WO2010084900A1 - Fe基軟磁性合金及び前記Fe基軟磁性合金を用いた圧粉コア - Google Patents

Fe基軟磁性合金及び前記Fe基軟磁性合金を用いた圧粉コア Download PDF

Info

Publication number
WO2010084900A1
WO2010084900A1 PCT/JP2010/050673 JP2010050673W WO2010084900A1 WO 2010084900 A1 WO2010084900 A1 WO 2010084900A1 JP 2010050673 W JP2010050673 W JP 2010050673W WO 2010084900 A1 WO2010084900 A1 WO 2010084900A1
Authority
WO
WIPO (PCT)
Prior art keywords
soft magnetic
based soft
magnetic alloy
crystal phase
temperature
Prior art date
Application number
PCT/JP2010/050673
Other languages
English (en)
French (fr)
Inventor
寿人 小柴
景子 土屋
岡本 淳
水嶋 隆夫
Original Assignee
アルプス電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アルプス電気株式会社 filed Critical アルプス電気株式会社
Priority to KR1020117011562A priority Critical patent/KR101338807B1/ko
Priority to JP2010547507A priority patent/JP5333794B2/ja
Priority to EP10733507.7A priority patent/EP2390377B1/en
Priority to CN2010800036499A priority patent/CN102264938B/zh
Publication of WO2010084900A1 publication Critical patent/WO2010084900A1/ja
Priority to US13/180,424 priority patent/US8282745B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C45/00Amorphous alloys
    • C22C45/02Amorphous alloys with iron as the major constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y25/00Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals
    • H01F1/15308Amorphous metallic alloys, e.g. glassy metals based on Fe/Ni
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals
    • H01F1/15333Amorphous metallic alloys, e.g. glassy metals containing nanocrystallites, e.g. obtained by annealing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals
    • H01F1/15358Making agglomerates therefrom, e.g. by pressing
    • H01F1/15366Making agglomerates therefrom, e.g. by pressing using a binder
    • H01F1/15375Making agglomerates therefrom, e.g. by pressing using a binder using polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/20Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder
    • H01F1/22Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together
    • H01F1/24Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together the particles being insulated
    • H01F1/26Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together the particles being insulated by macromolecular organic substances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0206Manufacturing of magnetic cores by mechanical means
    • H01F41/0246Manufacturing of magnetic circuits by moulding or by pressing powder
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/14766Fe-Si based alloys

