WO2010084701A1 - 非水系二次電池用活物質および非水系二次電池 - Google Patents

非水系二次電池用活物質および非水系二次電池 Download PDF

Info

Publication number
WO2010084701A1
WO2010084701A1 PCT/JP2010/000049 JP2010000049W WO2010084701A1 WO 2010084701 A1 WO2010084701 A1 WO 2010084701A1 JP 2010000049 W JP2010000049 W JP 2010000049W WO 2010084701 A1 WO2010084701 A1 WO 2010084701A1
Authority
WO
WIPO (PCT)
Prior art keywords
active material
alkali metal
secondary battery
aqueous secondary
transition metal
Prior art date
Application number
PCT/JP2010/000049
Other languages
English (en)
French (fr)
Inventor
丹羽淳一
村瀬仁俊
Original Assignee
株式会社豊田自動織機
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社豊田自動織機 filed Critical 株式会社豊田自動織機
Priority to US13/145,056 priority Critical patent/US20110285353A1/en
Priority to CN201080003846.0A priority patent/CN102272989A/zh
Priority to KR1020117015249A priority patent/KR101354085B1/ko
Priority to EP10733309A priority patent/EP2383821A4/en
Publication of WO2010084701A1 publication Critical patent/WO2010084701A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/582Halogenides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/388Halogens
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/136Electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to non-aqueous secondary batteries such as lithium ion secondary batteries, and more particularly to an active material for non-aqueous secondary batteries.
  • a lithium ion secondary battery has an active material capable of inserting and removing lithium (Li) on a positive electrode and a negative electrode, respectively. Then, it operates by moving Li ions in the electrolyte provided between both electrodes.
  • Patent Document 1 discloses a positive electrode active material represented by Li a M 2 O 4-b F b containing a transition metal (M). Also, recently, as disclosed in Patent Document 2 and Patent Document 3, a secondary battery using a transition metal halide such as FeF 3 as a positive electrode active material is also attracting attention.
  • Patent Document 2 and Patent Document 3 as a voltage range of charge and discharge, charge and discharge is performed only in a voltage range (a range of 4.5 V to 2 V in the case of a lithium ion secondary battery) which does not advance reaction to the conversion region I did not let In charge and discharge in this voltage range, FeF 3 inserts and desorbs Li, and FeF 3 + yLi ⁇ Li y FeF 3 and Li y FeF 3 ⁇ FeF 3 + yLi (all 0 ⁇ y ⁇ 1) Reaction is performed, and the bond between Fe and F is maintained. That is, reduction from Fe 3+ to Fe 2+ is performed at the time of discharge, and oxidation from Fe 2+ to Fe 3+ is performed at the time of charge.
  • a voltage range a range of 4.5 V to 2 V in the case of a lithium ion secondary battery
  • FeF 3 is electrolytically reduced from Fe 3 + to Fe 0 by decomposition when it is reacted to the conversion region, significant increase in capacity of the secondary battery as will be described later is expected.
  • FeF 3 is easily decomposed and the decomposed FeF 3 is reversibly regenerated, and from the viewpoint of battery performance, the reaction to the conversion region has rather been avoided.
  • FeF 3 exhibits high capacity by using up to the conversion region, it does not contain lithium in the active material, so it is necessary to use metallic lithium for the counter electrode or to dope lithium in the active material in advance. .
  • An object of the present invention is to provide a non-aqueous secondary battery active material comprising a combination of novel materials in view of the above problems. Furthermore, it aims at providing the non-aqueous secondary battery which used this active material as a positive electrode active material.
  • the present inventors have conceived of combining LiF and Fe present in the conversion region, that is, an alkali metal salt and a transition metal, to constitute a novel non-aqueous secondary battery active material. So far, there has been no finding that a combination of a salt and a metal can provide an active material of a non-aqueous secondary battery. However, when the mixture of the alkali metal salt and the transition metal is brought to a high potential state, the transition metal is oxidized (electrons are taken), anion exchange occurs, and a compound is formed from the mixture. Furthermore, it was newly found that the alkali metal ions (cations) contained in the alkali metal salt move to extract electricity from the produced compound.
  • the active material for non-aqueous secondary batteries of the present invention comprises a mixture of an alkali metal salt and a transition metal, and the alkali metal is removed from the compound formed by the reaction of the alkali metal salt with the transition metal by charge and discharge. They are characterized in that they are separated and subjected to reversible oxidation-reduction to regenerate the alkali metal salt and the transition metal from the compound into which the alkali metal is inserted.
  • the non-aqueous secondary battery of the present invention comprises a positive electrode comprising the positive electrode active material comprising the active material for non-aqueous secondary battery of the present invention, and a negative electrode active material comprising a material capable of inserting and removing alkali metal. And a negative electrode.
  • FeF 3 is a perovskite type fluoride and has cation vacancies in its structure. Up to 1 mol of an alkali metal ion such as Li + can be inserted in 1 mol of FeF 3 in the cation vacancies, resulting in LiFeF 3 . At this time, the theoretical capacity exceeds 230 mAh / g. Furthermore, LiFeF 3 reacts with Li ions and is eventually decomposed into LiF and Fe. That is, the reaction proceeds to the conversion region, and at this time theoretically shows a capacity of 700 mAh / g or more.
  • This reaction is considered to be the same even when 'Fe' is another transition metal element, 'F' is a transition metal element and another element having a perovskite structure, and 'Li' is another alkali metal element.
  • the structure is not limited to the perovskite structure, but may be a spinel structure, as long as it is a structure that can insert and release alkali metal ions. Therefore, by using the active material for a non-aqueous secondary battery of the present invention, which is a mixture of an alkali metal salt and a transition metal, the capacity of the non-aqueous secondary battery can be increased.
  • the active material for non-aqueous secondary batteries of this invention contains the alkali metal which contributes to charging / discharging
  • the active material used for a counter electrode is not limited.
  • safety is improved because it is not necessary to use an electrode containing metallic lithium.
  • the crystal structure of the perovskite type fluoride FeF 3 is shown. It is an X-ray diffraction pattern of the mixed powder which consists of LiF powder and Fe powder.
  • the charge-discharge curve of the lithium ion secondary battery which made the active material for non-aqueous secondary batteries of this invention a positive electrode active material is shown.
  • the active material for non-aqueous secondary batteries of the present invention comprises a mixture of an alkali metal salt and a transition metal.
  • alkali metals are six elements of lithium (Li), sodium (Na), potassium (K), rubidium (Ru), cesium (Cs), and francium (Fr).
  • Li and Na are preferable, and exhibit high capacity and reversible charge and discharge characteristics.
  • the active material of the present invention forms a structure capable of inserting and removing alkali metal ions by charge and discharge.
