WO2010082267A1 - エピタキシャル成長用内部改質基板及びそれを用いて作製される結晶成膜体、デバイス、バルク基板及びそれらの製造方法 - Google Patents

エピタキシャル成長用内部改質基板及びそれを用いて作製される結晶成膜体、デバイス、バルク基板及びそれらの製造方法 Download PDF

Info

Publication number
WO2010082267A1
WO2010082267A1 PCT/JP2009/006633 JP2009006633W WO2010082267A1 WO 2010082267 A1 WO2010082267 A1 WO 2010082267A1 JP 2009006633 W JP2009006633 W JP 2009006633W WO 2010082267 A1 WO2010082267 A1 WO 2010082267A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
sapphire substrate
semiconductor layer
film
nitride semiconductor
Prior art date
Application number
PCT/JP2009/006633
Other languages
English (en)
French (fr)
Inventor
会田英雄
青田奈津子
星野仁志
Original Assignee
並木精密宝石株式会社
株式会社ディスコ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 並木精密宝石株式会社, 株式会社ディスコ filed Critical 並木精密宝石株式会社
Priority to KR1020117018146A priority Critical patent/KR101362859B1/ko
Priority to CN200980154399.6A priority patent/CN102272891B/zh
Priority to EP20090838237 priority patent/EP2388802B1/en
Priority to PL09838237T priority patent/PL2388802T3/pl
Priority to US13/144,920 priority patent/US20120018732A1/en
Publication of WO2010082267A1 publication Critical patent/WO2010082267A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/16Oxides
    • C30B29/20Aluminium oxides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/18Epitaxial-layer growth characterised by the substrate
    • C30B25/186Epitaxial-layer growth characterised by the substrate being specially pre-treated by, e.g. chemical or physical means
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C30B29/403AIII-nitrides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B33/00After-treatment of single crystals or homogeneous polycrystalline material with defined structure
    • C30B33/04After-treatment of single crystals or homogeneous polycrystalline material with defined structure using electric or magnetic fields or particle radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02293Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process formation of epitaxial layers by a deposition process
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/0242Crystalline insulating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02455Group 13/15 materials
    • H01L21/02458Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/0254Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • H01L21/02667Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
    • H01L21/02675Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth using laser beams
    • H01L21/02686Pulsed laser beam

