用之測試分類設備
CN109541439B (zh) * 2018-12-10 2020-11-13 通富微电子股份有限公司 一种芯片测试进料方向的调整方法、检测装置、调整系统
CN112059958B (zh) * 2018-12-29 2021-10-22 苏州市东挺河智能科技发展有限公司 一种二极管性能检测设备上的定位导轨结构
CN111323878B (zh) * 2020-04-01 2021-10-15 联合微电子中心有限责任公司 一种激光器芯片与硅基光电子芯片的耦合对准装置及方法
CN113560203B (zh) * 2021-08-09 2023-04-11 武汉锐科光纤激光技术股份有限公司 一种芯片分选系统
CN114089146B (zh) * 2021-11-25 2022-11-15 深圳市众志祥科技有限公司 一种二极管生产用测试装置
CN113865835B (zh) * 2021-12-06 2022-02-18 河北圣昊光电科技有限公司 一种基于双积分球的芯片测试设备及测试方法
CN114472193B (zh) * 2022-01-06 2022-11-25 山东润通齿轮集团有限公司 一种锥齿轮输送质检一体化装置及其使用方法
CN114932089A (zh) * 2022-04-27 2022-08-23 泉州兰姆达仪器设备有限公司 一种激光芯片测试分选机的上料机构及其工作方法
CN116124406B (zh) * 2023-04-13 2023-08-08 山东泰芯电子科技有限公司 一种芯片封装耐用性测试装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007019237A (ja) * 2005-07-07 2007-01-25 Tokyo Seimitsu Co Ltd 両面発光素子用プロービング装置
KR20070039994A (ko) * 2005-10-11 2007-04-16 블루코드테크놀로지 주식회사 웨이퍼 콜렉터
JP2008070308A (ja) * 2006-09-15 2008-03-27 Tokyo Seimitsu Co Ltd マルチチッププローバ

Family Cites Families (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2967642A (en) * 1957-06-10 1961-01-10 Pacific Semiconductors Inc Orienting apparatus
US2999587A (en) * 1957-08-12 1961-09-12 Pacific Semiconductors Inc Automatic diode sorter
US3238455A (en) * 1962-04-18 1966-03-01 Sylvania Electric Prod Magazine for supporting a plurality of electrical devices and apparatus for making electrical contact to devices supported therein
US3252571A (en) * 1962-09-10 1966-05-24 Western Electric Co Diode orientation machine
US3115235A (en) * 1962-10-29 1963-12-24 Pacific Semiconductors Inc Diode orienting apparatus
US3702438A (en) * 1969-12-23 1972-11-07 Cons Design Inc Diode tester
US3742356A (en) * 1971-09-07 1973-06-26 Kerant Electronics Ltd Testing apparatus for light emitting diodes and method therefor
JPS537743Y2 (ko) * 1973-12-06 1978-02-27
JPS5394774A (en) 1977-01-29 1978-08-19 Toshiba Corp Automatic sorter for semiconductor device
US4179032A (en) * 1978-09-11 1979-12-18 Western Electric Co., Inc. Methods of and apparatus for conveying, orienting, testing and sorting articles
US4433898A (en) * 1980-12-22 1984-02-28 National Semiconductor Corporation Fiber optic assembly for coupling an optical fiber and a light source
US4500003A (en) * 1982-05-20 1985-02-19 Cedrone Nicholas J Axial lead tester/sorter
DE3235727A1 (de) * 1982-09-27 1984-03-29 Siemens AG, 1000 Berlin und 8000 München Verfahren zum hervorheben eines objektbereichs in einem rastermikroskop
US4611116A (en) * 1984-02-21 1986-09-09 Batt James E Light emitting diode intensity tester
JPS6252941A (ja) 1985-09-02 1987-03-07 Hitachi Ltd 半導体測定装置
US4775640A (en) * 1987-05-01 1988-10-04 American Telephone And Telegraph Company Electronic device test method and apparatus
JPH0664180A (ja) 1992-06-19 1994-03-08 Fuji Electric Co Ltd インクジェット・プリンタ
US5381103A (en) * 1992-10-13 1995-01-10 Cree Research, Inc. System and method for accelerated degradation testing of semiconductor devices
JPH0664180U (ja) * 1993-02-17 1994-09-09 株式会社アドバンテスト Icハンドラにおける搬送装置
JP2570585B2 (ja) 1993-07-22 1997-01-08 日本電気株式会社 プローブ装置
JPH0992882A (ja) * 1995-09-25 1997-04-04 Mitsubishi Electric Corp 半導体発光素子,及びその製造方法
US5793220A (en) * 1996-08-12 1998-08-11 Micron Electronics, Inc. Fixture for testing and prepping light-emitting diodes
US6028441A (en) * 1997-08-14 2000-02-22 Alvord; Robert J. Self-test routine and circuit for LED display
US6043668A (en) * 1997-12-12 2000-03-28 Sony Corporation Planarity verification system for integrated circuit test probes
US6384612B2 (en) * 1998-10-07 2002-05-07 Agere Systems Guardian Corporation Method and apparatus for testing the light output of light emitting devices
US6597195B1 (en) * 2000-07-28 2003-07-22 Labsphere, Inc. Method of and cassette structure for burn-in and life testing of multiple LEDs and the like
US6564161B1 (en) * 2000-12-01 2003-05-13 Advanced Micro Devices, Inc. Arrangement for testing light emitting diode interface of an integrated network device
AT410266B (de) * 2000-12-28 2003-03-25 Tridonic Optoelectronics Gmbh Lichtquelle mit einem lichtemittierenden element
JP2003090847A (ja) * 2001-09-20 2003-03-28 Seiwa Electric Mfg Co Ltd 半導体素子測定用電極及びそれを用いた半導体素子の測定機
US6797936B1 (en) * 2002-01-03 2004-09-28 Opto Electronic Systems, Inc. Automated laser diode testing
JP4217217B2 (ja) * 2002-12-11 2009-01-28 オリンパス株式会社 光学素子の支持装置およびその製造方法、製造装置
JP2004301807A (ja) 2003-04-01 2004-10-28 Nec Kansai Ltd 検査用プローブカード
US7286296B2 (en) * 2004-04-23 2007-10-23 Light Prescriptions Innovators, Llc Optical manifold for light-emitting diodes
JP4293840B2 (ja) * 2003-06-06 2009-07-08 株式会社アドバンテスト 試験装置
US7030642B2 (en) * 2004-02-06 2006-04-18 Honeywell International Inc. Quick attachment fixture and power card for diode-based light devices
JP4847440B2 (ja) * 2004-03-08 2011-12-28 シオプティカル インコーポレーテッド ウエハレベルでの光−電子テスト装置および方法
JP2008503087A (ja) * 2004-06-18 2008-01-31 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 改善された光放射率プロファイルを備えるled
KR20050121376A (ko) * 2004-06-22 2005-12-27 삼성전자주식회사 반도체 장치의 테스트 장치 및 이를 이용한 반도체 장치테스트 방법
KR20050122972A (ko) * 2004-06-26 2005-12-29 삼성전자주식회사 유기 발광소자 분석방법
US7374293B2 (en) * 2005-03-25 2008-05-20 Vishay General Semiconductor Inc. Apparatus, system and method for testing electronic elements
CN100573168C (zh) * 2005-04-21 2009-12-23 鸿富锦精密工业(深圳)有限公司 测试计算机面板发光二极管灯及其连接线的系统及方法
US7439731B2 (en) * 2005-06-24 2008-10-21 Crafts Douglas E Temporary planar electrical contact device and method using vertically-compressible nanotube contact structures
WO2007072919A1 (ja) * 2005-12-22 2007-06-28 Matsushita Electric Works, Ltd. Ledを用いた照明器具
KR100816617B1 (ko) * 2006-08-09 2008-03-24 팸텍주식회사 부품트레이 잔류 부품 검출보드
US8573836B2 (en) * 2006-10-26 2013-11-05 Tokyo Electron Limited Apparatus and method for evaluating a substrate mounting device
US7652480B2 (en) * 2007-04-26 2010-01-26 General Electric Company Methods and systems for testing a functional status of a light unit
US7538359B2 (en) * 2007-08-16 2009-05-26 Philips Lumiled Lighting Company, Llc Backlight including side-emitting semiconductor light emitting devices
US7868637B2 (en) * 2007-10-15 2011-01-11 Hamilton Sundstrand Corporation System and method for automated detection of singular faults in diode or'd power bus circuits
CN101237017B (zh) * 2008-02-29 2012-02-08 晶能光电(江西)有限公司 Led裸芯测试用的led支架处理方法、led支架单元以及支架
US7804589B2 (en) * 2008-06-13 2010-09-28 Chroma Ate Inc. System and method for testing light-emitting devices
CN101339092B (zh) * 2008-08-13 2010-11-10 重庆大学 Led芯片/晶圆/外延片的非接触式检测方法及检测装置
JP2012124249A (ja) * 2010-12-07 2012-06-28 Toshiba Corp Ledパッケージ及びその製造方法
TWM436227U (en) * 2012-03-23 2012-08-21 Mpi Corp Heating point testing appliances

