WO2010095562A1 - 電解質膜及び膜―電極接合体 - Google Patents

電解質膜及び膜―電極接合体 Download PDF

Info

Publication number
WO2010095562A1
WO2010095562A1 PCT/JP2010/052035 JP2010052035W WO2010095562A1 WO 2010095562 A1 WO2010095562 A1 WO 2010095562A1 JP 2010052035 W JP2010052035 W JP 2010052035W WO 2010095562 A1 WO2010095562 A1 WO 2010095562A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
electrolyte membrane
ion conductive
fine particles
carbon atoms
Prior art date
Application number
PCT/JP2010/052035
Other languages
English (en)
French (fr)
Inventor
小野 友裕
武史 仲野
竹友 山下
久保 敬次
須郷 望
Original Assignee
株式会社クラレ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社クラレ filed Critical 株式会社クラレ
Priority to CA2752726A priority Critical patent/CA2752726A1/en
Priority to US13/201,539 priority patent/US8993192B2/en
Priority to JP2011500578A priority patent/JP5449314B2/ja
Priority to EP10743689A priority patent/EP2400507A1/en
Priority to CN201080008008.2A priority patent/CN102318011B/zh
Publication of WO2010095562A1 publication Critical patent/WO2010095562A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • C08J5/2206Films, membranes or diaphragms based on organic and/or inorganic macromolecular compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/12Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances organic substances
    • H01B1/122Ionic conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1023Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having only carbon, e.g. polyarylenes, polystyrenes or polybutadiene-styrenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1041Polymer electrolyte composites, mixtures or blends
    • H01M8/1044Mixtures of polymers, of which at least one is ionically conductive
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1041Polymer electrolyte composites, mixtures or blends
    • H01M8/1053Polymer electrolyte composites, mixtures or blends consisting of layers of polymers with at least one layer being ionically conductive
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1069Polymeric electrolyte materials characterised by the manufacturing processes
    • H01M8/1081Polymeric electrolyte materials characterised by the manufacturing processes starting from solutions, dispersions or slurries exclusively of polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2327/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
    • C08J2327/02Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
    • C08J2327/12Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08J2327/18Homopolymers or copolymers of tetrafluoroethylene
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to an electrolyte membrane that can be used in a wide range of applications such as battery electrolyte membranes, capacitors, actuators, sensors, ion exchange membranes, and coating materials, and a membrane-electrode assembly having electrodes on both sides thereof.
  • Fluorine-based electrolyte membranes have been used. Fluorine-based materials are excellent in ion conductivity and certain types of durability, but they can also generate fluorine-based compounds due to decomposition during use, have high fuel permeability, and are expensive. Therefore, an alternative material has been demanded.
  • hydrocarbon-based materials have been proposed as materials that replace fluorine-based electrolytes.
  • a material similar to engineering plastics typified by polyethersulfone (PES) and polyetheretherketone (PEEK) is used as the base polymer, and an ion conductive group such as a sulfonic acid group is introduced into this. is there.
  • PES polyethersulfone
  • PEEK polyetheretherketone
  • Patent Document 1 proposes a sulfonated product of PES. Since such a material does not contain fluorine, no fluorine compound is generated even if the material deteriorates. Further, if manufacturing technical problems such as introduction of ion conductive groups and film formation can be solved, it is advantageous in terms of price.
  • ion conductive groups are relatively uniformly dispersed. In order to ensure high ion conductivity, it is necessary to increase the ion exchange capacity. However, if the ion exchange capacity is increased, the ion exchange capacity tends to swell. Since the base polymer is a hard and brittle material, when a material with a high ion exchange capacity is used as an electrolyte membrane for a fuel cell, the swelling and shrinking are repeated by repeated start-stop (humidification-dry repetition). Cracks tend to cause fuel leaks. In particular, since the film is hard and brittle in the absolutely dry state, a film having substantially sufficient ionic conductivity cannot be obtained.
  • the electrolyte membrane described in Patent Document 3 is made of a block copolymer having a flexible block, and has a flexible block, and therefore has excellent bondability with an electrode.
  • the block structure is retained. Therefore, since the ion channel and the portion exhibiting rubber-like performance are completely separated by the phase separation structure peculiar to the block copolymer, a film capable of suppressing cracks due to repeated humidification and drying can be obtained.
  • the electrolyte membrane made of the block copolymer is flexible, the performance is insufficient in a low humidity or non-humidified state, and the performance is limited even if the ion exchange capacity is increased. Therefore, the actual situation is that sufficient ion conductivity cannot be secured in a low humidity or non-humidified state.
  • the present invention provides an electrolyte membrane having a structure in which rubber fine particles having an average particle diameter of 20 nm to 1 ⁇ m substantially free of ion conductive groups are uniformly dispersed in a matrix containing a resin component having ion conductive groups. I will provide a.
  • the present invention further provides a multilayer electrolyte membrane comprising a multilayer structure including at least one layer of the electrolyte membrane, wherein the electrolyte membrane is disposed on the surface or inside the multilayer structure.
  • the present invention provides a membrane-electrode assembly (MEA) having electrodes on both surfaces of the electrolyte membrane or the multilayer electrolyte membrane.
  • MEA membrane-electrode assembly
  • the present invention provides (1) preparing a dispersion containing core-shell fine particles in which the periphery of rubber fine particles having substantially no ion conductive group is covered with a resin component having an ion conductive group; and (2) the dispersion There is provided a method for producing an electrolyte membrane comprising a step of drying and solidifying a liquid to obtain a structure in which fine particles having an average particle diameter of 20 nm to 1 ⁇ m are uniformly dispersed in a matrix composed of a resin component having an ion conductive group.
  • a resin component having an ion conductive group forms a matrix, and rubber fine particles are uniformly dispersed in the matrix independently of each other. Therefore, the toughness of the film is enhanced by the rubber component constituting the rubber fine particles, and the ion conductive path is not broken because the matrix having ion conductivity is continuous. Moreover, since the density of the ion conductive group in the matrix (ion conduction path) is increased, high ion conductivity can be ensured even in a low humidity or non-humidified state.
  • the membrane-electrode assembly of the present invention has high membrane and electrode bondability. Since a fuel cell having excellent power generation characteristics can be provided by using a single cell obtained by arranging a separator outside such a membrane-electrode assembly, the present invention is extremely useful industrially.
  • FIG. 2 is a transmission electron micrograph showing the structure of the electrolyte membrane A of Example 1.
  • FIG. 6 is a transmission electron micrograph showing the structure of an electrolyte membrane E of Comparative Example 2.
  • the resin component having an ion conductive group contained in the matrix of the electrolyte membrane of the present invention preferably accounts for 50% by weight or more in the matrix, more preferably 70% by weight or more, and 90% by weight or more. Are more preferred (each containing 100%).
  • the resin component having an ion conductive group is preferably a non-rubber-like resin component having a glass transition temperature or softening point of 10 ° C. or higher, preferably 30 ° C. or higher, in order to increase the strength of the electrolyte membrane.
  • the number average molecular weight of the resin component having an ion conductive group is preferably in the range of 4000 to 70000, and more preferably in the range of 6000 to 50000.
  • the matrix may be eluted during use.
  • the number average molecular weight is large, production may be difficult.
  • the content of the resin having a molecular weight of 1000 or less, preferably 2000 or less is preferably 10% by weight or less, and more preferably 5% by weight or less. .
  • the resin component not only adjusts the number average molecular weight but also has a narrow molecular weight distribution.
  • a method for producing a resin having a narrow molecular weight distribution is not particularly limited, and examples thereof include production of a resin by living polymerization and a method of removing low molecular weight components from a resin obtained by polymerization using a Soxhlet extractor or the like.
  • the resin component having an ion conductive group does not need to have an ion conductive group in every repeating unit, and usually includes a repeating unit having no ion conductive group.
  • a method for producing the resin component having an ion conductive group a method of polymerizing a monomer having an ion conductive group and a monomer having no ion conductive group as necessary, ion conduction A method in which an ion conductive group is appropriately introduced by a known ion conductive group introduction reaction after polymerization of a monomer having no functional group.
  • the matrix of the electrolyte membrane of the present invention can contain other components in addition to the resin component containing the ion conductive group as long as the effects of the present invention are not hindered.
  • Other components include resin components that do not contain an ion conductive group.
  • the resin component not containing an ion conductive group is not particularly limited, but it is highly desirable that the matrix does not phase-separate. Therefore, it is desirable that the resin has a high affinity with the resin component containing the ion conductive group.
  • the preferred range of the number average molecular weight and molecular weight distribution of the resin component not containing the ion conductive group is the same as that of the resin component containing the ion conductive group. It is preferable that there is no low molecular weight component having a molecular weight of 2000 or less, particularly 1,000 or less, and it is particularly preferable that there is no low molecular component having a polar functional group that easily elutes during use.
  • the amount of ion conductive group is important in determining the performance of the electrolyte membrane.
  • the amount of ion conductive groups contained in the electrolyte membrane preferably has an ion exchange capacity of 0.30 meq / g or more, and 0.40 meq / g. More preferably, it is g or more. However, if the ion exchange capacity becomes too high, the hydrophilicity becomes high and the swelling tends to occur. Therefore, the ion exchange capacity is preferably 3.00 meq / g or less.
  • the electrolyte membrane of the present invention contains both ion conductive groups in the matrix by selectively containing ion conductive groups, the amount of the ion conductive groups in the matrix is also important. It is.
  • the amount of the ion conductive group in the matrix is preferably 0.50 meq / g or more, more preferably 1.50 meq / g or more, and further preferably 2.50 meq / g or more.
  • the proportion of the ion conductive group is preferably 10 mol% or more, more preferably 20 to 200 mol%, based on the repeating unit of the resin component having an ion conductive group, and the ease of production and performance are improved. In order to achieve both heights, it is more preferably 30 to 150 mol%, particularly preferably 50 to 100 mol%.
  • the resin component having an ion conductive group includes a monomer unit having an ion conductive group and a monomer unit having no ion conductive group, in order for the resin component not to phase separate, A random copolymer of a monomer unit having a conductive group and a monomer unit having no ion conductive group is preferable.
  • the electrolyte membrane of the present invention has a structure in which rubber fine particles having substantially no ion conductive group are uniformly dispersed in a matrix containing a resin component having an ion conductive group.
  • the rubber fine particles may be covalently bonded to other polymer components, but it is highly desirable that the rubber fine particles form a single phase and may be covalently bonded to the resin component contained in the matrix.
  • As the form of the covalent bond it is preferable that the rubber fine particle portion and the other polymer component form independent polymer segments, so that the rubber fine particle forms a single phase.
  • a polymer is mentioned.
  • substantially has no ion conductive group means a polymer that forms rubber fine particles (in the case where a component that forms rubber fine particles is covalently bonded to another polymer, rubber fine particles It means that the monomer unit containing an ion conductive group in the component) is less than 5 mol%.
  • a resin blend of a resin forming a matrix and a resin forming a rubber fine particle, agglomeration of core-shell fine particles, or a block copolymer including a resin component and a rubber component forming a matrix As a method for realizing such a structure, a resin blend of a resin forming a matrix and a resin forming a rubber fine particle, agglomeration of core-shell fine particles, or a block copolymer including a resin component and a rubber component forming a matrix.
  • a resin component having an ion conductive group and a rubber component having substantially no ion conductive group such as phase separation of a copolymer such as a polymer or a graft copolymer (even if these form a chemical bond)
  • phase separation obtained from the two components of (good) can be used.
  • the phase separation size is generally large, and the shape may be irregular.
  • spinodal decomposition as a method for forming a microphase-separated structure, but since there are limited combinations having a phase diagram of UCST or LCST, there are limitations on combinations of polymers that can form a microphase-separated structure. It is necessary to select a combination that forms a phase separation structure in which rubber fine particles are dispersed.
  • the composition and conditions under which rubber fine particles are formed are extremely limited by the usual solution casting method and melt molding method, and the amount of ion conductive groups, the ratio of the block, etc. There is a limit. For example, when lamellar phase separation occurs, the continuity of the ion conduction phase is hindered, resulting in an increase in membrane resistance. Therefore, materials are limited to form the structure of the present invention by a generally used solution casting method or melt molding method.
  • the rubber fine particles in advance by emulsion polymerization or post-emulsification.
  • the rubber fine particles may aggregate when blended with a resin having an ion conductive group and the solvent is removed.
  • a surfactant in order to disperse in a polar solvent such as water, a surfactant must be used, and the surfactant remains in the electrolyte membrane, which often adversely affects battery characteristics.
  • a dispersion of core-shell particles having an ion conductive group on the outer shell of rubber fine particles it is preferable to prepare a dispersion of core-shell particles having an ion conductive group on the outer shell of rubber fine particles, and to form the dispersion, in order to obtain the structure of the electrolyte membrane of the present invention.
  • a dispersion an electrolyte membrane in which core-shell type higher order structural units in which the periphery of rubber fine particles having substantially no ion conductive group are covered with a resin component having an ion conductive group is aggregated is obtained. It is done.
  • a surfactant is not necessary.
  • the packing is sufficiently dense at the time of film formation, the ion conductive group density in the matrix is increased, and the structure is more advantageous for ion conduction.
  • the method for obtaining a dispersion of core-shell particles include a method of post-emulsifying the block copolymer and a method of using soap-free emulsion polymerization.
  • the block copolymer may have at least a block having an ion conductive group and a rubber fine particle forming block having substantially no ion conductive group. is necessary. Therefore, a block copolymer having a diblock or higher can be preferably used. Examples of block copolymers include AB type diblocks, ABA type triblocks, ABC type triblocks, ABBA type tetrablocks, ABAA types.
  • C type tetrablock ABCA type tetrablock, ABCBC type tetrablock, ABCD type tetrablock, ABBABA type pentablock , ABABC type pentablock, ABAACA type pentablock, ABAACB type pentablock, ABAACD type Penta block, ABCBC type pentablock, ABCBC type pentablock, ABCBC type pentablock, ABCCB A-type pentablock, ABCBCBC type pentablock, ABCBCBD type pentablock, ABC D-A type pentablock, A-B-C-D-B-type pentablock, A-B-C-D-C type pentablock, A-B-C-D-E-type pentablock the like.
  • A, B, C, D, and E mean different block structures, respectively, a block having at least an ion conductive group and a rubber fine particle forming block that substantially does not contain an ion conductive group. Including. Among these, a block copolymer composed of 3 or more blocks having no rubber fine particle forming block at the end is preferable in obtaining the mechanical strength of the electrolyte membrane. These block copolymers may be used alone or in combination of two or more.
  • the main monomer constituting the block containing an ion conductive group is preferably a vinyl compound, particularly an aromatic vinyl compound. It is not essential to have an ion conductive group at the time of polymerization. That is, either a method of introducing an ion conductive group after polymerizing a monomer having no ion conductive group or a method of polymerizing a monomer having an ion conductive group can be employed.
  • Ar represents an aryl group having 6 to 14 carbon atoms which may have 1 to 3 substituents
  • R 1 may have a hydrogen atom or 1 to 9 substituents.
  • a good alkyl group having 1 to 4 carbon atoms or an aryl group having 6 to 14 carbon atoms which may have 1 to 3 substituents and compounds capable of forming a repeating unit represented by the formula:
  • Examples of the aryl group having 6 to 14 carbon atoms in Ar include a phenyl group, a naphthyl group, a phenanthryl group, an anthryl group, an indenyl group, and a biphenyl group.
  • the arbitrary 1 to 3 substituents of the aryl group are each independently an alkyl group having 1 to 4 carbon atoms (methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, tert-butyl group).
  • alkyl halides having 1 to 4 carbon atoms chloromethyl group, 2-chloroethyl group, 3-chloropropyl group, etc.).
