WO2010092817A1 - 締結部材および締結構造 - Google Patents

締結部材および締結構造 Download PDF

Info

Publication number
WO2010092817A1
WO2010092817A1 PCT/JP2010/000858 JP2010000858W WO2010092817A1 WO 2010092817 A1 WO2010092817 A1 WO 2010092817A1 JP 2010000858 W JP2010000858 W JP 2010000858W WO 2010092817 A1 WO2010092817 A1 WO 2010092817A1
Authority
WO
WIPO (PCT)
Prior art keywords
fastening member
flank surface
thread
side flank
play
Prior art date
Application number
PCT/JP2010/000858
Other languages
English (en)
French (fr)
Inventor
松林興
Original Assignee
有限会社アートスクリュー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 有限会社アートスクリュー filed Critical 有限会社アートスクリュー
Priority to EP10741097.9A priority Critical patent/EP2397707B1/en
Priority to KR1020107022436A priority patent/KR101230876B1/ko
Priority to US12/936,677 priority patent/US9494182B2/en
Priority to JP2010550464A priority patent/JP4806103B2/ja
Priority to TW099104852A priority patent/TWI400394B/zh
Priority to CN201080001332.1A priority patent/CN102272466B/zh
Publication of WO2010092817A1 publication Critical patent/WO2010092817A1/ja
Priority to US15/282,913 priority patent/US9995334B2/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16BDEVICES FOR FASTENING OR SECURING CONSTRUCTIONAL ELEMENTS OR MACHINE PARTS TOGETHER, e.g. NAILS, BOLTS, CIRCLIPS, CLAMPS, CLIPS OR WEDGES; JOINTS OR JOINTING
    • F16B39/00Locking of screws, bolts or nuts
    • F16B39/22Locking of screws, bolts or nuts in which the locking takes place during screwing down or tightening
    • F16B39/28Locking of screws, bolts or nuts in which the locking takes place during screwing down or tightening by special members on, or shape of, the nut or bolt
    • F16B39/30Locking exclusively by special shape of the screw-thread