Definitions

  • the present invention relates to, for example, an Fe-based soft magnetic alloy applied to a magnetic core (dust core) such as a transformer or a choke coil for power supply.
  • a magnetic core dust core
  • a transformer or a choke coil for power supply such as a transformer or a choke coil for power supply.
  • a dust core using Fe metal powder, Fe-Ni alloy powder, Fe-Al-Si alloy powder, etc. applied to electronic parts etc. is excellent in direct current with low core loss along with recent high frequency and large current. Superposition characteristics are required.
  • the dust core is a soft magnetic alloy powder solidified and formed into a desired shape by a binder, and has a lower core loss than a magnetic core in which a conventional ribbon material is wound or laminated, and the degree of freedom in shape And a saturation magnetization superior to that of a ferrite core can be obtained.
  • Good soft magnetic properties such as high saturation magnetization and magnetic permeability are required of the above-mentioned soft magnetic alloy powder as a raw material of dust core, and Fe-based amorphous alloy powder (patent document 1) and FeCuNbSiB-based nanocrystalline alloy are required.
  • Application of a powder (patent document 9) etc. is examined. Thereby, low core loss and good DC bias characteristics can be realized.
  • JP 2004-156134 A Japanese Patent Laid-Open No. 2-180005 Japanese Patent Application Laid-Open No. 1-68446 JP, 2005-68451, A JP 2007-270271 A Japanese Patent Application Laid-Open No. 2-232301 Japanese Patent Application Laid-Open No. 57-185957 Japanese Patent Application Laid-Open No. 63-117406 JP-A-64-28301
  • the present inventors have developed an Fe-based soft magnetic alloy capable of obtaining DC superposition characteristics superior to those of the prior art, as well as having the same low core loss as the prior art.
  • An object of the present invention is to provide an Fe-based soft alloy capable of obtaining low core loss and high direct current superposition characteristics, and a dust core using the Fe-based soft magnetic alloy.
  • the Fe-based soft magnetic alloy in the present invention is It has Fe and an element R, and the element R is made of at least one of P, C, B and Si, There is a temperature difference of 20 ° C. or more between the precipitation temperature of the ⁇ -Fe crystal phase and the precipitation temperature of the Fe compound, and it is formed of a mixed phase structure of the amorphous phase and the ⁇ -Fe crystal phase, and the ⁇ -Fe crystal phase And the volume fraction of the ⁇ -Fe crystal phase is 40% or less of the whole.
  • the composition formula is represented by Fe 100-xu J x R u , element J is, Cr, Co, comprising at least any one of Ni and Nb, 0at% ⁇ x ⁇ 6at %, 17at% ⁇ It is preferable that u ⁇ 25 at% and 17 at% ⁇ x + u ⁇ 27.1 at%.
  • the composition formula is represented by Fe 100-xyzwt J x P y C z B w Si t, 0at% ⁇ y ⁇ 11at%, 0at% ⁇ z ⁇ 4.2at%, 5.7at% ⁇ w It is more preferable that ⁇ 17 at%, 0 at% ⁇ t ⁇ 11 at%, and 17 at% ⁇ x + y + z + w + t ⁇ 27.1 at%.
  • the present invention is composed of Fe, an element M consisting of at least one of Cr, Co and Ni excluding Nb from the element J, and P, C, B and Si.
  • Composition formula, indicated by Fe 100-xyzwt M x P y C z B w Si t, x indicating the composition ratio, y, z, w, t is, 0at% ⁇ x ⁇ 6at% , 0.3at% ⁇ y ⁇ 8.3 at%, 2.15 at% ⁇ z ⁇ 4.2 at%, 5.7 at% ⁇ w ⁇ 16.7 at%, 1.9 at% ⁇ t ⁇ 8.9 at%, 72.9 at% ⁇ 100—
  • the Fe-based soft magnetic alloy can be made to satisfy xy-z-w-t ⁇ 79.4 at%. In the above, it is more preferable that 2.3 at% ⁇ y ⁇ 8.3 at%, 6.7 at% ⁇ w ⁇ 11.7 at%, and 1.9 at%
  • the composition formula is represented by Fe 100-wtb B w Si t Cr b , 11 at% ⁇ w ⁇ 17 at%, 0 at% ⁇ t ⁇ 10 at%, 0 at% ⁇ b ⁇ 1 at%, 75 at% ⁇ It is preferable that 100-w-t-b ⁇ 83 at%.
  • the present invention is composed of Fe, an element L consisting of Nb or Nb and Cr constituting the element J, and P and B constituting the element R, Composition formula is represented by Fe 100-ywa P y B w L a, 6at% ⁇ y ⁇ 11at%, 8at% ⁇ w ⁇ 14at%, 2at% ⁇ a ⁇ 3at%, 77at% ⁇ 100-y-w- It can be made an Fe-based soft magnetic alloy in which a ⁇ 80 at%.
  • the dust core according to the present invention is characterized in that the powder of the Fe-based soft magnetic alloy described in any of the above is solidified and formed with a binder.
  • the above-mentioned Fe-based soft magnetic alloy obtained by the atomizing method or the liquid quenching method or the like is subjected to a predetermined heat treatment to precipitate the ⁇ -Fe crystal phase, thereby to form the amorphous phase and the ⁇ -Fe phase.
  • a mixed phase structure with the crystal phase can be obtained.
  • the Fe-based soft magnetic alloy which deviates from the above composition is subjected to heat treatment to precipitate an Fe compound without precipitating an ⁇ -Fe crystal phase, or to precipitate an ⁇ -Fe crystal phase and an Fe compound Because the temperature is too close, not only the ⁇ -Fe crystal phase but also Fe compounds are easily precipitated.
  • a temperature difference of 20 ° C. or more can be provided between the precipitation temperature of ⁇ -Fe and the precipitation temperature of the Fe compound, and temperature control in heat treatment can be performed well. .
  • the Fe-based soft magnetic alloy of the present invention in which a mixed phase structure of an amorphous phase and an ⁇ -Fe crystal phase is formed, good soft magnetic characteristics such as high saturation magnetization and magnetic permeability are obtained as compared with conventional ones. Higher DC bias characteristics can be obtained with the same core loss as in the prior art.
  • the core loss is controlled by controlling the crystallite diameter of the ⁇ -Fe crystal phase in the mixed phase structure to 50 nm or less and controlling the volume fraction of the ⁇ -Fe crystal phase to 40% or less of the whole. It can be effectively reduced.
  • the Fe-based soft magnetic alloy according to the present invention for the dust core, it is possible to appropriately cope with high frequency and large current.
  • good soft magnetic characteristics such as high saturation magnetization and magnetic permeability can be obtained as compared with conventional ones, and high DC bias characteristics as compared to conventional ones can be obtained together with core losses equivalent to conventional ones. .
  • the Fe-based soft magnetic alloy according to the present invention for the dust core, it is possible to appropriately cope with high frequency and large current.
  • FIG. 9 (a) is a TEM photograph showing the same further enlarged.
  • the Fe-based soft magnetic alloy in this embodiment has Fe (iron) and an element R.
  • the element R includes at least one of P (phosphorus), C (carbon), B (boron) and Si (silicon).
  • the present embodiment there is a temperature difference of 20 ° C. or more between the precipitation temperature of the ⁇ -Fe crystal phase and the precipitation temperature of the Fe compound. Therefore, in the present embodiment, temperature control at the time of heat treatment is easily performed so that the Fe compound is not precipitated. It was proved by the experiment described later that the core loss is increased when not only the ⁇ -Fe crystal phase but also the Fe compound is precipitated.
  • the Fe compound is FeP or the like.
  • a mixed phase structure of an amorphous phase and an ⁇ -Fe crystal phase can be formed, and the diameter of the crystallite of the ⁇ -Fe crystal phase occupied in the mixed phase structure is 50 nm or less And the volume fraction of the ⁇ -Fe crystal phase is 40% or less of the whole.
  • good soft magnetic characteristics such as high saturation magnetization and magnetic permeability can be obtained as compared with the conventional one, and it becomes possible to obtain high DC bias characteristics as compared to the conventional one with core loss equivalent to the conventional one.
  • the composition formula is represented by Fe 100-xu J x R u , element J is, Cr of (chromium), Co (cobalt), Ni (nickel) and Nb (niobium) It is preferable that it consists of at least any one kind, and 0 at% ⁇ x ⁇ 6 at%, 17 at% ⁇ u ⁇ 25 at%, and 17 at% ⁇ x + u ⁇ 27.1 at%.
  • the composition formula is represented by Fe 100 -xyzwt J x P y C z B w Si t , and 0 at% ⁇ y ⁇ 11 at%, 0 at% ⁇ z ⁇ 4.2 at%, 5.7 at% ⁇ It is more preferable that w ⁇ 17 at%, 0 at% ⁇ t ⁇ 11 at%, 17 at% ⁇ x + y + z + w + t ⁇ 27.1 at%.
  • an Fe-based soft magnetic alloy having a temperature difference of 20 ° C. or more between the precipitation temperature of the ⁇ -Fe crystal phase and the precipitation temperature of the Fe compound can be appropriately and easily formed.
  • Fe-M-P-C-B-Si It has Fe as a main component and contains at least P, C, B, and Si.
  • the Fe-based soft magnetic alloy is represented by the following composition formula.
  • the element M is made of at least one of Cr, Co and Ni obtained by removing Nb from the element J.
  • X, y, z, w, t indicating the composition ratio: 0 at% ⁇ x ⁇ 6 at%, 0.3 at% ⁇ y ⁇ 8.3 at%, 2.15 at% ⁇ z ⁇ 4.2 at%, 5.7 at % ⁇ w ⁇ 16.7 at%, 1.9 at% ⁇ t ⁇ 8.9 at%, and 72.9 at% ⁇ 100 ⁇ x ⁇ y-zw ⁇ t ⁇ 79.4 at%.
  • the Fe-based soft magnetic alloy according to the first embodiment includes Fe exhibiting magnetism and metalloid elements such as P, C, B, and Si having an amorphous forming ability (amorphous forming ability). ing.
  • the Fe-based soft magnetic alloy of the first embodiment is formed by heat treatment to have a mixed phase structure of an amorphous phase of the main phase and an ⁇ -Fe crystal phase.
  • the ⁇ -Fe crystal phase has a bcc structure.
  • the precipitation temperature of the ⁇ -Fe crystal phase and the temperature difference between the precipitation temperature of the Fe compound are regarded as the precipitation temperature itself of the Fe compound as the temperature difference.
  • the Fe content (100-xyz-w-t) of the Fe-based soft magnetic alloy according to the first embodiment is 72.9 at% or more and 79.4 at% or less.
  • the amount of Fe is preferably 77.4 at% or more.
  • the conversion vitrification temperature (Tg / Tm) indicating the degree of the amorphous formation ability of the alloy tends to be less than 0.50, which is not preferable because the amorphous formation ability is lowered.
  • Tm indicates a temperature at which the alloy is completely heated by heating the alloy.
  • the additive amount y of P is 0.3 at% or more and 8.3 at% or less.
  • the addition amount y of P is preferably 2.3 at% or more, and more preferably 5.3 at% or more.
  • the addition amount w of B is 5.7 at% or more and 16.7 at% or less.
  • the addition amount w of B is preferably in the range of 6.7 at% or more and 11.7 at% or less, and more preferably 10.7 at% or less.
  • the addition amount t of Si is 1.9 at% ⁇ t ⁇ 8.9 at%, and preferably 5.9 at% or less.
  • ⁇ Tx has a remarkable temperature interval of 40 K or more, and the ability to form an amorphous phase can be further enhanced.
  • the element M is selected from at least one of Cr, Co, and Ni.
  • Cr can form a passivated oxide film on the alloy and can improve the corrosion resistance of the Fe-based soft magnetic alloy.
  • Cr can form a passivated oxide film on the alloy and can improve the corrosion resistance of the Fe-based soft magnetic alloy.
  • the molten alloy directly contacts water, it is possible to prevent the generation of a corroded portion which occurs in the drying step of the Fe-based soft magnetic alloy.
  • Co also has the effect of increasing the Curie temperature Tc and the saturation magnetization.
  • Ni also improves the corrosion resistance.
  • the element M is not an essential element and may not be contained in the Fe-based soft magnetic alloy, but when it is contained, it is adjusted to 6 at% or less.
  • the addition of C to the Fe-based soft magnetic alloy improves the thermal stability.
  • the addition of Si also contributes to the thermal stability.
  • the addition amount z of C is 2.15 at% or more and 4.2 at% or less.
  • the addition amount z of C is preferably 2.2 at% or more.
  • the Fe-based soft magnetic alloy having the above composition formula can be produced, for example, in powder form by atomizing method or in strip form (ribbon form) by liquid quenching method. (Note that, as described above, even in the non-heat-treated state (as-Q), there were also those in which the ⁇ -Fe crystal phase was precipitated together with the amorphous phase).
  • heat treatment is performed on the powdery Fe-based soft magnetic alloy or the band-like Fe-based soft magnetic alloy obtained above to relieve internal stress generated at the time of forming the Fe-based soft magnetic alloy, It forms a mixed phase structure of an amorphous phase and an ⁇ -Fe crystal phase in which the structural relaxation has progressed most, where excess Fe starts to precipitate out of the eutectic composition.
  • the Fe-based soft magnetic alloy of the first embodiment has a characteristic configuration in that it is a mixed phase structure of an amorphous phase and an ⁇ -Fe crystal phase, in combination with the above-described composition formula.
  • the ⁇ -Fe crystal phase does not precipitate, or the Fe compound precipitates together with the ⁇ -Fe crystal phase. Or the precipitation temperature of the ⁇ -Fe crystal phase and the precipitation temperature of the Fe compound are close to each other.
  • a temperature difference of 20 ° C. or more can be provided between the precipitation temperature of ⁇ -Fe and the precipitation temperature of the Fe compound, and temperature control can be performed well.
  • the temperature difference of 20 ° C. or more is a numerical value when the Fe-based soft magnetic alloy of the first embodiment is heat-treated at a temperature rising rate of 40 ° C./min.
  • good soft magnetic characteristics such as higher saturation magnetization and magnetic permeability and smaller coercivity as compared with the conventional one are obtained, and core loss equivalent to the conventional one is also compared with the conventional one. High DC bias characteristics can be obtained.
  • the Fe-based soft magnetic alloy according to the second embodiment contains Fe as a main component, and contains B or B and Si.
  • the Fe-based soft magnetic alloy is represented by the following composition formula.
  • the compositional formula is represented by Fe 100-wtb B w Si t Cr b , 11 at% ⁇ w ⁇ 17 at%, 0 at% ⁇ t ⁇ 10 at%, 0 at% ⁇ b ⁇ 1 at%, 75 at% ⁇ 100-w-t -B 83 83 at%.
  • the composition ratio t of Si is preferably 2 at% or more, or preferably 7 at% or less.
  • the composition ratio w of B is preferably 12 at% or more.
  • the Fe-based soft magnetic alloy of the second embodiment is formed by heat treatment to have a mixed phase structure of an amorphous phase of the main phase and an ⁇ -Fe crystal phase.
  • a temperature difference of 20 ° C. or more can be provided between the precipitation temperature of ⁇ -Fe and the precipitation temperature of the Fe compound, and the temperature control during heat treatment Can do well.
  • the Fe-based soft magnetic alloy according to the third embodiment is composed of Fe, an element L consisting of Nb or Nb and Cr constituting the element J, and P and B constituting the element R.
  • the Fe-based soft magnetic alloy is represented by the following composition formula.
  • the composition ratio of Fe is preferably 79 at% or less.
  • the Fe-based soft magnetic alloy of the third embodiment is formed of a mixed phase structure of an amorphous phase and an ⁇ -Fe crystal phase.
  • a temperature difference of 20 ° C. or more can be provided between the precipitation temperature of ⁇ -Fe and the precipitation temperature of the Fe compound, and temperature control during heat treatment Can do well.
  • Fe-based soft magnetic alloy other than the above that has a temperature difference of 20 ° C. or more between the precipitation temperature of ⁇ -Fe and the precipitation temperature of the Fe compound, present Fe-Cr-Si-B-C. Can.
  • the diameter of the crystallite of the ⁇ -Fe crystal phase occupied in the mixed phase structure is 50 nm or less, and the volume fraction of the ⁇ -Fe crystal phase is 40% or less of the whole. More preferably, it is 10% or less.
  • the diameter of the crystallite of the ⁇ -Fe crystal phase and the volume ratio of the precipitated amount can be determined by the X-ray diffraction method. In the present embodiment, measurement of the X-ray pattern was performed under the following conditions. The diameter of the crystallites was determined from the half width of the ⁇ -Fe peak using the Scherrer equation, and the volume ratio of the precipitation was determined by the strength ratio of the ⁇ -Fe crystal part to the amorphous part.
  • the crystal phase of the ⁇ -Fe is a structure in which the above-described crystallites are present singly or in a plurality.
  • X-ray measurement conditions Scanning method Step scan Tube: Co Step width: 0.004 °
  • Counting time core loss is effectively reduced if the crystallite diameter of the ⁇ -Fe crystal phase is 50 nm or less and the volume fraction of the ⁇ -Fe crystal phase is 40% or less of the whole under measurement conditions of 1 second or more It turned out that it can be done.