Definitions

  • the present invention relates to an internally modified substrate for epitaxial growth, a crystal film formed using the same, a device, a bulk substrate, and a method for manufacturing them.
  • Nitride semiconductors typified by gallium nitride have a wide band gap and can emit blue light, and thus are widely used in LEDs (light emitting diodes), LDs (semiconductor lasers), and the like. In recent years, efforts have been actively made to further increase luminous efficiency and increase brightness.
  • a general nitride semiconductor light emitting device structure includes a sapphire substrate, a buffer layer made of GaN, an n-type contact layer made of n-type GaN, an n-type cladding layer made of n-type AlGaN, an active layer made of n-type InGaN, It has a double hetero structure in which a p-type cladding layer made of p-type AlGaN and a p-type contact layer made of p-type GaN are sequentially stacked.
  • the active layer is a single quantum well (SQW) structure including only a well layer made of In x Ga 1-x N (0 ⁇ X ⁇ 1) or In x Ga 1-x N (0 ⁇ X ⁇ 1 ). 1) and a multi-quantum well structure (MQW: In) with a well layer made of In y Ga 1-y N (0 ⁇ y ⁇ 1, y ⁇ x). ing.
  • SQW single quantum well
  • MQW multi-quant
  • Non-Patent Document 1 an AlN buffer layer and a GaN layer are epitaxially grown on a sapphire substrate, and it is examined how the thermal stress generated by the film formation is relieved depending on the film thickness of the GaN layer.
  • this non-patent document 1 as the film thickness increases, the warpage of the substrate increases, and accordingly, interface defects, microcracks, dislocations, and macrocracks occur. It is clarified that stress is relieved.
  • FIG. 4 discloses an analysis method for in-situ observation of the warpage of a substrate that occurs through a process of epitaxially growing a GaN-based LED structure on a sapphire substrate. According to this, it is shown that the curvature of the sapphire substrate greatly changes due to changes in film forming material, film forming temperature, and film thickness in a series of film forming steps.
  • the emission wavelength in the substrate surface is made uniform by adopting a film forming process in which the curvature of the sapphire substrate becomes almost zero in the growth stage of the InGaN layer as the active layer.
  • the warp shape and the warp amount of the sapphire substrate are set so that the substrate curvature becomes almost zero in the InGaN-based active layer using the difference in thermal expansion coefficient with the substrate.
  • various polishing techniques have been studied in order to control the shape and warpage of the sapphire substrate (for example, Patent Document 2).
  • Patent Document 3 when dividing a light emitting device in which a nitride semiconductor is laminated on a sapphire substrate, a pulsed laser is focused inside the sapphire substrate having a thickness of about 80 to 90 ⁇ m to form a division planned line of the light emitting device.
  • a technique for forming a corresponding altered region is known (Patent Document 3).
  • the invention of Patent Document 3 is a method for processing a sapphire substrate that can suppress a decrease in luminance of the light-emitting element even when the sapphire substrate is irradiated with a laser beam and divided into individual light-emitting elements. .
  • the warpage of the sapphire substrate is greatly changed through a series of film forming steps for obtaining a gallium nitride-based light emitting diode structure, so that the quality of the nitride semiconductor layer and the uniformity of the emission wavelength are deteriorated. There was a problem that the yield deteriorated.
  • the conventional method employs a method of setting the warp shape and the warp amount of the sapphire substrate so that the curvature of the substrate in the growth stage of the InGaN-based active layer becomes almost zero.
  • this is a technique in which the amount of warpage generated in the growth stage of the InGaN-based active layer is previously applied to the sapphire substrate and offset.
  • the sapphire substrate is greatly warped, resulting in deterioration in film quality and film quality uniformity, and uniform backgrinding of the substrate.
  • a polished sapphire substrate usually warps the substrate due to residual processing strain or a difference in surface roughness between the upper and lower surfaces.
  • the surface roughness of the upper and lower surfaces is mainly a cause of warpage
  • the surface roughness of the upper and lower surfaces is slightly different.
  • a slight variation in the surface roughness within the substrate surface causes warping.
  • the object of the present invention is to enable precise control of the warp shape and / or warp amount of the substrate in a sapphire substrate mainly used for epitaxial growth of a nitride semiconductor layer, and Sapphire substrate that suppresses the warpage of the substrate during film formation and can reduce the warpage behavior of the substrate, and nitride semiconductor layer film formed using the sapphire substrate, nitride semiconductor device, nitride semiconductor bulk It is in providing a board
  • the inventors of the present invention control the stress of the sapphire substrate by forming a modified region pattern using a pulse laser inside the sapphire substrate before the nitride semiconductor layer is epitaxially grown. Or it discovered that the amount of curvature was controllable.
  • the stress generated by the film formation can be offset by the stress of the sapphire substrate on which the modified region pattern is formed, and the film formation step
  • the present inventors have found that the warpage of the substrate can be suppressed and the warping behavior of the substrate can be reduced.
  • the internally modified sapphire substrate for epitaxial growth of a nitride semiconductor layer according to the present invention is a sapphire substrate used for forming a nitride semiconductor layer formed by epitaxial growth, and multiphoton absorption by a pulse laser is performed inside the sapphire substrate.
  • the modified region pattern used is formed.
  • the internally modified sapphire substrate for epitaxial growth of the nitride semiconductor layer of the present invention condenses and scans a pulse laser through the polished surface side of the sapphire substrate inside the sapphire substrate, and multiphotons by the pulse laser.
  • the modified region pattern is formed by utilizing absorption.
  • the internally modified sapphire substrate for epitaxial growth of a nitride semiconductor layer according to the present invention has a planar shape of a stripe shape, a lattice shape, and a plurality of polygons in addition to the above-described invention. It is any one of an arranged shape, a concentric circular shape, a helical shape, and a shape that is substantially line-symmetric or point-symmetric with respect to a straight line passing through the center point of the sapphire substrate.
  • the formation position of at least one type of the modified region pattern is determined from the film formation surface of the sapphire substrate. 3% to 95%, and the pitch between the lines constituting the modified region pattern is 50 ⁇ m to 2000 ⁇ m.
  • the internally modified sapphire substrate for epitaxial growth of a nitride semiconductor layer according to the present invention has a planar shape of at least one modified region pattern with respect to a straight line passing through the center point of the sapphire substrate.
  • a substantially line-symmetrical shape, a substantially point-symmetrical shape, or a lattice shape and the formation position of the modified region pattern is a position from 3% to 50% of the substrate thickness from the film-forming surface of the sapphire substrate,
  • the pitch between the lines constituting the modified region pattern is 50 ⁇ m or more and 2000 ⁇ m or less.
  • the nitride semiconductor layer film-forming body of the present invention is produced by forming at least one nitride semiconductor layer on the film formation surface of the internally modified sapphire substrate for epitaxial growth of the nitride semiconductor layer.
  • the nitride semiconductor device of the present invention is manufactured using the nitride semiconductor layer film-forming body of the present invention.
  • the nitride semiconductor bulk substrate of the present invention is characterized by being manufactured using a thick film of the nitride semiconductor layer of the present invention.
  • the shape of the sapphire substrate before the formation of the modified region pattern is such that the deposition surface of the semiconductor layer is a concave surface, and the curvature of the concave surface is It is characterized by using a sapphire substrate for forming a modified region pattern which is larger than 0 km ⁇ 1 and not larger than 160 km ⁇ 1 .
  • the shape of the sapphire substrate before the formation of the modified region pattern is such that the deposition surface of the semiconductor layer is a concave surface, and the curvature of the concave surface is wherein the produced using the modified region pattern forming sapphire substrate is 40 km -1 or 150 km -1 or less.
  • the shape of the sapphire substrate before the formation of the modified region pattern is such that the deposition surface of the semiconductor layer is a concave surface, and the curvature of the concave surface is wherein the produced using the modified region pattern forming sapphire substrate is 85km -1 or 150 km -1 or less.
  • the modified region pattern forming sapphire substrate of the present invention is characterized by having a diameter of 50 mm to 300 mm and a thickness of 0.05 mm to 5.0 mm.
  • the internally modified sapphire substrate of the present invention can be applied to epitaxial growth of various semiconductor layers including nitride semiconductors. Further, the present invention can be applied to any single crystal substrate other than sapphire, in which a modified region can be patterned inside by a pulse laser.
  • a single crystal substrate used for epitaxial growth is useful not only for heteroepitaxial growth but also for solving the problem of substrate warpage that occurs in homoepitaxial growth including the same composition or mixed crystal. Therefore, the quality and yield of various devices or various bulk substrates can be improved.
  • the present invention has the following effects.
  • the warpage shape and / or the warpage amount of the substrate is precisely controlled.
  • a single crystal substrate can be provided.
  • the present invention is particularly effective for a large-diameter substrate that is technically difficult to control only by polishing. Further, there is an effect that it is possible to provide a single crystal substrate capable of suppressing the warpage of the substrate that occurs in the epitaxial growth process and reducing the warping behavior of the substrate.
  • a single crystal substrate such as sapphire, nitride semiconductor, Si, GaAs, quartz crystal, SiC, etc. capable of forming a modified region pattern inside the substrate using a pulse laser. It has the same effect as 1 or 2.
  • the stress generated by the film formation can be offset by the stress of the single crystal substrate on which the modified region pattern is formed, the warpage of the substrate during the film formation is suppressed. The warping behavior of the substrate can be reduced.
  • the crystal film-forming body of the present invention can be used as a base substrate when forming a thick film having a film thickness that can stand by epitaxial growth.
  • the crystalline film can be used without complicated processes and without generating cracks.
  • a thick film can be grown. Therefore, it is possible to provide various bulk substrates composed of a thick crystalline film having a film thickness that can stand by itself.
  • the sapphire substrate used for epitaxial growth of the semiconductor layer it is possible to provide a sapphire substrate in which the warpage shape and / or the warpage amount of the substrate is precisely controlled. Moreover, according to the sapphire substrate of the present invention, since the modified region pattern is formed inside, it is not necessary to re-clean the substrate. The present invention is particularly effective for a large-diameter substrate that is technically difficult to control only by polishing.
  • the sapphire substrate of the present invention it is possible to suppress the warpage of the substrate that occurs in the epitaxial growth process of the semiconductor layer and to reduce the warpage behavior of the substrate. Furthermore, since there is no pattern on the surface of the sapphire substrate, it is not necessary to change the film formation conditions drastically, and film formation can be performed under the same conditions as those of a conventional sapphire substrate.
  • the stress generated by the film formation of the semiconductor layer can be offset by the stress of the sapphire substrate on which the modified region pattern is formed. It is possible to suppress the warpage behavior of the substrate.
  • the semiconductor layer film-forming body of the present invention can be used as a base substrate when forming a thick film having a film thickness capable of being self-supported by epitaxial growth.
  • the eleventh aspect of the present invention since the warpage of the substrate that occurs during or after the formation of the semiconductor layer can be suppressed, a complicated process is not used and a crack is not generated.
  • a thick film of the semiconductor layer can be grown. Therefore, it is possible to provide various types of semiconductor bulk substrates composed of a thick film of a semiconductor layer film-forming body having a self-supporting film thickness.
  • the sapphire substrate used for the epitaxial growth of the nitride semiconductor layer it is possible to provide a sapphire substrate in which the warpage shape and / or the warpage amount of the substrate are precisely controlled. Moreover, according to the sapphire substrate of the present invention, since the modified region pattern is formed inside, it is not necessary to re-clean the substrate. The present invention is particularly effective for a large-diameter substrate that is technically difficult to control only by polishing.
  • the sapphire substrate of the present invention it is possible to suppress the warpage of the substrate that occurs in the epitaxial growth process of the nitride semiconductor layer and to reduce the warpage behavior of the substrate. Furthermore, since there is no pattern on the surface of the sapphire substrate, it is not necessary to change the film formation conditions drastically, and film formation can be performed under the same conditions as those of a conventional sapphire substrate.
  • the fourteenth aspect in addition to the effect of the twelfth or thirteenth aspect, there is an effect that it is possible to provide a sapphire substrate in which the warpage shape of the substrate is mainly controlled.
  • the substrate warpage generated in the epitaxial growth step of the nitride semiconductor layer can be further suppressed, and the warpage behavior of the substrate can be reduced. It has the effect that the sapphire substrate which can be provided can be provided.
  • the stress generated by the deposition of the nitride semiconductor layer can be offset by the stress of the sapphire substrate on which the modified region pattern is formed, the warpage of the substrate during deposition is suppressed and the warpage behavior of the substrate is reduced. can do.
  • nitride semiconductor layer film-forming body of the present invention can be used as a base substrate when forming a thick film having a film thickness capable of being self-supported by epitaxial growth.
  • nitride semiconductor devices can be configured using the nitride semiconductor layer film-forming body with improved film quality and uniformity, the quality and yield are improved.
  • Various types of nitride semiconductor devices can be provided.
  • any one of a light emitting element, an electronic device, and a light receiving element can be provided as the nitride semiconductor device.
  • a substrate can be provided.
  • an internally modified sapphire substrate in which the warpage shape and / or the warpage amount of the substrate is precisely controlled can be produced.
  • the warpage shape and / or the warpage amount of the substrate is precisely controlled, and in the film forming step of the substrate nitride semiconductor layer, the warpage of the substrate is suppressed, and the warpage behavior of the substrate is controlled.
  • An internally modified sapphire substrate that can be made small can be efficiently manufactured.
  • the warpage shape and / or the warpage amount of the single crystal substrate can be controlled efficiently and precisely.
  • the present invention is particularly effective for a large-diameter substrate that is technically difficult to control only by polishing.
  • a single crystal substrate such as sapphire, nitride semiconductor, Si, GaAs, quartz crystal, SiC, or the like that can form a modified region pattern inside the substrate by using a pulse laser.
  • a pulse laser a single crystal substrate
  • Si silicon, GaAs, quartz crystal, SiC, or the like
  • the warpage of the substrate during film formation can be suppressed and the warpage behavior of the substrate can be reduced, the generation of dislocations in the crystalline film and the non-uniform film thickness can be suppressed. And the quality and uniformity of the film can be improved.
  • the crystalline film can be used without using a complicated process and without generating cracks.
  • a thick film can be grown. Therefore, it is possible to manufacture various bulk substrates composed of a thick crystalline film having a self-supporting film thickness.
  • the warp shape and / or the warp amount of the sapphire substrate used for the epitaxial growth of the semiconductor layer can be controlled efficiently and precisely.
  • the present invention is particularly effective for a large-diameter substrate that is technically difficult to control only by polishing.
  • the modified region pattern is formed inside, there is an effect that it is not necessary to re-clean the substrate.
  • the warpage of the substrate during the film formation can be suppressed and the warpage behavior of the substrate can be reduced, the generation of dislocations and the non-uniform film thickness during the film formation of the semiconductor layer can be prevented.
  • the film quality and uniformity can be improved.
  • the film since there is no pattern on the surface of the sapphire substrate, it is not necessary to change the film forming conditions significantly, and the film can be formed under the same conditions as those of the conventional sapphire substrate.
  • various semiconductor devices can be configured using the semiconductor layer film-forming body with improved film quality and uniformity. Therefore, various semiconductor devices with improved quality and yield can be obtained. Can be manufactured.
  • the semiconductor layer can be formed without using a complicated process and without generating cracks. Thick films can be grown. Therefore, it is possible to manufacture various types of semiconductor bulk substrates composed of thick semiconductor layers having a film thickness that can be self-supporting.
  • the warp shape and / or the warp amount of the sapphire substrate used for epitaxial growth of the nitride semiconductor layer can be controlled efficiently and precisely.
  • the present invention is particularly effective for a large-diameter substrate that is technically difficult to control only by polishing.
  • the modified region pattern is formed inside, there is an effect that it is not necessary to re-clean the substrate.
  • the warp shape of the sapphire substrate can be mainly controlled uniformly.
  • the warpage of the substrate that occurs in the epitaxial growth step of the nitride semiconductor layer can be suppressed more effectively, and the warpage behavior of the sapphire substrate can be suppressed. It is possible to reduce the size.
  • the warpage of the substrate during the film formation can be suppressed and the warpage behavior of the substrate can be reduced, the occurrence of dislocations and the film thickness nonuniformity during the film formation of the nitride semiconductor layer.
  • the film quality and uniformity can be improved.
  • the film forming conditions since there is no pattern on the surface of the sapphire substrate, it is not necessary to change the film forming conditions significantly, and the film can be formed under the same conditions as those of the conventional sapphire substrate.
  • a nitride semiconductor device can be configured using a nitride semiconductor layer film-forming body with improved film quality and uniformity, nitridation with improved quality and yield is achieved.
  • a physical semiconductor device can be manufactured.
  • the quality and yield of any one of a light emitting element, an electronic device, and a light receiving element can be improved.
  • the nitride semiconductor can be used without using complicated processes and without generating cracks.
  • a thick film of layers can be grown. Therefore, a nitride semiconductor bulk substrate composed of a thick nitride semiconductor layer having a self-supporting film thickness can be manufactured.
  • the warpage of the substrate is suppressed and the warpage behavior of the substrate is reduced.
  • An internal modified sapphire substrate that can be manufactured can be manufactured efficiently.
  • the warpage shape and / or the warpage amount of the substrate is precisely controlled, and in the film forming step of the substrate nitride semiconductor layer, the warpage of the substrate is suppressed, and the warpage behavior of the substrate is controlled.
  • An internally modified sapphire substrate that can be made small can be efficiently manufactured.
  • FIG. 10 shows the in-situ observation result of the sample 10 which concerns on the present Example 3.
  • FIG. 12 shows the in-situ observation result of the sample 12 which concerns on the present Example 3.
  • FIG. 14 shows the in-situ observation result of the sample 14 which concerns on the present Example 3.
  • FIG. 16 shows the in-situ observation result of the sample 16 which concerns on the present Example 3.
  • FIG. 20 shows the in-situ observation result of the sample 20 which concerns on the present Example 3.
  • FIG. 10 shows the formation position and pitch dependence with respect to the variation