Definitions

  • the present invention relates to a fastening member having a screw structure and a fastening structure.
  • the fastening member disclosed in Patent Document 3 includes a slit that is perpendicular to the axis of the screw at the top of the screw thread and a deeply formed valley bottom. There is also a method of preventing loosening by forming a resin coating layer on a part of the thread. In addition, as a related art related to the present invention, there is a tightening screw disclosed in Patent Document 4.
  • the thread angle of the male screw is set to 50 °, for example, and a gap portion is generated between the flank surface of the male screw and the flank surface of the female screw to allow elastic deformation. In the gap portion, the thread cannot sufficiently elastically deform, and there is room for improvement.
  • the resin coating layer must be formed again when the screw is reused, which is troublesome.
  • the method of stopping loosening with frictional force by bringing the male screw into contact with the female screw generates frictional torque (pre-leveling torque), which makes it difficult to manage the torque and also requires tightening with a corresponding force. The nature is bad.
  • the overtap is provided from about 0.40 mm to about 0.80 mm in the case of an M10 screw.
  • the present invention has been made to solve the above problems, and has at least one of the following objects.
  • the present invention provides the following fastening member. That is, the present invention is a fastening member having a screw structure and having an upper part on the top side of the screw thread and a lower part on the bottom side of the screw root, and the pressure side flank surface formed on the upper part is a pressure side flank having a reference thread shape.
  • the fastening member is provided on the seat surface side with respect to the surface, and at least one side surface of the lower portion is provided on the inner side of the extension line of the corresponding flank surface.
  • the pressure side flank surface formed on the upper part of the top of the screw thread is provided on the seat surface side with respect to the pressure side flank surface of the reference mountain shape.
  • the flank surface is pressed by the counterpart fastening member.
  • the lower part of the screw thread of the fastening member is located on the inner side of the corresponding flank surface, and the lower side surface is bent into the inner side.
  • the reaction force (spring back) against the pressure side flank surface is generated in the entire thread. Thereby, the frictional force between the pressure side flank surface of the fastening member and the pressure side flank surface of the counterpart fastening member is increased, and a high locking effect is exhibited.
  • the fastening member of the present invention can be plated with a large thickness while maintaining the loosening prevention effect. it can.
  • the fastening member of the present invention also increases the frictional force on the seating surface of the fastening member due to the reaction force (spring back) of the thread. Thereby, the initial slack due to the sag of the seat surface is prevented, the breakage of the fastening member due to the initial slack is prevented, and the reliability is improved. In addition, workability is improved because there is no need to retighten the initial looseness.
  • the fastening member of the present invention when the fastening member of the present invention is returned from the fastening state to the non-fastening state, the entire screw thread is in a state before fastening (a state in which the pressure side flank surface is positioned on the seat surface side with respect to the pressure side flank surface of the reference mountain shape). Return. Thereby, the fastening member of this invention can be repeatedly used, without requiring a special process. Moreover, since the lower part of the thread is elastically deformed when the fastening member of the present invention is fastened, it is difficult to damage the counterpart fastening member, and even if it is used repeatedly, the effect of preventing loosening does not deteriorate.
  • FIG. 8A is a cross-sectional view of the main part including the axis 5 in a non-fastened state of the bolt 1 provided with the screw thread 200 according to the fourth embodiment of the present invention.
  • FIG. 8B is an enlarged cross-sectional view of the pressure-side side surface 215 of the screw thread 200 according to the fourth embodiment.
  • FIG. 10A is a cross-sectional view of a main part in a non-fastened state of the bolt 300 provided with the screw thread 310 according to the sixth embodiment of the present invention.
  • FIG. 10B is a cross-sectional view showing the thread 310 in a state where the bolt 300 and the nut 8 of the sixth embodiment are fastened.
  • FIG. 11A is a cross-sectional view of a main part in a non-fastened state of the bolt 400 provided with the screw thread 410 according to the seventh embodiment of the present invention.
  • FIG. 11B is a cross-sectional view showing the thread 410 in a state where the bolt 400 and the nut 8 of the seventh embodiment are fastened.
  • FIG. 12A is a cross-sectional view of a main part in a non-fastened state of the bolt 500 provided with the screw thread 510 according to the eighth embodiment of the present invention.
  • FIG. 12B is a cross-sectional view showing the thread 510 in a state where the bolt 500 and the nut 8 of the eighth embodiment are fastened.
  • FIG. 13A is a cross-sectional view of a main part in a non-fastened state of the bolt 1 provided with the screw thread 610 of the ninth embodiment.
  • FIG. 13B is a cross-sectional view showing the thread 610 in a state where the bolt 1 and the nut 8 of the ninth embodiment are fastened.
  • FIG. 12A is a cross-sectional view of a main part in a non-fastened state of the bolt 500 provided with the screw thread 610 according to the eighth embodiment of the present invention.
  • FIG. 12B is a cross-sectional view showing the thread 510 in a state where the bolt 500 and the nut 8 of the eighth embodiment are
  • FIG. 14A is a cross-sectional view of a main part in a non-fastened state of the bolt 1 provided with the screw thread 710 of the tenth embodiment.
  • FIG. 14B is a cross-sectional view showing the thread 710 in a state where the bolt 1 and the nut 8 of Example 10 are fastened.
  • FIG. 15 is a table showing test results of a vibration test in which the time until a bolt of a test product (JIS standard product, Example 5, Example 9) is tightened and then loosened is measured.
  • the fastening member of the first aspect has a screw structure, and includes an upper portion on the top side of the screw thread and a lower portion on the bottom side of the screw valley.
  • screw structure refers to a structure having a thread and a thread valley formed in a spiral shape on the side surface of a cylindrical main body toward the tip.
  • the “upper part” refers to the top of the screw thread from the virtual cylinder that defines the effective diameter of the reference chevron.
  • the “lower part” refers to the screw valley bottom side from the virtual cylinder.
  • Effective diameter is the diameter of a virtual cylinder in which the width of the thread groove measured in the direction of the axis in the reference angle is equal to the width of the thread, and “the virtual cylinder that defines the effective diameter” Indicates the virtual cylinder. Since the upper part of the thread is an area closer to the top of the thread than the virtual cylinder that defines the effective diameter of the reference thread, a sufficient pressure side flank surface is secured. Thereby, in the pressure side flank surface formed in the upper part, a contact area with the other party fastening member is securable.
  • the angle of the upper thread is substantially the same as the angle of the reference thread. According to the sixth aspect, in the fastened state, even if the thread is elastically deformed, the play-side flank surface does not come into contact with the flank surface of the mating fastening member. Exhibits a high locking effect.
  • the “reference thread shape” in this specification is, for example, a theoretical thread shape defined by JIS standard, and the thread angle is 60 °, both flank angles are 30 °, and the flank surface is A thread shape provided symmetrically perpendicular to the axis or a thread shape similar to the thread shape of a wit screw, the thread angle being 55 ° and both flank angles being 27.5 °, Indicates a thread shape provided symmetrically about the axis. Accordingly, the angle of the thread of the male screw is, for example, about 60 ° or about 55 °.
  • the pressure-side flank surface is provided closer to the seat surface than the pressure-side flank surface of the reference chevron.
  • the shape of the pressure side flank surface is usually a planar shape, but is not limited to this, and may be an R surface shape curved toward the seat surface side.
  • the flank angle of the pressure side flank is preferably smaller than the flank angle of the reference angle.
  • flank angle refers to an angle formed by a line perpendicular to the axis and the flank surface.
  • the angle of the upper screw thread is 60 °
  • the flank angle of the pressure side flank surface is larger than 0 ° and smaller than 30 °. According to the seventh aspect, the springback effect can be easily obtained, and the loosening prevention effect can be further enhanced.
  • the flank angle of the pressure side flank surface is preferably about 18 ° to about 26 °.
  • the flank angle of the play side flank surface can be determined in consideration of the flank angle of the pressure side flank surface.
  • the flank angle of the play side flank surface can be made larger than the flank angle of the reference mountain shape, and the flank angle of the play side flank surface is obtained by subtracting the flank angle of the bearing surface side from the thread angle of the reference mountain shape. be able to.
  • the flank angle of the play-side flank surface may be greater than 30 ° and less than 60 °, preferably about 34 ° to about 42 °.
  • At least one side surface of the lower part is located inside the extension line of the corresponding flank surface. Therefore, compared with the case where the lower side surface is provided along the extension line of the flank surface, the lower portion is formed thinner. Thereby, the elastic deformation in the lower part is permitted and the whole thread can be bent.
  • the shape of at least one side surface of the lower part is a curved shape that curves inwardly from the extension line of the corresponding flank surface, or
  • the shape is a combination of a planar shape arranged on the inner side from the extension line of the corresponding flank surface and a curved surface shape curved inward from the extension line.
  • the curved surface shape is an R surface shape having a constant radius of curvature, or a plurality of shapes having different curvature radii. What is necessary is just to make it the composite R surface shape which combined these curved surfaces.
  • the shape of the side surface of the lower portion is a shape that combines a planar shape disposed inside from the extension line of the corresponding flank surface and a curved surface shape that curves inward from the extension line
  • the planar shape is A surface perpendicular to the axial direction of the fastening member may be used, and the curved surface shape may be the R surface shape or the composite R surface shape.
  • the lower edge of the side surface of the lower part which is a curved shape, and a trough bottom (connection part with the side surface of an adjacent screw thread) continue smoothly, and the whole trough part becomes a curved surface shape.
  • the lower part since the lower part is sufficiently thin, the lower part is elastically deformed in the fastening state, and the entire thread is bent, so that the reaction force (spring) to the other side fastening member fastened to the fastening member Since the back) increases, the frictional force also increases and a high locking effect is achieved.
  • the curved surface shape is formed at the lower part of the thread, it is difficult for the lower part of the thread to undergo plastic deformation (or formation of a crack).
  • plastic deformation or crack formation
  • the stress is dispersed, so that the thread can be more elastically deformed while avoiding the yielding of the lower part.
  • the force (spring back) also increases.
  • the thread can be elastically deformed more reliably.
  • the lower end of the play-side flank surface is positioned on the screw thread top side of the virtual cylinder indicating the effective diameter of the reference mountain shape, and the play-side side surface in the lower part Is provided on the inner side of the extended line of the play side flank surface, and the side surface on the play side in the lower part is formed continuously from the lower end of the play side flank surface.
  • the phrase “formed continuously from the lower end of the play-side flank surface” means that the play-side side surface at the lower part is formed directly from the play-side tip at the upper part of the thread (ie, the lower end of the play-side flank surface).
  • the play-side flank surface and the play-side flank surface are formed so as to contact each other at the lower end of the play-side flank surface.
  • a wide range of the side surface on the play side in the lower part is squeezed and the lower part becomes thinner, so that the screw thread is easily elastically deformed to the play side, so that the screw thread bends to the play side and resists.
  • the force (spring back) becomes larger and a high locking effect is achieved.
  • the lower end of the pressure-side flank surface is positioned closer to the screw crest than the lower end of the play-side flank surface, and the side surface on the pressure side is the pressure-side flank. It is provided inside the extended line of the surface and is formed continuously from the lower end of the pressure side flank surface, and the play side surface in the lower part is provided inside the extended line of the play side flank surface, and the play side It is formed continuously from the lower end of the flank surface.
  • the pressure side surface in the lower part is rolled over a wider range than the play side surface, so that the pressure side surface in the lower part is thinner, and the play side surface in the lower part is thicker than the pressure side.
  • the screw thread receives pressure from the seat surface side in the fastened state, but the bending of the screw thread is suppressed to be small.
  • stress concentrates on the pressure side flank surface of the screw thread, and the forming material of the pressure side flank surface is elastically deformed along the pressure side flank surface, resulting in a high frictional force. Play.
  • the lower end of the pressure-side flank surface is positioned closer to the top of the screw thread than the virtual cylinder showing the effective diameter of the reference chevron, and the lower end of the play-side flank surface is more than the virtual cylinder. Is also located on the bottom of the screw valley. According to the fifth aspect, the operation and effect of the fourth aspect can be obtained more reliably.
  • the angle of the upper thread is larger than the angle of the reference thread
  • the flank angle of the pressure side flank surface is the pressure side of the reference thread. It is substantially the same as the flank angle of the flank surface.
  • the pressure side flank surface of the counterpart fastening member presses the pressure side flank surface of the fastening member.
  • the flank angle of the pressure side flank surface of the fastening member is substantially the same as the flank angle of the pressure side flank surface of the reference thread
  • the pressure side flank surface of the fastening member is the pressure side of the mating fastening member. It is parallel to the flank surface. Therefore, according to the eighth aspect, since substantially the entire pressure-side flank surface of the fastening member is pressed against the pressure-side flank surface of the mating fastening member, a stable strong pressing force is generated here. A strong frictional force is obtained on the surface, and a high locking effect is achieved.
  • a ninth aspect includes the fastening member according to the first to eighth aspects and a counterpart fastening member fastened to the fastening member, and when the fastening member is fastened to the counterpart fastening member, When the pressure side flank surface presses the pressure side flank surface of the fastening member, the lower portion of the fastening member is elastically deformed, and the frictional force between the pressure side flank surface of the fastening member and the pressure side flank surface of the mating side fastening member increases. To do.
  • the frictional force between the pressure-side flank surface of the fastening member and the pressure-side flank surface of the mating fastening member is increased, thereby providing a high locking effect.
  • the kind of the other party fastening member is not specifically limited, For example, what has a screw structure according to well-known standards, such as a unified screw and a wit screw, should just be employ
  • the screw thread top portion of the fastening member abuts against the thread valley bottom of the mating fastening member.
  • the fastening member when the fastening member is fastened to the mating fastening member, it can be tightened with little resistance until force is applied to the seating surface of the fastening member, but as the torque increases due to the seating surface tightening,
  • the thread of the fastening member rises to the play side.
  • the thread of the fastening member springs back to the pressure side, and the frictional force between the pressure side flank surface of the fastening member and the pressure side flank surface of the mating side fastening member increases.
  • the outer diameter of the screw increases, the top of the thread of the fastening member abuts against the bottom of the thread of the counterpart fastening member, and the top of the thread The part is restrained by the screw root. This restraining force is added to the frictional force between the pressure-side flank surface of the fastening member and the pressure-side flank surface of the mating fastening member, so that the fastening member is prevented from loosening in the radial direction. Play.
  • the outer diameter of the screw thread of the fastening member is the outer diameter of JIS standard or ISO standard (that is, outside the thread of the standard thread shape). Diameter). Therefore, the thread top of the fastening member is higher than the thread top of the reference thread. Moreover, since the pitch of the thread of the fastening member is the same as the pitch of the thread valley of the counterpart fastening member, the angle of the thread of the fastening member is smaller than the angle of the thread of the reference thread.
  • the play-side flank surface of the fastening member contacts the play-side flank surface of the mating fastening member.
  • the fastening member when the fastening member is fastened to the counterpart fastening member, it can be fastened with little resistance until a force is applied to the seating surface of the fastening member, but as the torque increases with the seating surface tightening, The thread rises and the play-side flank surface of the fastening member abuts against the play-side flank surface of the mating fastening member, and a strong frictional force is generated there. This frictional force becomes the frictional force of the pressure-side flank surface.
  • the eleventh aspect can be realized by providing a bulging portion on the play-side flank surface of the fastening member. If the bulging portion is provided, it is possible to further increase the frictional force between the mating fastening member and the play-side flank surface in the fastened state.
  • the shape of the bulging portion is made parallel to the play-side flank surface of the mating fastening member. Accordingly, interference between the bulging portion and the play-side flank surface of the mating fastening member is avoided, and the bulging portion is pressed against the play-side flank surface of the mating fastening member, thereby obtaining a strong frictional force. Then, the bulging portion is formed so as to gradually bulge from the lower end of the play-side flank surface toward the top of the screw thread. As a result, due to the seating surface tightening, the thread rises so that the thread crest side of the play-side flank surface faces the play-side flank surface of the mating fastening member. Can be pressed even more strongly.
  • a cut surface is formed by cutting the vicinity of the screw thread top portion of the fastening member so as to be inclined downward toward the pressure side flank surface. According to the twelfth aspect, when the fastening member is fastened to the mating fastening member, the pressure side flank surface of the fastening member is pressed against the pressure side flank surface of the mating fastening member as the seat surface tightening increases the torque.
  • the pressure-side flank surface of the mating-side fastening member first comes into contact with the upper end of the pressure-side flank surface, not in the vicinity of the upper end of the cut surface serving as the thread crest. .
  • the pressure side flank surface of the fastening member gradually contacts and is pressed against the pressure side flank surface of the mating fastening member from the upper end side toward the lower end side, and the fastening member
  • the thread crest of the fastening member moves to the play side flank surface side of the mating fastening member, and the play side flank surface of the fastening member becomes the play side flank surface of the mating fastening member. It will abut.
  • the thread of the fastening member can obtain a frictional force on both the pressure-side flank surface and the play-side flank surface, and has a further locking effect.
  • the manufacturing method of the fastening member of the present invention is not particularly limited, and a known method such as rolling, casting, forging, injection molding or the like of flat die type, round die type, planetary die type, rotary die type, etc. is adopted. do it.
  • the thread may be formed in one step, or the thread may be formed in two steps.
  • a second step of forming the pressure side flank surface so that a part of the pressure side flank surface is located on the seat surface side of the pressure side flank surface of the reference chevron.
  • FIG. 1 is a front view of the bolt 1 provided with the screw thread 10 of the first embodiment in a non-fastened state.
  • the bolt 1 as a fastening member has a male screw structure and includes a head portion 2, a cylindrical portion 3, and a screw portion 4.
  • a seating surface 20 is formed on the back surface of the head 2.
  • a screw thread 10 is formed on the screw portion 4.
  • FIG. 2 is an enlarged cross-sectional view including an axis 5 in a portion A indicated by a broken line in FIG.
  • a broken line 6 indicates a virtual cylinder that defines an effective diameter of the reference mountain
  • a broken line 7 indicates the reference mountain.
  • the reference chevron 7 has a shape conforming to the JIS standard, and the angle ⁇ 1 of the screw thread 10 is 60 °, and the flank angle of the pressure side flank surface 73 and the flank angle of the play side flank surface 74 are both 30 °.
  • Broken lines indicated by reference numerals 75 and 76 indicate virtual lines perpendicular to the axial direction of the screw.
  • the screw thread 10 has an upper part 11 closer to the screw thread top part 10 a than the virtual cylinder 6 and a lower part 12 closer to the valley bottoms 10 b and 10 c than the virtual cylinder 6.
  • the upper portion 11 includes a pressure side flank surface 13 and a play side flank surface 14.
  • the pressure side flank surface 13 is formed along an imaginary line 13a passing through the valley bottom 71 of the reference chevron 7, and an angle ⁇ formed by the imaginary line 13a and the imaginary line 75 is about 22 °.
  • the play-side flank surface 14 is formed along an imaginary line 14a passing through the valley bottom 72 of the reference chevron 7 and an angle ⁇ formed by the imaginary line 14a and the imaginary line 76 is about 38 °.
  • the angle ⁇ formed by the imaginary line 13a and the imaginary line 14a is about 60 °.
  • the angle ⁇ corresponds to the thread angle of the upper portion 11
  • the angle ⁇ corresponds to the flank angle of the pressure side flank surface 13
  • the angle ⁇ corresponds to the flank angle of the play side flank surface 14.
  • the pitch of the thread 10 is the same as that of the reference thread 7.
  • the peak portion is located radially outward of the center of the valley bottoms 71, 72, but in the thread of Example 1, the valley bottom 71, 72 of the reference mountain shape 7 is used as a base point.
  • the peak portion 10 a is shifted to the valley portion 71 side close to the seat surface 20.
  • the lower portion 12 includes a side surface 15 on the seat surface side (pressure side) and a side surface 16 on the screw tip side (play side).
  • the side surface 15 is curved inward from an imaginary line 13 a corresponding to an extension line of the pressure side flank surface 13.
  • the side surface 15 has an R-surface shape that is continuous with the play side surface of an adjacent screw thread (not shown), and the bottom thereof is a valley bottom 10b.
  • the side surface 16 is formed to be curved inward from an imaginary line 14 a corresponding to an extension line of the play-side flank surface 14.
  • the side surface 16 has an R-surface shape that is continuous with the side surface on the screw tip side of an adjacent screw thread (not shown), and the bottom thereof becomes the valley bottom 10c.
  • FIG. 3 is a cross-sectional view showing the thread 10 in a state in which the bolt 1 of the first embodiment and the nut 8 that is the counterpart fastening member are fastened.
  • the nut 8 is a mating fastening member having a female screw structure conforming to JIS standards, and the angle ⁇ 2 of the valley bottom 80 of the nut 8 is 60 °.
  • the pressure side flank surface 81 of the nut 8 presses the pressure side flank surface 13 of the screw thread 10.
  • Both side surfaces 15 and 16 of the lower portion 12 have a large R-surface shape toward the inside, and the lower portion 12 is curled inward and thinner than the reference chevron 7. As a result, the entire thread 10 is elastically deformed in response to the pressure by the pressure side flank 81 of the nut 8.
  • the screw thread 10 rises along the pressure side flank surface 81 of the nut 8 from the unfastened state indicated by the broken line, and becomes the fastened state indicated by the solid line. .
  • a reaction force spring back
  • the frictional force between the pressure-side flank surface 13 of the screw thread 10 and the pressure-side flank surface 81 of the nut 8. Increases and has a high anti-loosening effect. Even if an overtap is provided, the pressure-side flank surface 13 of the screw thread 10 and the pressure-side flank surface 81 of the nut 8 always come into contact with each other.
  • the pressure-side flank surface 13 is sufficiently secured.
  • a contact area between the pressure side flank surface 13 of the screw thread 10 and the pressure side flank surface 81 of the nut 8 is ensured, and a high frictional force is obtained.
  • the angle ⁇ of the thread 10 is 60 °, which is substantially the same as the angle of the valley bottom 80 of the nut 8, a space for elastically deforming the entire thread 10 in the thread valley of the nut 8 is secured and tightened.
  • the substantially entire surface of the pressure side flank surface 13 of the screw thread 10 abuts against the pressure side flank surface 81 of the nut 8, so that a higher frictional force is obtained and a high locking effect is achieved.
  • flank angle ⁇ of the pressure side flank surface 13 of the screw thread 10 is about 22 °
  • flank angle ⁇ of the play side flank surface 14 of the screw thread 10 is about 38 °. is there.
  • these flank angles are different from the standard of JIS standard, both are within the range of the gap between the bolt 1 and the nut 8. Therefore, until the seating surface tightening force is generated, the friction torque between the bolt 1 and the nut 8 is small and can be screwed in without stress. After that, when the screw is further screwed in, a seating surface tightening force is generated, and the high loosening prevention effect due to the elastic deformation of the screw thread 10 is obtained as described above.