  • a perovskite structure, a spinel structure and the like can be mentioned.
  • the element X bonded to the transition metal element in the above range is preferably at least one selected from elements of Groups 15 to 17 of the periodic table, and particularly preferably halogen (fluorine (F), chlorine (Cl), bromine (Br) And iodine (I), astatine (At)), oxygen, sulfur and nitrogen, and one or more of these may be used.
  • halogen fluorine (F), chlorine (Cl), bromine (Br) And iodine (I), astatine (At)
  • oxygen, sulfur and nitrogen and one or more of these may be used.
  • LiF, NaF, Li 2 O , Na 2 O, Li 2 S, Na 2 S, Li 3 N and the like two or more may be used one of these singly You may mix and use.
  • the alkali metal salt may be represented by AX.
  • X may be any element having an anion radius that fits the tolerance factor in which the perovskite structure can stably exist.
  • Specific examples of X include a halogen element, an oxygen element, a sulfur element, and a nitrogen element, and one or more of them is preferable. That is, for the alkali metal salt AX, in addition to halides such as fluoride and chloride, oxides can be suitably used. Specifically, LiF, NaF, etc. may be mentioned, and one of them may be used alone, or two or more may be mixed and used.
  • transition metal there is no particular limitation on the transition metal, and for example, one or more of the first transition elements (3d transition elements: Sc to Zn), especially iron (Fe), nickel (Ni), manganese (Mn), cobalt (Co), may be mentioned.
  • the first transition elements 3d transition elements: Sc to Zn
  • a transition metal taking trivalent Specifically, Fe, Ni, Mn, Co and the like can be mentioned.
  • a transition metal one of these may be used alone, or two or more may be mixed and used.
  • LiF and Fe, LiF and Ni, LiF and Mn, LiF and Co, etc. may be mentioned as a particularly preferred combination of alkali metal salt and transition metal among the above-mentioned alkali metal salts and transition metals.
  • the active material of the present invention is a mixture of an alkali metal salt and a transition metal.
  • the alkali metal salt and the transition metal are preferably in powder form. If it is a powder of a transition metal, a powder obtained by pulverizing an ingot or pulverizing a molten metal can be used. For example, atomized powder is commercially available and easily available.
  • the alkali metal salt powder is also obtained by pulverization or the like, but it is also possible to convert the precursor by heating the solution containing the alkali metal salt precursor or the like to obtain a fine powder.
  • the average particle diameter of the alkali metal salt powder and the transition metal powder is not particularly limited, but the reaction between the alkali metal salt and the transition metal can be expected to occur in fine domains, so 10 ⁇ m or less is preferable.
  • the mixed powder obtained by milling the alkali metal salt powder and the transition metal powder is such that the particles are uniformly mixed and the particles are further finely divided by the milling, so the decomposition reaction to the conversion region and the conversion region As a result, the formation of a compound consisting of the anion of the alkali metal salt and the transition metal easily occurs reversibly.
  • the reversible reaction is better as the average particle size of the mixed powder is smaller.
  • the milling speed may be 100 rpm or more. If less than 100 rpm, the powder is difficult to be finely divided even if milling is performed for a long time.
  • the milling time may be 10 to 24 hours. If it is less than 10 hours, the refining effect is scarce, and even if milling is performed for more than 24 hours, there is no significant improvement in the refining effect.
  • the compounding ratio of the active material of the present invention may be determined according to the type of the compound produced by charge and discharge, and the molar ratio of the transition metal to the alkali metal salt may be 1: 1 to 1: 3. If the compound generated by charge and discharge has a perovskite structure (ABX 3 ), the transition will theoretically be 3AX + B ⁇ BX 3 + 3A due to the insertion and desorption of the electrolyte ion (alkali metal ion: A + ). This is because it is presumed that the metal B: alkali metal salt AX is preferably about 1: 3 in molar ratio.
  • the electrode comprises the active material of the present invention, a conductive support, and a binder for binding the active material and the conductive support.
  • the active material is a mixture of the above-mentioned alkali metal salt and transition metal.
  • the alkali metal salt and the transition metal can be variously combined as described above, one type can be used alone, or two or more types can be mixed and used.
  • the conductive additive a material generally used in the electrode of the non-aqueous secondary battery may be used.
  • a conductive carbon material such as carbon black, acetylene black, ketjen black, carbon fiber and the like. It is good to use 1 type of these individually or in mixture of 2 or more types.
  • the conductive support is preferably milled together with the above-mentioned active material to further improve the conductivity.
  • the binding agent is not particularly limited, and any known binding agent may be used.
  • a resin which does not decompose even at high potential such as a fluorine-containing resin such as polytetrafluoroethylene or polyvinylidene fluoride can be used.
  • the active material of the present invention is generally used in a state of being pressure-bonded to a current collector as an active material layer in an electrode.
  • a current collector metal mesh or metal foil can be used. If the active material of the present invention is used for the positive electrode, it is preferable to use a current collector such as aluminum or aluminum alloy which is difficult to dissolve at high potential, and for the negative electrode a current collector such as copper.
  • the manufacturing method of an electrode there is no limitation in particular in the manufacturing method of an electrode, and it may follow the manufacturing method of the electrode for non-aqueous secondary batteries generally implemented.
  • the conductive auxiliary material and the binding agent are mixed with the active material, and an appropriate amount of organic solvent is added as necessary to obtain a paste-like electrode mixture.
  • the electrode mixture is applied to the surface of a current collector, dried, and pressed if necessary by pressing or the like.
  • the manufactured electrode is a sheet-like electrode.
  • the sheet-like electrode may be cut into dimensions according to the specifications of the non-aqueous secondary battery to be produced.
  • the active material of the present invention can be used as an active material of a positive electrode of a non-aqueous secondary battery or as an active material of a negative electrode.
  • the active material of the present invention contains an alkali metal that becomes an electrolyte ion in a battery reaction, so the active material used for the counter electrode is not limited.
  • a lithium-containing oxide such as LiCoO 2 or Li 2 MnO 3 or a lithium-free compound such as MoS or sulfur is used.
  • the non-aqueous secondary battery may be configured by using an electrode serving as an active material as a positive electrode. The case where the active material of the present invention is used as a positive electrode active material of a non-aqueous secondary battery will be described below.