  • the Fe-based soft magnetic alloy powder in the present embodiment is used, for example, for a dust core formed by solidification with a binder.
  • the Fe-based soft magnetic alloy powder has a substantially spherical or ellipsoidal shape. A large number of Fe-based soft magnetic alloy powders are present in a dust core, and the Fe-based soft magnetic alloy powders are in a state of being insulated by the binder.
  • liquid or powder resin or rubber such as epoxy resin, silicone resin, silicone rubber, phenol resin, urea resin, urea resin, melamine resin, PVA (polyvinyl alcohol), or water glass (Na 2 O) -SiO 2 ), oxide glass powder (Na 2 O-B 2 O 3 -SiO 2 , PbO-B 2 O 3 -SiO 2 , PbO-BaO-SiO 2 , Na 2 O-B 2 O 3 -ZnO, CaO-BaO-SiO 2, Al 2 O 3 -B 2 O 3 -SiO 2, B 2 O 3 -SiO 2), glassy material produced by a sol-gel method (SiO 2, Al 2 O 3 , ZrO 2, TiO 2 ) and the like can be mentioned.
  • sol-gel method SiO 2, Al 2 O 3 , ZrO 2, TiO 2
  • the Fe-based soft magnetic alloy of the present embodiment for the dust core, it is possible to appropriately cope with high frequency and large current.
  • the use of the Fe-based soft magnetic alloy according to the present embodiment is not limited to the dust core.
  • an Fe-based magnetic alloy powder is formed by an atomizing method. It is preferable to use a water atomization method or a gas atomization method for the atomization method.
  • the Fe-based soft magnetic alloy powder and an additive comprising a binder and a lubricant are mixed.
  • the mixing ratio of the binder in the mixture is preferably in the range of 0.3% by mass to 5% by mass.
  • the mixing ratio of the lubricant in the mixture is preferably in the range of 0.1% by mass to 2% by mass.
  • zinc stearate can be used as the lubricant.
  • the Fe-based soft magnetic alloy powder and the additive are mixed, they are dried and pulverized to obtain granulated powder.
  • the granulated powder is classified so as to be easily filled into a press-molding die. For example, granulated powder of 300 to 850 ⁇ m obtained by classification using a sieve having an opening of 300 ⁇ m or more and 850 ⁇ m or less is used.
  • the granulated powder is filled in a mold, and while applying pressure, it is heated to room temperature or a predetermined temperature and compression molded to obtain a core precursor having a predetermined shape.
  • the pressing pressure is 20 t / cm 2 .
  • the core precursor is, for example, substantially ring-shaped.
  • the core precursor is heat treated.
  • heating is performed at 460 ° C. for 1 hour under a N 2 gas atmosphere at a temperature rising rate of 40 ° C./min.
  • the internal stress generated in the Fe-based soft magnetic alloy powder can be removed by compression molding.
  • the ⁇ -Fe crystal phase can be precipitated in the structure of the amorphous Fe-based soft magnetic alloy powder.
  • the heat treatment temperature is set too high, not only the ⁇ -Fe crystal phase but also the Fe compound is precipitated, which is not preferable because the core loss becomes large.
  • the Fe-based soft magnetic alloy according to the present embodiment has a temperature of 20 ° C. or more between the precipitation temperature of the ⁇ -Fe crystal phase and the precipitation temperature of the Fe compound when heat treatment is performed at a temperature rising rate of 40 ° C./min. It is possible to provide a temperature difference. Therefore, according to the present embodiment, temperature control at the time of heat treatment can be easily performed so that the Fe compound does not precipitate.
  • the core loss tends to be increased if the amount of precipitation of the ⁇ -Fe crystal phase is increased. Since the amount of precipitation of the ⁇ -Fe crystal phase increases as the heat treatment temperature increases, the heat treatment temperature is adjusted so that the ⁇ -Fe crystal phase occupied in the mixed phase structure with the amorphous phase is 40% or less. It is preferable to do.
  • Table 1 describes Tc, Tg, Tx, ⁇ Tx, Tm, Tg / Tm, Tx / Tm, and saturation magnetization ⁇ s in each sample.
  • ⁇ ⁇ represents heat treatment at a temperature raising rate of 40 ° C./min to precipitate the ⁇ -Fe crystal phase, and at 20 ° C. between the precipitation temperature of the ⁇ -Fe crystal phase and the precipitation temperature of the Fe compound. It refers to an alloy that has the above temperature difference.
  • the heat treatment temperature was gradually raised for each sample, and each temperature when the ⁇ -Fe crystal phase and the Fe compound began to be precipitated was determined while performing the XRD prescription.
  • the composition of the Fe-based soft magnetic alloy of this example was defined as follows. First, the elements were divided into Fe, an element R consisting of at least one of P, C, B and Si, and an element J consisting of at least one of Cr, Co, Ni and Nb.
  • the composition formula was Fe 100-xu J x R u .
  • the maximum was 6 at%. Therefore, 0 at% ⁇ x ⁇ 6 at%.
  • the element R had a minimum value of 17 at% and a maximum value of 25 at%. Therefore, 17 at% ⁇ u ⁇ 25 at%.
  • the composition ratio x + u excluding Fe is at most 27.1 at%. Therefore, 17 at% ⁇ x + u ⁇ 27.1 at% is defined.
  • each of the respective elements constituting the element R it is preferable that indicated by Fe 100-xyzwt J x P y C z B w Si t which was expressed in the composition formula. From the experimental results in Table 1, in this composition formula, 0 at% ⁇ 11 at%, 0 at% ⁇ z ⁇ 4.2 at%, 5.7 at% ⁇ w ⁇ 17 at%, 0 at% ⁇ t ⁇ 11 at%, 17 at% It was defined that x + y + z + w + t ⁇ 27.1 at%.
  • the composition formula is represented by Fe 100 -xyz wt M x P y C z B w Si t .
  • the element M is made of at least one of Cr, Co and Ni obtained by removing Nb from the element J.
  • x, y, z, w, t indicating the composition ratio are 0 at% ⁇ x ⁇ 6 at%, 0.3 at% ⁇ y ⁇ 8.3 at%, 2.15 at% ⁇ z ⁇ 4.2 at%, 5 7 at% ⁇ w ⁇ 16.7 at%, 1.9 at% ⁇ t ⁇ 8.9 at%, 72.9 at% ⁇ 100-xyzw-t ⁇ 79.4 at%.
  • the composition ratio of Fe (100-xyz-wt) was preferably 77.4 at% or more.
  • the composition ratio y of P is preferably 2.3 at% or more, and more preferably 5.3 at% or more.
  • the composition ratio z of C is preferably 2.2 at% or more.
  • the composition ratio w of B is preferably in the range of 6.7 at% to 11.7 at%, and more preferably 10.7 at% or less.
  • the composition ratio t of Si is preferably 5.9 at% or less.
  • FIG. The ternary diagram of each sample whose composition formula is represented by Fe 78.9 P y C 2.2 B w Si t among 1 to 34 is shown.
  • Fe 78.9 P 2.3 C 2.2 B 7.7 Si 8.9 (No. 21) already has an ⁇ -Fe crystal phase in addition to the amorphous phase in the non-heat-treated state (as-Q). It is in a precipitated state (Fe compound phase is not precipitated). Therefore, even in this alloy, the temperature difference between the precipitation temperature of the ⁇ -Fe crystal phase and the precipitation temperature of the Fe compound is 20 ° C. or more Therefore, it is an example.
  • each alloy of the 35 to 48 examples can be represented by the following composition formula. That is, the composition formula is represented by Fe 100 -wtb B w Si t Cr b . And 11 at% ⁇ w ⁇ 17 at%, 0 at% ⁇ t ⁇ 10 at%, 0 at% ⁇ b ⁇ 1 at%, and 75 at% ⁇ 100 ⁇ w ⁇ b ⁇ 83 at%.
  • the composition ratio w of B is 12 at% or more
  • the composition ratio t of Si is 7 at% or less.
  • FIG. It is a ternary diagram of each sample of 35-47. Next, No.
  • Each alloy of the 49 to 56 examples can be represented by the following composition formula.
  • composition formula represented by Fe 100-ywa P y B w L a the element L is made of Nb or Nb and Cr constituting the element J. 6 at% ⁇ y ⁇ 11 at%, 8 at% ⁇ w ⁇ 14 at%, 2 at% ⁇ a ⁇ 3 at%, and 77 at% ⁇ 100 ⁇ y-wa ⁇ 80 at%.
  • the composition ratio of Fe is 79 at% or less.
  • FIG. The ternary diagram of each sample in which the composition formula of 49 to 55 is represented by Fe 98-yw P y B w Nb 2 is shown.
  • the ribbon-like Fe-based soft magnetic alloy shown in Table 2 and the powdery Fe-based soft magnetic alloy shown in Table 3 were not subjected to heat treatment.
  • a powder core was formed using three types of Fe-based soft magnetic alloy powders shown in Table 3.
  • the dust core was prepared by mixing, drying and grinding Fe-based soft magnetic alloy powder shown in Table 3, silicone resin (1.4 mass%) and zinc stearate (0.3 mass%), and having an opening of 300 ⁇ m and an opening A sieve with an opening of 850 ⁇ m is classified to 300 to 850 ⁇ m to form granulated powder, and further, at a pressing pressure of 20 t / cm 2 , a ring shape having an outer diameter of 20 mm, an inner diameter of 12 mm, and a height of 6.8 mm the core precursor is formed in, N 2 gas atmosphere was obtained by heating 1 hour at each heat treatment temperature shown in Table 4 below at a Atsushi Nobori rate of the 40 ° C. / min.
  • Both Fe-based soft magnetic alloys B and C are included in the composition range of this example.
  • the Fe-based soft magnetic alloy A deviates from the composition range of this example.
  • the Fe content of the Fe-based soft magnetic alloys B and C is larger than the Fe content of the Fe-based soft magnetic alloy A.
  • the saturation magnetization ⁇ s of the Fe-based soft magnetic alloys B and C is larger than the saturation magnetization ⁇ s of the Fe-based soft magnetic alloy A.
  • core loss is formed using Fe-based soft magnetic alloy powder A It has been found that the core loss of dust core A can be made almost as low (about 300 kW / m 3 ) and moreover direct current superposition characteristics higher than dust core A can be obtained.
  • FIG. 5 is a XRD measurement result when heat-processing with respect to the dust core A at 510 degreeC. As shown in FIG. 5, it was found that crystal peaks (indicated by arrows) appear at different diffraction angles, in addition to the broad diffraction peak showing amorphous. This indicates that the composition of the Fe-based soft magnetic alloy of the dust core A can not have the feature of the present embodiment that only the ⁇ -Fe crystal phase is precipitated.
  • FIG. 6 (a) is a TEM photograph when heat treatment at 490 ° C. is applied to the dust core A
  • FIG. 6 (b) is when heat treatment is applied to the dust core A at 510 ° C. Shows a TEM picture of
  • FIGS. 6 (a) and 6 (b) are Fe-based soft magnetic alloy powder. As shown in FIG. 6 (a), it was found that the entire structure of the Fe-based soft magnetic alloy powder was amorphous by heating at 490 ° C. On the other hand, as shown in FIG. 6 (b), it was found that the crystal phase was precipitated in addition to the amorphous phase by heating at 510 ° C.
  • FIG. 8 is a XRD measurement result when heat-processing with respect to the dust core B at 450 degreeC. As shown in FIG. 8, it was found that an ⁇ -Fe crystal phase appeared in addition to a broad diffraction peak showing amorphous.
  • FIG. 9 (a) is a TEM image when heat treatment at 450 ° C. is performed on the dust core B
  • FIG. 9 (b) is when heat treatment at 470 ° C. is performed on the dust core B Shows a TEM picture of The electron beam diffraction image is also shown in FIG.
  • FIG. 10 is a TEM photograph which further expanded and showed FIG. 9 (a).
  • FIG. 9 (a) and FIG. 10 it was found that the Fe-based soft magnetic alloy powder had a mixed phase structure of an amorphous and an ⁇ -Fe crystal phase by heating at 450 ° C.
  • the amount of precipitation of the ⁇ -Fe crystal phase was 10 to 20% in the structure of the Fe-based soft magnetic alloy powder.
  • the diameter (average) of the crystallites of the ⁇ -Fe crystal phase shown in FIG. 9A was about 35 to 45 nm.
  • This crystal phase is considered to be substantially an ⁇ -Fe crystal phase as shown in the electron beam diffraction image shown in FIG. 9 (a), but even if the crystal phase precipitates to about 20%, as shown in FIG. We could suppress the increase of core loss.
  • the amount of precipitation of the crystal phase increased to about 20% by heating at 470.degree.
  • This crystal phase is considered to be substantially an ⁇ -Fe crystal phase as shown in the electron beam diffraction image shown in FIG. 9 (b), and is shown in FIG. 7 even if the precipitation amount of the crystal phase is increased to about 20%. It turned out that the core loss does not increase so much.
  • the diameter (average) of the crystallites of the crystal phase shown in FIG. 9 (b) was about 40 to 45 nm.
  • the core loss becomes the smallest in the mixed phase structure in which the ⁇ -Fe crystal phase is slightly precipitated in the amorphous of the Fe-based soft magnetic alloy.
  • FIG. 12 shows the XRD measurement results when heat treatment was performed on the dust core C at 460 ° C. As shown in FIG. 12, it was found that an ⁇ -Fe crystal phase appeared in addition to a broad diffraction peak showing amorphous.
  • FIG. 13 (a) is a TEM image when the powder core C is heat-treated at 460 ° C.
  • FIG. 13 (b) is when the powder core C is heat-treated at 480 ° C. Shows a TEM picture of The electron beam diffraction image is also shown in FIG.
  • FIG. 14 is a TEM photograph which further expanded and showed FIG. 13 (a).
  • FIG. 12 As shown in FIG. 12, FIG. 13 (a) and FIG. 14, it was found that the Fe-based soft magnetic alloy powder had a mixed phase structure of an amorphous phase and an ⁇ -Fe crystal phase by heating at 460 ° C.
  • the amount of precipitation of the ⁇ -Fe crystal phase was 8 to 15% in the structure of the Fe-based soft magnetic alloy powder.
  • the diameter (average) of the crystallites of the ⁇ -Fe crystal phase shown in FIG. 13 (a) was about 35 to 40 nm.
  • the amount of precipitation of the crystal phase increased to about 40 to 45% by heating at 480.degree.
  • this crystal phase is considered to be mainly composed of ⁇ -Fe crystal phase, but there are too many crystal phases, and the figure shows the precipitation of other compound phases. As shown in 11, it was found that the core loss became large rapidly.
  • the entire structure was amorphous at 490 ° C. heating, but it was found that the Fe compound was precipitated at a heat treatment temperature of 500 ° C.
  • the entire structure was amorphous at 420 ° C. heating, but when heated to 430 ° C. or higher, the ⁇ -Fe crystal phase precipitates, and further heating to 460 ° C. also precipitates the Fe compound I understood it. Therefore, there is a temperature range of heat treatment in which only the ⁇ -Fe crystal phase precipitates, and if heat treatment is performed in this region, it can be expected that an Fe-based soft magnetic alloy having excellent magnetic properties can be obtained.
  • the entire structure was amorphous at 430 ° C. heating, but when heated to 440 ° C. or higher, the ⁇ -Fe crystal phase precipitates, and when the heating temperature is 470 ° C., the Fe compound also precipitates I understood it. Therefore, there is a temperature range of heat treatment in which only the ⁇ -Fe crystal phase precipitates, and if heat treatment is performed in this region, it can be expected that an Fe-based soft magnetic alloy having excellent magnetic properties can be obtained.
  • the average crystallite diameter is 34.7 to 44.7 nm
  • the ratio of crystallization is 7.9 to 31%
  • the core loss is 500 kW / m 3 . It was found to be below and to have good magnetic properties. In addition, it was found that when the diameter of the crystallite is 34 nm or less and the crystallization ratio exceeds 40%, the core loss is rapidly deteriorated.
  • the powdery Fe-based soft magnetic alloy shown in Table 6 was not subjected to heat treatment. Subsequently, a dust core was formed using the Fe-based soft magnetic alloy powder shown in Table 6.
  • the dust core was prepared by mixing, drying and grinding Fe-based soft magnetic alloy powder shown in Table 6, silicone resin (1.4 mass%) and zinc stearate (0.3 mass%), and having an opening of 300 ⁇ m and an opening A sieve with an opening of 850 ⁇ m is classified to 300 to 850 ⁇ m to form granulated powder, and further, at a pressing pressure of 20 t / cm 2 , a ring shape having an outer diameter of 20 mm, an inner diameter of 12 mm, and a height of 6.8 mm the core precursor is formed in, under N 2 gas atmosphere, the Atsushi Nobori rate obtained by heating 1 hour at 440 ° C. and 40 ° C. / min.
  • the core loss can be made 500 kW / m 3 or less, and high DC bias characteristics can be obtained.
  • FIG. 21 shows the XRD measurement result in each heat processing of Fe-based soft magnetic alloy D (ribbon).
  • the entire structure was amorphous at heating at 410 ° C., but when heated to 430 ° C. or higher, the ⁇ -Fe crystal phase precipitates, and the heating temperature is further raised to about 460 ° C. It was found that Fe compounds were also precipitated. Therefore, there is a temperature range of heat treatment in which only the ⁇ -Fe crystal phase precipitates, and if heat treatment is performed in this region, it can be expected that an Fe-based soft magnetic alloy having excellent magnetic properties can be obtained.
  • the Fe-based soft magnetic alloy E is in a state in which the ⁇ -Fe crystal phase is precipitated in the amorphous phase in the non-heat-treated state (as-Q).
  • the precipitation of the ⁇ -Fe crystal phase appeared remarkably, and it was found that when the heat treatment temperature was precipitated up to about 460 ° C., the crystal phase was almost the ⁇ -Fe crystal phase.