  • the bolt 1 including the screw thread 10 of the first embodiment has the opposite effects of ease of screwing into the nut 8 and prevention of loosening. Further, the load applied to the screw thread 10 of the bolt 1 is distributed to the other screw threads 10 in contact with the side surfaces of the plurality of screw valleys of the nut 8 because the screw thread 10 itself is elastically deformed. Thereby, the concentration of the load on the screw thread 10 (first screw thread) located closest to the seat surface among the screw threads 10 of the bolt 1 in contact with the nut 8 is alleviated, and the fatigue strength of the bolt 1 is improved. Further, due to the reaction force (spring back) of the screw thread 10, the frictional force also increases on the seating surface 20 (see FIG. 1).
  • the material for forming the screw thread 10 of the bolt 1 is elastically deformed.
  • the pressure side flank surface 13 returns to a state where it is positioned on the seat surface side with respect to the pressure side flank surface 73 of the reference chevron 7.
  • the screw thread 10 can be used repeatedly without requiring any special treatment.
  • the pressure-side flank surface 81 of the nut 8 is hardly damaged, and the effect of preventing the loosening does not deteriorate even when used repeatedly.
  • Example 1 is applied to the right-handed screw 1, it can also be applied to the left-handed bolt, and even when applied to the left-handed screw, the same effect as when applied to the right-handed screw. An effect is obtained.
  • FIG. 4 is a cross-sectional view of the main part including the axis 5 in a non-fastened state of the bolt 1 provided with the thread 1a of the second embodiment.
  • a lower end 13c of the pressure-side flank surface 13b of the thread 1a is located below the virtual cylinder 6 (on the axis 5 side). That is, the pressure side flank surface 13 b is formed from the upper part 11 to the lower part 12.
  • an R-surface side surface 15a that is curved inward from the imaginary line 13a is formed continuously from the lower end 13c of the pressure-side flank 13b to the valley bottom 10b. That is, the side surface 15a is formed only on the lower portion 12 of the screw thread 1a.
  • the lower end 14c of the play side flank surface 14b of the screw thread 1a is located above the virtual cylinder 6 (on the screw thread top portion 10a side). That is, the play side flank surface 14 b is formed only on the upper portion 11.
  • an R-side surface 16a that is curved inward from the virtual line 14a is formed continuously from the lower end 14c to the valley bottom 10c of the play-side flank face 14b. Yes. That is, the side surface 16a is formed from the upper part 11 to the lower part 12 in the thread 1a.
  • the thread 1a of Example 2 compared with the thread 10 of Example 1 (refer FIG. 2), it has the shape where the valley bottom between adjacent threads is located in the seat surface side.
  • the same operation and effect as the thread 10 of the first embodiment can be obtained.
  • the pressure side surface 15a of the lower portion 12 is wound smaller than the side surface 15 of the screw thread 10 of the first embodiment.
  • the pressure side flank surface 13b of the thread 1a of the second embodiment is formed wider than the pressure side flank surface 13 of the thread 10 of the first embodiment.
  • the thread 1a of the second embodiment since the side surface 16a on the play side of the lower portion 12 is beaten larger than the side surface 16 of the thread 10 of the first embodiment, the thread 1a in the lower portion 12 is on the play side. Elastic deformation is allowed. Thereby, the thread 1a of Example 2 bends to the play side, reaction force (spring back) becomes larger, and the loosening prevention effect is further improved.
  • the shape of the side surfaces 15a and 16a of the second embodiment is similar to the side surfaces 15 and 16 of the first embodiment, in addition to the R surface shape, a combined R surface shape, or a shape that combines the R surface shape and the planar shape. can do.
  • FIG. 5 is a cross-sectional view of the main part including the axis 5 in a non-fastened state of the bolt 100 provided with the thread 101 of the third embodiment.
  • the screw thread 101 according to the third embodiment includes an upper part 110 closer to the screw thread top part 102 than the virtual cylinder 6 and a lower part 120 closer to the valley bottom than the virtual cylinder 6.
  • the upper part 110 includes a pressure side flank surface 130 and a play side flank surface 140.
  • the angle a of the thread 101 is about 60 °
  • the flank angle b of the pressure side flank surface 130 is about 22 °
  • the flank angle c of the play side flank surface 140 is about 38 °.
  • the screw thread crest 102 is located closer to the seat surface than the pressure side flank surface 73 of the reference chevron 7.
  • the lower end 131 of the pressure side flank surface 130 is located inside the pressure side flank surface 73.
  • the lower end 141 of the play-side flank surface 140 is located outside the play-side flank surface 74 of the reference angle 7, that is, on the screw tip side.
  • the lower portion 120 of the screw thread 101 is bent on the pressure side from the lower end 131 of the pressure-side flank surface 130 to the inner side of the screw thread 101, and the side surface 150 of the lower portion 120 is located on the inner side of the extension line 130a of the pressure-side flank surface 130. positioned.
  • the lower portion 120 of the screw thread 101 is bent on the play side from the lower end 141 of the play-side flank surface 140 to the inside of the screw thread 101, and the side surface 160 of the lower portion 120 is located inside the extension line 140a of the play-side flank surface 140. positioned.
  • the cross-sectional shape of the side surfaces 150 and 160 is a composite R surface shape that is continuous with adjacent threads (not shown).
  • FIG. 6 is a cross-sectional view showing the thread 101 in a state where the bolt 100 and the nut 8 of the third embodiment are fastened.
  • the pressure side flank surface 81 of the nut 8 presses the pressure side flank surface 130 of the thread 101.
  • the lower portion 120 of the screw thread 101 is thinner and thinner than the reference chevron 7, and the entire screw thread 101 is elastically deformed in response to the pressure by the pressure side flank surface 81.
  • the screw thread 101 rises from the unfastened state indicated by the broken line along the pressure side flank surface 81 of the nut 8 and becomes the state indicated by the solid line.
  • FIG. 7 is a cross-sectional view of a main part for explaining a method for manufacturing the bolt 100 of the third embodiment.
  • the bolt 100 is manufactured in two processes, a first step and a second step.
  • side surfaces 150 and 160 of the lower portion 120 of the thread 101 are formed by rolling on the cylindrical portion of the bolt coarse material 170 (see FIG. 7A), and the upper forming convex portion 180 is formed as the first portion. (See the first step, FIG. 7B).
  • the upper forming ridge portion 180 is formed on the lower portion 120 so that the shaft 103 coincides with the central axis of the lower portion 120 of the thread 101 in the longitudinal section.
  • the upper part 110 is formed on the upper forming convex line part 180 by using a second rolling die.
  • the thread crest 102 is formed on the seat surface side with respect to the thread crest of the reference thread 7, and an angle of 60 ° is formed on the thread crest 102, and the pressure flank surface 130 is formed.
  • An angle of about 22 ° is added to the flank angle b, and an angle of about 38 ° is added to the flank angle c of the play-side flank surface 140 (second step, FIG. 7C).
  • a part of the pressure side flank surface 130 of the screw thread 101 that is, the pressure side of the screw thread top portion 102
  • the upper part 110 and the lower part 120 can be formed with higher accuracy by forming the thread 101 of the bolt 100 through two steps.
  • FIG. 8A is a cross-sectional view of the main part including the axis 5 in a non-fastened state of the bolt 1 provided with the screw thread 200 of the fourth embodiment.
  • the pressure side flank surface 213b in the screw thread 200 is formed along the imaginary line 13a.
  • the lower end 213c of the pressure side flank surface 213b is located closer to the thread crest 10a than the virtual cylinder 6.
  • the pressure-side side surface 215 of the lower portion 12 of the screw thread 200 is a shape that curves inward from the imaginary line 13a from the lower end 213c of the pressure-side flank 213b to the valley bottom 10b, and is a combination of the R-surface shape and the planar shape. It has a shape.
  • FIG. 8B is an enlarged cross-sectional view of the pressure-side side surface 215 of the lower portion 12 in the screw thread 200 of the fourth embodiment.
  • the pressure side surface 215 of the lower portion 12 is composed of a flat surface 215a and an R surface 215b.
  • the plane 215a is a plane parallel to a virtual line 75 perpendicular to the axial direction of the screw, and is formed from the lower end 213c to a position 2/3 of the height of the lower portion 12 (reference numeral 215c) toward the valley bottom 10b.
  • the R surface 215b is a circumferential surface having a curvature radius of 0.4 mm, and is formed from the position indicated by reference numeral 215c to the valley bottom 10b continuously from the plane 215a.
  • the play-side flank surface 214b is formed along the virtual line 14a.
  • a lower end 214c of the play-side flank 214b is positioned closer to the axis 5 than the virtual cylinder 6.
  • the play side surface 216 of the lower portion 12 has a shape that curves inward from the virtual line 14a from the lower end 214c of the play side flank surface 214b to the valley bottom 10c, and has an R surface shape and a flat surface. The shape is combined with the shape.
  • the lower end 213c of the pressure side flank surface 213b is positioned closer to the screw thread top portion 10a than the lower end 214c of the play side flank surface 214b.
  • the pressure side surface 215 of the lower portion 12 is rolled over a wider range than the play side surface 216 of the lower portion 12, and the pressure side surface 215 of the lower portion 12 is further layered.
  • the play side surface 216 is thicker than the pressure side.
  • FIG. 9 is a cross-sectional view of the main part including the axis 5 in a non-fastened state of the bolt 1 provided with the thread 200 ′ of the fifth embodiment.
  • the screw thread 200 ′ of the fifth embodiment as compared with the screw thread 200 of the fourth embodiment (see FIG. 8A), a portion of the screw thread 200 ′ that is bent and bent inward on the play side of the lower portion 12. Is provided, and the play side flank surface 214 'extends to form a play side surface 216' of the lower portion 12, and the play side flank surface 214 'and the play side surface 216' are flush with each other. It has become.
  • other shapes are the same as those of the screw thread 200 of the fourth embodiment.
  • the thread 200 ′ of the fifth embodiment when the torque is increased by tightening the seating surface in the tightened state, the pressure-side flank surface 213b is pressed against the pressure-side flank surface of the nut, and a force that bends to the play side is generated. Since the side surface 216 ′ on the play side of the lower part 12 in the screw thread 200 ′ is not bent and bent inward and has a planar shape, the screw thread 200 ′ is suppressed from being bent toward the play side. This prevents a decrease in the amount of elastic deformation of the screw thread 200 'due to secular change, and keeps the reaction force (spring back) against the pressure side flank surface of the nut.
  • the side surface having an R-surface shape that is continuous from the lower end 213c of the pressure-side flank 213b to the valley bottom 10b and curves inward from the virtual line 13a. 215 is formed. Since the side surface 215 on the pressure side of the screw thread 200 ′ is bent and bent inward, when the torque is increased by tightening the seating surface, the screw thread 200 ′ is pressed against the pressure side flank surface of the nut, and the screw thread 200 ′. The upper side 11 is elastically deformed along the pressure side flank surface of the nut, resulting in a high frictional force.
  • the thread 200 ′ is allowed to be elastically deformed on the pressure side of the upper portion 11 by the portion bent and bent inside the side surface 215 on the pressure side. This elastic deformation occurs in order from the first thread to the second thread and then to the third thread. As a result, a high locking effect is obtained in the entire screwed portion of the bolt and nut, and the first thread is reached. Since the stress concentration is dispersed, the fatigue strength is improved.
  • the lower end 213c of the pressure side flank 213b (the upper end of the pressure side 215) is preferably located on the pressure side flank of the nut in the fastened state.
  • the reason for this is that in the fastened state, a sufficient area is secured between the pressure side flank surface 213b of the thread 200 ′ and the pressure side flank surface of the nut, and a sufficient frictional force is obtained. This is because the elastic deformation of is sufficiently allowed.
  • the upper portion 11 of the thread 200 ' is more elastically deformed. Since it becomes easy, it becomes possible to raise the frictional force which arises between the pressure side flank surface 213b of the upper part 11 of screw thread 200 ', and the pressure side flank surface of a nut, Therefore The said effect can be heightened.
  • FIG. 10A is a cross-sectional view of a main part in a non-fastened state of the bolt 300 provided with the screw thread 310 of the sixth embodiment.
  • the pitch of the thread 310 conforms to the JIS standard. Therefore, the screw thread top part 311 of the screw thread 310 of Example 6 becomes higher than the screw thread peak part 10a of the screw thread 10 of Example 1, and the outer diameter of the bolt 300 of Example 6 becomes larger than JIS standard. Yes.
  • the other shapes are the same as those of the screw thread 10 of the first embodiment, and the pressure side surface 315 and the play side surface 316 of the lower portion 12 of the screw thread 310 are the respective flank surfaces. It is curved inward from a virtual line corresponding to the extension line.
  • FIG. 10B is a cross-sectional view illustrating the thread 310 in a state where the bolt 300 and the nut 8 according to the sixth embodiment are fastened.
  • the nut 8 is a nut according to the JIS standard or ISO standard.
  • the bolt 300 can be tightened with a small amount of resistance until a force is applied to the seat surface of the bolt 300, but as the torque increases as the seat surface is tightened, the pressure side flank surface 313 increases the pressure of the nut 8.
  • the screw thread 310 rises to the play side. Thereby, the thread 310 springs back to the pressure side, and the frictional force between the pressure side flank surface 313 of the bolt 300 and the pressure side flank surface 81 of the nut 8 increases.
  • the torque for tightening the seating surface is low or the bolt is made of a material that hardly undergoes elastic deformation, the rise of the thread 310 is reduced, and the pressure side flank surface 313 and the pressure side flank surface 81 of the nut 8 are reduced.
  • the frictional force may be reduced.
  • the thread crest 311 of the bolt 300 is restrained by the valley bottom 801 and the bolt 300 Therefore, a sufficient locking effect can be obtained.
  • FIG. 11A is a cross-sectional view of a main part in a non-fastened state of the bolt 400 provided with the screw thread 410 of the seventh embodiment.
  • the thread 410 of the seventh embodiment has a shape in which a bulging portion 414 is provided on the play-side flank surface 14 (see FIG. 2) of the thread 10 of the first embodiment.
  • a surface 414b of the bulging portion 414 is formed along the virtual line 414 ′.
  • An angle ⁇ 4 formed by an imaginary line 77 perpendicular to the axial direction of the screw and the imaginary line 414 ′ is about 30 °, and an angle ⁇ 3 formed by an extension line of the pressure side flank surface 413 and the imaginary line 414 ′ is 54 °. .
  • the screw thread top portion 411 of the screw thread 410 according to the seventh embodiment is formed to have the same height as the screw thread top portion 10a (see FIG. 2) of the screw thread 10 according to the first embodiment.
  • the bulging portion 414 is formed so as to gradually bulge from the lower end 414c of the play-side flank surface toward the screw thread top portion 411, and the screw thread top portion 411 and the surface 414b of the swollen portion 414 are gradually continuous. Yes.
  • the other shapes are the same as those of the screw thread 10 of the first embodiment, and the pressure side surface 415 and the play side surface 416 of the lower portion 12 of the screw thread 410 are the respective flank surfaces. It is curved inward from a virtual line corresponding to the extension line.
  • FIG. 11B is a cross-sectional view showing the thread 410 in a state where the bolt 400 and the nut 8 of the seventh embodiment are fastened.
  • the thread 410 rises to the play side and springs back to the pressure side as the seat surface tightens, and the pressure side flank surface 413 and the pressure side flank surface 81 of the nut 8 are moved back. And the frictional force increases.
  • the bulging portion 414 provided on the play side of the screw thread 410 approaches the play-side flank surface 82 of the nut 8, and the surface 414 b of the bulge portion 414 becomes the nut 8. Will be pressed against the play-side flank surface 82.
  • the screw thread 410 has a frictional force on both the pressure-side flank surface 413 and the surface 414b of the bulging portion 414, and has a further locking effect.
  • the angle ⁇ 4 of the surface 414b of the bulging portion 414 is about 30 °, the surface 414b of the bulging portion 414 is kept until the thread 410 is raised by tightening the seating surface due to the force applied to the seating surface of the bolt 400. It is parallel to the play side flank surface 82 of the nut 8. This prevents interference between the surface 414b of the bulging portion 414 and the play-side flank surface 82 of the nut 8 until the seat surface is tightened, so that tightening is facilitated.
  • the bulging portion 414 is formed so as to gradually bulge from the lower end 414c of the play side flank surface toward the screw top portion 411 side, the bulge portion 414 is formed from the screw top portion 411 side to the play side flank surface. Compared with the case where it is formed so as to gradually expand toward the lower end 414c, the bulging portion 414 is pressed more strongly against the play-side flank surface 82 of the nut 8 due to the rise of the screw thread 410 by tightening the seat surface. A high frictional force is generated, and a further locking effect is achieved.
  • FIG. 12A is a cross-sectional view of a main part in a non-fastened state of the bolt 500 provided with the screw thread 510 of the eighth embodiment. Similar to the bulging portion 414 (see FIG. 11) of the thread 410 of the seventh embodiment, the thread 510 of the eighth embodiment bulges on the play-side flank surface 14 (see FIG. 2) of the thread 10 of the first embodiment. This is a shape in which a protruding portion 514 is provided. However, the thread 510 of the eighth embodiment has a shape obtained by cutting the vicinity of the thread top 411 of the thread 410 of the seventh embodiment along a virtual line 511 ′ that is inclined downward toward the pressure-side flank surface 513. Yes.
  • the virtual line 511 ′ passes through the vicinity of the center of the pressure-side flank surface 13 (see FIG. 2) of the screw thread 10 of the first embodiment indicated by a broken line, and is formed by a virtual line parallel to the virtual cylinder 6 and the virtual line 511 ′.
  • the angle ⁇ 5 is 45 °.
  • the cut surface 511 formed along the virtual line 511 ′ is a flat surface facing the pressure side (the bearing surface side of the bolt 500), and the upper end 511 a of the cut surface 511 is the top of the screw thread 510. Moreover, the lower end 511b of the cut surface 511 is located in the vicinity of the center portion of the pressure side flank surface 13 of the screw thread 10 of the first embodiment shown by a broken line.
  • the bulging portion 514 is formed so as to gradually bulge from the lower end 514c of the play side flank surface toward the upper end 511a side of the cut surface 511, and the upper end 511a of the cut surface 511 and the surface 514b of the bulge portion 514 are loose. It is continuous. Further, the pressure side surface 515 and the play side surface 516 in the lower portion 12 of the screw thread 510 are curved inward from imaginary lines corresponding to the extended lines of the respective flank surfaces.
  • FIG. 12B is a cross-sectional view showing the thread 510 in a state where the bolt 500 and the nut 8 of the eighth embodiment are fastened.
  • the pressure side flank surface 513 is pressed against the pressure side flank surface 81 of the nut 8 as the torque increases as the seat surface is tightened.
  • the pressure-side flank surface 513 first contacts the pressure-side flank surface 81 of the nut 8 not in the vicinity of the top of the screw thread 510 (the upper end 511a of the cut surface 511) but on the pressure-side flank surface 513. It becomes the upper end of.
  • the pressure side flank surface 513 is gradually abutted against and pressed against the pressure side flank surface 81 of the nut 8 from the upper end side toward the lower end side, and the screw thread 510 moves toward the play side.
  • the top of the screw thread 510 moves toward the play-side flank surface 82 of the nut 8, and the surface 514 b of the bulging portion 514 comes into contact with the play-side flank surface 82 of the nut 8.
  • the thread 510 has a frictional force on both the pressure-side flank surface 513 and the surface 514b of the bulging portion 514, and has a further locking effect.
  • FIG. 13A is a cross-sectional view of a main part in a non-fastened state of the bolt 1 provided with the screw thread 610 of the ninth embodiment.
  • the thread 610 of the ninth embodiment is provided with a bent portion bent inward on the play side of the lower portion 12 of the thread 610 in the same manner as the thread 200 ′ (see FIG. 9) of the fifth embodiment.
  • the play side flank surface 214 'extends to form a play side surface 216' of the lower portion 12, and the play side flank surface 214 'and the play side surface 216' are flush with each other.
  • the thread 610 of the ninth embodiment has a shape in which the flank angle of the pressure side flank surface 213b in the thread 200 ′ of the fifth embodiment is increased.
  • the pressure side flank surface 213b of the thread 200 'of the fifth embodiment is formed along the imaginary line 13a, and the flank angle ⁇ of the pressure side flank 213b is the screw of the first embodiment. Like the mountain 10 (see FIG. 2), it is about 22 °.
  • the play side flank surface 214 ′ of the screw thread 200 ′ is formed along the imaginary line 14 a, and the flank angle ⁇ of the play side flank surface 214 ′ is about 38 °, like the screw thread 10.
  • the angle ⁇ of the thread at the top 11 of the thread 200 ′ is about 60 °, like the thread 10.
  • the play side flank surface 214 ′ of the thread 610 is formed along the virtual line 14a, and the flank angle ⁇ of the play side flank surface 214 ′ is about 38 °, similar to the screw thread 10,200 ′. is there.
  • the thread angle ⁇ + ⁇ 7 of the upper part 11 of the thread 610 is about 68 °.
  • the angles ⁇ , ⁇ , and ⁇ 7 may be set by experimentally obtaining optimum values.
  • the flank angle ⁇ 8 may be substantially the same as the flank angle of the pressure side flank surface 73 of the thread of the reference chevron 7.
  • the pressure-side side surface 615 of the lower portion 12 of the thread 610 of the ninth embodiment is similar to the pressure-side flank surface 215 (see FIG. 8B) of the lower portion 12 of the thread 200 of the fourth embodiment. It is a shape that curves inward from the imaginary line 613a from the lower end 613c of the 613 to the valley bottom 10b, and is a shape that combines the R surface shape and the planar shape.
  • FIG. 13B is a cross-sectional view showing the thread 610 in a state where the bolt 1 and the nut 8 of the ninth embodiment are fastened.
  • the pressure side flank surface 81 of the nut 8 presses the pressure side flank surface 613 of the thread 610.
  • the flank angle ⁇ 8 of the pressure side flank 613 of the screw thread 610 is substantially the same as the flank angle of the pressure side flank 613 of the thread of the reference thread shape 7, the pressure side flank surface 613 is formed of the nut 8. It is parallel to the pressure side flank surface 81.
  • the pressure side surface 615 of the screw thread 610 is bent inward, so that the torque is increased by tightening the seating surface, and the pressure side of the screw thread 610 is increased.
  • the pressure side of the upper portion 11 of the thread 610 is elastically deformed, and a strong frictional force is obtained on both the pressure side flank surfaces 613 and 81. Since a larger reaction force (spring back) is generated, a further locking effect is achieved.
  • FIG. 14A is a cross-sectional view of a main part in a non-fastened state of the bolt 1 provided with the screw thread 710 of the tenth embodiment.
  • FIG. 14B is a cross-sectional view showing the thread 710 in the state where the bolt 1 and the nut 8 of Example 10 are fastened.
  • the screw thread 710 of the tenth embodiment differs from the screw thread 610 of the ninth embodiment (see FIG. 13) in that the play side surface 716 in the lower portion 12 corresponds to an extension line of the play side flank surface 214 ′. It is only a point that is curved inward from 14a.
  • the play side surface in the lower portion 12 is formed by curving inward from the virtual line 14a (the side surface 16 of the first embodiment (see FIG. 2). ), Side surface 16a of Example 2 (see FIG. 4), side surface 216 of Example 4 (see FIG. 8), side surface 316 of Example 6 (see FIG. 10), side surface 416 of Example 7 (see FIG. 11), The same operations and effects as those according to the side surface 516 (see FIG. 12) of the eighth embodiment are obtained.
  • FIG. 15 is a chart showing test results of a vibration test in which the time until a bolt of a test product (JIS standard product, Example 5, Example 9) is tightened and then loosened is measured. This vibration test was conducted on January 27, 2010 at the Japan Quality Assurance Organization Kansai Test Center.
  • the test products are M12 ⁇ 60 hexagon bolts and hexagon nuts, which are made of carbon steel having strength categories of 4.8T and 8.8T and subjected to trivalent chromate plating.
  • the bolt and nut tightening torque was set to 70 N ⁇ m for testing. In normal use, the tightening torque is about 40 to 50 N ⁇ m when bolts are made of carbon steel with a strength category of 4.8T, and carbon steels with a strength category of 8.8T are used as a bolt material. In this case, the tightening torque is about 70 to 80 N ⁇ m.
  • the test method is to attach a test article (specimen) to a high-speed screw looseness tester and to a predetermined vibration condition (frequency: 1780 rpm, vibration table stroke: 11 mm, impact stroke: 19 mm, vibration direction: direction perpendicular to the bolt axis).
  • the test was carried out, and when it did not loosen for 10 minutes, the return torque was measured.
  • the vibration barrel and the washer were sandwiched between the bolt and the nut, and the vibration barrel was vibrated by the vibration table. The looseness was judged to be loose when the alignment mark of the bolt, nut and washer of the test product was shifted and the washer could be turned by hand.
  • the stronger the strength section the longer it takes to loosen, but the strength section 8.8T also relaxed in a short time of 25 seconds.
  • the bolt 1 of Example 5 does not loosen up to 2 minutes 9 seconds even in the strength category 4.8T, and does not loosen up to 9 minutes 58 seconds in the strength category 8.8T. It can be seen that it has a much higher locking effect.
  • the strength section 4.8T does not loosen to 4 minutes 4 seconds, and the strength section 8.8T does not loosen for 10 minutes. It turns out that it is excellent.
  • the fastening member or fastening structure of the present invention can be widely used as a fastening member or fastening structure in vehicles, various devices, buildings, and the like.
  • Bolt (fastening member) 10 1,100,300,400,500 ...
  • Bolt (fastening member) 10 10, 1a, 101, 200, 210 ', 310, 410, 510, 610, 710 ... Thread 10a, 102, 211' 311, 411, 511 ... Thread top 10b, 10c ... Valley bottom 11, 110 ... Upper 12, 120 ... lower part 13, 13b, 130, 213, 213b, 313, 413, 513, 613 ... pressure side flank surface 14, 14b, 140, 214, 214b, 214 ', 314, 414b, 514b ... play side flank surface 13a, 14a, 75, 76, 130a, 511 ', 613a ...

