WO2016121950A1 - 磁性体粉末とその製造方法、及び磁心コアとその製造方法、並びにコイル部品、及びモータ - Google Patents

磁性体粉末とその製造方法、及び磁心コアとその製造方法、並びにコイル部品、及びモータ Download PDF

Info

Publication number
WO2016121950A1
WO2016121950A1 PCT/JP2016/052721 JP2016052721W WO2016121950A1 WO 2016121950 A1 WO2016121950 A1 WO 2016121950A1 JP 2016052721 W JP2016052721 W JP 2016052721W WO 2016121950 A1 WO2016121950 A1 WO 2016121950A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic
magnetic powder
core
gas
powder
Prior art date
Application number
PCT/JP2016/052721
Other languages
English (en)
French (fr)
Inventor
亨 ▲高▼橋
和宏 逸見
彰宏 牧野
規治 吉年
Original Assignee
株式会社村田製作所
国立大学法人東北大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所, 国立大学法人東北大学 filed Critical 株式会社村田製作所
Priority to JP2016572196A priority Critical patent/JPWO2016121950A1/ja
Publication of WO2016121950A1 publication Critical patent/WO2016121950A1/ja
Priority to US15/661,520 priority patent/US10767249B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/02Compacting only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C45/00Amorphous alloys
    • C22C45/02Amorphous alloys with iron as the major constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/20Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder
    • H01F1/22Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F3/00Cores, Yokes, or armatures
    • H01F3/08Cores, Yokes, or armatures made from powder
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0206Manufacturing of magnetic cores by mechanical means
    • H01F41/0246Manufacturing of magnetic circuits by moulding or by pressing powder
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/02Details of the magnetic circuit characterised by the magnetic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/08Metallic powder characterised by particles having an amorphous microstructure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • B22F2003/248Thermal after-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • B22F2009/0824Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid with a specific atomising fluid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • B22F2009/0848Melting process before atomisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/35Iron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C2200/00Crystalline structure
    • C22C2200/02Amorphous
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C2202/00Physical properties
    • C22C2202/02Magnetic