  • Examples of the alkyl group having 1 to 4 carbon atoms of R 1 include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, and a t-butyl group.
  • the alkyl group may have a substituent, and is not particularly limited.
  • an aryl group such as a phenyl group, a naphthyl group, a phenanthryl group, an anthryl group, an indenyl group, or a biphenyl group, or a halogen such as a chloro group or a bromo group.
  • a plurality of substituents may be used, or two or more of these substituents may be used.
  • the aryl group having 6 to 14 carbon atoms of R 1 include a phenyl group, a naphthyl group, a phenanthryl group, an anthryl group, an indenyl group, and a biphenyl group.
  • the arbitrary 1 to 3 substituents of the aryl group are each independently a methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, tert-butyl group, which may have a substituent.
  • alkyl group may have examples, but are not particularly limited to, for example, phenyl group, naphthyl group, phenanthryl group, anthryl group, indenyl group, biphenyl
  • aryl group such as a group, and a halogen group such as a chloro group and a bromo group can be mentioned, and these substituents may be plural or two or more.
  • Two or more aromatic vinyl compounds may be used in combination. Any of random copolymerization, block copolymerization, graft copolymerization, and tapered copolymerization may be used as a method of copolymerizing two or more kinds to form a block that will later become an ion conductive group-containing block.
  • the block containing an ion conductive group may contain one or more other monomer units in addition to the aromatic vinyl compound unit within a range not impairing the effects of the present invention.
  • a monomer include conjugated dienes having 4 to 8 carbon atoms (specific examples are selected from compounds exemplified as monomers constituting rubber fine particles having substantially no ion conductive group described later), carbon Alkenes of formulas 2 to 8 (specific examples are selected from compounds exemplified as monomers constituting rubber fine particles having substantially no ion conductive groups described later), (meth) acrylic acid esters ((meth) Methyl acrylate, ethyl (meth) acrylate, butyl (meth) acrylate), vinyl esters (vinyl acetate, vinyl propionate, vinyl butyrate, vinyl pivalate, etc.), vinyl ethers (methyl vinyl ether, isobutyl vinyl ether, etc.), etc. Can be mentioned.
  • an ion when referring to an ion conductive group mainly refers to a charged particle having a low molecular weight such as a proton.
  • the ion conductive group is not particularly limited as long as the electrolyte membrane of the present invention exhibits sufficient ionic conductivity.
  • —SO 3 M or —PO 3 HM, —COOM (wherein M is A sulfonic acid group, a phosphonic acid group, a carboxyl group or a salt thereof represented by a hydrogen ion, an ammonium ion or an alkali metal ion is preferably used.
  • the alkali metal ion include sodium ion and potassium ion.
  • the introduction position of the ion conductive group is not particularly limited, but from the viewpoint of facilitating ion channel formation, the aromatic vinyl monomer (for example, styrene, ⁇ -methylstyrene, p-methylstyrene, vinylnaphthalene). , ⁇ -methylvinylnaphthalene, vinylbiphenyl, and the like) in a unit derived from a repeating unit represented by formula (I) (including the aryl group represented by R 1 ).
  • the ion conductive group can be introduced by a known method.
  • the ratio of the aromatic vinyl compound unit (the sum of the unit introduced with the ion conductive group and the unit not introduced) is not particularly limited, but sufficient ionic conductivity is ensured, And from a viewpoint of ensuring post-emulsibility, it is preferable that it is 50 mol% or more of the monomer unit which comprises this block (100% is included).
  • the monomer having an ion conductive group examples include compounds capable of forming a repeating unit in which an ion conductive group is introduced into the aryl group (Ar) having the structure represented by the formula (I), that is, aromatic A monomer having an ion conductive group bonded to the aromatic ring of the aromatic vinyl compound is preferred.
  • o, m or p-alkyl styrene sulfonic acid o, m or p- ⁇ -alkyl styrene sulfonic acid, alkyl vinyl naphthalene sulfonic acid, alkyl vinyl anthracene sulfonic acid, alkyl vinyl pyrene sulfonic acid, o, m or Examples thereof include p-alkyl styrene phosphonic acid, o, m or p- ⁇ -alkyl styrene phosphonic acid, alkyl vinyl naphthalene phosphonic acid, alkyl vinyl anthracene phosphonic acid, and alkyl vinyl pyrene phosphonic acid.
  • the monomer containing an ion conductive group is a monomer having an ion conductive group bonded to a conjugated diene, specifically 1,3-butadiene-1-sulfonic acid or 1,3-butadiene-2.
  • -Sulfonic acid, isoprene-1-sulfonic acid, isoprene-2-sulfonic acid, 1,3-butadiene-1-phosphonic acid, 1,3-butadiene-2-phosphonic acid, isoprene-1-phosphonic acid, isoprene-2 -Phosphonic acid can be used in combination.
  • vinyl sulfonic acid In addition to conjugated dienes, vinyl sulfonic acid, ⁇ -alkyl vinyl sulfonic acid, vinyl alkyl sulfonic acid, ⁇ -alkyl vinyl alkyl sulfonic acid, vinyl phosphonic acid, ⁇ -alkyl vinyl phosphonic acid, vinyl alkyl phosphonic acid, ⁇ -alkyl Vinyl compounds such as vinyl alkylphosphonic acid can also be used in combination.
  • a (meth) acrylic monomer having an ion conductive group bonded thereto can be used. Specific examples thereof include methacrylic acid, acrylic acid, 2-acrylamido-2-methyl-1-propanesulfonic acid, and the like. Is raised.
  • the amount of ion-conducting group introduced in the case of using a monomer having an ion-conducting group is the same as the case where the ion-conducting group is introduced after polymerizing a monomer having no ion-conducting group. .
  • the ion conductive group is an appropriate metal ion (for example, alkali metal ion).
  • it may be introduced in the form of a salt neutralized with a counter ion (for example, ammonium ion).
  • a desired ion-conducting group can be introduced by producing a polymer using sodium o, m or p-alkylstyrene sulfonate, or sodium o, m or p- ⁇ -alkylstyrene sulfonate. These can be easily converted to sulfonic acid by ion exchange by an appropriate method.
  • a block that does not substantially contain an ion conductive group (a rubber fine particle forming block) is an essential component for imparting flexibility and elasticity to the electrolyte membrane.
  • a rubber fine particle forming block is an essential component for imparting flexibility and elasticity to the electrolyte membrane.
  • the repeating unit constituting the polymer capable of forming rubber fine particles includes alkene units having 2 to 8 carbon atoms, cycloalkene units having 5 to 8 carbon atoms, vinylcycloalkene units having 7 to 10 carbon atoms, and 4 to 4 carbon atoms.
  • any of random copolymerization, block copolymerization, graft copolymerization, and tapered copolymerization may be used.
  • the monomer to be used for (co) polymerization has two carbon-carbon double bonds, any of them may be used for the polymerization, and in the case of a conjugated diene, a 1,2-bond, 1, Polymerization may be carried out by either 4-bonding or 3,4-bonding, or a mixture thereof.
  • Examples of the monomer that is a repeating unit capable of forming such rubber fine particles include alkenes having 2 to 8 carbon atoms (ethylene, propylene, 1-butene, 2-butene, isobutene, 1-pentene, 2-pentene).
  • cycloalkene having 5 to 8 carbon atoms (cyclopentene, cyclohexene, cycloheptene, cyclooctene, etc.), carbon number 7 -10 vinylcycloalkene (vinylcyclopentene, vinylcyclohexene, vinylcycloheptene, vinylcyclooctene, etc.), conjugated dienes having 4 to 8 carbon atoms (1,3-butadiene, 1,3-pentadiene, isoprene, 1,3 -Hexadiene, 2,4-hexadiene, 2,3-dimethyl-1,3-butadien 2-ethyl-1,3-butadiene, 1,3-heptadiene, 2,4-heptadiene, etc.), conjugated cycloalkadienes having 5 to 8 carbon atoms (cyclopentene, cyclohexene, cycloheptene, cyclooctene, etc.), carbon number 7 -10 vinyl
  • the block copolymer may contain an arbitrary block as a third block other than the block having an ion conductive group and the rubber fine particle forming block.
  • Non-rubber-like blocks that do not have ion-conducting groups are included as monomers that form arbitrary blocks, and aromatic vinyl-based compound units that do not have ion-conducting groups mainly in increasing the strength of the electrolyte membrane
  • An aromatic vinyl polymer block having a repeating unit of 1 is preferred.
  • the aromatic vinyl polymer block occupies 20 to 60% by weight, more preferably 23 to 50% by weight, and further preferably 25 to 40% by weight of the electrolyte membrane, the mechanical strength during use is excellent.
  • the ratio of the aromatic vinyl polymer block to the block having an ion conductive group is not particularly limited, but the ratio of the monomer unit before introducing the ion conductive group is 85:15 to 0: 100.
  • the range is 65:35 to 20:80 in order to achieve both the mechanical strength of the electrolyte membrane and high ionic conductivity, and the range is 55:45 to 35:65. More preferably, it is more preferably in the range of 45:55 to 35:65.
  • the aromatic vinyl polymer block mainly composed of an aromatic vinyl compound unit having no ion conductive group is a polymer block mainly composed of an aromatic vinyl compound unit. Excellent shape stability.
  • the aromatic vinyl polymer block is preferably phase-separated from the rubber-like fine particles, and is preferable for increasing the strength of the electrolyte membrane by forming a part of the matrix.
  • the aromatic vinyl polymer block forms an independent phase, so that the shape stability is more excellent.
  • the aromatic vinyl polymer block mainly includes an aromatic vinyl compound unit having no ion conductive group as a repeating unit.
  • an aromatic vinyl-based compound unit that does not have an ion-conducting group as a repeating unit means that the aromatic vinyl-based polymer block has substantially no ionic conductivity.
  • the ion conductive group content per repeating unit of the aromatic vinyl polymer block is preferably 0.1 mol or less, more preferably 0.01 mol or less, and most preferably zero.
  • the ratio (mol basis) of the ion conductive group to the resin component having an ion conductive group contained in the matrix is preferably 1/10 or less, more preferably 1/20 or less, and 1/100. More preferably (each including zero): As a result, the aromatic vinyl polymer block substantially does not have ionic conductivity, and is easily phase separated from the matrix forming the ion channel.
  • the aromatic vinyl polymer block is preferably hydrophobic. For example, it is preferably substantially free of hydrophilic groups such as hydroxyl groups and amino groups, and it is also preferred that substantially no polar groups such as ester groups are present.
  • the aromatic vinyl compound unit that is the main repeating unit of the aromatic vinyl polymer block is a structure that can be formed by polymerization of an aromatic vinyl compound.
  • the aromatic vinyl compound refers to a compound having at least one functional group containing at least one aromatic ring and an addition polymerizable carbon double bond directly bonded to a carbon atom on at least one aromatic ring.
  • the aromatic ring of the aromatic vinyl compound is preferably a carbocyclic aromatic ring, and examples thereof include a benzene ring, a naphthalene ring, an anthracene ring, and a pyrene ring.
  • the aromatic vinyl compound unit is preferably a substituted aromatic vinyl compound unit having 1 to 3 hydrocarbon groups having 1 to 8 carbon atoms on the aromatic ring. Examples thereof include compounds in which hydrogen on the aromatic ring is substituted with a substituent such as a vinyl group, 1-alkylethenyl group (eg, isopropenyl group), 1-arylethenyl group.
  • styrene 2-methylstyrene, 3-methylstyrene, 4-methylstyrene, 4-ethylstyrene, 4-n-propylstyrene, 4-isopropylstyrene, 4-n-butylstyrene, 4-isobutylstyrene, 4- t-butylstyrene, 4-n-octylstyrene, 2,4-dimethylstyrene, 2,5-dimethylstyrene, 3,5-dimethylstyrene, 2,4,6-trimethylstyrene, 2-methoxystyrene, 3-methoxy Styrene, 4-methoxystyrene, vinylnaphthalene, vinylanthracene, alkyl groups having 1 to 4 hydrogen atoms bonded to ⁇ -carbon atoms (methyl group, ethyl group, n-propyl group, isopropy
  • the aromatic vinyl polymer block may contain one or more other monomer units within a range not impairing the effects of the present invention.
  • examples of such other monomers include conjugated dienes having 4 to 8 carbon atoms (1,3-butadiene, 1,3-pentadiene, isoprene, 1,3-hexadiene, 2,4-hexadiene, 2,3- Dimethyl-1,3-butadiene, 2-ethyl-1,3-butadiene, 1,3-heptadiene, 1,4-heptadiene, 3,5-heptadiene, etc.), alkenes having 2 to 8 carbon atoms (ethylene, propylene, 1-butene, 2-butene, isobutene, 1-pentene, 2-pentene, 1-hexene, 2-hexene, 1-heptene, 2-heptene, 1-octene, 2-octene, etc.), (meth) acrylic acid ester (Methyl (meth) acrylate
  • the copolymerization form with the other monomer is desirably random copolymerization.
  • the aromatic vinyl polymer block is preferably used in the range of 60% by weight or less of the block copolymer, more preferably in the range of 50% by weight or less, and more preferably in the range of 40% by weight or less. .
  • the block copolymer synthesis method is appropriately selected from radical polymerization method, anion polymerization method, cation polymerization method, coordination polymerization method, etc. depending on the type and molecular weight of the monomer constituting each block,
  • a radical polymerization method, an anionic polymerization method, or a cationic polymerization method is preferable because of ease.
  • a so-called living polymerization method is preferable from the viewpoint of molecular weight, molecular weight distribution, polymer structure, ease of bonding with a polymer block, and the like, specifically, a living radical polymerization method, a living anion polymerization method, or a living cation polymerization method is more preferable. .
  • the molecular weight of the block copolymer that can be used in the present invention is not particularly limited. However, from the viewpoint of mechanical properties and various processability, the number average molecular weight calibrated with standard polystyrene is 10,000 to 2,000,000. Preferably, 15,000 to 1,000,000 is more preferable, and 20,000 to 500,000 is even more preferable.
  • the weight ratio of the block having an ion conductive group and the rubber fine particle forming block in the block copolymer is appropriately selected depending on the required performance of the block copolymer to be obtained. From the viewpoint of ionic conductivity, 95: 5 to 55:45 is preferable, and from the viewpoint of water resistance, 45:55 to 5:95 is preferable. In order to achieve both ionic conductivity and water resistance, 60:40 to 40:60 is preferable. When this weight ratio is 95: 5 to 5:95, it is advantageous that the ion channel formed by the block (A) having an ion conductive group is formed into a cylindrical or continuous phase by microphase separation.
  • the ratio of the hydrophobic rubber fine particle forming block is appropriate, and excellent water resistance is exhibited.
  • the weight ratio is calculated assuming a polymer block in which all ion conductive groups of the block copolymer are replaced with hydrogen.
  • the block having an ion conductive group can be crosslinked.
  • a method of chemically crosslinking a polymer chain, a method of using an ion conductive group as a crosslinking site, a method of using them together, and the like can be mentioned.
  • the usual post-emulsification method can be used for the preparation of the emulsion. Since the ion conductive group is hydrophilic and the rubber fine particle forming block is hydrophobic, the block copolymer has a protective colloid forming ability, and an emulsion can be obtained without using a surfactant or an emulsifier. Further, by using a polar solvent such as water, core-shell particles having a highly polar ion conductive group in the outer shell can be easily formed.
  • the solid content concentration of the emulsion is preferably 1 to 30% by weight.
  • a known method can be used as the emulsification method, but the phase inversion emulsification method is preferably used in that an emulsion having a narrow particle size distribution can be obtained. That is, a polar solvent such as water is added while stirring a solution obtained by dissolving the block copolymer in an appropriate organic solvent with an emulsifier.
  • the organic solvent may be a solvent that dissolves the block copolymer well (for example, tetrahydrofuran, dimethyl sulfoxide, dimethylformamide, dimethylacetamide), or a mixed solvent of an organic solvent that dissolves each block of the block copolymer well. it can.
  • Examples of the organic solvent used for the mixed solvent include alcohols as organic solvents that dissolve the block having an ion conductive group satisfactorily, and monoalcohols having 3 or more carbon atoms from the viewpoint of affinity with water and boiling point. preferable.
  • Examples of the organic solvent that dissolves the rubber fine particle forming block well include an aliphatic hydrocarbon solvent or an aromatic hydrocarbon solvent, and the affinity with the organic solvent that dissolves the block having an ion conductive group to be mixed well.
  • aromatic hydrocarbon solvents toluene, xylene, etc. are preferred.
  • a polar solvent such as water is dispersed in the organic solvent phase as particles, but when the amount of the polar solvent added exceeds a certain amount, it becomes a co-continuous state, and the viscosity rapidly increases. Further, when a polar solvent is added, the polar solvent becomes a continuous phase and the organic solvent containing the block copolymer becomes a discontinuous phase (fine particles), and the viscosity is rapidly lowered.
  • a polar solvent such as water is dispersed in the organic solvent phase as particles, but when the amount of the polar solvent added exceeds a certain amount, it becomes a co-continuous state, and the viscosity rapidly increases. Further, when a polar solvent is added, the polar solvent becomes a continuous phase and the organic solvent containing the block copolymer becomes a discontinuous phase (fine particles), and the viscosity is rapidly lowered.
  • the block copolymer phase separates within the particle, and all ion-conducting groups are not localized in the outer shell of the particle. Sex groups cannot be used effectively. Therefore, although it depends on the molecular weight of the block copolymer and the block ratio, it is preferable to make fine particles until the average particle size becomes 1 ⁇ m or less. In many cases, since the average particle size in the above emulsification is 1 ⁇ m or more, further fine dispersion is required.
  • a known method can be used, but a method that does not use a pulverizing medium such as a ball in a ball mill is preferable from the viewpoint of preventing impurity contamination.
  • Specific examples include a high-pressure collision method.
  • rubber fine particles may be crosslinked.
  • a generally used crosslinking method such as a method of crosslinking at the time of fine particle formation or a method of crosslinking after the fine particle formation can be employed.
  • Dispersion can also be prepared by emulsion polymerization using a normal emulsifier, but the emulsifier remains after film formation, often adversely affecting battery characteristics, durability, etc. Therefore, soap-free emulsion polymerization is preferred. Soap-free emulsion polymerization is performed in a polar solvent such as water by mixing a monomer having an ion conductive group (including a salt), a monomer that forms a rubber component, and a crosslinking monomer as necessary. It is the method of superposing