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Bolts, Nuts, And Washers (AREA)
  • Clamps And Clips (AREA)
  • Connection Of Plates (AREA)

Abstract

【課題】高い緩み止め効果を奏する締結部材を提供する。 【解決手段】ねじ構造を有し、ねじ山頂部側の上部と、ねじ谷底側の下部とを備える締結部材であって、前記上部に形成された圧力側フランク面が、基準山形の圧力側フランク面よりも座面側に設けられ、前記下部の少なくとも一方の側面が、対応するフランク面の延長線よりも内側に設けられた締結部材とする。

Description

締結部材および締結構造
 本発明は、ねじ構造を有する締結部材および締結構造に関する。
 従来、ボルトやナットなどのねじ構造を有する締結部材が広く使用されている。実際にボルトをナットに締めこむことを可能にするためには、ボルトの外径および有効径、ナットの内径および有効径について、寸法上の公差を設ける必要がある。その一方で、公差により緩みが生じる可能性がある。従来、この緩みの発生を防止するために種々の工夫がなされている。
 特許文献1,2には、ねじ山の圧力側フランク面のフランク角を基準山形のフランク角よりも小さくし、ねじ山の遊び側フランク面のフランク角を基準山形のフランク角よりも大きくしたねじ山を一部に備える雄ねじ構造が開示されている。
 特許文献3に開示されている締結部材は、ねじ山の山頂にねじの軸線に垂直方向のスリットを備えると共に、広く形成された谷底を備える。
 また、ねじ山の一部に樹脂被膜層を形成することにより緩み止めを行う方法もある。
 また、本発明に関連する従来技術として、特許文献4に開示されている緊締ねじがある。
実開昭53-88664号公報 特開平8-177839号公報 特開平11-51033号公報 特開2006-57801号公報
 特許文献1の締結部材を雌ねじに螺合すると、雄ねじの圧力側フランク面が雌ねじのフランク面を積極的に押圧するが、雄ねじのねじ山の弾性変形を促す構成を有していないため、雄ねじのねじ山と雌ねじのねじ山との間に大きな摩擦力が得られず、高い緩み止め効果を奏さない。
 特許文献2の構成では、雄ねじのねじ山角度を例えば50°とし、雄ねじのフランク面と雌ねじのフランク面との間に隙間部分を発生させて、弾性変形を許容しているが、このような隙間部分ではねじ山が十分に弾性変形することができず、改良の余地がある。
 特許文献3の構成では、締結時にねじ山頂部のスリットが設けられるねじ山頂部でフランクが弾性変形してスプリングバックするが、スリットの大きさ(深さ)の程度しかスプリングバックしないため、大きな摩擦力は得られず、十分な緩み止め効果を発揮しない。
 また、ねじ山の一部に樹脂被膜層を形成することにより緩み止めを行う方法では、ねじの再使用時に樹脂被膜層を再度形成しなければならず、手間がかかる。さらに、雄ねじと雌ねじを接触させることにより、摩擦力で緩みを止める方法では、摩擦トルク(プリベリングトルク)が発生するためにトルク管理が難しいことに加え、相応の力で締め付けなければならないため作業性が悪い。
 また、従来の構成では、座面のへたりにより微少滑り(いわゆる「初期緩み」)が生じる。この初期緩みを放置すると、被締結物が滑りを起こして、ボルトに過度の応力集中が生じ、ボルトが破断するおそれがある。このような初期緩みの発生を防止することは困難であり、増し締めにより対処するしかなかった。
 また、雄ねじや雌ねじに溶融亜鉛メッキを施す場合、メッキの厚みで雄ねじと雌ねじが嵌合しなくなるのを防ぐために、雌ねじを通常よりも大きく切る(すなわち、「オーバータップ」させる)必要がある。
 通常、オーバータップは、M10ねじの場合、約0.40mm~約0.80mm設ける。このようなオーバータップを、特許文献1,2の雄ねじ構造に適用すると、雄ねじのフランク面と雌ねじのフランク面との隙間が大きくなり、雄ねじのフランク面と雌ねじのフランク面との摩擦力が大幅に低下したり、摩擦力が得られなくなる。そのため、特許文献1,2の雄ねじ構造に対して、緩み止め効果を維持しつつ溶融亜鉛メッキのような厚みの大きいメッキを施すことは非常に困難である。
 本発明は上記問題を解決するためになされたものであって、以下の目的の少なくとも一つを有するものである。
 (1)高い緩み止め効果を奏する締結部材または締結構造を提供する。
 (2)通常のボルトと同じように締付けができることによりトルク管理を容易にし、再使用が容易な締結部材または締結構造を提供する。
 (3)締結部材の第1ねじ山にかかる荷重負担を均一にし、応力集中を防ぐことにより、疲労強度を向上させる締結部材または締結構造を提供する。
 (4)初期緩みの発生が防止される締結部材または締結構造を提供する。
 (5)緩み止め効果を維持しつつ厚みの大きいメッキを施すことが可能な締結部材または締結構造を提供する。
 本発明は以上の目的の少なくとも一つを達成するために、以下に示す締結部材を提供する。
 すなわち、本発明は、ねじ構造を有し、ねじ山頂側の上部と、ねじ谷底側の下部とを備える締結部材であって、上部に形成された圧力側フランク面が、基準山形の圧力側フランク面よりも座面側に設けられ、前記下部の少なくとも一方の側面が、対応するフランク面の延長線よりも内側に設けられた締結部材とする。
 本発明の締結部材は、ねじ山頂側の上部に形成された圧力側フランク面が基準山形の圧力側フランク面よりも座面側に設けられているため、相手側締結部材に締結すると、圧力側フランク面が相手側締結部材により押圧される。
 締結部材のねじ山の下部はその側面が対応するフランク面より内側に存在し、下部の側面は内側に抉られた形状となるので、当該押圧によってねじ山の下部が弾性変形して、相手側締結部材の圧力側フランク面に対する反力(スプリングバック)がねじ山全体に生じる。
 これにより、締結部材の圧力側フランク面と相手側締結部材の圧力側フランク面との摩擦力が増加して、高い緩み止め効果を発揮する。
 また、締結部材の圧力側フランク面が相手側締結部材により押圧されて、ねじ山の下部が弾性変形するため、ねじ山全体が相手側締結部材に沿って起き上がってくることとなる。
 これにより、オーバータップが設けられていても、締結部材の圧力側フランク面と相手側締結部材の圧力側フランク面とが必ず接触するため、締結部材と相手側締結部材との隙間の大きさに関係なく、ねじ山に相手側締結部材に対する反力(スプリングバック)が生じて、緩み止めの効力を発揮する。
 従って、本発明の締結部材の相手側締結部材にオーバータップを設けても緩み止め効果が低下せず、本発明の締結部材に対して緩み止め効果を維持しつつ厚みの大きいメッキを施すことができる。
 さらに、本発明の締結部材は、ねじ山の反力(スプリングバック)により、締結部材の座面においても摩擦力が増加する。
 これにより、座面のへたりによる初期緩みが防止され、初期緩みに起因する締結部材の破断が防止されて信頼性が向上する。また、初期緩みに対する増し締めを行う必要がないため作業性が向上する。
 また、本発明の締結部材を締結状態から非締結状態に戻せば、ねじ山全体が締結前の状態(圧力側フランク面が基準山形の圧力側フランク面よりも座面側に位置する状態)に戻る。
 これにより、特別な処理を要することなく、本発明の締結部材を繰り返し使用することができる。
 また、本発明の締結部材は締結時にねじ山の下部が弾性変形するため、相手側締結部材に傷を付けにくく、繰り返し使用しても緩み止めの効果が低下しない。
本発明の実施例1のねじ山10を備えたボルト1の非締結状態における正面図。 図1において破線で示す部分Aにおける軸線5を含む断面拡大図。 実施例1のボルト1と、その相手側締結部材であるナット8とを締結した状態におけるねじ山10を示す断面図。 本発明の実施例2のねじ山1aを備えたボルト1の非締結状態における軸線5を含む要部断面図。 本発明の実施例3のねじ山101を備えたボルト100の非締結状態における軸線5を含む要部断面図。 実施例3のボルト100とナット8とを締結した状態におけるねじ山101を示す断面図。 実施例3のボルト100の製造方法を説明するための要部断面図。 図8(A)は、本発明の実施例4のねじ山200を備えたボルト1の非締結状態における軸線5を含む要部断面図。図8(B)は、実施例4のねじ山200における圧力側の側面215の断面拡大図。 本発明の実施例5のねじ山200’を備えたボルト1の非締結状態における軸線5を含む要部断面図。 図10(A)は、本発明の実施例6のねじ山310を備えたボルト300の非締結状態における要部断面図。図10(B)は、実施例6のボルト300とナット8とを締結した状態におけるねじ山310を示す断面図。 図11(A)は、本発明の実施例7のねじ山410を備えたボルト400の非締結状態における要部断面図。図11(B)は、実施例7のボルト400とナット8とを締結した状態におけるねじ山410を示す断面図。 図12(A)は、本発明の実施例8のねじ山510を備えたボルト500の非締結状態における要部断面図。図12(B)は、実施例8のボルト500とナット8とを締結した状態におけるねじ山510を示す断面図。 図13(A)は、実施例9のねじ山610を備えたボルト1の非締結状態における要部断面図。図13(B)は、実施例9のボルト1とナット8とを締結した状態におけるねじ山610を示す断面図。 図14(A)は、実施例10のねじ山710を備えたボルト1の非締結状態における要部断面図。図14(B)は、実施例10のボルト1とナット8とを締結した状態におけるねじ山710を示す断面図。 図15は、試験品(JIS規格品、実施例5、実施例9)のボルトについて締め付けた後に緩むまでの時間を測定した振動試験の試験結果を示す図表。
 以下、本発明の各局面について詳細に説明する。
 [第1,第6,第7の局面]
 第1の局面の締結部材はねじ構造を有し、ねじ山頂側の上部とねじ谷底側の下部とを備える。
 本明細書でいう「ねじ構造」とは、円柱状の本体部において、その側面に先端部へ向かって螺旋状に形成されたねじ山とねじ谷を有する構造を指す。
 また、「上部」とは、基準山形の有効径を規定する仮想円筒よりもねじ山頂側を指す。「下部」とは、仮想円筒よりもねじ谷底側を指す。「有効径」とは、基準山形における軸線の方向に計ったねじ溝の幅とねじ山の幅とが等しくなるような仮想的な円筒の直径であり、「有効径を規定する仮想円筒」とは前記仮想的な円筒を指す。
 ねじ山の上部は、基準山形の有効径を規定する仮想円筒よりもねじ山頂部側の領域であるため、圧力側フランク面が十分確保されている。
 これにより、上部に形成された圧力側フランク面において、相手側締結部材との接触面積を確保できる。
 第6の局面は、上部のねじ山の角度が基準山形のねじ山の角度と略同一である。第6の局面によれば、締結状態において、ねじ山が弾性変形しても遊び側フランク面が相手側締結部材のフランク面に接さないので、締め込み時に必要以上の力を要せずに高い緩み止め効果を発揮する。
 尚、本明細書でいう「基準山形」とは、例えば、JIS規格で規定される理論上のねじ山形状であって、ねじ山の角度が60°かつ両フランク角が30°でフランク面が軸線に垂直対称に設けられるねじ山形状、または、ウィットねじのねじ山形状に準じたねじ山形状であって、ねじ山の角度が55°かつ両フランク角が27.5°であり、フランク面が軸線に垂直対称に設けられるねじ山形状を指す。従って、雄ねじのねじ山の角度は例えば約60°または約55°となる。
 第1の局面において、圧力側フランク面は、基準山形の圧力側フランク面よりも座面側に設けられる。
 圧力側フランク面の形状は通常平面形状であるが、これに限定されず、座面側に向かって湾曲するR面形状であってもよい。
 圧力側フランク面のフランク角は、基準山形のフランク角よりも小さくすることが好ましい。
 これにより、締結する際に、締結部材の座面に被締結部材が届くまでは容易に締結部材をねじ込むことができると共に、締め付け始めるとねじ山が徐々に弾性変形し、スプリングバック効果により緩み止め効果を発揮する。
 さらに、締結部材を締め込むにつれて、圧力側フランク面と相手側締結部材のフランク面との接触面積が徐々に増すため、ねじ山が弾性変形し易く、スプリングバック効果が確実に得られるため緩みにくくなる。
 尚、「フランク角」とは、軸に垂直な線とフランク面とのなす角を指す。
 第7の局面は、上部のねじ山の角度が60°であって、圧力側フランク面のフランク角が0°より大きく30°より小さい。
 第7の局面によれば、スプリングバック効果が得られやすく、緩み止め効果をさらに高めることができる。
 尚、圧力側フランク面のフランク角は、約18°~約26°とすることが好ましい。
 遊び側フランク面のフランク角は、圧力側フランク面のフランク角を考慮して決定できる。例えば、遊び側フランク面のフランク角は基準山形のフランク角よりも大きくすることができ、基準山形のねじ山角度から座面側のフランク角を差し引いたものを遊び側フランク面のフランク角とすることができる。遊び側フランク面のフランク角は、30°より大きく60°未満、好ましくは約34°~約42°にすればよい。
 第1の局面において、下部の少なくとも一方の側面は、対応するフランク面の延長線よりも内側に位置する。
 そのため、フランク面の延長線に沿って下部の側面を設けた場合に比べて、下部が肉薄に形成されることになる。これにより、下部における弾性変形が許容され、ねじ山全体を撓ませることができる。
 [第2の局面]
 第2の局面は、第1の局面において、締結部材の軸線を含む断面にて、下部の少なくとも一方の側面の形状が、対応するフランク面の延長線から内側に向かって湾曲する曲面形状、または、対応するフランク面の延長線から内側に配置された平面形状と当該延長線から内側に向かって湾曲する曲面形状とを組み合わせた形状である。
 下部の側面の形状を、対応するフランク面の延長線から内側に向かって湾曲する曲面とした場合、その曲面の形状は、一定の曲率半径を有するR面形状、または、異なる曲率半径を有する複数の曲面を組み合わせた複合R面形状にすればよい。
 また、下部の側面の形状を、対応するフランク面の延長線から内側に配置された平面形状と当該延長線から内側に向かって湾曲する曲面形状とを組み合わせた形状とした場合、当該平面形状は締結部材の軸方向に垂直な面とし、当該曲面形状を前記のR面形状または複合R面形状にすればよい。
 そして、曲面形状である下部の側面の下縁と、谷底(隣接するねじ山の側面との連結部)とが円滑に連続し、谷部分の全体が曲面形状となることが好ましい。
 第2の局面によれば、下部が十分に肉薄となるので、締結状態において下部が弾性変形してねじ山全体が撓むため、締結部材に締結された相手側締結部材への反力(スプリングバック)が増すことから、摩擦力も増大して高い緩み止め効果を奏する。
 このとき、ねじ山の下部に曲面形状が形成されているため、ねじ山の下部は塑性変形(もしくはクラックの形成)し難くなる。一般的に、締結部材に強い締結力がかかった場合、その谷底若しくはその近傍に応力が集中しやすく、当該部分において塑性変形(又はクラック形成)が生じやすい。
 そこで、第2の局面のように、ねじ山の下部に曲面形状を設けると、応力が分散されるので、下部の降伏を避けつつねじ山がより大きく弾性変形可能となり、その結果、ねじ山の反力(スプリングバック)も大きくなる。換言すれば、下部が塑性変形し難くなるので、ねじ山をより確実に弾性変形させられることとなる。
 [第3の局面]
 第3の局面は、第1の局面または第2の局面において、遊び側フランク面の下端が、基準山形の有効径を示す仮想円筒よりもねじ山頂部側に位置し、下部における遊び側の側面が遊び側フランク面の延長線よりも内側に設けられると共に、下部における遊び側の側面が遊び側フランク面の下端から連続して形成されている。
 尚、「遊び側フランク面の下端から連続して形成されている」とは、ねじ山の上部における遊び側先端(すなわち、遊び側フランク面の下端)から直接、下部における遊び側の側面が形成されていることを指し、遊び側フランク面と遊び側の側面とが、遊び側フランク面の下端で接するように形成されていることをいう。
 第3の局面によれば、下部における遊び側の側面の広範囲が抉られて下部が一層肉薄となるため、ねじ山が遊び側に弾性変形し易くなるため、ねじ山が遊び側に撓んで反力(スプリングバック)がより大きくなり、高い緩み止め効果を奏する。
 [第4の局面]
 第4の局面は、第1の局面または第2の局面において、圧力側フランク面の下端が、遊び側フランク面の下端よりもねじ山頂部側に位置し、圧力側の側面が、圧力側フランク面の延長線よりも内側に設けられると共に、圧力側フランク面の下端から連続して形成され、下部における遊び側の側面が、遊び側フランク面の延長線よりも内側に設けられると共に、遊び側フランク面の下端から連続して形成されている。
 第4の局面によれば、下部における圧力側の側面が遊び側の側面よりも広範囲に抉られるため、下部における圧力側の側面が一層薄肉となり、下部における遊び側の側面は圧力側よりも厚肉となる。
 このような形状によれば、締結状態においてねじ山は座面側から圧力を受けるが、ねじ山の撓みは小さく抑制される。その結果、ねじ山の圧力側フランク面へ応力が集中し、圧力側フランク面の形成材料が圧力側フランク面に沿って弾性変形して、ここに高い摩擦力が生じるため、高い緩み止め効果を奏する。
 [第5の局面]
 第5の局面は、第4の局面において、圧力側フランク面の下端が、基準山形の有効径を示す仮想円筒よりもねじ山頂部側に位置し、遊び側フランク面の下端が、仮想円筒よりもねじ谷底側に位置する。
 第5の局面によれば、第4の局面の作用・効果をより確実に得られる。
 [第8の局面]
 第8の局面は、第1の局面または第2の局面において、上部のねじ山の角度が基準山形のねじ山の角度より大きく、圧力側フランク面のフランク角が基準山形のねじ山の圧力側フランク面のフランク角と略同一である。
 第8の局面では、締結部材を相手側締結部材に締め込むと、相手側締結部材の圧力側フランク面が締結部材の圧力側フランク面を押圧する。ここで、締結部材の圧力側フランク面のフランク角が基準山形のねじ山の圧力側フランク面のフランク角と略同一であることから、締結部材の圧力側フランク面は相手側締結部材の圧力側フランク面と平行になっている。
 そのため、第8の局面によれば、締結部材の圧力側フランク面の略全面が相手側締結部材の圧力側フランク面に押し付けられ、ここに安定した強い押圧力が生じることから、両圧力側フランク面に強い摩擦力が得られ、高い緩み止め効果を奏する。
 [第9の局面]
 第9の局面は、第1~第8の局面の締結部材と、その締結部材に締結される相手側締結部材とを備え、締結部材を相手側締結部材に締結したとき、相手側締結部材の圧力側フランク面が締結部材の圧力側フランク面を押圧することにより、締結部材の下部が弾性変形し、締結部材の圧力側フランク面と相手側締結部材の圧力側フランク面との摩擦力が増加する。
 第9の局面によれば、締結部材の圧力側フランク面と相手側締結部材の圧力側フランク面との摩擦力が増加することにより、高い緩み止め効果を奏する。
 尚、相手側締結部材の種類は特に限定されず、例えば、ユニファイねじ、ウィットねじなど、公知の規格に準じたねじ構造を有するものを採用すればよい。
 [第10の局面]
 第10の局面は、第9の局面において、締結部材を相手側締結部材に締結したとき、締結部材のねじ山頂部が相手側締結部材のねじ谷底に当接する。
 第10の局面によれば、締結部材を相手側締結部材に締め込むと、締結部材の座面に力が加わるまでは少ない抵抗で締め付けることができるが、座面締め付けでトルクが大きくなるにつれて、締結部材の圧力側フランク面が相手側締結部材の圧力側フランクに押圧されることにより、締結部材のねじ山が遊び側に起き上がる。これにより、締結部材のねじ山が圧力側にスプリングバックして、締結部材の圧力側フランク面と相手側締結部材の圧力側フランク面との摩擦力が増加する。