  • FIG. shows the in-situ observation result of the sample 10 which concerns on the present Example 3.
  • FIG. 12 shows the in-situ observation result of the sample 12 which concerns on the present Example 3.
  • FIG. It is a figure which shows the in-situ observation result of the sample 14 which concerns on the present Example 3.
  • FIG. It is
  • the internal modified substrate for epitaxial growth condenses and scans a pulse laser through the polished surface side of the single crystal substrate inside the single crystal substrate used for forming a crystalline film formed by epitaxial growth.
  • the modified region pattern is formed by utilizing multiphoton absorption by the pulse laser.
  • the single crystal substrate may be any material that can form a modified region inside by using multiphoton absorption by a pulse laser, and examples thereof include sapphire, nitride semiconductor, Si, GaAs, quartz, and SiC. Further, instead of a single crystal substrate, quartz or glass may be used.
  • the wavelength of the pulse laser used is suitably a wavelength in a transparent wavelength range longer than the absorption edge wavelength of the single crystal substrate to be applied.
  • the pulse width and irradiation energy must be appropriately selected according to the physical properties of the material.
  • the pulse laser wavelength is preferably 200 nm to 5000 nm
  • the pulse width is picoseconds to femtoseconds, more preferably 200 fs to 800 fs
  • the repetition frequency is preferably 50 kHz to 500 kHz.
  • the laser power is preferably 0.05 to 0.8 W
  • the laser spot size is 0.5 to 4 ⁇ m
  • the spot size is preferably about 2 ⁇ m.
  • the scanning speed of the sample stage is preferably 100 to 1000 mm / s in view of mass productivity.
  • Table 1 shows typical processing conditions that can form modified regions in Si, GaAs, and quartz.
  • the spot size is preferably in the range of about 0.5 ⁇ m to 4 ⁇ m.
  • the stage scanning speed is preferably 50 mm / s to 1000 mm / s, and 100 mm / s to 1000 mm / s in view of mass productivity.
  • the pulse width is preferably 50 ns to 200 ns for Si, 30 ns to 80 ns for GaAs, and 200 fs to 800 fs for quartz.
  • the irradiation energy is preferably 3 to 12 ⁇ J for Si, 8 to 20 ⁇ J for GaAs, and 3 to 6 ⁇ J for quartz.
  • the repetition frequency is preferably 10 kHz to 500 kHz.
  • the size of the single crystal substrate is not limited, but a substrate having a diameter of 50 mm or more and 300 mm or less can be used. A substrate having a thickness of 0.05 mm or more and 5.0 mm or less can be used.
  • the single crystal substrate may be polished at least on the surface used for forming a crystalline film formed by epitaxial growth.
  • warpage occurs in a single crystal substrate due to residual processing strain due to polishing and the difference in surface roughness between the upper and lower surfaces.
  • the surface roughness of the upper and lower surfaces is mainly a cause of warpage, and in the case of a substrate that is polished on both sides, the roughness of the upper and lower surfaces is slightly different.
  • a slight variation in the surface roughness within the substrate surface causes warping.
  • Epitaxial growth includes homoepitaxial growth and heteroepitaxial growth including the same composition or mixed crystal.
  • the spot-shaped modified region 3 is continuously formed.
  • a connected line-shaped modified region is formed.
  • the spot-like modified region 3 When viewed locally, the spot-like modified region 3 is formed only in the portion irradiated with the pulse laser instantaneously, and its size depends on the laser spot size, laser intensity, and pulse width.
  • the distance between the spot-shaped modified regions 3 formed in a line shape is formed depending on the repetition frequency of the laser and the scanning speed of the stage.
  • a combination of a plurality of these modified regions formed in a line shape forms at least one modified region pattern at a desired position in the thickness direction of the substrate.
  • the modified region is a modified layer formed by locally generating multiphoton absorption in a portion irradiated with a laser.
  • the stress of the entire substrate is controlled,
  • the warp shape and / or warpage amount of the substrate can be precisely controlled.
  • the planar shape is a stripe shape in which a plurality of lines are formed perpendicularly or parallel to the orientation flat surface of the substrate (FIGS. 2A and 2B), A lattice shape (FIG. 2C) combining both of them can be formed.
  • a shape in which a plurality of polygons are arranged FIG. 2D
  • a concentric circle shape FIG. 2E
  • a spiral shape and the like can be formed.
  • the plane shape is approximately a straight line with respect to a straight line passing through the center point of the substrate.
  • a shape that is symmetric or substantially point-symmetric is preferred.
  • the planar shape is a stripe shape, it is possible to give a bias to the warped shape of the substrate.
  • the pitch 4 between the lines mainly affects the amount of change in the warpage of the substrate after forming the modified region pattern, and the amount of change increases as the pitch between the lines decreases. Since the processing time is longer as the pitch is smaller, in consideration of mass productivity, it is preferably 50 ⁇ m to 2000 ⁇ m, and more preferably 100 ⁇ m to 1000 ⁇ m.
  • the formation position 5 mainly affects the amount of change in the warp amount of the substrate after forming the modified region pattern, and the amount of change increases as the formation position is closer to the surface.
  • the formation position of at least one type of modified region pattern is 3% or more and 95% or less of the substrate thickness based on the film formation surface of the substrate. More preferably, it is set to 3% or more and 50% or less.
  • a plurality of modified region patterns may be formed at different formation positions in the thickness direction of the substrate.
  • the modified layer length 6 is formed depending on the laser spot size, irradiation energy (laser power / repetition frequency), and pulse width, and is usually formed with a thickness of about several ⁇ m to several tens of ⁇ m.
  • At least one crystalline film can be formed by epitaxial growth to produce a crystalline film-formed body.
  • the method for forming a crystalline film can be applied to both vapor phase growth and liquid phase growth.
  • various crystal growth methods such as MBE method, CVD method, VPE method, LPE method, and sublimation method can be used.
  • the stress generated by the film formation can be offset by the stress of the internal modified substrate, so that the substrate warpage during the film formation is suppressed and the substrate warpage behavior is reduced. can do. Therefore, it is possible to obtain a crystalline film-formed body with improved quality and uniformity of the crystalline film.
  • Structuring various devices using the crystalline film obtained by the present invention can improve the quality and yield of the devices.
  • the crystalline film of the present invention can be used as a base material, and a thick crystalline film having a film thickness capable of self-sustaining by homoepitaxial growth can be formed. Further, the bulk film can be obtained by separating the thick film of the crystalline film from the base material made of the crystal film.
  • a bulk substrate made of a thick crystalline film can also be obtained by forming a thick crystalline film on the internal modified substrate of the present invention and separating it from the internal modified substrate.
  • the internally modified substrate of the present invention is used, warpage of the substrate that occurs during or after film formation can be suppressed, and thus a thick film can be formed without generating cracks.
  • the film thickness that can stand by itself is preferably 50 ⁇ m or more.
  • an MOCVD method, an HVPE method, an LPE method, or the like can be used as a method for forming a thick film.
  • At least one semiconductor layer can be formed by epitaxial growth on the film-forming surface of the internally modified sapphire substrate of the present invention to produce a semiconductor layer film-forming body.
  • the semiconductor device comprised using the semiconductor layer film-forming body obtained by this invention, and a semiconductor bulk substrate can be obtained.
  • the semiconductor layer is a nitride semiconductor
  • a sapphire substrate having a diameter of 50 mm to 300 mm can be used as the nitride semiconductor layer. Since the present invention has a larger effect on a large-diameter substrate, it is particularly useful for a substrate having a diameter of 75 mm or more, and more than 150 mm. Regardless of the above, the substrate size is not limited.
  • the thickness of the sapphire substrate used for forming the nitride semiconductor layer may be 0.05 mm or more and 5.0 mm or less.
  • the thickness of the substrate is preferably 0.1 mm or more. More preferably, it is 0.3 mm or more when the substrate diameter is 50 mm or more and 150 mm or less, and 0.5 mm or more when the substrate diameter exceeds 150 mm.
  • a nitride semiconductor layer having a concave surface and a curvature of the concave surface greater than 0 km ⁇ 1 and 160 km ⁇ 1 can be used.
  • the planar shape of the pattern is a stripe shape, a lattice shape, or a shape in which a plurality of polygons are arranged as described above. Any one of a concentric circle shape, a spiral shape, and a shape that is substantially line symmetric or substantially point symmetric with respect to a straight line passing through the center point of the substrate is preferable.
  • the shape of any one of approximately line symmetry, approximately point symmetry, and lattice shape with respect to a straight line passing through the center point of the substrate is More preferred.
  • the pitch between each line is preferably 50 ⁇ m to 2000 ⁇ m, more preferably 100 ⁇ m to 1000 ⁇ m. Further, when considering mass productivity, 200 ⁇ m to 500 ⁇ m is more preferable.
  • the formation position of at least one type of modified region pattern is set so as to form 3% or more and 95% or less, more preferably 3% or more and 50% or less of the substrate thickness with reference to the film formation surface of the substrate. Is preferred.
  • a plurality of modified region patterns may be formed at different formation positions in the thickness direction of the substrate.
  • the sapphire substrate is back-ground to about 100 ⁇ m, and then a pattern for division is used. Is formed inside the sapphire substrate, but the planar shape of the modified region pattern provided before the formation of the nitride semiconductor layer may be a lattice shape and finally used for dividing the LED chip. In that case, it is desirable to form the sapphire substrate at a position where the pattern remains in the thickness remaining after the back grinding process.
  • a mode in which at least one nitride semiconductor layer is epitaxially grown on the film-forming surface of the internally modified sapphire substrate obtained by the present invention to produce a nitride semiconductor layer film-forming body will be described below.
  • 3A to 3D show the epitaxial growth process of the nitride semiconductor layer on the sapphire substrate.
  • a film formation method an MOCVD method, an HVPE method, an MBE method, or the like can be used.
  • the sapphire substrate 7 is thermally cleaned (FIG. 3A), and the low temperature buffer layer 8 is grown (FIG. 3B).
  • an n-GaN layer 9 (FIG. 3C) and an InGaN-based active layer 10 having a multiple quantum well structure are grown (FIG. 3D).
  • FIG. 4 shows an in-situ observation example in the epitaxial growth process of the nitride semiconductor layer.
  • Non-Patent Document 2 it is possible to quantitatively analyze the behavior of the sapphire substrate during film formation by in-situ observation. That is, it is possible to know how the warpage shape and the warpage amount of the substrate change during film formation.
  • the horizontal axis represents time
  • the vertical axis represents the curvature (km ⁇ 1 ) of the substrate on the film formation surface.
  • the positive direction on the vertical axis indicates that the film formation surface has a convex shape
  • the negative direction indicates that the film formation surface has a concave shape.
  • the amount of warpage of the substrate can be calculated from the curvature of the substrate. That is, as shown in FIG. 5, assuming that the radius of curvature of the substrate is R, the amount of warpage X ( ⁇ m) of the substrate having the curvature 1 / R can be simplified by using the diameter of the substrate approximately as D. When the substrate diameter is 50 mm, it can be obtained as 0.322 ⁇ curvature (km ⁇ 1 ), and when the substrate diameter is 150 mm, it can be obtained as 1.250 ⁇ curvature (km ⁇ 1 ).
  • the spectrum A in FIG. 4 shows an example using a conventional sapphire substrate in which no modified region pattern is formed.
  • 4A to 4E correspond to the respective steps of the film forming process. That is, it corresponds to (a) substrate thermal cleaning, (b) low temperature buffer layer growth, (c) n-GaN layer growth, (d) InGaN-based active layer growth, and (e) cool down.
  • the temperature is lowered to about 700 to 800 ° C., and (d) in the growth stage of the InGaN-based active layer, the thickness of the InGaN-based active layer and the uniformity of the In composition in InGaN are uniform within the emission wavelength. This affects the manufacturing yield of LED chips. Since the film thickness and In composition of the InGaN layer are affected by the film formation temperature, it is ideal that the curvature of the substrate during film formation be as close to 0 as possible in order to improve temperature uniformity within the substrate surface. .
  • the substrate curvature in the InGaN-based active layer growth stage can be made almost zero, while the substrate in the film forming process It can be seen that there is a disadvantage that the behavior is large and the curvature of the substrate after film formation is increased.
  • the internally modified sapphire substrate of the present invention is fabricated, and a first example of In-situ when a nitride semiconductor layer is formed This is shown in the spectrum B in FIG.
  • the modified region pattern is formed so that the film formation surface is warped more convex than the conventional sapphire substrate. Thereby, the warpage behavior of the substrate can be reduced as compared with the spectrum A using the conventional sapphire substrate.
  • Spectra C can further reduce the behavior of the substrate throughout the film forming process. That is, the effect of canceling the stress generated during the film formation with the stress of the substrate is greater than those of the spectra A and B.
  • the nitride semiconductor layer obtained in the above-mentioned spectra B and C is less warped of the substrate during film formation and less warped of the substrate than when a conventional sapphire substrate is used. Quality and uniformity are improved.
  • the initial state of the internally modified sapphire substrate is greatly warped on the convex surface, and as a result, the curvature of the substrate at the InGaN-based active layer growth stage and at the end of film formation is more than that when using a conventional sapphire substrate. The problem of becoming larger will also occur.
  • the internally modified sapphire substrate of the present invention has a curvature of the substrate at the InGaN-based active layer growth stage and at the end of film formation, as well as reducing the warping behavior of the substrate, as shown by spectrum C in FIG. It is desirable to set the initial state so that the value can be reduced.
  • the quality and uniformity of the nitride semiconductor layer film can be improved, and the uniformity of the emission wavelength of the nitride semiconductor light emitting device can be improved.
  • a sapphire substrate that can cancel in advance the substrate curvature that greatly warps the convex surface by forming the modified region pattern, as the sapphire substrate before forming the modified region pattern.
  • a nitride semiconductor layer having a concave film-forming surface and a curvature of the concave surface greater than 0 km ⁇ 1 and 160 km ⁇ 1 or less can be used as the modified region pattern forming sapphire substrate.
  • the nitride semiconductor layer is formed with a concave surface, and the curvature of the concave surface is preferably 40 km ⁇ 1 or more and 150 km ⁇ 1 or less, more preferably 85 km ⁇ 1 or more and 150 km ⁇ 1 or less.
  • nitride semiconductor layer film-forming body with improved quality and uniformity of the nitride semiconductor layer film can be obtained.
  • the nitride semiconductor layer film-forming body of the present invention can be used to constitute nitride semiconductor devices such as light emitting elements, electronic devices, and light receiving elements with improved quality and yield.
  • the nitride semiconductor layer film formation used as a base substrate is formed.
  • the body can be separated to obtain a nitride semiconductor bulk substrate made of a thick nitride semiconductor layer.
  • nitride semiconductor layer when a thick film of the nitride semiconductor layer is formed on the internally modified sapphire substrate of the present invention, warpage of the substrate that occurs during or after film formation can be suppressed, and cracks do not occur. It is possible to obtain a nitride semiconductor layer thick film having a film thickness capable of self-supporting.
  • the nitride semiconductor bulk substrate can be obtained without using a complicated process by separating the thick film of the nitride semiconductor layer thus obtained from the internal modified substrate.
  • Example 1 As a sapphire substrate for forming the modified region pattern, a 2-inch sapphire substrate with one side polished was used. The substrate thickness was 430 ⁇ m. The warpage shape and the warpage amount of the substrate before forming the modified region pattern were measured with a laser interferometer.
  • a sapphire substrate was placed on the sample stage of the pulse laser device, and a modified region pattern was formed inside the sapphire substrate.
  • Table 3 shows the pattern shapes of Samples 1 to 9, the pitch between the lines, the formation position and the modified layer length, and the processing time per sheet.
  • the substrate shape of the sapphire substrate after forming the modified region pattern was measured with a laser interferometer, and the amount of warpage and the substrate thickness were measured with a linear gauge and a laser interferometer.
  • ⁇ O. F. Is perpendicular to the orientation flat of the sapphire substrate, // O. F. Indicates that it is parallel to the orientation flat.
  • Table 4 shows the warpage shape and warpage amount of the substrate before and after the modified region pattern formation, and the symmetry of the warpage shape in the substrate surface after the pattern formation.
  • the warpage shape of the substrate indicates the shape on the film formation surface side.
  • Example 2 A 4-inch sapphire substrate with one side polished was used as the sapphire substrate for forming the internal modified region pattern.
  • the substrate thickness was 650 ⁇ m.
  • the warpage shape and the warpage amount of the substrate before forming the modified region pattern were measured with a laser interferometer.
  • Table 5 shows the pattern shapes, pitches, and formation positions of Samples 10 to 19.
  • the warpage shape of the substrate after forming the modified region pattern was measured with a laser interferometer, and the warpage amount was measured with a linear gauge.
  • Table 6 shows a comparison between the substrate shape before and after the modified region pattern formation, the amount of warpage, and the curvature calculated from the amount of warpage.
  • the warpage shape of the substrate indicates the shape on the film formation surface side.
  • FIG. 7 shows the dependency of the pitch between the formation position and each line on the amount of change in the substrate curvature after forming the modified region pattern.
  • Example 3 Among the sapphire substrates on which the modified region pattern was formed in Example 2, samples 10, 12, 14, 16, and 18 and a conventional sapphire substrate with no pattern (referred to as sample 20) were simultaneously introduced into the MOCVD apparatus, A gallium nitride layer was grown on a sapphire substrate. Table 7 shows the growth temperature and film thickness in each film forming step.
  • FIGS. 8a to 8f The in-situ observation results of each sample are shown in FIGS. 8a to 8f, the warpage shape, warpage amount and curvature of each sample are shown in Table 8, and the change amount of the substrate curvature in each stage is shown in Table 9.
  • (1) to (4) in Table 9 are (1) during thermal cleaning transition to the initial state of the substrate, (2) during growth of the n-GaN layer relative to the initial state of the substrate, (3 ) At the time of GaN / InGaN active layer growth transition with respect to the end of n-GaN growth, (4) shows the amount of change in curvature after the end of cool-down with respect to the initial state of the substrate.
  • Sample 10 was found to have improved film thickness uniformity compared to sample 20 where the modified region pattern was not formed. This is presumably because the n-GaN layer was grown in a flatter shape by forming a pattern at a shallow position from the surface of the sapphire substrate.
  • the FWHM values of the (001) plane and the (102) plane of the gallium nitride layer obtained by the X-ray diffraction rocking curve measurement are 203 arcsec and 418 arcsec in the sample 10, respectively, and in the sample 20 in which the modified region pattern is not formed They were 242 arcsec and 579 arcsec, respectively. From this result, it was found that in the sample 10 in which the modified region pattern was formed, the crystallinity of the gallium nitride layer was improved as compared with the sample 20 in which the modified region pattern was not formed.
  • the nitride semiconductor layer is epitaxially grown using the internally modified sapphire substrate of the present invention, the warpage of the substrate can be suppressed and the warpage behavior of the substrate can be reduced. It was found that the performance was improved.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Optics & Photonics (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Led Devices (AREA)
  • Laser Beam Processing (AREA)
  • Recrystallisation Techniques (AREA)