  • ion conductive groups can be effectively localized in the outer shell of the core-shell fine particles.
  • the ion conductive group (including the case of a salt) only covers the surface of the core-shell fine particles, the smaller the particle size, the better the ion exchange capacity, and it is preferably 100 nm or less.
  • a salt of an ion conductive group it is necessary to convert it into an acid by ion exchange, but either salt exchange or salt exchange after film formation in an emulsified state may be used.
  • the monomer having an ion conductive group (including the case of a salt) has a surface-active ability.
  • a monomer having both parts is more preferred.
  • the hydrophilic portion becomes an ion conductive phase after film formation, it needs to be a group having sufficient ion conductivity.
  • sulfonic acid groups, phosphoric acid groups, and salts thereof are preferable.
  • the polymerization group must be located in the hydrophobic part.
  • the polymerizable group examples are those capable of radical polymerization and copolymerizable with other components, and examples thereof include an acryloyl group, a methacryloyl group, a vinyl group, and an allyl group. Furthermore, it is preferable that the portion connecting the hydrophilic portion and the polymerization group contains at least 3 atoms of carbon atoms and oxygen atoms. Specific examples include an alkyl group having 3 or more carbon atoms and a polyoxyalkylene group having 2 or more carbon atoms and 1 or more oxygen atoms.
  • Monomers satisfying such conditions include acryloyloxyalkylene sulfate or its alkali metal salt, acryloyloxypolyoxyalkylene sulfate or its Alkali metal salt, methacryloyloxyalkylene sulfate or its alkali metal salt, methacryloyloxypolyoxyalkylene sulfate or its alkali metal salt, alkylallylalkylene sulfate or its alkali metal salt, alkylallylpolyoxyalkylene sulfate or its Alkali metal salts, acryloyl bis (polyoxyalkylene polycyclic phenyl ether) sulfonates and their alkali metal salts, methacryloyl bis (polyoxyalkylene polycyclic phenoxy) Ether) sulfonic acid esters and alkali metal salts thereof, acryloyloxyalkylene
  • the monomer that forms the rubber component can be radically polymerized so as to be a polymer having a glass transition temperature of 10 ° C. or lower.
  • methyl acrylate, ethyl acrylate , Acrylates such as butyl acrylate, octyl acrylate, dodecyl acrylate, methyl methacrylate, ethyl methacrylate, butyl methacrylate, octyl methacrylate, methacrylates such as dodecyl methacrylate, vinyl acetate, vinyl butyrate, pivalin And vinyl esters such as vinyl acid.
  • rubber fine particles may be crosslinked.
  • a compound having two or more polymerized groups can be suitably used as a crosslinking agent.
  • cross-linking agents include ethylene glycol diacrylate, hexanediol diacrylate, nonanediol diacrylate, polyoxymethylene diacrylate, diacrylate of polyoxyalkyl modified products of bisphenol A, dicyclopentadiene diacrylate, and trimethylolpropane.
  • Triacrylate trimethylolpropane polyoxyalkylene modified triacrylate, pentaerythritol triacrylate, pentaerythritol tetraacrylate, dipentaerythritol tetraacrylate, dipentaerythritol hexaacrylate, isocyanurate polyoxyalkylene modified diacrylate or triacrylate
  • Acrylates such as acrylate, ethylene glycol dimethacrylate, hex Didiol dimethacrylate, nonanediol dimethacrylate, polyoxymethylene dimethacrylate, polyoxyalkyl-modified dimethacrylate of bisphenol A, dicyclopentadiene dimethacrylate, trimethylolpropane trimethacrylate, polyoxyalkylene-modified trimethylolpropane Methacrylate, pentaerythritol trimethacrylate, pentaerythritol tetramethacrylate, dipent
  • Emulsion polymerization can employ a generally used method.
  • a radical generator such as potassium persulfate or a redox initiator can be used.
  • an inorganic salt such as sodium carbonate for the purpose of ensuring dispersion stability, but it is preferable to avoid the use of an emulsifier.
  • the solid content concentration of the emulsion obtained by emulsion polymerization is preferably 1 to 30% by weight, and more preferably 2 to 20% by weight in view of the balance between stability and productivity of the emulsion.
  • a dispersion (emulsion) having core-shell fine particles obtained by post-emulsification or emulsion polymerization of the block copolymer is applied onto a substrate film (for example, a PET film).
  • the coating amount is adjusted so that the thickness of the finally obtained electrolyte membrane is several ⁇ m to several tens ⁇ m.
  • the coating head can be appropriately selected in consideration of the viscosity of the dispersion, the desired film thickness, and the like.
  • commonly used coating methods such as a comma coater, gravure, die coater, kiss reverse, spray, etc. can be employed.
  • a single wafer type film may be formed. In this case, a bar coater, a block coater, an applicator, a spray, a die coater, or the like can be used.
  • the dispersion may contain additives such as inorganic and organic particles, a leveling agent, a crosslinking agent, a crosslinking aid, and an initiator, if necessary. However, it is preferable not to use an emulsifier.
  • Such an additive may be contained in the resin component having an ion conductive group, may be contained in the rubber fine particles, may be contained in the dispersion medium, and may be contained in the resin component, the rubber fine particles, and the dispersion. It may be contained in a plurality of phases of the medium.
  • the applied dispersion is dried and solidified.
  • a high temperature is desirable to shorten the time required for drying.
  • the drying temperature is too high and exceeds the glass transition temperature of the resin, the core-shell structure will be destroyed if it is not crosslinked. Since there is a concern that the resin deteriorates and decomposes even if it is cross-linked, it is preferably dried in the range of 60 ° C to 100 ° C.
  • the electrolyte membrane of the present invention can be obtained by peeling the membrane obtained by drying and solidifying from the substrate film.
  • the electrolyte membrane contains an emulsifier
  • the deterioration or elution of the emulsifier accompanying use leads to the deterioration of the electrolyte membrane, so that it is preferable that the emulsifier is not substantially contained (the content ratio is 1% by weight or less).
  • the emulsifier preferably not substantially contained is an emulsifier having a molecular weight of 2000 or less, particularly a molecular weight of 1000 or less.
  • FIG. 1 schematically shows a dispersion (emulsion) containing core-shell fine particles
  • FIG. 2 schematically shows an electrolyte membrane obtained by drying and solidifying the dispersion.
  • core-shell fine particles 1 are dispersed in a dispersion medium 4 (polar solvent such as water).
  • polar solvent such as water
  • the resin component having an ion conductive group (block having an ion conductive group) forms the shell 2 of the core-shell fine particles 1
  • the rubber component fine particle forming property
  • Block forms the core 3 of the core-shell fine particles 1.
  • the component formed by polymerization of the monomer having an ion conductive group forms the shell 2
  • the component formed by polymerization of the monomer that forms the rubber component is the core. 3 is formed.
  • a matrix in which the shell 5 (resin component having an ion conductive group) of the core-shell fine particles 1 is continuous is formed. Rubber fine particles are formed that are isolated and dispersed in the matrix.
  • the shape of the rubber fine particles includes not only spherical and perfect spheres, but also those having a cross section of an ellipse or polygon, and the ratio of the longest diameter (the major axis for the ellipse) to the shortest diameter (the minor axis for the ellipse) is less than 2. Is preferred.
  • the glass transition temperature or softening point of the component forming the rubber fine particles is preferably 10 ° C. or less.
  • the average particle size of the rubber fine particles is 20 nm to 1 ⁇ m. Even if the diameter of the rubber fine particles is increased, the intended effect of the present invention can be obtained in principle if a structure in which the rubber fine particles are isolated and dispersed can be realized, but at least the average particle diameter is required to obtain a smooth film. Is preferably sufficiently smaller than the thickness of the electrolyte. Usually, since the thickness of the electrolyte membrane is several ⁇ m to several tens of ⁇ m, the average particle size of the rubber fine particles needs to be substantially 1 ⁇ m or less. On the other hand, when the average particle size is 20 nm or less, it may be difficult to stably produce fine particles.
  • the average particle size is preferably 30 nm to 800 nm, more preferably 40 nm to 500 nm.
  • the average particle size of the rubber fine particles in the dispersion before film formation can be measured by an ordinary light scattering method.
  • film formation an arbitrary cross section of the film is photographed using a transmission electron microscope, and all the rubber fine particles existing in the plane of 0.5 to 5 ⁇ m square (however, the cross section is shown at the boundary line of the photograph).
  • the average particle size is determined.
  • the particle size of the particles that are not perfectly spherical is determined by measuring the longest diameter and the shortest diameter, and determining the geometric average.
  • the electrolyte membrane of the present invention may be laminated with another electrolyte membrane as necessary to form a laminated electrolyte membrane.
  • the electrolyte membrane of the present invention may be an outermost layer or an inner layer.
  • the multilayer electrolyte membrane may include a plurality of layers of the electrolyte membrane of the present invention.
  • MEA Membrane-electrode assembly
  • the MEA has a structure in which electrodes are formed on both sides of the electrolyte membrane, but each electrode is actually a laminated structure of at least five layers because it consists of a catalyst layer and a gas diffusion layer (GDL).
  • GDL gas diffusion layer
  • the function of the catalyst layer is that the fuel diffuses quickly and causes efficient electrochemical decomposition on the catalyst, the electrons generated by the decomposition easily move to the external circuit, and the ions generated by the decomposition easily And transfer to the electrolyte membrane.
  • a catalyst is required.
  • a conventionally known catalyst can be used.
  • noble metals such as platinum and platinum-ruthenium alloys, and complex metals can be used.
  • systematic electrode catalyst For example, systematic electrode catalyst.
  • a catalyst with a countermeasure against poisoning such as a platinum-ruthenium alloy is used. Is preferred.
  • a material having high conductivity is desirable as a material that guides electrons generated by electrochemical decomposition that occurs on the catalyst to the outside.
  • examples thereof include conductive carbon materials such as carbon black and carbon nanotubes, and ceramic materials such as titanium oxide. It is done.
  • An electrolyte is used as a binder as a medium for moving ions.
  • the binder may be the same as or similar to the material of the electrolyte membrane of the present invention, or may be a completely different material.
  • the binder material other than the electrolyte material of the present invention include a fluorine-based electrolyte.
  • the catalyst ink is a mixture of the above components, and a generally known mixing method can be used for the mixing. Specific examples include a ball mill, a bead mill, a homogenizer, a paint shaker, and ultrasonic irradiation. Further, for the purpose of further improving the fine dispersion, a fine dispersion method such as a high pressure collision method may be used in combination.
  • the catalyst ink thus prepared is made into a catalyst layer by a general film forming method or printing method. Examples thereof include spraying, screen printing, gravure, intermittent die coater, and ink jet.
  • the catalyst layer can be formed by a generally known method such as a method of directly forming an electrolyte membrane, a method of forming a film on a gas diffusion layer, or a method of transferring after coating on a base film. .
  • a fuel cell using hydrogen or methanol as a fuel can be manufactured by assembling a cell using the MEA thus obtained.
  • An electrode for a polymer electrolyte fuel cell was produced by the following procedure.
  • a 5% by weight methanol solution of Nafion (registered trademark, EI du Pont de Nemours & Co., Inc) was added to and mixed with the Pt catalyst-supporting carbon so that the weight ratio of Pt to Nafion was 1: 1.
  • a paste dispersed in was prepared. This paste was applied to a transfer sheet and dried for 24 hours to prepare a catalyst sheet.
  • a separately prepared electrolyte membrane is sandwiched between the two catalyst sheets so that the two catalyst surfaces face each other, and the outside is sandwiched between two heat-resistant films and two stainless steel plates in order, and hot press (130 ° C., 1..
  • the electrolyte membrane and the catalyst sheet were joined by 5 MPa, 8 min). Finally, the stainless steel plate and the heat resistant film were removed, and the transfer sheet was peeled off to produce a membrane-electrode assembly. Next, the membrane-electrode assembly produced is sandwiched between two carbon papers, the outside is sandwiched between two conductive separators that also serve as gas supply channels, and the outside is further joined to two current collector plates. And an evaluation cell for a polymer electrolyte fuel cell was produced by sandwiching the two clamp plates. Power generation characteristics were evaluated by supplying a cell temperature of 70 ° C., humidified hydrogen to the anode, and humidified air to the cathode.
  • the power generation characteristics were measured at a current density of 1 A / cm 2 measured under 100% RH humidification condition and 30% RH humidification condition with the hydrogen utilization rate set to 67% and the air utilization rate set to 50%.
  • the cell resistance (m ⁇ ⁇ cm 2 ) was evaluated.
  • Synthesis Example 1 (Synthesis of block copolymer) A poly ⁇ -methylstyrene-b-polybutadiene-b-poly ⁇ -methylstyrene type triblock copolymer (hereinafter abbreviated as mSEBmS) was synthesized in the same manner as in Patent Document 4.
  • the number average molecular weight (GPC measurement, standard polystyrene calibration) of the obtained mSEBmS was 76,000
  • the 1,4-bond amount of the polybutadiene portion determined from 1 H-NMR spectrum measurement was 55 mol%
  • ⁇ - The content of methylstyrene units was 30.0% by weight.
  • composition analysis by 1 H-NMR spectrum measurement confirmed that ⁇ -methylstyrene was not substantially copolymerized in the polybutadiene block.
  • the synthesized mSEBmS is dissolved in cyclohexane and charged into a pressure-resistant vessel that has been sufficiently purged with nitrogen. Then, a hydrogenation reaction is carried out at 80 ° C. for 5 hours in a hydrogen atmosphere using a Ni / Al Ziegler hydrogenation catalyst.
  • block copolymer a poly ⁇ -methylstyrene-b-hydrogenated polybutadiene-b-poly ⁇ -methylstyrene type triblock copolymer (hereinafter abbreviated as block copolymer) was obtained.
  • the hydrogenation rate of the obtained block copolymer was calculated by 1 H-NMR spectrum measurement and found to be 99.6%.
  • Synthesis Example 2 (Synthesis of polymer electrolyte A) 100 g of the block copolymer obtained in Synthesis Example 1 was vacuum-dried for 1 hour in a glass reaction vessel equipped with a stirrer and then purged with nitrogen. Then, 1000 ml of methylene chloride was added, and the mixture was stirred at 35 ° C. for 2 hours. Dissolved. After dissolution, a sulfating reagent obtained by reacting 21.0 ml of acetic anhydride and 9.34 ml of sulfuric acid at 0 ° C. in 41.8 ml of methylene chloride was gradually added dropwise over 20 minutes. After stirring at 35 ° C.
  • polymer electrolyte A an ion conductive group-containing block copolymer
  • the sulfonation rate of the benzene ring of the ⁇ -methylstyrene unit obtained from the 1 H-NMR spectrum measurement result of the obtained polymer electrolyte A was 20.6 mol%, and the ion exchange capacity was 0.48 meq / g.
  • Synthesis Example 3 (Synthesis of polymer electrolyte B)
  • a polymer electrolyte B ion-conductive group-containing block copolymer
  • the sulfonation rate of the benzene ring of the ⁇ -methylstyrene unit obtained from the 1 H-NMR spectrum measurement result of the obtained polymer electrolyte B was 51.0 mol%, and the ion exchange capacity was 1.12 meq / g.
  • the obtained emulsion was microparticulated by a high-pressure collision method (Nanomizer, 150 MPa) to obtain an emulsion containing core-shell microparticles having an average particle size of 150 nm. Furthermore, it concentrated by the evaporator and the emulsion liquid A with a solid content concentration of 15 weight% was obtained.
  • anomizer 150 MPa
  • Production Example 2 (Production of Emulsion B) An emulsion B was obtained in the same procedure as in Production Example 1 except that the polymer electrolyte B obtained in Synthesis Example 3 was used.
  • the average particle diameter of the core-shell fine particles was 90 nm, and the solid content was 17.2% by weight.
  • Examples 1 to 3 (Production of electrolyte membranes A to C)
  • the emulsions obtained in Production Examples 1 to 3 were coated on a release-treated PET film (Ester Film K1504 manufactured by Toyobo Co., Ltd.) and dried at 60 ° C. for 10 minutes to obtain electrolyte membranes A to C.
  • Table 1 shows the thickness of each electrolyte membrane obtained, and Table 2 shows the evaluation results of the power generation characteristics.
  • a transmission electron micrograph showing the structure of the electrolyte membrane A is shown in FIG. Further, Table 1 shows the average particle diameter of the rubber fine particles obtained from the transmission electron micrograph.
  • Example 1 [Production of Electrolyte Membrane D]
  • an electrolyte membrane D was obtained by the same method except that the emulsion D was used.
  • Table 1 shows the thickness of the obtained electrolyte membrane D, and Table 2 shows the evaluation results of the power generation characteristics.
  • Table 1 shows the average particle diameter of the rubber fine particles obtained from the transmission electron micrograph.
  • Example 1 and Comparative Example 2 As shown in Tables 1 and 2 and FIGS. 3 and 4 (Example 1 and Comparative Example 2), even if the same material is used, the increase in resistance at low humidity can be significantly suppressed by using the structure of the present invention. it is obvious.
  • Comparative Example 1 the average particle diameter of the rubber fine particles is remarkably large, and clearly does not have the film structure of the present invention. Therefore, the electrolyte membrane of Comparative Example 1 does not show the effect obtained by the present invention. From the above results, it is clear that a fuel cell exhibiting high power generation characteristics even at low humidity can be obtained by using the electrolyte membrane having the structure of the present invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Dispersion Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Fuel Cell (AREA)
  • Conductive Materials (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