  • Non-aqueous secondary battery of the present invention comprises a positive electrode comprising the positive electrode active material comprising the active material of the present invention, and a negative electrode comprising the negative electrode active material comprising a material capable of inserting and removing alkali metal.
  • the configuration and manufacturing method of the positive electrode are as described above.
  • the negative electrode may be, for example, an alkali metal such as Li or Na, an alloy of an alkali metal, a carbon material such as graphite, coke, hard carbon, a metal such as tin forming an alloy with the alkali metal, or a silicon or a compound containing them. It is preferable that it is an electrode used as a substance.
  • the negative electrode may be manufactured by a general manufacturing method according to the above-described method of manufacturing an electrode.
  • the non-aqueous secondary battery using the electrode of the present invention includes a separator and a non-aqueous electrolyte in addition to the positive electrode and the negative electrode, as well as the general secondary battery, in addition to the positive electrode and the negative electrode.
  • the separator separates the positive electrode and the negative electrode and holds the electrolytic solution, and a thin microporous film such as polyethylene or polypropylene can be used.
  • the non-aqueous electrolytic solution is obtained by dissolving an alkali metal salt which is an electrolyte in an organic solvent, and as the organic solvent, an aprotic organic solvent such as ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate, diethyl carbonate, ethyl methyl carbonate And mixtures of two or more of these, such as imidazole-based ionic liquids.
  • an alkali metal salt which is an electrolyte in an organic solvent
  • an aprotic organic solvent such as ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate, diethyl carbonate, ethyl methyl carbonate And mixtures of two or more of these, such as imidazole-based ionic liquids.
  • Alkali metal salts soluble in organic solvents such as NaPF 6 , NaBF 4 , NaAsF 6 and the like can be used.
  • a polymer such as polyethylene oxide (PEO) containing a supporting salt instead of a non-aqueous electrolytic solution, a gel electrolyte in which the electrolytic solution is confined with PVdF, an inorganic compound having lithium ion conductivity including Li 2 S, glass And other solid electrolytes can also be used.
  • the shape of the non-aqueous secondary battery is not particularly limited, and various shapes such as a cylindrical shape, a laminated shape, and a coin shape can be adopted.
  • the separator is interposed between the positive electrode and the negative electrode to form an electrode body, and the distance from the positive electrode current collector and the negative electrode current collector to the positive electrode terminal and the negative electrode terminal leading to the outside is for current collection After connection using a lead or the like, the electrode body is sealed in a battery case together with the non-aqueous electrolyte to form a battery.
  • BX 3 is generated from the alkali metal salt (AX) and the transition metal (B) through Ay BX 3 (0 ⁇ y ⁇ 1) by charging, and is discharged from BX 3 by discharging.
  • a reversible oxidation-reduction is carried out to regenerate AX and B via A y BX 3 (0 ⁇ y ⁇ 1).
  • the active material of the present invention is in the conversion region consisting of an alkali metal salt and a transition metal, it is desirable to sweep the discharge end voltage to a lower level than before.
  • charge and discharge are usually performed at a voltage range of 4.5 V to 2.0 V, but the active material of the present invention is used as a positive electrode active material
  • the discharge end voltage may be 4.5 V to 1.5 V.
  • non-aqueous secondary battery active material and the non-aqueous secondary battery of the present invention have been described above, but the present invention is not limited to the above-described embodiments. In the range which does not deviate from the summary of the present invention, it can carry out with various forms which gave change, improvement, etc. which a person skilled in the art can make.
  • the present invention will be specifically described by way of examples of the non-aqueous secondary battery active material and the non-aqueous secondary battery of the present invention.
  • LiF powder Soekawa Chemical Co., Ltd., average particle size: 3 ⁇ m
  • commercially available Fe powder average particle size: 3 ⁇ m
  • the mixing was performed at a milling speed of 600 rpm and a milling time of 24 hours.
  • the X-ray diffraction analysis (CuK ⁇ ) of the obtained mixed powder (active material # 01) was performed. The results are shown in FIG. In addition, in FIG.
  • the X-ray-diffraction pattern of the mixed powder (active material # 00) of the same mixture ratio obtained by hand stirring for several minutes is collectively shown. Since the diffraction peak of the active material # 01 is broader than that of the active material # 00, it was found that the particles become finer by milling. In addition, in each of # 01 and # 00, respective diffraction peaks of LiF and Fe were obtained, and in # 01, it was found that LiF was not reacted with Fe by milling.
  • Electrode for lithium ion secondary battery An electrode was produced using active material # 01. Mix active material # 01 and acetylene black (AB) as conductive aid, and further mix polytetrafluoroethylene (PTFE) as a binder for binding active material and conductive aid, and use appropriate amount of solvent (Ethanol) was added and sufficiently kneaded to prepare a paste-like electrode mixture.
  • the compounding ratio of the active material # 01, AB and PTFE was 1: 1.66: 1.33 by mass ratio.
  • this electrode mixture was applied to both sides of a current collector (aluminium mesh, thickness: 20 ⁇ m), dried, and pressure-bonded to obtain a sheet-like electrode.
  • a lithium ion secondary battery was manufactured using the electrode manufactured according to the above procedure as a positive electrode.
  • the negative electrode to be opposed to the positive electrode was metal lithium (500 ⁇ m in thickness).
  • the positive electrode was cut into a diameter of 13 mm, and the negative electrode was cut into a diameter of 15 mm, and a separator (glass filter made by Hoechst Celanese, celgard 2400) was sandwiched between the two to make an electrode battery.
  • the electrode battery was housed in a battery case (CR2032 coin cell manufactured by Takasen Co., Ltd.).
  • the battery case, ethylene carbonate and diethyl carbonate 1 LiPF 6 in a solvent mixture was poured a non-aqueous electrolyte at a concentration of 1M in 1 (volume ratio). The battery case was sealed to obtain a lithium ion secondary battery # 11.
  • the lithium ion secondary battery # 11 was found to exhibit reversible charge / discharge characteristics at a high capacity (the capacity at the fifth cycle is 225 mAh / g). That is, an active material composed of a mixture of LiF, which is an alkali metal salt, and Fe, which is a transition metal, exhibits reversible charge and discharge characteristics, and a non-aqueous secondary battery using the active material has high capacity. all right. Since the capacity of a general lithium ion secondary battery commercially available is about 150 mAh / g, the # 11 lithium ion secondary battery has a capacity about 1.5 times higher than usual. Moreover, according to the discharge curve of FIG. 3, the slope of the graph largely changed at the voltage bordering around 2.0 V. This suggests that LiFeF 3 began to be decomposed into LiF and Fe at around 2.0 V.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