Abstract

【課題】主に窒化物半導体層のエピタキシャル成長用サファイア基板において、効率良く基板の反り形状及び/又は反り量を精密に制御することができ、且つ成膜中に生じる基板の反りを抑制し、基板の反り挙動を小さくすることのできるサファイア基板と、それを用いて作製される窒化物半導体層成膜体、窒化物半導体デバイス、窒化物半導体バルク基板及びそれらの製造方法を提供すること。 【解決手段】サファイア基板の内部に、前記サファイア基板の研磨面側を通してパルスレーザを集光し、走査し、前記パルスレーザによる多光子吸収を利用して改質領域パターンを形成し、サファイア基板の反り形状及び/又は反り量を制御する。本発明により得られたサファイア基板を用いて窒化物半導体層を形成すると、成膜中の基板の反りを抑制し、基板の反り挙動を小さくすることができるため、膜の品質及び均一性が向上し、窒化物半導体デバイスの品質及び歩留まりを向上できる。

Description

エピタキシャル成長用内部改質基板及びそれを用いて作製される結晶成膜体、デバイス、バルク基板及びそれらの製造方法
 本発明は、エピタキシャル成長用内部改質基板とそれを用いて作製される結晶成膜体、デバイス、バルク基板、及びそれらの製造方法に関する。
 窒化ガリウムに代表される窒化物半導体は、バンドギャップが広く、青色系の発光が可能であることから、LED(発光ダイオード)やLD(半導体レーザ)等に広く用いられている。近年は、更なる発光効率アップや高輝度化への取り組みが盛んに行われている。
 一般的な窒化物半導体発光素子構造は、サファイア基板上に、GaNより成るバッファ層、n型GaNより成るn型コンタクト層、n型AlGaNより成るn型クラッド層、n型InGaNより成る活性層、p型AlGaNよりなるp型クラッド層、p型GaNより成るp型コンタクト層が順に積層されたダブルヘテロ構造を有している。活性層は、InGa1-xN(0≦X≦1)よりなる井戸層のみの単一量子井戸(SQW:Single Quantum Well)構造もしくは、InGa1-xN(0≦X≦1)よりなる井戸層と、InGa1-yN(0≦y≦1、y<x)よりなる障壁層との多重量子井戸構造(MQW:Multi Quantum Well)のInを含む構成となっている。(特許文献1)
 サファイア基板上に上述の窒化ガリウム層をエピタキシャル成長させると、窒化ガリウムとサファイアの熱膨張係数差及び格子定数差に起因して、成膜後のサファイア基板に反りが発生することが知られている。
 非特許文献1では、サファイア基板上に、AlNバッファ層とGaN層をエピタキシャル成長し、成膜により発生する熱応力がGaN層膜厚に依存してどのように緩和されるかを調べている。この非特許文献1では、膜厚が厚くなるに従って基板の反りが大きくなり、それに伴って界面欠陥(Interference Defects)、マイクロクラック(Microcracks)や転位(Dislocation)、マクロクラックス(Macrocracks)が発生することで応力を緩和するということが明らかにされている。
 また、非特許文献2のFig.4には、サファイア基板上にGaN系LED構造をエピタキシャル成長する工程を通して発生する基板の反りを、In-situ観察する解析手法が開示されている。これによると、一連の成膜工程において、成膜物質、成膜温度、膜厚の変化によりサファイア基板の曲率が大きく変化することが示されている。
 そして、活性層であるInGaN層の成長段階でサファイア基板の曲率がほぼ0となるような成膜工程とすることによって、基板面内における発光波長を均一化することが明らかにされている。
 上述のとおり、一連の成膜工程を通してサファイア基板の反りが大きく変化し、窒化物半導体膜の品質や発光波長の均一性に影響を与えることが知られている。
 実際には、基板との熱膨張係数差を利用して、InGaN系活性層において基板曲率がほぼ0となるように、サファイア基板の反り形状及び反り量が設定される。このような背景から、サファイア基板の形状及び反り量を制御するために、様々な研磨加工技術が検討されている(例えば特許文献2)。
 一方で、サファイア基板上に窒化物半導体が積層された発光素子を分割する際に、80~90μm程度の厚みを有するサファイア基板の内部に、パルスレーザを集光し、発光素子の分割予定ラインに対応する変質領域を形成する技術が知られている(特許文献3)。特許文献3の発明は、サファイア基板にレーザ光線を照射して個々の発光素子に分割しても発光素子の輝度低下を抑制し得るサファイア基板の加工方法であり、発光素子の分割を目的としている。
特許第3250438号公報 特開2006-347776号公報 特開2008-6492号公報
Jpn. J. Appl. Phys. Vol. 32 (1993) pp. 1528-1533 J. Cryst. Growth, Vol.272, Issues 1-4, (2004), pp.94-99
 前述したように、窒化ガリウム系発光ダイオード構造を得る一連の成膜工程を通して、サファイア基板の反りが大きく変化することによって、窒化物半導体層の品質や発光波長の均一性が悪くなり、発光ダイオードの歩留まりが悪くなるという問題があった。
 この問題に対し従来の方法では、InGaN系活性層の成長段階における基板の曲率がほぼ0となるように、サファイア基板の反り形状及び反り量を設定する手法をとっていた。つまり、InGaN系活性層の成長段階で発生する反り量分をあらかじめサファイア基板に与え、相殺するという手法である。これによって、発光波長のバラツキはある程度抑えることができるものの、InGaN系活性層以外の成膜工程で発生する基板の反りの問題は解決できないという問題があった。
 特に、n-GaN層成長段階や、成膜終了後に基板をクールダウンする際に、サファイア基板が大きく反ることで、膜品質及び膜品質均一性が低下したり、基板のバックグラインド加工が均一に出来なくなる等の問題があった。これらは、発光ダイオード等デバイスの歩留まりに大きく影響することから、成膜工程全体を通して基板の反りとその変化量を抑制し、基板の反り挙動自体を小さくすることが必要であったが、そのようなサファイア基板は従来存在しなかった。
 また、サファイア基板が大口径化すると、研磨加工による精密な反り形状及び反り量の制御自体が困難になるという問題がある。研磨加工を施したサファイア基板には、通常、加工歪の残留や上下面の仕上げの表面粗さの違いによって基板に反りが発生することが知られている。例えば、片面が研磨されている基板では、主に上下面の表面粗さが異なることが反りの要因になり、両面が研磨されている基板では、上下面の表面粗さがわずかに異なることに加えて、基板面内での表面粗さがわずかにばらつくことが反りの要因になる。
 特に、大口径基板では、基板面内での表面粗さを均一にすることが技術的に困難であり、研磨加工のみでは所望の反り形状及び反り量に精密に制御できないという技術的限界の問題があった。
 また、窒化物半導体バルク基板を得るために、サファイア基板上に、窒化物半導体の厚膜を自立可能な厚さまでエピタキシャル成長させようとすると、サファイアと窒化物半導体の熱膨張係数差によってサファイア基板が大きく反り、さらに膜厚が増加することで反り量が増大するという問題があった。そのため、結果として成膜中や成膜後にクラックが発生し、自立可能な窒化物半導体バルク基板を得ることが実質的に不可能であった。
 これらの解決手段として、ELOG(Epitaxial Lateral Over Growth)法やDEEP(Dislocation Elimination of Inverted-Pyramidal Pits)法やVAS(Void-Assisted Separation)法等が提案されているが、どちらも工程が複雑になるという欠点があった。
 このような問題に鑑みて、本発明の目的は、主に窒化物半導体層のエピタキシャル成長に用いるサファイア基板において、効率良く基板の反り形状及び/又は反り量を精密に制御することができ、且つ、成膜中に生じる基板の反りを抑制し、基板の反り挙動を小さくすることのできるサファイア基板と、それを用いて作製される窒化物半導体層成膜体、窒化物半導体デバイス、窒化物半導体バルク基板及びそれらの製造方法を提供することにある。
 本発明者らは、窒化物半導体層をエピタキシャル成長させる前のサファイア基板内部に、パルスレーザを用いて改質領域パターンを形成することでサファイア基板の応力をコントロールし、効率良く基板の反り形状及び/又は反り量を制御可能であることを見出した。
 また、本発明により得られたサファイア基板を用いて窒化物半導体層を形成すると、成膜により発生する応力を改質領域パターンが形成されたサファイア基板の応力で相殺することができ、成膜工程における基板の反りを抑制し、基板の反り挙動を小さくできることを見出し、本発明を完成させた。
 即ち、本発明の窒化物半導体層のエピタキシャル成長用内部改質サファイア基板は、エピタキシャル成長により形成される窒化物半導体層の成膜に用いられるサファイア基板において、前記サファイア基板内部にパルスレーザによる多光子吸収を利用した改質領域パターンが形成されていることを特徴とする。
 また、本発明の窒化物半導体層のエピタキシャル成長用内部改質サファイア基板は、前記サファイア基板の内部に、前記サファイア基板の研磨面側を通してパルスレーザを集光し、走査し、前記パルスレーザによる多光子吸収を利用して改質領域パターンを形成して作製することを特徴とする。
 また、本発明の窒化物半導体層のエピタキシャル成長用内部改質サファイア基板は、上記発明に加えて、少なくとも1種類の前記改質領域パターンの平面形状が、ストライプ形状、格子形状、複数の多角形を配置した形状、同心円形状、らせん形状、、サファイア基板の中心点を通る直線に対して略線対称又は略点対称な形状のいずれかであることを特徴とする。
 また、本発明の窒化物半導体層のエピタキシャル成長用内部改質サファイア基板は、上記発明に加えて、少なくとも1種類の前記改質領域パターンの形成位置は、前記サファイア基板の成膜面から、基板厚みの3%以上95%以下の位置であり、前記改質領域パターンを構成する各ライン間のピッチが50μm以上2000μm以下であることを特徴とする。
 また、本発明の窒化物半導体層のエピタキシャル成長用内部改質サファイア基板は、上記発明に加えて、少なくとも1種類の前記改質領域パターンの平面形状が、サファイア基板の中心点を通る直線に対して略線対称、略点対称な形状、格子形状のいずれかであり、前記改質領域パターンの形成位置が、サファイア基板の成膜面から、基板厚みの3%以上50%以下の位置であり、前記改質領域パターンを構成する各ライン間のピッチが50μm以上2000μm以下であることを特徴とする。
 また、本発明の窒化物半導体層成膜体は、前記窒化物半導体層のエピタキシャル成長用内部改質サファイア基板の成膜面上に、少なくとも一層の窒化物半導体層を成膜して作製することを特徴とする。
 また、本発明の窒化物半導体デバイスは、本発明の窒化物半導体層成膜体を用いて作製することを特徴とする。
 また、本発明の窒化物半導体バルク基板は、本発明の窒化物半導体層の厚膜を用いて作製することを特徴とする。
 また、本発明の窒化物半導体層のエピタキシャル成長用内部改質サファイア基板は、前記改質領域パターン形成前のサファイア基板の形状が、前記半導体層の成膜面が凹面であり、その凹面の曲率が0km-1より大きく160km-1以下である改質領域パターン形成用サファイア基板を用いて作製することを特徴とする。
 また、本発明の窒化物半導体層のエピタキシャル成長用内部改質サファイア基板は、前記改質領域パターン形成前のサファイア基板の形状が、前記半導体層の成膜面が凹面であり、その凹面の曲率が40km-1以上150km-1以下である改質領域パターン形成用サファイア基板を用いて作製することを特徴とする。
 また、本発明の窒化物半導体層のエピタキシャル成長用内部改質サファイア基板は、前記改質領域パターン形成前のサファイア基板の形状が、前記半導体層の成膜面が凹面であり、その凹面の曲率が85km-1以上150km-1以下である改質領域パターン形成用サファイア基板を用いて作製することを特徴とする。
 また、本発明の改質領域パターン形成用サファイア基板は、直径50mm以上300mm以下、厚みは0.05mm以上5.0mm以下であることを特徴とする。
 本発明の内部改質サファイア基板は、窒化物半導体を含む各種の半導体層のエピタキシャル成長に適用できる。また、パルスレーザによって内部に改質領域をパターン形成することのできるサファイア以外のあらゆる単結晶基板に適用できる。特に、エピタキシャル成長に用いられる単結晶基板では、ヘテロエピタキシャル成長に限らず、同一組成又は混晶を含むホモエピタキシャル成長においても発生する基板の反りの問題を解決できるため有用である。そのため、各種デバイス又は各種バルク基板の品質や歩留まりを向上させることができる。
 本発明は、以下に記載されるような効果を有する。
 請求項1又は2に記載の発明によれば、主にエピタキシャル成長により得られる結晶性膜の成膜に用いられる単結晶基板において、効率良く、基板の反り形状及び/又は反り量を精密に制御した単結晶基板を提供できる。本発明は、研磨加工のみでは技術的に制御が困難になる大口径基板において特に有効である。また、エピタキシャル成長工程において発生する基板の反りを抑制し、基板の反り挙動を小さくすることのできる単結晶基板を提供できるという効果を有する。
 請求項3に記載の発明によれば、パルスレーザを用いて、基板内部に改質領域パターンを形成可能なサファイア、窒化物半導体、Si、GaAs、水晶、SiC等の単結晶基板において、請求項1又は2と同様の効果を有する。
 請求項4に記載の発明によれば、成膜により発生する応力を、改質領域パターンが形成された単結晶基板の応力で相殺することができるため、成膜中の基板の反りを抑制し、基板の反り挙動を小さくすることができる。
 その結果、結晶性膜中の転位の発生や膜厚不均一化を抑えることができ、膜の品質及び均一性を向上させた結晶成膜体を得ることができる。本発明の結晶成膜体を用いて、各種デバイスを構成することができる。また、本発明の結晶成膜体は、エピタキシャル成長により自立可能な膜厚を有する厚膜を形成する際に、下地基板として用いることができる。
 請求項5に記載の発明によれば、膜の品質及び均一性を向上させた結晶成膜体を用いて各種デバイスを構成することができるため、品質及び歩留まりの向上した各種デバイスを提供できる。
 請求項6に記載の発明によれば、成膜中又は成膜後に発生する基板の反りを抑制することができるため、複雑な工程を用いることなく、また、クラックを発生させずに結晶性膜の厚膜を成長させることができる。そのため、自立可能な膜厚を有する結晶性膜の厚膜で構成される各種のバルク基板を提供できる。
 請求項7又は8に記載の発明によれば、半導体層のエピタキシャル成長に用いられるサファイア基板において、効率良く、基板の反り形状及び/又は反り量を精密に制御したサファイア基板を提供できる。また、本発明のサファイア基板によれば、内部に改質領域パターンを形成するため、基板の再洗浄が不要である。本発明は、研磨加工のみでは技術的に制御が困難になる大口径基板において特に有効である。
 また、本発明のサファイア基板を用いることによって、半導体層のエピタキシャル成長工程において発生する基板の反りを抑制し、基板の反り挙動を小さくすることができるという効果を有する。さらに、サファイア基板表面にパターンを有さないため、大幅な成膜条件の変更が不要であり、従来のサファイア基板と同様の条件で成膜を行うことができる。
 請求項9に記載の発明によれば、半導体層の成膜により発生する応力を、改質領域パターンが形成されたサファイア基板の応力で相殺することができるため、成膜中の基板の反りを抑制し、基板の反り挙動を小さくすることができる。
 その結果、半導体層中の転位の発生や膜厚不均一化を抑えることができ、膜の品質及び均一性を向上させた半導体層成膜体を得ることができる。本発明の半導体層成膜体を用いて、各種の半導体デバイスを構成することができる。また、本発明の半導体層成膜体は、エピタキシャル成長により自立可能な膜厚を有する厚膜を形成する際に、下地基板として用いることができる。
 請求項10に記載の発明によれば、膜の品質及び均一性を向上させた半導体層成膜体を用いて各種半導体デバイスを構成することができるため、品質及び歩留まりの向上した各種半導体デバイスを提供できる。
 請求項11に記載の発明によれば、半導体層の成膜中又は成膜後に発生する基板の反りを抑制することができるため、複雑な工程を用いることなく、また、クラックを発生させずに半導体層の厚膜を成長させることができる。そのため、自立可能な膜厚を有する半導体層成膜体の厚膜で構成される各種の半導体バルク基板を提供できる。
 請求項12又は13に記載の発明によれば、窒化物半導体層のエピタキシャル成長に用いられるサファイア基板において、効率良く、基板の反り形状及び/又は反り量を精密に制御したサファイア基板を提供できる。また、本発明のサファイア基板によれば、内部に改質領域パターンを形成するため、基板の再洗浄が不要である。本発明は、研磨加工のみでは技術的に制御が困難になる大口径基板において特に有効である。
 また、本発明のサファイア基板を用いることによって、窒化物半導体層のエピタキシャル成長工程において発生する基板の反りを抑制し、基板の反り挙動を小さくすることができるという効果を有する。さらに、サファイア基板表面にパターンを有さないため、大幅な成膜条件の変更が不要であり、従来のサファイア基板と同様の条件で成膜を行うことができる。
 請求項14に記載の発明によれば、請求項12又は13に記載の効果に加えて、主に基板の反り形状を均一に制御したサファイア基板を提供できるという効果を有する。
 請求項15に記載の発明によれば、請求項12~14に記載の効果に加えて、主に基板の反り量を精密に制御したサファイア基板を提供できるという効果を有する。
 請求項16に記載の発明によれば、請求項12~14に記載の効果に加えて、さらに良好に窒化物半導体層のエピタキシャル成長工程において発生する基板の反りを抑制し、基板の反り挙動を小さくすることのできるサファイア基板を提供できるという効果を有する。
 請求項17に記載の発明によれば、
窒化物半導体層の成膜により発生する応力を、改質領域パターンが形成されたサファイア基板の応力で相殺することができるため、成膜中の基板の反りを抑制し、基板の反り挙動を小さくすることができる。
 その結果、窒化物半導体層中の転位の発生や膜厚不均一化を抑えることができ、膜の品質及び均一性を向上させた窒化物半導体層成膜体を得ることができる。本発明の窒化物半導体層成膜体を用いて、各種の窒化物半導体デバイスを構成することができる。また、本発明の窒化物半導体層成膜体は、エピタキシャル成長により自立可能な膜厚を有する厚膜を形成する際に、下地基板として用いることができる。
 請求項18に記載の発明によれば、膜の品質及び均一性を向上させた窒化物半導体層成膜体を用いて各種の窒化物半導体デバイスを構成することができるため、品質及び歩留まりの向上した各種の窒化物半導体デバイスを提供できる。
 請求項19に記載の発明によれば、窒化物半導体デバイスとして、特に、発光素子、電子デバイス、受光素子のいずれかを提供できる。
 請求項20に記載の発明によれば、窒化物半導体層の成膜中又は成膜後に発生する基板の反りを抑制することができるため、複雑な工程を用いることなく、また、クラックを発生させずに窒化物半導体層の厚膜を成長させることができる。そのため、自立可能な膜厚を有する窒化物半導体層成膜体の厚膜で構成される各種の窒化物半導体バルク基板を提供できる。
 請求項21に記載の発明によれば、窒化物半導体バルク基板として、特に、AlInGaN (x+y+z=1,x≧0,y≧0,z≧0)からなる窒化物半導体バルク基板を提供できる。
 請求項22に記載の発明によれば、基板の反り形状及び/又は反り量を精密に制御した内部改質サファイア基板を作製することができる。
 請求項23又は24に記載の発明によれば、請求項22に記載の効果に加えて、基板窒化物半導体層の成膜工程において、基板の反りを抑制し、基板の反り挙動を小さくすることのできる内部改質サファイア基板を作製することができる。
 請求項25に記載の発明によれば、基板の反り形状及び/又は反り量を精密に制御し、且つ基板窒化物半導体層の成膜工程において、基板の反りを抑制し、基板の反り挙動を小さくすることが可能な内部改質サファイア基板を効率良く作製することができる。
 請求項26に記載の発明によれば、単結晶基板の反り形状及び/又は反り量を、効率良く、精密に制御することができる。本発明は、研磨加工のみでは技術的に制御が困難になる大口径基板において特に有効である。
 請求項27に記載の発明によれば、パルスレーザを用いて基板内部に改質領域パターンを形成可能なサファイア、窒化物半導体、Si、GaAs、水晶、SiC等の単結晶基板において、請求項26と同様の効果を有する。
 請求項28に記載の発明によれば、成膜中の基板の反りを抑制し、基板の反り挙動を小さくすることができるため、結晶性膜中の転位の発生や膜厚不均一化を抑えることができ、膜の品質及び均一性を向上させることができる。
 請求項29に記載の発明によれば、膜の品質及び均一性を向上させた結晶成膜体を用いて各種デバイスを構成することができるため、品質及び歩留まりの向上した各種デバイスを製造することができる。
 請求項30に記載の発明によれば、成膜中又は成膜後に発生する基板の反りを抑制することができるため、複雑な工程を用いることなく、また、クラックを発生させずに結晶性膜の厚膜を成長させることができる。そのため、自立可能な膜厚を有する結晶性膜の厚膜で構成される各種のバルク基板を製造することができる。
 請求項31に記載の発明によれば、半導体層のエピタキシャル成長に用いられるサファイア基板の反り形状及び/又は反り量を、効率良く、精密に制御することができる。本発明は、研磨加工のみでは技術的に制御が困難になる大口径基板において特に有効である。また、本発明では、内部に改質領域パターンを形成するため、基板の再洗浄が不要であるという効果を有する。
 請求項32に記載の発明によれば、成膜中の基板の反りを抑制し、基板の反り挙動を小さくすることができるため、半導体層成膜中の転位の発生や膜厚不均一化を抑えることができ、膜の品質及び均一性を向上させることができる。さらに、サファイア基板表面にパターンを有さないため、大幅な成膜条件の変更が不要であり、従来のサファイア基板と同様の条件で成膜を行うことができるという効果を有する。
 請求項33に記載の発明によれば、膜の品質及び均一性を向上させた半導体層成膜体を用いて各種半導体デバイスを構成することができるため、品質及び歩留まりの向上した各種半導体デバイスを製造することができる。