Abstract

 低いコアロスと高い直流重畳特性を得ることが可能なFe基軟性合金及び、前記Fe基軟磁性合金を用いた圧粉コアを提供することを目的とする。 本発明におけるFe基軟磁性合金は、Feと元素Rとを有し、元素Rは、P、C、B及びSiのうち少なくともいずれか1種からなり、α-Fe結晶相の析出温度と、Fe化合物の析出温度との間に20℃以上の温度差があり、アモルファス相とα-Fe結晶相との混相組織で形成され、前記α-Fe結晶相の結晶子の径が50nm以下でかつ前記α-Fe結晶相の体積分率は全体の40%以下であることを特徴とするものである。また本発明では、組成式がFe100-x-uJxRu で示され、元素Jは、Cr、Co、Ni及びNbの少なくともいずれか1種からなり、0at%≦x≦6at%、17at%≦u≦25at%、17at%≦x+u≦27.1at%である。

Description

Fe基軟磁性合金及び前記Fe基軟磁性合金を用いた圧粉コア
 本発明は、例えば、トランスや電源用チョークコイル等の磁気コア(圧粉コア)に適用するFe基軟磁性合金に関する。
 電子部品等に適用されるFe金属粉、Fe-Ni合金粉末、Fe-Al-Si合金粉末などを使用した圧粉コアは、近年の高周波化や大電流化に伴い、低いコアロスと共に優れた直流重畳特性が要求される。
 圧粉コアは、軟磁性合金粉末が結着材により目的の形状に固化成形されたものであり、従来のリボン材を巻回あるいは積層した磁気コアに比較してコアロスが低く、形状の自由度があり、フェライトコアよりも優れた飽和磁化を得ることができる。圧粉コアの原料となる前記軟磁性合金粉末には、高い飽和磁化や透磁率等の良好な軟磁気特性が求められており、Fe基アモルファス合金粉末(特許文献1)やFeCuNbSiB系ナノ結晶合金粉末(特許文献9)等の適用が検討されている。これにより、低いコアロスと良好な直流重畳特性を実現できる。
特開2004-156134号公報 特開平2-180005号公報 特開平1-68446号公報 特開2005-68451号公報 特開2007-270271号公報 特開平2-232301号公報 特開昭57-185957号公報 特開昭63-117406号公報 特開昭64-28301号公報
 しかしながら、近年電源回路の高電流化に伴い、低いコアロスを維持しつつ、さらに高い直流重畳特性が求められており、特許文献1に見られるようなFe基アモルファス合金粉末では、コアロスは低く出来るものの直流重畳特性が未だ低い。また、特許文献9に見られるFeCuNbSiB系ナノ結晶合金粉末では、一旦、均一なアモルファス合金粉末を作成しなければならないが、この合金系はアモルファス形成能が乏しく、粉末合金を作成する方法として一般的な水アトマイズ法やガスアトマイズ法では、冷却速度が十分でないため均一かつ完全なアモルファス合金粉末を作ることが出来なかった。このため、その後結晶化熱処理を行っても均一なbccFe(α-Fe)結晶相を得ることができなかったり、化合物相が析出し、圧粉コアを形成したときに磁気特性が大幅に劣化するという欠点がある。
 本発明者らは、鋭意研究を重ねた結果、従来と同等の低いコアロスとともに、従来に比べて優れた直流重畳特性を得ることが可能なFe基軟磁性合金を開発するに至った。
 そこで本発明は、低いコアロスと高い直流重畳特性を得ることが可能なFe基軟性合金及び、前記Fe基軟磁性合金を用いた圧粉コアを提供することを目的とする。
 本発明におけるFe基軟磁性合金は、
 Feと元素Rとを有し、元素Rは、P、C、B及びSiのうち少なくともいずれか1種からなり、
 α-Fe結晶相の析出温度と、Fe化合物の析出温度との間に20℃以上の温度差があり、アモルファス相とα-Fe結晶相との混相組織で形成され、前記α-Fe結晶相の結晶子の径が50nm以下でかつ前記α-Fe結晶相の体積分率は全体の40%以下であることを特徴とするものである。
 本発明では、組成式がFe100-x-uxuで示され、元素Jは、Cr、Co、Ni及びNbの少なくともいずれか1種からなり、0at%≦x≦6at%、17at%≦u≦25at%、17at%≦x+u≦27.1at%であることが好ましい。
 また本発明では、組成式がFe100-x-y-z-w-txyzwSitで示され、0at%≦y≦11at%、0at%≦z≦4.2at%、5.7at%≦w≦17at%、0at%≦t≦11at%、17at%≦x+y+z+w+t≦27.1at%であることがより好ましい。
 本発明では、Feと、前記元素JからNbを除いたCr、Co及びNiの少なくともいずれか1種からなる元素Mと、P、C、B及びSiとで構成され、
 組成式が、Fe100-x-y-z-w-txyzwSitで示され、組成比を示すx、y、z、w、tは、0at%≦x≦6at%、0.3at%≦y≦8.3at%、2.15at%≦z≦4.2at%、5.7at%≦w≦16.7at%、1.9at%≦t≦8.9at%、72.9at%≦100-x-y-z-w-t≦79.4at%であるFe基軟磁性合金にできる。上記において、2.3at%≦y≦8.3at%、6.7at%≦w≦11.7at%、1.9at%≦t≦5.9at%であることがより好ましい。
 あるいは本発明では、組成式が、Fe100-w-t-bwSitCrbで示され、11at%≦w≦17at%、0at%≦t≦10at%、0at%≦b≦1at%、75at%≦100-w-t-b≦83at%であることが好ましい。
 または本発明では、Feと、前記元素Jを構成するNbあるいはNb及びCrからなる元素Lと、前記元素Rを構成するP及びBとで構成され、
 組成式がFe100-y-w-aywaで示され、6at%≦y≦11at%、8at%≦w≦14at%、2at%≦a≦3at%、77at%≦100-y-w-a≦80at%であるFe基軟磁性合金にできる。
 また、本発明における圧粉コアは、上記のいずれかに記載のFe基軟磁性合金の粉末が結着材によって固化成形されてなることを特徴とするものである。
 本発明では、アトマイズ法や液体急冷法等によって得られた上記のFe基軟磁性合金に対して所定の加熱処理を行うことで、α-Fe結晶相を析出させ、アモルファス相と、α-Fe結晶相との混相組織を得ることが出来る。上記組成から外れたFe基軟磁性合金は、加熱処理することで、α-Fe結晶相が析出することなくFe化合物が析出したり、あるいは、α-Fe結晶相の析出温度とFe化合物の析出温度とが近接しすぎてα-Fe結晶相のみならずFe化合物も析出しやすい。本発明のFe基軟磁性合金によれば、α-Feの析出温度と、Fe化合物の析出温度との間に20℃以上の温度差を設けることができ熱処理の際の温度管理を良好に行える。
 アモルファス相と、α-Fe結晶相との混相組織が形成された本発明のFe基軟磁性合金では、従来に比べて高い飽和磁化及び透磁率等の良好な軟磁気特性が得られ、従来と同等のコアロスと共に従来に比べて高い直流重畳特性が得られる。
 本発明では、前記混相組織中に占める前記α-Fe結晶相の結晶子の径が50nm以下でかつ前記α-Fe結晶相の体積分率は全体の40%以下に制御することで、コアロスを効果的に小さくすることができる。
 そして、本発明におけるFe基軟磁性合金を圧粉コアに用いることで、高周波化及び大電流化等に適切に対応することが可能になる。
 本発明のFe基軟磁性合金によれば、従来に比べて高い飽和磁化及び透磁率等の良好な軟磁気特性が得られ、従来と同等のコアロスと共に従来に比べて高い直流重畳特性が得られる。
 そして、本発明におけるFe基軟磁性合金を圧粉コアに用いることで、高周波化及び大電流化等に適切に対応することが可能になる。
表1のNo.1~34のうち、組成式がFe78.9y2.2wSitで表記される各試料の三元図、 表1のNo.35~47の各試料の三元図、 表1のNo.49~55の組成式がFe98-y-wywNb2で表記される各試料の三元図、 表4に示す圧粉コアA(比較例)に対する加熱処理温度とコアロスとの関係を示すグラフ、 圧粉コアAに対して510℃で加熱処理したときのXRD測定結果、 (a)は、圧粉コアAに対して490℃の加熱処理を施したときのTEM写真、(b)は、圧粉コアAに対して510℃の加熱処理を施したときのTEM写真、 表4に示す圧粉コアB(実施例)に対する加熱処理温度とコアロスとの関係を示すグラフ、 圧粉コアBに対して450℃で加熱処理したときのXRD測定結果、 (a)は、圧粉コアBに対して450℃の加熱処理を施したときのTEM写真及び電子線回折像、(b)は、圧粉コアBに対して470℃の加熱処理を施したときのTEM写真及び電子線回折像、 図9(a)をさらに拡大して示したTEM写真、 表4に示す圧粉コアC(実施例)に対する加熱処理温度とコアロスとの関係を示すグラフ、 圧粉コアCに対して460℃で加熱処理したときのXRD測定結果、 (a)は、圧粉コアBに対して460℃の加熱処理を施したときのTEM写真及び電子線回折像、(b)は、圧粉コアBに対して480℃の加熱処理を施したときのTEM写真及び電子線回折像、 図13(a)をさらに拡大して示したTEM写真、 表2に示すFe基軟磁性合金A(リボン)を490℃,500℃に加熱したときの夫々のXRD測定結果、 表2に示すFe基軟磁性合金B(リボン)を、420℃、430℃、440℃、450℃、460℃に加熱したときの夫々のXRD測定結果、 表2に示すFe基軟磁性合金C(リボン)を、430℃、440℃、450℃、460℃,470℃に加熱したときの夫々のXRD測定結果、 表5に示す圧粉コアB、Cの組成において、加熱処理温度を変化させ、結晶化割合を変化させたときのコアロスとの関係の測定結果、 表5に示す圧粉コアB、Cの組成において、加熱処理温度を変化させ、平均の結晶子の径を変化させたときのコアロスとの関係の測定結果、 表1のNo48の試料を用いた圧粉コアDに対する熱処理温度とコアロスとの関係を示すグラフ、 表1のNo48の合金を、410℃、430℃、440℃、460℃に加熱したときの夫々のXRD測定結果、 表1のNo21の合金を、380℃、420℃、450℃、460℃、470℃に加熱したときの夫々のXRD測定結果。
 本実施形態におけるFe基軟磁性合金は、Fe(鉄)と元素Rとを有する。元素Rは、P(リン)、C(炭素)、B(ホウ素)及びSi(ケイ素)のうち少なくともいずれか1種を含む。
 そして本実施形態では、α-Fe結晶相の析出温度と、Fe化合物の析出温度との間に20℃以上の温度差がある。よって本実施形態では、Fe化合物が析出しないように熱処理をする際の温度管理を行いやすい。α-Fe結晶相のみならずFe化合物も析出するとコアロスが大きくなることが後述する実験により証明された。なおFe化合物とは、FeP等である。
 本実施形態におけるFe基軟磁性合金によれば、アモルファス相と、α-Fe結晶相との混相組織を構成でき、前記混相組織中に占める前記α-Fe結晶相の結晶子の径が50nm以下でかつ前記α-Fe結晶相の体積分率は全体の40%以下である。これにより従来に比べて高い飽和磁化及び透磁率等の良好な軟磁気特性が得られ、従来と同等のコアロスと共に従来に比べて高い直流重畳特性を得ることが可能になる。
 本実施形態におけるFe基軟磁性合金は、組成式がFe100-x-uxuで示され、元素Jは、Cr(クロム)、Co(コバルト)、Ni(ニッケル)及びNb(ニオブ)の少なくともいずれか1種からなり、0at%≦x≦6at%、17at%≦u≦25at%、17at%≦x+u≦27.1at%であることが好ましい。また本実施形態では、組成式がFe100-x-y-z-w-txyzwSitで示され、0at%≦y≦11at%、0at%≦z≦4.2at%、5.7at%≦w≦17at%、0at%≦t≦11at%、17at%≦x+y+z+w+t≦27.1at%であることがより好ましい。これにより、α-Fe結晶相の析出温度と、Fe化合物の析出温度との間に20℃以上の温度差があるFe基軟磁性合金を適切且つ容易に形成することができる。
 次に、第1の実施形態におけるFe基軟磁性合金について説明する。
(Fe-M-P-C-B-Si)
 Feを主成分とし、少なくともP、C、B、Siを含む。前記Fe基軟磁性合金は、下記の組成式で表される。
 Fe100-x-y-z-w-txyzwSit
 ここで元素Mは、前記元素JからNbを除いたCr、Co及びNiの少なくともいずれか1種からなる。組成比を示すx、y、z、w、tは、0at%≦x≦6at%、0.3at%≦y≦8.3at%、2.15at%≦z≦4.2at%、5.7at%≦w≦16.7at%、1.9at%≦t≦8.9at%、72.9at%≦100-x-y-z-w-t≦79.4at%である。
 上記のように、第1の実施形態のFe基軟磁性合金は、磁性を示すFeと、アモルファス形成能(非晶質形成能)を有するP、C、B、Siといった半金属元素を具備している。
 また、第1の実施形態のFe基軟磁性合金は、熱処理により主相のアモルファス相と、α-Fe結晶相との混相組織で形成されている。α-Fe結晶相はbcc構造である。なお、後述する実験結果によれば、熱処理を施さない状態で、アモルファス相と、α-Fe結晶相(他の結晶相の析出なし)との混相組織を備えるFe基軟磁性合金も存在した。この場合、α-Fe結晶相の析出温度と、Fe化合物の析出温度の温度差とは、Fe化合物の析出温度そのものを当該温度差とみなすこととする。
 第1の実施形態のFe基軟磁性合金のFe量(100-x-y-z-w-t)は、72.9at%以上79.4at%以下である。Fe量は、77.4at%以上であることが好適である。このようにFe量が高いことで高い飽和磁化を得ることができる。ただしFeの添加量が多くなりすぎると、合金のアモルファス形成能の程度を示す換算ガラス化温度(Tg/Tm)が0.50未満になりやすく、アモルファス形成能が低下するので好ましくない。なお、上記式においてTmは合金を加熱し合金が完全に融解した温度を示す。
 また第1の実施形態におけるFe基軟磁性合金は、上記に示すように、Pの添加量yが0.3at%以上であり、8.3at%以下である。Pの添加量yは、2.3at%以上であることが好適であり、5.3at%以上であることがより好適である。また、Bの添加量wは5.7at%以上16.7at%以下である。Bの添加量wは、6.7at%以上で11.7at%以下の範囲内であることが好適であり、10.7at%以下であることがより好適である。また、Siの添加量tは1.9at%≦t≦8.9at%であり、5.9at%以下であることが好適である。