 本発明の非水系二次電池用活物質は、アルカリ金属塩および遷移金属の混合物からなり、充放電により、アルカリ金属塩と遷移金属とが反応してなる化合物からアルカリ金属を脱離し、アルカリ金属が挿入された該化合物からアルカリ金属塩と遷移金属とを再生する可逆的な酸化還元を行うことを特徴とする。この活物質を非水系二次電池に用いることで、非水系二次電池の高容量化が可能となる。また、本発明の非水系二次電池用活物質は、電解質イオンとしてはたらくアルカリ金属を含むため、対極に用いる活物質が限定されない。たとえば、リチウムイオン二次電池においては、金属リチウムを含む電極を使用しなくて済むため、安全性が向上する。

Description

非水系二次電池用活物質および非水系二次電池
 本発明は、リチウムイオン二次電池などの非水系二次電池に関するものであり、特に、非水系二次電池用活物質に関するものである。
 リチウムイオン二次電池などの二次電池は、小型で大容量であるため、携帯電話やノートパソコンといった幅広い分野で用いられている。リチウムイオン二次電池は、リチウム(Li)を挿入および脱離することができる活物質を正極と負極にそれぞれ有する。そして、両極間に設けられた電解液内をLiイオンが移動することによって動作する。
 二次電池の性能は、二次電池を構成する正極、負極および電解質の材料に左右される。なかでも、活物質を形成する活物質材料の研究開発が活発に行われている。正極活物質には、遷移金属の酸化物あるいは複合酸化物が用いられることが多く、酸素の一部をフッ素(F)などに替えて高電位化などを目指した正極活物質の研究が行なわれている。たとえば、特許文献1には、遷移金属(M)を含むLi4-bで表される正極活物質が開示されている。また、最近では、特許文献2および特許文献3に開示されているように、正極活物質としてFeFなどの遷移金属ハロゲン化物を用いた二次電池も注目されている。
特開2006-190556号公報 特開平9-22698号公報 特開平9-55201号公報
 たとえば、遷移金属ハロゲン化物であるFeFにLiイオンが挿入されると、LiFeFを経て、さらなるLiの挿入によりFeとLiFとに分解するコンバージョン領域まで反応が進むと考えられる。しかし、特許文献2の[0007]段落に記載のように、FeFはFeとFとの間の結合が強いため、コンバージョン領域までの反応は起こりにくいと推測される。また、コンバージョン領域から元のFeFを再生するのは困難で、コンバージョン領域まで反応させると電池性能を低下させる原因となると考えられてきた。そのため、特許文献2および特許文献3では、充放電の電圧範囲として、コンバージョン領域まで反応を進ませない電圧範囲(リチウムイオン二次電池であれば4.5Vから2Vまでの範囲)でしか充放電をさせていなかった。この電圧範囲での充放電においては、FeFがLiを挿入・脱離して、FeF+yLi→LiFeFおよびLiFeF→FeF+yLi(いずれも0<y≦1)の可逆的な反応しかおこなわれず、FeとFとの結合が保たれる。つまり、放電時にはFe3+からFe2+までの還元、充電時にはFe2+からFe3+への酸化、が行われることとなる。
 一方、コンバージョン領域まで反応させると、FeFは分解によりFe3+からFeまで電解還元されるため、後に詳説するような二次電池の大幅な高容量化が期待される。しかし、これまで、FeFが容易に分解されるとともに、分解後のFeFが可逆的に再生されるという考えはなく、電池性能の観点からコンバージョン領域までの反応はむしろ回避されていた。また、FeFは、コンバーション領域まで用いることで高容量を示すが、活物質中にリチウムを含んでいないため、対極に金属リチウムを用いるか、予め活物質中にリチウムをドープする必要がある。
 本発明は、上記問題点に鑑み、新規の材料の組み合わせからなる非水系二次電池用活物質を提供することを目的とする。さらに、この活物質を正極活物質として用いた非水系二次電池を提供することを目的とする。
 本発明者等は、コンバージョン領域で存在するLiFとFe、すなわちアルカリ金属塩と遷移金属とを組み合わせて、新規の非水系二次電池の活物質を構成することに想到した。これまで、塩と金属との組み合わせで非水系二次電池の活物質が得られるという知見はなかった。しかし、アルカリ金属塩と遷移金属との混合物を高電位状態にすると、遷移金属が酸化され(電子を奪われ)、アニオンの交換が起きて混合物から化合物が生成される。さらに、アルカリ金属塩に含まれるアルカリ金属イオン(カチオン)が移動して、生成された化合物から電気を取り出せることが新たにわかった。
 すなわち、本発明の非水系二次電池用活物質は、アルカリ金属塩および遷移金属の混合物からなり、充放電により、該アルカリ金属塩と該遷移金属とが反応してなる化合物からアルカリ金属を脱離し、アルカリ金属が挿入された該化合物から該アルカリ金属塩と該遷移金属とを再生する可逆的な酸化還元を行うことを特徴とする。
 また、本発明の非水系二次電池は、上記本発明の非水系二次電池用活物質からなる正極活物質を含む正極と、アルカリ金属を挿入・脱離可能な材料からなる負極活物質を含む負極と、を備える。
 一例として、アルカリ金属イオンを挿入・脱離可能なFeFの結晶構造を図1に示す。FeFは、ペロブスカイト型フッ化物であり、構造中にカチオン空孔をもつ。カチオン空孔には、1モルのFeFに対してLiのようなアルカリ金属イオンを最大で1モル挿入することができ、LiFeFとなる。このとき、理論容量は230mAh/gを越える。さらに、LiFeFは、Liイオンと反応し、最終的にはLiFとFeとに分解される。つまり、コンバージョン領域まで反応が進み、このとき理論的には700mAh/g以上の容量を示す。この反応は、‘Fe’が他の遷移金属元素、‘F’が遷移金属元素とペロブスカイト構造をとる他の元素、‘Li’が他のアルカリ金属元素である場合にも同様であると考えられる。また、アルカリ金属イオンの挿入・脱離が可能な構造であれば、ペロブスカイト構造に限らず、スピネル構造であってもよい。したがって、アルカリ金属塩および遷移金属の混合物からなる本発明の非水系二次電池用活物質を用いることにより、非水系二次電池の高容量化が可能となる。
 また、本発明の非水系二次電池用活物質は、充放電に寄与するアルカリ金属を含むため、対極に用いる活物質が限定されない。たとえば、リチウムイオン二次電池においては、金属リチウムを含む電極を使用しなくて済むため、安全性が向上する。
ペロブスカイト型フッ化物FeFの結晶構造を示す。 LiF粉末およびFe粉末からなる混合粉末のX線回折図形である。 本発明の非水系二次電池用活物質を正極活物質としたリチウムイオン二次電池の充放電曲線を示す。
 以下に、本発明の非水系二次電池用活物質および非水系二次電池を実施するための最良の形態を説明する。
 [非水系二次電池用活物質]
 本発明の非水系二次電池用活物質(以下「活物質」と略記)は、アルカリ金属塩および遷移金属の混合物からなる。ここで、アルカリ金属とは、リチウム(Li)、ナトリウム(Na)、カリウム(K)、ルビジウム(Ru)、セシウム(Cs)、フランシウム(Fr)の6元素である。なかでも、Li、Naが好ましく、高容量で可逆な充放電特性を示す。