 請求項34に記載の発明によれば、成膜中又は成膜後に発生する基板の反りを抑制することができるため、複雑な工程を用いることなく、また、クラックを発生させずに半導体層の厚膜を成長させることができる。そのため、自立可能な膜厚を有する半導体層の厚膜で構成される各種の半導体バルク基板を製造することができる。
 請求項35に記載の発明によれば、窒化物半導体層のエピタキシャル成長に用いられるサファイア基板の反り形状及び/又は反り量を、効率良く、精密に制御することができる。本発明は、研磨加工のみでは技術的に制御が困難になる大口径基板において特に有効である。また、本発明では、内部に改質領域パターンを形成するため、基板の再洗浄が不要であるという効果を有する。
 請求項36に記載の発明によれば、請求項35に記載の効果に加えて、主にサファイア基板の反り形状を均一に制御することが可能になるという効果を有する。
 請求項37に記載の発明によれば、請求項36に記載の効果に加えて、主にサファイア基板の反り量を精密に制御することが可能になるという効果を有する。
 請求項38に記載の発明によれば、請求項35~37に記載の効果に加えて、より良好に、窒化物半導体層のエピタキシャル成長工程において発生する基板の反りを抑制し、サファイア基板の反り挙動を小さくすることが可能になるという効果を有する。
 請求項39に記載の発明によれば、成膜中の基板の反りを抑制し、基板の反り挙動を小さくすることができるため、窒化物半導体層成膜中の転位の発生や膜厚不均一化を抑えることができ、膜の品質及び均一性を向上させることができる。さらに、サファイア基板表面にパターンを有さないため、大幅な成膜条件の変更が不要であり、従来のサファイア基板と同様の条件で成膜を行うことができるという効果を有する。
 請求項40に記載の発明によれば、膜の品質及び均一性を向上させた窒化物半導体層成膜体を用いて窒化物半導体デバイスを構成することができるため、品質及び歩留まりの向上した窒化物半導体デバイスを製造することができる。
 請求項41に記載の発明によれば、窒化物半導体デバイスとして、特に、発光素子、電子デバイス、受光素子のいずれかの品質及び歩留まりを向上できる。
 請求項42に記載の発明によれば、成膜中又は成膜後に発生する基板の反りを抑制することができるため、複雑な工程を用いることなく、また、クラックを発生させずに窒化物半導体層の厚膜を成長させることができる。そのため、自立可能な膜厚を有する窒化物半導体層の厚膜で構成される窒化物半導体バルク基板を製造することができる。
 請求項43に記載の発明によれば、特に、AlInGaN (x+y+z=1,x≧0,y≧0,z≧0)からなる窒化物半導体層の厚膜をクラックを発生させずに製造することができる。
 請求項44に記載の発明によれば、基板の反り形状及び/又は反り量を精密に制御した内部改質サファイア基板を効率良く作製することができる。
 請求項45又は46に記載の発明によれば、請求項44に記載の効果に加えて、基板窒化物半導体層の成膜工程において、基板の反りを抑制し、基板の反り挙動を小さくすることのできる内部改質サファイア基板を効率良く製造することができる。
 請求項47に記載の発明によれば、基板の反り形状及び/又は反り量を精密に制御し、且つ基板窒化物半導体層の成膜工程において、基板の反りを抑制し、基板の反り挙動を小さくすることが可能な内部改質サファイア基板を効率良く製造することができる。
本実施形態に係る単結晶基板内部への改質領域形成を示す図である。 本実施形態に係る改質領域パターンのパターン形状、ピッチ、形成位置を示す図である。 本実施形態に係る窒化物半導体層のエピタキシャル成長工程を示す図である。 本実施形態に係る窒化物半導体成長工程におけるIn-situ観察例を示す図である。スペクトルAは従来のサファイア基板を用いた例、スペクトルB,Cは本発明のサファイア基板を用いた例である。 本実施形態に係る基板の反り量と曲率の関係を示す図である。 本実施形態に係る本発明のサファイア基板を用いたIn-situ観察例を示す図である。 本実施例2に係る改質領域パターン形成後の基板曲率の変化量に対する形成位置とピッチ依存性を示す図である。 本実施例3に係るサンプル10のIn-situ観察結果を示す図である。 本実施例3に係るサンプル12のIn-situ観察結果を示す図である。 本実施例3に係るサンプル14のIn-situ観察結果を示す図である。 本実施例3に係るサンプル16のIn-situ観察結果を示す図である。 本実施例3に係るサンプル18のIn-situ観察結果を示す図である。 本実施例3に係るサンプル20のIn-situ観察結果を示す図である。
以下、本発明を実施するための最良の形態について説明する。
 本発明のエピタキシャル成長用内部改質基板は、エピタキシャル成長により形成される結晶性膜の成膜に用いられる単結晶基板の内部に、前記単結晶基板の研磨面側を通してパルスレーザを集光し、走査し、前記パルスレーザによる多光子吸収を利用して改質領域パターンを形成して作製することを特徴とする。
 単結晶基板は、パルスレーザによる多光子吸収を利用して内部に改質領域を形成可能な材質であればよく、サファイア、窒化物半導体、Si、GaAs、水晶、SiC等が挙げられる。また、単結晶基板ではなく、石英やガラス等でも良い。
 用いるパルスレーザの波長は、適用する単結晶基板の吸収端波長より長い、透明な波長域の波長が適している。パルス幅、照射エネルギーは材料の物性に合わせて適宜選択する必要がある。
 単結晶基板がサファイア基板の場合、パルスレーザの波長は200nm以上5000nm以下、パルス幅はピコ秒~フェムト秒、さらに好ましくは200fs~800fs、繰り返し周波数は50kHz~500kHzが好ましい。レーザパワーは0.05~0.8W、レーザのスポットサイズは0.5~4μm、スポットサイズは、2μm程度が好ましい。試料ステージの走査速度は、量産性を考えると100~1000mm/sが好ましい。
 また、表1に、Si、GaAs、水晶における改質領域を形成できる典型的な加工条件を示す。
Figure JPOXMLDOC01-appb-T000001
 Si、GaAs、水晶の場合、スポットサイズは、0.5μm~4μm程度の範囲が好ましい。ステージ走査速度は、50mm/s~1000mm/s、量産性を考えると100mm/s~1000mm/sが好ましい。パルス幅は、Siの場合50ns~200ns、GaAsの場合30ns~80ns、水晶の場合200fs~800fsが好ましい。照射エネルギーは、Siでは3~12μJ、GaAsでは8~20μJ、水晶では3~6μJがそれぞれ好ましい。繰り返し周波数は10kHz~500kHzが好ましい。
 単結晶基板の大きさは限定されないが、直径50mm以上300mm以下のものを用いることができる。基板の厚みは、0.05mm以上5.0mm以下のものを用いることができる。
 単結晶基板は、少なくともエピタキシャル成長により形成される結晶性膜の成膜に用いられる面が研磨されていればよい。通常、単結晶基板には、研磨による加工歪の残留や仕上げの表面粗さが上下面で異なることによって、反りが発生している。例えば、片面が研磨されている基板では、主に上下面の表面粗さが異なることが反りの要因になり、両面が研磨されている基板では、上下面の粗さがわずかに異なることに加えて、基板面内での表面粗さがわずかにばらつくことが反りの要因になる。
 またエピタキシャル成長とは、同一組成又は混晶を含むホモエピタキシャル成長、ヘテロエピタキシャル成長を含む。
 図1に示すように、単結晶基板1の研磨面側を通して、基板内部にパルスレーザ2を集光し、試料ステージを連続的に高速で走査すると、スポット状の改質領域3が連続的につながったライン状の改質領域が形成される。
 局所的に見ると、スポット状の改質領域3は、パルスレーザが瞬間的に照射された部分にのみ形成され、その大きさは、レーザのスポットサイズ、レーザ強度及びパルス幅に依存する。また、ライン状に形成されるスポット状の改質領域3の距離は、レーザの繰り返し周波数とステージの走査速度に依存して形成される。
 これらライン状に形成された改質領域を複数本組み合わせることで、基板の厚み方向の所望の位置に少なくとも1種類の改質領域パターンを形成する。改質領域とは、レーザが照射された部分において局所的に多光子吸収を発生させて形成された変質層である。
 図2に示すように、改質領域パターンのパターン形状、各ライン間のピッチ4、形成位置5、改質層長さ6等の条件を最適化することによって、基板全体の応力をコントロールし、基板の反り形状及び/又は反り量を精密に制御することができる。
 パターン形状としては、例えば図2に示すように、その平面形状が、複数本のラインを基板のオリフラ面に対して垂直又は平行に形成したストライプ形状(図2(a)、(b))、それら両方を組み合わせた格子状(図2(c))などが形成可能である。その他にも、複数の多角形を配置した形状(図2(d))、同心円形状(図2(e))、らせん形状などが形成できる。
 パターン形状は、主に基板の反り形状の対称性に影響するため、基板面内において均一な反り形状を得ようとすれば、その平面形状は、基板の中心点を通る直線に対して略線対称又は略点対称であるような形状が好ましい。逆に、平面形状がストライプ形状であれば、基板の反り形状に偏りをもたせることも可能である。
 各ライン間のピッチ4は、主に改質領域パターン形成後の基板の反り量の変化量に影響し、各ライン間のピッチが小さくなるほど変化量が大きくなる。ピッチが小さくなるほど加工時間がかかるため、量産性を考慮すると、50μm~2000μmが好ましく、さらには100μm~1000μmが好ましい。
 形成位置5は、主に改質領域パターン形成後の基板の反り量の変化量に影響し、形成位置が表面に近いほど変化量が大きくなる。単結晶基板の成膜面に影響を与えないようにするには、少なくとも1種類の改質領域パターンの形成位置は、基板の成膜面を基準として、基板厚みの3%以上95%以下、さらに好ましくは、3%以上50%以下に設定するのが好ましい。複数の改質領域パターンを基板の厚み方向の異なる形成位置に形成してもよい。
 改質層長さ6は、レーザのスポットサイズ、照射エネルギー(レーザパワー/繰り返し周波数)、パルス幅に依存して形成され、通常、数μm~数十μm程度の厚みで形成される。
 上述したように、単結晶基板内部に改質領域パターンを形成し、基板の応力をコントロールすることによって、効率良く、基板の反り形状及び/又は反り量が精密に制御された内部改質基板を得ることができる。
 また、本発明により得られる内部改質基板の成膜面上に、エピタキシャル成長によって、少なくとも一層の結晶性膜を形成し、結晶成膜体を作製することができる。結晶性膜の形成方法は、気相成長、液相成長どちらにも適用できる。例えばMBE法、CVD法、VPE法、LPE法、昇華法等各種の結晶成長法を用いることができる。
 本発明の内部改質基板を用いると、成膜により発生する応力を、内部改質基板の応力で相殺することができるため、成膜中の基板の反りを抑制し、基板の反り挙動を小さくすることができる。そのため、結晶性膜の品質及び均一性を向上させた結晶成膜体を得ることができる。
 本発明により得られる結晶成膜体を用いて、各種デバイスを構成すると、デバイスの品質及び歩留まりを向上させることができる。
 また、本発明の結晶成膜体を下地材として用い、さらにホモエピタキシャル成長により自立可能な膜厚を有する結晶性膜の厚膜を形成することができる。また、結晶性膜の厚膜を結晶成膜体からなる下地材から分離し、バルク基板を得ることができる。
 さらには、本発明の内部改質基板上に結晶性膜の厚膜を形成し、内部改質基板から分離することによっても、結晶性膜の厚膜からなるバルク基板を得ることができる。本発明の内部改質基板を用いると、成膜中又は成膜後に発生する基板の反りを抑制できるため、クラックを発生させずに厚膜を形成することができる。
 自立可能な膜厚としては、50μm以上が好ましい。また、厚膜の形成方法として、MOCVD法、HVPE法、LPE法等を用いることができる。
 前記単結晶基板としてサファイア基板を用いることにより、上述した内部改質基板と同様の効果を有し、且つ、エピタキシャル成長により形成される半導体層の成膜に適した内部改質サファイア基板を得ることができる。
 また、本発明の内部改質サファイア基板の成膜面上に、エピタキシャル成長によって、少なくとも1層の半導体層を形成し、半導体層成膜体を作製することができる。本発明により得られる半導体層成膜体を用いて構成される半導体デバイス、及び半導体バルク基板を得ることができる。
 特に、半導体層が窒化物半導体である場合、窒化物半導体層の成膜に用いられるサファイア基板としては、直径50mm以上300mm以下のものを用いることができる。本発明は、大口径基板においてより大きな効果を有するため、直径が75mm以上、さらには150mmより大きな基板では特に有用である。上述にかかわらず、基板サイズは限定されるものではない。
 窒化物半導体層の成膜に用いられるサファイア基板の厚みは、0.05mm以上5.0mm以下のものを用いることができる。サファイア基板自体を破壊しない位置に改質領域パターンを形成するためには、基板の厚みは0.1mm以上が好ましい。また、より好ましくは、基板の直径が50mm以上150mm以下の場合には0.3mm以上、基板の直径が150mmを超える場合は0.5mm以上が好ましい。
 また、窒化物半導体層の成膜面が凹面であり、その凹面の曲率が0km-1より大きく160km-1以下のものを用いることができる。
 窒化物半導体層の成膜に用いられるサファイア基板の内部に、改質領域パターンを形成する場合、パターンの平面形状は、前述したように、ストライプ形状、格子形状、複数の多角形を配置した形状、同心円形状、らせん形状、基板の中心点を通る直線に対して略線対称又は略点対称であるような形状のいずれかが好ましい。基板面内において均一な反り形状及び反り量を有する内部改質サファイア基板を得るためには、基板の中心点を通る直線に対して略線対称、略点対称、格子形状のいずれかの形状がより好ましい。
 各ライン間のピッチは、50μm~2000μmが好ましく、さらには100μm~1000μmが好ましい。さらに量産性を考慮すると、200μm~500μmがより好ましい。
 少なくとも1種類の改質領域パターンの形成位置が、基板の成膜面を基準として、基板厚みの3%以上95%以下、さらに好ましくは、3%以上50%以下に形成するように設定するのが好ましい。複数の改質領域パターンを基板の厚み方向の異なる形成位置に形成してもよい。
 また、従来、サファイア基板上に窒化物半導体層が積層された発光素子を分割する際には、窒化物半導体層の成膜後にサファイア基板を100μm程度までバックグラインド加工したあとで、分割用のパターンをサファイア基板内部に形成しているが、窒化物半導体層の成膜前に設ける改質領域パターンの平面形状を格子状とし、最終的にLEDチップの分割用として用いることも可能である。その場合、サファイア基板のバックグラインド加工後に残る厚み分の中に、パターンが残るような位置に形成するのが望ましい。
 本発明により得られる内部改質サファイア基板の成膜面上に、少なくとも一層の窒化物半導体層をエピタキシャル成長させ、窒化物半導体層成膜体を製造する形態について、下記に述べる。
 図3(a)~(d)に、サファイア基板上への窒化物半導体層のエピタキシャル成長工程を示す。成膜方法には、MOCVD法、HVPE法、MBE法等を用いることができる。はじめに、サファイア基板7のサーマルクリーニングを行い(図3(a))、低温バッファ層8の成長を行う(図3(b))。続いて、n-GaN層9(図3(c))、多重量子井戸構造を有するInGaN系活性層10を成長させる(図3(d))。
 図4に窒化物半導体層のエピタキシャル成長工程におけるIn-situ観察例を示す。非特許文献2で開示されているように、In-situ観察によって成膜中のサファイア基板の挙動を定量的に解析することが可能である。即ち、基板の反り形状や反り量が成膜中にどのように変化しているかを知ることができる。
 図4において、横軸は時間であり、縦軸は成膜面の基板の曲率(km-1)を表している。縦軸の正の方向は、成膜面が凸面形状であり、負の方向は成膜面が凹面形状であることを示している。
 基板の曲率から基板の反り量を算出することができる。つまり、図5に示すように、基板の曲率半径をRとすると、曲率1/Rを有する基板の反り量X(μm)は、基板の直径を近似的にDとして用いることで、簡易的に、基板の直径が50mmの場合は、0.322×曲率(km-1)、基板の直径が150mmの場合は、1.250×曲率(km-1)として求めることができる。
 図4中のスペクトルAは、改質領域パターンを形成していない従来のサファイア基板を用いた例を示している。
 また、図4(a)~(e)は、それぞれ成膜工程の各過程に対応している。即ち、(a)基板のサーマルクリーニング、(b)低温バッファ層成長、(c)n-GaN層成長、(d)InGaN系活性層成長、(e)クールダウンに対応している。
 図4のスペクトルAを用いて、図4(a)~(e)における基板の挙動について説明する。
 (a)基板サーマルクリーニングに移行する段階では、サファイア基板の上下面での温度差に起因して、基板成長面の凹面形状がさらに強まり、曲率が大きく変化する。
 続いて、通常500~600℃程度に温度を下降し、(b)低温バッファ層成長に移行する段階では、基板の凹面形状が弱まり、曲率はやや小さくなる。
 続いて再び1000℃程度に温度を上昇し、(c)n-GaN層成長を行う段階では、窒化ガリウムとサファイアの格子定数差に起因して、基板の凹面形状が強まり曲率は大きくなる。さらに成膜が進行し、膜厚が大きくなるほど曲率が大きくなるため、膜厚および膜品質の基板面内均一性は著しく悪化する。成膜コンディションのみで基板面内均一性を制御することは技術的に難しいと言われている。また、窒化物半導体層中には、応力を緩和するために転位が発生し膜品質が悪化することが問題とされている。
 続いて温度を700~800℃程度に下降して、(d)InGaN系活性層の成長段階では、InGaN系活性層の膜厚とInGaN中のIn組成の均一性が、発光波長の面内均一性に影響するため、LEDチップの製造歩留まりに影響する。InGaN層の膜厚やIn組成は成膜温度に影響を受けることから、基板面内の温度均一性を向上させるために、成膜中の基板の曲率はできるだけ0に近づけるのが理想的である。
 最終的に基板を(e)クールダウンする段階で、再び熱膨張係数差によって基板形状が再び大きく反るため、一連の成膜工程終了後の基板の曲率は大きなものとなる。これは、LEDチップ化前のバックグラインド加工を困難にするという問題を生じさせる。
 以上、図4のスペクトルAに示すように、従来のサファイア基板を用いると、InGaN系活性層成長段階での基板曲率はほぼ0とすることが可能である一方で、成膜工程中の基板の挙動が大きく、成膜終了後の基板の曲率が大きくなってしまうという欠点があることが分かる。
 次に、従来のサファイア基板内部に改質領域パターンを形成することにより、本発明の内部改質サファイア基板を作製し、窒化物半導体層を成膜した場合のIn-situの第1の例を、図4中のスペクトルBに示す。
 スペクトルBにおける内部改質サファイア基板の初期状態は、従来のサファイア基板よりも成膜面が凸面に反るように改質領域パターンが形成されていることが好ましい。それによって、従来のサファイア基板を用いたスペクトルAと比較して基板の反り挙動を小さくすることができる。
 図4中のスペクトルCには、スペクトルBの場合と同様に、従来のサファイア基板内部に改質領域パターンを形成する際、各ライン間のピッチとパターン形成位置を調整し、サファイア基板の初期状態が、スペクトルBよりもさらに凸面に大きく反っている内部改質サファイア基板を用いた例を示す。
 スペクトルCは、成膜工程を通してさらに基板の挙動を小さくすることができる。即ち、スペクトルA、Bよりもさらに成膜中に発生する応力を基板の応力で相殺する効果が大きいことを示している。
 上述のスペクトルB、Cで得られる窒化物半導体層は、従来のサファイア基板を用いた場合と比較して、成膜中の基板の反りが抑制され、基板の反り挙動が小さくなるため、膜の品質及び均一性が向上する。
 しかしながら同時に、内部改質サファイア基板の初期状態が凸面に大きく反った状態となり、結果として、InGaN系活性層成長段階及び成膜終了時点での基板の曲率は、従来のサファイア基板を用いた場合よりも大きくなってしまうという問題が発生する。
 即ち、本発明の内部改質サファイア基板は、図6中のスペクトルCに示すように、基板の反り挙動を小さくするのと同時に、InGaN系活性層成長段階及び成膜終了時点での基板の曲率を小さくすることができるような初期状態とすることが望ましい。
 それによって、窒化物半導体層の膜の品質及び均一性を向上させるとともに、窒化物半導体発光素子の発光波長の均一性を向上させることができる。
 そのため、改質領域パターン形成前のサファイア基板には、改質領域パターン形成によって凸面に大きく反る基板曲率分を、あらかじめ相殺できるようなサファイア基板を用いるのが望ましい。
 前述したように、改質領域パターン形成用サファイア基板としては、窒化物半導体層の成膜面が凹面であり、その凹面の曲率が0km-1より大きく160km-1以下のものを用いることができる。また、前述の理由から、窒化物半導体層の成膜面が凹面であり、その凹面の曲率は、40km-1以上150km-1以下が好ましく、さらには85km-1以上150km-1以下が好ましい。
 以上述べたように、本発明の内部改質サファイア基板を用いることで、窒化物半導体層の膜の品質及び均一性を向上させた窒化物半導体層成膜体を得ることができる。
 本発明の窒化物半導体層成膜体を用いて、品質及び歩留まりの向上した発光素子、電子デバイス、受光素子等の窒化物半導体デバイスを構成することができる。
 また、本発明の窒化物半導体層成膜体上に、さらにエピタキシャル成長により自立可能な膜厚を有する窒化物半導体層の厚膜を形成したあとに、下地基板として用いた前記窒化物半導体層成膜体を分離し、窒化物半導体層の厚膜からなる窒化物半導体バルク基板を得ることができる。
 また、本発明の内部改質サファイア基板上に、前記窒化物半導体層の厚膜を形成させると、成膜中又は成膜後に発生する基板の反りを抑制することができ、クラックを発生させずに自立可能な膜厚を有する窒化物半導体層の厚膜を得ることができる。このように得られた窒化物半導体層の厚膜を前記内部改質基板から分離することによって、複雑な工程を用いることなく窒化物半導体バルク基板を得ることができる。窒化物半導体バルク基板として、特に、AlInGaN (x+y+z=1,x≧0,y≧0,z≧0)からなる窒化物半導体バルク基板を効率良く製造できる。
 次に、本発明にかかる実施例について具体的に説明する。表2に示すレーザ条件を用いて、サファイア基板内部に改質領域パターンを形成し、基板の反り形状及び反り量の変化に対する影響を調べた。その結果を実施例1及び2に示す。