 さらに、第10の局面によれば、締結部材のねじ山が遊び側に起き上がることにより、ねじ外径が大きくなり、締結部材のねじ山頂部が相手側締結部材のねじ谷底に当接し、ねじ山頂部がねじ谷底によって拘束される。この拘束力が、締結部材の圧力側フランク面と相手側締結部材の圧力側フランク面との摩擦力に加わることにより、締結部材の半径方向の緩みが防止され、全体として一層高い緩み止め効果を奏する。
 第10の局面において、JIS規格やISO規格に準じた相手側締結部材を使用する場合、締結部材のねじ山の外径はJIS規格またはISO規格の外径(すなわち、基準山形のねじ山の外径)よりも大きくなる。従って、締結部材のねじ山頂は基準山形のねじ山のねじ山頂よりも高くなる。また、締結部材のねじ山のピッチは相手側締結部材のねじ谷のピッチと同一であるため、締結部材のねじ山の角度は基準山形のねじ山の角度よりも小さくなる。
 ところで、相手側締結部材のねじ谷の谷径を小さくすることで、締結時に締結部材のねじ山頂が相手側締結部材のねじ谷底に当接するようにしてもよい。
 [第11の局面]
 第11の局面は、第9の局面において、締結部材を相手側締結部材に締結したとき、締結部材の遊び側フランク面が相手側締結部材の遊び側フランク面に当接する。
 第11の局面によれば、締結部材を相手側締結部材に締め込むと、締結部材の座面に力が加わるまでは少ない抵抗で締め付けることができるが、座面締め付けでトルクが大きくなるにつれて、ねじ山が起き上がり、締結部材の遊び側フランク面が相手側締結部材の遊び側フランク面に当接して押し付けられ、ここに強い摩擦力が生じて、この摩擦力が圧力側フランク面の摩擦力に加わることにより、全体として一層高い緩み止め効果を奏する。
 第11の局面は、締結部材の遊び側フランク面に膨出部を設けることによって実現できる。膨出部を設ければ、締結状態において相手側締結部材の遊び側フランク面との間の摩擦力をより増強できる。
 膨出部の形状は、相手側締結部材の遊び側フランク面と平行にする。これにより、膨出部と相手側締結部材の遊び側フランク面との干渉を避けると共に、膨出部が相手側締結部材の遊び側フランク面に押し付けられ、強い摩擦力が得られる。
 そして、膨出部は、遊び側フランク面の下端からねじ山頂部へ向かって徐々に膨らむように形成にする。これにより、座面締め付けにより、ねじ山はその遊び側フランク面のねじ山頂部側が相手側締結部材の遊び側フランク面に向かうように起き上がるため、膨出部を相手側締結部材の遊び側フランク面に一層強く押し付けることができる。
 [第12の局面]
 第12の局面は、第11の局面において、締結部材のねじ山頂部の近傍を、圧力側フランク面に向かって下降傾斜するように切り取った切り取り面が形成されている。
 第12の局面によれば、締結部材を相手側締結部材に締め込むと、座面締め付けでトルクが大きくなるにつれて、締結部材の圧力側フランク面が相手側締結部材の圧力側フランク面に押圧される。
 このとき、締結部材の圧力側フランク面において、相手側締結部材の圧力側フランク面に最初に当接するのは、ねじ山頂部となる切り取り面の上端近傍ではなく、圧力側フランク面の上端となる。
 これにより、締結部材を相手側締結部材に締め付けるにつれて、締結部材の圧力側フランク面が上端側から下端側へ向けて徐々に相手側締結部材の圧力側フランク面に当接して押圧され、締結部材のねじ山が遊び側へ起き上がることにより、締結部材のねじ山頂部が相手側締結部材の遊び側フランク面側へ移動し、締結部材の遊び側フランク面が相手側締結部材の遊び側フランク面に当接することになる。
 その結果、締結部材のねじ山は、圧力側フランク面と遊び側フランク面の両方で摩擦力が得られ、さらなる緩み止め効果を奏する。
 ところで、本発明の締結部材の製造方法は特に限定されず、平ダイス式、丸ダイス式、プラネタリダイス式、ロータリーダイス式等の転造、切削、鋳造、鍛造、射出成形など公知の方法を採用すればよい。
 転造を採用する場合は、一工程でねじ山を形成してもよく、二工程でねじ山を形成してもよい。二工程でねじ山を形成する場合、例えば、基準山形よりも内側となるように下部の側面を付形し、上部形成用凸条部を形成する第1のステップと、上部形成用凸条部を変形して、圧力側フランク面の一部が基準山形の圧力側フランク面よりも座面側に位置するように圧力側フランク面を付形する第2のステップとを設ければよい。
 以下、本発明を具体化した各実施例について図面を参照しながら詳細に説明する。尚、各実施例において、同一の構成部材および構成要素については符号を等しくすると共に、同一内容の箇所については重複説明を省略してある。
 また、各実施例を適宜組み合わせて実施してもよく、その場合には組み合わせた実施例の作用・効果を合わせもたせたり、相乗効果を得ることができる。
 図1は、実施例1のねじ山10を備えたボルト1の非締結状態における正面図である。
 締結部材であるボルト1は雄ねじ構造を有し、頭部2、円筒部3、ねじ部4を備える。頭部2の裏面には座面20が形成されている。ねじ部4には、ねじ山10が形成されている。
 図2は、図1において破線で示す部分Aにおける軸線5を含む断面拡大図である。
 符号6の破線は基準山形の有効径を規定する仮想円筒を示し、符号7の破線は基準山形を示す。基準山形7はJIS規格に準じた形状であって、ねじ山10の角度θ1は60°、圧力側フランク面73のフランク角および遊び側フランク面74のフランク角はいずれも30°である。符号75,76で示す破線はねじの軸方向に垂直な仮想線を示す。
 ねじ山10は、仮想円筒6よりもねじ山頂部10a側の上部11と、仮想円筒6よりも谷底10b,10c側の下部12とを有する。
 上部11は、圧力側フランク面13と遊び側フランク面14とを備える。
 圧力側フランク面13は、基準山形7の谷底71を通る仮想線13aに沿って形成されており、仮想線13aと仮想線75とのなす角度βは約22°である。
 遊び側フランク面14は、基準山形7の谷底72を通る仮想線14aに沿って形成されており、仮想線14aと仮想線76とのなす角度γは約38°である。
 仮想線13aと仮想線14aとのなす角度αは約60°である。
 ねじ山10において、角度αは上部11のねじ山の角度に、角度βは圧力側フランク面13のフランク角に、角度γは遊び側フランク面14のフランク角にそれぞれ相当する。
 ねじ山10のピッチは、基準山形7のねじ山と同一である。
 実施例1のねじ山10は、基準山形7の谷底71,72を基点として、基準山形7のねじ山の角度θ1(=α)を維持したまま、基準山形7を座面20側(圧力側)に傾斜させた形状となっている。
 別な見方をすれば、基準山形7ではその山頂部は谷底71,72の中央の半径方向外方に位置するが、実施例1のねじ山では基準山形7の谷底71,72を基点として、その山頂部10aが座面20に近い谷部71側へシフトしている。
 下部12は、座面側(圧力側)の側面15とねじ先端側(遊び側)の側面16を備える。
 側面15は、圧力側フランク面13の延長線に相当する仮想線13aから内側に湾曲して形成されている。側面15は、隣接するねじ山(図示せず)の遊び側の側面と連続したR面形状であって、その底部が谷底10bとなる。
 側面16は、遊び側フランク面14の延長線に相当する仮想線14aから内側に湾曲して形成されている。側面16は、隣接するねじ山(図示せず)のねじ先端側の側面と連続したR面形状であって、その底部が谷底10cとなる。
 図3は、実施例1のボルト1と、その相手側締結部材であるナット8とを締結した状態におけるねじ山10を示す断面図である。
 ナット8はJIS規格に準じた雌ねじ構造を有する相手側締結部材であって、ナット8の谷底80の角度θ2は60°である。
 ボルト1をナット8に締め込むと、ナット8の圧力側フランク面81がねじ山10の圧力側フランク面13を押圧する。
 下部12の両側面15,16は内側に向かう大きなR面形状であって、下部12は、基準山形7に比して、内側に抉られて肉薄となっている。
 これにより、ナット8の圧力側フランク面81による押圧に応じて、ねじ山10全体が弾性変形する。
 その結果、図3に示すように、ねじ山10は破線で示した未締結状態から、ねじ山10全体がナット8の圧力側フランク面81に沿って起き上がって、実線で示した締結状態となる。
 これにより、ねじ山10がナット8の圧力側フランク面81に対する反力(スプリングバック)が生じて、ねじ山10の圧力側フランク面13とナット8の圧力側フランク面81との間の摩擦力が増加し、高い緩み止め効果を奏する。
 また、オーバータップが設けられていても、ねじ山10の圧力側フランク面13とナット8の圧力側フランク面81とが必ず接触するため、圧力側フランク面13,81の隙間の大きさに関係なく、ねじ山10にナット8の圧力側フランク面81に対する反力(スプリングバック)が生じて、緩み止めの効力を発揮する。
 従って、ナット8にオーバータップを設けても緩み止め効果が低下しないため、ボルト1やナット8に溶融亜鉛メッキを有効に施すことができる。
 ねじ山10の上部11は、基準山形7の有効径を規定する仮想円筒6よりもねじ山頂部10a側の領域であるため、圧力側フランク面13が十分確保されている。
 これにより、図3に示すように、締結状態において、ねじ山10の圧力側フランク面13とナット8の圧力側フランク面81との接触面積が確保され、高い摩擦力が得られる。
 さらに、ねじ山10の角度αはナット8の谷底80の角度と略同一の60°であるため、ナット8のねじ谷にねじ山10全体が弾性変形するための空間が確保されると共に、締結状態において、ねじ山10の圧力側フランク面13の略全面がナット8の圧力側フランク面81に当接するため、一層高い摩擦力が得られ、高い緩み止め効果を奏する。
 図2に示すように、非締結状態では、ねじ山10の圧力側フランク面13のフランク角βは約22°であり、ねじ山10の遊び側フランク面14のフランク角γは約38°である。
 これらのフランク角はJIS規格の基準とは異なるが、いずれもボルト1とナット8との隙間の範囲内である。そのため、座面締め付け力が生じるまでは、ボルト1とナット8との間の摩擦トルクが小さく、ストレス無くねじ込みができる。
 その後、さらにねじ込みすると、座面締め付け力が生じて、前記のようにねじ山10の弾性変形による高い緩み止め効果を奏する。
 このように、実施例1のねじ山10を備えたボルト1は、ナット8へのねじ込みの容易さ及び緩み止めという、相反する作用効果を奏するものである。
 また、ボルト1のねじ山10にかかる荷重は、ねじ山10自体が弾性変形するため、ナット8の複数のねじ谷の側面に接する他のねじ山10に分散される。これにより、ナット8と接するボルト1のねじ山10の内、最も座面側に位置するねじ山10(第1ねじ山)への荷重の集中が緩和され、ボルト1の疲労強度が向上する。
 さらに、ねじ山10の反力(スプリングバック)により、座面20(図1参照)においても摩擦力が増加する。これにより、座面20のへたりによる初期緩みが防止され、初期緩みに起因するボルト1の破断が防止されて信頼性が向上する。また、初期緩みに対する増し締めを行う必要がないため作業性も向上する。
 そして、図3に示す締結状態では、ボルト1のねじ山10の形成材料が弾性変形するが、図2に示す非締結状態に戻せば、ねじ山10の下部12の弾性力により元の状態、すなわち、圧力側フランク面13が基準山形7の圧力側フランク面73よりも座面側に位置した状態に戻る。
 これにより、ねじ山10に特別な処理を要することなく、繰り返し使用することができる。また、締結状態において、ねじ山10の下部12が弾性変形するため、ナット8の圧力側フランク面81に傷を付けにくく、繰り返し使用しても緩み止めの効果が低下しない。
 尚、実施例1は右ねじのボルト1に適用したものであるが、左ねじのボルトに適用することも可能であり、左ねじに適用した場合でも右ねじに適用した場合と同様の作用・効果が得られる。
 図4は、実施例2のねじ山1aを備えたボルト1の非締結状態における軸線5を含む要部断面図である。
 ねじ山1aの圧力側フランク面13bの下端13cは、仮想円筒6よりも下側(軸線5側)に位置する。すなわち、圧力側フランク面13bは、上部11から下部12にわたって形成されている。
 ねじ山1aにおける下部12の圧力側には、圧力側フランク面13bの下端13cから谷底10bに連続して、仮想線13aよりも内側に湾曲するR面形状の側面15aが形成されている。
 すなわち、側面15aは、ねじ山1aにおける下部12にのみ形成されている。
 ねじ山1aの遊び側フランク面14bの下端14cは、仮想円筒6よりも上側(ねじ山頂部10a側)に位置する。すなわち、遊び側フランク面14bは、上部11にのみ形成されている。
 ねじ山1aにおける上部11から下部12にわたる遊び側には、遊び側フランク面14bの下端14cから谷底10cに連続して、仮想線14aよりも内側に湾曲するR面形状の側面16aが形成されている。
 すなわち、側面16aは、ねじ山1aにおける上部11から下部12にわたって形成されている。
 このように、実施例2のねじ山1aでは、実施例1のねじ山10に比べて(図2参照)、隣接するねじ山の間の谷底が座面側に位置した形状となっている。
 実施例2のねじ山1aによれば、実施例1のねじ山10と同様の作用・効果が得られる。
 そして、実施例2のねじ山1aでは、下部12の圧力側の側面15aが、実施例1のねじ山10の側面15よりも小さく抉られている。
 これにより、実施例2のねじ山1aの圧力側フランク面13bは、実施例1のねじ山10の圧力側フランク面13に比べて広く形成されていることになる。
 その結果、実施例2のねじ山1aを備えるボルトをナットに締結した状態では、ナットのフランク面との接触面積が大きくなって摩擦力が一層増加し、緩み止め効果がさらに向上する。
 また、実施例2のねじ山1aでは、下部12の遊び側の側面16aが、実施例1のねじ山10の側面16よりも大きく抉られているため、下部12においてねじ山1aが遊び側に弾性変形することが許容される。
 これにより、実施例2のねじ山1aが遊び側に撓んで反力(スプリングバック)がより大きくなり、緩み止め効果がさらに向上する。
 尚、実施例2の側面15a,16aの形状は、実施例1の側面15,16と同様に、R面形状の他、複合R面形状や、R面形状と平面形状とを組み合わせた形状とすることができる。
 図5は、実施例3のねじ山101を備えたボルト100の非締結状態における軸線5を含む要部断面図である。
 実施例3のねじ山101は、仮想円筒6よりもねじ山頂部102側の上部110と、仮想円筒6よりも谷底側の下部120からなる。
 上部110は圧力側フランク面130と、遊び側フランク面140を備える。
 ねじ山101の角度aは約60°であり、圧力側フランク面130のフランク角bは約22°であり、遊び側フランク面140のフランク角cは約38°である。
 ねじ山頂部102は基準山形7の圧力側フランク面73よりも座面側に位置している。圧力側フランク面130の下端131は、圧力側フランク面73の内側に位置している。遊び側フランク面140の下端141は、基準山形7の遊び側フランク面74の外側、すなわち、ねじ先端側に位置している。
 ねじ山101の下部120は圧力側において、圧力側フランク面130の下端131からねじ山101の内側に抉られており、下部120の側面150は圧力側フランク面130の延長線130aよりも内側に位置している。
 ねじ山101の下部120は遊び側において、遊び側フランク面140の下端141からねじ山101の内側に抉られており、下部120の側面160は遊び側フランク面140の延長線140aよりも内側に位置している。
 側面150,160の断面形状は、隣接するねじ山(図示せず)に連続する複合R面形状となっている。
 図6は、実施例3のボルト100とナット8とを締結した状態におけるねじ山101を示す断面図である。
 ボルト100をナット8に締め込むと、ナット8の圧力側フランク面81がねじ山101の圧力側フランク面130を押圧する。
 ねじ山101の下部120は、基準山形7に比して内側に抉られて肉薄となっており、圧力側フランク面81による押圧に応じてねじ山101全体が弾性変形する。
 その結果、図6に示すように、ねじ山101は破線で示した未締結状態から、ねじ山101全体がナット8の圧力側フランク面81に沿って起き上がって、実線で示した状態となる。
 これにより、実施例3のねじ山101においても、実施例1のねじ山10と同様の反力(スプリングバック)が生じて、高い緩み止め効果を奏する。
 尚、ねじ山頂部102および遊び側フランク面140の下端141は基準山形7の外側に位置するが、いずれもボルト100とナット8との隙間の範囲内であるため、若干のひっかかりが生じることがあるが、座面締め付け力が生じるまではボルト100とナット8との間の摩擦トルクが小さく、ストレス無くねじ込みができる。
 図7は、実施例3のボルト100の製造方法を説明するための要部断面図である。
 ボルト100は、第1ステップと第2ステップの二工程で製造される。
 まず、ボルト粗材170の円筒部(図7(a)参照)に対して、転造によりねじ山101の下部120の側面150、160を付形し、上部形成用凸条部180を第1の転造ダイスを用いて形成する(第1ステップ、図7(b)参照)。
 上部形成用凸条部180の形状は縦断面において、ボルト100の軸方向(図7では紙面左右方向)に垂直な軸103を対称軸とする左右対称の矩形である。
 さらに、縦断面において上部形成用凸条部180の幅w1とねじ山101の幅w2の長さの比は、w1:w2=1:4である。
 尚、上部形成用凸条部180の幅wとねじ山710の幅w2の長さの比はこれに限定されるものではなく、例えば、w1:w2=1:2~6とすることができる。
 上部形成用凸条部180は、縦断面において軸103がねじ山101の下部120の中心軸に一致するように下部120の上に形成されている。
 次いで、上部形成用凸条部180に対して第2の転造ダイスを用いて上部110を形成する。
 第2の転造ダイスは、ねじ山頂部102を基準山形7のねじ山頂部よりも座面側に形成して、ねじ山頂部102に60°の角度を付形すると共に、圧力側フランク面130のフランク角bに約22°の角度を、遊び側フランク面140のフランク角cに約38°の角度を付形する(第2ステップ、図7(c))。
 これにより、ねじ山101の圧力側フランク面130の一部(すなわち、ねじ山頂部102の圧力側)が基準山形7の圧力側フランク面73よりも座面側に位置することになる。
 このように、二工程を経てボルト100のねじ山101を形成することにより、上部110と下部120とをより高精度に形成することができる。
 図8(A)は、実施例4のねじ山200を備えたボルト1の非締結状態における軸線5を含む要部断面図である。
 ねじ山200における圧力側フランク面213bは仮想線13aに沿って形成されている。
 圧力側フランク面213bの下端213cは、仮想円筒6よりもねじ山頂部10a側に位置する。
 ねじ山200における下部12の圧力側の側面215は、圧力側フランク面213bの下端213cから谷底10bにわたって仮想線13aよりも内側に湾曲する形状であって、R面形状と平面形状とを組み合わせた形状となっている。
 図8(B)は、実施例4のねじ山200において、下部12の圧力側の側面215の断面拡大図である。
 下部12の圧力側の側面215は、平面215aとR面215bとからなる。
 平面215aはねじの軸方向に垂直な仮想線75に平行な面であって、下端213cから下部12の高さの2/3の位置(符号215c)まで、谷底10bに向かって形成されている。
 R面215bは、曲率半径0.4mmの円周面であって、符号215cで示す位置から平面215aに連続して谷底10bまで形成されている。
 実施例4のねじ山200において、遊び側フランク面214bは仮想線14aに沿って形成されている。
 遊び側フランク面214bの下端214cは、仮想円筒6よりも軸線5側に位置する。下部12の遊び側の側面216は、圧力側の側面215と同様に、遊び側フランク面214bの下端214cから谷底10cにわたって仮想線14aよりも内側に湾曲する形状であって、R面形状と平面形状とを組み合わせた形状となっている。