 上述のように、本発明の活物質は、充放電により、アルカリ金属イオンを挿入および脱離が可能な構造を形成する。具体的には、ペロブスカイト構造、スピネル構造などが挙げられる。これらの構造をとるには、アルカリ金属塩が、遷移金属元素BとB:X=1:1~1:3で結合して化合物をなす元素Xとアルカリ金属元素との塩であるとよい。上記の範囲で遷移金属元素と結合する元素Xは、周期表の15~17族元素から選ばれる少なくとも一種が好ましく、特に好ましくは、ハロゲン(フッ素(F)、塩素(Cl)、臭素(Br)、ヨウ素(I)、アスタチン(At))、酸素、硫黄、窒素が挙げられ、これらのうちの一種以上であるとよい。具体的には、LiF、NaF、LiO、NaO、LiS、NaS、LiN等が挙げられ、これらのうちの1種を単独で用いてもよいし2種以上を混合して用いてもよい。特に、本発明の活物質が構造式ABX(A:アルカリ金属元素、B:遷移金属元素)で表されペロブスカイト構造をとるときには、アルカリ金属塩がAXで表されるとよい。Xは、ペロブスカイト構造が安定に存在できる寛容性因子にあてはまるアニオン半径を有する元素であればよい。Xの具体例としては、ハロゲン元素、酸素元素、硫黄元素、窒素元素が挙げられ、これらのうちの一種以上であるとよい。すなわち、アルカリ金属塩AXには、フッ化物、塩化物、などのハロゲン化物の他、酸化物を好適に用いることができる。具体的には、LiF、NaF等が挙げられ、これらのうちの1種を単独で用いてもよいし2種以上を混合して用いてもよい。
 遷移金属に特に限定はなく、たとえば第一遷移元素(3d遷移元素:ScからZn)、中でも鉄(Fe)、ニッケル(Ni)、マンガン(Mn)、コバルト(Co)のうちの一種以上が挙げられる。また、本発明の活物質が構造式ABXで表されるペロブスカイト構造をとる場合には、3価をとる遷移金属を用いるとよい。具体的には、Fe、Ni、Mn、Co等が挙げられる。遷移金属として、これらのうちの1種を単独で用いてもよいし2種以上を混合して用いてもよい。
 上記のアルカリ金属塩、遷移金属のうち、特に好ましいアルカリ金属塩と遷移金属との組み合わせとして、LiFとFe、LiFとNi、LiFとMn、LiFとCoなどが挙げられる。
 本発明の活物質は、アルカリ金属塩および遷移金属の混合物である。アルカリ金属塩および遷移金属は粉末状であるのが好ましい。遷移金属の粉末であれば、鋳塊を粉砕したり溶湯を粉化したりして得られる粉末が使用可能であり、たとえばアトマイズ粉末は市販されており容易に入手できる。また、アルカリ金属塩粉末も、粉砕などして得られるが、アルカリ金属塩の前駆体を含む溶液を加熱するなどして前駆体を変換させて微細な粉末を得ることも可能である。アルカリ金属塩粉末および遷移金属粉末の平均粒径に特に限定はないが、アルカリ金属塩と遷移金属との反応は細かいドメインで起こると予想できるので、10μm以下が好ましい。特に、アルカリ金属塩粉末と遷移金属粉末とをミリングして得られる混合粉末は、ミリングによりそれぞれの粒子が均一に混合されるとともに粒子がさらに微細となるため、コンバージョン領域への分解反応およびコンバージョン領域からアルカリ金属塩のアニオンと遷移金属とからなる化合物の生成が可逆的に起こりやすくなる。この可逆反応は、混合粉末の平均粒径が細かいほど良好である。
 ミリングして混合粉末を得る場合には、ミリング速度を100rpm以上とするとよい。100rpm未満では、ミリングを長時間行っても粉末が微細化され難いためである。また、ミリング時間を10~24時間とするとよい。10時間未満では微細化効果が乏しく、24時間を超えてミリングしても、微細化効果に大きな向上はないためである。
 本発明の活物質の配合割合は、充放電によって生成される化合物の種類に応じて決定すればよく、遷移金属とアルカリ金属塩とのモル比で1:1~1:3とするとよい。充放電により生成される化合物がペロブスカイト構造(ABX)であれば、電解質イオン(アルカリ金属イオン:A)の挿入および脱離により、理論的には3AX+B←→BX+3Aになるため、遷移金属B:アルカリ金属塩AXはモル比で1:3程度とするのが好ましいと推測されるためである。
 [電極の構成および製造方法]
 電極は、上記本発明の活物質と、導電助材と、活物質および導電助材を結着する結着剤と、を含んで構成される。
 活物質は、上記のアルカリ金属塩および遷移金属の混合物である。なお、アルカリ金属塩および遷移金属を主たる活物質材料とした上で、既に公知の活物質を添加して用いてもよい。また、アルカリ金属塩および遷移金属は、既に説明したように種々の組み合わせが可能であるため、それぞれ1種を単独で用いることもでき、また、2種以上を混合して用いることもできる。
 導電助材としては、非水系二次電池の電極で一般的に用いられている材料を用いればよい。たとえば、カーボンブラック、アセチレンブラック、ケッチェンブラック、炭素繊維などの導電性炭素材料を用いるのが好ましい。これらのうちの1種を単独でまたは2種以上を混合して用いるとよい。導電助材は、上記の活物質とともにミリングして用いることで、さらに導電性が向上するため望ましい。導電助材の配合割合は、質量比で、活物質:導電助材=1:0.05~1:1であるのが好ましい。導電助材が少なすぎると効率のよい導電ネットワークを形成できず、また、導電助材が多すぎると電極の成形性が悪くなるとともに電極のエネルギー密度が低くなるためである。
 結着剤は、特に限定されるものではなく、既に公知のものを用いればよい。たとえば、ポリテトラフルオロエチレン、ポリフッ化ビニリデン等の含フッ素樹脂など、高電位においても分解しない樹脂を用いることができる。結着剤の配合割合は、質量比で、活物質:結着剤=1:0.05~1:0.5であるのが好ましい。結着剤が少なすぎると電極の成形性が低下し、また、結着剤が多すぎると電極のエネルギー密度が低くなるためである。
 本発明の活物質は、電極において活物質層として集電体に圧着された状態で用いられるのが一般的である。集電体は、金属製のメッシュや金属箔を用いることができる。本発明の活物質を正極に用いるのであれば高電位において溶解しにくいアルミニウム、アルミニウム合金などの集電体、負極であれば銅などの集電体を用いるとよい。
 電極の製造方法に特に限定はなく、一般的に実施されている非水系二次電池用電極の製造方法に従えばよい。たとえば、上記活物質に上記導電助材および上記結着剤を混合し、必要に応じ適量の有機溶剤を加えて、ペースト状の電極合材が得られる。この電極合材を、集電体の表面に塗布し、乾燥後、必要に応じプレス等を行い圧着させる。この製造方法によれば、作製された電極は、シート状の電極となる。このシート状の電極は、作製する非水系二次電池の仕様に応じた寸法に裁断して用いればよい。
 本発明の活物質は、非水系二次電池の正極の活物質としても負極の活物質としても使用可能である。また、前述の通り、本発明の活物質は、電池反応において電解質イオンとなるアルカリ金属を含むため、対極に用いる活物質が限定されない。たとえば、本発明の活物質を非水系二次電池の負極活物質として用いる場合には、たとえば、LiCoO、LiMnOなどのリチウム含有酸化物あるいはMoSや硫黄などのリチウムを含まない化合物を活物質とする電極を正極とし、非水系二次電池を構成すればよい。以下に、本発明の活物質を非水系二次電池の正極活物質として用いる場合を説明する。