 このような組成とすることで、ΔTx=Tx-Tg(ただしTxは結晶化開始温度、Tgはガラス遷移温度を示す。)の式で表される過冷却液体の温度間隔ΔTxが20K以上を示し、組成によってはΔTxが40K以上という顕著な温度間隔を有し、よりアモルファス形成能を高めることができる。
 元素Mは、Cr、Co、Niのうち少なくともいずれか1種が選択される。このうちCrは、合金に不動態化酸化皮膜を形成でき、Fe基軟磁性合金の耐食性を向上できる。例えば、水アトマイズ法において、合金溶湯が直接水に触れたとき、更にはFe基軟磁性合金の乾燥工程において生じる腐食部分の発生を防ぐことができる。
 またCoは、キュリー温度Tcを高めるとともに飽和磁化を高める効果を有する。また、NiもCrと同様に、耐食性を向上させる。
 元素Mは、必須元素でなくFe基軟磁性合金中に含まなくてもよいが、含む場合は、6at%以下に調整する。
 また、Fe基軟磁性合金にCを添加すると熱的安定性が向上する。なおSiの添加も熱的安定性に寄与している。Cの添加量zは、2.15at%以上で4.2at%以下である。Cの添加量zは、2.2at%以上であることが好適である。
 本実施形態では、上記の組成式から成るFe基軟磁性合金を例えば、アトマイズ法により粉末状に、あるいは液体急冷法により帯状(リボン状)に製造できるが、この時点では組織の全体がアモルファス状態である(なお上記したように非熱処理状態(as-Q)でもアモルファス相とともにα-Fe結晶相が析出したものも存在した)。
 本実施形態では、上記にて得られた粉末状のFe基軟磁性合金や帯状のFe基軟磁性合金に対して、加熱処理により、Fe基軟磁性合金形成時に生じた内部応力を緩和させ、共晶組成より余分なFeが析出し始める最も構造緩和が進んだ状態、すなわち、アモルファス相と、α-Fe結晶相との混相組織を形成する。
 第1の実施形態のFe基軟磁性合金は、上記した組成式と合わせて、アモルファス相と、α-Fe結晶相との混相組織である点に特徴的構成がある。
 上記組成から外れたFe-M-P-C-B-Si合金に対して、加熱処理を施すと、α-Fe結晶相が析出することなく、あるいはα-Fe結晶相と共にFe化合物が析出したり、または、α-Fe結晶相の析出温度とFe化合物の析出温度とが近接してしまう。
 第1の実施形態のFe基軟磁性合金では、α-Feの析出温度と、Fe化合物の析出温度との間に20℃以上の温度差を設けることができ温度管理を良好に行える。なお、上記20℃以上の温度差は、第1の実施形態のFe基軟磁性合金を昇温速度40℃/minにて加熱処理を行ったときの数値である。
 第1の実施形態のFe基軟磁性合金では、従来に比べて高い飽和磁化及び透磁率、さらには小さい保磁力等の良好な軟磁気特性が得られ、従来と同等のコアロスと共に従来に比べて高い直流重畳特性が得られる。
(Fe-B-Si)
 第2の実施形態のFe基軟磁性合金は、Feを主成分とし、Bあるいは、BとSiを含む。前記Fe基軟磁性合金は、下記の組成式で表される。
 組成式が、Fe100-w-t-bwSitCrbで示され、11at%≦w≦17at%、0at%≦t≦10at%、0at%≦b≦1at%、75at%≦100-w-t-b≦83at%である。またSiの組成比tは、2at%以上であることが好ましく、あるいは7at%以下であることが好ましい。また、Bの組成比wは、12at%以上であることが好ましい。
 第2の実施形態のFe基軟磁性合金は、熱処理により主相のアモルファス相と、α-Fe結晶相との混相組織で形成されている。
 そして、第2の実施形態のFe基軟磁性合金においても、α-Feの析出温度と、Fe化合物の析出温度との間に20℃以上の温度差を設けることができ熱処理の際の温度管理を良好に行える。
(Fe-P-B-L)
 第3の実施形態におけるFe基軟磁性合金は、Feと、前記元素Jを構成するNbあるいはNb及びCrからなる元素Lと、前記元素Rを構成するP及びBとで構成される。前記Fe基軟磁性合金は、下記の組成式で表される。
 組成式がFe100-y-w-aywaで示され、6at%≦y≦11at%、8at%≦w≦14at%、2at%≦a≦3at%、77at%≦100-y-w-a≦80at%である。Feの組成比は79at%以下であることが好ましい。
 第3の実施形態のFe基軟磁性合金は、アモルファス相と、α-Fe結晶相との混相組織で形成されている。
 そして、第3の実施形態のFe基軟磁性合金においても、α-Feの析出温度と、Fe化合物の析出温度との間に20℃以上の温度差を設けることができ熱処理の際の温度管理を良好に行える。
 あるいはα-Feの析出温度と、Fe化合物の析出温度との間に20℃以上の温度差がある上記以外のFe基軟磁性合金としては、Fe-Cr-Si-B-Cを提示することができる。
 本実施形態では、前記混相組織中に占める前記α-Fe結晶相の結晶子の径が50nm以下でかつ前記α-Fe結晶相の体積分率は全体の40%以下である。より好ましくは10%以下である。ここでα-Fe結晶相の結晶子の径および析出量の体積比率はX線回折法により求めることが出来る。本実施形態においてはX線パターンの測定を以下の条件にて行った。結晶子の径はα-Feピークの半値幅よりScherrerの式を用い、析出量の体積比率はα-Feの結晶部分とアモルファス部分の強度比率により求めた。なお、上記α-Feの結晶相は前記した結晶子が単独で存在、あるいは複数個が集合した組織である。
 X線測定条件
 スキャン法:ステップスキャン 管球:Co
 ステップ幅:0.004°
 計数時間:1秒
 以上の測定条件からα-Fe結晶相の結晶子の径が50nm以下でかつ前記α-Fe結晶相の体積分率は全体の40%以下であればコアロスを効果的に低減できることが分かった。
 本実施形態におけるFe基軟磁性合金粉末は、例えば結着材により固化成形された圧粉コアに使用される。Fe基軟磁性合金粉末は、略球状あるいは楕円体状からなる。前記Fe基軟磁性合金粉末は、圧粉コア中に多数個存在し、各Fe基軟磁性合金粉末間が前記結着材にて絶縁された状態となっている。
 また、前記結着材としては、エポキシ樹脂、シリコーン樹脂、シリコーンゴム、フェノール樹脂、尿素樹脂、メラミン樹脂、PVA(ポリビニルアルコール)等の液状又は粉末状の樹脂あるいはゴムや、水ガラス(Na2O-SiO2)、酸化物ガラス粉末(Na2O-B23-SiO2、PbO-B23-SiO2、PbO-BaO-SiO2、Na2O-B23-ZnO、CaO-BaO-SiO2、Al23-B23-SiO2、B23-SiO2)、ゾルゲル法により生成するガラス状物質(SiO2、Al23、ZrO2、TiO2等を主成分とするもの)等を挙げることができる。
 本実施形態のFe基軟磁性合金を圧粉コアに使用することで、高周波化及び大電流化等に適切に対応できる。
 なお本実施形態のFe基軟磁性合金の用途は圧粉コアに限定されるものでない。
 上記した圧粉コアを製造するには、まず、Fe基磁性合金粉末をアトマイズ法により形成する。アトマイズ法には水アトマイズ法あるいはガスアトマイズ法を使用することが好適である。
 続いて、前記Fe基軟磁性合金粉末と、結着材及び潤滑材を有してなる添加材とを混合する。このとき、混合物中の前記結着材の混合率は、0.3質量%~5質量%の範囲内であることが好適である。また混合物中の潤滑材の混合率は、0.1質量%~2質量%の範囲内であることが好適である。前記潤滑材には例えばステアリン酸亜鉛を使用できる。
 前記Fe基軟磁性合金粉末と添加材とを混合した後、乾燥・粉砕して造粒粉を得る。
 前記造粒粉を、プレス成型の金型に充填しやすいように分級する。例えば目開き300μm以上850μm以下のふるいを用い分級して得られる300~850μmの造粒粉を使用する。
 続いて、前記造粒粉を金型に充填し、圧力を印加しつつ、室温又は所定の温度まで加熱して圧縮成形して所定形状のコア前駆体を得る。例えばプレス圧は20t/cm2である。またコア前駆体は例えば略リング形状である。
 続いて前記コア前駆体を熱処理する。熱処理条件の一例を示すと、N2ガス雰囲気下で、昇温速度を40℃/minとし460℃で1時間加熱する。これにより圧縮成形により前記Fe基軟磁性合金粉末に生じた内部応力を除去することができる。さらに本実施形態では、アモルファスで形成されたFe基軟磁性合金粉末の組織中にα-Fe結晶相を析出させることが出来る。
 ここで加熱処理温度をあまり高く設定すると、α-Fe結晶相のみならずFe化合物も析出して、コアロスが大きくなり好ましくない。
 本実施形態におけるFe基軟磁性合金は、昇温速度40℃/minにて加熱処理を行った際のα-Fe結晶相の析出温度と、Fe化合物の析出温度との間に20℃以上の温度差を設けることが可能である。よって本実施形態によれば、Fe化合物が析出しないように熱処理の際の温度管理を行いやすい。
 またFe化合物が析出しなくても、α-Fe結晶相の析出量が増えるとコアロスが大きくなりやすい。α-Fe結晶相の析出量は、加熱処理温度が高くなると、増加するので、アモルファス相との混相組織中に占める前記α-Fe結晶相が40%以下となるように、加熱処理温度を調整することが好ましい。
(組成範囲の実験)
 以下の表1に示す多数のFe基軟磁性合金を形成した。これら合金はいずれも液体急冷法によりリボン状で形成されている。
Figure JPOXMLDOC01-appb-T000001
 表1には、各試料におけるTc、Tg、Tx、ΔTx、Tm、Tg/Tm、Tx/Tm、飽和磁化σsが記載されている。
 更に、表1に示す析出温度欄にはα-Fe結晶相の析出温度とFe化合物の析出温度が記載されている。また、○の表記は、昇温速度40℃/minにて加熱処理を行いα-Fe結晶相が析出すると共に、α-Fe結晶相の析出温度とFe化合物の析出温度との間に20℃以上の温度差がある合金を指す。各試料に対して、徐々に熱処理温度を上昇させて、XRD規定を行いながらα-Fe結晶相及びFe化合物が析出し始めた時の各温度を求めた。
 表1に示すように、No.9,28,39,46,52,53の合金はいずれもα-Fe結晶相が析出せずにFe化合物が析出しており、優れた磁気特性を得ることは期待できない。No.11,23,27,29,37,57,58の合金はいずれもα-Fe結晶相の析出温度とFe化合物の析出温度との間に約10℃の温度差しかないため、α-Fe結晶相のみを析出させるための加熱処理の温度制御が困難であり、化合物相が析出し易い。No.45の合金は、液体急冷法により帯状(リボン上)に作製したが、この時点で組織の全体はFe化合物が析出していた。そのため、α-Fe結晶相の析出温度とFe化合物の析出温度差はないものとみなしている。
 表1に示す実験結果から本実施例のFe基軟磁性合金の組成を以下のように規定した。
 まず、元素を、Feと、P,C,B及びSiのうち少なくともいずれか1種からなる元素Rと、Cr,Co,Ni及びNbの少なくともいずれか1種からなる元素Jとに分けた。
 そして組成式をFe100-x-uxuとした。ここで元素Jを含まない試料もあり、元素Jを含む場合、最大で6at%であった。よって、0at%≦x≦6at%とした。続いて、元素Rは、各試料にて、最小値が17at%、最大値が25at%であった。よって、17at%≦u≦25at%とした。ただしFeは最低でも72.9at%が必要であるので(No.34の合金)、Feを除いた組成比x+uは、最大でも27.1at%である。よって、17at%≦x+u≦27.1at%と規定した。
 また、元素Rを構成する各元素を夫々、組成式中に表記したFe100-x-y-z-w-txyzwSitで示すことが好ましい。かかる組成式では表1の実験結果から、0at%≦y≦11at%、0at%≦z≦4.2at%、5.7at%≦w≦17at%、0at%≦t≦11at%、17at%≦x+y+z+w+t≦27.1at%と規定した。
 次に、表1に示すNo.1~34の実施例の各合金は以下の組成式により示すことが出来る。
 すなわち、組成式が、Fe100-x-y-z-w-txyzwSitで示される。ここで元素Mは、前記元素JからNbを除いたCr、Co及びNiの少なくともいずれか1種からなる。そして、組成比を示すx、y、z、w、tは、0at%≦x≦6at%、0.3at%≦y≦8.3at%、2.15at%≦z≦4.2at%、5.7at%≦w≦16.7at%、1.9at%≦t≦8.9at%、72.9at%≦100-x-y-z-w-t≦79.4at%である。
 なお、Feの組成比(100-x-y-z-w-t)は、77.4at%以上であることが好ましいとした。また、Pの組成比yは、2.3at%以上であることが好ましく、5.3at%以上であることがより好ましいとした。また、Cの組成比zは、2.2at%以上であることが好ましい。またBの組成比wは、6.7at%~11.7at%の範囲内であることが好ましく、10.7at%以下であることがより好ましいとした。またSiの組成比tは、5.9at%以下であることが好ましいとした。
 図1には、No.1~34のうち、組成式がFe78.9y2.2wSitで表記される各試料の三元図を示す。
 なお表1及び図1に示すように、Fe78.92.32.27.7Si8.9(No.21)は、非熱処理状態(as-Q)で既に、アモルファス相のほかにα-Fe結晶相が析出した状態となっており(Fe化合物相は析出していない)、よって、この合金でも、α-Fe結晶相の析出温度とFe化合物の析出温度との間の温度差は20℃以上であるため実施例とした。
 次に、No.35~48の実施例の各合金は以下の組成式により示すことが出来る。
 すなわち、組成式が、Fe100-w-t-bwSitCrbで示される。そして、11at%≦w≦17at%、0at%≦t≦10at%、0at%≦b≦1at%、75at%≦100-w-t-b≦83at%である。好ましくはBの組成比wは12at%以上であり、Siの組成比tは7at%以下である。
 図2は、No.35~47の各試料の三元図である。
 次に、No.49~56の実施例の各合金は以下の組成式により示すことが出来る。
 組成式がFe100-y-w-aywaで示される。ここで、元素Lは、前記元素Jを構成するNbあるいはNb及びCrからなる。そして、6at%≦y≦11at%、8at%≦w≦14at%、2at%≦a≦3at%、77at%≦100-y-w-a≦80at%である。好ましくは、Feの組成比は、79at%以下である。