 実施例4のねじ山200では、圧力側フランク面213bの下端213cは、遊び側フランク面214bの下端214cよりもねじ山頂部10a側に位置することになる。
 実施例4のねじ山200を備えたボルト1によれば、下部12の圧力側の側面215が下部12の遊び側の側面216よりも広範囲に抉られ、下部12の圧力側の側面215が一層薄肉となり、遊び側の側面216は圧力側よりも厚肉となる。
 これにより、締結状態においてねじ山200全体が遊び側に撓むと共に、圧力側により強くスプリングバックするため、さらに高い緩み止め効果を奏する。
 図9は、実施例5のねじ山200’を備えたボルト1の非締結状態における軸線5を含む要部断面図である。
 実施例5のねじ山200’では、実施例4のねじ山200に比べて(図8(A)参照)、ねじ山200’における下部12の遊び側には内側に湾曲して抉られた部分が設けられておらず、遊び側フランク面214’が延長して下部12の遊び側の側面216’を形成しており、遊び側フランク面214’と遊び側の側面216’とが面一になっている。
 実施例5のねじ山200’において、その他の形状は実施例4のねじ山200と同一である。
 実施例5のねじ山200’によれば、締結状態において座面締め付けによりトルクが高くなると、圧力側フランク面213bがナットの圧力側フランク面に押圧されて遊び側へ撓む力が生じるが、ねじ山200’における下部12の遊び側の側面216’が内側に湾曲して抉られておらず平面形状であるため、ねじ山200’が遊び側へ撓むことが抑制される。
 このことにより、経年変化によるねじ山200’の弾性変形量の低下を防ぎ、ナットの圧力側フランク面に対する反力(スプリングバック)を保ち続けることが可能となる。
 実施例5のねじ山200’における上部11から下部12にわたる圧力側には、圧力側フランク面213bの下端213cから谷底10bに連続して、仮想線13aよりも内側に湾曲するR面形状の側面215が形成されている。
 ねじ山200’の圧力側の側面215が内側に湾曲して抉られているため、座面締め付けによりトルクが高くなると、ねじ山200’がナットの圧力側フランク面に押し付けられ、ねじ山200’の上部11の圧力側がナットの圧力側フランク面に沿うように弾性変形して、ここに高い摩擦力が生じることになる。
 すなわち、圧力側の側面215の内側に湾曲して抉られた部分により、ねじ山200’は上部11の圧力側の弾性変形が許容されることになる。この弾性変形は、第1ねじ山から第2ねじ山、第3ねじ山へと順に発生し、その結果、ボルトとナットの螺合部分全体で高い緩み止め効果が得られ、第1ねじ山への応力集中が分散されるため疲労強度が向上する。
 尚、圧力側フランク面213bの下端213c(圧力側の側面215の上端)は、締結状態においてナットの圧力側フランク面上に位置することが好ましい。
 その理由は、締結状態において、ねじ山200’の圧力側フランク面213bとナットの圧力側フランク面との接合面積が確保されて十分な摩擦力が得られると共に、下部12の圧力側の側面215の弾性変形が十分許容されるからである。
 また、圧力側の側面215のR面形状の曲率半径を大きくし、圧力側の側面215がさらに大きく湾曲して抉れた形状にすることにより、ねじ山200’の上部11がより弾性変形し易くなるため、ねじ山200’の上部11の圧力側フランク面213bとナットの圧力側フランク面との間に生じる摩擦力を高めることが可能になることから、上記効果を高めることができる。
 図10(A)は、実施例6のねじ山310を備えたボルト300の非締結状態における要部断面図である。
 実施例6のねじ山310の角度α’は約58°であり、破線で示す実施例1のねじ山10(図2参照)の角度α(=60°)よりも若干小さい。ねじ山310のピッチはJIS規格に準ずる。
 そのため、実施例6のねじ山310のねじ山頂部311は、実施例1のねじ山10のねじ山頂部10aよりも高くなり、実施例6のボルト300の外径はJIS規格よりも大きくなっている。
 実施例6のねじ山310において、その他の形状は実施例1のねじ山10と同一であり、ねじ山310の下部12における圧力側の側面315および遊び側の側面316は、それぞれのフランク面の延長線に相当する仮想線から内側に湾曲して形成されている。
 図10(B)は、実施例6のボルト300とナット8とを締結した状態におけるねじ山310を示す断面図である。
 ナット8は、JIS規格やISO規格に準じたナットである。ボルト300をナット8に締め込むと、ボルト300の座面に力が加わるまでは少ない抵抗で締め付けることができるが、座面締め付けでトルクが大きくなるにつれて、圧力側フランク面313がナット8の圧力側フランク面81に押圧されることにより、ねじ山310が遊び側に起き上がる。
 これにより、ねじ山310が圧力側にスプリングバックして、ボルト300の圧力側フランク面313とナット8の圧力側フランク面81との摩擦力が増加する。
 さらに、ねじ山310が遊び側に起き上がることにより、ねじ外径が大きくなり、ボルト300のねじ山頂部311がナット8の谷底801に当接し、ねじ山頂部311が谷底801によって拘束される。この拘束力が圧力側フランク面313と圧力側フランク面81との摩擦力に加わることにより、ボルト300の半径方向の緩みが防止され、全体として一層高い緩み止め効果を奏することになる。
 このとき、座面締め付けのトルクが低い場合や、ボルトが弾性変形の起こりにくい材質からなる場合には、ねじ山310の起き上がりが少なくなり、圧力側フランク面313とナット8の圧力側フランク面81との摩擦力が小さくなることがある。
 しかし、実施例6のボルト300によれば、圧力側フランク面313とナット8の圧力側フランク面81との摩擦力に加えて、ボルト300のねじ山頂部311が谷底801によって拘束されてボルト300の半径方向の緩みが防止されるため、十分な緩み止め効果が得られる。
 図11(A)は、実施例7のねじ山410を備えたボルト400の非締結状態における要部断面図である。
 実施例7のねじ山410は、実施例1のねじ山10における遊び側フランク面14(図2参照)に膨出部414を設けた形状である。
 膨出部414の表面414bは、仮想線414’に沿って形成されている。
 ねじの軸方向に垂直な仮想線77と仮想線414’との成す角度θ4は約30°であり、圧力側フランク面413の延長線と仮想線414’との成す角度θ3は54°である。
 実施例7のねじ山410のねじ山頂部411は、実施例1のねじ山10のねじ山頂部10a(図2参照)と同一の高さとなるように形成されている。
 そして、膨出部414は遊び側フランク面の下端414cからねじ山頂部411側へ向かって徐々に膨らむように形成され、ねじ山頂部411と膨出部414の表面414bとは緩やかに連続している。
 実施例7のねじ山410において、その他の形状は実施例1のねじ山10と同一であり、ねじ山410の下部12における圧力側の側面415および遊び側の側面416は、それぞれのフランク面の延長線に相当する仮想線から内側に湾曲して形成されている。
 図11(B)は、実施例7のボルト400とナット8とを締結した状態におけるねじ山410を示す断面図である。
 ボルト400をナット8に締め込むと、座面締め付けでトルクが大きくなるにつれて、ねじ山410が遊び側に起き上がって圧力側にスプリングバックし、圧力側フランク面413とナット8の圧力側フランク面81との摩擦力が増加する。
 さらに、ねじ山410が遊び側へ起き上がることにより、ねじ山410の遊び側に設けられた膨出部414がナット8の遊び側フランク面82に近づいて、膨出部414の表面414bがナット8の遊び側フランク面82に押し付けられることになる。
 その結果、ねじ山410は、圧力側フランク面413と、膨出部414の表面414bとの両方で摩擦力が得られ、さらなる緩み止め効果を奏する。
 さらに、膨出部414の表面414bの角度θ4は約30°であるため、ボルト400の座面に力が加わって座面締め付けによりねじ山410が起き上がるまでは、膨出部414の表面414bはナット8の遊び側フランク面82と平行になっている。
 これにより、座面締め付けまでの状態において、膨出部414の表面414bとナット8の遊び側フランク面82との干渉が防止されるため、締め込みが容易となる。
 また、膨出部414は遊び側フランク面の下端414cからねじ山頂部411側へ向かって徐々に膨らむように形成されているため、膨出部414をねじ山頂部411側から遊び側フランク面の下端414cへ向かって徐々に膨らむように形成した場合に比べて、座面締め付けによるねじ山410の起き上がりにより、膨出部414がナット8の遊び側フランク面82に一層強く押し付けられることになり、高い摩擦力が生じて、さらなる緩み止め効果を奏する。
 図12(A)は、実施例8のねじ山510を備えたボルト500の非締結状態における要部断面図である。
 実施例8のねじ山510は、実施例7のねじ山410の膨出部414(図11参照)と同様に、実施例1のねじ山10における遊び側フランク面14(図2参照)に膨出部514を設けた形状である。
 但し、実施例8のねじ山510は、実施例7のねじ山410のねじ山頂部411の近傍を圧力側フランク面513に向かって下降傾斜する仮想線511’に沿って切り取った形状になっている。
 仮想線511’は、破線で示す実施例1のねじ山10の圧力側フランク面13(図2参照)の中央部近傍を通り、仮想円筒6に平行な仮想線と仮想線511’とのなす角度θ5は45°である。
 仮想線511’に沿って形成された切り取り面511は圧力側(ボルト500の座面側)に面した平面であり、切り取り面511の上端511aがねじ山510のねじ山頂部となる。
 また、切り取り面511の下端511bは、破線で示す実施例1のねじ山10の圧力側フランク面13の中央部近傍に位置する。
 そして、膨出部514は遊び側フランク面の下端514cから切り取り面511の上端511a側へ向かって徐々に膨らむように形成され、切り取り面511の上端511aと膨出部514の表面514bとは緩やかに連続している。
 また、ねじ山510の下部12における圧力側の側面515および遊び側の側面516は、それぞれのフランク面の延長線に相当する仮想線から内側に湾曲して形成されている。
 図12(B)は、実施例8のボルト500とナット8とを締結した状態におけるねじ山510を示す断面図である。
 ボルト500をナット8に締め込むと、座面締め付けでトルクが大きくなるにつれて、圧力側フランク面513がナット8の圧力側フランク面81に押圧される。
 このとき、圧力側フランク面513において、ナット8の圧力側フランク面81に最初に当接するのは、ねじ山510のねじ山頂部(切り取り面511の上端511a)近傍ではなく、圧力側フランク面513の上端となる。
 これにより、ボルト500をナット8に締め付けるにつれて、圧力側フランク面513が上端側から下端側へ向けて徐々にナット8の圧力側フランク面81に当接して押圧され、ねじ山510が遊び側へ起き上がることにより、ねじ山510のねじ山頂部がナット8の遊び側フランク面82側へ移動し、膨出部514の表面514bがナット8の遊び側フランク面82に当接することになる。
 その結果、ねじ山510は、圧力側フランク面513と、膨出部514の表面514bとの両方で摩擦力が得られ、さらなる緩み止め効果を奏する。
 図13(A)は、実施例9のねじ山610を備えたボルト1の非締結状態における要部断面図である。
 実施例9のねじ山610は、実施例5のねじ山200’(図9参照)と同様に、ねじ山610における下部12の遊び側には内側に湾曲して抉られた部分が設けられておらず、遊び側フランク面214’が延長して下部12の遊び側の側面216’を形成しており、遊び側フランク面214’と遊び側の側面216’とが面一になっている。
 そして、実施例9のねじ山610は、実施例5のねじ山200’における圧力側フランク面213bのフランク角を大きくした形状になっている。
 図9に示すように、実施例5のねじ山200’の圧力側フランク面213bは、仮想線13aに沿って形成されており、圧力側フランク面213bのフランク角βは、実施例1のねじ山10(図2参照)と同じく、約22°である。
 また、ねじ山200’の遊び側フランク面214’は、仮想線14aに沿って形成されており、遊び側フランク面214’のフランク角γは、ねじ山10と同じく、約38°である。
 そして、ねじ山200’の上部11のねじ山の角度αは、ねじ山10と同じく、約60°である。
 それに対して、実施例9のねじ山610の圧力側フランク面613は、仮想線13aの角度β(=約22°)に角度θ7(=約8°)を加えて成る仮想線613aに沿って形成されており、圧力側フランク面613のフランク角θ8(=β+θ7)は約30°である。
 また、ねじ山610の遊び側フランク面214’は、仮想線14aに沿って形成されており、遊び側フランク面214’のフランク角γは、ねじ山10,200’と同じく、約38°である。
 そして、ねじ山610の上部11のねじ山の角度α+θ7は約68°である。
 このように、実施例9のねじ山610における上部11のねじ山の角度α+θ7(=約68°)は、基準山形7(図2参照)における上部11のねじ山の角度α(=60°)より角度θ7(=約8°)だけ大きい。
 そして、ねじ山610の圧力側フランク面613のフランク角θ8(=30°)は、基準山形7のねじ山(図2参照)の角度θ1(=60°)の1/2であり、基準山形7のねじ山の圧力側フランク面73のフランク角と同一である。
 尚、各角度β,γ,θ7はそれぞれ実験的に最適値を求めて設定すればよい。また、フランク角θ8は、基準山形7のねじ山の圧力側フランク面73のフランク角と略同一にすればよい。
 実施例9のねじ山610の下部12における圧力側の側面615は、実施例4のねじ山200における下部12の圧力側の側面215(図8(B)参照)と同様に、圧力側フランク面613の下端613cから谷底10bにわたって仮想線613aよりも内側に湾曲する形状であって、R面形状と平面形状とを組み合わせた形状となっている。
 図13(B)は、実施例9のボルト1とナット8とを締結した状態におけるねじ山610を示す断面図である。
 ボルト1をナット8に締め込むと、ナット8の圧力側フランク面81がねじ山610の圧力側フランク面613を押圧する。
 ここで、ねじ山610の圧力側フランク面613のフランク角θ8は、基準山形7のねじ山の圧力側フランク面613のフランク角と略同一であることから、圧力側フランク面613はナット8の圧力側フランク面81と平行になっている。
 そのため、ねじ山610の圧力側フランク面613の略全面がナット8の圧力側フランク面81に押し付けられ、ここに安定した強い押圧力が生じることから、両圧力側フランク面613,81に強い摩擦力が得られる。
 そして、実施例9においても実施例5と同様に、ねじ山610の圧力側の側面615が内側に湾曲して抉られているため、座面締め付けによりトルクが高くなり、ねじ山610の圧力側フランク面613とナット8の圧力側フランク面81との押圧力が大きくなると、ねじ山610の上部11の圧力側が弾性変形して、両圧力側フランク面613,81に強い摩擦力が得られ、より大きな反力(スプリングバック)が発生するため、さらなる緩み止め効果を奏する。
 図14(A)は、実施例10のねじ山710を備えたボルト1の非締結状態における要部断面図である。
 図14(B)は、実施例10のボルト1とナット8とを締結した状態におけるねじ山710を示す断面図である。
 実施例10のねじ山710において、実施例9のねじ山610(図13参照)と異なるのは、下部12における遊び側の側面716が、遊び側フランク面214’の延長線に相当する仮想線14aから内側に湾曲して形成されている点だけである。
 そのため、実施例10によれば、下部12における遊び側の側面が仮想線14aから内側に湾曲して形成されている他の実施例における遊び側の側面(実施例1の側面16(図2参照)、実施例2の側面16a(図4参照)、実施例4の側面216(図8参照)、実施例6の側面316(図10参照)、実施例7の側面416(図11参照)、実施例8の側面516(図12参照))に係るものと同様の作用・効果が得られる。
 図15は、試験品(JIS規格品、実施例5、実施例9)のボルトについて締め付けた後に緩むまでの時間を測定した振動試験の試験結果を示す図表である。
 この振動試験は、2010年1月27日に財団法人 日本品質保証機構 関西試験センターにて実施したものである。
 試験品は、M12×60の六角ボルトと六角ナットであり、強度区分4.8T,8.8Tの炭素鋼を材質とし、三価クロメートめっきをかけたものである。
 ボルトとナットの締付トルクは70N・mに設定して試験した。
 尚、通常の使用時には、強度区分4.8Tの炭素鋼をボルトの材質とする場合の締付トルクは約40~50N・mであり、強度区分8.8Tの炭素鋼をボルトの材質とする場合の締付トルクは約70~80N・mである。
 試験方法は、試験品(供試体)を高速ねじ弛み試験機に取り付け、所定の振動条件(振動数:1780rpm、加振台ストローク:11mm、インパクトストローク:19mm、振動方向:ボルト軸直角方向)にて試験を実施し、10分間緩まなかった時は戻しトルクを測定した。
 尚、試験品を高速ねじ弛み試験機に取り付ける際には、振動バーレルとワッシャとをボルトとナットの間に挟み込んでおき、振動バーレルを加振台により加振させた。
 そして、緩みの判定は、試験品のボルト,ナット,ワッシャの合マークがずれ、ワッシャが手で回せるようになったときに緩んだと判定した。
 図15に示すように、従来のJIS規格品では、強度区分が大きいほど緩むまでの時間は長くなるものの、強度区分8.8Tでも25秒という短時間で緩んだ。
 それに対して、実施例5(図9参照)のボルト1では、強度区分4.8Tでも2分9秒まで緩まず、強度区分8.8Tでは9分58秒まで緩まず、JIS規格品よりもはるかに高い緩み止め効果を奏することがわかる。
 そして、実施例9(図13参照)のボルト1では、強度区分4.8Tでも4分4秒まで緩まず、強度区分8.8Tでは10分間緩まず、実施例9の方が実施例5よりも優れていることがわかる。
 本発明は、上記実施形態(局面)および上記各実施例の説明に何ら限定されるものではない。特許請求の範囲の記載を逸脱せず、当業者が容易に想到できる範囲で種々の変形態様も本発明に含まれる。本明細書の中で明示した論文、公開特許公報、特許公報などの内容は、その全ての内容を援用によって引用することとする。
 そして、上記各実施例は雄ねじ構造を有した締結部材に適用したものであるが、本発明は、雌ねじ構造を有した締結部材に適用することも可能であり、雌ねじ構造に適用した場合でも雄ねじ構造に適用した場合と同様の作用・効果が得られる。
 本発明の締結部材または締結構造は、車輌や様々な装置、建築物等における締結部材または締結構造として広く利用することができる。
 1,100,300,400,500…ボルト(締結部材)
 10,1a,101,200,210’,310,410,510,610,710…ねじ山
 10a,102,211’311,411,511…ねじ山頂部
 10b,10c…谷底
 11,110…上部
 12,120…下部
 13,13b,130,213,213b,313,413,513,613…圧力側フランク面
 14,14b,140,214,214b,214’,314,414b,514b…遊び側フランク面
 13a,14a,75,76,130a,511’,613a…仮想線
 15,16,15a,16a,150,160,215,216,216’,315,316,415,416,515,516,615,716…側面
 414,514…膨出部 
 511…切り取り面
 6…仮想円筒
 7…基準山形
 73…基準山形7の圧力側フランク面
 74…基準山形7の遊び側フランク面
 8…ナット(相手側締結部材)
 80…ナット8の谷底
 81…ナット8の圧力側フランク面
 82…ナット8の遊び側フランク面
 