Definitions

  • the present invention relates to a magnetic powder and a manufacturing method thereof, a magnetic core and a manufacturing method thereof, a coil component, and a motor, and more specifically, an alloy-based magnetic powder suitable for a coil component such as a transformer and an inductor and the manufacturing thereof.
  • the present invention relates to a method, a magnetic core using the magnetic material, a manufacturing method thereof, a coil component such as a reactor and an inductor using the magnetic powder, and a motor.
  • Magnetic coil powders using metallic magnetic materials are widely used in coil cores used in power inductors and transformers, and stator cores and rotor cores installed in motors.
  • amorphous alloys are excellent in soft magnetic properties, and thus have been actively researched and developed.
  • Patent Document 1 a predetermined amount of a specific element L such as Fe, Si, B, Fe 3 P, and Al and Cr is weighed and melted by high-frequency induction heating in an Ar atmosphere to produce a mother alloy.
  • the master alloy is processed by a single roll liquid quenching method or a water atomizing method, thereby obtaining a continuous ribbon-like amorphous alloy or soft magnetic powder.
  • Patent Document 1 also describes an example in which the mother alloy was processed by a die casting method to obtain a cast bar.
  • Patent Document 1 by adding a specific element L such as Al or Cr to an Fe—Si—BP-based alloy and setting the composition range as described above, the amorphous forming ability and the soft magnetic characteristics are obtained. It is trying to obtain a soft magnetic amorphous alloy having good corrosion resistance, high saturation magnetic flux density, and high corrosion resistance.
  • a specific element L such as Al or Cr
  • Patent Document 2 a general formula Fe a B b Si c P x Cu y, 73 ⁇ a ⁇ 85at%, 9.65 ⁇ b ⁇ 22at%, 9.65 ⁇ b + c ⁇ 24.75at% 0.25 ⁇ x ⁇ 5 at%, 0 ⁇ y ⁇ 0.35 at%, and 0 ⁇ y / x ⁇ 0.5, and an amorphous alloy composition having a ribbon shape with a thickness of 30 ⁇ m to 300 ⁇ m Things have been proposed.
  • the master alloy is processed by a single roll liquid quenching method or a die casting method to obtain a continuous ribbon or a cast bar.
  • Patent Document 2 also describes an example in which the master alloy was processed by a twin roll quenching method to produce a plate-like material.
  • Patent Document 2 by adding P or Cu to an Fe—Si—B-based alloy and limiting the composition as described above, a high wall thickness having high amorphous forming ability and high saturation magnetic flux density is obtained. An attempt is made to obtain a rod-like or plate-like amorphous alloy composition that can be made into a metal.
  • Patent Document 1 Although the corrosion resistance can be improved by adding the specific element L to the Fe—Si—BP system alloy, the saturation magnetic flux density increases as the addition amount of the specific element L increases. Therefore, it is difficult to stably obtain a desired good saturation magnetic flux density.
  • Patent Document 1 since it is produced by the single roll liquid quenching method or the water atomizing method as described above, there are the following problems.
  • molten metal molten metal
  • a disk-shaped roll rotating at high speed and rapidly solidified to obtain a continuous ribbon
  • the continuous ribbon is pulverized into powder. It is not easy, and it is difficult to efficiently produce magnetic powder from a continuous ribbon.
  • the water atomization method water is sprayed on the molten metal, so that the amount of oxygen is large. For this reason, impurities are easily mixed in the powder, and it is difficult to obtain a high-purity magnetic powder. Moreover, since the powder produced by the water atomization method is generally not spherical but has an irregular shape, it is difficult to obtain a high-quality magnetic powder.
  • the mold casting method is not suitable for the production method of magnetic powder.
  • Patent Document 1 it is difficult to obtain a high-quality magnetic powder efficiently, and it is considered difficult to obtain a magnetic core or a coil component having desired magnetic characteristics.
  • Patent Document 2 discloses an alloy composition suitable for a bulk material such as a continuous ribbon, a rod, a plate, or a small complicated shape member, and does not disclose an alloy composition of a magnetic powder. That is, it is considered that the composition range of the magnetic material changes depending on the cooling rate because the cooling rate of the magnetic material varies depending on the manufacturing method. Therefore, it is considered difficult to obtain desired magnetic characteristics even when the composition range found for continuous ribbons and bulk materials is applied to the magnetic powder.
  • Patent Document 2 is manufactured using a single roll liquid quenching method or a mold casting method, as in Patent Document 1, it contains the same problems as Patent Document 1, and The roll quench method has the same problem as the single roll liquid quench method.
  • the present invention has been made in view of such circumstances, and uses an alloy-based magnetic powder that has a high saturation magnetic flux density and a low low magnetic loss and is easy to handle, a manufacturing method thereof, and the magnetic powder. It is an object of the present invention to provide a magnetic core, a manufacturing method thereof, various coil parts using the magnetic powder, and a motor.
  • the gas atomization method has a slower cooling rate than the single roll liquid quenching method or the water atomization method, there are few restrictions on the manufacturing process like the single roll liquid quenching method, and water is used as a jet fluid like the water atomization method. Therefore, it is considered that a high-quality magnetic powder that is spherical and easy to handle can be obtained.
  • the present inventors conducted extensive research on the Fe—Si—BP system alloy using the gas atomization method. As long as the atomic composition ratio of the alloy composition is within a predetermined range, the amorphous phase is obtained. The present inventors have found that a high-quality magnetic powder having a high magnetic flux saturation density and a low magnetic loss can be obtained even if both a crystalline phase and a crystalline phase are present.
  • the present invention has been made based on such knowledge, and the magnetic substance powder according to the present invention has a main component represented by the general formula Fe a (Si b B c P d ) 100-a ,
  • the gas atomization method is used, and when a and b are represented by (a, b), (a, b) is A1 (71.0, 0.19), B1 (79.6, 0) , C1 (80.0, 0), D1 (81.0, 0.17), E1 (81.0, 0.44), F1 (79.6, 0.78), G1 (71.0, 0) .38), and when a and c are represented by (a, c), (a, c) is A2 (71.0,0.48), B2 (78.1, 0), C2 (79.6, 0), D2 (81.0, 0.18), E2 (81.0, 0.26), F2 (79.1, 0.75), G2 (71.0) , 0 .72), and when a and d are represented by (a, d), (
  • the magnetic powder of the present invention it is also preferable that a part of the Fe is substituted with either Co or Ni within a range of 12 at% or less.
  • the amorphous forming ability can be improved, and since C has an action of lowering the melting point, a magnetic powder having a desired high saturation magnetic flux density and low magnetic loss can be obtained because it can be synthesized at a low temperature. Is possible.
  • the magnetic powder of the present invention preferably has a crystallinity measured by X-ray diffraction method of 0% or more and 30% or less.
  • the magnetic powder contains a crystalline phase such as an ⁇ -Fe phase (ferrite phase) or a compound phase having a body-centered cubic structure, it is inferior to the case where the powder structure is formed of only an amorphous phase. It is possible to obtain a high quality magnetic powder having a high saturation magnetic flux density and low magnetic loss.
  • the magnetic powder of the present invention can ensure a saturation magnetic flux density of 1.30 T or more.
  • the method for producing a magnetic powder according to the present invention includes at least each element of Fe, Si, B, and P so that the main component satisfies the general formula Fe a (Si b B c P d ) 100-a
  • a preparation step of preparing a compound containing these elements a heating step of heating the prepared preparation to produce a molten metal, and a spraying step of spraying the inert gas onto the molten metal to pulverize the molten metal.
  • the magnetic powder by the gas atomization method, it is possible to efficiently obtain a spherical and high-quality magnetic powder satisfying a high saturation magnetic flux density and a low magnetic loss.
  • the spraying step is performed in a mixed gas atmosphere in which hydrogen gas is added to the inert gas.
  • the inert gas is preferably argon gas or nitrogen gas that is relatively inexpensive and easily available.
  • the heating step and the spraying step are preferably performed in an inert gas atmosphere, and further in a mixed gas atmosphere in which hydrogen gas is added to the inert gas. It is preferable to carry out.
  • the inert gas is preferably argon gas or nitrogen gas which is relatively inexpensive and easily available.
  • the content ratio of the hydrogen gas in the mixed gas is 0.5 to 7% in terms of partial pressure.
  • the magnetic core according to the present invention is characterized in that the main component is formed of any one of the magnetic powders described above.
  • the magnetic core of the present invention preferably contains a binder and the content of the magnetic powder is 60 vol% or more by volume ratio.
  • the method for producing a magnetic core according to the present invention comprises a molding step of mixing a magnetic powder produced by any one of the production methods described above and a binder to perform a molding process, thereby producing a molded body, A heat treatment step of heat-treating the molded body.
  • the coil component according to the present invention is a coil component in which a coil conductor is wound around a core portion, and the core portion is formed of the magnetic core.
  • the coil component according to the present invention is a coil component in which a coil conductor is embedded in a magnetic body portion, and the magnetic body portion is characterized in that a main component is formed of the magnetic body powder.
  • the magnetic body portion contains a binder, and the content of the magnetic body powder in the magnetic body portion is 60 vol% or more by volume ratio.
  • the motor according to the present invention includes a stator core in which a plurality of armature teeth are provided at equal intervals on the same circumference, a coil conductor wound around the armature teeth, and a rotatable inside the stator core.
  • a stator core in which a plurality of armature teeth are provided at equal intervals on the same circumference, a coil conductor wound around the armature teeth, and a rotatable inside the stator core.
  • the main component is formed of the magnetic powder described above.
  • the main component is represented by the general formula Fe a (Si b B c P d ) 100-a and is produced by the gas atomization method, and (a, b), ( Since a, c), and (a, d) are in the predetermined regions described above, even if an amorphous phase and a crystalline phase are mixed, the magnetic flux saturation density is high and the spherical shape with low magnetic loss is easy to handle. High quality magnetic powder can be obtained.
  • the method for producing a magnetic powder of the present invention at least a Fe, Si, B, and P element simple substance or a compounding step of preparing a compound containing these elements, and heating the prepared compound And a heating step for producing a molten metal and a spraying step for spraying an inert gas onto the molten metal to pulverize the molten metal, and the blending step includes (a, b), (a, c), (a , D) the elemental element or the compound is prepared so as to satisfy the above-mentioned predetermined region, so that there are few restrictions on the manufacturing process such as a single-roll liquid quenching method, and magnetic powder as in the water atomizing method.
  • oxygen can be effectively absorbed by hydrogen gas by spraying a mixed gas in which hydrogen gas is added to the inert gas onto the molten metal, so that contamination of impurities due to oxygen can be suppressed.
  • a magnetic powder with a high purity can be obtained efficiently.
  • the main component is formed of any one of the magnetic powders described above, it is possible to obtain a magnetic core with good magnetic properties having a high saturation magnetic flux density and low magnetic loss. .
  • the coil conductor is a coil component wound around the core portion, and the core portion is formed of the magnetic core, so that the saturation magnetic flux density is high and the magnetic loss is reduced. A good coil component with low magnetic properties can be easily obtained.
  • the coil conductor is embedded in the magnetic body portion, and the magnetic body portion is formed of the magnetic core, so that the saturation magnetic flux density is high and the magnetic loss is increased.
  • the saturation magnetic flux density is high and the magnetic loss is increased.
  • a plurality of armature teeth are provided on the same circumference at equal intervals, a coil conductor wound around the armature teeth, and rotated inside the stator core.
  • a motor including a freely arranged rotor core at least one of the stator core and the rotor core is formed of the magnetic powder according to any one of the above, so that power loss is low. A high-quality motor can be obtained.
  • Atomic composition ratio of Fe is a diagram showing the relationship between a and Si b B c P d atomic composition ratio of Si in b. It is a diagram showing the relationship between Fe atomic composition ratios a and Si b B c P d atomic composition ratio of B in c. It is a diagram showing the relationship between Fe atomic composition ratios a and Si b B c P d atomic composition ratio of P in d. It is a figure which shows an example of the diffraction peak of the magnetic body powder of this invention. It is sectional drawing which shows an example of a gas atomizer. 1 is a perspective view showing an embodiment of a magnetic core according to the present invention.
  • FIG. 1 It is a perspective view which shows the internal structure of the reactor as one Embodiment (1st Embodiment) of the coil components which concern on this invention. It is a perspective view of the inductor as 2nd Embodiment of the coil components which concern on this invention. It is a perspective view which shows the internal structure of the said inductor. It is a figure which shows the X-ray-diffraction spectrum of the sample number 11. It is a figure which shows the X-ray-diffraction spectrum of the sample number 18. It is a figure which shows the X-ray diffraction spectrum of the sample number 65. FIG. It is a figure which shows the X-ray diffraction spectrum of the sample number 84.
  • FIG. 1st Embodiment It is a perspective view of the inductor as 2nd Embodiment of the coil components which concern on this invention. It is a perspective view which shows the internal structure of the said inductor. It is a figure which shows the X-ray-diffraction spectrum
  • the magnetic powder according to the present invention is made of a Fe—Si—BP system alloy as a main component and is produced by a gas atomization method.
  • the main component means, for example, that 80 wt% or more, preferably 90 wt% or more is contained in the magnetic powder.
  • the gas atomization method is inferior to the cooling rate compared to the single roll liquid quenching method and the water atomization method, there are few restrictions on the manufacturing process like the single roll liquid quenching method, and it is possible to easily obtain the desired magnetic powder. It is.
  • This gas atomization method is different from the water atomization method in which water is used for the jet fluid, and since the jet fluid is mainly composed of an inert gas, it is possible to suppress the absorption of impurities with little oxygen absorption, and the spherical shape. It is possible to obtain a high-quality magnetic powder that is easy to handle.
  • the Fe—Si—BP system alloy can be represented by the general formula (1).
  • the atomic composition ratio a of Fe and the atomic composition ratios b, c, d of the constituent elements of Si, B, and P in Si b B c P d Satisfies the predetermined range, a magnetic powder having a high saturation magnetic flux density of 1.30 T or more and a small magnetic loss can be obtained.
  • FIG. 1 is a diagram showing the relationship between the atomic composition ratio a of Fe and the atomic composition ratio b of Si.
  • the horizontal axis indicates the a value and the vertical axis indicates the b value.
  • the atomic composition ratio a of Fe and the Si atomic composition ratio b are expressed as A1 (71.0, 0) where (a, b) is indicated by diagonal lines when a and b are represented by (a, b). .19), B1 (79.6, 0), C1 (80.0, 0), D1 (81.0, 0.17), E1 (81.0, 0.44), F1 (79.6, 0.78) and the region V1 surrounded by G1 (71.0, 0.38) is satisfied.
  • Fe is an important element responsible for magnetism and constitutes the main element of the general formula (1). And in order to ensure a desired magnetic characteristic, it is necessary to set a value to 71.0 or more. That is, when the a value is less than 71.0, the amorphous forming ability is lowered, and a compound formed between constituent elements such as ⁇ -Fe phase (ferrite phase) and Fe—B having a body-centered cubic structure. There is a possibility that the phase is excessively formed and the magnetic loss is increased. On the other hand, if the a value exceeds 81.0, a high saturation magnetic flux density can be ensured, but there is a risk of increasing the magnetic loss.
  • Si is an element having a good amorphous forming ability.
  • the b value which is the atomic composition ratio of Si, becomes too small or excessive, there is a risk of increasing the magnetic loss. Therefore, it is necessary to control the b value within an appropriate range.
  • the blending amounts of Fe and Si are adjusted so that the a value and the b value, that is, (a, b) satisfy the region V1.
  • FIG. 2 is a diagram showing the relationship between the atomic composition ratio a of Fe and the atomic composition ratio c of B.
  • the horizontal axis indicates the a value
  • the vertical axis indicates the c value.
  • the atomic composition ratio a of Fe and the atomic composition ratio c of B are as follows.
  • the a and the c are represented by (a, c), A2 (71.0, 0.48), B2 (78.1, 0), C2 (79.6, 0), D2 (81.0, 0.18), E2 (81.0, 0.26), F2 (79.1) , 0.75) and G2 (71.0, 0.72).
  • the a value which is the atomic composition ratio of Fe, needs to be adjusted in the range of 71.0 to 81.0 for the reasons described above.
  • B like Si, is an element having a good amorphous forming ability.
  • the c value which is the atomic composition ratio of B, is too small or excessive, there is a risk of increasing the magnetic loss. For this reason, it is necessary to control the c value within an appropriate range.
  • the blending amounts of Fe and B are adjusted so that the a value and the c value, that is, (a, c) satisfy the region V2.
  • FIG. 3 is a diagram showing the relationship between the atomic composition ratio a of Fe and the atomic composition ratio d of P.