 イオン伝導性基を有する樹脂成分を含むマトリックス中に、実質的にイオン伝導性基を有さない平均粒径20nm~1μmのゴム微粒子が均一に分散された構造を有する電解質膜。この電解質膜は電極との接合性に優れ、低湿度或いは絶乾状態でも柔軟性を維持するのでクラックや断裂が生じない。また、イオン伝導性基を有するマトリックスが連続しているので、低湿度或いは絶乾状態でも高いイオン伝導性を示す。

Description

電解質膜及び膜―電極接合体
 本発明は、電池用電解質膜、キャパシタ、アクチュエータ、センサー、イオン交換膜、コーティング材等の幅広い用途に用いることができる電解質膜およびその両面に電極を有する膜-電極接合体に関する。
 種々の用途で高性能の高分子電解質膜の需要が高まっている。特に燃料電池の分野では、モバイルPC、PDA、携帯電話などの携帯用、家庭用、自動車用などへの展開が期待されており、高性能膜の開発が急務である。当初、主としてフッ素系の電解質膜が使われてきた。フッ素系の材料はイオン伝導性やある種の耐久性には優れている反面、使用中に分解によってフッ素系化合物が発生する可能性がある、燃料透過性が高い、高価であるなどの欠点も有しているため、代替材料が求められていた。
 近年、フッ素系電解質に変わる材料として炭化水素系材料が提案されている。具体的にはポリエーテルサルホン(PES)やポリエーテルエーテルケトン(PEEK)に代表されるエンジニアリングプラスチックに類似の材料をベースポリマーとし、これにスルホン酸基などのイオン伝導性基を導入した材料である。
 例えば、特許文献1にはPESのスルホン化物が提案されている。このような材料はフッ素が含まれていないため、たとえ材料の劣化が起こってもフッ素化合物は全く発生しない。また、イオン伝導性基導入や製膜などの製造技術的課題が解決できれば価格的にも有利である。
 しかしながらエンジニアリングプラスチックは基本的にランダムポリマーであるためイオン伝導性基が比較的均一に分散する。高いイオン伝導性を確保するにはイオン交換容量を高くする必要があるが、イオン交換容量が高くなると膨潤しやすくなる。ベースポリマーが硬く脆い材料であるため、イオン交換容量の高い材料を燃料電池用電解質膜として使用した場合は起動-停止の繰り返し(加湿-乾燥の繰り返し)で膨潤-収縮が繰り返されることになり、クラックが発生して燃料リークが起こりやすい。特に絶乾状態では硬く脆いため、実質的に十分なイオン伝導性を有する膜は得られないのが実情である。
 このような材料の膨潤を防止して耐水性を向上させることを目的として、イオン伝導性基が導入されたブロックとイオン伝導性基が導入されていないブロックを有する変性PESのスルホン化物も提案されているが、基本的に重縮合反応で合成されるため合成時にブロックの混合が起こり、十分な相分離構造が得られていない(特許文献2参照)。
 特許文献3記載の電解質膜は柔軟なブロックを有するブロック共重合体からなり、柔軟ブロックを有しているため電極との接合性に優れている。また、縮合系材料ではないため一度重合するとブロック構造は保持される。したがって、ブロック共重合体特有の相分離構造によってイオンチャンネルとゴム的な性能を発現する部分とが完全に分離されているため、加湿-乾燥の繰り返しでのクラックが抑制できる膜が得られる。
特開平10-045913号公報 特開平13-250567号公報 特開2006-210326号公報 WO2002/040611号国際公開公報
 しかしながら該ブロック共重合体からなる電解質膜は柔軟ではあるものの、低湿度や無加湿の状態では性能が不十分であり、イオン交換容量を高くしても性能には限界があった。したがって、低湿度や無加湿の状態で十分なイオン伝導性が確保できないのが実態であった。
 本発明者らは上記課題を解決すべく鋭意検討を行った結果、本発明を完成するに至った。
 すなわち本発明は、イオン伝導性基を有する樹脂成分を含むマトリックス中に、実質的にイオン伝導性基を有さない平均粒径20nm~1μmのゴム微粒子が均一に分散された構造を有する電解質膜を提供する。
 さらに本発明は、前記電解質膜を少なくとも1層含む多層構造からなり、前記電解質膜が多層構造の表面または内部に配置されている多層電解質膜を提供する。
 さらに本発明は、前記電解質膜または前記多層電解質膜の両面に電極を有する膜-電極接合体(MEA)を提供する。
 さらに本発明は、
(1)実質的にイオン伝導性基を有さないゴム微粒子の周囲がイオン伝導性基を有する樹脂成分で覆われたコア-シェル微粒子を含む分散液を調製する工程、および
(2)前記分散液を乾燥固化して、イオン伝導性基を有する樹脂成分からなるマトリックス中に平均粒径20nm~1μmの微粒子が均一に分散された構造を得る工程
を含む電解質膜の製造方法を提供する。
 本発明の電解質膜ではイオン伝導性基を有する樹脂成分がマトリックスを形成しており、該マトリックス中にゴム微粒子が互いに独立して均一に分散されている。従ってゴム微粒子を構成するゴム成分によって膜の靭性が高められると共に、イオン伝導性を有するマトリックスが連続しているのでイオン伝導経路の断裂がない。また、マトリックス(イオン伝導経路)中のイオン伝導性基の密度も高くなるため、低湿や無加湿の状態であっても高いイオン伝導性が確保できる。
 本発明の膜-電極接合体は膜と電極の接合性が高い。そのような膜-電極接合体の外側にセパレータを配置して得られる単セルを用いることによって発電特性に優れた燃料電池を提供することができるため、本発明は産業上極めて有用である。
本発明の電解質膜を製造するための分散液を示す模式図である。 図1の分散液を乾燥固化して得られた電解質膜の構造を示す模式図である。 実施例1の電解質膜Aの構造を示す透過型電子顕微鏡写真である。 比較例2の電解質膜Eの構造を示す透過型電子顕微鏡写真である。
 以下、本発明の好適な実施形態について説明する。
 本発明の電解質膜のマトリックスに含まれるイオン伝導性基を有する樹脂成分はマトリックス中の50重量%以上を占めることが好ましく、70重量%以上を占めることがより好ましく、90重量%以上を占めることが更に好ましい(それぞれ100%を含む)。該イオン伝導性基を有する樹脂成分としてはガラス転移温度または軟化点が10℃以上、好ましくは30℃以上の非ゴム状の樹脂成分であることが電解質膜の強度を高める上で好ましい。
 イオン伝導性基を有する樹脂成分の数平均分子量としては、4000~70000の範囲であることが好ましく、6000~50000の範囲であることがより好ましい。該数平均分子量が小さい場合、使用時にマトリックスが溶出する場合がある。また、該数平均分子量が大きい場合、製造が困難な場合がある。
 またイオン伝導性基を有する樹脂成分の溶出を抑制する上では分子量1000以下、好ましくは2000以下の樹脂の含有量が10重量%以下であることが好ましく、5重量%以下であることがより好ましい。このため、該樹脂成分は数平均分子量を調整するだけでなく、分子量分布の狭い樹脂であることが好ましい。分子量分布の狭い樹脂の製造方法は特に限定されないが、リビング重合による樹脂の製造や、重合して得られた樹脂からソックスレー抽出器などで低分子量成分を除く方法が挙げられる。製造工程の短縮の上ではリビング重合による樹脂の製造が好ましく、重合工程の制御の容易さでは重合して得られた樹脂からソックスレー抽出器などで低分子量成分を除く方法が好ましい。
 該イオン伝導性基を有する樹脂成分はすべての繰り返し単位にイオン伝導性基を有する必要はなく、通常イオン伝導性基を有さない繰り返し単位を含んでいる。また、該イオン伝導性基を有する樹脂成分の製造方法としては、イオン伝導性基を有する単量体と必要に応じてイオン伝導性基を有さない単量体とを重合する方法、イオン伝導性基を有さない単量体を重合後、公知のイオン伝導性基導入反応によって適宜イオン伝導性基を導入する方法が挙げられる。
 本発明の電解質膜のマトリックスは、イオン伝導性基を含む樹脂成分以外に本発明の効果を妨げない範囲でその他の成分を含むことができる。その他の成分としてはイオン伝導性基を含まない樹脂成分が挙げられる。イオン伝導性基を含まない樹脂成分については特に制限はないがマトリックスが相分離しないことが非常に望ましく、そのためイオン伝導性基を含む樹脂成分と親和性の高い樹脂であることが望ましい。また該イオン伝導性基を含まない樹脂成分の数平均分子量、分子量分布の好ましい範囲は前記イオン伝導性基を含む樹脂成分と同様である。分子量2000以下、特に分子量1000以下の低分子量成分は存在しないことが好ましく、特に使用時に溶出しやすい極性官能基を有する低分子量成分が存在しないことが好ましい。
 イオン伝導性基の量は、電解質膜の性能を決める上で重要である。電解質膜として使用するのに十分なイオン伝導性を得るには、電解質膜中に含まれるイオン伝導性基の量はイオン交換容量が0.30meq/g以上であることが好ましく、0.40meq/g以上であることがより好ましい。ただし、イオン交換容量が高くなりすぎると親水性が高くなり、膨潤しやすくなるため、3.00meq/g以下にするのが好ましい。また、本発明の電解質膜はマトリックス中にイオン伝導性基を選択的に含有することで電解質膜の強度とイオン伝導性を両立しているので、マトリックス中のイオン伝導性基の量もまた重要である。マトリックス中のイオン伝導性基の量は0.50meq/g以上であることが好ましく、1.50meq/g以上であることがより好ましく、2.50meq/g以上であることがさらに好ましい。
 イオン伝導性基の割合は、イオン伝導性基を有する樹脂成分の繰り返し単位に対して10モル%以上であることが好ましく、20~200モル%であることがより好ましく、製造の容易さと性能の高さを両立するうえで30~150モル%であることがさらに好ましく、50~100モル%であることが特に好ましい。また、イオン伝導性基を有する樹脂成分がイオン伝導性基を有する単量体単位とイオン伝導性基を有さない単量体単位を含む場合、該樹脂成分が相分離しないためには、イオン伝導性基を有する単量体単位とイオン伝導性基を有さない単量体単位とのランダム共重合体であることが好ましい。
 本発明の電解質膜は、イオン伝導性基を有する樹脂成分を含むマトリックス中に、実質的にイオン伝導性基を有さないゴム微粒子が均一に分散された構造を有する。ゴム微粒子は他の重合体成分と共有結合していてもよいが、ゴム微粒子が単一の相を形成することが非常に望ましく、マトリックスに含有される樹脂成分と共有結合していてもよい。該共有結合の形式としては、ゴム微粒子部分と他の重合体成分がそれぞれ独立した重合体セグメントを形成していることがゴム微粒子が単一の相を形成する上で好ましく、ブロック重合体やグラフト重合体が挙げられる。本発明において、「実質的にイオン伝導性基を有さない」とは、ゴム微粒子を形成する重合体(ゴム微粒子を形成する成分が他の重合体と共有結合している場合は、ゴム微粒子を形成する成分)中のイオン伝導性基を含む単量体単位が5モル%未満であることを意味する。
 このような構造を実現する方法としては、マトリックスを形成する樹脂とゴム微粒子を形成する樹脂との樹脂ブレンド、コア-シェル微粒子の凝集、あるいは、マトリックスを形成する樹脂成分とゴム成分を含むブロック共重合体やグラフト共重合体などの共重合体の相分離など、イオン伝導性基を有する樹脂成分と実質的にイオン伝導性基を有さないゴム成分(これらは化学結合を形成していてもよい)の2成分から得られる相分離を利用することができる。
 樹脂ブレンドの相分離を利用する方法では、本発明のような極性が大きく異なる2成分の場合、一般に相分離サイズが大きくなり、またその形状も不定形になることがある。ミクロ相分離構造を形成させる方法としてスピノーダル分解があるが、UCSTまたはLCSTの相図を持つ組み合わせは限られているため、ミクロ相分離構造を形成できるポリマーの組み合わせには制限があり、その中でゴム微粒子が分散した相分離構造を形成する組み合わせを選択する必要がある。
 ブロック共重合体の相分離についても、通常の溶液キャスト法や溶融成形法ではゴム微粒子が形成されるような組成、条件は極めて限られており、イオン伝導性基の量、ブロックの比率などに制限がある。例えばラメラ状の相分離が起こった場合は、イオン伝導相の連続性が阻害されるため膜抵抗が高くなる。したがって、一般に用いられる溶液キャスト法や溶融成形法で本発明の構造を形成するには材料が制限される。
 本発明の電解質膜の構造を得るには、乳化重合や後乳化法によって予めゴム微粒子を形成させる方法が最も好ましい。しかしながら、単なるゴム微粒子形成用樹脂の分散液ではイオン伝導性基を有する樹脂とブレンドして溶剤を除去した際にゴム微粒子が凝集してしまう場合がある。また、水などの極性溶媒に分散させるには界面活性剤を使用せざるを得ず、界面活性剤が電解質膜に残存するため、多くの場合電池特性などに悪影響を及ぼす。
 したがって、ゴム微粒子の外殻にイオン導電性基を持つコア-シェル粒子の分散液を調製し、これを製膜するのが本発明の電解質膜の構造を得る上で好ましい。このような分散液により、実質的にイオン伝導性基を有さないゴム微粒子の周囲がイオン伝導性基を有する樹脂成分で覆われたコア-シェル型高次構造単位が凝集した電解質膜が得られる。このような構造であると、コア-シェル粒子の表面に局在するイオン伝導性基によって粒子の分散が安定化されるため、界面活性剤は不要となる。また、製膜時に十分密にパッキングするため、マトリックス中のイオン伝導性基密度が高くなり、よりイオン伝導に有利な構造となる。コア-シェル粒子の分散液を得る方法としては、ブロック共重合体を後乳化する方法、ソープフリー乳化重合を利用する方法が挙げられる。
(1)ブロック共重合体の後乳化による分散液の調製
 ブロック共重合体は、少なくともイオン伝導性基を有するブロックと実質的にイオン伝導性基を有さないゴム微粒子形成性ブロックを有することが必要である。したがって、ジブロック以上のブロック共重合体が好適に使用できる。ブロック共重合体の例としてはA-B型ジブロック、A-B-A型トリブロック、A-B-C型トリブロック、A-B-A-B型テトラブロック、A-B-A-C型テトラブロック、A-B-C-A型テトラブロック、A-B-C-B型テトラブロック、A-B-C-D型テトラブロック、A-B-A-B-A型ペンタブロック、A-B-A-B-C型ペンタブロック、A-B-A-C-A型ペンタブロック、A-B-A-C-B型ペンタブロック、A-B-A-C-D型ペンタブロック、A-B-C-A-B型ペンタブロック、A-B-C-A-C型ペンタブロック、A-B-C-A-D型ペンタブロック、A-B-C-B-A型ペンタブロック、A-B-C-B-C型ペンタブロック、A-B-C-B-D型ペンタブロック、A-B-C-D-A型ペンタブロック、A-B-C-D-B型ペンタブロック、A-B-C-D-C型ペンタブロック、A-B-C-D-E型ペンタブロック等が挙げられる。なお、上記表記で、A、B、C、D、Eはそれぞれ異なるブロック構造を意味し、少なくともイオン伝導性基を有するブロック及び実質的にイオン伝導性基を含まない、ゴム微粒子形成性ブロックを含む。中でも、ゴム微粒子形成性ブロックが末端にない、3ブロック以上からなるブロック共重合体が電解質膜の力学強度を得る上では好ましい。これらのブロック共重合体は単独で用いても2種以上組み合わせてもよい。