Figure JPOXMLDOC01-appb-T000002
(実施例1)
 改質領域パターンを形成するサファイア基板として、片面が研磨された2インチサファイア基板を用いた。基板厚みは430μmであった。改質領域パターン形成前の基板の反り形状及び反り量はレーザ干渉計で測定した。
 続いて、サファイア基板をパルスレーザ装置の試料ステージ上に設置し、サファイア基板内部への改質領域パターン形成を行った。
 表3にサンプル1~9のパターン形状、各ライン間のピッチ、形成位置及び改質層長さ、一枚あたりの加工時間を示す。改質領域パターン形成後のサファイア基板の基板形状はレーザ干渉計で、反り量及び基板厚みはリニアゲージ及びレーザ干渉計で計測した。表3において、⊥O.F.はサファイア基板のオリフラに垂直、//O.F.はオリフラに平行であることを示す。
Figure JPOXMLDOC01-appb-T000003
 表4に改質領域パターン形成前後の基板の反り形状、反り量、及びパターン形成後の基板面内における反り形状の対称性を示す。基板の反り形状は、成膜面側の形状を示す。
Figure JPOXMLDOC01-appb-T000004
(実施例2)
 内部改質領域パターンを形成するサファイア基板として、片面が研磨された4インチサファイア基板を用いた。基板厚みは650μmであった。実施例1と同様に、改質領域パターン形成前の基板の反り形状及び反り量はレーザ干渉計で測定した。
 続いて、サファイア基板をパルスレーザ装置の試料ステージ上に設置し、サファイア基板内部への改質領域パターン形成を行った。表5にサンプル10~19のパターン形状、ピッチ、形成位置を示す。
Figure JPOXMLDOC01-appb-T000005
 改質領域パターン形成後の基板の反り形状はレーザ干渉計で、反り量はリニアゲージで計測した。表6に改質領域パターン形成前後の基板形状、反り量、及び反り量から算出した曲率を比較して示す。基板の反り形状は、成膜面側の形状を示す。
Figure JPOXMLDOC01-appb-T000006
 また、改質領域パターン形成後の基板曲率の変化量に対する、形成位置と各ライン間のピッチ依存性を図7に示す。
(実施例3)
 実施例2において改質領域パターンを形成したサファイア基板のうち、サンプル10,12,14,16,18と、パターン未形成の従来のサファイア基板(サンプル20とする)を同時にMOCVD装置に導入し、サファイア基板上への窒化ガリウム層の成長を行った。各成膜工程における成長温度及び膜厚を表7に示す。
Figure JPOXMLDOC01-appb-T000007
 各サンプルのIn-situ観察結果を図8a~図8fに、各サンプルの基板の反り形状、反り量及び曲率を表8に、各段階における基板曲率の変化量を表9に示す。
 表9中(1)~(4)は、図8aで図示している通り、それぞれ(1)基板初期状態に対するサーマルクリーニング移行時、(2)基板初期状態に対するn-GaN層成長時、(3)n-GaN成長終了時に対するGaN/InGaN活性層成長移行時、(4)基板初期状態に対するクールダウン終了後の曲率の変化量を示している。
Figure JPOXMLDOC01-appb-T000008