 [非水系二次電池]
 本発明の非水系二次電池は、上記本発明の活物質からなる正極活物質を含む正極と、アルカリ金属を挿入・脱離可能な材料からなる負極活物質を含む負極と、を備える。正極の構成および製造方法は、既に述べた通りである。
 負極は、たとえば、Li、Na等のアルカリ金属、アルカリ金属の合金、黒鉛、コークス、ハードカーボン等の炭素材料、アルカリ金属と合金を形成する錫などの金属やシリコンまたはそれらを含む化合物などを活物質とする電極であるのが好ましい。負極は、上記の電極の製造方法に準ずる一般的な製造方法によって作製すればよい。
 本発明の電極を用いた非水系二次電池では、一般の二次電池と同様、正極および負極の他に、正極と負極の間に挟装されるセパレータ、非水電解液を備える。セパレータは、正極と負極とを分離し電解液を保持するものであり、ポリエチレン、ポリプロピレン等の薄い微多孔膜を用いることができる。また非水電解液は、有機溶媒に電解質であるアルカリ金属塩を溶解させたもので、有機溶媒としては、非プロトン性有機溶媒、たとえばエチレンカーボネート、プロピレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート、イミダゾール系のイオン液体などの1種またはこれらの2種以上の混合液を用いることができる。また、溶解させる電解質としては、LiPF、LiBF、LiAsF、LiI、LiClO、LiN(SOCF(略称:LiTFSI)、LiN(SO(略称:LiBETI)、NaPF、NaBF、NaAsF等の有機溶媒に可溶なアルカリ金属塩を用いることができる。また、非水系電解液の替わりに支持塩を入れたポリエチレンオキシド(PEO)のような高分子、電解液をPVdFで閉じこめたゲル電解質、LiSを含むリチウムイオン導電能を有する無機化合物、ガラスなどの固体電解質も使用可能である。
 非水系二次電池の形状に特に限定はなく、円筒型、積層型、コイン型等、種々の形状を採用することができる。いずれの形状を採る場合であっても、正極および負極にセパレータを挟装させ電極体とし、正極集電体および負極集電体から外部に通ずる正極端子および負極端子までの間を、集電用リード等を用いて接続した後、この電極体を非水電解液とともに電池ケースに密閉して電池となる。
 以上説明した本発明の非水系二次電池の充放電にともなう酸化還元を、ペロブスカイト型のABXを用いて説明する。本発明の非水系二次電池は、充電によりアルカリ金属塩(AX)と遷移金属(B)とからABX(0<y≦1)を経てBXを生成し、放電によりBXからABX(0<y≦1)を経てAXとBとを再生する、可逆的な酸化還元を行う。
 本発明の活物質は、アルカリ金属塩と遷移金属とからなるコンバージョン領域にあるため、放電終止電圧を従来よりも低くまで掃引するのが望ましい。たとえば、通常、リチウムを含む負極活物質を含む負極を備えるリチウムイオン二次電池では、電圧範囲を4.5V~2.0Vとして充放電を行うが、本発明の活物質を正極活物質として用いたリチウムイオン二次電池では、放電終止電圧を2.0V未満さらには1.5V~1.0Vとするのが望ましい。たとえば、電圧範囲を4.5V~1.5Vとするとよい。
 以上、本発明の非水系二次電池用活物質および非水系二次電池の実施形態を説明したが、本発明は、上記実施形態に限定されるものではない。本発明の要旨を逸脱しない範囲において、当業者が行い得る変更、改良等を施した種々の形態にて実施することができる。
 以下に、本発明の非水系二次電池用活物質および非水系二次電池の実施例を挙げて、本発明を具体的に説明する。
 [活物質の調製]
 LiF粉末(添川理化学株式会社製、平均粒子径:3μm)および市販のFe粉末(平均粒子径:3μm)を準備した。LiF粉末5gとFe粉末7g(モル比でLiF:Fe=3:1)を秤量し、ボールミルにより混合した。混合は、ミリング速度を600rpm、ミリング時間を24時間とした。得られた混合粉末(活物質#01)のX線回折分析(CuKα)を行った。結果を図2に示す。なお、図2には、数分間、手攪拌して得た同じ配合割合の混合粉末(活物質#00)のX線回折図形を併せて示す。活物質#01の回折ピークが活物質#00よりもブロードであることから、ミリングを行うことにより、それぞれの粒子が微細となることがわかった。また、#01および#00のいずれにおいても、LiFおよびFeのそれぞれの回折ピークが得られ、#01ではミリングによりLiFとFeとが反応していないことがわかった。
 [リチウムイオン二次電池用電極の作製]
 活物質#01を用いて電極を作製した。活物質#01と導電助剤としてのアセチレンブラック(AB)とを混合し、さらに活物質および導電助材を結着する結着剤としてのポリテトラフルオロエチレン(PTFE)を混合し、適量の溶媒(エタノール)を添加して充分に混練してペースト状の電極合材を調製した。活物質#01、ABおよびPTFEの配合比は、質量比で1:1.66:1.33であった。次に、この電極合材を集電体(アルミニウム製メッシュ,厚さ:20μm)の両面に塗布し、乾燥後、圧着してシート状の電極を得た。
 [リチウムイオン二次電池の作製]
 上記の手順で作製した電極を正極としたリチウムイオン二次電池を作製した。正極に対向させる負極は、金属リチウム(厚さ500μm)とした。正極をφ13mm、負極をφ15mmに裁断し、セパレータ(ヘキストセラニーズ社製ガラスフィルター,celgard2400)を両者の間に挟装して電極体電池とした。この電極体電池を電池ケース(宝泉株式会社製CR2032コインセル)に収容した。また、電池ケースには、エチレンカーボネートとジエチルカーボネートとを1:1(体積比)で混合した混合溶媒にLiPFを1Mの濃度で溶解した非水電解質を注入した。電池ケースを密閉して、リチウムイオン二次電池#11を得た。
 [評価]
 リチウムイオン二次電池#11に対して充放電試験を行い、充放電特性を評価した。試験は、30℃の温度環境のもと、充電終止電圧4.5Vまで0.01mAの定電流で充電を行った後、放電終止電圧1.5Vまで0.01mAの定電流で放電を行った。充放電を繰り返し行い、電圧に対する正極活物質単位重量当たりの容量を測定した。4サイクル目と5サイクル目の充放電特性を図3に示す。
 リチウムイオン二次電池#11は、高容量(5サイクル目の容量は225mAh/g)で可逆な充放電特性を示すことがわかった。つまり、アルカリ金属塩であるLiFと遷移金属であるFeとの混合物からなる活物質は、可逆な充放電特性を示すとともに、その活物質を用いた非水系二次電池は高容量であることがわかった。市販されている一般的なリチウムイオン二次電池の容量が150mAh/g程度であるため、#11のリチウムイオン二次電池は通常の1.5倍程度高容量であった。また、図3の放電曲線によれば、電圧が2.0V付近を境にグラフの傾きが大きく変化した。これは、2.0V付近でLiFeFがLiFとFeとに分解されはじめたことを示唆している。
 なお、活物質#01のかわりに活物質#00を用いて作製したリチウムイオン二次電池であっても、上記と同様な充放電試験により充放電が可逆的に行われることが確認された。
 