 イオン伝導性基を含むブロックを構成する主たる単量体は、ビニル系化合物、特に芳香族ビニル化合物であることが好ましい。また、重合の時点でイオン伝導性基を有していることは必須ではない。即ち、イオン伝導性基を有さない単量体を重合した後にイオン伝導性基を導入する方法、イオン伝導性基を有する単量体を重合する方法のいずれも採用することができる。
 まず、イオン伝導性基を有さない単量体を重合した後にイオン伝導性基を導入する方法について説明する。
 芳香族ビニル化合物としては、特に制限されないが、重合後に下記一般式(I)
Figure JPOXMLDOC01-appb-C000002
(式中、Arは1~3個の置換基を有していてもよい炭素数6~14のアリール基を表し、R1は水素原子、1~9個の置換基を有していてもよい炭素数1~4のアルキル基又は1~3個の置換基を有していてもよい炭素数6~14のアリール基を表す)
で表される繰り返し単位を形成することができる化合物類が挙げられる。
 該Arにおいて炭素数6~14のアリール基としては、フェニル基、ナフチル基、フェナントリル基、アントリル基、インデニル基、ビフェニル基等が挙げられる。該アリール基の任意の1~3個の置換基としては、それぞれ独立に炭素数1~4のアルキル基(メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、tert-ブチル基など)、炭素数1~4のハロゲン化アルキル(クロロメチル基、2-クロロエチル基、3-クロロプロピル基など)などが挙げられる。
 R1の炭素数1~4のアルキル基としては、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、t-ブチル基などが挙げられる。該アルキル基は置換基を有していてもよく、特に制限はないが例えばフェニル基、ナフチル基、フェナントリル基、アントリル基、インデニル基、ビフェニル基等のアリール基、クロロ基、ブロモ基などのハロゲン基が挙げられ、これら置換基は複数であってもよく、2種以上であってもよい。
 R1の炭素数6~14のアリール基としては、フェニル基、ナフチル基、フェナントリル基、アントリル基、インデニル基、ビフェニル基等が挙げられる。該アリール基の任意の1~3個の置換基としては、それぞれ独立に置換基を有していてもよいメチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、tert-ブチル基などの炭素数1~4のアルキル基が挙げられ、該アルキル基が有していてもよい置換基としては特に制限はないが例えばフェニル基、ナフチル基、フェナントリル基、アントリル基、インデニル基、ビフェニル基等のアリール基、クロロ基、ブロモ基などのハロゲン基が挙げられ、これら置換基は複数であってもよく、2種以上であってもよい。
 芳香族ビニル系化合物は2種以上組み合わせて用いてもよい。2種以上を共重合させて後にイオン伝導性基含有ブロックとなるブロックを形成する方法は、ランダム共重合、ブロック共重合、グラフト共重合、テーパード共重合のいずれでもよい。
 イオン伝導性基を含むブロックは、本発明の効果を損なわない範囲で芳香族ビニル化合物単位以外に1種もしくは複数種の他の単量体単位を含んでいてもよい。かかる単量体としては、炭素数4~8の共役ジエン(具体例は後述の実質的にイオン伝導性基を有さないゴム微粒子を構成する単量体として例示する化合物から選ばれる)、炭素数2~8のアルケン(具体例は後述の実質的にイオン伝導性基を有さないゴム微粒子を構成する単量体として例示する化合物から選ばれる)、(メタ)アクリル酸エステル((メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸ブチル等)、ビニルエステル(酢酸ビニル、プロピオン酸ビニル、酪酸ビニル、ピバリン酸ビニル等)、ビニルエーテル(メチルビニルエーテル、イソブチルビニルエーテル等)などが挙げられる。
 本発明でイオン伝導性基に言及する場合のイオンとは主にプロトンなどの低分子量の荷電粒子を指す。イオン伝導性基としては、本発明の電解質膜が十分なイオン伝導度を発現するような基であれば特に限定されないが、-SO3M又は-PO3HM、-COOM(式中Mは、水素イオン、アンモニウムイオン又はアルカリ金属イオンを表す)で表されるスルホン酸基、ホスホン酸基、カルボキシル基又はそれらの塩が好適に用いられる。アルカリ金属イオンとしてはナトリウムイオン、カリウムイオンなどが挙げられる。
 イオン伝導性基の導入位置については特に制限はないが、イオンチャンネル形成を容易にする等の観点から、上記芳香族ビニル単量体(例えばスチレン、α-メチルスチレン、p-メチルスチレン、ビニルナフタレン、α―メチルビニルナフタレン、ビニルビフェニル等)に由来する単位(式(I)で表される繰り返し単位)中のアリール基(R1が表すアリール基も含む)に導入するのが好ましい。イオン伝導性基は公知の方法により導入することができる。
 イオン伝導性基を含むブロックにおいて、芳香族ビニル化合物単位(イオン伝導性基を導入された単位と導入されていない単位の和)の割合は特に限定されないが、十分なイオン伝導性を確保し、かつ後乳化性を確保する観点から該ブロックを構成する単量体単位の50モル%以上であることが好ましい(100%を含む)。
 次に、イオン伝導性基を有する単量体を用いる方法を説明する。
 イオン伝導性基を有する単量体としては、前記式(I)で表される構造のアリール基(Ar)にイオン伝導性基が導入された繰り返し単位を形成することができる化合物、すなわち、芳香族ビニル化合物の芳香環にイオン伝導性基が結合した単量体が好ましい。具体的にはo、mもしくはp-アルキルスチレンスルホン酸、o、mもしくはp-α-アルキルスチレンスルホン酸、アルキルビニルナフタレンスルホン酸、アルキルビニルアントラセンスルホン酸、アルキルビニルピレンスルホン酸、o、mもしくはp-アルキルスチレンホスホン酸、o、mもしくはp-α-アルキルスチレンホスホン酸、アルキルビニルナフタレンホスホン酸、アルキルビニルアントラセンホスホン酸、アルキルビニルピレンホスホン酸等が挙げられる。
 また、イオン伝導性基を含有する単量体としては共役ジエンにイオン伝導性基が結合した単量体、具体的には1,3-ブタジエン-1-スルホン酸、1,3-ブタジエン-2-スルホン酸、イソプレン-1-スルホン酸、イソプレン-2-スルホン酸、1,3-ブタジエン-1-ホスホン酸、1,3-ブタジエン-2-ホスホン酸、イソプレン-1-ホスホン酸、イソプレン-2-ホスホン酸などを併用することができる。また、共役ジエン以外にもビニルスルホン酸、α-アルキルビニルスルホン酸、ビニルアルキルスルホン酸、α-アルキルビニルアルキルスルホン酸、ビニルホスホン酸、α-アルキルビニルホスホン酸、ビニルアルキルホスホン酸、α-アルキルビニルアルキルホスホン酸などのビニル化合物も併用することができる。さらには、イオン伝導性基が結合した(メタ)アクリル系の単量体を用いることができ、その具体例としてはメタクリル酸、アクリル酸、2-アクリルアミド-2-メチル-1-プロパンスルホン酸などが上げられる。
 イオン伝導性基を有する単量体を用いた場合のイオン伝導性基の導入量は、イオン伝導性基を有さない単量体を重合した後にイオン伝導性基を導入した場合と同様である。
 イオン伝導性基を有さない単量体を用いた場合、イオン伝導性基を有する単量体を用いた場合のいずれにおいても、イオン伝導性基は、適当な金属イオン(例えばアルカリ金属イオン)あるいは対イオン(例えばアンモニウムイオン)で中和されている塩の形で導入されていてもよい。例えば、o、mもしくはp-アルキルスチレンスルホン酸ナトリウム、あるいはo、mもしくはp-α-アルキルスチレンスルホン酸ナトリウムを用いて重合体を製造することで、所望のイオン伝導性基を導入できる。これらは適当な方法でイオン交換することによりスルホン酸に容易に変換することができる。
 実質的にイオン伝導性基を含まないブロック(ゴム微粒子形成性ブロック)は、電解質膜に柔軟性や弾力性を付与するために必須の成分である。電解質膜に柔軟性や弾力性を付与することで、膜-電極接合体(MEA)作製時の成形性(組立性、接合性、締付け性)が改善される。
 ゴム微粒子を形成し得る重合体を構成する繰り返し単位としては、炭素数2~8のアルケン単位、炭素数5~8のシクロアルケン単位、炭素数7~10のビニルシクロアルケン単位、炭素数4~8の共役ジエン単位、炭素数5~8の共役シクロアルカジエン単位、炭素数7~10のビニルシクロアルカン単位、炭素数1~12の側鎖を有するアクリル酸エステル単位、および炭素数1~12の側鎖を有するメタクリル酸エステル単位が挙げられる。これらの繰り返し単位に炭素-炭素二重結合が存在する場合、その一部または全てを水素添加してもよい。
 これらの群から選ばれる繰り返し単位は単独または2種以上組み合わせて用いてもよい。2種以上を共重合させる場合、ランダム共重合、ブロック共重合、グラフト共重合およびテーパード共重合のいずれでもよい。また、(共)重合に供する単量体が炭素-炭素二重結合を2つ有する場合にはそのいずれが重合に用いられてもよく、共役ジエンの場合には1,2-結合、1,4-結合、3,4-結合のいずれで重合してもよく、これらの混合であってもよい。
 このようなゴム微粒子を形成し得る繰り返し単位となる単量体の例としては、炭素数2~8のアルケン(エチレン、プロピレン、1-ブテン、2-ブテン、イソブテン、1-ペンテン、2-ペンテン、1-ヘキセン、2-ヘキセン、1-ヘプテン、2-ヘプテン、1-オクテン、2-オクテンなど)、炭素数5~8のシクロアルケン(シクロペンテン、シクロヘキセン、シクロヘプテンおよびシクロオクテンなど)、炭素数7~10のビニルシクロアルケン(ビニルシクロペンテン、ビニルシクロヘキセン、ビニルシクロヘプテン、ビニルシクロオクテンなど)、炭素数4~8の共役ジエン(1,3-ブタジエン、1,3-ペンタジエン、イソプレン、1,3-ヘキサジエン、2,4-ヘキサジエン、2,3-ジメチル-1,3-ブタジエン、2-エチル-1,3-ブタジエン、1,3-ヘプタジエン、2,4-ヘプタジエンなど)、炭素数5~8の共役シクロアルカジエン(シクロペンタジエン、1,3-シクロヘキサジエンなど)、炭素数1~12の側鎖を有するアクリル酸エステル(アクリル酸メチル、アクリル酸エチル、アクリル酸ブチル、アクリル酸オクチルなど)、炭素数1~12の側鎖を有するメタクリル酸エステル(メタクリル酸メチル、メタクリル酸エチル、メタクリル酸ブチル、メタクリル酸オクチルなど)が挙げられる。これら単量体は単独で用いてもよく、2種以上を併用してもよい。
 ブロック共重合体はイオン伝導性基を有するブロック、ゴム微粒子形成性ブロック以外の第3のブロックとして任意ブロックを含んでいてもよい。任意ブロックを形成する単量体としては、イオン伝導性基を有さない非ゴム状ブロックが挙げられ、電解質膜の強度を高める上で、主としてイオン伝導性基を有しない芳香族ビニル系化合物単位を繰り返し単位とする芳香族ビニル系重合体ブロックであることが好ましい。芳香族ビニル系重合体ブロックが前記電解質膜の20~60重量%、より好ましくは23~50重量%、更に好ましくは25~40重量%を占めることによって、使用時の機械的強度に優れる。芳香族ビニル系重合体ブロックとイオン伝導性基を有するブロックとの比率に特に限定はないが、イオン伝導性基を導入する前の単量体単位の比率として、85:15~0:100の範囲であることが好ましく、電解質膜の機械的強度と、高いイオン伝導性を両立する上では、65:35~20:80の範囲であることが好ましく、55:45~35:65の範囲であることがより好ましく、45:55~35:65の範囲であることがさらに好ましい。
 主としてイオン伝導性基を有しない芳香族ビニル系化合物単位を繰り返し単位とする芳香族ビニル系重合体ブロックとは、芳香族ビニル系化合物単位を主たる繰り返し単位とする重合体ブロックであり、電解質膜の形状安定性を優れたものとする。芳香族ビニル系重合体ブロックは、ゴム状微粒子と相分離していることが好ましく、マトリックスの一部を形成することで電解質膜の強度を高める上で好ましい。また、マトリックスと共連続構造を形成するように相分離している場合、芳香族ビニル系重合体ブロックが独立した相を形成するのでより形状安定性が優れたものとなる。
 芳香族ビニル系重合体ブロックは主としてイオン伝導性基を有しない芳香族ビニル系化合物単位を繰り返し単位とする。ここで主としてイオン伝導性基を有さない芳香族ビニル系化合物単位を繰り返し単位とするとは芳香族ビニル系重合体ブロックが実質的にイオン伝導性を有さない程度であることを意味しており、例えば芳香族ビニル系重合体ブロックの繰り返し単位当たりのイオン伝導性基含有量が好ましくは0.1モル以下、より好ましくは0.01モル以下であり、最も好ましくはゼロである。またはマトリックスが含むイオン伝導性基を有する樹脂成分に対してイオン伝導性基の割合(モル基準)が1/10以下であることが好ましく、1/20以下であることがより好ましく、1/100以下であることが更に好ましい(それぞれゼロを含む)。この結果、芳香族ビニル系重合体ブロックは実質的にイオン伝導性を有しなくなり、イオンチャンネルを形成するマトリックスと相分離しやすくなる。
 芳香族ビニル系重合体ブロックは疎水性であることが好ましい。例えば水酸基、アミノ基などの親水性基を実質的に有さないことが好ましく、エステル基などの極性基を実質的に有さないことも好ましい。ここで、芳香族ビニル系重合体ブロックの主たる繰り返し単位である芳香族ビニル系化合物単位とは、芳香族ビニル系化合物の重合によって形成できる構造である。該芳香族ビニル系化合物とは、少なくとも1つの芳香環と、少なくとも一つの芳香環上の炭素原子に直結する付加重合性炭素二重結合を含む官能基を少なくとも1つ有する化合物を指す。上記の芳香族ビニル系化合物が有する芳香環は炭素環式芳香環であるのが好ましく、ベンゼン環、ナフタレン環、アントラセン環、ピレン環等が挙げられる。これら芳香族ビニル系化合物としては、芳香族ビニル系化合物単位は1~3個の炭素数1~8の炭化水素基を芳香環上に有する置換芳香族ビニル系化合物単位であることが望ましい。例えば、芳香環上の水素をビニル基、1-アルキルエテニル基(例えばイソプロペニル基)、1-アリールエテニル基などの置換基で置換した化合物が挙げられる。例えば、スチレン、2-メチルスチレン、3-メチルスチレン、4-メチルスチレン、4-エチルスチレン、4-n-プロピルスチレン、4-イソプロピルスチレン、4-n-ブチルスチレン、4-イソブチルスチレン、4-t-ブチルスチレン、4-n-オクチルスチレン、2,4-ジメチルスチレン、2,5-ジメチルスチレン、3,5-ジメチルスチレン、2,4,6-トリメチルスチレン、2-メトキシスチレン、3-メトキシスチレン、4-メトキシスチレン、ビニルナフタレン、ビニルアントラセン、α-炭素原子に結合した水素原子が炭素数1~4のアルキル基(メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、もしくはtert-ブチル基)、炭素数1~4のハロゲン化アルキル基(クロロメチル基、2-クロロエチル基、3-クロロエチル基等)又はフェニル基で置換された芳香族ビニル系化合物(具体的には、α-メチルスチレン、α-メチル-4-メチルスチレン、α-メチル-4-エチルスチレン、α-メチル-4-t-ブチルスチレン、α-メチル-4-イソプロピルスチレン、1,1-ジフェニルエチレン等)が挙げられる。これらは1種又は2種以上組み合わせて使用できるが、中でも4-t-ブチルスチレン、4-イソプロピルスチレン、α-メチル-4-t-ブチルスチレン、α-メチル-イソプロピルスチレンが好ましい。これらの2種以上を共重合させる場合の形態はランダム共重合でもブロック共重合でもグラフト共重合でもテーパード共重合でもよい。