Figure JPOXMLDOC01-appb-T000009
 (1)基板初期状態からサーマルクリーニング移行時における基板曲率の変化量から、内部改質領域パターンを形成したサンプル10,12,14,16,18と、パターン未形成のサンプル20とに曲率変化量の大きな差は認められなかった。
 (2)基板初期状態に対するn-GaN層成長時における基板曲率の変化量から、サファイア基板表面から浅い位置にパターンを形成したサンプル10, 16, 18において、他のサンプルと比較してn-GaN成長時の基板曲率の変化量を抑制する効果が認められた。
 (3)n-GaN成長終了時に対するGaN/InGaN活性層成長移行時における基板曲率の変化量から、n-GaN層成長終了時点からGaN/InGaN活性層成長に移行する段階において、サファイア基板表面から浅い位置にパターンを形成したサンプル10,16,18では、他のサンプルと比較して基板曲率の変化量を抑制する効果が認められた。
 (4)基板初期状態に対するクールダウン終了後の基板曲率の変化量から、サファイア基板表面から浅い位置にパターンを形成したサンプル10, 16, 18では、他のサンプルと比較して基板曲率の変化量を抑制する効果が認められた。
 以上の工程により得られたサンプル10,12,14,16,18,20の窒化ガリウム層の膜厚均一性及び結晶品質について調べた。
 サンプル10は、改質領域パターン未形成のサンプル20と比較して膜厚均一性が向上することが分かった。これは、サファイア基板表面から浅い位置にパターンを形成することによって、基板形状がよりフラットな状態でn-GaN層成長が行われたためであると考えられる。
 さらに、X線回折ロッキングカーブ測定により求められた窒化ガリウム層の(001)面、(102)面のFWHM値は、サンプル10ではそれぞれ203arcsec、418arcsecであり、改質領域パターン未形成のサンプル20ではそれぞれ242arcsec、579arcsecであった。この結果から、改質領域パターンを形成したサンプル10では、改質領域パターン未形成のサンプル20と比較して窒化ガリウム層の結晶性が向上することが分かった。
 以上の結果から、本発明の内部改質サファイア基板を用いて窒化物半導体層のエピタキシャル成長を行うと、基板の反りを抑制し、基板の反り挙動を小さくすることができるため、膜の品質及び均一性が向上することが分かった。
1 単結晶基板
2 パルスレーザ
3 改質領域
4 ピッチ
5 形成位置
6 改質層長さ
7 サファイア基板
8 低温バッファ層
9 n-GaN層
10 InGaN系活性層

Claims (47)

  1.  エピタキシャル成長により形成される結晶性膜の成膜に用いられる単結晶基板において、前記単結晶基板内部にパルスレーザによる多光子吸収を利用した改質領域パターンが形成されていることを特徴とするエピタキシャル成長用内部改質基板。
  2.  エピタキシャル成長により形成される結晶性膜の成膜に用いられる単結晶基板において、前記単結晶基板の内部に、前記単結晶基板の研磨面側を通してパルスレーザを集光し、走査し、前記パルスレーザによる多光子吸収を利用して改質領域パターンを形成して作製することを特徴とするエピタキシャル成長用内部改質基板。
  3.  前記単結晶基板の材質が、サファイア、窒化物半導体、Si、GaAs、水晶、SiCのいずれかであることを特徴とする請求項1又は2に記載のエピタキシャル成長用内部改質基板。
  4.  請求項1~3のいずれかに記載のエピタキシャル成長用内部改質基板の成膜面上に、少なくとも一層の結晶性膜を成膜したことを特徴とする結晶成膜体。
  5.  請求項4に記載の結晶成膜体を備えることを特徴とするデバイス。
  6.  請求項4に記載の結晶性膜の厚膜からなることを特徴とするバルク基板。
  7.  エピタキシャル成長により形成される半導体層の成膜に用いられるサファイア基板において、前記サファイア基板内部にパルスレーザによる多光子吸収を利用した改質領域パターンが形成されていることを特徴とする半導体層エピタキシャル成長用内部改質サファイア基板。
  8.  エピタキシャル成長により形成される半導体層の成膜に用いられるサファイア基板において、前記サファイア基板の内部に、前記サファイア基板の研磨面側を通してパルスレーザを集光し、走査し、前記パルスレーザによる多光子吸収を利用して改質領域パターンを形成して作製することを特徴とするエピタキシャル成長用内部改質サファイア基板。
  9.  請求項7又は8に記載の半導体層エピタキシャル成長用内部改質サファイア基板の成膜面上に、少なくとも一層の半導体層を成膜したことを特徴とする半導体層成膜体。
  10.  請求項9に記載の半導体層成膜体を備えることを特徴とする半導体デバイス。
  11.  請求項9に記載の半導体層の厚膜からなることを特徴とする半導体バルク基板。
  12.  エピタキシャル成長により形成される窒化物半導体層の成膜に用いられるサファイア基板において、前記サファイア基板内部にパルスレーザによる多光子吸収を利用した改質領域パターンが形成されていることを特徴とする窒化物半導体層のエピタキシャル成長用内部改質サファイア基板。
  13.  エピタキシャル成長により形成される窒化物半導体層の成膜に用いられるサファイア基板において、前記サファイア基板の内部に、前記サファイア基板の研磨面側を通してパルスレーザを集光し、走査し、前記パルスレーザによる多光子吸収を利用して改質領域パターンを形成して作製することを特徴とする窒化物半導体層のエピタキシャル成長用内部改質サファイア基板。
  14.  少なくとも1種類の前記改質領域パターンの平面形状が、ストライプ形状、格子形状、複数の多角形を配置した形状、同心円形状、らせん形状、サファイア基板の中心点を通る直線に対して略線対称又は略点対称な形状のいずれかであることを特徴とする請求項12又は13に記載の窒化物半導体層のエピタキシャル成長用内部改質サファイア基板。
  15.  少なくとも1種類の前記改質領域パターンの形成位置は、前記サファイア基板の成膜面から、基板厚みの3%以上95%以下の位置であり、前記改質領域パターンを構成する各ライン間のピッチが50μm以上2000μm以下であることを特徴とする請求項14のいずれかに記載の窒化物半導体層のエピタキシャル成長用内部改質サファイア基板。
  16.  少なくとも1種類の前記改質領域パターンの平面形状が、サファイア基板の中心点を通る直線に対して略線対称、略点対称な形状、格子形状のいずれかであり、前記改質領域パターンの形成位置が、サファイア基板の成膜面から、基板厚みの3%以上50%以下の位置であり、前記改質領域パターンを構成する各ライン間のピッチが50μm以上2000μm以下であることを特徴とする請求項14のいずれかに記載の窒化物半導体層のエピタキシャル成長用内部改質サファイア基板。
  17.  請求項12~16に記載の窒化物半導体層エピタキシャル成長用内部改質サファイア基板の成膜面上に、少なくとも一層の窒化物半導体層を成膜したことを特徴とする窒化物半導体層成膜体。
  18.  請求項17に記載の窒化物半導体層成膜体を備えることを特徴とする窒化物半導体デバイス。
  19.  前記窒化物半導体デバイスは、発光素子、電子デバイス、受光素子のいずれかであることを特徴とする請求項18に記載の窒化物半導体デバイス。
  20.  請求項17に記載の窒化物半導体層の厚膜からなることを特徴とする窒化物半導体バルク基板。
  21.  前記窒化物半導体バルク基板は、AlInGaN (x+y+z=1,x≧0,y≧0,z≧0)からなることを特徴とする請求項20に記載の窒化物半導体バルク基板。
  22.  請求項7~21において、前記改質領域パターン形成前のサファイア基板の形状は、前記半導体層の成膜面が凹面であり、その凹面の曲率が0km-1より大きく160km-1以下であることを特徴とする改質領域パターン形成用サファイア基板。
  23.  請求項7~21において、前記改質領域パターン形成前のサファイア基板の形状は、前記半導体層の成膜面が凹面であり、その凹面の曲率が40km-1以上150km-1以下であることを特徴とする改質領域パターン形成用サファイア基板。
  24.  請求項7~21において、前記改質領域パターン形成前のサファイア基板の形状は、前記半導体層の成膜面が凹面であり、その凹面の曲率が85km-1以上150km-1以下であることを特徴とする改質領域パターン形成用サファイア基板。
  25.  前記改質領域パターン形成前のサファイア基板の直径は50mm以上300mm以下であり、厚みは0.05mm以上5.0mm以下であることを特徴とする請求項22~24のいずれかに記載の改質領域パターン形成用サファイア基板。
  26.  エピタキシャル成長により形成される結晶性膜の成膜に用いられる単結晶基板の内部に、前記単結晶基板の研磨面側を通してパルスレーザを集光し、走査し、前記パルスレーザによる多光子吸収を利用して改質領域パターンを形成し、前記単結晶基板の反り形状及び/又は反り量を制御することを特徴とするエピタキシャル成長用内部改質基板の製造方法。
  27.  前記単結晶基板の材質が、サファイア、窒化物半導体、Si、GaAs、水晶、SiCのいずれかであることを特徴とする請求項26に記載のエピタキシャル成長用内部改質基板の製造方法。
  28.  請求項26又は27に記載のエピタキシャル成長用内部改質基板の成膜面上に、少なくとも一層の結晶性膜を成膜することを特徴とする結晶成膜体の製造方法。
  29.  請求項28に記載の結晶成膜体を用いて作製することを特徴とするデバイスの製造方法。
  30.  請求項28に記載の結晶成膜体の厚膜を用いて作製することを特徴とするバルク基板の製造方法。
  31.  エピタキシャル成長により形成される半導体層の成膜に用いられるサファイア基板の内部に、前記サファイア基板の研磨面側を通してパルスレーザを集光し、走査し、前記パルスレーザによる多光子吸収を利用して改質領域パターンを形成し、前記単結晶基板の反り形状及び/又は反り量を制御することを特徴とする半導体層エピタキシャル成長用内部改質基板の製造方法。
  32.  請求項31に記載の半導体層エピタキシャル成長用内部改質サファイア基板の成膜面上に、少なくとも一層の半導体層を形成することを特徴とする半導体層成膜体の製造方法。
  33.  請求項32に記載の半導体層成膜体を用いて作製することを特徴とする半導体デバイスの製造方法。
  34.  請求項32に記載の半導体層成膜体の厚膜を用いて作製することを特徴とする半導体バルク基板の製造方法。
  35.  エピタキシャル成長により形成される窒化物半導体層の成膜に用いられるサファイア基板の内部に、前記サファイア基板の研磨面側を通してパルスレーザを集光し、走査し、前記パルスレーザによる多光子吸収を利用して改質領域パターンを形成し、前記単結晶基板の反り形状及び/又は反り量を制御することを特徴とする窒化物半導体層のエピタキシャル成長用内部改質基板の製造方法。
  36.  少なくとも1種類の前記改質領域パターンの平面形状は、ストライプ形状、格子形状、複数の多角形を配置した形状、同心円形状、らせん形状、サファイア基板の中心点を通る直線に対して略線対称又は略点対称な形状のいずれであることを特徴とする請求項35に記載の窒化物半導体層のエピタキシャル成長用内部改質サファイア基板の製造方法。
  37.  少なくとも1種類の前記改質領域パターンの形成位置は、前記サファイア基板の成膜面から、基板厚みの3%以上95%以下の位置であり、前記改質領域パターンを構成する各ライン間のピッチは、50μm以上2000μm以下であることを特徴とする請求項36に記載の窒化物半導体層のエピタキシャル成長用内部改質サファイア基板の製造方法。
  38.  少なくとも1種類の前記改質領域パターンの平面形状は、サファイア基板の中心点を通る直線に対して略線対称、略点対称な形状、又は格子形状であり、前記改質領域パターンの形成位置が、サファイア基板の成膜面から、基板厚みの3%以上50%以下の位置であり、前記改質領域パターンを構成する各ライン間のピッチが、50μm以上2000μm以下であることを特徴とする請求項36に記載の窒化物半導体層のエピタキシャル成長用内部改質サファイア基板の製造方法。
  39.  請求項35~38に記載の窒化物半導体層のエピタキシャル成長用内部改質サファイア基板の成膜面上に、少なくとも一層の窒化物半導体層を形成することを特徴とする窒化物半導体層成膜体の製造方法。
  40.  請求項39に記載の窒化物半導体層成膜体を用いて作製することを特徴とする窒化物半導体デバイスの製造方法。
  41.  前記窒化物半導体デバイスは、発光素子、電子デバイス、受光素子のいずれかであることを特徴とする請求項40に記載の窒化物半導体デバイスの製造方法。
  42.  請求項39に記載の窒化物半導体層成膜体の厚膜を用いて作製することを特徴とする窒化物半導体バルク基板の製造方法。
  43.  前記窒化物半導体バルク基板は、AlInGaN (x+y+z=1,x≧0,y≧0,z≧0)からなることを特徴とする請求項42に記載の窒化物半導体バルク基板。
  44.  請求項31~43において、前記改質領域パターン形成前のサファイア基板形状は、前記半導体層の成膜面が凹面であり、その凹面の曲率の逆数が0km-1より大きく160km-1以下であることを特徴とする半導体層エピタキシャル成長用内部改質サファイア基板の製造方法。
  45.  請求項31~43において、前記改質領域パターン形成前のサファイア基板の形状は、前記半導体層の成膜面が凹面であり、その凹面の曲率の逆数が40km-1以上150km-1以下であることを特徴とする半導体層エピタキシャル成長用内部改質サファイア基板の製造方法。
  46.  請求項31~43において、前記改質領域パターン形成前のサファイア基板の形状は、前記半導体層の成膜面が凹面であり、その凹面の曲率の逆数が85km-1以上150km-1以下であることを特徴とする半導体層エピタキシャル成長用内部改質サファイア基板の製造方法。
  47.  請求項44~46において、前記改質領域パターン形成前のサファイア基板の直径は50mm以上300mm以下であり、厚みは0.05mm以上5.0mm以下であることを特徴とする半導体層エピタキシャル成長用内部改質サファイア基板の製造方法。
PCT/JP2009/006633 2009-01-15 2009-12-04 エピタキシャル成長用内部改質基板及びそれを用いて作製される結晶成膜体、デバイス、バルク基板及びそれらの製造方法 WO2010082267A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020117018146A KR101362859B1 (ko) 2009-01-15 2009-12-04 에피택셜 성장용 내부 개질 기판 및 이를 이용하여 제작되는 결정 성막체, 디바이스, 벌크 기판 및, 그들의 제조 방법
CN200980154399.6A CN102272891B (zh) 2009-01-15 2009-12-04 外延生长用内部改性衬底和使用其制造的晶体成膜体、器件、块状衬底以及它们的制造方法
EP20090838237 EP2388802B1 (en) 2009-01-15 2009-12-04 Inside reforming substrate for epitaxial growth and method for producing the same
PL09838237T PL2388802T3 (pl) 2009-01-15 2009-12-04 Podłoże o zmienionej strukturze wewnętrznej do wzrostu epitaksjalnego i sposób jego wytwarzania
US13/144,920 US20120018732A1 (en) 2009-01-15 2009-12-04 Inside reforming substrate for epitaxial growth; crystal film forming element, device, and bulk substrate produced using the same; and method for producing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-006293 2009-01-15
JP2009006293A JP5552627B2 (ja) 2009-01-15 2009-01-15 エピタキシャル成長用内部改質基板及びそれを用いて作製される結晶成膜体、デバイス、バルク基板及びそれらの製造方法