 
 

Claims (12)

  1.  ねじ構造を有し、ねじ山頂部側の上部と、ねじ谷底側の下部とを備える締結部材であって、
     前記上部に形成された圧力側フランク面が、基準山形の圧力側フランク面よりも座面側に設けられ、
     前記下部の少なくとも一方の側面が、対応するフランク面の延長線よりも内側に設けられていることを特徴とする締結部材。
  2.  請求項1に記載の締結部材において、
     前記締結部材の軸線を含む断面にて、前記下部の少なくとも一方の側面の形状は、対応するフランク面の延長線から内側に向かって湾曲する曲面形状、または、対応するフランク面の延長線から内側に配置された平面形状と当該延長線から内側に向かって湾曲する曲面形状とを組み合わせた形状であることを特徴とする締結部材。
  3.  請求項1または請求項2に記載の締結部材において、
     遊び側フランク面の下端が、前記基準山形の有効径を示す仮想円筒よりも前記ねじ山頂部側に位置し、
     前記下部における遊び側の側面が前記遊び側フランク面の延長線よりも内側に設けられると共に、前記下部における遊び側の側面が前記遊び側フランク面の下端から連続して形成されていることを特徴とする締結部材。
  4.  請求項1または請求項2に記載の締結部材において、
     前記圧力側フランク面の下端が、前記遊び側フランク面の下端よりも前記ねじ山頂部側に位置し、
     前記圧力側の側面が、前記圧力側フランク面の延長線よりも内側に設けられると共に、前記圧力側フランク面の下端から連続して形成され、
     前記下部における遊び側の側面が、前記遊び側フランク面の延長線よりも内側に設けられると共に、前記遊び側フランク面の下端から連続して形成されていることを特徴とする締結部材。
  5.  請求項4に記載の締結部材において、
     前記圧力側フランク面の下端が、前記基準山形の有効径を示す仮想円筒よりも前記ねじ山頂部側に位置し、
     前記遊び側フランク面の下端が、前記仮想円筒よりも前記ねじ谷底側に位置することを特徴とする締結部材。
  6.  請求項1~5のいずれか一項に記載の締結部材において、
     前記上部のねじ山の角度が前記基準山形のねじ山の角度と略同一であることを特徴とする締結部材。
  7.  請求項1~6のいずれか一項に記載の締結部材において、
     前記上部のねじ山の角度が60°であって、前記圧力側フランク面のフランク角が0°より大きく30°より小さいことを特徴とする締結部材。
  8.  請求項1または請求項2に記載の締結部材において、
     前記上部のねじ山の角度が、前記基準山形のねじ山の角度より大きく、
     前記圧力側フランク面のフランク角が、前記基準山形のねじ山の圧力側フランク面のフランク角と略同一であることを特徴とする締結部材。
  9.  請求項1~8に記載の締結部材と、
     その締結部材に締結される相手側締結部材とを備え、
     前記締結部材を前記相手側締結部材に締結したとき、前記相手側締結部材の圧力側フランク面が前記締結部材の前記圧力側フランク面を押圧することにより、前記締結部材の下部が弾性変形し、前記締結部材の圧力側フランク面と前記相手側締結部材の圧力側フランク面との摩擦力が増加することを特徴とする締結構造。
  10.  請求項9に記載の締結構造において、
     前記締結部材を前記相手側締結部材に締結したとき、前記締結部材のねじ山頂部が前記相手側締結部材のねじ谷底に当接することを特徴とする締結構造。
  11.  請求項9に記載の締結構造において、
     前記締結部材を前記相手側締結部材に締結したとき、前記締結部材の遊び側フランク面が前記相手側締結部材の遊び側フランク面に当接することを特徴とする締結構造。
  12.  請求項11に記載の締結構造において、
     前記締結部材のねじ山頂部の近傍を、圧力側フランク面に向かって下降傾斜するように切り取った切り取り面が形成されていることを特徴とする締結構造。
PCT/JP2010/000858 2009-02-12 2010-02-12 締結部材および締結構造 WO2010092817A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
EP10741097.9A EP2397707B1 (en) 2009-02-12 2010-02-12 Fastener and fastening structure
KR1020107022436A KR101230876B1 (ko) 2009-02-12 2010-02-12 체결부재 및 체결구조
US12/936,677 US9494182B2 (en) 2009-02-12 2010-02-12 Fastener and fastening structure
JP2010550464A JP4806103B2 (ja) 2009-02-12 2010-02-12 締結部材および締結構造
TW099104852A TWI400394B (zh) 2009-02-12 2010-02-12 Fastening members and fastening structures
CN201080001332.1A CN102272466B (zh) 2009-02-12 2010-02-12 紧固构件及紧固构造
US15/282,913 US9995334B2 (en) 2009-02-12 2016-09-30 Fastener and fastening structure