 芳香族ビニル系重合体ブロックは、本発明の効果を損なわない範囲内で1種もしくは複数の他の単量体単位を含んでいてもよい。かかる他の単量体としては、例えば、炭素数4~8の共役ジエン(1,3-ブタジエン、1,3-ペンタジエン、イソプレン、1,3-ヘキサジエン、2,4-ヘキサジエン、2,3-ジメチル-1,3-ブタジエン、2-エチル-1,3-ブタジエン、1,3-ヘプタジエン、1,4-ヘプタジエン、3,5-ヘプタジエン等)、炭素数2~8のアルケン(エチレン、プロピレン、1-ブテン、2-ブテン、イソブテン、1-ペンテン、2-ペンテン、1-ヘキセン、2-ヘキセン、1-ヘプテン、2-ヘプテン、1-オクテン、2-オクテン等)、(メタ)アクリル酸エステル((メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸ブチル等)、ビニルエステル(酢酸ビニル、プロピオン酸ビニル、酪酸ビニル、ピバリン酸ビニル等)、ビニルエーテル(メチルビニルエーテル、イソブチルビニルエーテル等)等が挙げられる。上記他の単量体との共重合形態はランダム共重合であることが望ましい。芳香族ビニル系重合体ブロックはブロック共重合体の60重量%以下の範囲で用いることが好ましく、50重量%以下の範囲で用いることがより好ましく、40重量%以下の範囲で用いることがより好ましい。
 ブロック共重合体の合成法としては、各ブロックを構成する単量体の種類や分子量によってラジカル重合法、アニオン重合法、カチオン重合法、配位重合法などから適宜選択されるが、工業的な容易さからラジカル重合法、アニオン重合法あるいはカチオン重合法が好ましい。特に分子量、分子量分布、重合体の構造、重合体ブロックとの結合の容易さなどからいわゆるリビング重合法が好ましく、具体的にはリビングラジカル重合法、リビングアニオン重合法あるいはリビングカチオン重合法がより好ましい。
 本発明で用いることのできるブロック共重合体の分子量は特に制限はないが、力学特性および種々の加工性の観点から、標準ポリスチレンで検量した数平均分子量で10,000~2,000,000が好ましく、15,000~1,000,000がより好ましく、20,000~500,000がより一層好ましい。
 ブロック共重合体中のイオン伝導性基を有するブロックとゴム微粒子形成性ブロックの重量比は得られるブロック共重合体の要求性能によって適宜選択されるが、イオン伝導度の観点からは95:5~55:45であるのが好ましく、耐水性の観点からは45:55~5:95が好ましく、イオン伝導度と耐水性を両立させるためには60:40~40:60が好ましい。この重量比が95:5~5:95である場合には、ミクロ相分離によりイオン伝導性基を有すブロック(A)の形成するイオンチャンネルがシリンダー状ないし連続相となるのに有利であって、実用上十分なイオン伝導性が発現し、また疎水性であるゴム微粒子形成性ブロックの割合が適切となって優れた耐水性が発現する。なお、ここで上記重量比は、ブロック共重合体の全てのイオン伝導性基を水素に置換した重合体ブロックを想定して算出する。
 電解質膜の力学強度を向上させるなどの目的で、イオン伝導性基を有するブロックを架橋することができる。この場合、高分子鎖を化学架橋する方法、イオン伝導性基を架橋サイトとして使用する方法、あるいはそれらを併用する方法などが挙げられる。
 次いで、ブロック共重合体の乳化液の調製方法について説明する。乳化液の調製には通常の後乳化法が使用できる。イオン伝導性基が親水性、ゴム微粒子形成性ブロックが疎水性であるためブロック共重合体は保護コロイド形成能があり、界面活性剤や乳化剤を使用することなく乳化液を得ることができる。また、水などの極性溶媒を使用することで、極性の高いイオン伝導性基を外殻に有するコア-シェル粒子を容易に形成することができる。乳化液の固形分濃度は1~30重量%であるのが好ましい。
 乳化の方法としては公知の方法を用いることができるが、狭い粒径分布の乳化物が得られる点で転相乳化法を用いるのが好ましい。即ち、ブロック共重合体を適当な有機溶剤に溶解した液を乳化機などで攪拌しながら水等の極性溶剤を加えていく。該有機溶剤はブロック共重合体を良好に溶解する溶剤(例えば、テトラヒドロフラン、ジメチルスルホキシド、ジメチルホルムアミド、ジメチルアセトアミド)、ブロック共重合体の各ブロックを良好に溶解する有機溶剤の混合溶剤を用いることができる。混合溶剤に用いる有機溶剤としては、イオン伝導性基を有するブロックを良好に溶解する有機溶剤としてアルコール類が挙げられ、水との親和性、沸点などの観点から炭素数3以上のモノアルコール類が好ましい。またゴム微粒子形成性ブロックを良好に溶解する有機溶剤としては脂肪族炭化水素溶剤もしくは芳香族炭化水素溶剤が挙げられ、混合するイオン伝導性基を有するブロックを良好に溶解する有機溶剤との親和性から芳香族炭化水素溶剤(トルエン、キシレンなど)が好ましい。初期は有機溶剤相に水などの極性溶剤が粒子として分散している状態にあるが、極性溶剤の添加量がある量を超えると共連続状態となり、急激に粘度が上昇する。さらに極性溶剤を添加すると極性溶剤が連続相、ブロック共重合体を含む有機溶媒が不連続相(微粒子)となり、粘度は急激に低下する。この方法を用いることで、粒径の揃った乳化液を得ることができる。
 ただし、コア-シェル粒子の直径が1μmを超える大粒径である場合、粒子内でブロック共重合体が相分離し、全てのイオン伝導性基が粒子の外殻に局在しないため、イオン伝導性基を有効に使用することができない。したがって、ブロック共重合体の分子量やブロックの比率にもよるが、平均粒径が1μm以下になるまで微粒子化するのが好ましい。多くの場合、上記乳化での平均粒径は1μm以上となるため、さらなる微分散化が必要となる。微分散化の手法としては公知の方法を用いることができるが、不純物混入防止の観点でボールミルにおけるボールなどの粉砕用メディアを使用しない方法が好ましい。具体例としては高圧衝突法などが挙げられる。
 本発明の電解質膜ではまた、ゴム微粒子が架橋されていてもよい。架橋方法としては特に制限はないが、ソープフリー乳化重合の項で後述するように、微粒子形成時に架橋する方法、或いは微粒子形成後に架橋する方法など、一般的に用いられる架橋方法が採用できる。
(2)ソープフリー乳化重合による分散液の調製
 通常の乳化剤を用いる乳化重合によって分散液を調製することもできるが、製膜後に乳化剤が残存し、多くの場合電池特性、耐久性等に悪影響を及ぼすため、ソープフリー乳化重合が好ましい。ソープフリー乳化重合はイオン伝導性基(塩の場合を含む)を有する単量体とゴム成分を形成する単量体、および必要に応じて架橋単量体を混合して水等の極性溶媒中で重合する方法である。前述のブロック共重合体の後乳化と同様、極性溶媒中で重合することで、イオン伝導性基(塩の場合を含む)を有効にコア-シェル微粒子の外殻に局在化させることができる。ただし、イオン伝導性基(塩の場合を含む)はコア-シェル微粒子の表面を覆うのみであるので、イオン交換容量を高める観点から粒径は小さいほどよく、100nm以下であることが好ましい。イオン伝導性基の塩を用いた場合にはイオン交換で酸に変換する必要があるが、乳化状態で塩交換または製膜後に塩交換のいずれを用いてもよい。
 ソープフリー乳化重合において重合反応液を乳化するためには、イオン伝導性基(塩の場合を含む)を有する単量体は界面活性能を有することが好適であり、このため、親水部と疎水部の両方を併せ持った単量体がより好適である。親水部は製膜後にイオン伝導相となるので、十分なイオン伝導性を有する基である必要がある。例えば、スルホン酸基やリン酸基およびそれらの塩であることが好ましい。また、はミセル内部で重合を進行させるためには、重合基は疎水部に位置していなければならない。重合基としては、ラジカル重合可能かつ他の成分と共重合可能なものであり、アクリロイル基、メタクリロイル基、ビニル基、アリル基などが挙げられる。さらに、該親水部と該重合基とを連結する部分は、少なくとも炭素原子と酸素原子を3原子以上含んでいることが好ましい。具体的には、炭素数3以上のアルキル基、炭素数2以上かつ酸素数1以上のポリオキシアルキレン基などが挙げられる。
 このような条件を満たす単量体(イオン伝導性基を有する樹脂成分を形成する単量体)としては、アクリロイロキシアルキレン硫酸エステルあるいはそのアルカリ金属塩、アクリロイロキシポリオキシアルキレン硫酸エステルあるいはそのアルカリ金属塩、メタクリロイロキシアルキレン硫酸エステルあるいはそのアルカリ金属塩、メタクリロイロキシポリオキシアルキレン硫酸エステルあるいはそのアルカリ金属塩、アルキルアリルアルキレン硫酸エステルあるいはそのアルカリ金属塩、アルキルアリルポリオキシアルキレン硫酸エステルあるいはそのアルカリ金属塩、アクリロイルビス(ポリオキシアルキレン多環フェニルエーテル)スルホン酸エステルおよびそのアルカリ金属塩、メタクリロイルビス(ポリオキシアルキレン多環フェニルエーテル)スルホン酸エステルおよびそのアルカリ金属塩、アクリロイロキシアルキレンリン酸エステル、アクリロイロキシポリオキシアルキレンリン酸エステル、メタクリロイロキシアルキレンリン酸エステル、メタクリロイロキシポリオキシアルキレンリン酸エステル、アルキルアリルアルキレンリン酸エステル、アルキルアリルポリオキシアルキレンリン酸エステルなどが挙げられる。これらは、必要に応じて2種以上を併用することができる。
 上記単量体のうち、イオン伝導性基をエステル部分に有するアクリル酸エステルおよびメタクリル酸エステルが特に好ましい。
 また、ゴム成分(ゴム微粒子)を形成する単量体としては、ガラス転移温度が10℃以下のポリマーとなるようなラジカル重合可能なものであり、具体的には、アクリル酸メチル、アクリル酸エチル、アクリル酸ブチル、アクリル酸オクチル、アクリル酸ドデシルなどのアクリル酸エステル、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸ブチル、メタクリル酸オクチル、メタクリル酸ドデシルなどのメタクリル酸エステル、酢酸ビニル、酪酸ビニル、ピバリン酸ビニルなどのビニルエステルなどが挙げられる。
 本発明では、ゴム微粒子を架橋してもよい。架橋には重合基を2個以上有する化合物が架橋剤として好適に使用できる。このような架橋剤としては、エチレングリコールジアクリレート、ヘキサンジオールジアクリレート、ノナンジオールジアクリレート、ポリオキシメチレンジアクリレート、ビスフェノールAのポリオキシアルキル変性物のジアクリレート、ジシクロペンタジエンジアクリレート、トリメチロールプロパントリアクリレート、トリメチロールプロパンのポリオキシアルキレン変性物トリアクリレート、ペンタエリスリトールトリアクリレート、ペンタエリスリトールテトラアクリレート、ジペンタエリスリトールテトラアクリレート、ジペンタエリスリトールヘキサアクリレート、イソシアヌレートのポリオキシアルキレン変性物のジアクリレートあるいはトリアクリレート等のアクリレート類、エチレングリコールジメタクリレート、ヘキサンジオールジメタクリレート、ノナンジオールジメタクリレート、ポリオキシメチレンジメタクリレート、ビスフェノールAのポリオキシアルキル変性物のジメタクリレート、ジシクロペンタジエンジメタクリレート、トリメチロールプロパントリメタクリレート、トリメチロールプロパンのポリオキシアルキレン変性物トリメタクリレート、ペンタエリスリトールトリメタクリレート、ペンタエリスリトールテトラメタクリレート、ジペンタエリスリトールテトラメタクリレート、ジペンタエリスリトールヘキサメタクリレート、イソシアヌレートのポリオキシアルキレン変性物のジメタクリレートあるいはトリメタクリレート等のメタクリレート類、その他、アリルアクリレート、アリルメタクリレート、ジビニルベンゼン等の化合物を使用することができる。これらは必要に応じて2種以上を併用することができる。
 乳化重合は一般的に用いられる方法を採用することができる。開始剤としては、過硫酸カリウムなどのラジカル発生剤、あるいはレドックス開始剤を用いることができる。さらに、分散安定性確保などの目的で炭酸ナトリウムなどの無機塩を加えることも可能であるが、乳化剤の使用は避けることが好ましい。乳化重合によって得られた乳化液の固形分濃度は乳化液の安定性と生産性のバランスから1~30重量%であるのが好ましく、2~20重量%であるのがより好ましい。
(3)製膜方法
 ブロック共重合体の後乳化または乳化重合により得たコア-シェル微粒子を有する分散液(乳化液)を基材フィルム(例えば、PETフィルムなど)上に塗工する。塗布量は最終的に得られる電解質膜の厚さが数μm~数十μmになるように調節する。この際、分散液の粘度や所望の膜厚等を加味して塗工ヘッドを適宜選定することができる。連続製膜する具体的方法としては、コンマコーター、グラビア、ダイコーター、キスリバース、スプレーなど一般的に使用される塗工法が採用できる。また、枚葉式で製膜してもよく、この場合はバーコーター、ブロックコーター、アプリケーター、スプレー、ダイコーターなどが使用できる。
 分散液は、必要に応じて、無機、有機の粒子、レベリング剤、架橋剤、架橋助剤、開始剤などの添加剤を含有していてもよい。ただし、乳化剤は使用しないことが好ましい。このような添加剤は、イオン導電性基を有する樹脂成分に含まれていてもよく、ゴム微粒子に含まれていてもよく、分散媒に含まれていてもよく、樹脂成分、ゴム微粒子および分散媒の複数の相に含まれていてもよい。
 次いで、塗布した分散液を乾燥し、固化させる。乾燥に要する時間を短縮するには高温が望ましいが、一方で乾燥温度が高すぎて樹脂のガラス転移温度以上になると、架橋していない場合はコア-シェル構造が崩れる。架橋していても樹脂が劣化、分解することが懸念されるため、60℃~100℃の範囲で乾燥するのが好ましい。乾燥固化して得られた膜を基材フィルムから剥離することにより本発明の電解質膜が得られる。該電解質膜が乳化剤を含有する場合、使用に伴う該乳化剤の劣化や溶出が電解質膜の劣化に繋がるので、乳化剤を実質的に含まない(含有割合が1重量%以下)ことが好ましい。ここで実質的に含まないことが好ましい乳化剤とは分子量2000以下、特に分子量1000以下の乳化剤である。
 図1にコア-シェル微粒子を含む分散液(乳化液)、図2に該分散液を乾燥固化して得られた電解質膜を模式的に示した。
 図1に示すように、分散液ではコア-シェル微粒子1が分散媒4(水などの極性溶媒)に分散している。分散液をブロック重合体の後乳化により調製した場合、イオン伝導性基を有する樹脂成分(イオン伝導性基を有するブロック)がコア-シェル微粒子1のシェル2を形成し、ゴム成分(微粒子形成性ブロック)がコア-シェル微粒子1のコア3を形成している。分散液を乳化重合により調製した場合、イオン伝導性基を有する単量体の重合により形成された成分がシェル2を形成し、ゴム成分を形成する単量体の重合により形成された成分がコア3を形成している。
 図2に示すように、分散液を乾燥固化して得られた電解質膜では、コア-シェル微粒子1のシェル5(イオン伝導性基を有する樹脂成分)が連続するマトリックスを形成し、コア6がマトリックス中に孤立分散するゴム微粒子を形成している。
 ゴム微粒子の形状は、球状、完全な球でなく断面が楕円や多角形のものも含み、最も長い径(楕円では長径)と最も短い径(楕円では短径)の比は2未満であることが好ましい。ゴム微粒子を形成する成分のガラス転移温度または軟化点は10℃以下であるのが好ましい。
 ゴム微粒子の平均粒径は、20nm~1μmである。ゴム微粒子の直径が大きくなっても、ゴム微粒子が孤立して分散している構造が実現できれば原理的には本発明の意図する効果は得られるが、平滑な膜を得るには少なくとも平均粒径は電解質の膜厚より十分小さいことが望ましい。通常、電解質膜の膜厚は数μm~数十μmであるため、ゴム微粒子の平均粒径は実質的には1μm以下である必要がある。一方、平均粒径が20nm以下になると安定的に微粒子を製造することが困難になる場合がある。平均粒径は、好ましくは30nm~800nmであり、さらに好ましくは40nm~500nmである。
 製膜前の分散液中のゴム微粒子の平均粒径は通常の光散乱法で測定することができる。製膜後の場合は、膜の任意の断面を透過型電子顕微鏡を用いて写真撮影し、0.5~5μm四方の面内に存在する全てのゴム微粒子(ただし、写真の境界線で断面が途切れているものは除く)の平均粒径を求める。完全な球形でない粒子の粒径は、最も長い径と最も短い径を測定しその幾何平均を粒径する。
 本発明の電解質膜を必要に応じて他の電解質膜と積層して積層電解質膜としてもよい。また、3層以上の積層電解質膜において、本発明の電解質膜は最外層であってもよく、内層であってもよい。さらに、積層電解質膜中に本発明の電解質膜が複数層あってもよい。
(4)膜-電極接合体(MEA)
 本発明の電解質膜を用いてMEAを製造することができる。MEAは電解質膜の両側に電極を形成した構造を有するが、各電極は触媒層とガス拡散層(GDL)からなるため実際には少なくとも5層以上の積層構造である。その製造方法としては、電解質膜に触媒インクを直接塗工したあとGDLを接合する方法、基材フィルム上に製膜した触媒層を電解質膜に接合し、次いで、GDLを接合する方法、および、GDLに触媒層を形成し、電解質膜と接合する方法が挙げられる。
 触媒層の機能としては、燃料が速やかに拡散して触媒上で効率よく電気化学的な分解を起こすこと、分解によって生成した電子が外部回路に容易に移動すること、分解によって生成したイオンが容易に電解質膜へ移動することなどが挙げられる。
 燃料を電気化学的に分解するためには触媒が必要であるが、該触媒としては従来から知られている触媒が使用可能であり、例えば白金、白金-ルテニウム合金のような貴金属類や、錯体系電極触媒などが挙げられる。特にメタノールなどの炭素を含む化合物を燃料とする場合には、アノード極で二酸化炭素が発生して触媒が被毒されるため、白金-ルテニウム合金などの被毒対策が講じられた触媒を使用するのが好ましい。
 また、触媒上で起こる電気化学的分解によって生成する電子を外部に導く材料としては導電性の高い材料が望ましく、例えばカーボンブラック、カーボンナノチューブなどの導電性炭素材料、酸化チタンなどのセラミック材料が挙げられる。触媒上で分解された電子を外部へ効率的に導くには、これらの材料の表面に触媒が担持された構造にするのが好ましい。
 イオンを移動させる媒体として電解質がバインダーとして使用される。バインダーは、本発明の電解質膜の材料と同じまたは類似のものであってもよいし、全く別の材料でもよい。また、アノードとカソードでは要求性能が異なることから、どちらか一方のみを本発明の電解質膜と同じ材料にすることも可能である。本発明の電解質材料以外のバインダー材料としては、フッ素系電解質などが挙げられる。
 触媒インクは上記成分を混合したものであるが、その混合には一般的に知られている混合法が使用できる。具体的には、ボールミル、ビーズミル、ホモジナイザー、ペイントシェーカー、超音波照射などが挙げられる。また、微分散性をより向上させる等の目的で、高圧衝突法などのさらに微分散方法を併用してもよい。
 このように調製した触媒インクは一般的な製膜方法や印刷方法により触媒層にする。例えばスプレー、スクリーン印刷、グラビア、間欠ダイコーター、インクジェットなどが挙げられる。
 触媒層は、電解質膜に直接製膜する方法、ガス拡散層に製膜する方法、あるいは、基材フィルムに塗布した後に転写する方法など、一般的に知られている方法により形成することができる。
 このようにして得られたMEAを用いてセルを組み立てることで、水素やメタノールを燃料とする燃料電池を製造することができる。
 以下、実施例を用いて本発明をより詳細に説明するが、本発明は下記実施例に限定されるものではない。
(1)イオン交換容量(meq/g)の測定
 試料を密閉できるガラス容器中に秤量(a(g))し、過少量の塩化ナトリウム飽和水溶液を添加して12時間攪拌した。フェノールフタレイン液を指示薬として、系内に発生した塩化水素を0.01NのNaOH標準水溶液(力価f)にて滴定(b(ml))した。
 イオン交換容量は次式により求めた。
   イオン交換容量=(0.01×b×f)/a
(2)電池特性の評価
 固体高分子型燃料電池用の電極を以下の手順で作製した。Pt触媒担持カーボンに、ナフィオン(登録商標、E.I. du Pont de Nemours & Co., Inc)の5重量%メタノール溶液を、Ptとナフィオンとの重量比が1:1になるように添加混合し、均一に分散されたペーストを調製した。このペーストを転写シートに塗布し、24時間乾燥させて、触媒シートを作製した。別途作製した電解質膜を、上記触媒シート2枚で2つの触媒面が向かい合うように挟み、その外側を2枚の耐熱性フィルム及び2枚のステンレス板で順に挟み、ホットプレス(130℃、1.5MPa、8min)により電解質膜と触媒シートとを接合させた。最後にステンレス板及び耐熱性フィルムを外し、転写シートを剥離して膜-電極接合体を作製した。ついで作製した膜-電極接合体を、2枚のカーボンペーパーで挟み、その外側を2枚のガス供給流路の役割を兼ねた導電性のセパレータで挟み、さらにその外側を2枚の集電板及び2枚の締付板で挟み固体高分子型燃料電池用の評価セルを作製した。
 セル温度70℃、アノードに加湿した水素、カソードに加湿した空気を供給し、発電特性を評価した。発電特性は、100%RH加湿条件下、及び30%RH加湿条件下において、水素の利用率を67%に設定し、空気の利用率を50%に設定して測定した電流密度1A/cm2におけるセル抵抗値(mΩ・cm2)により評価した。
(3)微細構造観察
 エポキシ樹脂で電解質膜を包埋した後、クライオウルトラミクトロームを用いて厚さ約90nmの超薄切片を作製した。この超薄切片をRuO4蒸気で染色し、透過型電子顕微鏡(TEM)を用いて加速電圧100kVの条件で構造観察を行った。
   透過型電子顕微鏡;H7100FA(日立ハイテクノロジーズ社製)
(4)電解質膜中のゴム微粒子の粒径測定
 透過型電子顕微鏡で観察した像から1μm四方の面内に確認できるゴム微粒子すべてについて最も長い径と最も短い径を測定し、その幾何平均を各ゴム微粒子の粒径とした。測定した粒径から平均粒径を算出した。ただし、比較例1については視野を50μm四方とした。
合成例1(ブロック共重合体の合成)
 特許文献4と同様の方法で、ポリα-メチルスチレン-b-ポリブタジエン-b-ポリα-メチルスチレン型トリブロック共重合体(以下mSEBmSと略記する)を合成した。得られたmSEBmSの数平均分子量(GPC測定、標準ポリスチレンで検量)は76,000であり、1H-NMRスペクトル測定から求めたボリブタジエン部分の1,4-結合量は55モル%、α-メチルスチレン単位の含有量は30.0重量%であった。また、同じく1H-NMRスペクトル測定による組成分析により、ポリブタジエンブロック中にはα-メチルスチレンが実質的に共重合されていないことが確認された。
 合成したmSEBmSをシクロヘキサンに溶解し、十分に窒素置換を行った耐圧容器に仕込んだ後、Ni/Al系のZiegler系水素添加触媒を用いて、水素雰囲気下で80℃、5時間水素添加反応を行い、ポリα―メチルスチレン-b-水添ポリブタジエン-b-ポリα-メチルスチレン型トリブロック共重合体(以下、ブロック共重合体と略記する)を得た。得られたブロック共重合体の水素添加率を1H-NMRスペクトル測定により算出したところ、99.6%であった。
合成例2(高分子電解質Aの合成)
 合成例1で得たブロック共重合体100gを、攪拌機付きのガラス製反応容器中にて1時間真空乾燥し、ついで窒素置換した後、塩化メチレン1000mlを加え、35℃にて2時間攪拌して溶解させた。溶解後、塩化メチレン41.8ml中、0℃にて無水酢酸21.0mlと硫酸9.34mlとを反応させて得られた硫酸化試薬を20分かけて徐々に滴下した。35℃にて0.5時間攪拌後、2Lの蒸留水の中に攪拌しながら重合体溶液を注ぎ、重合体を凝固析出させた。析出した固形分を90℃の蒸留水で30分間洗浄し、次いでろ過した。洗浄水のpHに変化がなくなるまでこの洗浄およびろ過の操作を繰り返し、最後にろ集した重合体を真空乾燥して高分子電解質A(イオン伝導性基含有ブロック共重合体)を得た。得られた高分子電解質Aの1H-NMRスペクトル測定結果から得たα―メチルスチレン単位のベンゼン環のスルホン化率は20.6モル%、イオン交換容量は0.48meq/gであった。
合成例3(高分子電解質Bの合成)
 合成例2において、硫酸化試薬滴下後の反応時間を8時間とする以外は合成例2と同様に操作して高分子電解質B(イオン伝導性基含有ブロック共重合体)を得た。得られた高分子電解質Bの1H-NMRスペクトル測定結果から得たα―メチルスチレン単位のベンゼン環のスルホン化率は51.0モル%、イオン交換容量は1.12meq/gであった。
製造例1(乳化液Aの製造)
 合成例2で得た高分子電解質A20gをトルエン/イソプロパノール=80/20の混合溶剤80gに溶解し、20重量%のポリマー溶液を調整した。乳化機で攪拌しながら150gの水を約20分かけて徐々に加え、転相乳化させた。得られた乳化液中の分散粒子の粒径を静的光散乱法で測定したところ、平均粒子径は7μmであった。次いで、エバポレータを用いてこの乳化液から混合溶剤を除去した。得られた乳化液を、高圧衝突法(ナノマイザー、150MPa)により微粒子化処理して平均粒径150nmのコア-シェル微粒子を含む乳化液を得た。さらにエバポレータで濃縮し、固形分濃度15重量%の乳化液Aを得た。
製造例2(乳化液Bの製造)
 合成例3で得た高分子電解質Bを用いる以外は製造例1と同じ手順で乳化液Bを得た。コア-シェル微粒子の平均粒径は90nmであり、固形分は17.2重量%であった。
製造例3(乳化液Cの製造)
 冷却管と攪拌機を備え付けたガラス製反応容器に水495gを仕込み、メタクリロイロキシポリオキシアルキレン硫酸エステルナトリウム塩(エレミノールRS-30、三洋化成工業(株)社製)52gおよびヘキサンジオールジメタクリレート1.4gを加えて攪拌した。室温で30分間窒素置換し、水5gに溶解した過硫酸カリウム(KPS)50mgを加えた後、60℃に昇温した。5時間乳化重合したのち冷却し、次いでエバポレータで濃縮して乳化液Cを得た。静的光散乱法で測定した平均粒径は150nmであった。また、固形分は12.0重量%であった。
製造例4(乳化液Dの製造)
 合成例2で得た高分子電解質A20gをトルエン/イソプロパノール=80/20の混合溶剤80gに溶解し、20重量%のポリマー溶液を調整した。乳化機で攪拌しながら150gの水を約20分かけて徐々に加え、転相乳化させた。得られた乳化液中の分散粒子の粒径を静的光散乱法で測定したところ、平均粒子径は7μmであった。次いで、エバポレータを用いてこの乳化液から混合溶剤を除去し、濃縮して固形分13.2重量%の乳化液Dを得た。
実施例1~3(電解質膜A~Cの製造)
 製造例1~3で得た乳化液を、離型処理PETフィルム(東洋紡績(株)製エステルフィルムK1504)上にコートし、60℃で10分間乾燥させ、電解質膜A~Cを得た。得られたそれぞれの電解質膜の膜厚を表1に、発電特性の評価結果を表2に示す。また、電解質膜Aの構造を示す透過型電子顕微鏡写真を図1に示す。さらに透過型電子顕微鏡写真から求めたゴム微粒子の平均粒径を表1に示す。
比較例1[電解質膜Dの製造]
 実施例1において、乳化液Dを用いる以外は同じ方法で電解質膜Dを得た。得られた電解質膜Dの膜厚を表1に、発電特性の評価結果を表2に示す。また、透過型電子顕微鏡写真から求めたゴム微粒子の平均粒径を表1に示す。
比較例2[電解質膜Eの製造]
 合成例2で得た高分子電解質A20gをトルエン/イソプロパノール=80/20の混合溶剤80gに溶解し、20重量%のポリマー溶液を調整した。得られたポリマー溶液を乳化することなく、離型処理PETフィルム(東洋紡績(株)製エステルフィルムK1504)上にコートし、60℃で10分間乾燥させ、電解質膜Eを得た。得られた電解質膜の膜厚を表1に、発電特性の評価結果を表2に示す。また、電解質膜Eの構造を示す透過型電子顕微鏡写真を図4に示す。図4において、白い部分はゴム成分、黒い部分はイオン伝導性基を有する樹脂成分を示す。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 表1および表2、図3および図4に示す通り(実施例1と比較例2)、同じ材料を用いても、本発明の構造とすることで低湿での抵抗増大を大幅に抑制できることが明らかである。また、比較例1は、ゴム微粒子の平均粒径が著しく大きく、明らかに本発明の膜構造を有していない。そのため、比較例1の電解質膜は本発明で得られる効果を示さない。以上の結果から、本発明の構造を有する電解質膜を用いることで低湿度においても高い発電特性を示す燃料電池が得られることが明らかである。
1:コア-シェル微粒子
2、5:シェル
3、6:コア
4:分散媒