Publications (1)

Publication Number Publication Date
WO2010082267A1 true WO2010082267A1 (ja) 2010-07-22

Family

ID=42339537

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/006633 WO2010082267A1 (ja) 2009-01-15 2009-12-04 エピタキシャル成長用内部改質基板及びそれを用いて作製される結晶成膜体、デバイス、バルク基板及びそれらの製造方法

Country Status (8)

Country Link
US (1) US20120018732A1 (ja)
EP (1) EP2388802B1 (ja)
JP (1) JP5552627B2 (ja)
KR (1) KR101362859B1 (ja)
CN (1) CN102272891B (ja)
PL (1) PL2388802T3 (ja)
TW (1) TWI494476B (ja)
WO (1) WO2010082267A1 (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102861992A (zh) * 2011-07-05 2013-01-09 株式会社迪思科 蓝宝石基板的加工方法
JP5674759B2 (ja) * 2010-03-05 2015-02-25 並木精密宝石株式会社 多層膜付き単結晶基板、多層膜付き単結晶基板の製造方法および素子製造方法
EP2544221A4 (en) * 2010-03-05 2015-06-03 Namiki Precision Jewel Co Ltd CRYSTALLINE FILM, DEVICE THEREFOR AND METHOD OF PRODUCING THE CRYSTALLINE FILM AND THE DEVICE
JP5732684B2 (ja) * 2010-03-05 2015-06-10 並木精密宝石株式会社 単結晶基板、単結晶基板の製造方法、多層膜付き単結晶基板の製造方法および素子製造方法
JP2016143766A (ja) * 2015-02-02 2016-08-08 株式会社ディスコ 単結晶部材の加工方法
US20160265140A1 (en) * 2012-10-31 2016-09-15 Namiki Seimitsu Houseki Kabushiki Kaisha Single crystal substrate, manufacturing method for single crystal substrate, manufacturing method for single crystal substrate with multilayer film, and element manufacturing method
WO2017163548A1 (ja) * 2016-03-24 2017-09-28 日本碍子株式会社 種結晶基板の製造方法、13族元素窒化物結晶の製造方法および種結晶基板
WO2019065689A1 (ja) * 2017-09-27 2019-04-04 日本碍子株式会社 下地基板、機能素子および下地基板の製造方法
WO2019064783A1 (ja) * 2017-09-27 2019-04-04 日本碍子株式会社 下地基板、機能素子および下地基板の製造方法
WO2020129569A1 (ja) * 2018-12-21 2020-06-25 国立大学法人東海国立大学機構 レーザ加工方法、半導体部材製造方法、及び半導体対象物
WO2020130108A1 (ja) * 2018-12-21 2020-06-25 浜松ホトニクス株式会社 レーザ加工方法、及び、半導体デバイス製造方法

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI508327B (zh) * 2010-03-05 2015-11-11 Namiki Precision Jewel Co Ltd An internal modified substrate for epitaxial growth, a multilayer film internal modified substrate, a semiconductor device, a semiconductor bulk substrate, and the like
WO2011129246A1 (ja) * 2010-04-13 2011-10-20 並木精密宝石株式会社 単結晶基板、結晶性膜付き単結晶基板、結晶性膜、結晶性膜付き単結晶基板の製造方法、結晶性基板の製造方法、及び素子製造方法
KR20110114972A (ko) * 2010-04-14 2011-10-20 삼성전자주식회사 레이저 빔을 이용한 기판의 가공 방법
JP5584560B2 (ja) * 2010-08-31 2014-09-03 三星ダイヤモンド工業株式会社 レーザスクライブ方法
JP2012223783A (ja) * 2011-04-18 2012-11-15 Panasonic Corp レーザ加工方法及びレーザ加工装置
JP6011340B2 (ja) * 2011-08-05 2016-10-19 住友電気工業株式会社 基板、半導体装置およびこれらの製造方法
US9306010B2 (en) * 2012-03-14 2016-04-05 Infineon Technologies Ag Semiconductor arrangement
JP2013212946A (ja) * 2012-03-30 2013-10-17 Mitsubishi Chemicals Corp Iii族窒化物半導体結晶
CN103503112B (zh) 2012-03-30 2016-08-17 新东工业株式会社 半导体元件用基板的弯曲矫正装置及弯曲矫正方法
KR102075994B1 (ko) 2014-03-25 2020-02-12 삼성전자주식회사 기판 분리 장치 및 기판 분리 시스템
JP6119712B2 (ja) 2014-10-08 2017-04-26 トヨタ自動車株式会社 半導体装置の製造方法
JP6740650B2 (ja) * 2016-03-16 2020-08-19 富士電機株式会社 半導体装置およびその製造方法
CN106601607B (zh) * 2016-12-16 2019-08-13 镓特半导体科技(上海)有限公司 激光辅助氮化镓晶体化学机械抛光方法
JP6998128B2 (ja) * 2017-04-25 2022-01-18 株式会社ディスコ サンプルウエーハ及びウエーハの形状確認方法
CN112236842A (zh) * 2018-06-12 2021-01-15 东京毅力科创株式会社 基板处理方法、改性装置以及基板处理系统
CN113937193A (zh) * 2020-06-29 2022-01-14 福建晶安光电有限公司 外延用衬底及其制造方法以及半导体器件及其制造方法
CN111785814B (zh) * 2020-07-13 2021-10-26 福建晶安光电有限公司 一种衬底及其加工方法、发光二极管及其制造方法
CN111755578B (zh) * 2020-07-13 2021-11-02 福建晶安光电有限公司 一种衬底及其加工方法以及发光二极管及其制造方法
CN112054099A (zh) * 2020-09-09 2020-12-08 福建晶安光电有限公司 一种衬底的回收工艺
CN112837998B (zh) * 2021-02-05 2023-08-25 福建晶安光电有限公司 一种衬底加工装置
CN115323485B (zh) * 2022-08-18 2023-08-01 江西兆驰半导体有限公司 外延波长均匀性提升方法、系统、可读存储介质及计算机

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003264194A (ja) * 2002-03-11 2003-09-19 Hamamatsu Photonics Kk レーザゲッタリング方法及び半導体基板
JP2006093175A (ja) * 2004-09-21 2006-04-06 Sony Corp 固体撮像素子及びその製造方法
JP2006196558A (ja) * 2005-01-12 2006-07-27 Namiki Precision Jewel Co Ltd 窒化物半導体基板の製造方法
JP2008108792A (ja) * 2006-10-23 2008-05-08 Disco Abrasive Syst Ltd ウエーハの加工方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004014938A (ja) * 2002-06-10 2004-01-15 Matsushita Electric Ind Co Ltd 半導体装置及びその製造方法
JP4849296B2 (ja) * 2005-04-11 2012-01-11 日立電線株式会社 GaN基板
JP2006347776A (ja) * 2005-06-13 2006-12-28 Sumitomo Metal Mining Co Ltd サファイア基板およびその製造方法
JP4909657B2 (ja) * 2006-06-30 2012-04-04 株式会社ディスコ サファイア基板の加工方法
JP5183892B2 (ja) * 2006-07-03 2013-04-17 浜松ホトニクス株式会社 レーザ加工方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003264194A (ja) * 2002-03-11 2003-09-19 Hamamatsu Photonics Kk レーザゲッタリング方法及び半導体基板
JP2006093175A (ja) * 2004-09-21 2006-04-06 Sony Corp 固体撮像素子及びその製造方法
JP2006196558A (ja) * 2005-01-12 2006-07-27 Namiki Precision Jewel Co Ltd 窒化物半導体基板の製造方法
JP2008108792A (ja) * 2006-10-23 2008-05-08 Disco Abrasive Syst Ltd ウエーハの加工方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
B. HOLLANDER ET AL.: "Strain relaxation of pseudomorphic Si1-xGex/Si (100) heterostructures after hydrogen or helium ion implantation for virtual substrate fabrication", NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATO, vol. 175, April 2001 (2001-04-01), pages 357 - 367, XP004242660 *
J. CRYST. GROWTH, vol. 272, no. 1-4, 2004, pages 94 - 99
JPN.J. APPL. PHYS., vol. 32, 1993, pages 1528 - 1533

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5674759B2 (ja) * 2010-03-05 2015-02-25 並木精密宝石株式会社 多層膜付き単結晶基板、多層膜付き単結晶基板の製造方法および素子製造方法
EP2544221A4 (en) * 2010-03-05 2015-06-03 Namiki Precision Jewel Co Ltd CRYSTALLINE FILM, DEVICE THEREFOR AND METHOD OF PRODUCING THE CRYSTALLINE FILM AND THE DEVICE
EP2544219A4 (en) * 2010-03-05 2015-06-03 Namiki Precision Jewel Co Ltd MONOCRYSTALLINE SUBSTRATE WITH MULTI-LAYER FILM, PROCESS FOR PRODUCING MONOCRYSTALLINE SUBSTRATE WITH MULTI-LAYER FILM, AND DEVICE PRODUCTION METHOD
JP5732684B2 (ja) * 2010-03-05 2015-06-10 並木精密宝石株式会社 単結晶基板、単結晶基板の製造方法、多層膜付き単結晶基板の製造方法および素子製造方法
CN102861992A (zh) * 2011-07-05 2013-01-09 株式会社迪思科 蓝宝石基板的加工方法
US20160265140A1 (en) * 2012-10-31 2016-09-15 Namiki Seimitsu Houseki Kabushiki Kaisha Single crystal substrate, manufacturing method for single crystal substrate, manufacturing method for single crystal substrate with multilayer film, and element manufacturing method
JP2016143766A (ja) * 2015-02-02 2016-08-08 株式会社ディスコ 単結晶部材の加工方法
WO2017163548A1 (ja) * 2016-03-24 2017-09-28 日本碍子株式会社 種結晶基板の製造方法、13族元素窒化物結晶の製造方法および種結晶基板
US10192738B2 (en) 2016-03-24 2019-01-29 Ngk Insulators, Ltd. Methods of producing seed crystal substrates and group 13 element nitride crystals, and seed crystal substrates
WO2019064783A1 (ja) * 2017-09-27 2019-04-04 日本碍子株式会社 下地基板、機能素子および下地基板の製造方法
WO2019065689A1 (ja) * 2017-09-27 2019-04-04 日本碍子株式会社 下地基板、機能素子および下地基板の製造方法
JPWO2019064783A1 (ja) * 2017-09-27 2020-10-15 日本碍子株式会社 下地基板、機能素子および下地基板の製造方法
JPWO2019065689A1 (ja) * 2017-09-27 2020-11-26 日本碍子株式会社 下地基板、機能素子および下地基板の製造方法
US11245054B2 (en) 2017-09-27 2022-02-08 Ngk Insulators, Ltd. Base substrate, functional element, and production method for base substrate
US11437233B2 (en) 2017-09-27 2022-09-06 Ngk Insulators, Ltd. Base substrate, functional element, and method for manufacturing base substrate
JP7161483B2 (ja) 2017-09-27 2022-10-26 日本碍子株式会社 下地基板、機能素子および下地基板の製造方法
JP7181210B2 (ja) 2017-09-27 2022-11-30 日本碍子株式会社 下地基板、機能素子および下地基板の製造方法
WO2020129569A1 (ja) * 2018-12-21 2020-06-25 国立大学法人東海国立大学機構 レーザ加工方法、半導体部材製造方法、及び半導体対象物
WO2020130108A1 (ja) * 2018-12-21 2020-06-25 浜松ホトニクス株式会社 レーザ加工方法、及び、半導体デバイス製造方法
JP2020102521A (ja) * 2018-12-21 2020-07-02 浜松ホトニクス株式会社 レーザ加工方法、及び、半導体デバイス製造方法
JP7330695B2 (ja) 2018-12-21 2023-08-22 浜松ホトニクス株式会社 レーザ加工方法、及び、半導体デバイス製造方法

Also Published As

Publication number Publication date
EP2388802A1 (en) 2011-11-23
JP5552627B2 (ja) 2014-07-16
TWI494476B (zh) 2015-08-01
CN102272891B (zh) 2015-06-17
TW201033413A (en) 2010-09-16
EP2388802A4 (en) 2013-03-06
KR101362859B1 (ko) 2014-02-17
US20120018732A1 (en) 2012-01-26
PL2388802T3 (pl) 2016-02-29
CN102272891A (zh) 2011-12-07
EP2388802B1 (en) 2015-05-06
JP2010165817A (ja) 2010-07-29
KR20110129377A (ko) 2011-12-01

Similar Documents

Publication Publication Date Title
JP5552627B2 (ja) エピタキシャル成長用内部改質基板及びそれを用いて作製される結晶成膜体、デバイス、バルク基板及びそれらの製造方法
JP5802943B2 (ja) エピタキシャル成長用内部改質基板の製造方法および多層膜付き内部改質基板の製造方法
US7622791B2 (en) III-V group nitride system semiconductor substrate
TWI489016B (zh) Single crystal substrate, single crystal substrate manufacturing method, multi-layer single-crystal substrate manufacturing method and component manufacturing method
JP5732685B2 (ja) 結晶性膜、デバイス、及び、結晶性膜又はデバイスの製造方法
JP6121806B2 (ja) 窒化物半導体ウェーハ、窒化物半導体素子及び窒化物半導体ウェーハの製造方法
WO2016143653A1 (ja) Iii族窒化物積層体、及び該積層体を有する発光素子
JP6704387B2 (ja) 窒化物半導体成長用基板及びその製造方法、並びに半導体デバイス及びその製造方法
JP5979547B2 (ja) エピタキシャルウェハ及びその製造方法
JP2005340747A (ja) Iii−v族窒化物系半導体基板及びその製造方法、iii−v族窒化物系半導体デバイス、iii−v族窒化物系半導体基板のロット
US20160265140A1 (en) Single crystal substrate, manufacturing method for single crystal substrate, manufacturing method for single crystal substrate with multilayer film, and element manufacturing method
JP6595678B1 (ja) 窒化物半導体基板、窒化物半導体基板の製造方法および積層構造体
JP2008273792A (ja) 金属窒化物層の製造方法、iii族窒化物半導体およびその製造方法、iii族窒化物半導体製造用基板
US20240113256A1 (en) Gan-on-si epiwafer comprising a strain-decoupling sub-stack
JP6595677B1 (ja) 窒化物半導体基板の製造方法、窒化物半導体基板および積層構造体

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980154399.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09838237

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20117018146

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 6047/DELNP/2011

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2009838237

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13144920

Country of ref document: US