  • the horizontal axis indicates the a value and the vertical axis indicates the d value.
  • the atomic composition ratio a of Fe and the atomic composition ratio d of P are expressed as A3 (71.0,7) where (a, d) is represented by diagonal lines when a and d are represented by (a, d). 0.08), B3 (71.9, 0), C3 (79.1, 0), D3 (81.0, 0.36), E3 (81.0, 0.62), F3 (77.2) , 0.67) and G3 (71.0, 0.23).
  • P like Si and B, is an element having a good amorphous forming ability, but if the d value, which is the atomic composition ratio of P, is too small or excessive, there is a risk of increasing magnetic loss. Therefore, it is necessary to control the d value within an appropriate range.
  • the blending amounts of Fe and P are adjusted so that the a value and the d value, that is, (a, d) satisfy the region V3.
  • the blending amount of Fe, Si, B, and P is adjusted so that the general formula (1) satisfies all the regions V1 to V3, and the spherical shape is obtained by the gas atomization method.
  • the adjustment of the blending amount of Fe, Si, B, and P and the production by the gas atomization method combined with each other make it easy to handle in a spherical shape, have a high saturation magnetic flux density, and have a low magnetic loss.
  • Body powder can be obtained. Specifically, a magnetic powder having a high saturation magnetic flux density of 1.30 T or more can be obtained.
  • the present magnetic powder when the general formula (1) satisfies the regions V1 to V3, the crystallinity X indicating the ratio of the crystalline phase is 30% or less. Therefore, when the crystallinity X is 30% or less, the present magnetic powder is not only formed of an amorphous phase but also an ⁇ -Fe phase, Fe—B, etc. having a body-centered cubic structure. Even if a crystalline phase such as a compound phase formed between these constituent elements is mixed with an amorphous phase, it has a high saturation magnetic flux density and low magnetic loss that are comparable to those formed only with an amorphous phase. It is possible to obtain a high quality magnetic powder.
  • the crystallinity X can be easily calculated using an X-ray diffraction method.
  • FIG. 4 shows the main part of the X-ray diffraction spectrum of the magnetic powder, where the horizontal axis is the diffraction angle 2 ⁇ (°) and the vertical axis is the diffraction intensity (au).
  • the X-ray diffraction spectrum is a crystal in a predetermined range (for example, 34 to 56 °) of diffraction angle 2 ⁇ as shown in FIG.
  • the portion showing the mass phase has a diffraction peak P, and the portion showing the amorphous phase forms halo H.
  • the crystallinity X can be expressed by the formula (I) where Ic is the area of the peak region showing crystallinity and Ia is the area of the halo region showing amorphousness.
  • the area Ic of the peak area is an integrated value of the areas of the peak areas.
  • the magnetic powder has a crystallinity X of 0% or more and 30% or less.
  • part of Fe is preferably substituted with Co and / or Ni.
  • the magnetic powder can be represented by the general formula (2).
  • Co and Ni reduce the magnetostriction effect, so that the soft magnetic characteristics can be improved.
  • the atomic composition ratio e is within a range of 12 at% or less in total.
  • part of B is preferably substituted with C.
  • the magnetic powder can be represented by the general formula (3) or (4).
  • the atomic composition ratio ⁇ is within a range of 85 at% or less.
  • the crystallinity X is 0% or more and 30% or less.
  • FIG. 5 is a cross-sectional view showing an embodiment of a gas atomizing apparatus used in the method for producing magnetic powder.
  • This gas atomizing device is defined by a dissolution chamber 2 and a spray chamber 3 through a partition plate 1.
  • the melting chamber 2 includes a crucible 5 made of alumina or the like in which the molten metal 4 is accommodated, an induction heating coil 6 disposed on the outer periphery of the crucible 5, and a top plate 7 that closes the crucible 5. .
  • the spray chamber 3 guides the gas injection chamber 8 provided with the injection nozzle 8 a, the gas supply pipe 9 for supplying an inert gas as a jet fluid to the gas injection chamber 8, and the molten metal 4 to the spray chamber 3.
  • a molten metal supply pipe 10 is provided.
  • the present magnetic powder can be manufactured as follows.
  • each elemental element of Fe, Si, B, P or a compound containing these elements is prepared as a raw material, and each elemental element of Co and / or Ni, C or a compound containing these elements as necessary Is prepared, and a predetermined amount is weighed and mixed to obtain an alloy material.
  • a high frequency power source is applied to the induction heating coil 6 to heat the crucible 5 and supply the alloy material to the crucible 5 to melt the alloy material, thereby producing the molten metal 4.
  • an inert gas as a jet fluid is supplied to the gas supply pipe 9 and the gas injection chamber 8, and the inert gas is sprayed from the injection nozzle 8 a to the molten metal 4 falling from the molten metal supply pipe 10 as indicated by an arrow.
  • pulverization and rapid cooling are performed, whereby, for example, the magnetic powder 11 represented by the general formulas (1) to (4) having an average particle diameter of 100 ⁇ m or less is produced.
  • the magnetic powder described above is produced by the gas atomization method using an inert gas as the jet fluid, there are few restrictions on the production process such as the single-roll liquid quenching method, and water Unlike the atomization method, the magnetic powder does not exhibit an irregular shape, and a high-quality magnetic powder that is spherical and easy to handle can be obtained.
  • an inert gas is used for the jet fluid, the amount of oxygen is small and contamination of impurities can be suppressed.
  • an inert gas is used for the jet fluid in the spray treatment, but it is also preferable to use a mixed gas obtained by adding hydrogen gas to the inert gas.
  • the atmosphere of the heat treatment and the spray treatment is preferably carried out in an inert gas atmosphere, more preferably in a mixed gas atmosphere in which hydrogen gas is added to the inert gas.
  • the applied voltage rises and the amount of heat input to the crucible 5 increases, so that the alloy material can be melted at high speed, and the molten metal 4 Can be produced quickly.
  • the content ratio of hydrogen gas in the mixed gas is not particularly limited, but is preferably 0.5 to 7% in terms of partial pressure from a practical viewpoint such as industrial availability.
  • the inert gas used for the atmosphere gas of the jet fluid or heat treatment and spray treatment is not particularly limited as long as it belongs to the category of inert gas, and helium gas, neon gas, etc. can be used.
  • helium gas, neon gas, etc. can be used.
  • argon gas which is easily available and inexpensive, is preferably used.
  • the alloy material can be melted at a high speed, and the mixed gas hydrogenated in the inert gas is melted.
  • the high-quality, high-purity magnetic material that is spherical and easy to handle has high saturation magnetic flux density and low magnetic loss. Powder can be obtained quickly and efficiently.
  • FIG. 6 is a perspective view showing an embodiment of a magnetic core according to the present invention, and the magnetic core 12 is formed in a ring shape having a long hole 12a.
  • the magnetic core 12 is formed of a composite material containing the above-described magnetic powder of the present invention as a main component and containing at least a resin material (binder) such as an epoxy resin.
  • the content of the magnetic powder in the composite material is not particularly limited, but is preferably 60 vol% or more by volume ratio. If the content of the magnetic powder is less than 60 vol%, the content of the magnetic powder is too low, and the magnetic permeability and magnetic flux saturation density may decrease, leading to a decrease in magnetic properties. Further, the upper limit of the content of the magnetic powder is preferably 99 vol% or less because the resin material only needs to be contained to such an extent that the desired effect can be obtained.
  • This magnetic core can be easily manufactured as follows.
  • the above-mentioned magnetic powder and a resin material (binder) such as epoxy resin are kneaded and dispersed to obtain a composite material.
  • a molding process is performed using a compression molding method or the like to produce a molded body. That is, the composite material is poured into a cavity of a heated mold and pressed to a pressure of about 100 MPa to produce a molded body.
  • the molded body is taken out from the molding die, and the molded body is subjected to a heat treatment at a temperature of 120 to 150 ° C. for about 24 hours to accelerate the curing of the resin material, whereby the above-described magnetic core 12 is manufactured.
  • FIG. 7 is a perspective view showing a reactor as an embodiment of the coil component according to the present invention.
  • a coil conductor 13 is wound around a core portion 20, and the core portion 20 is formed by a magnetic core 12.
  • the coil conductor 13 includes a first coil conductor 13a wound around one long side portion 20a, a second coil conductor 13b wound around the other long side portion 20b, and a first coil conductor.
  • the connecting portion 13c connects the first coil conductor 13a and the second coil conductor 13b, and is integrally formed by the first coil conductor 13a, the second coil conductor 13b, and the connecting portion 13c.
  • the coil conductor 13 is formed by covering a single rectangular wire conductor made of copper or the like with an insulating resin such as a polyester resin or a polyamideimide resin. It is wound around the other long side portion 20b in a coil shape.
  • the present reactor since the coil conductor 13 is wound around the core portion 20 including the magnetic core 12, the present reactor has high saturation magnetic flux density and low magnetic loss, is ferromagnetic, and has good soft magnetic properties with small hysteresis characteristics. A high-purity and high-quality reactor having characteristics can be obtained with high efficiency.
  • FIG. 8 is a perspective view of an inductor as a second embodiment of the coil component according to the present invention.
  • a protective layer 15 is formed at a substantially central portion of the surface of the magnetic body portion 14 formed in a rectangular shape, and at both ends of the surface of the magnetic body portion 14 in such a form as to sandwich the protective layer 15.
  • a pair of external electrodes 16a and 16b are formed.
  • FIG. 9 shows the internal structure of the inductor.
  • the protective layer 15 and the external electrodes 16a and 16b are omitted for convenience of explanation.
  • the magnetic part 14 is formed of a composite material containing the magnetic powder of the present invention as a main component and a resin material such as an epoxy resin, like the magnetic core 12.
  • a coil conductor 17 is embedded in the magnetic part 14.
  • the content of the magnetic powder in the composite material is not particularly limited, but for the same reason as in the case of the magnetic core 12, the volume ratio is preferably 60 vol% or more, more preferably 60 to 99 vol. % Is good.
  • the coil conductor 17 has a cylindrical shape in which a rectangular wire is wound in a coil shape, and both end portions 17a and 17b are exposed on the end surface of the magnetic body portion 14 so as to be electrically connected to the external electrodes 16a and 16b. ing.
  • the coil conductor 17 is formed in a strip shape by covering a rectangular wire conductor made of copper or the like with an insulating resin such as a polyester resin or a polyamideimide resin. It is wound in a coil shape so as to have an air core.
  • This inductor can be easily manufactured as follows.
  • the magnetic powder and resin material are kneaded and dispersed to produce a composite material.
  • the conductor coil 17 is embedded in the composite material so that the conductor coil 17 is sealed with the composite material.
  • molding is performed using a compression molding method to obtain a molded body in which the conductor coil 17 is embedded.
  • heat treatment is performed and the surface is polished, thereby obtaining the magnetic body portion 14 in which the end portions 17a and 17b of the coil conductor 17 are exposed at the end surface.
  • an insulating resin is applied to the surface of the magnetic body portion 14 other than the site where the external electrodes 16a and 16b are formed and cured to form the protective layer 15.
  • external electrodes 16a and 16b mainly composed of a conductive material are formed on both end portions of the magnetic body portion 14, whereby an inductor is manufactured.
  • the formation method of the external electrodes 16a and 16b is not particularly limited, and can be formed by an arbitrary method such as a coating method, a plating method, or a thin film forming method.
  • this inductor has a high saturation magnetic flux density and a low magnetic loss because the coil conductor 17 is embedded in the magnetic body portion 14 and the magnetic body portion 14 is mainly composed of the above-described magnetic body powder.
  • High purity and high quality coil parts having good soft magnetic characteristics that are ferromagnetic and have small hysteresis characteristics can be obtained with high efficiency.
  • coil devices such as a reactor and an inductor are exemplified as devices using magnetic powder.
  • this magnetic powder has a high saturation magnetic flux density and low magnetic loss, it is equipped with a motor. It can also be applied to a stator core and a rotor core.
  • the motor is normally arranged in a freely rotatable manner within a stator core having a plurality of armature teeth equidistantly arranged on the same circumference, a coil conductor wound around the armature teeth, and the stator core.
  • Rotor core Since the magnetic powder has a high saturation magnetic flux density and low magnetic loss, at least one of the stator core and the rotor core, preferably both, has the magnetic powder as a main component, A high-quality motor with low loss can be obtained.
  • the manufacturing method of the magnetic core 12 and the magnetic body portion 14 is not limited to the compression molding method described above, and an injection molding method or a transfer molding method may be used.
  • the alloy composition only needs to satisfy the above-described range, and other elements having an amorphous forming ability, such as Ga, Ge, and Pd, may be added as appropriate. Even if a trace amount of impurities such as Mn, Al, N 2 and Ti is contained, the characteristics are not affected.
  • the preparation is heated and melted by high frequency induction heating, but the heating and melting method is not limited to high frequency induction heating, and may be arc melting, for example.
  • Fe, Si, B, and Fe 3 P were prepared as raw materials. Then, in the general formula Fe a (Si b B c P d ) 100-a , a, b, c, d were prepared so as to have the atomic composition ratios shown in Tables 1 to 7, and the melting point was measured in a high frequency induction heating furnace After heating and melting as described above, this melt was poured into a copper casting mold and cooled, thereby producing a master alloy.
  • the average particle size of the produced sample was measured with a particle size distribution measuring device (LA-300 manufactured by Horiba Ltd.) and found to be 23 to 29 ⁇ m.
  • FIG. 10 to 13 show examples of X-ray diffraction spectra. Specifically, FIG. 10 shows an X-ray diffraction spectrum of Sample No. 11, and FIG. 11 shows an X-ray diffraction spectrum of Sample No. 18.
  • FIG. 12 shows the X-ray diffraction spectrum of sample number 65
  • FIG. 13 shows the X-ray diffraction spectrum of sample number 84. 10 to 13, the horizontal axis represents the diffraction angle 2 ⁇ (°), and the vertical axis represents the diffraction intensity (au).
  • sample number 11 As shown in FIG. 10, in sample number 11, halo H indicating an amorphous phase is detected, and a peak P1 indicating a crystalline phase is present.
  • This peak P1 shows a body-centered cubic structure, and this body-centered cubic structure is considered to be an ⁇ -Fe phase from the alloy composition. Therefore, sample number 11 can be identified as having an amorphous phase and an ⁇ -Fe phase.
  • Sample No. 18 does not have a peak indicating a crystalline phase, and only halo H indicating an amorphous phase is detected. Can be identified as a phase.
  • sample No. 65 As shown in FIG. 12, in Sample No. 65, halo H indicating an amorphous phase, peak P1 indicating an ⁇ -Fe phase, and peak P2 indicating a crystalline phase other than the ⁇ -Fe phase were detected. . Since this peak P2 is considered to be a compound phase formed by bonding between constituent elements such as Fe—B, sample number 65 is identified as having an amorphous phase, an ⁇ -Fe phase, and a compound phase. be able to.
  • Magnetic loss 3 parts by weight of an epoxy resin is added to 100 parts by weight of each sample Nos. 1-123 (the volume content of the magnetic powder is 85 vol%), press-molded at a pressure of 100 MPa, an outer diameter of 13 mm, an inner diameter of 8 mm, A toroidal core having a thickness of 2.5 mm was produced.
  • the core loss (magnetic loss) was measured at a frequency of 1 MHz and a magnetic field of 30 mT using a BH analyzer (SY-8217 manufactured by Iwatatsu Keiki Co., Ltd.).
  • Tables 1 to 7 show the component composition, saturation magnetization, saturation magnetic flux density, identification phase of the powder structure, and core loss of each sample of sample numbers 1 to 123.
  • * indicates a sample outside the scope of the present invention.
  • Table 8 shows the crystallinity X of sample numbers 2, 34, 52, 61, 65, 75, 76, 84, 98, and 99.
  • * indicates a sample outside the scope of the present invention.
  • the crystallinity degree X is 30% or less, and therefore the powder structure has an amorphous phase. It has been found that a magnetic powder having a high saturation magnetic flux density of 1.30 T or more and a low core loss of 3600 kW / m 3 or less can be obtained even when a crystalline phase is included as well as a single phase.
  • saturation magnetization and saturation magnetic flux density were obtained by the same method and procedure as in Example 1, the powder structure was identified, and the core loss was measured.
  • C is prepared, and in the general formula Fe a ⁇ Si b (B 1 ⁇ C ⁇ ) c P d ⁇ 100-a , a, b, c Samples Nos. 300 to 304 were prepared in the same manner and procedure as in Example 1 except that the composition was adjusted so that d, ⁇ , and ⁇ had the atomic composition ratio shown in Table 10.
  • saturation magnetization and saturation magnetic flux density were obtained by the same method and procedure as in Example 1, the powder structure was identified, and the core loss was measured.
  • Table 10 shows the component compositions of sample numbers 300 to 304 and the measurement results.
  • a high-quality soft magnetic powder having a high saturation magnetic flux density and low magnetic loss, a magnetic core using the magnetic powder, a coil component such as an inductor, and a motor can be realized.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Soft Magnetic Materials (AREA)
  • Powder Metallurgy (AREA)

Abstract

 一般式Fe(Si100-aで表される磁性体粉末であって、ガスアトマイズ法で作製される。一般式中のa値とb値を(a,b)で表したときに、A1(71.0,0.19)、B1(79.6、0)、C1(80.0,0)、D1(81.0,0.17)、E1(81.0,0.44)、F1(79.6,0.78)、G1(71.0,0.38)で囲まれる所定の領域V1にある。同様に、a値とc値、及びa値とd値についても、(a,c)、(a,d)が所定の領域の範囲内にある。これにより飽和磁束密度が高く磁気損失の低く、球状で取扱い容易な合金系の磁性体材料を得ることができ、この磁性体材料を使用して磁心コアや各種コイル部品、及びモータを実現することができる。

Description

磁性体粉末とその製造方法、及び磁心コアとその製造方法、並びにコイル部品、及びモータ
 本発明は、磁性体粉末とその製造方法、及び磁心コアとその製造方法、並びにコイル部品、及びモータに関し、より詳しくはトランスやインダクタ等のコイル部品に適した合金系の磁性体粉末とその製造方法、及びこの磁性体材料を使用した磁心コアとその製造方法、並びに前記磁性体粉末を使用したリアクトルやインダクタ等のコイル部品、及びモータに関する。
 パワーインダクタやトランス等に使用されるコイル部品やモータに装備されるステータコアやロータコアでは、金属磁性体を使用した磁性体粉末が広く使用されている。
 特に、これら磁性体粉末のうち非晶質合金類は軟磁性特性に優れていることから、従来より盛んに研究・開発されている。
 例えば、特許文献1には、組成式{Fe(Si1-a100-bで表され、該組成式の構成元素のうち、Lは、Al、Cr、Zr、Nb、Mo、Hf、Ta及びWから選択される一種類以上の元素であり、0.7≦a≦0.82、0<b≦5原子%、0.05≦x≦0.6、0.1≦y≦0.85、0.05≦z≦0.7及びx+y+z=1を満たす軟磁性非晶質合金が提案されている。
 この特許文献1では、Fe、Si、B、FeP、及びAl、Cr等の特定元素Lを所定量秤量し、Ar雰囲気中で高周波誘導加熱を行って溶解させて母合金を作製した後、該母合金を単ロール液体急冷法や水アトマイズ法で処理し、これにより連続薄帯状の非晶質合金や軟磁性粉末を得ている。
 また、この特許文献1では、前記母合金を金型鋳造法で処理して鋳造棒材を得た実施例も記載されている。
 すなわち、この特許文献1では、Fe-Si-B-P系合金にAl、Cr等の特定元素Lを添加し、上述のような組成範囲とすることにより、非晶質形成能や軟磁気特性が良好で飽和磁束密度が高く、高耐食性を有する軟磁性非晶質合金を得ようとしている。
 また、特許文献2には、一般式FeSiCuであって、73≦a≦85at%、9.65≦b≦22at%、9.65≦b+c≦24.75at%、0.25≦x≦5at%、0≦y≦0.35at%、及び0≦y/x≦0.5であり、厚さが30μm以上300μm以下の薄帯形状を有する非晶質合金組成物が提案されている。
 この特許文献2でも、特許文献1と同様、母合金を単ロール液体急冷法や金型鋳造法で処理して連続薄帯や鋳造棒材を得ている。
 また、この特許文献2では、前記母合金を双ロール急冷法で処理して板状材を作製した実施例も記載されている。
 すなわち、この特許文献2では、Fe-Si-B系合金にPやCuを添加し、上述のように組成を限定することにより、高い非晶質形成能と高飽和磁束密度を有する高肉厚化が可能な棒状又は板状の非晶質合金組成物を得ようとしている。
国際公開第2009/037824号(請求項1、段落〔0009〕、〔0011〕、〔0042〕、〔0064〕等) 特開2009-108415号公報(請求項1、段落〔0011〕~〔0013〕、〔0035〕、〔0053〕、〔0077〕等)
 しかしながら、特許文献1では、Fe-Si-B-P系合金に特定元素Lを添加することにより、耐食性を向上させることができるものの、特定元素Lの添加量が増加するに伴い飽和磁束密度が低下する傾向があり、このため所望の良好な飽和磁束密度を安定して得るのは困難である。
 また、特許文献1では、上述したように単ロール液体急冷法や水アトマイズ法で作製しているため、以下のような課題がある。
 すなわち、単ロール液体急冷法では、溶湯(溶融金属)を高速回転する円盤状のロールに噴霧し、急冷固化して連続薄帯を得ているものの、連続薄帯を粉末状に粉砕するのは容易なことではなく、連続薄帯から磁性体粉末を効率良く製造するのが困難である。
また、水アトマイズ法では、溶湯に水を噴霧しているため、酸素量が多く、このため粉末中に不純物が混入しやすく、高純度の磁性体粉末を得るのが困難である。しかも水アトマイズ法で製造された粉末は、一般に球状とはならずに不規則形状を有することから高品質の磁性体粉末を得るのは困難である。
 また、金型鋳造法は、磁性体粉末の製法には適さない。
 このように特許文献1では、高品質の磁性体粉末を効率良く得ることができず、このため所望の磁気特性を有する磁心コアやコイル部品等を得るのは困難と考えられる。
 一方、特許文献2は、連続薄帯や棒状、板状、小型複雑形状部材等のバルク材に好適な合金組成を開示したものであり、磁性体粉末の合金組成を開示したものではない。すなわち、磁性体材料は、作製方法が異なれば冷却速度も異なることから、冷却速度に応じて磁性体材料の組成範囲も変化すると考えられる。したがって、連続薄帯用やバルク材用に見出した組成範囲を磁性体粉末に適用しても所望の磁気特性を得るのは困難と考えられる。
 しかも、特許文献2は、特許文献1と同様、単ロール液体急冷法や金型鋳造法を使用して作製していることから、特許文献1と同様の課題を内包しており、また、双ロール急冷法についても単ロール液体急冷法と同様の課題がある。
 本発明はこのような事情に鑑みなされたものであって、飽和磁束密度が高く低磁気損失が低い球状で取扱い容易な合金系の磁性体粉末とその製造方法、及びこの磁性体粉末を使用した磁心コアとその製造方法、並びにこの磁性体粉末を使用した各種コイル部品、及びモータを提供することを目的とする。
 ガスアトマイズ法は、単ロール液体急冷法や水アトマイズ法に比べて冷却速度は遅いものの、単ロール液体急冷法のような製造工程上の制約が少なく、水アトマイズ法のようにジェット流体として水を使用しないため、球状で取扱い容易な高品質の磁性体粉末が得られると考えられる。
 そこで、本発明者らは、Fe-Si-B-P系合金について、ガスアトマイズ法を使用して鋭意研究を行ったところ、合金組成の原子組成比が所定範囲内であれば、非晶質相と結晶質相とが混在していても、高磁束飽和密度を有し磁気損失の低い球状で取扱い容易な高品質の磁性体粉末を得ることができるという知見を得た。
 本発明はこのような知見に基づきなされたものであって、本発明に係る磁性体粉末は、主成分が、一般式Fe(Si100-aで表されると共に、ガスアトマイズ法で作製されてなり、前記aと前記bを(a,b)で表したときに、(a,b)がA1(71.0,0.19)、B1(79.6、0)、C1(80.0,0)、D1(81.0,0.17)、E1(81.0,0.44)、F1(79.6,0.78)、G1(71.0,0.38)で囲まれる領域にあり、前記aと前記cを(a,c)で表したときに、(a,c)がA2(71.0,0.48)、B2(78.1、0)、C2(79.6,0)、D2(81.0,0.18)、E2(81.0,0.26)、F2(79.1,0.75)、G2(71.0,0.72)で囲まれる領域にあり、前記aと前記dを(a,d)で表したときに、(a,d)がA3(71.0,0.08)、B3(71.9,0)、C3(79.1,0)、D3(81.0,0.36)、E3(81.0,0.62)、F3(77.2,0.67)、G3(71.0,0.23)で囲まれる領域にあることを特徴としている。
 また、本発明の磁性体粉末は、前記Feの一部が、12at%以下の範囲でCo及びNiのうちのいずれか一方と置換されているのも好ましい。
 これにより高飽和磁束密度及び低磁気損失を有し、強磁性でヒステリシス特性の小さい軟磁性特性の良好な磁性体粉末を得ることが可能となる。
 また、本発明の磁性体粉末は、前記B(ホウ素)の一部が、85at%以下の範囲でC(炭素)と置換されているのも好ましい。
 これによっても非晶質形成能を向上させることができ、しかもCは融点を低下させる作用を有することから、低温合成が可能で所望の高飽和磁束密度低磁気損失を有する磁性体粉末を得ることが可能となる。
 また、本発明の磁性体粉末は、X線回折法で測定された結晶化度が、0%以上30%以下であるのが好ましい。
 これにより磁性体粉末中に体心立方晶構造のα-Fe相(フェライト相)や化合物相等の結晶質相が含有されていても、粉末構造が非晶質相のみで形成された場合と遜色のない高飽和磁束密度と低磁気損失を有する高品質の磁性体粉末を得ることができる。
 本発明の磁性体粉末は、具体的には1.30T以上の飽和磁束密度を確保することができる。
 また、本発明に係る磁性体粉末の製造方法は、主成分が一般式Fe(Si100-aを満たすように少なくともFe、Si、B、及びPの各元素単体又はこれら元素を含有した化合物を調合する調合工程と、前記調合された調合物を加熱して溶湯を作製する加熱工程と、前記不活性ガスを前記溶湯に噴霧して該溶湯を粉砕する噴霧工程とを含み、前記調合工程は、前記aと前記bを(a,b)で表したときに、(a,b)がA1(71.0,0.19)、B1(79.6、0)、C1(80.0,0)、D1(81.0,0.17)、E1(81.0,0.44)、F1(79.6,0.78)、G1(71.0,0.38)で囲まれる領域を満足し、前記aと前記cを(a,c)で表したときに、(a,c)がA2(71.0,0.48)、B2(78.1、0)、C2(79.6,0)、D2(81.0,0.18)、E2(81.0,0.26)、F2(79.1,0.75)、G2(71.0,0.72)で囲まれる領域を満足し、前記aと前記dを(a,b)で表したときに、(a,d)がA3(71.0,0.08)、B3(71.9,0)、C3(79.1,0)、D3(81.0,0.36)、E3(81.0,0.62)、F3(77.2,0.67)、G3(71.0,0.23)で囲まれる領域を満足するように前記元素単体又は前記化合物を調合することを特徴としている。
 このように磁性体粉末をガスアトマイズ法で作製することにより、高飽和磁束密度と低磁気損失を満足する球状で高品質の磁性体粉末を効率よく得ることができる。
 また、本発明の磁性体粉末の製造方法は、前記噴霧工程は、水素ガスが前記不活性ガスに添加された混合ガス雰囲気中で行うのが好ましい。
 これにより磁性体粉末中に酸素が混入するのをより一層効果的に回避することができ、したがって酸素に起因した不純物の混入を極力回避することができる。
 さらに、本発明の磁性体粉末の製造方法は、前記不活性ガスは、比較的安価で入手容易なアルゴンガスまたは窒素ガスであるのが好ましい。
 また、本発明の磁性体粉末の製造方法は、前記加熱工程及び前記噴霧工程は、不活性ガス雰囲気中で行うのが好ましく、更には水素ガスが前記不活性ガスに添加された混合ガス雰囲気中で行うのが好ましい。
 この場合も、前記不活性ガスは、比較的安価で入手容易なアルゴンガスまたは窒素ガスであるのが好ましい。
 また、本発明の磁性体粉末の製造方法は、前記混合ガス中の前記水素ガスの含有比率が、分圧換算で0.5~7%であるのが好ましい。
 また、本発明に係る磁心コアは、主成分が、上記いずれかに記載の磁性体粉末で形成されていることを特徴としている。
 また、本発明の磁心コアは、結合剤を含有すると共に、前記磁性体粉末の含有量が、体積比率で60vol%以上であるのが好ましい。
 また、本発明に係る磁心コアの製造方法は、上記いずれかに記載の製造方法で作製された磁性体粉末と結合剤とを混合して成形処理を行い、成形体を作製する成形工程と、前記成形体を熱処理する熱処理工程とを含んでいることを特徴としている。
 また、本発明に係るコイル部品は、コイル導体がコア部に巻回されたコイル部品であって、前記コア部が、上記磁心コアで形成されていることを特徴としている。
 さらに、本発明に係るコイル部品は、コイル導体が磁性体部に埋設されたコイル部品であって、前記磁性体部は、主成分が上記磁性体粉末で形成されていることを特徴としている。
 また、本発明のコイル部品は、前記磁性体部が、結合剤を含有すると共に、前記磁性体部中の前記磁性体粉末の含有量が、体積比率で60vol%以上であるのも好ましい。
 これにより透磁率や磁束飽和密度が低下することもなく良好な磁気特性を有するコイル部品を容易に得ることができる。
 また、本発明に係るモータは、複数の電機子歯が同一円周上に等間隔に設けられたステータコアと、前記電機子歯に巻回されたコイル導体と、前記ステータコアの内部に回動自在に配されたロータコアとを備えたモータにおいて、前記ステータコア及び前記ロータコアのうちの少なくともいずれか一方は、主成分が上記いずれかに記載の磁性体粉末で形成されていることを特徴としている。
 本発明の磁性体粉末によれば、主成分が、一般式Fe(Si100-aで表されると共に、ガスアトマイズ法で作製されてなり、(a,b)、(a,c)、(a,d)が上述した所定の領域にあるので、非晶質相と結晶質相とが混在していても、磁束飽和密度が高く、磁気損失の低い球状で取扱い容易な高品質の磁性体粉末を得ることができる。
 また、本発明の磁性体粉末の製造方法によれば、少なくともFe、Si、B、及びPの各元素単体又はこれら元素を含有した化合物を調合する調合工程と、前記調合された調合物を加熱して溶湯を作製する加熱工程と、不活性ガスを前記溶湯に噴霧して該溶湯を粉砕する噴霧工程とを含み、前記調合工程は、(a,b)、(a,c)、(a,d)が上述した所定の領域を満足するように前記元素単体又は前記化合物を調合するので、単ロール液体急冷法のような製造工程の制約も少なく、また水アトマイズ法のように磁性体粉末が不規則形状を呈することもなく、球状で取扱い容易な高品質の磁性体粉末を得ることができる。また、不活性ガスを溶湯に噴霧していることから、酸素量も少なく、不純物の混入が抑制された磁性体粉末を得ることが可能となる。
 特に、噴霧工程において、水素ガスが前記不活性ガスに添加された混合ガスを溶湯に噴霧することにより、水素ガスで酸素を効果的に吸収できることから、酸素に起因した不純物の混入を抑制できる高純度の磁性体粉末を効率良く得ることができる。
 本発明の磁心コアによれば、主成分が、上記いずれかに記載の磁性体粉末で形成されているので、飽和磁束密度が高く磁気損失の低い磁気特性の良好な磁心コアを得ることができる。
 また、本発明の磁心コアの製造方法によれば、上記いずれかに記載の製造方法で作製された磁性体粉末と結合剤とを混合して成形処理を行い、成形体を作製する成形工程と、前記成形体を熱処理する熱処理工程とを含んでいるので、磁気特性の良好な所望の磁心コアを容易に作製することができる。
 また、本発明のコイル部品によれば、コイル導体がコア部に巻回されたコイル部品であって、前記コア部が、上記磁心コアで形成されているので、飽和磁束密度が高く磁気損失の低い磁気特性の良好なコイル部品を容易に得ることができる。
 さらに、本発明のコイル部品によれば、コイル導体が磁性体部に埋設されたコイル部品であって、前記磁性体部が、上記磁心コアで形成されているので、飽和磁束密度が高く磁気損失の低い磁気特性の良好なコイル部品を容易に得ることができる。
 また、本発明のモータによれば、複数の電機子歯が同一円周上に等間隔に設けられたステータコアと、前記電機子歯に巻回されたコイル導体と、前記ステータコアの内部に回動自在に配されたロータコアとを備えたモータにおいて、前記ステータコア及び前記ロータコアのうちの少なくともいずれか一方は、主成分が上記いずれかに記載の磁性体粉末で形成されているので、電力損失の低い高品質のモータを得ることが可能となる。
Feの原子組成比aとSi中のSiの原子組成比bとの関係を示す図である。 Feの原子組成比aとSi中のBの原子組成比cとの関係を示す図である。 Feの原子組成比aとSi中のPの原子組成比dとの関係を示す図である。 本発明の磁性体粉末の回析ピークの一例を示す図である。 ガスアトマイズ装置の一例を示す断面図である。 本発明に係る磁心コアの一実施の形態を示す斜視図である。 本発明に係るコイル部品の一実施の形態(第1の実施の形態)としてのリアクトルの内部構造を示す斜視図である。 本発明に係るコイル部品の第2の実施の形態としてのインダクタの斜視図である。 上記インダクタの内部構造を示す斜視図である。 試料番号11のX線回析スペクトルを示す図である。 試料番号18のX線回析スペクトルを示す図である。 試料番号65のX線回析スペクトルを示す図である。 試料番号84のX線回析スペクトルを示す図である。 実施例1における各試料のa値とb値をプロットした図である。 実施例1における各試料のa値とc値をプロットした図である。 実施例1における各試料のa値とd値をプロットした図である。
 次に、本発明の実施の形態を詳説する。
 本発明に係る磁性体粉末は、Fe-Si-B-P系合金を主成分とし、ガスアトマイズ法で作製されている。
 ここで、主成分とは、例えば磁性体粉末中で80wt%以上、好ましくは90wt%以上含有されていることを意味する。
 ガスアトマイズ法は、単ロール液体急冷法や水アトマイズ法等に比べて冷却速度に劣るものの、単ロール液体急冷法のように製造工程の制約も少なく、所望の磁性体粉末を容易に得ることが可能である。また、このガスアトマイズ法は、ジェット流体に水を使用する水アトマイズ法とは異なり、ジェット流体が不活性ガスを主体としていることから酸素の吸収も少なく不純物の混入を抑制することが可能となり、球状で取扱い容易な高品質の磁性体粉末を得ることが可能である。換言すると、高飽和磁束密度と低磁気損失の高品質な本発明の磁性体粉末を得るためには、不純物の混入を抑制する必要があり、そのためにはガスアトマイズ法で作製する必要がある。
 上記Fe-Si-B-P系合金は、一般式(1)で表すことができる。
 Fe(Si100-a …(1)
 そして、本実施の形態では、上記一般式(1)において、Feの原子組成比aとSi中のSi、B、Pの各構成元素の原子組成比b、c、dとが所定範囲を満足することにより、1.30T以上の高飽和磁束密度を有し、かつ磁気損失の小さい磁性体粉末を得ることができる。
 次に、上記一般式(1)において、Feの原子組成比aとSi、B、Pの各構成元素の原子組成比b、c、dとの関係を説明する。
 図1は、Feの原子組成比aとSiの原子組成比bとの関係を示す図である。図中、横軸はa値、縦軸はb値を示している。
 すなわち、Feの原子組成比aとSi原子組成比bは、前記aと前記bを(a,b)で表したときに、(a,b)が、斜線で示すA1(71.0,0.19)、B1(79.6、0)、C1(80.0,0)、D1(81.0,0.17)、E1(81.0,0.44)、F1(79.6,0.78)、G1(71.0,0.38)で囲まれる領域V1を満たしている。
 Feは磁性を担う重要な元素であり、一般式(1)の主たる元素を構成する。そして、所望の磁気特性を確保するためにはa値は71.0以上とする必要がある。すなわち、a値が71.0未満になると、非晶質形成能が低くなり、体心立方晶構造を有するα-Fe相(フェライト相)やFe-B等の構成元素間で形成される化合物相が過剰に生成し、磁気損失の増加を招くおそれがある。一方、a値が81.0を超えると、高飽和磁束密度は確保できるものの磁気損失の増加を招くおそれがある。
 また、Siは良好な非晶質形成能を有する元素である。しかしながら、Siの原子組成比であるb値が過少になったり過剰になると、磁気損失の増加を招くおそれがあることから、b値を適度な範囲に制御する必要がある。
 そこで、本実施の形態では、a値とb値、すなわち(a,b)が領域V1を満たすようにFeとSiの配合量を調整している。
 図2は、Feの原子組成比aとBの原子組成比cとの関係を示す図である。図中、横軸はa値、縦軸はc値を示している。
 すなわち、Feの原子組成比aとBの原子組成比cは、前記aと前記cを(a,c)で表したときに、(a,c)が、斜線で示すA2(71.0,0.48)、B2(78.1、0)、C2(79.6,0)、D2(81.0,0.18)、E2(81.0,0.26)、F2(79.1,0.75)、G2(71.0,0.72)で囲まれる領域V2を満たしている。
 Feの原子組成比であるa値は、上述した理由から71.0~81.0の範囲に調整する必要がある。また、Bは、Siと同様、良好な非晶質形成能を有する元素であるが、Bの原子組成比であるc値が過少になったり過剰になると、磁気損失の増加を招くおそれがあることから、c値も適度な範囲に制御する必要がある。
 そこで、本実施の形態では、a値とc値、すなわち(a,c)が領域V2を満たすようにFeとBの配合量を調整している。
 図3は、Feの原子組成比aとPの原子組成比dとの関係を示す図である。図中、横軸はa値、縦軸はd値を示している。
 すなわち、Feの原子組成比aとPの原子組成比dは、前記aと前記dを(a,d)で表したときに、(a,d)が、斜線で示すA3(71.0,0.08)、B3(71.9,0)、C3(79.1,0)、D3(81.0,0.36)、E3(81.0,0.62)、F3(77.2,0.67)、G3(71.0,0.23)で囲まれる領域V3を満たしている。
 Feの原子組成比であるa値は、上述した理由から71.0~81.0の範囲に調整する必要がある。また、Pは、SiやBと同様、良好な非晶質形成能を有する元素であるが、Pの原子組成比であるd値が過少になったり過剰になると、磁気損失の増加を招くおそれがあることから、d値も適度な範囲に制御する必要がある。
 そこで、本実施の形態では、a値とd値、すなわち(a,d)が領域V3を満たすようにFeとPの配合量を調整している。
 このように本実施の形態では、一般式(1)が領域V1~V3の全てを満たすように、Fe、Si、B、及びPの配合量を調整し、ガスアトマイズ法で作製することにより、球状で取扱いが容易で飽和磁束密度が高く低磁気損失を有する高品質の磁性体粉末を得ることができる。すなわち、Fe、Si、B、及びPの配合量の調整とガスアトマイズ法による作製との双方が相俟って球状で取扱いが容易で飽和磁束密度が高く低磁気損失を有する所望の高品質の磁性体粉末を得ることができる。具体的には1.30T以上の高飽和磁束密度を有する磁性体粉末を得ることができる。
 また、本磁性体粉末は、一般式(1)が領域V1~V3を満たす場合、結晶質相の割合を示す結晶化度Xは30%以下となる。したがって、本磁性体粉末は、結晶化度Xが30%以下であれば、非晶質相のみで形成された場合のみならず、体心立方晶構造を有するα-Fe相やFe-B等の構成元素間で形成された化合物相などの結晶質相が非晶質相と共に混在していても、非晶質相のみで形成された場合と遜色のない高飽和磁束密度と低磁気損失を有する高品質の磁性体粉末を得ることができる。
 尚、この結晶化度XはX線回折法を使用して容易に算出することができる。
 図4は、磁性体粉末のX線回折スペクトルの要部を示しており、横軸が回折角2θ(°)、縦軸が回折強度(a.u.)である。
 磁性体粉末中に結晶質相と非結晶質相とが混在する場合、X線回析スペクトルは、図4に示すように、回折角2θの所定範囲(例えば、34~56°)において、結晶質相を示す部分は回折ピークPを有し、非晶質相を示す部分はハローHを形成する。そして、結晶化度Xは、結晶性を示すピーク領域の面積をIc、非晶質性を示すハロー領域の面積をIaとすると、数式(I)で表すことができる。
 X={Ic/(Ic+Ia)}×100 …(I)
 尚、ハロー領域上にピーク領域が複数存在する場合は、ピーク領域の面積Icは、各ピーク領域の面積の積算値となる。
 そして、上述したように本磁性体粉末は、一般式(1)が領域V1~V3を満たす場合は、結晶化度Xが0%以上、30%以下となる。
 さらに、本発明の磁性体粉末は、Feの一部がCo及び/又はNiで置換されているのも好ましく、この場合は、磁性体粉末は一般式(2)で表すことができる。
 Fea-e(Si100-a …(2)
 ここで、MはCo及び/又はNiである。
 Co及びNiは磁歪作用を低下させることから、軟磁気特性を向上させることが可能となる。
 ただし、Feの一部をCo及びNiの原子組成比eが総計で12at%を超えて置換すると、非晶質形成能が低下して過剰な結晶相を形成し、磁気特性の低下を招くおそれがある。
 したがって、Feの一部をCo及び/又はNiで置換させる場合は、原子組成比eが総計で12at%以下の範囲で行うのが好ましい。
 また、本発明の磁性体粉末は、Bの一部がCで置換されているのも好ましく、この場合は、磁性体粉末は一般式(3)又は(4)で表すことができる。
 Fea{Si(B1-αα100-a …(3)
 Fea-e{Si(B1-αα100-a …(4)
 CはSi、B、Pと同様、非晶質相の形成に寄与する元素であり、しかも融点を低下させる作用を有することから、低温での合成が可能となる。
 ただし、Bの一部をCの原子組成比αで85at%を超えて置換すると、磁気損失の増加を招くおそれがあることから好ましくない。
 したがって、Bの一部をCで置換させる場合は、原子組成比αが85at%以下の範囲で行うのが好ましい。
 尚、一般式(2)~(4)で規定される磁性体粉末の場合も、結晶化度Xは0%以上、30%以下となる。
 次に、上記磁性体粉末の製造方法を詳述する。
 図5は、磁性体粉末の製造方法で使用されるガスアトマイズ装置の一実施の形態を示す断面図である。
 このガスアトマイズ装置は、仕切板1を介して溶解室2と噴霧室3とに画成されている。
 溶解室2は、溶湯4が収容されるアルミナ等で形成された坩堝5と、該坩堝5の外周に配された誘導加熱コイル6と、坩堝5を閉蓋する天板7とを備えている。
 また、噴霧室3は、噴射ノズル8aが設けられたガス噴射室8と、ジェット流体としての不活性ガスをガス噴射室8に供給するガス供給管9と、溶湯4を噴霧室3に案内する溶湯供給管10とを備えている。
 本磁性体粉末は以下のようにして製造することができる。
 まず、素原料としてFe、Si、B、Pの各元素単体又はこれら元素を含有した化合物を用意し、さらに必要に応じてCo及び/又はNi、Cの各元素単体又はこれら元素を含有した化合物を用意し、所定量秤量して調合し、合金材料を得る。
 次に、高周波電源を誘導加熱コイル6に印加し、坩堝5を加熱すると共に、坩堝5に合金材料を供給して該合金材料を溶解させ、溶湯4を作製する。
 次いで、ガス供給管9及びガス噴射室8にジェット流体としての不活性ガスを供給し、溶湯供給管10から落下してきた溶湯4に対し、矢印に示すように噴射ノズル8aから不活性ガスを噴霧し、粉砕・急冷し、これにより例えば平均粒径が100μm以下の一般式(1)~(4)で表される磁性体粉末11が作製される。
 このように本実施の形態では、ジェット流体に不活性ガスを使用するガスアトマイズ法で上述した磁性体粉末を作製しているので、単ロール液体急冷法のような製造工程の制約も少なく、また水アトマイズ法のように磁性体粉末が不規則形状を呈することもなく、球状で取扱い容易な高品質の磁性体粉末を得ることができる。また、ジェット流体に不活性ガスを使用していることから酸素量も少なく、不純物の混入を抑制することが可能となる。
 上記製造方法では、噴霧処理でジェット流体に不活性ガスを使用しているが、水素ガスを不活性ガスに添加した混合ガスを使用するのも好ましい。
 また、加熱処理及び噴霧処理の雰囲気について特に言及していないが、不活性ガス雰囲気で行うのが好ましく、水素ガスを不活性ガスに添加した混合ガス雰囲気中で行うのがより好ましい。
 すなわち、噴霧室3を上述した混合ガス雰囲気にして噴霧処理を行うことにより、磁性体粉末11中に酸素が混入するのをより一層効果的に回避することができ、したがって酸素に起因した不純物の混入を極力回避することが可能となる。
 また、溶解室2を上述した混合ガス雰囲気にして高周波誘導加熱を行うことにより、印加電圧が上昇して坩堝5への入熱量が増加することから、合金材料の高速溶解が可能となり、溶湯4を迅速に作製することができる。
 尚、混合ガス中の水素ガスの含有比率は、特に限定されるものではないが、工業的な入手容易性等、実用的観点からは分圧換算で0.5~7%が好ましい。
 また、ジェット流体や加熱処理及び噴霧処理の雰囲気ガスに使用される不活性ガスは、不活性ガスの範疇に属するものであれば特に限定されるものではなく、ヘリウムガス、ネオンガス等も使用可能であるが、通常は入手容易で安価なアルゴンガスが好んで使用される。
 このように本実施の形態では、不活性ガスに水素添加された混合ガス雰囲気で誘導加熱を行うことにより、合金材料の高速溶解が可能となり、さらに不活性ガスに水素添加された混合ガスを溶湯に噴霧することにより、磁性体粉末11への不純物の混入がより効果的を抑制することができ、高飽和磁束密度と低磁気損失を有し球状で取扱い容易な高品質で高純度の磁性体粉末を迅速かつ効率よく得ることができる。
 図6は、本発明に係る磁心コアの一実施の形態を示す斜視図であって、この磁心コア12は、長孔状の孔部12aを有するリング形状に形成されている。
 磁心コア12は、上述した本発明の磁性体粉末を主成分とし、エポキシ樹脂等の樹脂材料(結合剤)を少なくとも含有した複合材料で形成されている。
 尚、複合材料中の磁性体粉末の含有量は、特に限定されるものではないが、体積比率で60vol%以上が好ましい。磁性体粉末の含有量が60vol%未満になると、磁性体粉末の含有量が過少となって透磁率や磁束飽和密度が低下して磁気特性が低下を招くおそれがある。また、磁性体粉末の含有量の上限は、樹脂材料が、所期の作用効果を奏する程度に含有されていればよいことから、99vol%以下が好ましい。
 この磁心コアは、以下のようにして容易に製造することができる。
 上述した本磁性体粉末とエポキシ樹脂等の樹脂材料(結合剤)とを混錬し、分散させて複合材料を得る。次いで、例えば、圧縮成形法等を使用して成形処理を行い、成形体を作製する。すなわち、加熱された金型のキャビティに前記複合材料を流し込み、100MPa程度に加圧してプレス加工を行い、成形体を作製する。
 その後、成形金型から成形体を取り出し、成形体を120~150℃の温度で24時間程度、熱処理を施して樹脂材料の硬化を促進し、これにより上述した磁心コア12が作製される。
 図7は、本発明に係るコイル部品の一実施の形態としてのリアクトルを示す斜視図である。
 このリアクトルは、コイル導体13がコア部20に巻回されており、該コア部20が磁心コア12で形成されている。
 すなわち、長孔状のコア部20は、互いに平行な2つの長辺部20a、20bを有している。そして、コイル導体13は、一方の長辺部20aに巻回された第1のコイル導体13aと、他方の長辺部20bに巻回された第2のコイル導体13bと、第1のコイル導体13aと第2のコイル導体13bとを連接する連接部13cとからなり、これら第1のコイル導体13a、第2のコイル導体13b、及び連接部13cにより一体形成されている。具体的には、このコイル導体13は、銅等からなる平角形状の一本のワイヤ導線がポリエステル樹脂やポリアミドイミド樹脂等の絶縁性樹脂で被覆され、コア部20の一方の長辺部20a及び他方の長辺部20bの双方にコイル状に巻回されている。
 このように本リアクトルは、磁心コア12からなるコア部20にコイル導体13が巻回されているので、高飽和磁束密度と低磁気損失を有し、強磁性でヒステリシス特性が小さい良好な軟磁気特性を有する高純度で高品質のリアクトルを高効率で得ることができる。
 図8は、本発明に係るコイル部品の第2の実施の形態としてのインダクタの斜視図である。
 このインダクタは、矩形形状に形成された磁性体部14の表面略中央部に保護層15が形成されると共に、該保護層15を挟むような形態で前記磁性体部14の表面両端部には一対の外部電極16a、16bが形成されている。
 図9は、インダクタの内部構造を示す図である。この図9では説明の都合上、保護層15及び外部電極16a、16bを省略している。
 磁性体部14は、上記磁心コア12と同様、本発明の磁性体粉末を主成分とし、エポキシ樹脂等の樹脂材料を含有した複合材料で形成されている。そして、磁性体部14にはコイル導体17が埋設されている。
 尚、複合材料中の磁性体粉末の含有量は、特に限定されるものではないが、上記磁心コア12の場合と同様の理由から、体積比率で60vol%以上が好ましく、より好ましくは60~99vol%がよい。
 コイル導体17は、平角線がコイル状に巻回された円筒形状とされ、両端部17a、17bは外部電極16a、16bと電気的に接続可能となるように磁性体部14の端面に露出している。コイル導体17は、具体的には、第1の実施の形態と同様、銅等からなる平角形状のワイヤ導線がポリエステル樹脂やポリアミドイミド樹脂等の絶縁性樹脂で被覆され、帯状に形成されると共に空芯を有するようにコイル状に巻回されている。
 このインダクタは、以下のようにして容易に作製することができる。
 まず、第1の実施の形態と同様、本磁性体粉末と樹脂材料とを混錬し、分散させて複合材料を作製する。次いで、導体コイル17が複合材料で封止されるように該導体コイル17を複合材料中に埋め込む。そして、例えば、圧縮成形法を使用して成形加工を施し、導体コイル17が埋設された成形体を得る。次いで、この成形体を成形金型から取り出した後、熱処理を行い、表面研磨し、これによりコイル導体17の端部17a、17bが端面に露出した磁性体部14を得る。
 次に、外部電極16a、16bの形成部位以外の磁性体部14表面に絶縁性樹脂を塗布し硬化させて保護層15を形成する。
 その後、磁性体部14の両端部に導電性材料を主成分とした外部電極16a、16bを形成し、これによりインダクタが作製される。
 外部電極16a、16bの形成方法は特に限定されるものでなく、例えば塗布法、めっき法、薄膜形成方法等、任意の方法で形成することが可能である。
 このように本インダクタは、コイル導体17が磁性体部14に埋設されると共に、該磁性体部14が上述した磁性体粉末を主成分としているので、高飽和磁束密度と低磁気損失を有し、強磁性でヒステリシス特性が小さい良好な軟磁気特性を有する高純度で高品質のコイル部品を高効率で得ることができる。
 尚、本発明は上記実施の形態に限定されるものではなく、要旨を逸脱しない範囲で種々の変更が可能である。上記実施の形態では、磁性体粉末を使用したデバイスとしてリアクトルやインダクタ等のコイル部品を例示したが、本磁性体粉末は、高飽和磁束密度を有し低磁気損失であることから、モータに装備されるステータコアやロータコアに応用することも可能である。すなわち、モータは、通常、複数の電機子歯が同一円周上に等間隔に設けられたステータコアと、前記電機子歯に巻回されたコイル導体と、前記ステータコアの内部に回動自在に配されたロータコアとを備えている。そして、本磁性体粉末は、高飽和磁束密度を有し低磁気損失であることから、ステータコア及びロータコアのうちの少なくとも一方、好ましくは双方が、本磁性体粉末を主成分とすることにより、電力損失の低い高品質のモータを得ることが可能となる。
 また、磁心コア12や磁性体部14の作製方法についても、上述した圧縮成形法に限定されるものではなく、射出成形法やトランスファ成形法を使用してもよい。
 本磁性体粉末を構成する元素種についても、合金組成が上述した範囲を満たしておればよく、他の非晶質形成能を有する元素、例えばGa、Ge、Pdを適宜添加してもよく、また、Mn、Al、N、Ti等の微量の不純物を含んでいても特性に影響を与えるものではない。
 また、上記実施の形態では、高周波誘導加熱により調合物を加熱・溶解しているが、加熱・溶解方法は高周波誘導加熱に限定されるものではなく、例えばアーク溶解であってもよい。
 次に、本発明の実施例を具体的に説明する。
〔試料の作製〕
 素原料としてFe、Si、B、FePを用意した。そして、一般式Fe(Si)100-aにおいて、a、b、c、dが表1~表7に示す原子組成比となるように調合し、高周波誘導加熱炉で融点以上に加熱し溶解させ、次いで、この溶解物を銅製の鋳込み型に流し込んで冷却し、これにより母合金を作製した。
 次に、この母合金を5mm程度の大きさに破砕し、また、分圧換算で3%の水素ガスをアルゴンガスに添加した混合ガス雰囲気とされたガスアトマイズ装置を用意した。次いで、前記母合金をガスアトマイズ装置の坩堝に投入し、高周波誘導加熱を行って母合金を溶解させ、溶湯を得た。
 次いで、上記混合ガス雰囲気下、ジェット流体として水素添加されたアルゴンガスを前記溶湯に噴霧し、粉砕・急冷して合金粉末を得た。そして、この合金粉末を目開き38μmのフルイを通過させ、試料番号1~123の試料を得た。
 この作製された試料の平均粒径を、粒子径分布測定装置(堀場製作所社製LA-300)で測定したところ、23~29μmであった。
〔試料の評価〕
(飽和磁束密度の測定)
 試料番号1~123の各試料10mgを採取し、非磁性の粘着テープ上に試料を載せて該粘着テープを二つ折りにし、縦7mm、横7mmの板状に成形した。次いで、振動試料型磁力計(東英工業社製VSM-5-10)を使用し、最大印加磁界を12000A/m、室温(25℃)で飽和磁化を測定した。そして、この測定値と試料の真比重から飽和磁束密度を算出した。
(粉末構造の同定)
 粉末X線回折装置(リガク社製RINT2200)を使用し、回折角2θが30°~90°の範囲で、ステップ幅0.02°、ステップ時間2秒の測定条件でX線回折スペクトルを測定し、X線回折スペクトルから各試料の粉末構造相を同定した。
 図10~図13はX線回折スペクトルの一例を示している。具体的には、図10は試料番号11のX線回折スペクトルを示し、図11は試料番号18のX線回折スペクトルを示している。図12は試料番号65のX線回折スペクトルを示し、図13は試料番号84のX線回折スペクトルを示している。図10~図13中、横軸は回折角2θ(°)、縦軸は回折強度(a.u.)である。
 図10に示すように、試料番号11は、非晶質相を示すハローHが検出され、また、結晶質相を示すピークP1が存在している。このピークP1は、体心立方晶構造を示しており、この体心立方晶構造は、合金組成からα-Fe相と考えられる。したがって、試料番号11は、非晶質相とα-Fe相とを有すると同定することができる。
 図11に示すように、試料番号18は、結晶質相を示すピークが存在せず、非晶質相を示すハローHのみが検出されたことから、この試料番号18は、非晶質相単相であると同定することができる。
 図12に示すように、試料番号65は、非晶質相を示すハローH、α-Fe相を示すピークP1、及びα-Fe相以外の他の結晶質相を示すピークP2が検出された。このピークP2は、Fe-B等の構成元素間の結合によって形成された化合物相と考えられることから、試料番号65は、非晶質相、α-Fe相、及び化合物相を有すると同定することができる。
 図13に示すように、試料番号84は、非晶質相を示すハローHも化合物相を示すピークP2も検出されず、体心立方晶構造を示すピークP1のみが検出されたことから、試料番号84は、α-Fe相単相であると同定することができる。
 同様にして試料番号1~10、12~17、19~64、66~83、及び85~123の各試料についてもX線回折スペクトルから粉末構造相を同定した。
 また、このX線回折スペクトルから、〔発明を実施するための形態〕の項に記載した数式(I)に基づき各試料の結晶化度Xを算出した。
(磁気損失)
 試料番号1~123の各試料100重量部に対し3重量部のエポキシ樹脂を添加し(磁性体粉末の体積含有量は85vol%)、100MPaの圧力でプレス成形し、外径13mm、内径8mm、厚さ2.5mmのトロイダルコアを作製した。
 そして、励磁用の一次側巻線と電圧検出用の二次側巻線の各巻数がいずれも16となるように、エナメルで被覆された線径0.3mmの銅線をトロイダルコアの外周に二重巻きにし、コア損失測定用試料を得た。
 次いで、B-Hアナライザ(岩通計測社製SY-8217)を使用し、周波数1MHz、磁界30mTでコア損失(磁気損失)を測定した。
(測定結果)
 表1~表7は試料番号1~123の各試料の成分組成、飽和磁化、飽和磁束密度、粉末構造の同定相、及びコア損失を示している。尚、表4~表7中、*印は本発明範囲外の試料である。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
 図14は各試料のa値とb値をプロットした図であり、図15は各試料のa値とc値をプロットした図であり、図16は各試料のa値とd値をプロットした図である。図14~図16中、横軸はa値を示し、縦軸はb値、c値、又はd値をそれぞれ示している。
 表1~表7、及び図14~図16から明らかなように、試料番号1~64は全てA1~G1、A2~G2、及びA3~G3で囲まれる領域内にあり、本発明範囲内にあることから、1.30T以上の高飽和磁束密度と3600kW/m以下の低コア損失の良好な磁気特性が得られることが分かった。
 これに対し試料番号65~123は、(a,b)、(a,c)、(a,d)のうちの少なくとも一つが上述した領域の外方に位置し、本発明範囲外であるので、飽和磁束密度は1.30T未満に低下し、しかもコア損失も3600kW/mを超えて増加することが分かった。
 表8は、試料番号2、34、52、61、65、75、76、84、98、及び99の結晶化度Xを示している。尚、表8中、*印は本発明範囲外の試料である。
Figure JPOXMLDOC01-appb-T000008
 この表8から明らかなように本発明範囲外の試料番号65、75、76、84、98、及び99は、結晶化度Xが30%を超えることが分かった。
 これに対し本発明範囲内の試料番号2、34、52、及び61は、いずれも結晶化度Xは30%以下であることが確認された。
 他の試料番号についても、本発明範囲内の試料については結晶化度Xが30%以下となり、本発明範囲外の試料については結晶化度Xが30%を超えることが確認された。
 以上より組成範囲が図14~図16のA1~G1、A2~G2、及びA3~G3で囲まれる領域を満たす場合は、結晶化度Xが30%以下となり、したがって粉末構造は非晶質相単相のみならず、結晶質相を含んでいても1.30T以上の高飽和磁束密度と3600kW/m以下の低コア損失を有する磁性体粉末が得られることが分かった。
 素原料としてFe、Si、B、及びFePに加え、Co、Niを用意し、一般式Fea-e(Si)100-a(ただし、MはCo及び/又はNi)において、a、b、c、d、及びeが表9に示す原子組成比となるように調合した以外は、実施例1と同様の方法・手順で試料番号200~210の試料を作製した。
 次いで、実施例1と同様の方法・手順で飽和磁化、飽和磁束密度を求め、粉末構造を同定し、さらにコア損失を測定した。
 表9は、試料番号200~210の成分組成とその測定結果を示している。
Figure JPOXMLDOC01-appb-T000009
 この表9から明らかなようにFeの一部をCo及び/Niと置換しても、12at%以下の範囲内であれば、高飽和磁束密度と低コア損失を有する磁性体粉末が得られることが確認された。
 素原料としてFe、Si、B、及びFePに加え、Cを用意し、一般式Fe{Si(B1-αα}100-aにおいて、a、b、c、d、及びαが表10に示す原子組成比となるように調合した以外は、実施例1と同様の方法・手順で試料番号300~304の試料を作製した。
 次いで、実施例1と同様の方法・手順で飽和磁化、飽和磁束密度を求め、粉末構造を同定し、さらにコア損失を測定した。
 表10は、試料番号300~304の成分組成とその測定結果を示している。
Figure JPOXMLDOC01-appb-T000010
 この表10から明らかなようにBの一部をCと置換しても、85at%以下の範囲内であれば、高飽和磁束密度を有し、かつコア損失がより一層低い磁性体粉末が得られることが分かった。
 高飽和磁束密度と低磁気損失を有する高品質の軟磁性の磁性体粉末及びこの磁性体粉末を使用した磁心コア、インダクタ等のコイル部品、モータ等を実現することができる。
12 磁心コア
13 コイル導体
14 磁性体部
17 コイル導体
20 コア部

Claims (19)

  1.  主成分が、一般式Fe(Si100-aで表されると共に、ガスアトマイズ法で作製されてなり、
     前記aと前記bを(a,b)で表したときに、(a,b)がA1(71.0,0.19)、B1(79.6、0)、C1(80.0,0)、D1(81.0,0.17)、E1(81.0,0.44)、F1(79.6,0.78)、G1(71.0,0.38)で囲まれる領域にあり、
     前記aと前記cを(a,c)で表したときに、(a,c)がA2(71.0,0.48)、B2(78.1、0)、C2(79.6,0)、D2(81.0,0.18)、E2(81.0,0.26)、F2(79.1,0.75)、G2(71.0,0.72)で囲まれる領域にあり、
     前記aと前記dを(a,d)で表したときに、(a,d)がA3(71.0,0.08)、B3(71.9,0)、C3(79.1,0)、D3(81.0,0.36)、E3(81.0,0.62)、F3(77.2,0.67)、G3(71.0,0.23)で囲まれる領域にあることを特徴とする磁性体粉末。
  2.  前記Feの一部が、12at%以下の範囲でCo及びNiのうちのいずれか一方と置換されていることを特徴とする請求項1記載の磁性体粉末。
  3.  前記Bの一部が、85at%以下の範囲でCと置換されていることを特徴とする請求項1又は請求項2記載の磁性体粉末。
  4.  X線回折法で測定された結晶化度が、0%以上、30%以下であることを特徴とする請求項1乃至請求項3のいずれかに記載の磁性体粉末。
  5.  飽和磁束密度が、1.30T以上であることを特徴とする請求項1乃至請求項4のいずれかに記載の磁性体粉末。
  6.  主成分が一般式Fe(Si100-aを満たすように少なくともFe、Si、B、及びPの各元素単体又はこれら元素を含有した化合物を調合する調合工程と、
     前記調合された調合物を加熱して溶湯を作製する加熱工程と、
     不活性ガスを前記溶湯に噴霧して該溶湯を粉砕する噴霧工程とを含み、
     前記調合工程は、前記aと前記bを(a,b)で表したときに、(a,b)がA1(71.0,0.19)、B1(79.6、0)、C1(80.0,0)、D1(81.0,0.17)、E1(81.0,0.44)、F1(79.6,0.78)、G1(71.0,0.38)で囲まれる領域を満足し、
     前記aと前記cを(a,c)で表したときに、(a,c)がA2(71.0,0.48)、B2(78.1、0)、C2(79.6,0)、D2(81.0,0.18)、E2(81.0,0.26)、F2(79.1,0.75)、G2(71.0,0.72)で囲まれる領域を満足し、
     前記aと前記dを(a,b)で表したときに、(a,d)がA3(71.0,0.08)、B3(71.9,0)、C3(79.1,0)、D3(81.0,0.36)、E3(81.0,0.62)、F3(77.2,0.67)、G3(71.0,0.23)で囲まれる領域を満足するように前記元素単体又は前記化合物を調合することを特徴とする磁性体粉末の製造方法。
  7.  前記噴霧工程は、水素ガスが前記不活性ガスに添加された混合ガスを前記溶湯に噴霧することを特徴とする請求項6記載の磁性体粉末の製造方法。
  8.  前記不活性ガスは、アルゴンガスまたは窒素ガスであることを特徴とする請求項6又は請求項7記載の磁性体粉末の製造方法。
  9.  前記加熱工程及び前記噴霧工程は、不活性ガス雰囲気中で行うことを特徴とする請求項6乃至請求項8のいずれかに記載の磁性体粉末の製造方法。
  10.  前記加熱工程及び前記噴霧工程は、水素ガスが前記不活性ガスに添加された混合ガス雰囲気中で行うことを特徴とする請求項9記載の磁性体粉末の製造方法。
  11.  前記不活性ガスは、アルゴンガスであることを特徴とする請求項9又は請求項10のいずれかに記載の磁性体粉末の製造方法。
  12.  前記混合ガス中の前記水素ガスの含有比率が、分圧換算で0.5~7%であることを特徴とする請求項7、請求項8、請求項10、又は請求項11のいずれかに記載の磁性体粉末の製造方法。
  13.  主成分が、請求項1乃至請求項5のいずれかに記載の磁性体粉末で形成されていることを特徴とする磁心コア。
  14.  結合剤を含有すると共に、前記磁性体粉末の含有量が、体積比率で60vol%以上であることを特徴とする請求項13記載の磁心コア。
  15.  請求項6至請求項12のいずれかに記載の製造方法で作製された磁性体粉末と結合剤とを混合して成形処理を行い、成形体を作製する成形工程と、
     前記成形体を熱処理する熱処理工程とを含むことを特徴とする磁性コアの製造方法。
  16.  コイル導体がコア部に巻回されたコイル部品であって、
     前記コア部が、請求項13又は請求項14記載の磁心コアで形成されていることを特徴とするコイル部品。
  17.  コイル導体が磁性体部に埋設されたコイル部品であって、
     前記磁性体部は、主成分が請求項1乃至請求項5のいずれかに記載の磁性体粉末で形成されていることを特徴とするコイル部品。
  18.  前記磁性体部が、結合剤を含有すると共に、
     前記磁性体部中の前記磁性体粉末の含有量が、体積比率で60vol%以上であることを特徴とする請求項17記載のコイル部品。
  19.  複数の電機子歯が同一円周上に等間隔に設けられたステータコアと、前記電機子歯に巻回されたコイル導体と、前記ステータコアの内部に回動自在に配されたロータコアとを備えたモータにおいて、
     前記ステータコア及び前記ロータコアのうちの少なくとも一方は、主成分が請求項1乃至請求項5のいずれかに記載の磁性体粉末で形成されていることを特徴とするモータ。
PCT/JP2016/052721 2015-01-30 2016-01-29 磁性体粉末とその製造方法、及び磁心コアとその製造方法、並びにコイル部品、及びモータ WO2016121950A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016572196A JPWO2016121950A1 (ja) 2015-01-30 2016-01-29 磁性体粉末とその製造方法、及び磁心コアとその製造方法、並びにコイル部品、及びモータ
US15/661,520 US10767249B2 (en) 2015-01-30 2017-07-27 Magnetic powder and production method thereof, magnetic core and production method thereof, coil component and motor

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2015-017058 2015-01-30
JP2015017060 2015-01-30
JP2015017058 2015-01-30
JP2015-017060 2015-01-30

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/661,520 Continuation US10767249B2 (en) 2015-01-30 2017-07-27 Magnetic powder and production method thereof, magnetic core and production method thereof, coil component and motor

Publications (1)

Publication Number Publication Date
WO2016121950A1 true WO2016121950A1 (ja) 2016-08-04

Family

ID=56543552

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/052721 WO2016121950A1 (ja) 2015-01-30 2016-01-29 磁性体粉末とその製造方法、及び磁心コアとその製造方法、並びにコイル部品、及びモータ

Country Status (3)

Country Link
US (1) US10767249B2 (ja)
JP (1) JPWO2016121950A1 (ja)
WO (1) WO2016121950A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108022710A (zh) * 2016-11-02 2018-05-11 财团法人工业技术研究院 铁基软磁非晶合金块材与制备方法及其应用
CN110164673A (zh) * 2019-05-07 2019-08-23 深圳顺络电子股份有限公司 一种金属软磁复合材料电感及其制作方法
WO2021066089A1 (ja) * 2019-10-04 2021-04-08 住友ベークライト株式会社 樹脂組成物および成形品

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017046462A (ja) * 2015-08-26 2017-03-02 セイコーエプソン株式会社 電機子、界磁子、電機子の製造方法、界磁子の製造方法および電動機械
US11929641B2 (en) * 2018-08-31 2024-03-12 Zhejiang Pangood Power Technology Co., Ltd. Segmented core with laminated core installed in SMC embedded groove
CN109202092B (zh) * 2018-09-17 2020-06-05 横店集团东磁股份有限公司 一种使用非真空气雾化制备铁硅铝粉末并制作磁芯的工艺
KR102118955B1 (ko) * 2018-11-26 2020-06-04 엘지전자 주식회사 자성 분말, 압축 분말 코어 및 이의 제조 방법

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0478114A (ja) * 1990-07-20 1992-03-12 Toshiba Corp 複合磁心
JPH04314803A (ja) * 1991-04-12 1992-11-06 Sanyo Special Steel Co Ltd 水素電池用金属粉末の製造法
JP2001297766A (ja) * 2000-04-14 2001-10-26 Sumitomo Metal Ind Ltd 非水電解質二次電池とその負極材料および該材料の製法
JP2003059710A (ja) * 2001-06-08 2003-02-28 Daido Steel Co Ltd 圧粉磁心
JP2004018889A (ja) * 2002-06-12 2004-01-22 Mitsui Chemicals Inc 楕円状ナノ結晶磁性材料
JP2004063798A (ja) * 2002-07-29 2004-02-26 Mitsui Chemicals Inc 磁性複合材料
JP2005294461A (ja) * 2004-03-31 2005-10-20 Alps Electric Co Ltd コイル封入圧粉成型体の製造方法
JP2005307291A (ja) * 2004-04-22 2005-11-04 Alps Electric Co Ltd 非晶質軟磁性合金粉末及びそれを用いた圧粉コアと電波吸収体
JP2008109080A (ja) * 2006-09-29 2008-05-08 Alps Electric Co Ltd 圧粉磁心及びその製造方法
JP2010010668A (ja) * 2008-05-26 2010-01-14 Topy Ind Ltd 軟磁性体
WO2010084900A1 (ja) * 2009-01-23 2010-07-29 アルプス電気株式会社 Fe基軟磁性合金及び前記Fe基軟磁性合金を用いた圧粉コア
WO2012147559A1 (ja) * 2011-04-28 2012-11-01 国立大学法人東北大学 金属ガラスナノワイヤの製造方法、該製造方法により製造された金属ガラスナノワイヤ、及び金属ガラスナノワイヤを含む触媒
WO2014136587A1 (ja) * 2013-03-08 2014-09-12 Ntn株式会社 磁心用粉末および圧粉磁心、並びに磁心用粉末および圧粉磁心の製造方法
JP2015175041A (ja) * 2014-03-17 2015-10-05 国立大学法人東北大学 アモルファス軟磁性合金粉末の製造方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100042927A1 (en) * 2000-07-03 2010-02-18 Kim Steven D Third Party Management of Computer System Control
JP4217997B2 (ja) 2000-08-18 2009-02-04 セイコーエプソン株式会社 軟磁性合金粉末
JP4288687B2 (ja) 2006-12-04 2009-07-01 株式会社 東北テクノアーチ アモルファス合金組成物
US7999427B2 (en) * 2007-08-09 2011-08-16 United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Directed flux motor
CN101802240A (zh) 2007-09-18 2010-08-11 Nec东金株式会社 软磁性非晶合金
RU2509821C2 (ru) * 2008-08-22 2014-03-20 Акихиро МАКИНО СОСТАВ СПЛАВА, НАНОКРИСТАЛЛИЧЕСКИЙ СПЛАВ НА ОСНОВЕ Fe И СПОСОБ ЕГО ФОРМОВАНИЯ И МАГНИТНЫЙ УЗЕЛ
JP6427862B2 (ja) * 2013-10-25 2018-11-28 日立金属株式会社 圧粉磁心、その製造方法、該圧粉磁心を用いたインダクタンス素子および回転電機
WO2016121951A1 (ja) * 2015-01-30 2016-08-04 株式会社村田製作所 磁性体粉末とその製造方法、及び磁心コアとその製造方法、並びにコイル部品、及びモータ
WO2016204008A1 (ja) * 2015-06-19 2016-12-22 株式会社村田製作所 磁性体粉末とその製造方法、磁心コアとその製造方法、及びコイル部品

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0478114A (ja) * 1990-07-20 1992-03-12 Toshiba Corp 複合磁心
JPH04314803A (ja) * 1991-04-12 1992-11-06 Sanyo Special Steel Co Ltd 水素電池用金属粉末の製造法
JP2001297766A (ja) * 2000-04-14 2001-10-26 Sumitomo Metal Ind Ltd 非水電解質二次電池とその負極材料および該材料の製法
JP2003059710A (ja) * 2001-06-08 2003-02-28 Daido Steel Co Ltd 圧粉磁心
JP2004018889A (ja) * 2002-06-12 2004-01-22 Mitsui Chemicals Inc 楕円状ナノ結晶磁性材料
JP2004063798A (ja) * 2002-07-29 2004-02-26 Mitsui Chemicals Inc 磁性複合材料
JP2005294461A (ja) * 2004-03-31 2005-10-20 Alps Electric Co Ltd コイル封入圧粉成型体の製造方法
JP2005307291A (ja) * 2004-04-22 2005-11-04 Alps Electric Co Ltd 非晶質軟磁性合金粉末及びそれを用いた圧粉コアと電波吸収体
JP2008109080A (ja) * 2006-09-29 2008-05-08 Alps Electric Co Ltd 圧粉磁心及びその製造方法
JP2010010668A (ja) * 2008-05-26 2010-01-14 Topy Ind Ltd 軟磁性体
WO2010084900A1 (ja) * 2009-01-23 2010-07-29 アルプス電気株式会社 Fe基軟磁性合金及び前記Fe基軟磁性合金を用いた圧粉コア
WO2012147559A1 (ja) * 2011-04-28 2012-11-01 国立大学法人東北大学 金属ガラスナノワイヤの製造方法、該製造方法により製造された金属ガラスナノワイヤ、及び金属ガラスナノワイヤを含む触媒
WO2014136587A1 (ja) * 2013-03-08 2014-09-12 Ntn株式会社 磁心用粉末および圧粉磁心、並びに磁心用粉末および圧粉磁心の製造方法
JP2015175041A (ja) * 2014-03-17 2015-10-05 国立大学法人東北大学 アモルファス軟磁性合金粉末の製造方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108022710A (zh) * 2016-11-02 2018-05-11 财团法人工业技术研究院 铁基软磁非晶合金块材与制备方法及其应用
JP2018082159A (ja) * 2016-11-02 2018-05-24 財團法人工業技術研究院Industrial Technology Research Institute Fe系非晶質軟磁性バルク合金、その製造方法、およびその使用
CN110164673A (zh) * 2019-05-07 2019-08-23 深圳顺络电子股份有限公司 一种金属软磁复合材料电感及其制作方法
US11685980B2 (en) 2019-05-07 2023-06-27 Shenzhen Sunlord Electronics Co., Ltd. Metal soft magnetic composite material inductor and preparation method thereof
WO2021066089A1 (ja) * 2019-10-04 2021-04-08 住友ベークライト株式会社 樹脂組成物および成形品
JPWO2021066089A1 (ja) * 2019-10-04 2021-10-21 住友ベークライト株式会社 樹脂組成物および成形品

Also Published As

Publication number Publication date
US20170321308A1 (en) 2017-11-09
JPWO2016121950A1 (ja) 2017-12-21
US10767249B2 (en) 2020-09-08

Similar Documents

Publication Publication Date Title
JP6459154B2 (ja) 磁性体粉末とその製造方法、磁心コアとその製造方法、及びコイル部品
WO2016121950A1 (ja) 磁性体粉末とその製造方法、及び磁心コアとその製造方法、並びにコイル部品、及びモータ
JP6482718B1 (ja) 軟磁性材料およびその製造方法
JP6181346B2 (ja) 合金組成物、Fe基ナノ結晶合金及びその製造方法、並びに磁性部品
JP6309149B1 (ja) 軟磁性粉末、圧粉磁芯、磁性部品及び圧粉磁芯の製造方法
JP6472939B2 (ja) 軟磁性粉末、Fe基ナノ結晶合金粉末、磁性部品及び圧粉磁芯
JP6488488B2 (ja) 磁性体粉末の製造方法、及び磁心コアの製造方法
JP5632608B2 (ja) 軟磁性合金及びそれを用いた磁気部品並びにそれらの製造方法
WO2011024580A1 (ja) 合金組成物、Fe基ナノ結晶合金及びその製造方法
EP3567611A2 (en) Soft magnetic alloy powder, dust core, and magnetic component
US11817245B2 (en) Soft magnetic powder
JP2019148004A (ja) 軟磁性合金および磁性部品
JP2009174034A (ja) アモルファス軟磁性合金、アモルファス軟磁性合金薄帯、アモルファス軟磁性合金粉末およびそれを用いた磁心並びに磁性部品
JP5916983B2 (ja) 合金組成物、Fe基ナノ結晶合金及びその製造方法、並びに磁性部品
JP6673536B1 (ja) 磁心用粉末、それを用いた磁心及びコイル部品
JP2014075528A (ja) 軟磁性合金粉末、それを用いた圧粉磁芯及びその製造方法
JP2016104900A (ja) 金属軟磁性合金と磁心、およびその製造方法
EP3401416B1 (en) Fe-based soft magnetic alloy, manufacturing method therefor, and magnetic parts using fe-based soft magnetic alloy
JP2006040906A (ja) 高透磁率かつ高飽和磁束密度の軟磁性成形体の製造方法
TW202101485A (zh) 磁性體芯及線圈部件
KR102231316B1 (ko) Fe 기 합금 조성물, 연자성 재료, 자성 부재, 전기·전자 관련 부품 및 기기
JP2023032114A (ja) 合金粒子
JP2023032113A (ja) 合金粒子
JP2023032115A (ja) 合金粒子
WO2019235574A1 (ja) 磁心用の粉末、それを用いた磁心及びコイル部品

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16743553

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016572196

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16743553

Country of ref document: EP

Kind code of ref document: A1