 図3は、No.49~55の組成式がFe98-y-wywNb2で表記される各試料の三元図を示す。
 また表1に示すように、Fe73.72Cr2.28Si11112(No59の合金)でも、α-Fe結晶相の析出温度とFe化合物の析出温度との間の温度差を20℃以上にできた。
(コアロス及び直流重畳特性の実験)
 次に、以下の表2に示す3種類のFe基軟磁性合金を液体急冷法にてリボン状に形成した。また、表3に示す3種類のFe基軟磁性合金を水アトマイズ法により粉末状に形成した。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 なお、表2に示すリボン状のFe基軟磁性合金及び表3に示す粉末状のFe基軟磁性合金に対しては加熱処理を施していない。
 続いて、表3に示す3種類のFe基軟磁性合金粉末を用いて圧粉コアを形成した。
 圧粉コアは、表3に示すFe基軟磁性合金粉末と、シリコーン樹脂(1.4質量%)、ステアリン酸亜鉛(0.3質量%)を混合・乾燥・粉砕し、目開き300μm及び目開き850μmのふるいを用いて300~850μmに分級して造粒粉を形成し、さらに、プレス圧20t/cm2にて、外径が20mm、内径が12mm、高さが6.8mmのリング状のコア前駆体を形成し、N2ガス雰囲気下で、昇温速度を40℃/minとし以下の表4に示す各加熱処理温度で1時間加熱して得た。
 そして表4に示す各圧粉コアのコアロス、透磁率、直流重畳特性(μ5500A/m)を測定した。
Figure JPOXMLDOC01-appb-T000004
 Fe基軟磁性合金B,Cは、いずれも本実施例の組成範囲に含まれる。一方、Fe基軟磁性合金Aは本実施例の組成範囲から外れる。表2ないし表4に示すように、Fe基軟磁性合金B,CのFe量はFe基軟磁性合金AのFe量よりも多い。
 表2、表3に示すように、Fe基軟磁性合金B,Cの飽和磁化σsは、Fe基軟磁性合金Aの飽和磁化σsよりも大きくなる。そして表4に示すように表3に示すFe基軟磁性合金粉末B,Cを用いて形成された圧粉コアB,Cであれば、コアロスをFe基軟磁性合金粉末Aを用いて形成された圧粉コアAのコアロスとほぼ同等に低くでき(約300kW/m3)、しかも圧粉コアAよりも高い直流重畳特性が得られることがわかった。
(圧粉コアAに対する実験)
 次に表4に示す圧粉コアA(比較例)に対して、異なる温度の加熱処理を施して、加熱処理温度とコアロスとの関係を測定した。その実験結果が図4に示されている。なお、加熱処理条件は、N2ガス雰囲気下で、加熱処理温度までの昇温速度を40℃/minとし、加熱処理温度に達したら1時間加熱した。
 図4に示すように、加熱処理温度が500℃程度までは、コアロスが低いが、500℃を越えると急激にコアロスが大きくなることがわかった。このことから、比較例である圧粉コアAは、温度管理が難しく最適な加熱温度で加熱処理を行っても部分的に500℃を超えると特性が大幅に劣化するため、量産時の品質の不安定につながる恐れが大きいことがわかる。
 図5は、圧粉コアAに対して510℃で加熱処理したときのXRD測定結果である。図5に示すようにアモルファスを示すブロードな回折ピーク以外に、異なる回折角に夫々結晶ピーク(矢印で示す)が現れることがわかった。これは、圧粉コアAのFe基軟磁性合金の組成では、α-Fe結晶相のみを析出させるという本実施形態の特徴を備えることが出来ないことを示している。
 図6(a)は、圧粉コアAに対して490℃の加熱処理を施したときのTEM写真、図6(b)は、圧粉コアAに対して510℃の加熱処理を施したときのTEM写真を示す。
 図6(a)(b)に示す黒くて丸く写っている部分がFe基軟磁性合金粉末である。図6(a)に示すように490℃の加熱では、Fe基軟磁性合金粉末の組織全体がアモルファスであることがわかった。一方、図6(b)に示すように510℃の加熱では、アモルファス以外に結晶相が析出することがわかった。
 この結晶相について考察すると、図5のXRD測定からもわかるように、α-Fe結晶相のみならずFe化合物も含まれていることがわかった。
 図4に示すように、圧粉コアAに対して加熱処理温度を上げていくと、505℃付近を境としてFe基軟磁性合金粉末に結晶相が析出する。図4に示すように加熱処理を施しても全体がアモルファスの状態であればコアロスは低いが結晶相が析出するとα-Feの結晶相のみならず、磁気特性に悪影響を与える他のFe化合物層も同時に析出してしまい、急激にコアロスが大きくなることがわかった。
(圧粉コアBに対する実験)
 次に表4に示す圧粉コアB(実施例)に対して、異なる温度の加熱処理を施して、加熱処理温度とコアロスとの関係を測定した。その実験結果が図7に示されている。なお、加熱処理条件は、N2ガス雰囲気下で、加熱処理温度までの昇温速度を40℃/minとし、加熱処理温度に達したら1時間加熱した。
 図8は、圧粉コアBに対して450℃で加熱処理したときのXRD測定結果である。図8に示すようにアモルファスを示すブロードな回折ピーク以外に、α-Fe結晶相が現れることがわかった。
 図9(a)は、圧粉コアBに対して450℃の加熱処理を施したときのTEM写真、図9(b)は、圧粉コアBに対して470℃の加熱処理を施したときのTEM写真を示す。図9には、さらに電子線回折像も合わせて掲載した。また、図10は図9(a)をさらに拡大して示したTEM写真である。
 図8、図9(a)及び図10に示すように450℃の加熱では、Fe基軟磁性合金粉末が、アモルファスとα-Fe結晶相との混相組織であることがわかった。またα-Fe結晶相の析出量はFe基軟磁性合金粉末の組織中、10~20%であった。なお、図9(a)に示すα-Fe結晶相の結晶子の径(平均)は、35~45nm程度であった。この結晶相は図9(a)に示す電子線回折像にも示すように、ほぼα-Fe結晶相と考えられるが、20%程度まで結晶相が析出しても、図7に示すようにコアロスの増加を抑制できた。
 一方、図9(b)に示すように470℃の加熱では、結晶相の析出量が20%程度まで多くなった。この結晶相は図9(b)に示す電子線回折像にも示すように、ほぼα-Fe結晶相と考えられ、結晶相の析出量が20%程度まで多くなっても、図7に示すようにコアロスはさほど大きくならないことがわかった。なお、図9(b)に示す結晶相の結晶子の径(平均)は、40~45nm程度であった。
 また、図7に示すようにコアロスは、Fe基軟磁性合金のアモルファス中にα-Fe結晶相がわずかに析出する混相組織のとき最も小さくなることがわかった。
(圧粉コアCに対する実験)
 次に表4に示す圧粉コアC(実施例)に対して、異なる温度の加熱処理を施して、加熱処理温度とコアロスとの関係を測定した。その実験結果が図11に示されている。なお、加熱処理条件は、N2ガス雰囲気下で、加熱処理温度までの昇温速度を40℃/minとし、加熱処理温度に達したら1時間加熱した。
 図12は、圧粉コアCに対して460℃で加熱処理したときのXRD測定結果である。図12に示すようにアモルファスを示すブロードな回折ピーク以外に、α-Fe結晶相が現れることがわかった。
 図13(a)は、圧粉コアCに対して460℃の加熱処理を施したときのTEM写真、図13(b)は、圧粉コアCに対して480℃の加熱処理を施したときのTEM写真を示す。図13には、さらに電子線回折像も合わせて掲載した。また、図14は図13(a)をさらに拡大して示したTEM写真である。
 図12、図13(a)及び図14に示すように460℃の加熱では、Fe基軟磁性合金粉末が、アモルファスとα-Fe結晶相との混相組織であることがわかった。またα-Fe結晶相の析出量はFe基軟磁性合金粉末の組織中、8~15%であった。なお図13(a)に示すα-Fe結晶相の結晶子の径(平均)は、35~40nm程度であった。
 一方、図13(b)に示すように480℃の加熱では、結晶相の析出量が40~45%程度まで多くなった。この結晶相は図13(b)に示す電子線回折像にも示すように、α-Fe結晶相が主体と考えられるが、結晶相が多くなりすぎ、また、他の化合物相の析出により図11に示すようにコアロスが急激に大きくなってしまうことがわかった。
 圧粉コアCにおいても、図11に示すようにコアロスは、Fe基軟磁性合金のアモルファス中にα-Fe結晶相がわずかに析出する混相組織のとき最も小さくなることがわかった。
(Fe基軟磁性合金A(リボン)(比較例)のXRD測定結果)
 表2に示すFe基軟磁性合金A(リボン)を490℃,500℃に加熱したときの夫々のXRD測定結果を図15に示す。なお、加熱処理条件は、N2ガス雰囲気下で、加熱処理温度までの昇温速度を40℃/minとし、加熱処理温度に達したら30分間加熱した。
 図15に示すように、490℃の加熱では、組織全体がアモルファスであったが、加熱処理温度を500℃にすると、Fe化合物が析出することがわかった。
(Fe基軟磁性合金B(リボン)(実施例)のXRD測定結果)
 表2に示すFe基軟磁性合金B(リボン)を、420℃、430℃、440℃、450℃、460℃に加熱したときの夫々のXRD測定結果を図16に示す。なお、加熱処理条件は、N2ガス雰囲気下で、加熱処理温度までの昇温速度を40℃/minとし、加熱処理温度に達したら30分間加熱した。
 図16に示すように、420℃の加熱では、組織全体がアモルファスであったが、430℃以上に加熱すると、α-Fe結晶相が析出し、さらに加熱を460℃にするとFe化合物も析出することがわかった。従って、α-Fe結晶相のみ析出する加熱処理の温度領域があり、この領域にて加熱処理を行えば、優れた磁気特性を有するFe基軟磁性合金が得られることが期待できる。
(Fe基軟磁性合金C(リボン)(実施例)のXRD測定結果)
 表2に示すFe基軟磁性合金C(リボン)を、430℃、440℃、450℃、460℃,470℃に加熱したときの夫々のXRD測定結果を図17に示す。なお、加熱処理条件は、N2ガス雰囲気下で、加熱処理温度までの昇温速度を40℃/minとし、加熱処理温度に達したら1時間加熱した。
 図17に示すように、430℃の加熱では、組織全体がアモルファスであったが、440℃以上に加熱すると、α-Fe結晶相が析出し、さらに加熱を470℃にするとFe化合物も析出することがわかった。従って、α-Fe結晶相のみ析出する加熱処理の温度領域があり、この領域にて加熱処理を行えば、優れた磁気特性を有するFe基軟磁性合金が得られることが期待できる。
(圧粉コアB、Cの結晶子の径・結晶化割合(体積分率)とコア特性の関係)
 圧粉コアB、Cの加熱処理温度を変化させたときの結晶子の径(平均)と結晶化割合(体積分率)、コアロスとの関係を表5および図18、図19に示す。なお、加熱処理条件はN2ガス雰囲気下で、加熱処理温度までの昇温速度を40℃/minとし、加熱処理温度に達したら1時間加熱した。平均の結晶子の径および結晶化割合はXRDにより求めたものである。
Figure JPOXMLDOC01-appb-T000005
 表5、図18、図19に示すように、平均の結晶子の径が34.7~44.7nmであって、結晶化の割合が7.9~31%でコアロスが500kW/m3を下回っており、良好な磁気特性を有していることが分かった。また、結晶子の径が34nm以下で、結晶化割合が40%を超えるとコアロスが急激に悪化することが分かった。
(Fe基軟磁性合金D及び圧粉コアD(実施例)に関する実験)
 次に、表1のNo48のFe基軟磁性合金を液体急冷法にてリボン状に形成し、前記Fe基軟磁性合金を水アトマイズ法により粉末状に形成した。以下、表6に粉末特性が示されている。
Figure JPOXMLDOC01-appb-T000006
 なお、表6に示す粉末状のFe基軟磁性合金に対しては加熱処理を施していない。
 続いて、表6に示すFe基軟磁性合金粉末を用いて圧粉コアを形成した。
 圧粉コアは、表6に示すFe基軟磁性合金粉末と、シリコーン樹脂(1.4質量%)、ステアリン酸亜鉛(0.3質量%)を混合・乾燥・粉砕し、目開き300μm及び目開き850μmのふるいを用いて300~850μmに分級して造粒粉を形成し、さらに、プレス圧20t/cm2にて、外径が20mm、内径が12mm、高さが6.8mmのリング状のコア前駆体を形成し、N2ガス雰囲気下で、昇温速度を40℃/minとし440℃で1時間加熱して得た。
 そして圧粉コアのコアロス、透磁率、直流重畳特性(μ5500A/m)を測定した。その実験結果が表7に示されている。
Figure JPOXMLDOC01-appb-T000007
 表7に示すように、コアロスを500kW/m3以下にでき、また、高い直流重畳特性が得られることがわかった。
 次に、圧粉コアD(実施例)に対して、異なる温度の加熱処理を施して、加熱処理温度とコアロスとの関係を測定した。その実験結果が表8及び図20に示されている。なお、加熱処理条件は、N2ガス雰囲気下で、加熱処理温度までの昇温速度を40℃/minとし、加熱処理温度に達したら1時間加熱した。
Figure JPOXMLDOC01-appb-T000008
 また図21は、Fe基軟磁性合金D(リボン)の各熱処理におけるXRD測定結果を示す。図21に示すように、410℃の加熱では、組織全体がアモルファスであったが、430℃以上に加熱すると、α-Fe結晶相が析出し、さらに加熱温度を460℃程度にまで上昇させるとFe化合物も析出することがわかった。従って、α-Fe結晶相のみ析出する加熱処理の温度領域があり、この領域にて加熱処理を行えば、優れた磁気特性を有するFe基軟磁性合金が得られることが期待できる。
(Fe基軟磁性合金Eに関する実験)
 次に、表1のNo21のFe基軟磁性合金E(リボン)を用いて行ったXRD測定結果を図22に示す。なお実験条件は、上記した各実験の条件と同じである。
 Fe基軟磁性合金Eは、非熱処理状態(as-Q)でアモルファス相の中にα-Fe結晶相が析出した状態である。そして熱処理を施すと、α-Fe結晶相の析出が顕著に現れ、熱処理温度が460℃程度までに析出すると結晶相はほぼ、α-Fe結晶相であることがわかった。
 そして熱処理温度を470℃以上とすると、Fe化合物も析出することがわかった。従ってFe基軟磁性合金Eにおいても、α-Fe結晶相のみを適切に析出させることができ、また、α-Fe結晶相の析出温度と、Fe化合物の析出温度との間に20℃以上の温度差を設けることができ、優れた磁気特性を有するFe基軟磁性合金が得られることが期待できる。