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-029499 2009-02-12
JP2009029499 2009-02-12

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US12/936,677 A-371-Of-International US9494182B2 (en) 2009-02-12 2010-02-12 Fastener and fastening structure
US15/282,913 Division US9995334B2 (en) 2009-02-12 2016-09-30 Fastener and fastening structure

Publications (1)

Publication Number Publication Date
WO2010092817A1 true WO2010092817A1 (ja) 2010-08-19

Family

ID=42561665

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/000858 WO2010092817A1 (ja) 2009-02-12 2010-02-12 締結部材および締結構造

Country Status (7)

Country Link
US (2) US9494182B2 (ja)
EP (1) EP2397707B1 (ja)
JP (3) JP4806103B2 (ja)
KR (1) KR101230876B1 (ja)
CN (1) CN102272466B (ja)
TW (1) TWI400394B (ja)
WO (1) WO2010092817A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011058628A (ja) * 2009-09-11 2011-03-24 Newfrey Llc ねじ付きボルト及びナットを有するねじ継手
WO2011105225A1 (ja) * 2010-02-26 2011-09-01 有限会社アートスクリュー 締結部材および締結構造
WO2012160619A1 (ja) * 2011-05-20 2012-11-29 日東精工株式会社 タッピンねじ
JP2015052367A (ja) * 2013-09-09 2015-03-19 盧 小▲シェン▼ ゆるみ防止ネジ及びそれを形成するためのダイ装置
KR20180118192A (ko) 2016-03-02 2018-10-30 진타 세리자와 나사 부재, 체결 부재 및 다트
JP2022110449A (ja) * 2021-01-18 2022-07-29 新一 西田 耐疲労・耐緩み防止機能を備えたボルト構造およびボルト構造を適用したネジ締結体

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4806103B2 (ja) 2009-02-12 2011-11-02 有限会社アートスクリュー 締結部材および締結構造
TWI427222B (zh) * 2011-07-19 2014-02-21 Art Screw Co Ltd 緊固構件及緊固構造
WO2013027534A1 (ja) * 2011-08-25 2013-02-28 リコーエレメックス株式会社 ねじの製造方法及びねじ
US8545938B2 (en) * 2011-10-03 2013-10-01 United Technologies Corporation Method of fabricating a ceramic component
JP5982331B2 (ja) * 2013-07-02 2016-08-31 株式会社降矢技研 弛み防止ねじ
EP3057756B1 (en) 2013-10-14 2019-11-27 United Technologies Corporation Assembly and method for transfer molding
EP3057747B1 (en) 2013-10-14 2020-01-22 United Technologies Corporation Assembly and method for transfer molding
CN105485140B (zh) * 2016-01-18 2018-03-06 东莞市贯虹五金科技有限公司 一种r型螺纹
US9803679B1 (en) 2016-09-14 2017-10-31 Martin Eidinger Deformable fastening thread providing wedge-effect
US10184597B2 (en) * 2016-10-13 2019-01-22 Forum Us, Inc Stress reducing thread form
JP6892046B2 (ja) * 2016-11-10 2021-06-18 株式会社ユニオン精密 締結部材
US10669787B2 (en) * 2016-12-09 2020-06-02 Schlumberger Technology Corporation Pump rod connection
TWI644027B (zh) * 2016-12-22 2018-12-11 福光企業股份有限公司 Locking screw
JP6699565B2 (ja) * 2017-01-11 2020-05-27 フジテック株式会社 エレベータの位置検出装置
JP3214888U (ja) * 2017-04-07 2018-02-15 正雄 佐藤 半円角形ボルト
US11454268B2 (en) * 2017-07-20 2022-09-27 Illinois Tool Works Inc. Coupler for threaded reinforcing bar
TWI673438B (zh) * 2018-10-31 2019-10-01 春雨工廠股份有限公司 螺栓
CN111120487B (zh) * 2018-10-31 2021-12-14 春雨工厂股份有限公司 螺栓
US11553933B2 (en) 2020-01-07 2023-01-17 DePuy Synthes Products, Inc. System and method for inserting an intramedullary nail
US11465246B2 (en) * 2020-12-08 2022-10-11 Lock-N-Stitch, Inc. Lock and pin combination for cold working cracks
CN114183453A (zh) * 2021-12-17 2022-03-15 张家陶 一种互锁式螺栓防松结构

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4813902B1 (ja) * 1969-12-17 1973-05-01
JPS5388664U (ja) 1976-12-21 1978-07-20
JPH01151033A (ja) 1987-12-08 1989-06-13 Ricoh Co Ltd 情報記録媒体
JPH036115U (ja) * 1989-06-07 1991-01-22
JPH08177839A (ja) 1994-12-22 1996-07-12 Nitto Seiko Co Ltd 緩み防止ねじ
JP3031085U (ja) * 1996-05-10 1996-11-12 ユルソン株式会社 ボルト
JP3095134U (ja) * 2003-01-08 2003-07-25 イワタボルト株式会社 戻り止めボルト
JP2005061602A (ja) * 2003-08-11 2005-03-10 Kiyoshi Sugimoto 指向性ボルトおよびナット
JP2006057801A (ja) 2004-08-23 2006-03-02 Union Seimitsu:Kk 緊締ねじ
JP2008144955A (ja) * 2006-12-12 2008-06-26 Yasuhisa Kurihara 締結部材のねじ山
WO2008081721A1 (ja) * 2006-12-25 2008-07-10 Yugen Kaisha Art Screw 締結部材、及びその製造方法

Family Cites Families (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1250748A (en) * 1916-12-21 1917-12-18 Irving C Woodward Self-locking screw-thread.
US3323402A (en) * 1965-10-08 1967-06-06 Standard Pressed Steel Co Thread forms
US3460598A (en) * 1966-08-17 1969-08-12 Microdot Inc Self-locking thread form for threaded element
GB1478951A (en) * 1975-04-17 1977-07-06 Richards Fasteners Ltd C Self-locking screw threads
FR2373315A1 (fr) 1976-12-09 1978-07-07 Kodak Pathe Procede de preparation de cristaux fins de substances minerales ou organiques
US4540321A (en) * 1978-11-16 1985-09-10 Microdot Inc. Anti-vibration thread form
JPS5919712A (ja) 1982-07-22 1984-02-01 阪本 俊二 セ−フテイロツクねじ部材
US4907926A (en) * 1985-02-15 1990-03-13 Wing George S Thread form and fastener system using the form
JPS63164616A (ja) 1986-12-26 1988-07-08 Yokogawa Electric Corp バイナリカウンタ
JPS63164616U (ja) * 1987-04-15 1988-10-26
WO1989011044A1 (en) 1988-05-09 1989-11-16 Takuya Mikajiri Locking screw
US5127784A (en) * 1989-04-19 1992-07-07 Halliburton Company Fatigue-resistant buttress thread
EP0397912B1 (de) 1989-05-19 1994-08-10 Siemens Aktiengesellschaft Verfahren und Netzwerkanordnung zur Gewinnung des Gradienten der Ausgangssignale eines gegebenen Netzwerkes zur Verarbeitung zeitdiskreter Signale bezüglich der Netzwerkparameter
JPH0331085A (ja) 1989-06-28 1991-02-08 Suzuki Motor Corp 前後輪駆動自動二輪車
US5304023A (en) * 1992-10-23 1994-04-19 Metaltite Corporation Metal panel fastener
JP3031085B2 (ja) 1992-11-05 2000-04-10 松下電器産業株式会社 シーソー操作型電子部品
JPH08135643A (ja) * 1994-11-07 1996-05-31 Iwata Bolt Kk ね じ
JP2989129B2 (ja) 1995-10-09 1999-12-13 イワタボルト株式会社 雄ねじ
US5899906A (en) * 1996-01-18 1999-05-04 Synthes (U.S.A.) Threaded washer
JP3095134B2 (ja) 1997-03-13 2000-10-03 栄豊物産株式会社 鉄骨組立て用治具
JP3345617B2 (ja) 1997-08-06 2002-11-18 株式会社イデア・デザインテック セルフロックねじの製造方法
DE19911149C1 (de) * 1999-03-12 2000-05-18 Siemens Ag Integrierte Schaltungsanordnung, die eine in einem Substrat vergrabene leitende Struktur umfaßt, die mit einem Gebiet des Substrats elektrisch verbunden ist, und Verfahren zu deren Herstellung
US6233802B1 (en) * 1999-08-06 2001-05-22 Huck International, Inc. Low swage load fastener and fastening system
JP4580061B2 (ja) * 2000-05-09 2010-11-10 ヤンマー株式会社 転造めねじ
US6394726B1 (en) * 2000-05-31 2002-05-28 Illinois Tool Works Inc. Threaded fastener
US6593612B2 (en) * 2000-12-05 2003-07-15 Infineon Technologies Ag Structure and method for forming a body contact for vertical transistor cells
US6621112B2 (en) * 2000-12-06 2003-09-16 Infineon Technologies Ag DRAM with vertical transistor and trench capacitor memory cells and methods of fabrication
US6923611B2 (en) * 2002-06-13 2005-08-02 Illinois Tool Works Inc. Self-drilling fastener
US6605504B1 (en) * 2002-06-28 2003-08-12 Infineon Technologies Ag Method of manufacturing circuit with buried strap including a liner
US6848724B2 (en) * 2002-08-12 2005-02-01 Grant Prideco, Inc. Thread design for uniform distribution of makeup forces
EP1590515B1 (en) * 2003-01-29 2013-04-10 Grant Prideco, Inc Fast make-up fatigue resistant rotary shouldered connection
DE10308130A1 (de) * 2003-02-26 2004-09-16 Richard Bergner Verbindungstechnik Gmbh & Co. Kg Gewindeprofil
JP4813902B2 (ja) * 2003-03-26 2011-11-09 ハウスウェルネスフーズ株式会社 抗ストレス剤
JP3959640B2 (ja) * 2003-04-30 2007-08-15 宣行 杉村 有効径変位ねじ
US7207248B2 (en) * 2003-10-09 2007-04-24 Illinois Tool Works Inc. Threaded screw fastener characterized by high pull-out resistance, reduced installation torque, and unique head structure and drive socket implement or tool therefor
EP1655500B1 (de) * 2004-11-03 2010-09-22 WABCO GmbH Gewinde für eine Schraubverbindung
EP1974561A2 (en) * 2005-12-27 2008-10-01 Dyuna Blue Ltd. Content distribution for mobile phones
US7731466B2 (en) 2007-11-02 2010-06-08 Gm Global Technology Operations, Inc. Thread profile modification for controlled stiffness
CN201232698Y (zh) * 2008-07-14 2009-05-06 叶仁富 防盗紧固件
JP4806103B2 (ja) 2009-02-12 2011-11-02 有限会社アートスクリュー 締結部材および締結構造
US8671547B2 (en) * 2010-02-26 2014-03-18 Art Screw Co., Ltd. Fastening member and fastening structure

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4813902B1 (ja) * 1969-12-17 1973-05-01
JPS5388664U (ja) 1976-12-21 1978-07-20
JPH01151033A (ja) 1987-12-08 1989-06-13 Ricoh Co Ltd 情報記録媒体
JPH036115U (ja) * 1989-06-07 1991-01-22
JPH08177839A (ja) 1994-12-22 1996-07-12 Nitto Seiko Co Ltd 緩み防止ねじ
JP3031085U (ja) * 1996-05-10 1996-11-12 ユルソン株式会社 ボルト
JP3095134U (ja) * 2003-01-08 2003-07-25 イワタボルト株式会社 戻り止めボルト
JP2005061602A (ja) * 2003-08-11 2005-03-10 Kiyoshi Sugimoto 指向性ボルトおよびナット
JP2006057801A (ja) 2004-08-23 2006-03-02 Union Seimitsu:Kk 緊締ねじ
JP2008144955A (ja) * 2006-12-12 2008-06-26 Yasuhisa Kurihara 締結部材のねじ山
WO2008081721A1 (ja) * 2006-12-25 2008-07-10 Yugen Kaisha Art Screw 締結部材、及びその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2397707A4 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011058628A (ja) * 2009-09-11 2011-03-24 Newfrey Llc ねじ付きボルト及びナットを有するねじ継手
WO2011105225A1 (ja) * 2010-02-26 2011-09-01 有限会社アートスクリュー 締結部材および締結構造
US8671547B2 (en) 2010-02-26 2014-03-18 Art Screw Co., Ltd. Fastening member and fastening structure
WO2012160619A1 (ja) * 2011-05-20 2012-11-29 日東精工株式会社 タッピンねじ
US8985926B2 (en) 2011-05-20 2015-03-24 Nitto Seiko Co., Ltd. Tapping screw
JP2015052367A (ja) * 2013-09-09 2015-03-19 盧 小▲シェン▼ ゆるみ防止ネジ及びそれを形成するためのダイ装置
KR20180118192A (ko) 2016-03-02 2018-10-30 진타 세리자와 나사 부재, 체결 부재 및 다트
US10663270B2 (en) 2016-03-02 2020-05-26 Jinta SERIZAWA Threaded member, fastening member, and dart
JP2022110449A (ja) * 2021-01-18 2022-07-29 新一 西田 耐疲労・耐緩み防止機能を備えたボルト構造およびボルト構造を適用したネジ締結体
JP7397495B2 (ja) 2021-01-18 2023-12-13 新一 西田 耐疲労・耐緩み防止機能を備えたボルト構造およびボルト構造を適用したネジ締結体

Also Published As

Publication number Publication date
JP5572873B2 (ja) 2014-08-20
JP4806103B2 (ja) 2011-11-02
JPWO2010092817A1 (ja) 2012-08-16
JP2014194282A (ja) 2014-10-09
US20110033263A1 (en) 2011-02-10
CN102272466B (zh) 2014-09-03
JP5711408B2 (ja) 2015-04-30
CN102272466A (zh) 2011-12-07
US9494182B2 (en) 2016-11-15
TW201033485A (en) 2010-09-16
TWI400394B (zh) 2013-07-01
EP2397707A1 (en) 2011-12-21
EP2397707A4 (en) 2013-07-17
KR101230876B1 (ko) 2013-02-07
EP2397707B1 (en) 2015-08-26
US9995334B2 (en) 2018-06-12
KR20100119003A (ko) 2010-11-08
US20170023049A1 (en) 2017-01-26
JP2011179687A (ja) 2011-09-15

Similar Documents

Publication Publication Date Title
JP5711408B2 (ja) 締結部材および締結構造
JP4878407B2 (ja) 締結部材および締結構造
EP3329133B1 (en) Threaded fastener
US9181972B2 (en) Loosening prevention threaded fastener
US12060904B2 (en) Threaded fastener having a thread crest greater than its thread root and V angles on the crest and root
JP4340103B2 (ja) ねじ締結構造
JP2014206234A (ja) 締結部材
JP4639291B2 (ja) 締結具
JP4361128B1 (ja) 緩み防止ねじ
JP5465093B2 (ja) 弛み防止ねじ
JPWO2008081721A1 (ja) 締結部材、及びその製造方法
JP2001317518A (ja) 転造めねじ及び転造おねじ
TWI427222B (zh) 緊固構件及緊固構造
JP5984329B2 (ja) ボルトの転造方法
JP7042748B2 (ja) おねじ及びねじ締結構造
JP2012057667A (ja) ナット
JP4553324B1 (ja) 多条ねじ
JP2020204343A (ja) ねじ締結体
KR101276714B1 (ko) 나사 체결 구조
JP2012072837A (ja) 締結用ボルト及び該締結用ボルトを用いたねじ締結体

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080001332.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10741097

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12936677

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20107022436

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2010741097

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010550464

Country of ref document: JP

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 6541/DELNP/2011

Country of ref document: IN