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007019237A (ja) * 2005-07-07 2007-01-25 Tokyo Seimitsu Co Ltd 両面発光素子用プロービング装置
KR20070039994A (ko) * 2005-10-11 2007-04-16 블루코드테크놀로지 주식회사 웨이퍼 콜렉터
JP2008070308A (ja) * 2006-09-15 2008-03-27 Tokyo Seimitsu Co Ltd マルチチッププローバ

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120044824A (ko) * 2010-10-28 2012-05-08 엘지이노텍 주식회사 발광 칩 측정 장치
KR101724711B1 (ko) * 2010-10-28 2017-04-10 엘지이노텍 주식회사 발광 칩 측정 장치
CN103418557A (zh) * 2013-08-09 2013-12-04 上海无线电设备研究所 Led球泡灯成品在线检测及分拣的设备及方法
CN104089758A (zh) * 2014-07-03 2014-10-08 常州光电技术研究所 Led产品质量检测分类系统及其检测分类方法
CN104985365A (zh) * 2015-07-20 2015-10-21 马邵辉 Led双排线自动焊接机
CN106443505A (zh) * 2016-08-31 2017-02-22 苏州康贝尔电子设备有限公司 一种自动点亮测试机
CN112345915A (zh) * 2020-09-30 2021-02-09 无锡凌通精密工业有限公司 一种pcb线路板阳极测试夹具
CN112345915B (zh) * 2020-09-30 2022-03-22 无锡凌通精密工业有限公司 一种pcb线路板阳极测试夹具

Also Published As

Publication number Publication date
TWI449901B (zh) 2014-08-21
US20110316579A1 (en) 2011-12-29
CN102326090B (zh) 2013-12-11
JP2012518182A (ja) 2012-08-09
WO2010095809A3 (ko) 2010-10-14
JP5327489B2 (ja) 2013-10-30
TW201037296A (en) 2010-10-16
CN102326090A (zh) 2012-01-18
US8952717B2 (en) 2015-02-10

Similar Documents

Publication Publication Date Title
WO2010095809A2 (ko) 엘이디 칩 테스트장치
WO2010095810A2 (ko) 엘이디 칩 분류장치
WO2013129872A1 (ko) 소자검사장치
WO2015163556A1 (ko) 조명 장치
WO2013122337A1 (en) Light emitting package
EP2751472A1 (en) Lighting device
WO2016182352A1 (ko) 소자핸들러
KR101151216B1 (ko) 프로브카드를 구비한 적분구 유닛, 이를 구비한 엘이디 칩 테스트장치, 및 엘이디 칩 분류장치
WO2021071340A1 (ko) 가압모듈 및 그를 가지는 소자 핸들러
WO2018038334A1 (ko) 틸팅 스테이지 시스템
JP6441435B1 (ja) プローバ装置およびウェハチャック
WO2018217006A2 (ko) 반도체 발광소자 및 이의 제조 방법
WO2015170848A1 (ko) 발광소자
WO2020231113A1 (ko) 치수 측정용 지그 및 그를 포함하는 치수 측정 장치
WO2020204245A1 (ko) 반도체 소자 테스트용 리드리스 bga 소켓장치
KR100935706B1 (ko) 엘이디 칩 테스트장치 및 그 전달부재
WO2023167479A1 (ko) 전기 전도성 접촉핀, 정렬 플레이트 및 이를 구비하는 검사장치
WO2020013441A1 (en) Electronic apparatus, method for manufacturing led module and computer-readable recording medium
KR20110057568A (ko) 엘이디 칩 테스트장치 및 엘이디 칩 분류장치
WO2023008637A1 (ko) 원형 배터리 검사장치
WO2020153742A1 (ko) 검사 장치용 이송 기구, 검사 장치, 및 이를 이용하는 대상물 검사 방법
WO2021029535A1 (en) Micro led element and micro led display module having the same
WO2016099197A1 (ko) 정션 온도의 동적특성을 이용한 반도체 소자의 검사 장치 및 방법
WO2020101273A1 (en) Led transfer device comprising mask and micro led transferring method using the same
KR101754396B1 (ko) 광소자 테스트 장치 및 광소자 테스트 방법

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980157166.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09840485

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 13148980

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2011550997

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 18/01/2012)

122 Ep: pct application non-entry in european phase

Ref document number: 09840485

Country of ref document: EP

Kind code of ref document: A2