Claims (8)

  1.  Feと元素Rとを有し、元素Rは、P、C、B及びSiのうち少なくともいずれか1種からなり、
     α-Fe結晶相の析出温度と、Fe化合物の析出温度との間に20℃以上の温度差があり、アモルファス相とα-Fe結晶相との混相組織で形成され、前記α-Fe結晶相の結晶子の径が50nm以下でかつ前記α-Fe結晶相の体積分率は全体の40%以下であることを特徴とするFe基軟磁性合金。
  2.  組成式がFe100-x-uxuで示され、元素Jは、Cr、Co、Ni及びNbの少なくともいずれか1種からなり、0at%≦x≦6at%、17at%≦u≦25at%、17at%≦x+u≦27.1at%である請求項1記載のFe基軟磁性合金。
  3.  組成式がFe100-x-y-z-w-txyzwSitで示され、0at%≦y≦11at%、0at%≦z≦4.2at%、5.7at%≦w≦17at%、0at%≦t≦11at%、17at%≦x+y+z+w+t≦27.1at%である請求項2記載のFe基軟磁性合金。
  4.  Feと、前記元素JからNbを除いたCr、Co及びNiの少なくともいずれか1種からなる元素Mと、P、C、B及びSiとで構成され、
     組成式が、Fe100-x-y-z-w-txyzwSitで示され、組成比を示すx、y、z、w、tは、0at%≦x≦6at%、0.3at%≦y≦8.3at%、2.15at%≦z≦4.2at%、5.7at%≦w≦16.7at%、1.9at%≦t≦8.9at%、72.9at%≦100-x-y-z-w-t≦79.4at%である請求項3記載のFe基軟磁性合金。
  5.  2.3at%≦y≦8.3at%、6.7at%≦w≦11.7at%、1.9at%≦t≦5.9at%である請求項4記載のFe基軟磁性合金。
  6.  組成式が、Fe100-w-t-bwSitCrbで示され、11at%≦w≦17at%、0at%≦t≦10at%、0at%≦b≦1at%、75at%≦100-w-t-b≦83at%である請求項3記載のFe基軟磁性合金。
  7.  Feと、前記元素Jを構成するNbあるいはNb及びCrからなる元素Lと、前記元素Rを構成するP及びBとで構成され、
     組成式がFe100-y-w-aywaで示され、6at%≦y≦11at%、8at%≦w≦14at%、2at%≦a≦3at%、77at%≦100-y-w-a≦80at%である請求項3記載のFe基軟磁性合金。
  8.  請求項1ないし7のいずれか1項に記載のFe基軟磁性合金の粉末が結着材によって固化成形されてなることを特徴とする圧粉コア。
PCT/JP2010/050673 2009-01-23 2010-01-21 Fe基軟磁性合金及び前記Fe基軟磁性合金を用いた圧粉コア WO2010084900A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020117011562A KR101338807B1 (ko) 2009-01-23 2010-01-21 Fe 기 연자성 합금 및 상기 Fe 기 연자성 합금을 사용한 압분 코어
JP2010547507A JP5333794B2 (ja) 2009-01-23 2010-01-21 Fe基軟磁性合金及び前記Fe基軟磁性合金を用いた圧粉コア
EP10733507.7A EP2390377B1 (en) 2009-01-23 2010-01-21 Iron-based soft magnetic alloy and dust core comprising the iron-based soft magnetic alloy
CN2010800036499A CN102264938B (zh) 2009-01-23 2010-01-21 Fe基软磁性合金和使用了所述Fe基软磁性合金的压粉磁芯
US13/180,424 US8282745B2 (en) 2009-01-23 2011-07-11 Fe-based soft magnetic alloy and dust core using fe-based soft magnetic alloy

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-012542 2009-01-23
JP2009012542 2009-01-23

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/180,424 Continuation US8282745B2 (en) 2009-01-23 2011-07-11 Fe-based soft magnetic alloy and dust core using fe-based soft magnetic alloy

Publications (1)

Publication Number Publication Date
WO2010084900A1 true WO2010084900A1 (ja) 2010-07-29

Family

ID=42355952

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/050673 WO2010084900A1 (ja) 2009-01-23 2010-01-21 Fe基軟磁性合金及び前記Fe基軟磁性合金を用いた圧粉コア

Country Status (6)

Country Link
US (1) US8282745B2 (ja)
EP (1) EP2390377B1 (ja)
JP (1) JP5333794B2 (ja)
KR (1) KR101338807B1 (ja)
CN (1) CN102264938B (ja)
WO (1) WO2010084900A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012164845A (ja) * 2011-02-08 2012-08-30 Hitachi Metals Ltd 圧粉磁心
CN103021617A (zh) * 2011-07-11 2013-04-03 阿尔卑斯绿色器件株式会社 复合磁性粉末及使用了所述复合磁性粉末的压粉铁心
WO2016121950A1 (ja) * 2015-01-30 2016-08-04 株式会社村田製作所 磁性体粉末とその製造方法、及び磁心コアとその製造方法、並びにコイル部品、及びモータ
JP2016163008A (ja) * 2015-03-05 2016-09-05 Necトーキン株式会社 圧粉磁心、圧粉磁心の製造方法、および発熱抑制方法
WO2016152269A1 (ja) * 2015-03-20 2016-09-29 アルプス電気株式会社 Fe基合金組成物、軟磁性体粉末、成形部材、圧粉コア、電気・電子部品、電気・電子機器、磁性シート、通信部品、通信機器および電磁干渉抑制部材
WO2019044132A1 (ja) * 2017-08-31 2019-03-07 アルプスアルパイン株式会社 Fe基合金組成物、軟磁性材料、圧粉磁心、電気・電子関連部品および機器
WO2019111951A1 (ja) 2017-12-07 2019-06-13 Jfeスチール株式会社 アトマイズ金属粉末の製造方法
WO2020075815A1 (ja) 2018-10-11 2020-04-16 Jfeスチール株式会社 水アトマイズ金属粉末の製造方法
WO2022107411A1 (ja) 2020-11-18 2022-05-27 Jfeスチール株式会社 水アトマイズ金属粉末の製造方法
US11654487B2 (en) 2018-10-11 2023-05-23 Jfe Steel Corporation Production method for water-atomized metal powder

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5419302B2 (ja) 2009-08-07 2014-02-19 アルプス・グリーンデバイス株式会社 Fe基非晶質合金、及び前記Fe基非晶質合金を用いた圧粉コア、ならびにコイル封入圧粉コア
JP5455258B2 (ja) * 2012-02-21 2014-03-26 Necトーキン株式会社 ノイズ抑制シート
CN102737802A (zh) * 2012-07-02 2012-10-17 浙江嘉康电子股份有限公司 线圈磁粉一体成型式电感及其制作方法
CN102915820A (zh) * 2012-08-29 2013-02-06 中国科学院宁波材料技术与工程研究所 高非晶形成能力的钴基块体非晶软磁合金及其制备方法
CN102867608B (zh) * 2012-08-29 2016-10-19 朗峰新材料南通有限公司 一种FeNi基非晶软磁合金及其制备方法
JP6260086B2 (ja) * 2013-03-04 2018-01-17 新東工業株式会社 鉄基金属ガラス合金粉末
ES2716097T3 (es) 2013-07-17 2019-06-10 Hitachi Metals Ltd Núcleo de polvo, componente de bobina que usa el mismo y proceso para producir un núcleo de polvo
JP6427862B2 (ja) * 2013-10-25 2018-11-28 日立金属株式会社 圧粉磁心、その製造方法、該圧粉磁心を用いたインダクタンス素子および回転電機
KR102303461B1 (ko) * 2014-03-31 2021-09-16 제이에프이 스틸 가부시키가이샤 아토마이즈 금속 분말의 제조 방법
KR102486116B1 (ko) * 2015-10-20 2023-01-09 엘지이노텍 주식회사 연자성 합금
EP3441160A4 (en) * 2016-04-06 2019-11-06 Sintokogio, Ltd. IRON-BASED METALLIC GLASS ALLOY POWDER
JP6256647B1 (ja) * 2016-10-31 2018-01-10 Tdk株式会社 軟磁性合金および磁性部品
TWI626320B (zh) * 2016-11-02 2018-06-11 財團法人工業技術研究院 鐵基軟磁非晶合金塊材與製備方法及其應用
JP6460276B1 (ja) * 2017-08-07 2019-01-30 Tdk株式会社 軟磁性合金および磁性部品
WO2019065500A1 (ja) * 2017-09-29 2019-04-04 株式会社トーキン 圧粉磁心の製造方法、圧粉磁心及びインダクタ
JP7043877B2 (ja) * 2018-02-21 2022-03-30 Tdk株式会社 軟磁性合金および磁性部品
JP6680309B2 (ja) * 2018-05-21 2020-04-15 Tdk株式会社 軟磁性粉末、圧粉体および磁性部品
JP7143635B2 (ja) * 2018-05-30 2022-09-29 トヨタ自動車株式会社 軟磁性材料及びその製造方法
CN110257721B (zh) * 2019-07-01 2021-02-02 济南大学 一种较低Fe含量的Fe基软磁合金及其制备方法和应用
CN112430791B (zh) * 2019-08-26 2023-07-21 株式会社博迈立铖 Fe基合金组合物、Fe基合金组合物的粉末和磁芯
CN116043138A (zh) * 2023-01-03 2023-05-02 深圳市铂科新材料股份有限公司 一种铁基非晶软磁材料及其制备方法