 

Claims (10)

  1.  アルカリ金属塩および遷移金属の混合物からなり、充放電により、該アルカリ金属塩と該遷移金属とが反応してなる化合物からアルカリ金属を脱離し、アルカリ金属が挿入された該化合物から該アルカリ金属塩と該遷移金属とを再生する可逆的な酸化還元を行うことを特徴とする非水系二次電池用活物質。
  2.  前記アルカリ金属塩は、遷移金属元素BとB:X=1:1~1:3で結合して前記化合物をなす元素Xとアルカリ金属元素との塩である請求項1記載の非水系二次電池用活物質。
  3.  アルカリ金属を挿入・脱離する前記化合物は、ペロブスカイト構造を有する請求項2記載の非水系二次電池用活物質。
  4.  前記アルカリ金属塩はハロゲン化物、窒化物、硫化物および酸化物からなる群から選ばれる一種以上である請求項1または2に記載の非水系二次電池用活物質。
  5.  前記アルカリ金属塩は、リチウムハロゲン化物である請求項4記載の非水系二次電池用活物質。
  6.  前記アルカリ金属塩はフッ化リチウム(LiF)、前記遷移金属は鉄(Fe)である請求項5記載の非水系二次電池用活物質。
  7.  前記混合物は、アルカリ金属塩粉末と遷移金属粉末との混合粉末からなる請求項1記載の非水系二次電池用活物質。
  8.  前記混合粉末は、前記アルカリ金属塩粉末と前記遷移金属粉末とをミリングしてなる請求項7記載の非水系二次電池用活物質。
  9.  請求項1に記載の非水系二次電池用活物質からなる正極活物質を含む正極と、アルカリ金属を挿入・脱離可能な材料からなる負極活物質を含む負極と、を備える非水系二次電池。
  10.  前記負極活物質はリチウムを含み、放電終止電圧が2.0V未満である請求項9記載の非水系二次電池。
     
PCT/JP2010/000049 2009-01-23 2010-01-06 非水系二次電池用活物質および非水系二次電池 WO2010084701A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US13/145,056 US20110285353A1 (en) 2009-01-23 2010-01-06 Active material for non-aqueous-system secondary battery and non-aqueous-system secondary battery
CN201080003846.0A CN102272989A (zh) 2009-01-23 2010-01-06 非水系二次电池用活性物质及非水系二次电池
KR1020117015249A KR101354085B1 (ko) 2009-01-23 2010-01-06 비수계 이차 전지용 활물질, 비수계 이차 전지 및 그의 충방전 방법
EP10733309A EP2383821A4 (en) 2009-01-23 2010-01-06 ACTIVE MATERIAL FOR WATER-FREE SECONDARY BATTERY AND WATER-FREE SECONDARY BATTERY

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-012860 2009-01-23
JP2009012860A JP5013217B2 (ja) 2009-01-23 2009-01-23 非水系二次電池用活物質および非水系二次電池

Publications (1)

Publication Number Publication Date
WO2010084701A1 true WO2010084701A1 (ja) 2010-07-29

Family

ID=42355763

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/000049 WO2010084701A1 (ja) 2009-01-23 2010-01-06 非水系二次電池用活物質および非水系二次電池

Country Status (6)

Country Link
US (1) US20110285353A1 (ja)
EP (1) EP2383821A4 (ja)
JP (1) JP5013217B2 (ja)
KR (1) KR101354085B1 (ja)
CN (1) CN102272989A (ja)
WO (1) WO2010084701A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012069336A (ja) * 2010-09-22 2012-04-05 Mitsubishi Heavy Ind Ltd 二次電池の製造方法
JP2012195093A (ja) * 2011-03-15 2012-10-11 Mitsubishi Heavy Ind Ltd 二次電池用正極およびこれを備えた二次電池
US20130157140A1 (en) * 2011-12-20 2013-06-20 General Electric Company Methods of making and using electrode compositions and articles
JP2014220203A (ja) * 2013-05-10 2014-11-20 国立大学法人九州大学 ナトリウムイオン電池用の正極活物質およびその製造方法
US11152648B2 (en) 2011-12-20 2021-10-19 General Electric Company Electrode compositions and articles, and related processes

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5461463B2 (ja) * 2011-03-15 2014-04-02 三菱重工業株式会社 電極活物質およびこれを備えた二次電池用正極並びに二次電池
JP5473969B2 (ja) * 2011-03-15 2014-04-16 三菱重工業株式会社 二次電池用正極およびこれを備えた二次電池
KR102312369B1 (ko) * 2014-12-16 2021-10-12 에스케이이노베이션 주식회사 리튬 이차 전지
JP6313345B2 (ja) * 2016-02-12 2018-04-18 トヨタ自動車株式会社 活物質およびフッ化物イオン電池
JP6487375B2 (ja) * 2016-06-03 2019-03-20 トヨタ自動車株式会社 二次電池システム
CN108550836A (zh) * 2018-06-02 2018-09-18 湖南科技大学 一种锂离子电池Ni/LiF复合正极材料的制备方法
KR102587502B1 (ko) * 2018-06-25 2023-10-11 솔루스첨단소재 주식회사 고순도 금속할로겐화물 및 이의 제조방법, 상기 고순도 금속할로겐화물을 포함하는 유기전계 발광소자
JP7435394B2 (ja) * 2020-10-06 2024-02-21 トヨタ自動車株式会社 負極活物質、負極活物質の製造方法およびリチウムイオン電池