Claims (12)

  1.  イオン伝導性基を有する樹脂成分を含むマトリックス中に、実質的にイオン伝導性基を有さない平均粒径20nm~1μmのゴム微粒子が均一に分散された構造を有する電解質膜。
  2.  前記構造がイオン伝導性基を有する樹脂成分からなるブロックと前記ゴム微粒子を形成する成分からなるブロックを含むブロック共重合体からなる請求項1記載の電解質膜。
  3.  前記イオン伝導性を有する樹脂成分が主として下記一般式(I)
    Figure JPOXMLDOC01-appb-C000001
    (式中、Arは1~3個の置換基を有していてもよい炭素数6~14のアリール基を表し、R1は水素原子、炭素数1~4のアルキル基又は1~3個の置換基を有していてもよい炭素数6~14のアリール基を表す)
    で表される少なくとも1種以上の繰り返し単位から構成され、該繰り返し単位中のアリール基の一部または全部にイオン伝導性基が結合していることを特徴とする請求項1または2記載の電解質膜。
  4.  ゴム微粒子が、炭素数2~8のアルケン単位、炭素数5~8のシクロアルケン単位、炭素数7~10のビニルシクロアルケン単位、炭素数4~8の共役ジエン単位、炭素数5~8の共役シクロアルカジエン単位、炭素数7~10のビニルシクロアルカン単位、炭素数1~12の側鎖を有するアクリル酸エステル単位、および、炭素数1~12の側鎖を有するメタクリル酸エステル単位よりなる群から選ばれる少なくとも1種以上の繰り返し単位からなる重合体、またはそれら重合体の炭素-炭素二重結合の一部または全部に水素添加した重合体からなる請求項1または2記載の電解質膜。
  5.  前記イオン伝導性を有する樹脂成分が、主として、イオン伝導性基を有するアクリル酸エステルまたはメタクリル酸エステルに由来する繰り返し単位からなる重合体である請求項1記載の電解質膜。
  6.  前記ゴム微粒子が、アクリル酸エステル、メタクリル酸エステル、または、ビニルエステルに由来する繰り返し単位からなる重合体から形成されている請求項1または5記載の電解質膜。
  7.  前記マトリックス中にゴム微粒子が均一に分散された構造が、ゴム微粒子の周囲がイオン伝導性基を有する樹脂成分で覆われたコア-シェル微粒子の凝集体からなる請求項1~6のいずれか一項に記載の電解質膜。
  8.  乳化剤を実質的に含まない請求項1~7のいずれか一項に記載の電解質膜。
  9.  請求項1~8のいずれか一項に記載の電解質膜を少なくとも1層含む多層構造からなり、該電解質膜が多層構造の表面または内部に配置されている多層電解質膜。
  10.  請求項1~8のいずれか一項に記載の電解質膜、または、請求項9に記載の多層電解質膜の両面に電極を有する膜―電極接合体。
  11.  (1)実質的にイオン伝導性基を有さないゴム微粒子の周囲がイオン伝導性基を有する樹脂成分で覆われたコア-シェル微粒子を含む分散液を調製する工程、および
     (2)前記分散液を乾燥固化して、イオン伝導性基を有する樹脂成分からなるマトリックス中に平均粒径20nm~1μmの微粒子が均一に分散された構造を得る工程
    を含む電解質膜の製造方法。
  12.  前記分散液が乳化剤を実質的に含まない請求項11に記載の製造方法。
PCT/JP2010/052035 2009-02-17 2010-02-12 電解質膜及び膜―電極接合体 WO2010095562A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CA2752726A CA2752726A1 (en) 2009-02-17 2010-02-12 Electrolyte membrane and membrane-electrode assembly
US13/201,539 US8993192B2 (en) 2009-02-17 2010-02-12 Electrolyte membrane and membrane-electrode assembly
JP2011500578A JP5449314B2 (ja) 2009-02-17 2010-02-12 電解質膜及び膜―電極接合体
EP10743689A EP2400507A1 (en) 2009-02-17 2010-02-12 Electrolyte membrane and membrane-electrode assembly
CN201080008008.2A CN102318011B (zh) 2009-02-17 2010-02-12 电解质膜及膜-电极接合体

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009034140 2009-02-17
JP2009-034140 2009-02-17

Publications (1)

Publication Number Publication Date
WO2010095562A1 true WO2010095562A1 (ja) 2010-08-26

Family

ID=42633845

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/052035 WO2010095562A1 (ja) 2009-02-17 2010-02-12 電解質膜及び膜―電極接合体

Country Status (8)

Country Link
US (1) US8993192B2 (ja)
EP (1) EP2400507A1 (ja)
JP (1) JP5449314B2 (ja)
KR (1) KR20110128817A (ja)
CN (1) CN102318011B (ja)
CA (1) CA2752726A1 (ja)
TW (1) TWI450916B (ja)
WO (1) WO2010095562A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011122498A1 (ja) * 2010-03-29 2011-10-06 株式会社クラレ 高分子電解質、高分子電解質膜、膜-電極接合体、および固体高分子型燃料電池
WO2012039236A1 (ja) * 2010-09-22 2012-03-29 株式会社クラレ 高分子電解質組成物、高分子電解質膜、及び膜-電極接合体
JP2014032811A (ja) * 2012-08-02 2014-02-20 Kuraray Co Ltd 高分子電解質膜

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9178238B2 (en) * 2012-04-03 2015-11-03 Gm Global Technology Operations, Llc Rubber crack mitigants in polyelectrolyte membranes
GB201309806D0 (en) * 2013-05-31 2013-07-17 Itm Power Research Ltd Catalysts and methods of depositing same
KR101758237B1 (ko) 2013-11-25 2017-07-17 현대일렉트릭앤에너지시스템(주) 이온 교환막 및 그 제조방법
WO2015076641A1 (ko) * 2013-11-25 2015-05-28 현대중공업 주식회사 이온 교환막 및 그 제조방법
CN107003191A (zh) * 2014-11-05 2017-08-01 日本梅克特隆株式会社 弯曲传感器
EP3076470B1 (en) 2015-04-03 2019-10-16 Samsung Electronics Co., Ltd. Lithium secondary battery
KR102592691B1 (ko) * 2015-04-03 2023-10-24 삼성전자주식회사 리튬이차전지용 전해질 및 이를 포함하는 리튬이차전지
EP3899996B1 (en) * 2018-12-20 2024-01-17 Victoria Link Limited Electrolyte compositions

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1045913A (ja) 1996-04-18 1998-02-17 Sumitomo Chem Co Ltd 高分子電解質、その製造方法およびそれを使用してなる燃料電池
JP2001250567A (ja) 1999-12-27 2001-09-14 Sumitomo Chem Co Ltd 高分子電解質およびその製造方法
WO2002040611A1 (fr) 2000-11-20 2002-05-23 Kuraray Co., Ltd. Adhesif autocollant ou colle et copolymere bloc convenant a cet effet
JP2003142125A (ja) * 2001-11-01 2003-05-16 Ube Ind Ltd イオン伝導膜
JP2006156397A (ja) * 2004-11-29 2006-06-15 Samsung Sdi Co Ltd 膜電極接合体およびこれを含む燃料電池システム
JP2006210326A (ja) 2004-12-27 2006-08-10 Kuraray Co Ltd 固体高分子型燃料電池用高分子電解質膜、膜−電極接合体及び燃料電池
JP2008248116A (ja) * 2007-03-30 2008-10-16 Gunma Univ イオン伝導膜

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101245419B1 (ko) * 2004-12-27 2013-03-19 가부시키가이샤 구라레 고체 고분자형 연료 전지용 고분자 전해질막, 막-전극접합체 및 연료 전지

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1045913A (ja) 1996-04-18 1998-02-17 Sumitomo Chem Co Ltd 高分子電解質、その製造方法およびそれを使用してなる燃料電池
JP2001250567A (ja) 1999-12-27 2001-09-14 Sumitomo Chem Co Ltd 高分子電解質およびその製造方法
WO2002040611A1 (fr) 2000-11-20 2002-05-23 Kuraray Co., Ltd. Adhesif autocollant ou colle et copolymere bloc convenant a cet effet
JP2003142125A (ja) * 2001-11-01 2003-05-16 Ube Ind Ltd イオン伝導膜
JP2006156397A (ja) * 2004-11-29 2006-06-15 Samsung Sdi Co Ltd 膜電極接合体およびこれを含む燃料電池システム
JP2006210326A (ja) 2004-12-27 2006-08-10 Kuraray Co Ltd 固体高分子型燃料電池用高分子電解質膜、膜−電極接合体及び燃料電池
JP2008248116A (ja) * 2007-03-30 2008-10-16 Gunma Univ イオン伝導膜

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011122498A1 (ja) * 2010-03-29 2011-10-06 株式会社クラレ 高分子電解質、高分子電解質膜、膜-電極接合体、および固体高分子型燃料電池
WO2012039236A1 (ja) * 2010-09-22 2012-03-29 株式会社クラレ 高分子電解質組成物、高分子電解質膜、及び膜-電極接合体
JP5718930B2 (ja) * 2010-09-22 2015-05-13 株式会社クラレ 高分子電解質組成物、高分子電解質膜、及び膜−電極接合体
JP2014032811A (ja) * 2012-08-02 2014-02-20 Kuraray Co Ltd 高分子電解質膜

Also Published As

Publication number Publication date
JP5449314B2 (ja) 2014-03-19
JPWO2010095562A1 (ja) 2012-08-23
CA2752726A1 (en) 2010-08-26
US20110300469A1 (en) 2011-12-08
US8993192B2 (en) 2015-03-31
KR20110128817A (ko) 2011-11-30
CN102318011A (zh) 2012-01-11
CN102318011B (zh) 2014-10-29
TW201035188A (en) 2010-10-01
EP2400507A1 (en) 2011-12-28
TWI450916B (zh) 2014-09-01

Similar Documents

Publication Publication Date Title
JP5449314B2 (ja) 電解質膜及び膜―電極接合体
JP5118484B2 (ja) 固体高分子型燃料電池用電解質積層膜、膜−電極接合体及び燃料電池
JP5501771B2 (ja) 膜−電極接合体及び固体高分子型燃料電池
TWI426650B (zh) 觸媒層及其製法與使用該觸媒層之膜-電極接合體及固體高分子型燃料電池
JP5276442B2 (ja) 高分子電解質、高分子電解質膜、膜−電極接合体及び固体高分子型燃料電池
JP5191139B2 (ja) 高分子電解質、高分子電解質膜、膜−電極接合体及び固体高分子型燃料電池
JP2006210326A (ja) 固体高分子型燃料電池用高分子電解質膜、膜−電極接合体及び燃料電池
WO2011065460A1 (ja) 高分子電解質、高分子電解質膜、膜-電極接合体及び固体高分子型燃料電池
JP2010232121A (ja) 電解質複合膜、膜−電極接合体、および固体高分子型燃料電池
JP5188025B2 (ja) 固体高分子型燃料電池用高分子電解質膜、膜−電極接合体及び燃料電池
JP5405275B2 (ja) 触媒層およびその製造方法
JP2006202737A (ja) イオン伝導性バインダー、膜−電極接合体及び燃料電池
JPWO2013031634A1 (ja) ブロック共重合体、高分子電解質膜、膜−電極接合体及び固体高分子型燃料電池
JP5478412B2 (ja) 膜−電極接合体および燃料電池
JP2010135130A (ja) 固体高分子型燃料電池用高分子電解質膜、膜−電極接合体及び燃料電池
JP5451434B2 (ja) 電解質、電解質膜、膜−電極接合体及び燃料電池
WO2011122498A1 (ja) 高分子電解質、高分子電解質膜、膜-電極接合体、および固体高分子型燃料電池
WO2012043400A1 (ja) 高分子電解質膜、膜-電極接合体、及び固体高分子型燃料電池
JP5379552B2 (ja) 電解質膜
JP2008293857A (ja) 高分子電解質膜、膜−電極接合体および燃料電池
JP2010067526A (ja) 固体高分子型燃料電池用高分子電解質膜、膜−電極接合体及び燃料電池
JP2008153175A (ja) 固体高分子型燃料電池用膜−電極接合体の製造方法
JP2005268048A (ja) 膜電極接合体、膜電極接合体の製造方法及び固体高分子型燃料電池

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080008008.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10743689

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011500578

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13201539

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20117018985

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2752726

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2010743689

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010743689

Country of ref document: EP