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57185957A (en) 1981-05-13 1982-11-16 Kawasaki Steel Corp Amorphous alloy for iron core having high saturated magnetic flux density
JPS63117406A (ja) 1986-11-06 1988-05-21 Hitachi Metals Ltd アモルフアス合金圧粉磁心
JPS6428301A (en) 1987-07-23 1989-01-30 Hitachi Metals Ltd Fe-base alloy powder and its production
JPS6468446A (en) 1987-09-09 1989-03-14 Hitachi Metals Ltd Fe based amorphous alloy
JPH02180005A (ja) 1988-12-29 1990-07-12 Tdk Corp アモルファス合金軟磁性粉末および磁気シールド材
JPH02232301A (ja) 1989-03-06 1990-09-14 Sumitomo Metal Ind Ltd 磁気特性に優れたアトマイズ合金粉末
JP2713373B2 (ja) * 1995-03-13 1998-02-16 日立金属株式会社 磁 心
JP2003213331A (ja) * 2002-01-25 2003-07-30 Alps Electric Co Ltd Fe基軟磁性合金の製造方法及びFe基軟磁性合金
JP2004156134A (ja) 2002-09-11 2004-06-03 Alps Electric Co Ltd 非晶質軟磁性合金粉末及びそれを用いた圧粉コア及び電波吸収体
JP2005068451A (ja) 2003-08-27 2005-03-17 Japan Science & Technology Agency Fe基軟磁性バルク非晶質・ナノ結晶二相合金及びその製造方法
JP2005307291A (ja) * 2004-04-22 2005-11-04 Alps Electric Co Ltd 非晶質軟磁性合金粉末及びそれを用いた圧粉コアと電波吸収体
JP2007270271A (ja) 2006-03-31 2007-10-18 Hitachi Metals Ltd 軟磁性合金、その製造方法ならびに磁性部品
JP2008169466A (ja) * 2006-12-15 2008-07-24 Alps Electric Co Ltd Fe基非晶質磁性合金及び磁気シート
JP2008248380A (ja) * 2007-03-02 2008-10-16 Nippon Steel Corp 軟磁気特性に優れたFe系非晶質合金
JP2009007639A (ja) * 2007-06-28 2009-01-15 Nippon Steel Corp Fe系非晶質合金薄帯

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6017019B2 (ja) * 1980-09-26 1985-04-30 アライド・コーポレーシヨン 鉄基含硼素磁性非晶質合金およびその製造方法
JPH0793204A (ja) 1993-09-20 1995-04-07 Fujitsu Ltd データベース管理システムとその管理方法
CA2210017C (en) * 1996-07-15 2006-06-06 Teruo Bito Method for making fe-base soft magnetic alloy
JPH11102827A (ja) * 1997-09-26 1999-04-13 Hitachi Metals Ltd 可飽和リアクトル用コア、およびこれを用いた磁気増幅器方式多出力スイッチングレギュレータ、並びにこれを用いたコンピュータ
JP2002151317A (ja) 2000-03-21 2002-05-24 Alps Electric Co Ltd 圧粉磁心及び圧粉磁心の製造方法
JP3442375B2 (ja) 2000-11-29 2003-09-02 アルプス電気株式会社 非晶質軟磁性合金
JP2003041354A (ja) * 2001-07-27 2003-02-13 Alps Electric Co Ltd 軟磁性合金及びその製造方法とそれを用いた磁心
CN100432269C (zh) * 2003-10-17 2008-11-12 安泰科技股份有限公司 块体铁基非晶合金
CN100368584C (zh) * 2004-04-27 2008-02-13 有研稀土新材料股份有限公司 制备稀土磁致伸缩材料的方法和稀土磁致伸缩材料
CN1325688C (zh) * 2005-09-12 2007-07-11 北京科技大学 一种耐磨耐蚀材料的制备方法
CN100476009C (zh) * 2005-09-13 2009-04-08 北京航空航天大学 高强韧Fe基纳米非晶合金复合材料
JP5445888B2 (ja) * 2005-09-16 2014-03-19 日立金属株式会社 軟磁性合金およびその製造方法ならびに磁性部品
CN100442402C (zh) 2005-11-16 2008-12-10 安泰科技股份有限公司 具有优良高频性能的铁基非晶合金粉末、磁粉芯及其制备方法
JP2007254814A (ja) 2006-03-23 2007-10-04 Tdk Corp Fe−Ni系軟磁性合金粉末、圧粉体、コイル封入圧粉磁芯
EP1933337B8 (en) 2006-12-15 2010-09-01 Alps Green Devices Co., Ltd Fe-based amorphous magnetic alloy and magnetic sheet
JP5316921B2 (ja) * 2007-03-16 2013-10-16 日立金属株式会社 Fe基軟磁性合金、およびこれを用いた磁性部品
JP5632608B2 (ja) * 2007-03-20 2014-11-26 Necトーキン株式会社 軟磁性合金及びそれを用いた磁気部品並びにそれらの製造方法
EP2130936A4 (en) * 2007-03-22 2015-10-28 Hitachi Metals Ltd SOFT MAGNETIC TAPE, MAGNETIC CORE, MAGNETIC PART AND METHOD FOR PRODUCING A SOFT MAGNETIC TAPE
WO2008133302A1 (ja) * 2007-04-25 2008-11-06 Hitachi Metals, Ltd. 軟磁性薄帯、その製造方法、磁性部品、およびアモルファス薄帯
JP5094276B2 (ja) 2007-08-23 2012-12-12 アルプス・グリーンデバイス株式会社 圧粉コア及びその製造方法

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57185957A (en) 1981-05-13 1982-11-16 Kawasaki Steel Corp Amorphous alloy for iron core having high saturated magnetic flux density
JPS63117406A (ja) 1986-11-06 1988-05-21 Hitachi Metals Ltd アモルフアス合金圧粉磁心
JPS6428301A (en) 1987-07-23 1989-01-30 Hitachi Metals Ltd Fe-base alloy powder and its production
JPS6468446A (en) 1987-09-09 1989-03-14 Hitachi Metals Ltd Fe based amorphous alloy
JPH02180005A (ja) 1988-12-29 1990-07-12 Tdk Corp アモルファス合金軟磁性粉末および磁気シールド材
JPH02232301A (ja) 1989-03-06 1990-09-14 Sumitomo Metal Ind Ltd 磁気特性に優れたアトマイズ合金粉末
JP2713373B2 (ja) * 1995-03-13 1998-02-16 日立金属株式会社 磁 心
JP2003213331A (ja) * 2002-01-25 2003-07-30 Alps Electric Co Ltd Fe基軟磁性合金の製造方法及びFe基軟磁性合金
JP2004156134A (ja) 2002-09-11 2004-06-03 Alps Electric Co Ltd 非晶質軟磁性合金粉末及びそれを用いた圧粉コア及び電波吸収体
JP3771224B2 (ja) * 2002-09-11 2006-04-26 アルプス電気株式会社 非晶質軟磁性合金粉末及びそれを用いた圧粉コア及び電波吸収体
JP2005068451A (ja) 2003-08-27 2005-03-17 Japan Science & Technology Agency Fe基軟磁性バルク非晶質・ナノ結晶二相合金及びその製造方法
JP2005307291A (ja) * 2004-04-22 2005-11-04 Alps Electric Co Ltd 非晶質軟磁性合金粉末及びそれを用いた圧粉コアと電波吸収体
JP2007270271A (ja) 2006-03-31 2007-10-18 Hitachi Metals Ltd 軟磁性合金、その製造方法ならびに磁性部品
JP2008169466A (ja) * 2006-12-15 2008-07-24 Alps Electric Co Ltd Fe基非晶質磁性合金及び磁気シート
JP2008248380A (ja) * 2007-03-02 2008-10-16 Nippon Steel Corp 軟磁気特性に優れたFe系非晶質合金
JP2009007639A (ja) * 2007-06-28 2009-01-15 Nippon Steel Corp Fe系非晶質合金薄帯

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2390377A4

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012164845A (ja) * 2011-02-08 2012-08-30 Hitachi Metals Ltd 圧粉磁心
CN103021617A (zh) * 2011-07-11 2013-04-03 阿尔卑斯绿色器件株式会社 复合磁性粉末及使用了所述复合磁性粉末的压粉铁心
CN103021617B (zh) * 2011-07-11 2015-07-22 阿尔卑斯绿色器件株式会社 复合磁性粉末及使用了所述复合磁性粉末的压粉铁心
JPWO2016121950A1 (ja) * 2015-01-30 2017-12-21 株式会社村田製作所 磁性体粉末とその製造方法、及び磁心コアとその製造方法、並びにコイル部品、及びモータ
WO2016121950A1 (ja) * 2015-01-30 2016-08-04 株式会社村田製作所 磁性体粉末とその製造方法、及び磁心コアとその製造方法、並びにコイル部品、及びモータ
US10767249B2 (en) 2015-01-30 2020-09-08 Murata Manufacturing Co., Ltd. Magnetic powder and production method thereof, magnetic core and production method thereof, coil component and motor
JP2016163008A (ja) * 2015-03-05 2016-09-05 Necトーキン株式会社 圧粉磁心、圧粉磁心の製造方法、および発熱抑制方法
WO2016152269A1 (ja) * 2015-03-20 2016-09-29 アルプス電気株式会社 Fe基合金組成物、軟磁性体粉末、成形部材、圧粉コア、電気・電子部品、電気・電子機器、磁性シート、通信部品、通信機器および電磁干渉抑制部材
JPWO2016152269A1 (ja) * 2015-03-20 2018-02-22 アルプス電気株式会社 Fe基合金組成物、軟磁性体粉末、成形部材、圧粉コア、電気・電子部品、電気・電子機器、磁性シート、通信部品、通信機器および電磁干渉抑制部材
WO2019044132A1 (ja) * 2017-08-31 2019-03-07 アルプスアルパイン株式会社 Fe基合金組成物、軟磁性材料、圧粉磁心、電気・電子関連部品および機器
WO2019111951A1 (ja) 2017-12-07 2019-06-13 Jfeスチール株式会社 アトマイズ金属粉末の製造方法
WO2020075815A1 (ja) 2018-10-11 2020-04-16 Jfeスチール株式会社 水アトマイズ金属粉末の製造方法
US11654487B2 (en) 2018-10-11 2023-05-23 Jfe Steel Corporation Production method for water-atomized metal powder
US11795532B2 (en) 2018-10-11 2023-10-24 Jfe Steel Corporation Production method for water-atomized metal powder
WO2022107411A1 (ja) 2020-11-18 2022-05-27 Jfeスチール株式会社 水アトマイズ金属粉末の製造方法

Also Published As

Publication number Publication date
JP5333794B2 (ja) 2013-11-06
US8282745B2 (en) 2012-10-09
US20110265915A1 (en) 2011-11-03
CN102264938B (zh) 2013-05-15
EP2390377B1 (en) 2017-09-27
EP2390377A1 (en) 2011-11-30
JPWO2010084900A1 (ja) 2012-07-19
KR20110071021A (ko) 2011-06-27
EP2390377A4 (en) 2016-06-01
KR101338807B1 (ko) 2013-12-06
CN102264938A (zh) 2011-11-30

Similar Documents

Publication Publication Date Title
WO2010084900A1 (ja) Fe基軟磁性合金及び前記Fe基軟磁性合金を用いた圧粉コア
WO2018150952A1 (ja) 軟磁性粉末、圧粉磁芯、磁性部品及び圧粉磁芯の製造方法
JP5458452B2 (ja) Fe基非晶質合金粉末、及び前記Fe基非晶質合金粉末を用いた圧粉コア、ならびにコイル封入圧粉コア
JP7132231B2 (ja) 圧粉磁心の製造方法、圧粉磁心及びインダクタ
JP5305126B2 (ja) 軟磁性粉末、圧粉磁心の製造方法、圧粉磁心、及び磁性部品
JP5419302B2 (ja) Fe基非晶質合金、及び前記Fe基非晶質合金を用いた圧粉コア、ならびにコイル封入圧粉コア
JP6530164B2 (ja) ナノ結晶軟磁性合金粉末およびそれを用いた圧粉磁芯
JP2018070966A (ja) 軟磁性合金および磁性部品
KR102042641B1 (ko) 연자성 합금 및 자성 부품
KR102423591B1 (ko) 연자성 합금 및 자성 부품
CN111093860B (zh) Fe基纳米晶合金粉末及其制造方法、Fe基非晶合金粉末及磁芯
WO2020026949A1 (ja) 軟磁性粉末、Fe基ナノ結晶合金粉末、磁性部品、および圧粉磁芯
JP2014075529A (ja) 軟磁性合金粉末並びにそれを用いた圧粉磁芯及びその製造方法
CN110600218B (zh) 软磁性合金和磁性部件
JP6338001B1 (ja) 軟磁性合金および磁性部品
JP6436206B1 (ja) 軟磁性合金および磁性部品
JP2019094531A (ja) 軟磁性合金および磁性部品
JP6604407B2 (ja) 軟磁性合金および磁性部品
JP6337994B1 (ja) 軟磁性合金および磁性部品
JP2019052367A (ja) 軟磁性合金および磁性部品
JP2016027656A (ja) 圧粉磁心の製造方法
JP2021150555A (ja) 圧粉磁心及びその製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080003649.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10733507

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20117011562

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2010547507

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2010733507

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010733507

Country of ref document: EP