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07176330A (ja) * 1993-12-20 1995-07-14 Japan Storage Battery Co Ltd 有機電解液二次電池およびその製造方法
JPH0922698A (ja) 1995-07-05 1997-01-21 Nippon Telegr & Teleph Corp <Ntt> 非水電解質電池
JPH0955201A (ja) 1995-08-11 1997-02-25 Nippon Telegr & Teleph Corp <Ntt> 非水電解質電池
JPH0955202A (ja) * 1995-08-11 1997-02-25 Nippon Telegr & Teleph Corp <Ntt> 非水電解質電池
JPH11339800A (ja) * 1998-05-28 1999-12-10 Matsushita Electric Ind Co Ltd 非水電解質二次電池
JP2000012033A (ja) * 1998-06-29 2000-01-14 Toyota Central Res & Dev Lab Inc 非水電解質電池
JP2006190556A (ja) 2005-01-06 2006-07-20 Nec Corp リチウム二次電池用活物質材料、その製造方法及びこれに用いる原材料並びにリチウム二次電池
WO2008059961A1 (fr) * 2006-11-17 2008-05-22 Mitsubishi Heavy Industries, Ltd. Matière active de cathode pour un accumulateur d'électrolyte non aqueux et procédé de production d'une matière active de cathode pour un accumulateur d'électrolyte non aqueux
JP2008243646A (ja) * 2007-03-28 2008-10-09 Kyushu Univ フッ化物正極作製法
JP2009016234A (ja) * 2007-07-06 2009-01-22 Sony Corp 非水電池および非水電池の製造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11336800A (ja) * 1998-05-25 1999-12-07 Akebono Brake Ind Co Ltd ディスクブレーキ装置
US6569567B1 (en) * 1999-09-13 2003-05-27 Ovonic Battery Company, Inc. Method of activating metal hydride material and electrode
US7371338B2 (en) * 2002-10-01 2008-05-13 Rutgers, The State University Metal fluorides as electrode materials
JP3844733B2 (ja) * 2002-12-26 2006-11-15 松下電器産業株式会社 非水電解質二次電池
US7261970B2 (en) * 2004-04-23 2007-08-28 Ovonic Battery Company Inc. Nickel metal hydride battery design
JP4311438B2 (ja) * 2006-11-28 2009-08-12 ソニー株式会社 正極活物質およびこれを用いた非水電解質二次電池、並びに正極活物質の製造方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07176330A (ja) * 1993-12-20 1995-07-14 Japan Storage Battery Co Ltd 有機電解液二次電池およびその製造方法
JPH0922698A (ja) 1995-07-05 1997-01-21 Nippon Telegr & Teleph Corp <Ntt> 非水電解質電池
JPH0955201A (ja) 1995-08-11 1997-02-25 Nippon Telegr & Teleph Corp <Ntt> 非水電解質電池
JPH0955202A (ja) * 1995-08-11 1997-02-25 Nippon Telegr & Teleph Corp <Ntt> 非水電解質電池
JPH11339800A (ja) * 1998-05-28 1999-12-10 Matsushita Electric Ind Co Ltd 非水電解質二次電池
JP2000012033A (ja) * 1998-06-29 2000-01-14 Toyota Central Res & Dev Lab Inc 非水電解質電池
JP2006190556A (ja) 2005-01-06 2006-07-20 Nec Corp リチウム二次電池用活物質材料、その製造方法及びこれに用いる原材料並びにリチウム二次電池
WO2008059961A1 (fr) * 2006-11-17 2008-05-22 Mitsubishi Heavy Industries, Ltd. Matière active de cathode pour un accumulateur d'électrolyte non aqueux et procédé de production d'une matière active de cathode pour un accumulateur d'électrolyte non aqueux
JP2008243646A (ja) * 2007-03-28 2008-10-09 Kyushu Univ フッ化物正極作製法
JP2009016234A (ja) * 2007-07-06 2009-01-22 Sony Corp 非水電池および非水電池の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2383821A4

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012069336A (ja) * 2010-09-22 2012-04-05 Mitsubishi Heavy Ind Ltd 二次電池の製造方法
JP2012195093A (ja) * 2011-03-15 2012-10-11 Mitsubishi Heavy Ind Ltd 二次電池用正極およびこれを備えた二次電池
US20130157140A1 (en) * 2011-12-20 2013-06-20 General Electric Company Methods of making and using electrode compositions and articles
US11152648B2 (en) 2011-12-20 2021-10-19 General Electric Company Electrode compositions and articles, and related processes
JP2014220203A (ja) * 2013-05-10 2014-11-20 国立大学法人九州大学 ナトリウムイオン電池用の正極活物質およびその製造方法

Also Published As

Publication number Publication date
KR101354085B1 (ko) 2014-01-22
EP2383821A4 (en) 2013-01-02
JP5013217B2 (ja) 2012-08-29
KR20110094108A (ko) 2011-08-19
EP2383821A1 (en) 2011-11-02
US20110285353A1 (en) 2011-11-24
CN102272989A (zh) 2011-12-07
JP2010170865A (ja) 2010-08-05

Similar Documents

Publication Publication Date Title
WO2010084701A1 (ja) 非水系二次電池用活物質および非水系二次電池
KR101702818B1 (ko) 활성 재료, 비수성 전해질 전지 및 전지 팩
JP3769291B2 (ja) 非水電解質電池
JP5225615B2 (ja) 負極活物質としてTiO2−Bを含むリチウムイオン蓄電池
EP2642577B1 (en) Positive electrode active material for lithium ion secondary battery and lithium ion secondary battery including positive electrode active material
EP2203948B1 (en) Positive electrode active material, lithium secondary battery, and manufacture methods therefore
JP5671831B2 (ja) 窒化リチウム−遷移金属複合酸化物の製造方法、窒化リチウム−遷移金属複合酸化物およびリチウム電池
JP6523113B2 (ja) 電極、非水電解質電池、電池パック、および自動車
JP5472237B2 (ja) 電池用活物質、電池用活物質の製造方法、および電池
JP2009054475A (ja) 非水電解液電池および電池パック
WO2010110035A1 (ja) 非水電解質電池用負極活物質、その製造方法、非水電解質電池及び電池パック
CN105870494A (zh) 锂离子二次电池
WO2011117992A1 (ja) 電池用活物質および電池
WO2011129066A1 (ja) リチウムイオン二次電池
WO2020202844A1 (ja) リチウム二次電池
US9742027B2 (en) Anode for sodium-ion and potassium-ion batteries
CN111668484A (zh) 负极活性物质材料和蓄电装置
JPWO2016038716A1 (ja) 非水電解質二次電池およびそれを備えた電池パック
JP2010170867A (ja) 非水系二次電池用正極活物質および非水系二次電池の充放電方法
JP5326755B2 (ja) リチウム二次電池用正極活物質
JP5242315B2 (ja) 非水電解質二次電池
KR100378012B1 (ko) 리튬 이차 전지용 양극 활물질 조성물 및 이 조성물을이용하여 제조된 리튬 이차 전지
JP2003002653A (ja) リチウム二次電池正極活物質用リチウムクロム複合酸化物およびその製造方法
JP5354091B2 (ja) 電池用活物質および電池
JP2006024486A (ja) Li−Ni−Ti複合酸化物電極材料の製造方法およびその電極材料を用いた電池

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080003846.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10733309

Country of ref document: EP

Kind code of ref document: A1

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 20117015249

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2010733309

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13145056

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 5315/CHENP/2011

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE